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Introduction by the Organisers

The fast numerical treatment of non-local operators is an important challenge in
many fields of mathematics and its applications. This includes classical Fredholm
integral operators, retarded potentials for wave equations, inversion of (discretised)
partial differential equations, solutions to the matrix Riccati equation, infinitesi-
mal generators of step processes, non-local filter operators in image processing, or
non-local potentials in quantum chemistry and process simulation. The terminol-
ogy “fast” is related to the “Fast Fourier Transform” which allows to apply the
(non-local) discrete Fourier transform of N data points in O (N log V) operations
instead of O (N?) operations.

With growing demand for reliable discretisation methods for such applications
the need of fast numerical methods for non-local operators has increased rapidly
worldwide since the mid 80th and we list below some of these methods:

(1) Cluster methods for the sparse representation of classical Fredholm inte-
gral operators.

(2) Multipole methods for the fast evaluation of Coulomb-type potentials.

(3) H-matrices for the sparse representation of inverses of finite element dis-
cretisations of partial differential equations.

(4) Wavelet- and multiscale representations of non-local elliptic operators.

These methods allow to reduce the storage amount and the computational
cost when applying a non-local operator to O (N) data points from O (N?) to
O (N log® N), for some moderate o ~ 1. This log-linear complexity is based on an
approzimate representation of non-local operators which are already afflicted with
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a consistency error stemming from an underlying numerical discretisation. The
size of this additional error is controlled by suitable control parameters in such
algorithms and the numerical analysis allows to choose them in an optimal way.

The efficiency of these newly developed numerical methods has generated a
vivid research activity in this field of numerical analysis and new challenging
problems are arising: For instance, we mention the ab-initio numerical solution of
Schrédinger’s equation for IV particle systems with far field interaction, where the
numerical solution for very large N is feasible only by using new fast algorithms
for non-local operators. Among further novel applications is the optimal stopping
of step-diffusion processes for which the infinitesimal generator of the process is
non-local. The full potential of fast methods for such kinds of applications is not
yet utilized and research activities are directed in these directions.

A further field of active research is the numerical solution of problems arising in
electromagnetics. Such problems are described in a wide range of parameters (wave
numbers, dielectric constants, etc.) by Maxwell’s equation. Integral operators are
often used to reduce the problem on unbounded domains to the compact surface
of the scatterer. These operators depend on parameters, e.g., the wave number
in a critical way and the fast algorithm are currently developed for such type of
problems.

The goal of the (half) conference was to focus on the basic methodological
problems such as

e numerical analysis of fast compression methods.

e algorithmic aspects of fast compression methods.

e fast algorithms for integral equations in electromagnetics.
e fast compression algorithms for new types of applications.

This Oberwolfach conference brought together 22 scientists in the field of fast
numerical methods for non-local operators. The workshop had a clear mathe-
matical focus on the systematic development of fast methods for new types of
applications, on their algorithmic aspects and the relevant numerical analysis. A
total of 17 presentations were given. The fact that after each talk there arose very
stimulating and intense discussions show that the conference truly had workshop
character where all participants profited from the talks and the discussions after
the talks and in the breaks.

The topics of the talks can be categorized in the following areas:

e Discretisation by wavelets and Fast Multipole Methods

Wavelets allow the sparse discretisation of non-local operators due to
the vanishing moment properties. Progress in the application of wavelets
to (time-harmonic) electromagnetic problems for high wave numbers and
for high-dimensional problems has been presented by the talks of R. Schnei-
der, J. Tausch and E. Tyrtyshnikov. In O. Steinbach’s talk Tearing and
Interconnecting Domain Decomposition Methods, the FETI/BETI method
was considered which is an efficient preconditioned iterative solver for fi-
nite element/boundary element domain decomposition methods. It was
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shown that dense matrices arising in BETT could be avoided by using the
Fast Multipole Method.

e H-matrix arithmetics

‘H-matrices allow the sparse representation of non-local inverses of fi-
nite element discretisations of PDEs and to perform arithmetic operations
such as matrix-matrix multiplication, matrix exponentials, etc. in log-
linear complexity. In this field, H-matrix LU based preconditioning of
BEM equations have been presented by M. Bebendorf. In his lecture, L.
Grasedyck presented adaptive coarsening strategies for H-matrices. A fur-
ther development in this area was presented by B. Khoromsikij in his talk
on data sparse representations for multidimensional non-local operators.

e Scattering Problems

The numerical solution of inverse scattering problems can be based
on an iteration process based on integral equations. The presentation
integral equations and numerical solution of inverse scattering problems
by R. Kress provided a survey on the newest developments in this area.

In his presentation, G. Monegato considered the problem of scattering
at a T-junction. The arising integral operators are non-standard and re-
sults on their mapping properties and the numerical solution have been
presented. In the talk of S. Sauter, the Galerkin method for Helmholtz’
equation was analysed and error estimates which are explicit in the wave
numbers have been presented. In his presentation, I. Graham presented a
method which allows to use asymptotic information to compute diffraction
coefficients in high frequency scattering.

e Novel Applications

In some talks, new applications in the field of non-local operators have
been considered. S. Rjasanow has presented numerical solution methods
for the non-local electrostatic problems arising in the modelling of large
biomolecules. C. Schwab gave a presentation on numerical solution of
operator equations based on stochastic data. The computation of the k-th
moments of the random solution can be based on high-dimensional integral
equations and numerical methods for its solution have been presented.

¢ hp Boundary Elements
The discretisation of integral equations by hp boundary element method
enjoys exponential convergence rates. In the talk of E. Stephan on Schwarz
methods for integral equations on surfaces, fast solvers for the arising sys-
tems of linear equations have been presented.

e Convergence Theory for Boundary Elements Methods
Besides the development of fast numerical methods for non-local oper-
ators there have been two talks on the stability and convergence theory
for integral equations. W. Wendland gave a presentation on J. Radon’s
convergence proof of J. Neumann’s method with double layer potentials
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while R. Hiptmair has presented a method for a stable coupling of integral
equations in scattering.
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Abstracts

H-Matrix LU-decomposition based preconditioners for BEM
MARIO BEBENDORF

Stiffness matrices arising from integral formulations of elliptic problems are
usually dense. However, the kernel function x of the arising integral operators can
locally be approximated by degenerate functions, i.e.,

k
(1) K(z,y) ~ Zui(x)vi(y)a
i=1

where k is a small number. This idea originating from the fast multipole method
[4] and panel clustering [7] today is looked at more from an algebraic point of view,
since on the discrete level (1) means that appropriate blocks of the matrix K can
be approximated by matrices of low rank. This gave rise to the mosaic-skeleton
method [10] and hierarchical matrices (H-matrices) [5, 6, 3]. By the latter it is not
only possible to (approximatively) store dense matrices and multiply them by a
vector with almost linear complexity, they also provide the usual (approximative)
operations like matrix addition, multiplication and inversion with almost the same
complexity. The basis for the efficiency of this class of matrices is a hierarchical
partition of the matrix into blocks and the low-rank representation of each block.
Instead of generating these low-rank approximants from degenerate kernel approx-
imations, e.g, by the multipole expansion or interpolation, it is more efficient and
convenient to use the adaptive cross approximation (ACA) algorithm [1, 2], which
finds such low-rank approximants from few of the original matrix entries.

When solving linear systems with these matrices iteratively the number of itera-
tions needed to obtain a prescribed accuracy is mainly determined by the condition
number of the coefficient matrix. A bad condition number may be caused by the
mapping properties of the operator or by the underlying geometry or discretization.
There are many different approaches to obtain a preconditioner C. In a recently
published idea [8] an algebraic multigrid procedure is constructed for boundary
element matrices. Another possibility is based on the mapping properties of the
operator only, see [9]. Let A:V — V' be a V-coercive and B : V! — V a V'-
coercive operator. Then A and B~!: V — V'’ both are V-coercive, i.e., there are
constants «;, 3; > 0, i = 1,2, such that for allv € V

arl[vf[} < (Av,v) 2 < aslfvl}, and  Bijol[f < (B7 1w, 0)r2 < Bof|v]l}-
From this it already follows that A and B! are spectrally equivalent, i.e,

ﬂ(B_lv,v) < (Av,v) < %(B_lv,v) for all v € V.

B2 B
Hence, for preconditioning the single layer potential operator of the Laplacian
for instance the hypersingular operator can be used. Since both operators can
be approximated using ACA, one could easily obtain an efficient preconditioner.
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Although the idea of using operators with inverse mapping properties is attrac-
tive, the preconditioning effect can only be observed asymptotically, i.e., for fixed
problem sizes n the condition number might still be large.

The approach we are going to pursue is to use an approximative LU decompo-
sition

C:=LU

of the coefficient matrix A ~ LU, where the two triangular factors L and U are
stored in H-matrix format. Depending on the prescribed accuracy of the LU de-
composition the condition number can be controlled also for fixed problem sizes.
A low precision LU decomposition will be sufficient to guarantee spectral equiv-
alence. The arising equations with coefficient matrix C can then be solved by
forward /backward substitution with the same complexity as the H-matrix-vector
multiplication. The setup of the factors L and U can be done with complexity
nlog® n. Since constants are much smaller compared with the complexity of build-
ing A, the time for decomposing A can be neglected. This is especially true, if the
LU decomposition is computed with low precision.
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Some hybrid asymptotic-numerical methods in high-frequency
scattering

IvaN G. GRAHAM

In this talk we presented two techniques for combining asymptotic information
with numerical methods in order to produce wave-number robust solution methods
for some high-frequency problems in acoustic and electromagnetic scattering.

The first part of the talk (joint work with B.D. Bonner and V.P. Smyshlyaev
[3]) concerned the computation of diffraction coefficients for the scattering of high-
frequency waves by conical scatterers. The diffraction coefficient gives the coef-
ficient of the principal term in the asymptotic expansion of the diffracted com-
ponent of the scattered wave as the wave number £ — oo. The computation of
the diffraction coefficient in the case of a conical scatterer can be reduced to the
solution of a family of homogeneous boundary value problems for the Laplace-
Beltrami-Helmholtz equation on a portion of the unit sphere bounded by a simple
closed contour (in fact the intersection of the sphere with the conical scatterer).
The diffraction coefficient may be determined by then integrating the resulting
solutions with respect to the wave number ([1]).

In this part of the talk we discussed the numerical computation of the diffrac-
tion coefficients using the boundary integral method, with the classical double
layer potential approach. We gave an analysis of the scalar integral equation aris-
ing in acoustic scattering, which shows its relation to the corresponding integral
equation for the planar Helmholtz equation. This allows us to prove, using the
results of [2], optimal convergence for piecewise polynomial collocation methods
of arbitrary order even when the scatterer has non-smooth cross-section. We also
derived efficient quadrature techniques for assembling the boundary element ma-
trices. In practice we employ an h — p approximation scheme, which converges
with exponential order.

The scattering of electromagnetic waves was also discussed; the resulting system
of integral equations can be analysed by similar techniques to those used for the
acoustic case. We illustrated this part with computations on both smooth and
non-smooth scatterers for both the acoustic and electromagnetic cases.

In the second part of the talk we described joint work in progress, with V.
Dominguez, on methods for incorporating asymptotic information into the design
of ansatz functions so that standard numerical methods (such as the Galerkin
method) work well for both low and high frequency applications. We illustrated
this for the case of acoustic scattering from a circular object, where diffraction due
to grazing incidence at the tangency points as well as simple reflections are the
main features which have to be taken account of.
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Adaptive Coarsening of Hierarchical Matrices
LARS GRASEDYCK

The efficient treatment of dense matrices arising, e.g., from the finite element
discretisation of integral operators requires special compression techniques. In this
talk we use a hierarchical low-rank approximation, the so-called H-matrix, that
approximates the dense stiffness matrix in admissible blocks (corresponding to
subdomains where the underlying kernel function is smooth) by low rank matrices.
The low rank matrices are assembled either by kernel interpolation [4], adaptive
cross approximation [14, 2] or multipole expansions [9].

In the talk we develop an algorithm that can determine a coarser block struc-
ture that minimises the storage requirements (enhanced compression) and speeds
up the (formatted) arithmetic of H-matrices. This coarse approximation is done
adaptively and on-the-fly to a given accuracy such that the matrix is assembled
with minimal storage requirements while keeping the desired approximation qual-
ity. It can be regarded as an algebraic extension of the weak admissibility condition
[12]. Moreover, the approximate inverse of a rather coarse approximation to the
stiffness matrix turns out to be a good preconditioner.

The H-matrix format is presented in a series of papers [10, 11, 6, 8] that describe
the construction as well as the arithmetic in this format. Our coarsening strategy
does not improve the asymptotic bounds for the complexity of the arithmetic, but
it minimises the constants.

The (hierarchical) partition of the matrix into blocks that allow for a low-rank
approximation is not unique. Even the question whether or not a single block is
suitable for a low-rank approximation is non-trivial. Typically, one demands that
the singular values of the matrix block decay exponentially and ensures this by
sufficient conditions (standard admissibility, weak admissibility).

For a rather coarse approximation of a matrix block an exponential decay of
the singular values is not necessary. Therefore, standard (or weak) admissibility
conditions for the blocks are too restrictive. The partitions generated by these
sufficient conditions serve as input for our algorithm that coarsens the structure.

A first recompression method is commonly used when applying sub-optimal
rank revealing algorithms: each assembled block in the low-rank format is im-
mediately decomposed by the SVD. Since the block is already given in factorised
form, the SVD of such an n x m rank k matrix can be computed in O(k?(n +m))
[8]. All singular values o; with o; < e o are discarded and the rank thereby
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Assembly  Store |1 — A5 Al | Coarsen  Store 11— A7 A|
n [Sec.] [KB/DoF]| [Sec.] [KB/DoF]|
2024 4 2.8 4.3-1073 2 14 1.8-1072
8192 24 3.3 4.4-1073 10 2.1 1.0-1072
32768 120 4.9 2.3-1073 49 3.1 6.0-1073
131072 641 6.2 1.5-1073 241 4.4 2.4-1073

TABLE 1. Initial approximation (left) and coarsened H-matrix (right).

reduced. The parameter € is the same that we use in the initial assembly of the
block, e.g., an analytic error bound or a heuristic stopping criterion.

While the first recompression reduces the blockwise rank of the H-matrix ap-
proximation, the following second recompression aims at a coarsening of the entire
block structure of the H-matrix. The reason why the initial block structure is not
optimal is threefold:

First, the parameter 5 from the admissibility condition might be too small (and
it enters the complexity estimates in the power 6). For the discretisation this is
not crucial but for the H-matrix arithmetic it is. Our recompression scheme will
automatically choose the right blocks, so that only the extra time for the assembly
of the stiffness matrix is increased, but the storage requirements stay the same
independently of 7.

Second, blocks that are not admissible might be regarded as admissible, because
the standard admissibility condition is sufficient but not necessary. This was first
observed in [12] under the name weak admissibility.

Third, the block cluster tree based on the given cluster tree does not take the
accuracy of the discretisation and compression into account. Asymptotically (k
large enough or e small enough) the optimal block structure might be that from
the standard admissibility, but for all practical purposes the optimal structure is
coarser.

As a numerical example we consider the Galerkin discretisation by piecewise
constant basisfunctions of the double layer potential of the Laplacian on the unit
sphere. The initial approximation including the first recompression is assembled by
automatic quadrature [5] in the nearfield and ACA [2] in the farfield. We denote
this matrix by Ax. A sufficiently accurate approximation to the full discrete
matrix is stored in A. Table 1 contains the results for the initial approximation
and first recompression. The second recompression Ay, by adaptive coarsening
of the initial H-matrix approximation reduces the storage requirements from 6.2
down to 4.4 KB per degree of freedom, cf. Table 1.

At last, we consider the complexity of the formatted H-matrix arithmetic for a
more realistic geometry, namely the single layer potential operator of the Laplacian
on a crank shaft discretised with 113152 piecewise constant basis functions. Here,
the assembly takes 131.5 seconds, the accurate recompression 59 seconds and a
rather coarse recompression 40 seconds. The rather coarse recompressed matrix
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can be decomposed by a Cholesky decomposition along the lines of [13, 7, 1] in
24 seconds and allows us to solve the system by GMRES in 8 steps (11 seconds).
The computations were performed on a SUN UltraSPARC with a 900 MHz CPU
using the standard HLIB library [3] for hierarchical matrices.

[1]
2]
3]
[4]
[5]

(10]
(11]

(12]

13]

[14]
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Stable Coupling for Scattering
RALF HIPTMAIR

1. INTRODUCTION

For a bounded scatterer Q= C R? with Lipschitz-continuous boundary I' :=
09~ and complement QT := Q  we consider the following transmission problem
for the Helmholtz equation

0 Au+k(x)?u=f inQ" , Aut+r?u=0 inQ"
[Youlp =0 acrossI' |, [nu]p =0 acrossT,
(2) %u(x) —iru(x) = o(r~') for r := |x| — oo uniformly .

Here 7y and ~; stand for the Dirichlet and Neumann traces, respectively, and [-].
denotes the jump across I'. The transmission problem (1) models the propagation
of time-harmonic sound waves impinging on a penetrable object [6, Sect. 2.1]. It
is known that (1) has a unique solution u € Hioc(A,R?), ¢f. [6, Sect.3.2].

Definition 1. A distribution u € H}_(Q%F) is called exterior/interior Helmholtz
solution, if Au+ k% =0 in QF and (2) holds at co.

2. BOUNDARY INTEGRAL OPERATORS

Based on single and double layer potentials W2 and ¥, for the Helmholtz
kernel G(z) := exp(ik|z|)(47|z|)~! we can introduce the following four continuous

boundary operators
1

Ve:={T}, :H *)—H*T) , W.:={T}, :H:T)—H (),
Ke:={T}. :Hz(T)— Hz(T) . Ko={T}, :H *(I)—H 3(T).
For details please consult [11, Ch. 3] and [9, Ch. 7 & 9], also for a proof of the

following theorem.

Theorem 2. The operators V,, :: H=2 (') — Hz(T') and W,, : H2 (T') — H~2(T)
are coercive'.

Throughout, I assume that the duality pairing on H~2(I') x Hz(T) is induced
by the Hermitian sesqui-linear form (p,v)p := [ ¢TdS .

A crucial tool for the coupling of a variational equations in 2~ and boundary
integral equations on I' are the Calderdn projectors [12]

lrd—K Vv 114+ K -V
. 2 K K o 2 K K
Po= ( W, 31d+ K;) » Pe= < -W,  $ld— K;) '

Theorem 3.
_ ot o (N 2 0 OFf
Range(P+) = HSp(T) .= {(vgu,7iw) : Au+k“u=01in QF and (2)} .

1Here7 coercivity means that a Garding inequality holds.
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3. CLASSICAL SYMMETRIC COUPLING

A solution of (1) satisfies for all v € H'(Q7)
3) alu,v):= / grad u - grad 7 — k(x)*uv dx — ('yl_u,'yo_v)F = / fodx.

The symmetric coupling approach due to Costabel [7] uses the exterior Calderén
projector and the transmission conditions of (1) and obtains: seek u € H(Q7),
A€ H2(I') such that for all v € HY(Q), ¢ € H2(T)

a(u,v) + (Wn76u776v)p - ((%Id - K;))‘vvav)p = f(’l}) )

(4) 1 _
(gp, (51d — K)o u)F + (@, VA = 0.
The sesqui-linear form underlying (4) is coercive, but fails to be injective, if 2
coincides with a Dirichlet eigenvalue of —A in 7. This is the phenomenon of
spurious resonances: the failure of a boundary integral equation formulation of
(1) to possess a unique solution despite the unique solvability of (1).

A remedy is offered by the so-called combined field integral equations (CFIE)
[1, 5]. A simple version relies on a complex linear combination of the two exterior
Calderén identities, but fails to produce a coercive variational problem in L?(T)
in case I' has edges and corners.

4. TRANSFORMED TRACES

More elaborate CFIE respect the natural trace spaces and use a regularizing
compact linear operator M : H=3(T') — Hz(T) that satisfies (¢, Me)p. >0 <

¢ # 0.
For theoretical purposes regularizing operators have been introduced used by

Panich [10], whereas their practical use in CFIE context is discussed in [2, 3, 4], see
also the abstract by S. Sauter. The simplest choice for M is M = (—Ar + Id)~! :
H~Y(T') — H(I'), which means, for o € H~z(T),

(5) (grad My, grad q). + (Mg, q)p = (¢,q)p Vg€ HY(T).

The operator M is utilized for the following bijective transformation of traces

(6) T:= (ff]l Z?g") L H*(T) x H3(I') — H3(T') x H3(I")

with regularization parameter n > 0.
Lemma 4.

Range(TP_) N ({0} x H~2(I)) = {0} .
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5. STABILIZED COUPLED PROBLEM

Applying T to the interior Calderén indentity, we arrive at a transformed exte-
rior Calderén indentity for traces of exterior Helmholtz solutions.

o <70+u> $Id+ K, —inqMo W, =V, —in(31d+K),) <%+u)
nwu) W, tin(K —i1d)  Lrd—K,—ipv, | \nu)

Combining (7) this with (3) yields the variational problem: seek u € H(27),
A€ H3(I') such that for all v € HY(Q), ¢ € H2(T)
a(u,v) + (W,{’yau,’yav)r —in ((KN — %Id)’yau,'yav)r
—((3Id =K )N\ 0)p +in (Vad o) = fv),
() (51d = Ke)vg w)p + (9, MWy w)
+ (0, Vil + (9, inM($1d + KL)A)

(8)

I
=)

Compared to (4), all extra terms in (8) are compact, which ensures coercivity.
Moreover, from Lemma 4 we can conclude uniqueness of solutions:

Theorem 5. Solutions (u,\) € HY(Q™) x H=2(T') of (8) are unique.

Let us assume the choice (5) for M. In order to obtain a variational prob-
lem amenable to boundary element Galerkin discretization, we have to weed out
products of non-local operators by introducing the new unknown

(9) p = inM(Wuyg u+ (2Id+K)X) € H'(I) .

Note that, actually, p = 0 Then, (8) can be equivalently stated as: seek u €
H' (), Ae H 2(T"), p e H'(T') such that

a(u,v) + (Wayg w75 v) p — in (K — 31d)vg w70 v) 1

- ((%Id - K;))‘apyoiv)p + 7;77 (Vﬁ)\77av)p = f(’l}) )
(10) (¢, (31d — Ki)yg ) + (0, intMW,eyg w)
+ (o, VeMr + (p,p)p = 0,
—in(Wxyo u)g — ((31d+ KA ),
+ (gradpp,gradrq)p + (p,q)r = 0,

for all v € HX(Q), ¢ € H 2(T'), and ¢ € H*(I'). Now, by standard theory, a
combined Galerkin finite element and boundary element discretization of (10) will
yield asymptotically quasi-optimal solutions.
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Data-Sparse Representation of Multi-Diminsional Nonlocal Operators
Boris N. KHOROMSKILJ
(joint work with Wolfgang Hackbusch)

The class of H-matrices allows an approximate matrix arithmetic with almost
linear complexity. The combination of the hierarchical and tensor-product format
offers the opportunity for efficient data-sparse representation of integral operators
and the inverse of elliptic operators in higher dimensions (cf. [2], [1], [3]). In the
present talk, we discuss the H-matrix techniques combined with the Kronecker
tensor-product approximation to represent integral operators as well as certain
functions F(A) of a discrete elliptic operator A in a hypercube (0, l)d € R? in the
case of a high spatial dimension d. In particular, we approximate the functions
A~! and sign(A) of a finite difference discretisations A € RY*N with rather
general location of the spectrum. The asymptotic complexity of our data-sparse
representations can be estimated by O(n? log?n), p = 1,2, with ¢ independent of
d, where n = N'/% is the dimension of the discrete problem in one space direction.
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Integral equations and numerical methods for inverse scattering
problems

RAINER KRESS

This presentation provides a survey on some recent developments in the numer-
ical solution of time-harmonic inverse obstacle scattering problems. After formu-
lating the inverse problem, the issue of uniqueness, that is, identifyability will be
addressed. The uniqueness question is of its own mathematical interest and also
interrelates with some of the more recently developed reconstruction algorithms.
By considering one or two of its representatives the basic ideas of three groups of
methods will be outlined, namely decomposition methods, iterative methods and
sampling and probe methods.

Consider the scattering of a time-harmonic acoustic plane wave u’ from an
impenetrable scatterer described by a bounded domain D in R2 either with a
sound-soft or an impedance boundary condition. The inverse obstacle scattering
problem consists of finding the shape and location of D from the knowledge of the
far field pattern u., of the scattered wave u?® for one or several incident plane waves.
The corresponding uniqueness result due to Kirsch and Kress [15] (see also [4])
confirms that the domain D and the boundary condition are uniquely determined
by the far field pattern for infinitely many incident plane waves. The main idea of
the proof is to exploit the fact that for scattering of a point source the scattered
wave develops singularities when the source and observation points approach the
boundary. Uniqueness for one incident plane wave remains a challenging open
problem. Partial results were recently obtained for scattering from polyhedral
scatterers [1].

Decomposition methods, in principle, separate the inverse problem into an ill-
posed linear problem to reconstruct the scattered wave u® from its far field pattern
Uso and a nonlinear problem for the subsequent determination of the boundary
0D of the scatterer from the boundary condition. These methods do not require
the solution of the forward problem and some of them perform well without a
priori information on the geometry of the obstacle. A typical representative of
this approach is the potential method of Kirsch and Kress (see [6, 14]).

Tteration methods interpret the inverse obstacle scattering problem as a non-
linear ill-posed operator equation A(9D) = us and apply iterative schemes such
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as regularized Newton type, Landweber or conjugate gradient methods for its so-
lution. Here, A denotes the operator that, for a fixed incident field, maps the
boundary 0D of the scatterer onto the far field pattern of the scattered wave. The
theoretical foundation for this approach requires to establish the differentiability
of the operator A with respect to the boundary and to explicitly characterize the
derivative. For the sound-soft and the impedance boundary condition this was
done, among others, by Kirsch [12] and by Hettlich [8] via variational methods, by
Potthast [18, 19] via integral equation methods and by Kress and Péaivéarinta [17]
and by Haddar and Kress [7] via factorization formulas. For details on the numer-
ical implementation we refer to [4, 5, 9, 12, 16]. The numerical examples provide
amble evidence that iterative methods yield very good reconstructions. However,
they require the solution of the corresponding forward problem in each iteration
step and a priori information on the geometry of the obstacle. Furthermore, al-
though progress has been made through the work of Hohage [10] and Potthast [21],
the convergence issue is not yet satisfactorily settled.

The main idea of the more recently developed so-called sampling and probe
methods is to develop a criterium in terms of the behaviour of some ill-posed lin-
ear integral equation that decides on whether a point z lies inside or outside the
scatterer D. Then the criterium is evaluated numerically for a grid of points to
visualize the unknown scatterer. As opposed to the two previous types of methods
that, in principle, only need the far field pattern for one incident direction, the
sampling and probe methods need the far field pattern for all incident and obser-
vation directions. However, as their main advantage they perform extremely well
without any a priori information on the geometry. The linear sampling method
as developed by Colton and Kirsch [3] has as its central piece the far field op-
erator F' : L?(Q) — L?(Q) on the unit sphere Q. This operator is defined as
an integral operator with the kernel given by the far field pattern wuo.(Z,d) for
all observation directions z € €2 and all incident directions d. With the explic-
itly available far field pattern w_(-,z2) of the field of an point source located at
the point z the linear sampling method is based on the ill-posed linear integral
equation Fg(-,2) = w’ (-, z). Although, this integral equation, in general, is not
solvable, it can be approximately solved in the sense that for every ¢ > 0, and
z € D there exists g(-, z) € L*(2) such that ||Fg(-,z) — wi (-, 2)|[12(0) < € and
llg(-,2)|lz2() — o0 as z — OD. In the numerical implementation the far field
equation is solved by Tikhonov regularization via Morozov’s discrepancy princi-
ple and then 9D is visualized through the points 2z where ||g(-, 2)[/12(q) becomes
large. A remaining gap in the theoretical foundation of the linear sampling method,
namely, the question why the implementation via Tikhonov and Morozov actually
picks the approximation g that is predicted by the above theoretical result was
closed by Arens [2].

The factorization method may be considered as a variation of the linear sam-
pling method in the sense that it replaces F in the far field equation by (F*F)/4,
that is, it is based on the equation (F*F)Y4g(-,2) = wi_(-,2). As shown in a
pioneering paper by Kirsch [13] this equation is more satisfying, since it is solvable
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if and only if 2 € D. The numerical implementation of the factorization method
is similar to that of the linear sampling method. The procedure is known as fac-
torization method, since it relies on a factorization of the far field operator. The
linear sampling method and the factorization method may be viewed as dual to
the uniqueness proof of Kirsch and Kress, since, in principle, their foundation is
based on letting source points approach the boundary from inside of D whereas
in the uniqueness proof the source points approch the boundary from outside of
D. The latter idea is mimiced in the point source and singular source methods of
Potthast [20] and the probe method of Ikehata [11].
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A hypersingular integral equation arising in a waveguide scattering
problem

GIOVANNI MONEGATO
(joint work with Renato Orta)

In this work we study the electromagnetic scattering problem associated with
a T-junction between two rectangular waveguides. This junction is composed by
an infinite (primary) waveguide

O ={(z,9,2) ER*:0<x<a, 0<y<b —oo<z< oo}
and by a semi-infinite (secondary) waveguide
Qo ={(z,y,2) ER®*: —co<2<0,0<y<b 0<z<a}
They are coupled through the common aperture
A={(z,y,2) €R*:2=0,0<y<b, 0<z<ad}

where in general a’ # a.

Notice that in this particular configuration the two waveguides have the same
height b. This assumption will reduce to 2 the dimension of the problem. The
case of two waveguides with different heights appears more difficult and will be
considered in a future paper.

We assume that the electromagnetic field varies harmonically (sinusoidally) with
time, with angular frequency w and time factor e/“t. The dielectric medium is
assumed to be homogeneous and isotropic. The magnetic permeability is denoted
by p and the electric permittivity by e. We assume € = ¢ — je”, with ¢/,¢’ > 0
and ¢ << ¢, which means that the medium is weakly dissipative.

If in the structure we have a magnetic current density J,,, and an electric current
density J, then the total electric and magnetic fields, denoted by E and H,
respectively, satisfy Maxwell equations in the domain €2 given by the union of
Q1,95 and the aperture A. The boundary of this domain will be denoted by T
In the problem we consider we take

(1) Je =0.

However, at a given arbitrary section z = —d, d > 0, of the primary waveguide
we introduce a magnetic source of the type

2 i . /T ~
(2) I =2 EVO sm(gx)é(z +d)z,
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producing the incident electric field
E'(z,z) = \/ EV(} Sin(gx)efjkzl(erd)g7

corresponding to the fundamental mode (eigenfunction) in the primary waveguide,
where V{ is a given constant and k.1 = /k? — (£)2. Here and in the following,
Z,9, 2 denote the cartesian unit vectors, and the square root is always determined
by taking the root with negative imaginary part. The quantity k = w,/€ is the
medium wavenumber, which has the form k = k¥’ —jk”, with k', k" > 0 (k" << K').

The following incident magnetic field is associated with the above incident elec-
tric field:

Hi(x,z) = —Voi%Yo\/gsin(gx)efjkzl(”d)j

(4) . ,
—jVoZ%Yo /% Cos(gm)e—szl(Hd)g,

where Yy = \/% .

The total fields F, H are the sum of the incident fields and the corresponding
scattered ones.

The junction walls are assumed to be a perfect electric conductor. Therefore
the tangential component of the electrical field must vanish on them, that is,

(5) nxE=0 on I,
7 being the normal unit vector. Notice that this assumption also implies
(6) i -H =0 onT.

Finally, £ and H must satisfy Sommerfeld radiation condition.

At this point it is of key importance to notice that because both the geometry of
the structure and the incident field are invariant with respect to the y coordinate,
the fields E = (E,, Ey, E.)T and H = (H,,, H,, H,)" are constant with respect to
y. This, together with conditions (5) and (6), implies

E,=E.=H,=0 in.

Therefore, the only unknown components of £ and H are F,, H,, H..

Taking into account this last result, and denoting by 2., the section y=constant
of the domain 2, and by I';., its boundary, a standard calculation reduces Maxwell
equations and their boundary conditions to the simpler scalar two-dimensional
form

(V2 + k)E, = Y= in Q.
E, =0, onl,,

].imwﬂfoo Ey (CE, Z) = hmzﬂioo Ey (xv Z) = 0;
1 OF,
He =gk %52 = Im.]

H, =--1 [%jtjmz}.

T jwn
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;From the application point of view, the goal is the computation of the so-called
scattering matrix, that is, of the (normalized) Fourier coefficients of the scattered
electric field with respect to the structure modes. There is no interest in knowing
the pointwise values of the scattered field.

To solve the problem we perform a domain decomposition of 2, into the two
separate waveguides. This because much is known about Helmholtz equation in a
single rectangular waveguide.

To this end, by invoking a well-known surface equivalence principle in electro-
magnetic theory, we close the aperture A of the T-junction by inserting a thin
metallic wall, and on the two faces of it we introduce equivalent magnetic cur-
rents: +J¢1 = —M(2)d(z —0")2, 0 < z < d/, on the primary waveguide side and
—J& = M(2)d(xz —07)Z on the secondary one. This unknown fictitious current is
introduced to make the new decoupled problem equivalent to the original one.

In each waveguide the problem reduces to a non-homogeneous Helmholtz equa-
tion, with homogeneous boundary conditions, for the scattered electric field. An
integral representation for this field is then obtained, from which the corresponding
expression for the scattered magnetic field follows.

By imposing the continuity of the tangential component H, of the total mag-
netic fields generated in the two separated waveguides at their interface A, we
obtain a hypersingular integral equation, defined on the interval (0,a’), whose
solution yields the unknown fictitious magnetic current M (z). From this, the
scattering matrix of the junction is easily computed.

This integral equation has two kernels given in terms of series expansions. Our
analysis will determine all singular components of the kernels and will show that
besides the standard second order hypersingularity, one of the kernel also has
a fixed-point second order hypersingularity at each endpoint of the interval of
integration.

The equation is finally solved by means of a Galerkin method, whose imple-
mentation is performed quite efficiently. Indeed a fast and accurate procedure is
proposed to compute the Galerkin matrix elements. The overall numerical method
is very fast and accurate.
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On nonlocal electrostatics
SERGEJ RJASANOW

1. INTRODUCTION

In recent years a significant interest has been focused on the determination
of electrostatic potentials of large biomolecules such as, e.g., microtubule and
ribosomes [1]. However, the standard continuum approach ultimately becomes
inaccurate when used to determine electrostatic properties on atomic scales [3],
as it is featureless, i.e., the correlation between solvent arrangements and the
geometrical structure of biomolecular assemblies is not taken into account.

In the recent paper [2] we proposed a novel formulation of nonlocal electrostatics
allowing numerical solutions for the nontrivial molecular geometries arising in the
applications mentioned before. For many relevant models, the dielectric function
of the medium can be expressed as the Green’s function of the Yukawa operator.
In this case, a system of coupled PDE’s can be used as a mathematical model of
the problem.

2. NONLOCAL ELECTROSTATICS

Let © C R? be a bounded, simply connected domain having piecewise smooth
boundary I' = 92 as it is shown in Fig 1. The outward unit normal vector at
x € I" will be denoted by n,. There are N, point charges inside of the domain .
Thus the spatial charge density p in 2 can be given in the form of point measure

Nq
(1) p(x):qué(x—xj),ijQ,jzl,...,Nq
j=1

The complement domain Q¢ = R3\ Q is filled with water.

The problem is to determine the electric field £ (z) for all x € R?, i.e. inside and
outside of the domain 2. The electric field is described by a system of Maxwell
equations which reads as

div D(z) = p(x) div D(z) =0 o
@) {rotﬁ(x):() ’xEQ’{rotE(x):() , ze N =R3\ Q.

where the spatial density p is given in (1). On I' the usual interface conditions on
I for the vector fields E and D are formulated

(3) (7e**D(z) — M D(x), ny) =0, (’ySztE(x) . Wé"tﬁ(x)) X Ny =0,

where 7" and 4§ are the interior and exterior Dirichlet trace operators. Thus

the normal component of the vector field D and the tangential component of the
vector field E are continuous on the boundary I'. The Maxwell equations (2) are
completed with the usual, local material relationship in 2

(4) D(z) =epeqE(x), z €.
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F1GUurE 1. Computational domain €2

The material relationship in Q¢ is nonlocal and can be written as follows

—

(5) DB(z) = 0 o B(x) + 7 / wy(z,y) Bly) dy, = € 9F.
Qc

In (5), the function u} : R3 x R — R denotes the fundamental solution of the
Yukawa equation

1 e_’%|x - y|

(6) uz(@,y) = BT

Thus the mathematical model of non-local electrostatic consists of the Maxwell
equations (2), interface conditions (3) together with the material relationships (4)

and (5).

3. SysTEM ofF PDE’s

In this subsection we consider a system of partial differential equations for our
problem using the scalar functions u :  — R and v : Q¢ — R with

(7) E(z) = —gradu(z),z € Q, E(z) = —gradv(z),z € Q°

as well as a scalar harmonic functions w : Q¢ — R. Instead of the Maxwell
equations (2) we consider the following system of PDE’s for the functions w, v and
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(8) —cocoAu() = plz), z€Q,
(9) ~Aw(z) = 0, 2€Q%,
(10) —e0200 (Av(a) = ()?0(2)) = Kw+w')(@), e,

where k' = \/k2 + v/eg and the function w* : R?* — R is defined as follows

1,
(11) @)= g

|z — ;|

The system (8) is subjected to the following interface conditions of T’

(12) =5 (w(z) +w*(x)) +eoeriulz) = 0,
(13) 76" v(@) — " u(@) = 0,
(14) (@) = "u(e) =

The system (8) with the interface conditions (12) is not equivalent to the previous
model of nonlocal electrostatics because of the continuity of the electric field E
on the boundary I" forced by the third interface condition. However the Maxwell
equations, local material relationship in 2 as well as the nonlocal material rela-
tionship in Q¢ are formally fulfilled. The system (8) contains three PDE’s with
constant coeflicients and therefore can be solved using boundary element meth-
ods. In Table 1. the numerical values of the solvation enthalpy (third column) are
compared with measurements (fourth column) for four simple ions.

Ammonium NHZ' -83.6 | -79.0
Methanolat CH3;0~ -78.6 | -95.0
Methylammonium | CH3NH;™ | -68.5 | -70.0
Anilinium | CsHsNH* | -59.3 | -59.0

Table 1. Computational results and measurements
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Stabilisation of the acoustic single layer potential on non-smooth
domains

STEFAN A. SAUTER
(joint work with Annalisa Buffa)

1. INTRODUCTION

In our presentation, we will address problems related to the discretization of
boundary integral equations for the Helmholtz problem outside of a reflecting
obstacle Q~, where Q= C R3 is a bounded Lipschitz domain. Let Qt = R3\ Q~
and Ly, := —A — k2. We consider the problem: Find u™ € H} (Q") such that the
Helmholtz problem

Eku“‘ =0 in Q+,
ut =g on T :=00Q",
-1
" u () <C ]
for ||x|| — oo

8’LL . —2
— <
'87" iku| < C||x||

is satisfied in a weak sense (cf. [25]).

Our goal is to solve these equations by the method of integral equations. A
potential ansatz leads to a boundary integral equation on I' for the unknown
density ¢ which is of the form Ryp = g. Here, Ry is the trace V; of the single
layer potential associated to L on I or a stabilized version of it. We will consider
the Galerkin boundary element method for its discretization. It is well known that
the Vj, is not invertible on a countable set of frequencies k (see, e.g., [10]) and we
will introduce a class of stabilizations such that the boundary integral equation is
well posed for all frequencies k > 0.

It is well known (see, e.g., [3]) that finite element discretizations for the Helmholtz
problem suffer from the pollution effect, i.e., the constants in the Galerkin error
estimates deteriorates to infinity with increasing wave number k& > 0. Hence, the
question arises whether this pollution effect is possibly reduced by solving the
boundary integral equation for the Helmholtz problem via the Galerkin boundary
element method.

We will analyze the effect of the frequency k in the error of the Galerkin bound-
ary element solution. First, we will introduce a family of stabilizations to eliminate
the forbidden frequencies and then analyze the pollution effect for the boundary
element discretization of the corresponding stabilized variational equations.

There exist various approaches in the literature to stabilize the single layer
potential for the Helmholtz problem (see [9], [10], [19], [22, Sec. 6.4]). Existence
and uniqueness have been proved and, for the Galerkin boundary element method,
it could be shown that the convergence is quasi-optimal provided the step size is
“sufficiently small”. More precisely, the threshold for the maximal step size such
that the Galerkin discretization is stable strongly depends on the wave number
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and the “constant” in the quasi-optimality error estimate deteriorates to infinity
as the wave number increases.

Consequently, in order to compare the different approaches from the viewpoint
of numerical efficiency the following questions have to be addressed:

(1) How does the threshold for the stability of the Galerkin discretization
quantitatively depend on the wave number?

(2) How does the Galerkin error quantitatively depend on the mesh width and
the wave number?

(3) Can the stabilization approach be implemented efficiently in a boundary
element code? What is the computational complexity?

These questions have been discussed for the Brakhage-Werner stabilization in
[16] (see also [23]). We will address these questions for a general stabilization
approach for the acoustic single layer operator Vj.

2. RESULTS

We will briefly summarize the results. All details can be found in [8].

a) The stabilized acoustic single layer potential, on the continuous level, ad-
mits a unique solution which depends continuously on the data for general
Lipschitz surfaces. This can be considered as an advantage compared to
the Brakhage-Werner stabilization, where the question of existence and
uniqueness is open for general Lipschitz surfaces and even for piecewise
smooth surfaces.

b) The Galerkin method converges for “sufficiently small” step size on general
triangulated surfaces with optimal rate.

We have analyzed quantitatively the dependence of the constants entering the
stability and convergence estimates in the case that the surface is the unit sphere
in R3. For this case, we obtain:

¢) The condition for the stability of Galerkin method (related to the condition
“the step size has to be sufficiently small”) is more restrictive as for the
stabilization in the Brakhage-Werner approach.

d) The constants in the Galerkin error estimates depend on the wave-number
in a more critical way as for the Brakhage-Werner stabilization.
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Adaptive Wavelet Based Fast Solution of BEM
REINHOLD SCHNEIDER
(joint work with Wolfgang Dahmen, Helmut Harbrecht)

During the past years adaptive wavelet methods based on best N-term approx-
imation have been introduced by Cohen, Dahmen, DeVore. Like Fast Multipole
Method, Panel Clustering etc. which been developed to reduce the complexity to
an optimal or almost optimal rate, it is known that the Galerkin discretization
using wavelet bases yields immediately a quasi-sparse representation. Combining
this matrix compression, with wavelets adaptive approximation of the solution
gives a powerful instrument for solving integral equations. We present an adap-
tive wavelet scheme which is observed not compromising the acurracy of the full
Galerkin scheme on the full (quasi-) uniform grid.
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Numerical Solution of Operator Equations with Stochastic Data
CHRISTOPH SCHWAB
(joint work with Tobias von Petersdorff)

Strongly elliptic integral equations with stochastic stochastic data are solved nu-
merically. Both, stochastic (Monte-Carlo) and deterministic (sparse tensor prod-
uct) methods for the approximation of the k-th moment of the random solution are
analyzed and implemented. Deterministic equations for the k-th moment of the
random solution are derived and their strong ellipticity and regularity in scales
of anisotropic Sobolev spaces are established. Solution algorithms of log-linear
complexity (in the number N of degrees of freedom for the mean field problem)
based on wavelet compression of the Galerkin stiffness matrix for the mean field
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problem and sparse tensor products of multilevel finite element spaces are analyzed

and implemented. Application to the efficient calculation of variances of random

solutions to the stochastic Dirichlet and Neumann problems of potential theory

via first kind boundary integral equations with stochastic data are presented.
The work generalizes [ST1] and [ST2] for local operator equations.
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Tearing and Interconnecting Domain Decomposition Methods
OLAF STEINBACH
(joint work with Ulrich Langer, Giinther Of and Walter Zulehner)

Domain decomposition methods are a well established tool for the coupling of
different partial differential equations, discretization methods such as finite and
boundary element methods, and of different (non—matching) finite—-dimensional
trial spaces and their underlying meshes [4]. In particular Dirichlet domain de-
composition methods are based on the coupling of local Dirichlet boundary value
problems where the unknown Dirichlet data on the skeleton of the domain decom-
position are to be find. The solution of the local Dirichlet boundary value problems
define local Dirichlet to Neumann maps including the Steklov—Poincaré operator
which can be either expressed by boundary integral operators or by using a domain
variational formulation. In both cases we end up with a global Steklov—Poincaré
operator equation on the skeleton. The approximation of the local Dirichlet to
Neumann maps by using either finite or boundary element methods then leads to
a positive definite and symmetric linear system, where the global stiffness matrix
is assembled by the local contributions. In this talk we focus on efficiently pre-
conditioned and parallel solution methods to solve the global linear system with
almost optimal order in the complexity.

The Finite Element Tearing and Interconnecting (FETI) methods were intro-
duced in [1] as an efficient preconditioned iterative solver for finite element Dirich-
let domain decomposition methods. The continuity of the primal variables across
the coupling boundaries is formulated as a constraint. Hence, using Lagrange mul-
tipliers this leads to a saddle point formulation where the discrete Steklov—Poincaré
operators are localized and therefore can be inverted in parallel. Note that for
floating subdomains, in particular for subdomains without Dirichlet boundary,
due to the non—trivial kernel a suitable pseudo—inverse has to be introduced. Af-
ter eliminating the primal variables, i.e. the local Dirichlet data, one has to solve
the resulting global Schur complement system for the Lagrange multipliers. The
corresponding stiffness matrix is symmetric and positive definite and hence the
linear system can be solved by using a (projected) conjugate gradient method.
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An appropriate global preconditioner can be build via scaled local Schur comple-
ments yielding almost optimal estimates for the spectral condition number of the
preconditioned system. Note that this bound is independent of coefficient jumps.

In [2] Boundary Element Tearing and Interconnecting (BETT) methods were in-
troduced as boundary element counter part of the FETI methods. Due to a unified
approach of both methods coupled BETI/FETI methods are straightforward [3].
While the original FETI preconditioner is based on the discrete Steklov—Poincaré
operator, which is realized by solving local Neumann boundary value problems,
the BETI preconditioning methods are based on the use of the hypersingular
boundary integral operator which is spectrally equivalent to the discrete finite ele-
ment /boundary element Steklov—Poincaré operator, and which 