
Mathematisches Forschungsinstitut Oberwolfach

Report No. 33/2004

Fast Numerical Methods for Non-local Operators

Organised by
Wolfgang Hackbusch (Leipzig)

Stefan Sauter (Zürich )

Christoph Schwab (Zürich )
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Introduction by the Organisers

The fast numerical treatment of non-local operators is an important challenge in
many fields of mathematics and its applications. This includes classical Fredholm
integral operators, retarded potentials for wave equations, inversion of (discretised)
partial differential equations, solutions to the matrix Riccati equation, infinitesi-
mal generators of step processes, non-local filter operators in image processing, or
non-local potentials in quantum chemistry and process simulation. The terminol-
ogy “fast” is related to the “Fast Fourier Transform” which allows to apply the
(non-local) discrete Fourier transform of N data points in O (N logN) operations
instead of O

(
N2
)

operations.
With growing demand for reliable discretisation methods for such applications

the need of fast numerical methods for non-local operators has increased rapidly
worldwide since the mid 80th and we list below some of these methods:

(1) Cluster methods for the sparse representation of classical Fredholm inte-
gral operators.

(2) Multipole methods for the fast evaluation of Coulomb-type potentials.
(3) H-matrices for the sparse representation of inverses of finite element dis-

cretisations of partial differential equations.
(4) Wavelet- and multiscale representations of non-local elliptic operators.

These methods allow to reduce the storage amount and the computational
cost when applying a non-local operator to O (N) data points from O

(
N2
)

to
O (N logαN), for some moderate α ∼ 1. This log-linear complexity is based on an
approximate representation of non-local operators which are already afflicted with
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a consistency error stemming from an underlying numerical discretisation. The
size of this additional error is controlled by suitable control parameters in such
algorithms and the numerical analysis allows to choose them in an optimal way.

The efficiency of these newly developed numerical methods has generated a
vivid research activity in this field of numerical analysis and new challenging
problems are arising: For instance, we mention the ab-initio numerical solution of
Schrödinger’s equation for N particle systems with far field interaction, where the
numerical solution for very large N is feasible only by using new fast algorithms
for non-local operators. Among further novel applications is the optimal stopping
of step-diffusion processes for which the infinitesimal generator of the process is
non-local. The full potential of fast methods for such kinds of applications is not
yet utilized and research activities are directed in these directions.

A further field of active research is the numerical solution of problems arising in
electromagnetics. Such problems are described in a wide range of parameters (wave
numbers, dielectric constants, etc.) by Maxwell’s equation. Integral operators are
often used to reduce the problem on unbounded domains to the compact surface
of the scatterer. These operators depend on parameters, e.g., the wave number
in a critical way and the fast algorithm are currently developed for such type of
problems.

The goal of the (half) conference was to focus on the basic methodological
problems such as

• numerical analysis of fast compression methods.
• algorithmic aspects of fast compression methods.
• fast algorithms for integral equations in electromagnetics.
• fast compression algorithms for new types of applications.

This Oberwolfach conference brought together 22 scientists in the field of fast
numerical methods for non-local operators. The workshop had a clear mathe-
matical focus on the systematic development of fast methods for new types of
applications, on their algorithmic aspects and the relevant numerical analysis. A
total of 17 presentations were given. The fact that after each talk there arose very
stimulating and intense discussions show that the conference truly had workshop
character where all participants profited from the talks and the discussions after
the talks and in the breaks.

The topics of the talks can be categorized in the following areas:

• Discretisation by wavelets and Fast Multipole Methods
Wavelets allow the sparse discretisation of non-local operators due to

the vanishing moment properties. Progress in the application of wavelets
to (time-harmonic) electromagnetic problems for high wave numbers and
for high-dimensional problems has been presented by the talks of R. Schnei-
der, J. Tausch and E. Tyrtyshnikov. In O. Steinbach’s talk Tearing and

Interconnecting Domain Decomposition Methods, the FETI/BETI method
was considered which is an efficient preconditioned iterative solver for fi-
nite element/boundary element domain decomposition methods. It was
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shown that dense matrices arising in BETI could be avoided by using the
Fast Multipole Method.

• H-matrix arithmetics
H-matrices allow the sparse representation of non-local inverses of fi-

nite element discretisations of PDEs and to perform arithmetic operations
such as matrix-matrix multiplication, matrix exponentials, etc. in log-
linear complexity. In this field, H-matrix LU based preconditioning of
BEM equations have been presented by M. Bebendorf. In his lecture, L.
Grasedyck presented adaptive coarsening strategies for H-matrices. A fur-
ther development in this area was presented by B. Khoromsikij in his talk
on data sparse representations for multidimensional non-local operators.

• Scattering Problems
The numerical solution of inverse scattering problems can be based

on an iteration process based on integral equations. The presentation
integral equations and numerical solution of inverse scattering problems

by R. Kress provided a survey on the newest developments in this area.
In his presentation, G. Monegato considered the problem of scattering

at a T-junction. The arising integral operators are non-standard and re-
sults on their mapping properties and the numerical solution have been
presented. In the talk of S. Sauter, the Galerkin method for Helmholtz’
equation was analysed and error estimates which are explicit in the wave
numbers have been presented. In his presentation, I. Graham presented a
method which allows to use asymptotic information to compute diffraction
coefficients in high frequency scattering.

• Novel Applications
In some talks, new applications in the field of non-local operators have

been considered. S. Rjasanow has presented numerical solution methods
for the non-local electrostatic problems arising in the modelling of large
biomolecules. C. Schwab gave a presentation on numerical solution of

operator equations based on stochastic data. The computation of the k-th
moments of the random solution can be based on high-dimensional integral
equations and numerical methods for its solution have been presented.

• hp Boundary Elements
The discretisation of integral equations by hp boundary element method

enjoys exponential convergence rates. In the talk of E. Stephan on Schwarz

methods for integral equations on surfaces, fast solvers for the arising sys-
tems of linear equations have been presented.

• Convergence Theory for Boundary Elements Methods
Besides the development of fast numerical methods for non-local oper-

ators there have been two talks on the stability and convergence theory
for integral equations. W. Wendland gave a presentation on J. Radon’s

convergence proof of J. Neumann’s method with double layer potentials
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while R. Hiptmair has presented a method for a stable coupling of integral
equations in scattering.



Fast Numerical Methods for Non-local Operators 1747

Workshop: Fast Numerical Methods for Non-local Operators

Table of Contents

Mario Bebendorf
H-Matrix LU -decomposition based preconditioners for BEM . . . . . . . . . . . . 1749

Ivan G. Graham
Some hybrid asymptotic-numerical methods in high-frequency scattering . . 1751

Lars Grasedyck
Adaptive Coarsening of Hierarchical Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 1752

Ralf Hiptmair
Stable Coupling for Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1755

Boris N. Khoromskij (joint with Wolfgang Hackbusch)
Data-Sparse Representation of Multi-Diminsional Nonlocal Operators . . . . 1758

Rainer Kress
Integral equations and numerical methods for inverse scattering problems . 1759

Giovanni Monegato (joint with Renato Orta)
A hypersingular integral equation arising in a waveguide scattering problem1762

Sergej Rjasanow
On nonlocal electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1765

Stefan A. Sauter (joint with Annalisa Buffa)
Stabilisation of the acoustic single layer potential on non-smooth domains 1768

Reinhold Schneider (joint with Wolfgang Dahmen, Helmut Harbrecht)
Adaptive Wavelet Based Fast Solution of BEM . . . . . . . . . . . . . . . . . . . . . . . . 1771

Christoph Schwab (joint with Tobias von Petersdorff)
Numerical Solution of Operator Equations with Stochastic Data . . . . . . . . . 1771

Olaf Steinbach (joint with Ulrich Langer, Günther Of and Walter Zulehner)
Tearing and Interconnecting Domain Decomposition Methods . . . . . . . . . . . 1772

Ernst P. Stephan (joint with Florian Leydecker and Matthias Maischak)
Some Schwarz Methods for Integral Equations on Surfaces -

h and p Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1774

Johannes Tausch
A spectral method for integral formulations of potential and high-frequency

scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775

Eugene Tyrtyshnikov (joint with Ivan Oseledets)
Matrix approximations and solvers using tensor products and non-standard

wavelet transforms related to irregular grids . . . . . . . . . . . . . . . . . . . . . . . . . . 1778



1748 Oberwolfach Report 33/2004

Wolfgang L. Wendland
On J. Radon’s convergence proof of Neumann’s method with double layer

potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1779



Fast Numerical Methods for Non-local Operators 1749

Abstracts

H-Matrix LU-decomposition based preconditioners for BEM

Mario Bebendorf

Stiffness matrices arising from integral formulations of elliptic problems are
usually dense. However, the kernel function κ of the arising integral operators can
locally be approximated by degenerate functions, i.e.,

(1) κ(x, y) ≈
k∑

i=1

ui(x)vi(y),

where k is a small number. This idea originating from the fast multipole method
[4] and panel clustering [7] today is looked at more from an algebraic point of view,
since on the discrete level (1) means that appropriate blocks of the matrix K can
be approximated by matrices of low rank. This gave rise to the mosaic-skeleton
method [10] and hierarchical matrices (H-matrices) [5, 6, 3]. By the latter it is not
only possible to (approximatively) store dense matrices and multiply them by a
vector with almost linear complexity, they also provide the usual (approximative)
operations like matrix addition, multiplication and inversion with almost the same
complexity. The basis for the efficiency of this class of matrices is a hierarchical
partition of the matrix into blocks and the low-rank representation of each block.
Instead of generating these low-rank approximants from degenerate kernel approx-
imations, e.g, by the multipole expansion or interpolation, it is more efficient and
convenient to use the adaptive cross approximation (ACA) algorithm [1, 2], which
finds such low-rank approximants from few of the original matrix entries.

When solving linear systems with these matrices iteratively the number of itera-
tions needed to obtain a prescribed accuracy is mainly determined by the condition
number of the coefficient matrix. A bad condition number may be caused by the
mapping properties of the operator or by the underlying geometry or discretization.
There are many different approaches to obtain a preconditioner C. In a recently
published idea [8] an algebraic multigrid procedure is constructed for boundary
element matrices. Another possibility is based on the mapping properties of the
operator only, see [9]. Let A : V → V ′ be a V -coercive and B : V ′ → V a V ′-
coercive operator. Then A and B−1 : V → V ′ both are V -coercive, i.e., there are
constants αi, βi > 0, i = 1, 2, such that for all v ∈ V

α1‖v‖2
V ≤ (Av, v)L2 ≤ α2‖v‖2

V and β1‖v‖2
V ≤ (B−1v, v)L2 ≤ β2‖v‖2

V .

From this it already follows that A and B−1 are spectrally equivalent, i.e,
α1

β2
(B−1v, v) ≤ (Av, v) ≤ α2

β1
(B−1v, v) for all v ∈ V.

Hence, for preconditioning the single layer potential operator of the Laplacian
for instance the hypersingular operator can be used. Since both operators can
be approximated using ACA, one could easily obtain an efficient preconditioner.
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Although the idea of using operators with inverse mapping properties is attrac-
tive, the preconditioning effect can only be observed asymptotically, i.e., for fixed
problem sizes n the condition number might still be large.

The approach we are going to pursue is to use an approximative LU decompo-
sition

C := LU

of the coefficient matrix A ≈ LU , where the two triangular factors L and U are
stored in H-matrix format. Depending on the prescribed accuracy of the LU de-
composition the condition number can be controlled also for fixed problem sizes.
A low precision LU decomposition will be sufficient to guarantee spectral equiv-
alence. The arising equations with coefficient matrix C can then be solved by
forward/backward substitution with the same complexity as the H-matrix-vector
multiplication. The setup of the factors L and U can be done with complexity
n log6 n. Since constants are much smaller compared with the complexity of build-
ing A, the time for decomposing A can be neglected. This is especially true, if the
LU decomposition is computed with low precision.
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Some hybrid asymptotic-numerical methods in high-frequency
scattering

Ivan G. Graham

In this talk we presented two techniques for combining asymptotic information
with numerical methods in order to produce wave-number robust solution methods
for some high-frequency problems in acoustic and electromagnetic scattering.

The first part of the talk (joint work with B.D. Bonner and V.P. Smyshlyaev
[3]) concerned the computation of diffraction coefficients for the scattering of high-
frequency waves by conical scatterers. The diffraction coefficient gives the coef-
ficient of the principal term in the asymptotic expansion of the diffracted com-
ponent of the scattered wave as the wave number k → ∞. The computation of
the diffraction coefficient in the case of a conical scatterer can be reduced to the
solution of a family of homogeneous boundary value problems for the Laplace-
Beltrami-Helmholtz equation on a portion of the unit sphere bounded by a simple
closed contour (in fact the intersection of the sphere with the conical scatterer).
The diffraction coefficient may be determined by then integrating the resulting
solutions with respect to the wave number ([1]).

In this part of the talk we discussed the numerical computation of the diffrac-
tion coefficients using the boundary integral method, with the classical double
layer potential approach. We gave an analysis of the scalar integral equation aris-
ing in acoustic scattering, which shows its relation to the corresponding integral
equation for the planar Helmholtz equation. This allows us to prove, using the
results of [2], optimal convergence for piecewise polynomial collocation methods
of arbitrary order even when the scatterer has non-smooth cross-section. We also
derived efficient quadrature techniques for assembling the boundary element ma-
trices. In practice we employ an h − p approximation scheme, which converges
with exponential order.

The scattering of electromagnetic waves was also discussed; the resulting system
of integral equations can be analysed by similar techniques to those used for the
acoustic case. We illustrated this part with computations on both smooth and
non-smooth scatterers for both the acoustic and electromagnetic cases.

In the second part of the talk we described joint work in progress, with V.
Dominguez, on methods for incorporating asymptotic information into the design
of ansatz functions so that standard numerical methods (such as the Galerkin
method) work well for both low and high frequency applications. We illustrated
this for the case of acoustic scattering from a circular object, where diffraction due
to grazing incidence at the tangency points as well as simple reflections are the
main features which have to be taken account of.

References
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Adaptive Coarsening of Hierarchical Matrices

Lars Grasedyck

The efficient treatment of dense matrices arising, e.g., from the finite element
discretisation of integral operators requires special compression techniques. In this
talk we use a hierarchical low-rank approximation, the so-called H-matrix, that
approximates the dense stiffness matrix in admissible blocks (corresponding to
subdomains where the underlying kernel function is smooth) by low rank matrices.
The low rank matrices are assembled either by kernel interpolation [4], adaptive
cross approximation [14, 2] or multipole expansions [9].

In the talk we develop an algorithm that can determine a coarser block struc-
ture that minimises the storage requirements (enhanced compression) and speeds
up the (formatted) arithmetic of H-matrices. This coarse approximation is done
adaptively and on-the-fly to a given accuracy such that the matrix is assembled
with minimal storage requirements while keeping the desired approximation qual-
ity. It can be regarded as an algebraic extension of the weak admissibility condition
[12]. Moreover, the approximate inverse of a rather coarse approximation to the
stiffness matrix turns out to be a good preconditioner.

The H-matrix format is presented in a series of papers [10, 11, 6, 8] that describe
the construction as well as the arithmetic in this format. Our coarsening strategy
does not improve the asymptotic bounds for the complexity of the arithmetic, but
it minimises the constants.

The (hierarchical) partition of the matrix into blocks that allow for a low-rank
approximation is not unique. Even the question whether or not a single block is
suitable for a low-rank approximation is non-trivial. Typically, one demands that
the singular values of the matrix block decay exponentially and ensures this by
sufficient conditions (standard admissibility, weak admissibility).

For a rather coarse approximation of a matrix block an exponential decay of
the singular values is not necessary. Therefore, standard (or weak) admissibility
conditions for the blocks are too restrictive. The partitions generated by these
sufficient conditions serve as input for our algorithm that coarsens the structure.

A first recompression method is commonly used when applying sub-optimal
rank revealing algorithms: each assembled block in the low-rank format is im-
mediately decomposed by the SVD. Since the block is already given in factorised
form, the SVD of such an n×m rank k matrix can be computed in O(k2(n+m))
[8]. All singular values σi with σi ≤ ε σ1 are discarded and the rank thereby
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Assembly Store ‖I − A
−1

H
A‖ Coarsen Store ‖I − Ã

−1

H
A‖

n [Sec.] [KB/DoF] [Sec.] [KB/DoF]

2024 4 2.8 4.3 · 10−3 2 1.4 1.8 · 10−2

8192 24 3.3 4.4 · 10−3 10 2.1 1.0 · 10−2

32768 120 4.9 2.3 · 10−3 49 3.1 6.0 · 10−3

131072 641 6.2 1.5 · 10−3 241 4.4 2.4 · 10−3

Table 1. Initial approximation (left) and coarsened H-matrix (right).

reduced. The parameter ε is the same that we use in the initial assembly of the
block, e.g., an analytic error bound or a heuristic stopping criterion.

While the first recompression reduces the blockwise rank of the H-matrix ap-
proximation, the following second recompression aims at a coarsening of the entire
block structure of the H-matrix. The reason why the initial block structure is not
optimal is threefold:

First, the parameter η from the admissibility condition might be too small (and
it enters the complexity estimates in the power 6). For the discretisation this is
not crucial but for the H-matrix arithmetic it is. Our recompression scheme will
automatically choose the right blocks, so that only the extra time for the assembly
of the stiffness matrix is increased, but the storage requirements stay the same
independently of η.

Second, blocks that are not admissible might be regarded as admissible, because
the standard admissibility condition is sufficient but not necessary. This was first
observed in [12] under the name weak admissibility.

Third, the block cluster tree based on the given cluster tree does not take the
accuracy of the discretisation and compression into account. Asymptotically (k
large enough or ε small enough) the optimal block structure might be that from
the standard admissibility, but for all practical purposes the optimal structure is
coarser.

As a numerical example we consider the Galerkin discretisation by piecewise
constant basisfunctions of the double layer potential of the Laplacian on the unit
sphere. The initial approximation including the first recompression is assembled by
automatic quadrature [5] in the nearfield and ACA [2] in the farfield. We denote
this matrix by AH. A sufficiently accurate approximation to the full discrete
matrix is stored in A. Table 1 contains the results for the initial approximation
and first recompression. The second recompression ÃH by adaptive coarsening
of the initial H-matrix approximation reduces the storage requirements from 6.2
down to 4.4 KB per degree of freedom, cf. Table 1.

At last, we consider the complexity of the formatted H-matrix arithmetic for a
more realistic geometry, namely the single layer potential operator of the Laplacian
on a crank shaft discretised with 113152 piecewise constant basis functions. Here,
the assembly takes 131.5 seconds, the accurate recompression 59 seconds and a
rather coarse recompression 40 seconds. The rather coarse recompressed matrix
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can be decomposed by a Cholesky decomposition along the lines of [13, 7, 1] in
24 seconds and allows us to solve the system by GMRES in 8 steps (11 seconds).
The computations were performed on a SUN UltraSPARC with a 900 MHz CPU
using the standard HLib library [3] for hierarchical matrices.
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Stable Coupling for Scattering

Ralf Hiptmair

1. Introduction

For a bounded scatterer Ω− ⊂ R
3 with Lipschitz-continuous boundary Γ :=

∂Ω− and complement Ω+ := Ω
−

we consider the following transmission problem
for the Helmholtz equation

∆u+ k(x)2u = f in Ω− , ∆u+ κ2u = 0 in Ω+

[γ0u]Γ = 0 across Γ , [γ1u]Γ = 0 across Γ ,
(1)

∂
∂ru(x) − iκu(x) = o(r−1) for r := |x| → ∞ uniformly .(2)

Here γ0 and γ1 stand for the Dirichlet and Neumann traces, respectively, and [·]Γ
denotes the jump across Γ. The transmission problem (1) models the propagation
of time-harmonic sound waves impinging on a penetrable object [6, Sect. 2.1]. It
is known that (1) has a unique solution u ∈ Hloc(∆,R

3), cf. [6, Sect.3.2].

Definition 1. A distribution u ∈ H1
loc(Ω

±) is called exterior/interior Helmholtz
solution, if ∆u+ κ2 = 0 in Ω± and (2) holds at ∞.

2. Boundary integral operators

Based on single and double layer potentials Ψ0
SL and Ψ0

DL for the Helmholtz
kernel G(z) := exp(iκ|z|)(4π|z|)−1 we can introduce the following four continuous
boundary operators

Vκ := {Γ}Γ : H− 1

2 (Γ) 7→ H
1

2 (Γ) , Wκ := {Γ}Γ : H
1

2 (Γ) 7→ H− 1

2 (Γ) ,

Kκ := {Γ}Γ : H
1

2 (Γ) 7→ H
1

2 (Γ) , K
′
κ := {Γ}Γ : H− 1

2 (Γ) 7→ H− 1

2 (Γ) .

For details please consult [11, Ch. 3] and [9, Ch. 7 & 9], also for a proof of the
following theorem.

Theorem 2. The operators Vκ :: H− 1

2 (Γ) 7→ H
1

2 (Γ) and Wκ : H
1

2 (Γ) 7→ H− 1

2 (Γ)
are coercive1.

Throughout, I assume that the duality pairing on H− 1

2 (Γ)×H
1

2 (Γ) is induced
by the Hermitian sesqui-linear form (ϕ, v)Γ :=

∫
Γ
ϕv dS .

A crucial tool for the coupling of a variational equations in Ω− and boundary
integral equations on Γ are the Calderón projectors [12]

P− :=

(
1
2Id− Kκ Vκ

Wκ
1
2Id+ K

′
κ

)
, P+ :=

(
1
2Id+ Kκ −Vκ

−Wκ
1
2Id− K

′
κ

)
.

Theorem 3.

Range(P±) = H±
CD

(Γ) := {(γ±0 u, γ±1 u) : ∆u+ κ2u = 0 in Ω± and (2)} .

1Here, coercivity means that a G̊arding inequality holds.
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3. Classical symmetric coupling

A solution of (1) satisfies for all v ∈ H1(Ω−)

a(u, v) :=

∫

Ω−

grad u · grad v − k(x)2uv dx −
(
γ−1 u, γ

−
0 v
)
Γ

=

∫

Ω−

fv dx .(3)

The symmetric coupling approach due to Costabel [7] uses the exterior Calderón
projector and the transmission conditions of (1) and obtains: seek u ∈ H1(Ω−),

λ ∈ H− 1

2 (Γ) such that for all v ∈ H1(Ω−), ϕ ∈ H− 1

2 (Γ)

a(u, v) +
(
Wκγ

−
0 u, γ

−
0 v
)
Γ

−
(
(1
2Id− K

′
κ)λ, γ−0 v

)
Γ

= f(v) ,
(
ϕ, (1

2Id− Kκ)γ−0 u
)
Γ

+ (ϕ,Vκλ)Γ = 0 .
(4)

The sesqui-linear form underlying (4) is coercive, but fails to be injective, if κ2

coincides with a Dirichlet eigenvalue of −∆ in Ω−. This is the phenomenon of
spurious resonances : the failure of a boundary integral equation formulation of
(1) to possess a unique solution despite the unique solvability of (1).

A remedy is offered by the so-called combined field integral equations (CFIE)
[1, 5]. A simple version relies on a complex linear combination of the two exterior
Calderón identities, but fails to produce a coercive variational problem in L2(Γ)
in case Γ has edges and corners.

4. Transformed traces

More elaborate CFIE respect the natural trace spaces and use a regularizing
compact linear operator M : H− 1

2 (Γ) 7→ H
1

2 (Γ) that satisfies (ϕ,Mϕ)Γ > 0 ⇔
ϕ 6= 0.

For theoretical purposes regularizing operators have been introduced used by
Panich [10], whereas their practical use in CFIE context is discussed in [2, 3, 4], see
also the abstract by S. Sauter. The simplest choice for M is M = (−∆Γ + Id)−1 :

H−1(Γ) 7→ H1(Γ), which means, for ϕ ∈ H− 1

2 (Γ),

(gradΓ Mϕ,gradΓ q)Γ + (Mϕ, q)Γ = (ϕ, q)Γ ∀q ∈ H1(Γ) .(5)

The operator M is utilized for the following bijective transformation of traces

T :=

(
Id iηM
iη Id

)
: H

1

2 (Γ) ×H− 1

2 (Γ) 7→ H
1

2 (Γ) ×H− 1

2 (Γ) ,(6)

with regularization parameter η > 0.

Lemma 4.

Range(TP−) ∩ ({0} ×H− 1

2 (Γ)) = {0} .
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5. Stabilized coupled problem

Applying T to the interior Calderón indentity, we arrive at a transformed exte-
rior Calderón indentity for traces of exterior Helmholtz solutions.

(
γ+
0 u
γ+
1 u

)
=

(
1
2Id+ Kκ − iηM ◦ Wκ −Vκ − iη(1

2Id+ K
′
κ)

−Wκ + iη(K − 1
2Id)

1
2Id− K

′
κ − iηVκ

)(
γ+
0 u
γ+
1 u

)
.(7)

Combining (7) this with (3) yields the variational problem: seek u ∈ H1(Ω−),

λ ∈ H− 1

2 (Γ) such that for all v ∈ H1(Ω−), ϕ ∈ H− 1

2 (Γ)

a(u, v) +
(
Wκγ

−
0 u, γ

−
0 v
)
Γ
− iη

(
(Kκ − 1

2Id)γ
−
0 u, γ

−
0 v
)
Γ

−
(
(1
2Id− K

′
κ)λ, γ−0 v

)
Γ

+ iη
(
Vκλ, γ

−
0 v
)
Γ

= f(v) ,

(
ϕ, (1

2Id− Kκ)γ−0 u
)
Γ

+
(
ϕ, iηMWκγ

−
0 u
)
Γ

+ (ϕ,Vκλ)Γ +
(
ϕ, iηM(1

2Id+ K
′
κ)λ
)
Γ

= 0 .

(8)

Compared to (4), all extra terms in (8) are compact, which ensures coercivity.
Moreover, from Lemma 4 we can conclude uniqueness of solutions:

Theorem 5. Solutions (u, λ) ∈ H1(Ω−) ×H− 1

2 (Γ) of (8) are unique.

Let us assume the choice (5) for M. In order to obtain a variational prob-
lem amenable to boundary element Galerkin discretization, we have to weed out
products of non-local operators by introducing the new unknown

p := iηM(Wκγ
−
0 u+ (1

2Id+ K
′
κ)λ) ∈ H1(Γ) .(9)

Note that, actually, p = 0 Then, (8) can be equivalently stated as: seek u ∈
H1(Ω−), λ ∈ H− 1

2 (Γ), p ∈ H1(Γ) such that

a(u, v) +
(
Wκγ

−
0 u, γ

−
0 v
)
Γ
− iη

(
(Kκ − 1

2Id)γ
−
0 u, γ

−
0 v
)
Γ

−
(
(1
2Id− K

′
κ)λ, γ−0 v

)
Γ

+ iη
(
Vκλ, γ

−
0 v
)
Γ

= f(v) ,

(
ϕ, (1

2Id− Kκ)γ−0 u
)
Γ

+
(
ϕ, iηMWκγ

−
0 u
)
Γ

+ (ϕ,Vκλ)Γ + (ϕ, p)Γ = 0 ,

−iη(Wκγ
−
0 u)q −

(
(1
2Id+ K

′
κ)λ, q

)
Γ

+ (gradΓ p,gradΓ q)Γ + (p, q)Γ = 0 ,

(10)

for all v ∈ H1(Ω−), ϕ ∈ H− 1

2 (Γ), and q ∈ H1(Γ). Now, by standard theory, a
combined Galerkin finite element and boundary element discretization of (10) will
yield asymptotically quasi-optimal solutions.
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Data-Sparse Representation of Multi-Diminsional Nonlocal Operators

Boris N. Khoromskij

(joint work with Wolfgang Hackbusch)

The class of H-matrices allows an approximate matrix arithmetic with almost
linear complexity. The combination of the hierarchical and tensor-product format
offers the opportunity for efficient data-sparse representation of integral operators
and the inverse of elliptic operators in higher dimensions (cf. [2], [1], [3]). In the
present talk, we discuss the H-matrix techniques combined with the Kronecker
tensor-product approximation to represent integral operators as well as certain

functions F(A) of a discrete elliptic operator A in a hypercube (0, 1)d ∈ R
d in the

case of a high spatial dimension d. In particular, we approximate the functions
A−1 and sign(A) of a finite difference discretisations A ∈ R

N×N with rather
general location of the spectrum. The asymptotic complexity of our data-sparse
representations can be estimated by O(np logq n), p = 1, 2, with q independent of
d, where n = N1/d is the dimension of the discrete problem in one space direction.
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Integral equations and numerical methods for inverse scattering
problems

Rainer Kress

This presentation provides a survey on some recent developments in the numer-
ical solution of time-harmonic inverse obstacle scattering problems. After formu-
lating the inverse problem, the issue of uniqueness, that is, identifyability will be
addressed. The uniqueness question is of its own mathematical interest and also
interrelates with some of the more recently developed reconstruction algorithms.
By considering one or two of its representatives the basic ideas of three groups of
methods will be outlined, namely decomposition methods, iterative methods and
sampling and probe methods.

Consider the scattering of a time-harmonic acoustic plane wave ui from an
impenetrable scatterer described by a bounded domain D in ℜ3 either with a
sound-soft or an impedance boundary condition. The inverse obstacle scattering
problem consists of finding the shape and location of D from the knowledge of the
far field pattern u∞ of the scattered wave us for one or several incident plane waves.
The corresponding uniqueness result due to Kirsch and Kress [15] (see also [4])
confirms that the domain D and the boundary condition are uniquely determined
by the far field pattern for infinitely many incident plane waves. The main idea of
the proof is to exploit the fact that for scattering of a point source the scattered
wave develops singularities when the source and observation points approach the
boundary. Uniqueness for one incident plane wave remains a challenging open
problem. Partial results were recently obtained for scattering from polyhedral
scatterers [1].

Decomposition methods, in principle, separate the inverse problem into an ill-
posed linear problem to reconstruct the scattered wave us from its far field pattern
u∞ and a nonlinear problem for the subsequent determination of the boundary
∂D of the scatterer from the boundary condition. These methods do not require
the solution of the forward problem and some of them perform well without a
priori information on the geometry of the obstacle. A typical representative of
this approach is the potential method of Kirsch and Kress (see [6, 14]).

Iteration methods interpret the inverse obstacle scattering problem as a non-
linear ill-posed operator equation A(∂D) = u∞ and apply iterative schemes such
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as regularized Newton type, Landweber or conjugate gradient methods for its so-
lution. Here, A denotes the operator that, for a fixed incident field, maps the
boundary ∂D of the scatterer onto the far field pattern of the scattered wave. The
theoretical foundation for this approach requires to establish the differentiability
of the operator A with respect to the boundary and to explicitly characterize the
derivative. For the sound-soft and the impedance boundary condition this was
done, among others, by Kirsch [12] and by Hettlich [8] via variational methods, by
Potthast [18, 19] via integral equation methods and by Kress and Päivärinta [17]
and by Haddar and Kress [7] via factorization formulas. For details on the numer-
ical implementation we refer to [4, 5, 9, 12, 16]. The numerical examples provide
amble evidence that iterative methods yield very good reconstructions. However,
they require the solution of the corresponding forward problem in each iteration
step and a priori information on the geometry of the obstacle. Furthermore, al-
though progress has been made through the work of Hohage [10] and Potthast [21],
the convergence issue is not yet satisfactorily settled.

The main idea of the more recently developed so-called sampling and probe

methods is to develop a criterium in terms of the behaviour of some ill-posed lin-
ear integral equation that decides on whether a point z lies inside or outside the
scatterer D. Then the criterium is evaluated numerically for a grid of points to
visualize the unknown scatterer. As opposed to the two previous types of methods
that, in principle, only need the far field pattern for one incident direction, the
sampling and probe methods need the far field pattern for all incident and obser-
vation directions. However, as their main advantage they perform extremely well
without any a priori information on the geometry. The linear sampling method
as developed by Colton and Kirsch [3] has as its central piece the far field op-
erator F : L2(Ω) → L2(Ω) on the unit sphere Ω. This operator is defined as
an integral operator with the kernel given by the far field pattern u∞(x̂, d) for
all observation directions x̂ ∈ Ω and all incident directions d. With the explic-
itly available far field pattern wi

∞(· , z) of the field of an point source located at
the point z the linear sampling method is based on the ill-posed linear integral
equation Fg(· , z) = wi

∞(· , z). Although, this integral equation, in general, is not
solvable, it can be approximately solved in the sense that for every ε > 0, and
z ∈ D there exists g(· , z) ∈ L2(Ω) such that ‖Fg(· , z) − wi

∞(· , z)‖L2(Ω) ≤ ε and
‖g(· , z)‖L2(Ω) → ∞ as z → ∂D. In the numerical implementation the far field
equation is solved by Tikhonov regularization via Morozov’s discrepancy princi-
ple and then ∂D is visualized through the points z where ‖g(· , z)‖L2(Ω) becomes
large. A remaining gap in the theoretical foundation of the linear sampling method,
namely, the question why the implementation via Tikhonov and Morozov actually
picks the approximation g that is predicted by the above theoretical result was
closed by Arens [2].

The factorization method may be considered as a variation of the linear sam-
pling method in the sense that it replaces F in the far field equation by (F ∗F )1/4,
that is, it is based on the equation (F ∗F )1/4g(· , z) = wi

∞(· , z). As shown in a
pioneering paper by Kirsch [13] this equation is more satisfying, since it is solvable
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if and only if z ∈ D. The numerical implementation of the factorization method
is similar to that of the linear sampling method. The procedure is known as fac-
torization method, since it relies on a factorization of the far field operator. The
linear sampling method and the factorization method may be viewed as dual to
the uniqueness proof of Kirsch and Kress, since, in principle, their foundation is
based on letting source points approach the boundary from inside of D whereas
in the uniqueness proof the source points approch the boundary from outside of
D. The latter idea is mimiced in the point source and singular source methods of
Potthast [20] and the probe method of Ikehata [11].
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A hypersingular integral equation arising in a waveguide scattering
problem

Giovanni Monegato

(joint work with Renato Orta)

In this work we study the electromagnetic scattering problem associated with
a T-junction between two rectangular waveguides. This junction is composed by
an infinite (primary) waveguide

Ω1 = {(x, y, z) ∈ R3 : 0 < x < a, 0 < y < b, −∞ < z <∞}
and by a semi-infinite (secondary) waveguide

Ω2 = {(x, y, z) ∈ R3 : −∞ < x < 0, 0 < y < b, 0 < z < a′}.
They are coupled through the common aperture

A = {(x, y, z) ∈ R3 : x = 0, 0 < y < b, 0 < z < a′}
where in general a′ 6= a.

Notice that in this particular configuration the two waveguides have the same
height b. This assumption will reduce to 2 the dimension of the problem. The
case of two waveguides with different heights appears more difficult and will be
considered in a future paper.

We assume that the electromagnetic field varies harmonically (sinusoidally) with
time, with angular frequency ω and time factor ejωt. The dielectric medium is
assumed to be homogeneous and isotropic. The magnetic permeability is denoted
by µ and the electric permittivity by ǫ. We assume ǫ = ǫ′ − jǫ′′, with ǫ′, ǫ′′ > 0
and ǫ′′ << ǫ′, which means that the medium is weakly dissipative.

If in the structure we have a magnetic current density Jm and an electric current
density Je, then the total electric and magnetic fields, denoted by E and H ,
respectively, satisfy Maxwell equations in the domain Ω given by the union of
Ω1,Ω2 and the aperture A. The boundary of this domain will be denoted by Γ.
In the problem we consider we take

(1) Je = 0.

However, at a given arbitrary section z = −d, d > 0, of the primary waveguide
we introduce a magnetic source of the type

(2) Jm = 2

√
2

ab
V i

0 sin(
π

a
x)δ(z + d)x̂,
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producing the incident electric field

Ei(x, z) =

√
2

ab
V i

0 sin(
π

a
x)e−jkz1(z+d)ŷ,

corresponding to the fundamental mode (eigenfunction) in the primary waveguide,
where V i

0 is a given constant and kz1 =
√
k2 − (π

a )2. Here and in the following,
x̂, ŷ, ẑ denote the cartesian unit vectors, and the square root is always determined
by taking the root with negative imaginary part. The quantity k = ω

√
ǫµ is the

medium wavenumber, which has the form k = k′−jk′′, with k′, k′′ > 0 (k′′ << k′).
The following incident magnetic field is associated with the above incident elec-

tric field:

(4)
Hi(x, z) = −V i

0
kz1

k Y0

√
2
ab sin(π

ax)e
−jkz1(z+d)x̂

−jV i
0

π
kaY0

√
2
ab cos(π

ax)e
−jkz1(z+d)ẑ,

where Y0 =
√

ǫ
µ .

The total fields E,H are the sum of the incident fields and the corresponding
scattered ones.

The junction walls are assumed to be a perfect electric conductor. Therefore
the tangential component of the electrical field must vanish on them, that is,

(5) n̂× E = 0 on Γ,

n̂ being the normal unit vector. Notice that this assumption also implies

(6) n̂ ·H = 0 on Γ.

Finally, E and H must satisfy Sommerfeld radiation condition.
At this point it is of key importance to notice that because both the geometry of

the structure and the incident field are invariant with respect to the y coordinate,
the fields E = (Ex, Ey, Ez)

T and H = (Hx, Hy, Hz)
T are constant with respect to

y. This, together with conditions (5) and (6), implies

Ex = Ez = Hy = 0 in Ω.

Therefore, the only unknown components of E and H are Ey, Hx, Hz .
Taking into account this last result, and denoting by Ωxz the section y=constant

of the domain Ω, and by Γxz its boundary, a standard calculation reduces Maxwell
equations and their boundary conditions to the simpler scalar two-dimensional
form 





(∇2
xz + k2)Ey =

∂Jmx

∂z , in Ωxz

Ey = 0, on Γxz

limx→−∞Ey(x, z) = limz→±∞Ey(x, z) = 0;




Hx = 1

jωµ

[
∂Ey

∂z − Jmx

]
,

Hz = − 1
jωµ

[
∂Ey

∂x + Jmz

]
.
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¿From the application point of view, the goal is the computation of the so-called
scattering matrix, that is, of the (normalized) Fourier coefficients of the scattered
electric field with respect to the structure modes. There is no interest in knowing
the pointwise values of the scattered field.

To solve the problem we perform a domain decomposition of Ωxz into the two
separate waveguides. This because much is known about Helmholtz equation in a
single rectangular waveguide.

To this end, by invoking a well-known surface equivalence principle in electro-
magnetic theory, we close the aperture A of the T-junction by inserting a thin
metallic wall, and on the two faces of it we introduce equivalent magnetic cur-
rents: +Jeq

m = −M(z)δ(x− 0+)ẑ, 0 ≤ z ≤ a′, on the primary waveguide side and
−Jeq

m = M(z)δ(x− 0−)ẑ on the secondary one. This unknown fictitious current is
introduced to make the new decoupled problem equivalent to the original one.

In each waveguide the problem reduces to a non-homogeneous Helmholtz equa-
tion, with homogeneous boundary conditions, for the scattered electric field. An
integral representation for this field is then obtained, from which the corresponding
expression for the scattered magnetic field follows.

By imposing the continuity of the tangential component Hz of the total mag-
netic fields generated in the two separated waveguides at their interface A, we
obtain a hypersingular integral equation, defined on the interval (0, a′), whose
solution yields the unknown fictitious magnetic current M(z). From this, the
scattering matrix of the junction is easily computed.

This integral equation has two kernels given in terms of series expansions. Our
analysis will determine all singular components of the kernels and will show that
besides the standard second order hypersingularity, one of the kernel also has
a fixed-point second order hypersingularity at each endpoint of the interval of
integration.

The equation is finally solved by means of a Galerkin method, whose imple-
mentation is performed quite efficiently. Indeed a fast and accurate procedure is
proposed to compute the Galerkin matrix elements. The overall numerical method
is very fast and accurate.
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On nonlocal electrostatics

Sergej Rjasanow

1. Introduction

In recent years a significant interest has been focused on the determination
of electrostatic potentials of large biomolecules such as, e.g., microtubule and
ribosomes [1]. However, the standard continuum approach ultimately becomes
inaccurate when used to determine electrostatic properties on atomic scales [3],
as it is featureless, i.e., the correlation between solvent arrangements and the
geometrical structure of biomolecular assemblies is not taken into account.

In the recent paper [2] we proposed a novel formulation of nonlocal electrostatics
allowing numerical solutions for the nontrivial molecular geometries arising in the
applications mentioned before. For many relevant models, the dielectric function
of the medium can be expressed as the Green’s function of the Yukawa operator.
In this case, a system of coupled PDE’s can be used as a mathematical model of
the problem.

2. Nonlocal electrostatics

Let Ω ⊂ R
3 be a bounded, simply connected domain having piecewise smooth

boundary Γ = ∂Ω as it is shown in Fig 1. The outward unit normal vector at
x ∈ Γ will be denoted by nx. There are Nq point charges inside of the domain Ω.
Thus the spatial charge density ρ in Ω can be given in the form of point measure

ρ(x) =

Nq∑

j=1

qj δ(x− xj) , xj ∈ Ω , j = 1, . . . , Nq(1)

The complement domain ΩC = R
3 \ Ω̄ is filled with water.

The problem is to determine the electric field ~E(x) for all x ∈ R
3, i.e. inside and

outside of the domain Ω. The electric field is described by a system of Maxwell
equations which reads as

{
div ~D(x) = ρ(x)

rot ~E(x) = 0
, x ∈ Ω ,

{
div ~D(x) = 0

rot ~E(x) = 0
, x ∈ ΩC = R

3 \ Ω̄ .(2)

where the spatial density ρ is given in (1). On Γ the usual interface conditions on

Γ for the vector fields ~E and ~D are formulated

(γext
0

~D(x) − γint
0

~D(x) , nx) = 0 ,
(
γext
0

~E(x) − γint
0

~E(x)
)
× nx = 0 ,(3)

where γint
0 and γext

0 are the interior and exterior Dirichlet trace operators. Thus

the normal component of the vector field ~D and the tangential component of the

vector field ~E are continuous on the boundary Γ. The Maxwell equations (2) are
completed with the usual, local material relationship in Ω

~D(x) = ε0 εΩ ~E(x) , x ∈ Ω .(4)
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Figure 1. Computational domain Ω

The material relationship in ΩC is nonlocal and can be written as follows

~D(x) = ε0 ε∞ ~E(x) + γ

∫

ΩC

u∗2(x, y)
~E(y) dy , x ∈ ΩC .(5)

In (5), the function u∗2 : R
3 × R

3 → R denotes the fundamental solution of the
Yukawa equation

u∗2(x, y) =
1

4 π

e−κ|x− y|
|x− y| .(6)

Thus the mathematical model of non-local electrostatic consists of the Maxwell
equations (2), interface conditions (3) together with the material relationships (4)
and (5).

3. System of PDE’s

In this subsection we consider a system of partial differential equations for our
problem using the scalar functions u : Ω → R and v : ΩC → R with

~E(x) = −gradu(x) , x ∈ Ω , ~E(x) = −gradv(x) , x ∈ ΩC(7)

as well as a scalar harmonic functions w : ΩC → R. Instead of the Maxwell
equations (2) we consider the following system of PDE’s for the functions u, v and
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w

−ε0 εΩ ∆u(x) = ρ(x) , x ∈ Ω ,(8)

−∆w(x) = 0 , x ∈ ΩC ,(9)

−ε0 ε∞
(
∆v(x) − (κ′)2v(x)

)
= κ2(w + w∗)(x) , x ∈ ΩC ,(10)

where κ′ =
√
κ2 + γ/ε0 and the function w∗ : R

3 → R is defined as follows

w∗(x) =
1

4 π

Nq∑

j=1

qj
|x− xj |

.(11)

The system (8) is subjected to the following interface conditions of Γ

−γext
1

(
w(x) + w∗(x)

)
+ ε0ε γ

int
1 u(x) = 0 ,(12)

γext
0 v(x) − γint

0 u(x) = 0 ,(13)

γext
1 v(x) − γint

1 u(x) = 0 .(14)

The system (8) with the interface conditions (12) is not equivalent to the previous

model of nonlocal electrostatics because of the continuity of the electric field ~E
on the boundary Γ forced by the third interface condition. However the Maxwell
equations, local material relationship in Ω as well as the nonlocal material rela-
tionship in ΩC are formally fulfilled. The system (8) contains three PDE’s with
constant coefficients and therefore can be solved using boundary element meth-
ods. In Table 1. the numerical values of the solvation enthalpy (third column) are
compared with measurements (fourth column) for four simple ions.

Ammonium NH+
4 -83.6 -79.0

Methanolat CH3O
− -78.6 -95.0

Methylammonium CH3NH
+
3 -68.5 -70.0

Anilinium C5H5NH
+ -59.3 -59.0

Table 1. Computational results and measurements
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Stabilisation of the acoustic single layer potential on non-smooth
domains

Stefan A. Sauter

(joint work with Annalisa Buffa)

1. Introduction

In our presentation, we will address problems related to the discretization of
boundary integral equations for the Helmholtz problem outside of a reflecting
obstacle Ω−, where Ω− ⊂ R

3 is a bounded Lipschitz domain. Let Ω+ = R
3 \ Ω̄−

and Lk := −∆− k2. We consider the problem: Find u+ ∈ H1
loc(Ω

+) such that the
Helmholtz problem

(1)

Lku
+ = 0 in Ω+,

u+ = g on Γ := ∂Ω−,

|u (x)| ≤ C ‖x‖−1

∣∣∣∣
∂u

∂r
− i ku

∣∣∣∣ ≤ C ‖x‖−2





for ‖x‖ → ∞

is satisfied in a weak sense (cf. [25]).
Our goal is to solve these equations by the method of integral equations. A

potential ansatz leads to a boundary integral equation on Γ for the unknown
density ϕ which is of the form Rkϕ = g. Here, Rk is the trace Vk of the single
layer potential associated to Lk on Γ or a stabilized version of it. We will consider
the Galerkin boundary element method for its discretization. It is well known that
the Vk is not invertible on a countable set of frequencies k (see, e.g., [10]) and we
will introduce a class of stabilizations such that the boundary integral equation is
well posed for all frequencies k > 0.

It is well known (see, e.g., [3]) that finite element discretizations for the Helmholtz
problem suffer from the pollution effect, i.e., the constants in the Galerkin error
estimates deteriorates to infinity with increasing wave number k > 0. Hence, the
question arises whether this pollution effect is possibly reduced by solving the
boundary integral equation for the Helmholtz problem via the Galerkin boundary
element method.

We will analyze the effect of the frequency k in the error of the Galerkin bound-
ary element solution. First, we will introduce a family of stabilizations to eliminate
the forbidden frequencies and then analyze the pollution effect for the boundary
element discretization of the corresponding stabilized variational equations.

There exist various approaches in the literature to stabilize the single layer
potential for the Helmholtz problem (see [9], [10], [19], [22, Sec. 6.4]). Existence
and uniqueness have been proved and, for the Galerkin boundary element method,
it could be shown that the convergence is quasi-optimal provided the step size is
“sufficiently small”. More precisely, the threshold for the maximal step size such
that the Galerkin discretization is stable strongly depends on the wave number
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and the “constant” in the quasi-optimality error estimate deteriorates to infinity
as the wave number increases.

Consequently, in order to compare the different approaches from the viewpoint
of numerical efficiency the following questions have to be addressed:

(1) How does the threshold for the stability of the Galerkin discretization
quantitatively depend on the wave number?

(2) How does the Galerkin error quantitatively depend on the mesh width and

the wave number?
(3) Can the stabilization approach be implemented efficiently in a boundary

element code? What is the computational complexity?

These questions have been discussed for the Brakhage-Werner stabilization in
[16] (see also [23]). We will address these questions for a general stabilization
approach for the acoustic single layer operator Vk.

2. Results

We will briefly summarize the results. All details can be found in [8].

a) The stabilized acoustic single layer potential, on the continuous level, ad-
mits a unique solution which depends continuously on the data for general
Lipschitz surfaces. This can be considered as an advantage compared to
the Brakhage-Werner stabilization, where the question of existence and
uniqueness is open for general Lipschitz surfaces and even for piecewise
smooth surfaces.

b) The Galerkin method converges for “sufficiently small” step size on general
triangulated surfaces with optimal rate.

We have analyzed quantitatively the dependence of the constants entering the
stability and convergence estimates in the case that the surface is the unit sphere
in R

3. For this case, we obtain:

c) The condition for the stability of Galerkin method (related to the condition
“the step size has to be sufficiently small”) is more restrictive as for the
stabilization in the Brakhage-Werner approach.

d) The constants in the Galerkin error estimates depend on the wave-number
in a more critical way as for the Brakhage-Werner stabilization.
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[28] J. C. Nédélec. Acoustic and Electromagnetic Equations. Springer, New York, 2001.
[29] N. Ortner and P. Wagner. A Survey on Explicit Representation Formulae for Fundamental

Solutions of Linear Partial Differential Operators. Acta Applicandae Mathematicae, 47:101–
124, 1997.

[30] O. Panich. On the question of the solvability of the exterior boundary-value problems for
the wave equation and Maxwell’s equation. Russ. Math. Surveys, 20:221–226, 1965.



Fast Numerical Methods for Non-local Operators 1771

[31] G. Schmidt and B. N. Khoromskij. Boundary integral equations for the biharmonic Dirichlet
problem on nonsmooth domains. J. Integral Equations Appl., 11(2):217–253, 1999.

[32] K. Yosida, Functional Analysis, Classics in Mathematics, Springer, 1995. Reprint of the
1980 edition.

Adaptive Wavelet Based Fast Solution of BEM

Reinhold Schneider

(joint work with Wolfgang Dahmen, Helmut Harbrecht)

During the past years adaptive wavelet methods based on best N -term approx-
imation have been introduced by Cohen, Dahmen, DeVore. Like Fast Multipole
Method, Panel Clustering etc. which been developed to reduce the complexity to
an optimal or almost optimal rate, it is known that the Galerkin discretization
using wavelet bases yields immediately a quasi-sparse representation. Combining
this matrix compression, with wavelets adaptive approximation of the solution
gives a powerful instrument for solving integral equations. We present an adap-
tive wavelet scheme which is observed not compromising the acurracy of the full
Galerkin scheme on the full (quasi-) uniform grid.
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Numerical Solution of Operator Equations with Stochastic Data

Christoph Schwab

(joint work with Tobias von Petersdorff)

Strongly elliptic integral equations with stochastic stochastic data are solved nu-
merically. Both, stochastic (Monte-Carlo) and deterministic (sparse tensor prod-
uct) methods for the approximation of the k-th moment of the random solution are
analyzed and implemented. Deterministic equations for the k-th moment of the
random solution are derived and their strong ellipticity and regularity in scales
of anisotropic Sobolev spaces are established. Solution algorithms of log-linear
complexity (in the number N of degrees of freedom for the mean field problem)
based on wavelet compression of the Galerkin stiffness matrix for the mean field
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problem and sparse tensor products of multilevel finite element spaces are analyzed
and implemented. Application to the efficient calculation of variances of random
solutions to the stochastic Dirichlet and Neumann problems of potential theory
via first kind boundary integral equations with stochastic data are presented.

The work generalizes [ST1] and [ST2] for local operator equations.
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Tearing and Interconnecting Domain Decomposition Methods

Olaf Steinbach

(joint work with Ulrich Langer, Günther Of and Walter Zulehner)

Domain decomposition methods are a well established tool for the coupling of
different partial differential equations, discretization methods such as finite and
boundary element methods, and of different (non–matching) finite–dimensional
trial spaces and their underlying meshes [4]. In particular Dirichlet domain de-
composition methods are based on the coupling of local Dirichlet boundary value
problems where the unknown Dirichlet data on the skeleton of the domain decom-
position are to be find. The solution of the local Dirichlet boundary value problems
define local Dirichlet to Neumann maps including the Steklov–Poincaré operator
which can be either expressed by boundary integral operators or by using a domain
variational formulation. In both cases we end up with a global Steklov–Poincaré
operator equation on the skeleton. The approximation of the local Dirichlet to
Neumann maps by using either finite or boundary element methods then leads to
a positive definite and symmetric linear system, where the global stiffness matrix
is assembled by the local contributions. In this talk we focus on efficiently pre-
conditioned and parallel solution methods to solve the global linear system with
almost optimal order in the complexity.

The Finite Element Tearing and Interconnecting (FETI) methods were intro-
duced in [1] as an efficient preconditioned iterative solver for finite element Dirich-
let domain decomposition methods. The continuity of the primal variables across
the coupling boundaries is formulated as a constraint. Hence, using Lagrange mul-
tipliers this leads to a saddle point formulation where the discrete Steklov–Poincaré
operators are localized and therefore can be inverted in parallel. Note that for
floating subdomains, in particular for subdomains without Dirichlet boundary,
due to the non–trivial kernel a suitable pseudo–inverse has to be introduced. Af-
ter eliminating the primal variables, i.e. the local Dirichlet data, one has to solve
the resulting global Schur complement system for the Lagrange multipliers. The
corresponding stiffness matrix is symmetric and positive definite and hence the
linear system can be solved by using a (projected) conjugate gradient method.
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An appropriate global preconditioner can be build via scaled local Schur comple-
ments yielding almost optimal estimates for the spectral condition number of the
preconditioned system. Note that this bound is independent of coefficient jumps.

In [2] Boundary Element Tearing and Interconnecting (BETI) methods were in-
troduced as boundary element counter part of the FETI methods. Due to a unified
approach of both methods coupled BETI/FETI methods are straightforward [3].
While the original FETI preconditioner is based on the discrete Steklov–Poincaré
operator, which is realized by solving local Neumann boundary value problems,
the BETI preconditioning methods are based on the use of the hypersingular
boundary integral operator which is spectrally equivalent to the discrete finite ele-
ment/boundary element Steklov–Poincaré operator, and which is already available
in the boundary element discretization. Hence we end up with an almost optimal
BETI preconditioner to be used in both finite and boundary element tearing and
interconnecting domain decomposition methods.

The local Galerkin discretization of boundary integral operators leads to dense
stiffness matrices where both the storage and the matrix vector multiplications
are quadratic in the number of degrees of freedom belonging to the local subdo-
main boundaries. Hence one has to use fast boundary element methods (see for
example [5]) to obtain an almost linear, up to polylogarithmic terms, complex-
ity. One possible choice is the use of the Fast Multipole Method, other methods
are panel clustering, algebraic approximation methods such as Adaptive Cross
Approximation or hierarchical matrices, or using wavelets.

Instead of solving the Schur complement system for the Lagrange multipliers,
i.e. inverting the discrete Steklov–Poincaré operators locally in each global it-
eration step, one may solve the saddle point problem by using an appropriate
iterative method. Since the discrete Steklov–Poincaré operators are defined via
the solution of local Dirichlet boundary value problems, an additional decoupling
gives a two–fold saddle point problem to be solved when using boundary elements
locally. Note that for floating subdomains the required solvability conditions may
be formulated as constraints leading then to a three–fold saddle point problem.
However, using a projected iterative method this again is equivalent to a two–fold
saddle point problem.

The challenge is now to solve the resulting two–fold saddle point problems by
using some preconditioned iterative solution strategies. Following [8] one can ap-
ply suitable transformations leading to a positive definite and symmetric linear
system when using appropriate inner products. Such an approach requires the use
of the previously defined BETI preconditioner as well as the use of local precon-
ditioners for the discrete Steklov–Poincaré operators and the discrete single layer
potentials which are involved in the solution of the local Dirichlet problems. As
local preconditioners one may use the concept of boundary integral operators of
the opposite order [7] or some artificial multilevel methods [6] which are based
on the hierarchy already generated by the fast boundary element method. Using
those preconditioners one can prove almost optimal spectral equivalence inequali-
ties which are sharp. Therefore the resulting algorithm, i.e. the iterative solution
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of the two–fold saddle point problem using fast boundary element methods locally
is almost optimal with respect to the amount of work.

First numerical examples for three–dimensional model problems confirm the
theoretical results. A sensitive problem is hereby the choice of optimal param-
eters needed in the transformation applied to the saddle point problem. In on-
going research we want to apply these methods for more complicated boundary
value problems, e.g. in linear elasticity with composed materials, and for com-
plex geometrical data. The coupling of boundary and finite element tearing and
interconnecting methods enables us to solve such problems in an efficient way in
parallel.
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Some Schwarz Methods for Integral Equations on Surfaces -
h and p Versions

Ernst P. Stephan

(joint work with Florian Leydecker and Matthias Maischak)

Multiplicative and additive Schwarz Methods are presented for the p version
of the boundary element method (BEM) applied to first kind integral equations
on surfaces. The integral equations under consideration are the weakly singular
equation with the single layer potential

(1) V ψ(x) := − 1

2π

∫

Γ

ψ(y)

|x− y|dsy = f(x), x ∈ Γ = (−1, 1)2

and the hypersingular integral equation

(2) Wv(x) :=
1

2π

∂

∂nx

∫

Γ

∂

∂ny

v(y)

|x− y|dsy = g(x), x ∈ Γ = (−1, 1)2.
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For (1) the p version of the Galerkin method is performed by use of affine images
of Legendre polynomials as boundary elements on a uniform mesh. The resulting
stiffness matrix has condition number O(p3) where p denotes the maximal polyno-
mial degree of the trial functions on the elements of the mesh. We decompose the
trial space into a ”coarse space” - spanned by those functions which are piecewise
constant in at least one variable - and into subspaces given by polynomials of higher
degrees on each element. It is shown that the multiplicative Schwarz method for
this stable subspace decomposition has a contraction rate which grows only poly-
logarithmically with p, i.e. the number of Schwarz iterations is only moderately
increasing. The proof in [2] is based on a general result for the error propagation
operator of the multiplicative Schwarz method given in [3] which uses bounds for
the minimal and maximal eigenvalues of the corresponding additive Schwarz oper-
ator together with the strengthened Cauchy-Schwarz inequality which bounds the
cosin of the angle between the subspaces on the patches.

For (2) the p version of the Galerkin method is done on triangular mesh using
special low-energy basis functions together with suitable polynomial extensions
of vertex functions and edge functions into triangles. We present from [1] an
iterative substructuring method which is based on splitting of the trial space into
wire-basket functions and interior functions (bubbles). The resulting additive
Schwarz preconditioner has block-diagonal structure and the condition number of
the Schwarz operator behaves like O(log p3).

Finally, the h version for (2) with piecewise linear, continuous trial functions is
considered on a sequence of uniform, triangular meshes. Here, the multigrid algo-
rithm (V cycle with one Jacobi smoother per level) has bounded condition number.
On the other hand the condition number of the multilevel additive Schwarz oper-
ator grows logarithmically in h−1 with the mesh size h of the finest level.
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A spectral method for integral formulations of potential and
high-frequency scattering problems

Johannes Tausch

A variety of methods exist to handle dense matrix problems that arise in the
boundary element method. For Green’s functions with 1/r behavior, which are
typical in potential or elasticity theory, the Fast Multipole Method, Panel clus-
tering and Wavelets have been shown to be asymptotically optimal. That is, the
complexity of a matrix-vector multiplication is order N while the convergence rate
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of the discretization scheme is preserved, see, e.g. [3, 2, 4]. For scattering prob-
lems, the size of the scatterer, measured in wavelengths, is an additional factor
that influences the computational cost and accuracy.

This talk discusses a different approach, which is based on fast Fourier trans-
forms and is thus more close to the previous work of Phillips and White [1].
However, in this work we will approximate the Green’s function by a truncated
Fourier series, which considerably simplifies the treatment of the nearfield. Fur-
thermore, the convergence of the method can be improved with a decomposition
of the Greens function into a local and a smooth part.
Fast computation of the potential. Consider the layer potential

(1) (Kg)(x) :=

∫

S

G(x− y)g(y) dSy, x ∈ S

where the Green’s function G depends only on the difference of the field point x
and the source point y. We assume the problem is scaled that the surface S is
contained in the unit cube [0, 1]3. In the case that the Green’s function is well
approximated by the truncated Fourier series GN

GN (r) :=
∑

|k|≤N

Ĝk exp(πik · r)

the approximate potential is

(2) φN (x) =

∫

S

GN (x − y)g(y)dSy =
∑

|k|<N

exp(πikTx)d̂k

where d̂k = Ĝkĝk and

(3) ĝk =

∫

S

exp(−πikT y)g(y)dSy.

Thus the potential evaluation using the Fourier series consists of three stages

(1) Compute the Fourier coefficients ĝk in (3).

(2) Multiply d̂k := Ĝkĝk.
(3) Evaluate the Fourier series (2).

Stage 2 obviously involves O(N3) operations, the other two stages can be per-
formed rapidly using Fast Fourier Transforms. For brevity we discuss Stage 1 only
as Stage 3 can be treated in an analogous manner.

To compute the ĝk’s efficiently, divide the unit cube in an axiparallel mesh of
sidelength 1/N and let Sl be the piece of the surface that intersects with the lth
subcube. Then the Fourier coefficients of g can be written as

ĝk =
∑

l

exp

(−πikT l

N

)∫

Sl

exp
(
− πikT (y − xl)

)
g(y) dSy,

where xl is the center of the lth subcube. To approximate the integrand, replace
in each term the exponential function by a truncated Taylor series of order p, this
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gives

ĝk ≈
∑

|α|≤p

(−πik)α
∑

l

exp

(−πikT l

N

)∫

Sl

(y − xl)
α

α!
g(y) dSy,

where α ∈ N3 is a multi-index. The last integrals are the moments of g. In matrix
form, the (approximate) coefficient vector ĝ is given by

(4) ĝ =
∑

|α|≤p

KαF mα,

where mα is the vector of moments of g and Kα is a diagonal matrix with the
factors (−πik)α. Thus the computation of ĝ involves O(p3) FFTs. Since Cl is
smaller than a wavelength of the highest Fourier mode, it suffices to use a small
value of p.
Improving the convergence of the Fourier Series. When the kernel in (1) is the
Green’s function of an elliptic PDE then the Fourier series approximation converges
slowly because of the singularity at r = 0. In this case convergence can be improved
by decomposing the Green’s function into a local and a smooth part. To that
end, consider the Green’s function associated with the Laplacian, whose Fourier
transform can be written as

1

|ξ|2
=

∫ ∞

0

exp(− |ξ|2 t) dt =

∫ δ

0

exp(− |ξ|2 t) dt+

∫ ∞

δ

exp(− |ξ|2 t) dt

for some δ > 0. The first term is the local, the second term is the smooth part.
Both parts have closed forms in physical space, for instance, the smooth part is

GS
δ (r) =

1

4π |r|erf
( |r|

2
√
δ

)

For this kernel the FFT-based method can be employed. The remaining local part
can be evaluated by Taylor series expansions. As it can be shown that

(KL
δ g)(x) :=

∫

S

GL
δ (x− y)g(y) dSy =

√
δg(x) +O(δ3/2).

the approximate evaluation of this potential reduces to a diagonal operation.
The talk will discuss choices of the parameters δ and N that will lead to asymp-

totically optimal schemes and present numerical results obtained with BEM for-
mulations of the Laplace and high frequency Helmholtz equation.
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Matrix approximations and solvers using tensor products and
non-standard wavelet transforms related to irregular grids

Eugene Tyrtyshnikov

(joint work with Ivan Oseledets)

Let R(X) be considered as an approximation of X . Assume that R(X) is a
nonlinear Lipschitz operator on n× n matrices such that

||(X −R(X)) − (Y −R(Y ))|| ≤M ||X − Y ||.
On iteration k, the Newton method transforms Xk−1 = R(Zk−1) to a new guess
Xk = R(Zk) (for some Zk−1 and Zk):

Zk = 2Xk−1 −Xk−1AXk−1, Xk = R(Zk) (∗)
Theorem. Assume that R(A−1) = A−1. Then for any initial guess X0 =

R(X0) sufficiently close to A−1, the matrices Xk in (∗) converge to A−1 quadrat-

ically:

||A−1 −Xk|| ≤ (1 +M) ||A|| ||A−1 −Xk−1||2, k = 1, 2, . . . .

Consider an important example of R(x). Let || · || be any unitary invariant norm
(spectral, Frobenius, etc.) and Πr(A) the best r-rank approximation:

ρr+1(A) ≡ ||A− Πr(A)|| = min
rankB ≤r

||A−B||.

Let L be a linear invertible operator on n× n matrices. Fix some r and define

R(A) = L−1(Πr(L(A))).

The Lipschitz property of R is proved as follows:

||R(X) −R(Y )|| ≤ ||L−1|| ||Πr(LX) − Πr(LY )|| ≤ ||L−1|| ||L|| ||X − Y ||.
Low-tensor-rank approximations fit this framework:

A = [akm
ij ], 1 ≤ i, j, k,m ≤ p. ⇒ L(A) = [bkm

ij ], bkm
ij = ajm

ik .

Tensor rank of A coincides with rank of L(A) (Van Loan - Pitsianis).
Remarkable generalizations of Toeplitz (Hankel, Cauchy, etc.) matrices are all

related with low rank of L(A) = AU −V A for special matrices U, V . Our theorem
generalizes a result obtained for this particular case of L(A) by V. Y. Pani and Y.
Rami.

Dense large-scale matrices coming from integral equations and tensor-product
grids can be approximated by a sum of Kronecker products with further spar-
sification of the factors via discrete wavelet transforms, which results in reduced
storage and computational costs [3,5,6] and also in good preconditioners in the case
of uniform one-dimensional grids [1]. However, irregular grids lead to a loss of ap-
proximation quality and, more significantly, to a severe deterioration in efficiency
of the preconditioners that have been considered previously (using a sparsification
of the inverse to one Kronecker product or an incomplete factorization approach).
We propose to use non-standard wavelet transforms related to the irregular grids
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involved and we show, using numerical examples, that the new transforms pro-
vide better compression than the Daubechies wavelets [2]. A further innovation
is a scaled two-level circulant preconditioner that performs well on irregular grids
[2]. Also, we have encouraging results concerning a truncation algorithm for ap-
proximation of the inverse matrices of low Kronecker rank [4]. Our proposed
approximation and preconditioning techniques have been applied to a hypersingu-
lar integral equation modelling flow around a thin aerofoil, and make it possible
to solve linear systems with more than 1 million unknowns in 5-10 minutes even
on a personal computer [2,4].
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On J. Radon’s convergence proof of Neumann’s method with double
layer potentials

Wolfgang L. Wendland

This lecture with the same title was also given at the Geomathematics Ober-
wolfach Conference.

C.F. Gauss proposed for the construction of the solution u to the Dirichlet
problem of the Laplacian with given boundary values ϕ the use of a double layer
potential

u(x) = − 1

4π

∫

Γ

µ(y)dΩx(y) for x ∈ Ω

which leads with the jump relation to C. Neumann’s boundary integral equation

µ = Lµ+ ϕ

for the boundary double layer charge µ, where

(Lµ)(x) = − 1

4π

∫

Γ

(µ(y) − µ(x))dΩx(y) for x ∈ Γ
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is the regularized double layer potential operator. Here Ωx(E) is the solid angle
from x for measurable E ⊆ Γ, a signed Radon measure and an absolutely con-
tinuous set function introduced by J. Radon in [18, 19]. For piecewise smooth Γ
including corners and edges, here a review is given on Radon’s treatment of the
boundary integral equation and on the extensions by V. Maz’ya, J. Kral, D. Med-
kova and O. Jansen if the equation is considered on the Banach space of continuous
functions µ on Γ. For the corresponding two-dimensional problem, J. Radon in
his famous papers defined closed boundary curves of bounded rotation and showed
that for such curves without sharp cusps, the essential norm of L generated by the
supremum norm is less than 1, he also showed the relation between eigenvalues
of L and exterior and interior Dirichlet integrals of the eigensolution potentials,
which implies that the spectral radius of L is less than 1. Hence, Neumann’s clas-
sical successive approximation can be applied for solving the boundary integral
equation iteratively. In three dimensions, however, the corresponding results are
by no means complete yet. Here J. Kral and D. Medkova have introduced the
family of weighted supremum norms

‖µ‖C0
w(Γ) := sup

x∈Γ
|w(x)µ(x)|

with a strictly positive, bounded weight function w(x) in order to generalize results
by V. Maz’ya [11], J. Kral [9] and the author [23] for Γ ∈ R

3. As it turns out, it
can be proved that the essential spectral radius satisfies ress(L) < 1 for piecewise
smooth Γ in the following cases:

With w ≡ 1 for convex Γ [15, 16], for C1+α-smooth (also nonconvex) Γ [17], if
Γ has edges with nonvanishing opening angle but no corners [4]; if Γ has corners

and edges such that lim
δ→0+

{
sup
x∈Γ

1
4π

∫

0<|x−y|≤δ

|dΩx(y)|
}
< 1

2 holds [2, 3, 8, 9, 23]

and if Γ has isolated conical points [6]. If Γ is a so-called rectangular surface then
a sectorially constant weight function w is constructed in [1, 10]. For general poly-
hedral boundary, however, the existence of w was shown in [20, 21] but the proof is
not constructive. On the other hand, O. Hansen constructs a sectorially constant
function w near a polyhedral corner under additional conditions on the edge angles
[7]. With his construction, a rather large class of polyhedrons become admissible
whereas for a general polyhedron, the construction of a piecewise constant weight
function is still not known. D. Medkova showed in [12, 13] the invariance of ress(L)
under R

3 diffeomorphisms which are conformal at the corner point.

In all these cases the Fredholm alternative is valid for the boundary integral
equation of the second kind, also for piecewise constant trial functions on a trian-
gulation of Γ which is compatible with the weight function w. Moreover, stability
and convergence of the classical collocation (or panel) method can be proved [10].

If boundary element Galerkin methods in the L2(Γ) setting are used, then only
for convex polyhedrons and for polyhedrons satisfying specific edge conditions,
the spectral radius generated by the L2 norm is known to be less than 1 [5, 14],
whereas for general polyhedrons the corresponding result again is yet not known.
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If, however, the boundary integral equation is considered on the trace space
H

1

2 (Γ) and is treated with an appropriate Galerkin-Petrov method, then an ap-

propriate norm of L on H
1

2 (Γ) is less than 1 and Neumann’s classical successive
approximation converges for the corresponding Petrov-Galerkin equations. More-
over, the method is stable and convergent [22]. These properties are of great
value for practical computations and some corresponding results from industrial
applications are presented.
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[4] T. Carleman: Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken.
Inaugural-Dissertation. Uppsala 1916.

[5] E. Fabes, M. Sand, J.K. Seo: The spectral radius of the classical layer potentials on convex
domains. In: Proc. IMA Conference Chicago 1990; Springer-Verlag, New York. IMA Vol.

Math. Appl. 142 (1992) 129-137.
[6] N.V. Grachev and V.G. Maz’ya: On the Fredholm radius for operators of the double layer

potential type on piecewise smooth boundaries. Vestn. Leningrad. Univ. 19 (1986) 60-64.
[7] O. Hansen: On the essential norm of the double layer potential on polyhedral domains and

the stability of the collocation method. J. Integral Equations Appl. 13 (2001) 207-235.
[8] J. Kral: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966)

511-547.
[9] J. Kral: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823 Springer-

Verlag, Berlin 1980.
[10] J. Kral and W.L. Wendland: On the applicability of the Fredholm-Radon method in poten-

tial theory and the panel method. In: Panel Methods in Fluid Mechanics with Emphasis in
Aerodynamics (J. Ballmann et al. eds.) Notes on Numerical Fluid Mechanics Vieweg-Verlag
21 (1988) 120-136.

[11] V.G. Maz’ya: Boundary integral equations. In: Encyclopaedia of Mathematical Sciences 27,
Analysis IV (V.G. Maz’ya, S.M. Nikoloski eds.) Springer-Verlag Berlin (1991) 127-222.
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Winterthurerstr. 190
CH-8057 Zürich
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