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Introduction by the Organisers

The Wavelet and Multiscale Methods workshop, organized by Albert Cohen
(Paris), Wolfgang Dahmen (Aachen), Ronald A. DeVore (Columbia) and Angela
Kunoth (Bonn) was held July 11–17, 2004. A central objective was to bring to-
gether leading researchers working in a variety of different areas where multiscale
phenomena play an intrinsic role regarding the theoretical understanding of the
problems as well as the numerical solution concepts. This meeting was well at-
tended with over 45 participants with a broad geographic representation from all
continents. With only very few exceptions, the most prominent representers of the
respective fields participated in the workshop.

The main link being multiscale concepts, the overall audience was certainly less
homogeneous than in most other workshops. In order to provide a solid ground for
discussions and synergies, thirteen of the twenty six talks were longer survey–style
lectures by leading experts who had been contacted by the organizers prior to the
meeting. The following topics were addressed in the survey–type lectures:

• Adaptive and multiscale methods for integral equations and PDEs;
• problems of high spatial dimension;
• quasi-sparse representation of global operators and hierarchical matrices;
• nonlinear multiresolution techniques and new libraries for image analysis

and compression;
• highly localized multiscale representations on the sphere;
• multiscale approaches for inverse problems;
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• mathematical learning theory and statistics.

Several adaptive wavelet schemes for fluid flow problems were presented with
varying emphasis on analysis and numerical realization. This included combi-
nations of statistical and multiresolution concepts for understanding turbulence.
Such approaches were complemented by a “two-scale” point of view where the
concept of “residual free bubbles” allows one to model the influence of unresolved
scales to the resolved ones, initiating vivid discussions about a possible combi-
nation of these approaches. From the perspective of nonlinear approximation,
best N -term approximation in corresponding anisotropic function spaces was dis-
cussed, which is another important component in adaptive solution concepts in
this context.

Another focal point was the quasi–sparse or data–sparse representation of global
operators, for instance, via wavelet bases or through concepts like hierarchical ma-
trices. On one hand, this was shown to lead to new shape–optimization techniques
as well as to significant advancements of adaptive wavelet methods for boundary
integral equations. On the other hand, hierarchical matrix concepts were seen to
make extremely high dimensional problems of a certain separable structure nu-
merically tractable. In fact, problems of high spatial dimension were treated in
the context of quantum chemistry centering upon the solution of the Schrödinger
equation for many particles as one of the grand challenges of the future. Here
compression and sparse grid techniques were again complemented by theoretical
investigations of the regularity of eigensolutions which provides the foundation of
the potential success of such numerical methods.

Anisotropy is also a key issue in modern image compression techniques. The
“wedgelet” concept was presented as a way of extending approximation libraries
in combination with image encoding and model selection techniques.

Moreover, the meeting adequately reflected through several talks some very re-
cent advances in the currently highly active area of Mathematical Learning Theory,
where new synergies between approximation theory and statistics are just emerg-
ing. In particular, wavelet techniques have now led to new universal estimators in
a model free regression context where the universality could be achieved through
nonlinear approximation concepts.

Regarding the inhomogeneity of the participants’ research fields, in order to
maintain a high level of attendance and interest throughout the meeting, the top-
ics of the lectures were deliberately mixed. This created a very open atmosphere
and essentially all talks were followed by extensive discussions revealing a num-
ber of unforeseen connections between seemingly different subjects. The reaction
of the participants during the meeting clearly indicated that the combination of
different areas was very well perceived as a source of new ideas and perspectives.
New collaborations were initiated and already existing cooperations partly across
disciplines were pursued on a visibly intense level.

MSC Classification:
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Abstracts

Approximation and Compression of Piecewise Smooth
Multidimensional Functions

Richard G. Baraniuk

(joint work with Michael Wakin, Justin Romberg, Hyeokho Choi, Venkat
Chandrasekaran, and Dror Baron)

Efficient representations for discontinuities in data are important for many sig-
nal processing applications, but standard Fourier and wavelet representations fail
to efficiently capture the structure of the discontinuities. In this talk, we dis-
cuss three new frameworks for approximating and compressing piecewise smooth
multidimensional functions that aim to overcome the drawbacks of traditional
representations.

First, for piecewise constant multidimensional functions we discuss geometric
tilings. Unlike additive wavelet-based techniques, tilings use exactly one atom at
each location in the function. In two dimensions (2D), wedgelets provide piecewise
linear approximations to edges (and perform optimally for C2 edges) [1]. In higher
dimensions, we introduce surflets, which provide piecewise polynomial approxima-
tions to arbitrary CK discontinuities [2]. We have developed multiscale statistical
models for these tilings and compression algorithms with optimal rate-distortion
performance.

Second, for piecewise smooth 2D images we discuss a wavelet-domain modeling
framework motivated by the geometric tilings above. The work can be interpreted
in two different ways: 1) as an extension to the “zerotree model” for wavelet
coefficients that explicitly accounts for edge structure at fine scales, and 2) as a
novel atomic representation that synthesizes images using a sparse combination
of wavelets and wedgeprints — anisotropic atoms that are well-suited to edge
singularities. Using this framework, we develop a prototype image coder that
has near-optimal rate-distortion performance D(R) ∼ (logR/R)2 for piecewise
smooth images containing smooth C2 regions separated by edges along smooth C2

contours [3]. We also discuss generalizations of wedgeprints to higher dimensions
and higher-order polynomials.

Third, we generalize the complex wavelet transform to higher dimensions using a
multidimensional Hilbert transform. The resulting hypercomplex wavelet transform
(HWT) is a flexible building block for constructing new classes of nearly shift-
invariant wavelet frames that are oriented along lower-dimensional subspaces [4,
5]. The HWT can be computed efficiently using a 1D dual-tree complex wavelet
transform along each signal axis. We demonstrate experimentally how the HWT
can be used for fast detection of straight lines in 3-D.
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Wavelet and Schur Complement Based Eigenvalue Elimination

Luise Blank

In many well posed problems properly scaled wavelet discretization can keep
the condition numbers of the arising stiffness matrices bounded independently of
the refinement level. In spite of the asymptotical assertion of convergence of the
solution process, there may be still several outliers of eigenvalues which reduce
drastically the convergence speed or even prohibit the application of an iterative
solver. The purpose of this talk is to present a Schur complement method for
the elimination of these eigenvalues for symmetric problems. In this context the
Schur complement falls into the class of deflation methods. Deflation methods
using invariant subspaces have been used in several ways and applications [4, 5, 6,
7, 8]. In general, the Schur complement does not employ an invariant subspace.
However, it may use a subspace which contains an invariant subspace. Then,
roughly speaking, the corresponding eigenvalues are eliminated [2]. Moreover, in
practice an additional clustering of eigenvalues appears, much in favour for the
application of iterative solvers.

The question arises, how to choose the relevant subspace which has to be very
coarse to guarantee efficiency. This choice of the relevant subspace for the Schur
complement is heavily based on wavelet discretization which connects the infinite
dimensional problem with the arising sequence of discretized subproblems. Addi-
tionally, a priori knowledge of the eigenspace of the original problem is employed.
Knowing the eigenfunctions corresponding to the smallest eigenvalues of the orig-
inal problem, the compressed wavelet decomposition provides a coarse problem
adapted subspace. One expects that this space also captures good approximations
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of the eigenvectors corresponding to the smallest eigenvalues of the discretized sys-
tems, which are restricted to a finite dimensional subset of wavelets. Then, for the
whole hierarchy of systems the Schur complement with respect to this coarse fixed
subspace may give rise to well-conditioned systems. The way to choose a good
subspace is, although theoretically motivated, still heuristic, and hence further
analysis and investigations are necessary.

Despite that, the potential of this method is presented with some numerical
results for an optimization problem arising in chemical engineering where on-line
restriction leads to the application of a multiscale refinement approach. Using
properly scaled wavelets the condition number can be bounded independently of
the refinement level [1]. However, the in modulo smallest eigenvalues are still close
to zero due to inherent features of the estimation problem, i.e., the original ill-
posedness, the low measure of observability, and the large spectrum of the system
matrices of the involved differential equations [3]. Guided by the eigenfunction cor-
responding to the smallest eigenvalues of the original problem for one state only
[3], we choose the coarse subspace. In one example based on a simple model for a
chemical process producing ethylene glycol, we were faced with condition numbers
around 1e+20 for mesh size 2−7. Scaling of the states and a choice of the regular-
ization parameter in favour for the condition number leads roughly to 5.e+13 and
wavelet preconditioning to 2e+9. However, the application of the above sketched
Schur complement yields a condition number of 280 and provides additionally an
eigenvalues distribution much in favour of the cg-method [2]. Such behaviour has
been observed also in other numerical examples. Hence, for our application in state
estimation, where we are typically faced with very large condition numbers, only
the application of the Schur complement technique as a preconditioner enabled us
to apply an iterative method in a successful way, providing high estimation quality
with low computational cost.
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Bernstein Polynomials and Learning Theory

Dietrich Braess

(joint work with Thomas Sauer)

The point of departure is an encoding problem. We want to encode a (long) text
such that the code length is minimized. The length of the codes for the symbols
(letters) of the alphabet will be different; in particular, short codes are chosen for
the letters that occur frequently. When the encoding is fixed, only a sample of n
letters (from the beginning of the text) is known. It is the goal to determine the
best code and the asymptotics of the loss that results from the sampling error.

The relative frequency of the symbols in the sample is given by the Binomial
distribution. Therefore the Bernstein polynomials of the entropy function

(1) f(x) := −x logx− (1 − x) log(1 − x)

enter into the expression for the expectation value of the loss. Unfortunately, the
entropy function belongs to a class of functions for which the determination of the
error function is considered a hard problem.

The encoding problem is as follows: The symbols A0, A1, . . . , Am of an alphabet
with m+1 letters are to be encoded. It is possible to have a code with length log 1

qi

for the letter Ai if the numbers qi satisfy
∑m

i=0 qi = 1. If the symbol Ai is found
with the probability pi, the expectation value of the code length is

∑m
i=0 pi log 1

qi
.

The minimum of this expression is attained if qi = pi for all i. If the lengths
qi differ from the optimal values, there is a redundancy, i.e. a difference to the
minimum of

m∑

i=0

pi log
pi

qi
.

We restrict our attention to the special case m = 1. Here the loss function
above may be rewritten as

(2) LKL(p, q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
,

if we write p1 = p, p0 = 1 − p, q1 = q, and q0 = 1 − q. Usually LKL is called the
Kullback–Leibler distance.

The probability p is unknown, but we assume to have a sample with n letters.
The encoding will be performed on the base of the information, how often the
symbol A1 is contained in the sample. Due to Bernoulli, the probability for finding
it k times in the sample is

(
n
k

)
(1 − p)n−kpk = Bn

k (p) where Bn
k is a Bernstein

polynomial. Now, an appropriate rule k 7→ Q(k), 0 ≤ k ≤ n, is to be found for
the encoding procedure. If the sample contains the symbol A1 exactly k times,
the encoding for the parameter qk = Q(k) will be chosen. The expectation value
of the redundancy is

(3) Fn(p) =

n∑

k=0

Bn
k (p)LKL(p, qk).
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The following problem arises: Find numbers qk ∈ (0, 1), k = 0, 1, . . . , n, such that
the worst case redundancy

sup
0≤p≤1

Fn(p)

is minimized.
It was known that the minimax is asymptotically between 0.5/n and 0.50922/n;

cf. [BFSS, Kr]. We showed by an analysis of the Bernstein polynomials that the
lower bound is the right one:

(4) inf
q

sup
0≤p≤1

Fn(p) =
1

2n
+ o(n−1).

More generally, if the alphabet has m+ 1 symbols, then the functions are defined
on an m-dimensional simplex and the asymptotics is given by m

2n ; cf. [BS].
There are other loss functions for which the minimax problem has been often

studied [Fe, Le], namely the quadratic loss Lqu and the standardized quadratic
loss Lsq:

Lqu(p, q) := (p− q)2, Lsq(p, q) :=
(p− q)2

p(1 − p)
.

The expressions with Bernstein polynomials analogous to (3) are more easily
treated. Typically the optimal estimators belong to the class of add-β rules

qk =
k + β

n+ 2β
.

with appropriate β. This is also true for the Kullback-Leibler distance apart from
fact that there are exceptional rules for the estimators for the boundary values.
The add-β rules also show that the estimator qk which can be understood as an
estimator of the probability p does not always coincide with the observed relative
frequency k/n.

The question whether a priori information on the probability p reduces the
asymptotical behavior of the loss was recently studied [BD]. Assume that we know
that p ∈ [a, b] with 0 ≤ a < b ≤ 1. It turned out that this does not diminish the
asymptotic loss for Lsq and LKL. The same is true for Lqu, however, only if
a ≤ 1/2 ≤ b.

Now we turn to the Bernstein polynomial of the entropy function (1). It is
of interest for determining the loss since the loss (3) is a polynomial minus the
error of the approximation of f by its Bernstein polynomial. From Voronovskaja’s
famous theorem [Lo] it is known that

lim
n→∞

n(f −Bn[f ])(x) = 1/2 for 0 < x < 1,

but the convergence cannot be uniform since (f −Bn[f ])(0) = (f −Bn[f ])(1) = 0
for all n. We use the monotonicity of the mapping f 7→ Bn[f ], the nonpositivity
of f (6) and Taylor’s polynomial of degree 5 to establish

f(x) −Bn[f ](x) ≥ 1

2n
+

1

20n2x(1 − x)
− 1

12n2
for 15n−1 ≤ x ≤ 1 − 15n−1
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and

f(x) −Bn[f ](x) ≤ 1

2n
+
c(a, b)

n2
for a ≤ x ≤ b,

if 0 < a < b < 1; see [BS]. The region next to the boundary points is delt by the
transformation x = z/n. The limit

lim
n→∞

n(f −Bn[f ])(
z

n
) = −z log z + ze−z

∞∑

k=1

zk

k!
k log k

is determined numerically, and the numerical results are sufficient to complete
the proof of (4). The limit above is the error of the approximation by the Szász
operator. It can be understood from the connection of the Szász operators with
the Poisson distribution.
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A Total Curvature Diminishing Property for P1 Finite Element
Interpolation

Martin Campos Pinto

1. Introduction

We consider here a surface f ∈W 2,1(Ω,R) and define its total curvature by the
semi-norm

(1) |f |W 2,1 := ‖∂2
xxf‖L1 + ‖∂2

xyf‖L1 + ‖∂2
yyf‖L1.

We shall assume for convenience that Ω is a polygonal subset of R
2, so that we may

consider a triangulation T on it, and denote by PT the associated P1 finite element
interpolation which maps f to fT . We know from the continuous embedding of
W 2,1 into L∞ that f is continuous, so that PT is well defined on W 2,1.

What we are interested in is the alteration of the curvature. Of course, fT
is not in W 2,1 anymore: its first derivatives DfT = (∂x, ∂y)fT are a piecewise
constant vector field, and its second derivatives D2fT = (∂2

xx, ∂
2
xx, ∂

2
xx)fT are
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Radon (Dirac) measures, but |fT |W 2,1 still makes sense if we consider the total
mass

∫
|D2fT | (in analogy with BV functions). It is not difficult, then, to see that

the interpolation is stable, in the sense that there exists a constant C(T ) that
depends on the triangulation, such that

(2) |fT |W 2,1 ≤ C(T )|f |W 2,1 .

Our aim is to prove that this holds with C(T ) = 1, which is equivalent to saying
that fT has the minimal curvature among all interpolants of f . The motivation for
such a result lies in the study of semi-Lagrangian schemes for the Vlasov equation,
where the solution at each time step is first advected along the caracteristic curves,
and then interpolated on some finite element space (see for instance [1]). In order
to save computational time and memory space, these schemes have recently been
performed on adaptive meshes (see [2], [5], [6], and [3], [4] for general introductions
to the use of adaptive methods in numerical analysis). Using classical estimates
like

(3) ‖f − fT ‖L∞ ≤ C sup
T∈T

|f |W 2,1(T ),

we see that a possible “local indicator” for balancing the L∞ error is precisely the
local curvature, and that it is a crucial issue, for estimating the size of the adaptive
mesh, to bound the time evolution of the total curvature of the solutions. From
this point of view, we see that stability (2) is not sufficient, since the number of
time steps (and hence the number of interpolations) has no reason to be bounded,
even for a given time range [0, t∗].

2. Discrete curvatures

It is not true, however, that the curvature defined by (1) is decreased by the
interpolation, as we may see from the following example, but we can prove that
a diminishing property holds for an equivalent semi-norm. Indeed, consider for
ε > 0 the four points

(4) aε = (−ε, 0), b = (0, 0), cε = (ε, 1), d = (0, 1),

and let Tε be made of the two triangles Aε = (aε, bε, d) and Bε = (b, cε, d) on Ωε =
Aε ∪ Bε. Since the Dirac measure D2fTε is concentrated on the edge γ := [b, d],
letting ε tend to zero does not change |fTε |W 2,1(Ωε), while |f |W 2,1(Ωε) goes to zero.
In fact, this example shows that a curvature measure cannot be diminished by the
interpolation unless it depends on the triangulation.

We therefore define the following quantity that “simulates” |fT |W 2,1 at the
discrete level:

(5) |fT |⋆,0 :=
∑

γ∈E

|γ| ‖[DfT ]γ‖

where [·]γ and ‖·‖ denote respectively a jump over γ and the euclidian norm of R
2.

The idea now is to define a continuous semi-norm by iterative refinements, and
establish a diminishing property between two consecutive levels. For any integer
j, we let then Tj be the j-th structured refinement of T , in the sense that at
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each level, each triangle is divided into 4 similar triangles. Using Tj we define the
following refined discrete curvature

(6) |f |⋆,j := |fTj |⋆,0

and this allows to define a limit curvature, as we have the
Lemma 1. (The limit curvature) For any f ∈ W 2,1 and T , the limit

(7) |f |⋆ := lim
j→∞

|f |⋆,j

defines a semi-norm, and there are two constants A(T ) and B(T ) such that

(8) A(T ) |fT |W 2,1 ≤ |f |⋆ ≤ B(T ) |fT |W 2,1 .

The reason why this limit curvature is the right one is given by the next lemma:
Lemma 2. For any continuous f , the refined curvatures do satisfy

(9) |f |⋆,j ≤ |f |⋆,j+1

for any j ≥ 0.
These two lemmas are in fact very easy to prove, as we shall see below (in the

case where T is simply derived from a cartesian mesh). They together lead to the
Theorem 1. For any triangulation T , there is a semi-norm | · |⋆ which is

equivalent to | · |W 2,1 (with constants that depend on T ), for which the piecewise
affine interpolation fT of any f ∈W 2,1 satisfies

(10) |fT |⋆ ≤ |f |⋆
and we have in addition

(11) |fT |⋆ =
∑

γ∈E

|γ| ‖[DfT ]γ‖.

3. A sketch of proof

If the triangulation is made of half squares, there are only three types of edges.
Considering one of them by setting ε = 1 in the previous example (4) (and dropping
this index), we first compute

(12) |γ| ‖[DfT ]γ‖ = |f(a) + f(c) − f(b) − f(d)|,
while on the second hand we have

(13) f(c) − f(d) − f(b) + f(a) =

∫∫

A∪B

∂2
xyf + ∂2

xxf.

By doing so for the two other edges, we first verify that

(14) |f |⋆,j → ‖∂2
xyf + ∂2

xxf‖L1 + ‖∂2
xyf + ∂2

yyf‖L1 + 2‖∂2
xyf‖L1

as j tends to infinity, therefore we have

(15) 2/3 |f |W 2,1 ≤ |f |⋆ ≤ 4|f |W 2,1
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which completes the proof of the first lemma. To prove the second lemma, we
introduce the following midpoints:

(16) k = m(a, b), l = m(b, c), m = m(c, d), n = m(d, a), o = m(b, d),

and denote γ1 := [k, n], γ2 := [b, o], γ3 := [o, d] and γ4 := [l,m]: from (12), we
have then

|γ| ‖[DfT ]γ‖ = |f(a) + f(c) − f(b) − f(d)|
≤ |f(a) + f(o) − f(k) − f(n)| + |f(k) + f(l) − f(b) − f(o)|

+ |f(n) + f(m) − f(o) − f(d)| + |f(o) + f(c) − f(l) − f(m)|
=

∑4
i=1 |γi| ‖[DfT ]γi‖,

and doing so for the other two types of edges and summing over all the pairs of
triangles completes the proof of the second lemma.
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Robust Uncertainty Principles: Exact Signal Reconstruction from
Highly Incomplete Frequency Information

Emmanuel J. Candes

(joint work with J. Romberg and T. Tao)

In many applications of practical interest, we often wish to reconstruct an object
(a discrete signal, a discrete image, etc.) from incomplete Fourier samples. In a

discrete setting, we may pose the problem as follows; let f̂ be the Fourier transform
of a discrete object f(t), t ∈ Z

d
N := {0, 1, . . . , N − 1}d,

f̂(k) =
∑

t∈Z
d
N

f(t)e−i2πk·t/N .

The problem is then to recover f from partial frequency information, namely, from

f̂(k), where k = (k1, . . . , kd) belongs to some set Ω of cardinality less thanNd—the
size of the discrete object.

Is it possible to reconstruct f from the partial knowledge of its Fourier coeffi-
cients on the set Ω? Common wisdom says that this is actually impossible since
one has far fewer equations than unknowns. This talk, however, will explain a
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surprising phenomenon which says exact recovery is actually possible under cer-
tain sparsity conditions. The recovery consists of solving a convex optimization
problem.

It might be best to illustrate the theory with an example. Suppose we wish

to reconstruct a 2-dimensional image f(t1, t2) from samples f̂ |Ω of its discrete
Fourier transform on a star-shaped domain Ω (this type of acquisition geometry
arises frequently in medical applications such as Computed Tomography (CT) or
MRI angiography). To recover f from partial Fourier samples, we find a solution
f ♯ to the optimization problem

(1) min ‖g‖BV subject to ĝ(k) = f̂(k) for all k ∈ Ω.

In a nutshell, given partial observation f̂Ω, we seek a solution f ♯ with minimum
complexity—here Total Variation (TV)—and whose ’visible’ coefficients match
those of the unknown object f .

In typical numerical experiments mimicking current or future medical devices,
one gathers 512 samples along each of 22 radial lines (that is, we only acquire
about 4% of all Fourier coefficients). When we use (1) for the recovery problem
with the popular Logan-Shepp phantom as a test image, the results are surprising.
The reconstruction is exact; that is f ♯ = f ! In fact, there is nothing special about
the Logan-Shepp phantom; indeed, we performed a series of experiments of this
type and obtained perfect reconstruction on many similar test phantoms.

This talk develops a quantitative understanding of this remarkable phenomenon
and a typical result is as follows: suppose f is a one dimensional signal obeying

|T | = #{t, f(t− 1) 6= f(t)} = O(|Ω|/ logN)

then for nearly all sets Ω (of cardinality |Ω|), f can be reconstructed exactly as
the solution to the ℓ1 minimization problem

‖g‖BV = min
g

N−1∑

t=0

|g(t) − g(t− 1)|, s.t. ĝ(k) = f̂(k) for all k ∈ Ω.

Except for the logarithmic factor, the condition on the size of the support is sharp.
The methodology extends to a variety of other setups and higher dimensions.

For example, we show how one can reconstruct a sparse signal (here a sparse
signal is understood as being made out of relatively few spikes in one or two or
higher-dimensions) from incomplete frequency samples—provided that the number
of spikes obeys the condition above—by minimizing other convex functionals such
as the ℓ1-norm of f

‖g‖ℓ1 min
g

N−1∑

t=0

|g(t)|.

Finally, we show that similar exact reconstruction phenomena hold for other
synthesis/measurement pairs. Suppose one is given a pair of of bases (B1, B2) and
randomly selected coefficients of an object f in one basis, say B2. Then, f can be
recovered exactly provided that it may be synthesized as a sparse superposition
of elements in B1. The relationship between the number of nonzero terms in B1
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and the number of observed coefficients depends upon the incoherence between
the two bases. The more incoherent, the fewer coefficients needed.

We conclude by pointing out that underlying our analysis are two results which
might be of independent interest:

• First, we develop a new notion of uncertainty principle holding for almost
any pair (T,Ω) which says that it is impossible to design a signal f with

T = supp(f) and Ω = supp(f̂) unless

|T | + |Ω| ≍ O(N/ logN).

• And second, our results establish—with overwhelming probability—exact
equivalence between a combinatorial and a convex optimization problem.
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Universal Algorithms for Learning Theory

Albert Cohen

(joint work with P. Binev, W. Dahmen, R. DeVore, and V. Temlyakov)

We shall present the construction and analysis of a universal estimator for the
mathematical problem of supervised learning. In this problem, we observe the data
z = (z1, . . . , zm) ⊂ X × Y of m independent random observations zi = (xi, yi),
i = 1, . . . ,m, identically distributed according to a probability ρ on a product space
X × Y . We are interested in estimating the regression function fρ(x) defined as
the conditional expectation of the random variable y at x:

fρ(x) :=

∫

Y

ydρ(y|x)

with ρ(y|x) the conditional probability measure with respect to x. The estimator
fz is assessed by the measure of the error ‖fρ − fz‖ in the L2(X, ρX) metric with
ρX the marginal probability which is unknown. This type of problem is refered to
as distribution-free, see [3] for a general introduction.

Universal means that the estimator does not depend on any a priori assumptions
about the regression function to be estimated. Our universal estimator, introduced
in [1], consists of a least-square fitting procedure using piecewise constant

functions on a partition which depends adaptively on the data. The partition is
generated by a splitting procedure which somehow differs from those used in CART
algorithms [2] in the sense that it is based on thresholding empirical quantities
which play the role of wavelet coefficients.
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It is proven that this estimator performs at the optimal convergence rate for a
wide class of priors on the regression function. Namely if the regression function is
in a smoothness space of order not exceeding one (a limitation resulting because the
estimator uses piecewise constants) then the estimator converges to the regression
function (in the least squares sense) with an optimal rate of convergence in terms
of the number of samples. The estimator is also numerically feasible and can be
implemented on-line.
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Convergence for AdaBoost-type Algorithms in Learning Theory

Ingrid Daubechies

(joint work with Cynthia Rudin and Rob Schapire)

Given a vast number of data points, a huge number of “hypotheses” (i.e. yes/no
questions about the data points), and a partition of the data points into two
classes, a standard “classification” problem in learning theory is to construct a
convex combination of the hypotheses that best reproduces the partition. More
precisely, given

{x1, · · · , xD} = X

h1, · · · , hH ; hi : X → {−1, 1}
y : X → {−1, 1} ,

one seeks λ ∈ R
H
+

with λ1 + · · · + λH = 1, so that λ maximizes either

• #{i ;
∑H

j=1 λjhj(xi) and y(xi) have the same sign }
(in the non-separable case, where for each λ, there exist i1 and i2 so that∑H

j=1 λjhj(xi1 )y(xi1 ) and
∑H

j=1 λjhj(xi2 )y(xi2 ) have different signs)

• mini=1,··· ,D

[(∑H
j=1 λjhj(xi)

)
y(xi)

]

(in the separable case, where there exists a λ such that for all i the expres-

sion
∑H

j=1 λjhj(xi) has the same sign as y(xi)).

Because H, D are extremely large, standard (low-dimensional) optimization tech-
niques cannot be applied effectively, and other search techniques have to be used.
Boosting algorithms are iterative methods that seek to improve successive “guess-
es” for λt by giving more weight, in the construction of λt+1, to the data points
that were misclassified by the current λt, and down-playing the data points that
were correctly classified by λt.
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The most popular boosting algorithm is AdaBoost, first proposed by Freund
and Schapire in [1]. In each iteration t, it singles out one particular j, and it
“updates” the corresponding component (λt)j to construct λt+1. In order to select

j, it finds the direction in which a “guiding function” F (λ) :=
∑D

i=1 exp[−(Mλ)i]
decreases fastest, where the D × H-matrix M is defined by Mij = hj(xi)y(xi).
More precisely, the iteration step t consists in:

jt ∈ argmaxj

(
D∑

i=1

Mij exp[−(Mλ)i]

)

rt :=

D∑

i=1

Mijt exp[−(Mλ)i]

αt :=
1

2
ln

(
1 + rt
1 − rt

)

(λt+1)jt = (λt)jt + αt

and (λt+1)j = (λt)j for j 6= jt .

Note that the λt in this iterative scheme are not normalized to 1; in fact, it is

their normalized versions λ̃t = λt[
∑H

j=1(λt)j ]
−1 that provide the desired convex

combinations of the hj . In the non-separable case the properties of AdaBoost
are well-known; in the separable case, however, it was until recently not known

whether the λ̃t produced by AdaBoost converge (they certainly seem to converge
numerically in examples), and, if they converge, whether their limit is a true
maximizer. In her Ph.D. thesis, co-advised by R. Schapire and the author, Cynthia
Rudin showed the following results:

• AdaBoost can be recast, via duality, into an iteration on

S = {(d1, · · · , dD); dI ≥ 0 for all i, and
D∑

i=1

di = 1};

• for many classifications y, this new iterative algorithm exhibits stable cy-
cles;

• when the dual iteration map on S converges to a stable cycle, AdaBoost

itself converges to a λ̃limit;
• however, there exist classifications y with a stable cycle for the dual map,

for which the corresponding λ̃limit does not achieve the desired maximiza-
tion;

• One can replace AdaBoost by a smoothened version that is equally easy to
implement, and that always converges, for all y, to a correct maximizing

λ̃. Like AdaBoost, this new algorithm selects, at every t, one index jt for
which λjt is updated, while the other components of λt are not touched.
In fact, the criterion for the selection of jt is exactly the same as listed
above for AdaBoost, but the update αt for λjt is smaller.
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• The convergence of this smoothened version of AdaBoost holds even in the
so-called “non-optimal” case, where the search for the index jt is stopped
as soon as a reasonable candidate for j has been identified, even if it is not
necessarily the best.

These results are presented in the papers [2] and [3].

References

[1] Y. Freund and R. Schapire, A decision-theoretic generalization of online learning and an
application to boosting. J. of Computer and System Sciences 55 pp. 119-139, 1997.

[2] C. Rudin, I. Daubechies and R. Schapire, The dynamics of AdaBoost: Cyclic behavior and
convergence of margins, to appear in J. of Machine Learning Research, 2004.

[3] C. Rudin, R. Schapire and I. Daubechies, Boosting based on a smooth margin, preprint,
PACM, Princeton University, 2004.

Regularizing Linear Inverse Problems by Sparsity Constraints

Christine De Mol

(joint work with Ingrid Daubechies and Michel Defrise)

Many linear or linearized inverse imaging and scattering problems amount to
solving an operator equation of the form Kf = g, where the solution f and the
data g belong to Hilbert spaces and K is a bounded linear operator, e.g. an inte-
gral operator with a kernel representing the response of the imaging device. Such
problems are typically ill-posed (or ill-conditioned) and to define regularized solu-
tions, i.e. solutions which are stable in the presence of noise, the problem can be
reformulated as the minimization of a penalized least-squares functional. Classi-
cal regularization methods like Tikhonov’s regularization use quadratic penalties,
such as the norm of f in a Hilbert or quadratic Sobolev space.
Recently, in [1], we have considered the use of non-quadratic penalties to enforce
sparsity in the solution of such problems. In many problems of practical rele-
vance, indeed, the underlying ideal noiseless solution is expected to have a sparse
expansion on an arbitrary pre–assigned orthonormal basis. As it has often been
advocated, to enforce this type of prior knowledge, we should penalize the ℓ1-norm
of the sequence of coefficients of this expansion, instead of its ℓ2-norm. We have
proved that this type of penalty still provides a proper regularization method ”à
la Tikhonov”, albeit nonlinear.
To compute the regularized solutions, i.e. to minimize the corresponding penalized
least-squares functionals, we must then solve a complicated nonlinear optimization
problem. To this aim, we have used an optimization transfer technique to derive
an iterative algorithm in which the successive iterates are obtained as the mini-
mizers of a sequence of surrogate functionals that are each easy to minimize. The
resulting algorithm is simply a Landweber iteration with soft-thresholding applied
at each iteration step. We have proved that this algorithm converges strongly in
the Hilbert norm. The results described above extend to the case of weighted ℓp-
penalties, with 1 ≤ p ≤ 2. For wavelet expansions, this amounts to penalizing the
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norm of the solution in a Besov space. The above results also apply to the statis-
tical counterpart of this deterministic regularization setting, namely to penalized
maximum likelihood with a Gaussian noise model and a (generalized) Laplacian
prior for the distribution of the solution coefficients in the chosen basis.
In [2] we show how the framework can be generalized to treat the case of mixed
smoothness and sparsity constraints, i.e. the case where the solution is assumed
to be the sum of a smooth part, subject to a quadratic penalty, and of a sparse
part, subject to a non-quadratic penalty. Several iterative algorithms are pro-
posed to compute such solutions and practical applications to image restoration
are discussed. The convergence of these schemes is established in [2] only for finite-
dimensional problems, but strong convergence results and regularization properties
can also be obtained in an infinite-dimensional setting similar to the one used in
[1] (M. Defrise and C. De Mol, paper in progress). A similar approach is proposed
in [3] for the decomposition of images in oscillating and cartoon components using
wavelet bases.
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Nonlinear MR transformations and Error Control

Rosa Donat

(joint work with F. Arandiga)

Multiscale transformations are being used in the first step of Transform Cod-
ing Algorithms (TCA). Ideally, a multiscale transformation allows for an efficient
representation of the signal data, which is then processed using a non-reversible
quantizer and passed on to the encoder. The latter produces the final set of com-
pressed data which is ready to be stored or transmitted.

In such algorithms, the properties of the multiscale transformation are most
important in the overall performance of the TCA. Compression is achieved be-
cause many small coefficients in the multiscale representation can be quantized or
discarded with little loss of real information contents.

Recently, several authors have tried to build adaptive wavelet transforms that
allow for more flexibility in signal/image representations and result in fewer large
wavelet coefficients. Adaptivity is a hard issue in the classical, Fourier-based,
wavelet framework, and other frameworks, which are based on a completely spatial
construction of the multiscale transformation turn out to be more appropriate.
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The framework of Ami Harten, with its intrinsic link to Approximation Theory,
turns out to be specially adequate to design such nonlinear multiscale transfor-
mations. We shall revisit ENO-based nonlinear MR transformation and their
performance in image compression. These can be interpreted as nonlinear filter
banks, where the data determines a particular choice of a linear prediction filter
among a finite pool. The central issue here becomes that of stability. We shall
analyze the Error-Control mechanism designed by A. Harten in [Ha] and compare
its performance and capabilities to other mechanisms considered in [CDSB] that
ensure stability through synchronization within the nonlinear Lifting framework.

In addition, we shall also describe how Harten’s strategies can be exploited
to obtain near-lossless compression algorithms for which the maximum deviation
from the original signal/image can be prescribed a priori.
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The Technique of Hierarchical Matrices

Wolfgang Hackbusch

1. Introduction

1.1. Large and Dense Matrices. The discretisation of partial differential equa-
tions (PDEs) lead to large systems of equations. The boundary element method
(BEM; cf. [21]) produces fully populated (dense) matrices. Since the cost for their
generation as well as the storage of dense n × n-matrices costs at least O(n2),
several techniques were developed to reduce the cost. Examples are the panel
clustering method [19], the multipole method [20] and compression techniques in
the case of wavelets bases [4]. These methods support the storage of the matrix
and the matrix-vector multiplication. Both is reduced to almost linear complex-
ity, by which we mean O(n logq n) for some q ≥ 0. One must emphasise that all
methods replace the original matrix A by another matrix A′. The matrix-vector
multiplication A′x is only an approximation to Ax, but the error ‖A−A′‖ can be
controlled. The error bound ‖A−A′‖ ≤ ε requires a cost O(n log 1

ε logq n).
The hierarchical matrices generalise the panel clustering method in order to

support all matrix operations, i.e., matrix addition, matrix multiplication and
matrix inversion. This is also of interest for the sparse matrices from FEM, since
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the dense inverse can be computed. The mentioned matrix operations are per-
formed only approximately. As above, an accuracy of ε leads to the factor log 1

ε
in the costs.

1.2. Construction of Hierarchical Matrices. The main idea in the construc-
tion of hierarchical matrices is the combination of two steps.

Figure 1. Example of a block partitioning

Step I: The matrix is partitioned into certain blocks defining the partition P .
Let I be the set of degrees of freedom. A block b ⊂ I × I is the product b = τ × σ
of subsets (“clusters”) τ, σ ⊂ I. More precisely, the sets of clusters is organised in
the form of a tree (cluster tree), which yields the hierarchical structure. The size
of the blocks is essential. Each degree of freedom is associated with a nodal point
of the FEM/BEM or with the support of the corresponding basis function. This
allows to define a diameter diam(τ) and a distance dist(τ, σ) in a natural way. We
allow a block b = τ × σ in the partitioning P , if they are admissible, i.e.,

min {diam(τ), diam(σ)} ≤ 2η dist(τ, σ)

for some fixed η, or in b is trivial in the sense that the size min {#τ,#σ} is below
some number bmin. The admissibility condition leads to small blocks along the
diagonal (where dist(τ, σ) is small) and to large block far from the diagonal (see
Figure 1).

Step II: We fill all blocks in the partitioning P from above by rank-k matrices,
i.e., the matrix block M |b = (Mij)i∈τ,j∈σ (for b = τ × σ ∈ P) must satisfy

rank(M |b) ≤ k. Each of these matrix blocks is represented two matrices Ab ∈
R

#τ×k, Bb ∈ R
#σ×k so that

M |b = AbB
⊤
b .
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Note that the storage costs of Ab, Bb are (#τ + #σ) k instead of #τ ∗ #σ for
the naive method. Of course, the use of Ab, Bb is only advantageous if k ≪
min {#τ,#σ} .

The resulting definition of hierarchical matrices of local rank k (more precisely
≤ k) is

Hk :=
{
M ∈ R

I×I : rank(M |b) ≤ k for all b ∈ P
}
.

The similar construction is possible for rectangular matrix from R
I×J .

Introductory papers on hierarchical matrices are [12], [2], [15], [8]. Details of
the construction are explained in [10].

1.3. Accuracy. The stiffness matrices from the boundary element method as well
as the inverse of the finite element stiffness matrix (for elliptic boundary value
problems) have the following property: Let A be the exact matrix. The singular
values of A|b (not of the whole matrix A) decay exponentially. This allows to
approximate A|b up to an error ε with a rank-k matrix where k = O(log 1

ε ).
Hence, A can be well approximated by some AH ∈ Hk.

In the BEM case, this follows easily from the smoothness of the fundamental
solution. Concerning the inverse FEM stiffness matrix, this result is proved in [1]
and holds even for nonsmooth coefficients.

1.4. Computational Costs. The following asymptotics hold for k ≪ n = #I.

• The storage of hierarchical matrices from Hk requires O(nk logn) units.
• The matrix-vector multiplication (A ∈ Hk, x ∈ R

I 7→ Ax) is exact and
requires O(nk logn) arithmetical operations.

• The matrix-matrix addition (A,B ∈ Hk 7→ C := A⊕B ≈ A+B) computes
the approximate sum in O(nk2 logn) operations.

• The matrix-matrix multiplication (A,B ∈ Hk 7→ C := A ⊙ B ≈ A ∗ B)
computes the approximate product in O(nk2 log2 n) operations.

• The same cost estimate holds for the matrix inversion (A ∈ Hk 7→ C ≈
A−1).

The details, in particular characterisations of the constants involved in O(·) are
to be found in [10].

2. Application Fields

BEM matrices: The first goal in the boundary element method (BEM) is
to generate a data-sparse approximation to the dense system matrix in order to
reduce the storage requirements. The error should be comparable with the already
existing discretisation error. This can be achieved with hierarchical matrices of
the local rank k = O(log n).

FEM preconditioning: Linear equations with sparse FEM matrices A are
usually solved iteratively, where a good preconditioner (i.e., a fast iterative method)
is needed. Sometimes it is hard to find a good one. Since any rough approximation
B to A−1 is a good preconditioner, one can compute the inverse of A in Hk for
rather small k. This approach is in particular of interest, if A is a Schur complement
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matrix (as it appears in saddle point problems, mixed finite element formulations,
etc.). Instead of an approximate inverse also approximate LU-factors are available.

Domain decomposition: Eliminating the interior unknowns in a domain de-
composition method with non-overlapping subdomains, one obtains a dense matrix
(Schur complement) for the nodal points on the skeleton (union of interfaces). The
hierarchical matrix technique allows the elimination as well as the treatment of
the skeleton matrix (cf. [13], [17]).

Matrix equations: The following matrix equations arise in control theory.
The Lyapunov equation AX +XA = C or the nonlinear Riccati equation A⊤X +
XB−XFX+G = 0 define a system of n2 equations for the n2 unknown entries of
X.Therefore the best possible solve seems to need a work of O(n2). If the coefficient
matrix A arises from an elliptic operator (as in control problems with a state
governed by an elliptic boundary value problem), it turns out that the solution X

can be well approximated by an X ′ ∈ Hk. The costs add up to O(nk2 log3 n) even
in the case of the nonlinear Riccati equation.

Matrix functions: For parabolic problems the matrix exponential function
exp(−tA) is of interest, where A is the positive definite discretisation of an elliptic
operator. The method proposed and analysed in [6] represents exp(−tA) by a
Cauchy integral. Replacing the integral by a numerical quadrature, we are able
to compute exp(−tA) with accuracy ε with a cost of order O(n logp 1

ε logq n).

Similarly, other matrix functions can be computed, e.g., A−α, cos(t
√
A)A−k,(

sinh
√
A)
)−1

sinh(x
√
A) (see [5], [7]). Another very interesting function is the

sign-function sign(A) (see [11]).
Problems in high spatial dimensions: Related techniques be applied to

problems in high spatial dimensions when Kronecker products of matrices can
be used. An example is given in [9]: The discrete Laplace operator A in [0, 1]d

corresponding to n = 1024 nodal points in each direction and d = 2048 is an
N × N -matrix of size N = 10242048 ≈ 1.2 × 106165. Nevertheless the inverse can
be computed with high accuracy in 5 minutes (see [9] for older results).

3. H2-Matrices

Besides the hierarchy in the cluster tree, one can install a second hierarchy.
Instead of the general rank-k matrices for the matrix blocks one requires the
matrix blocks M |b (b = τ × σ) to belong to a fixed tensor space Vτ × Vσ (i.e.,
M |b = AbB

⊤
b with range(Ab) ⊂ Vτ and range(Bb) ⊂ Vσ). In addition one need a

compatibility condition for Vτ and Vτ ′ when τ ′ is the son of τ in the cluster tree.
The arising H2-matrices lead to lower cost since instead of the matrices Ab, Bb per
block, one has to store only a k× k-matrix and transformation matrices of similar
size. The saving can be seen in one or two factors logn less. The H2-technique
has first been presented in [18]. Further papers are [3] and [14].
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Shape Optimization using Wavelet BEM

Helmut Harbrecht

(joint work with Karsten Eppler)

This talk is concerned with the efficient numerical solution of shape optimization
problems

(1) J(Ω) =

∫

Ω

j(u,x)dx = min,

which arise from the identification of obstacles or inclusions, the computation of
free surfaces and the optimal shape design of electromagnets, wings, etc. The state
u in (1) is assumed to solve the possibly exterior Dirichlet boundary value problem

(2) ∆u = f in Ω, u = g on Γ := ∂Ω.

Such problems are often subject to certain constraints

Ci(Ω) =

∫

Ω

hi(x)dx = ci, i = 1, . . . ,m,

Ci(Γ) =

∫

Γ

hi(x)dσ = ci, i = m+ 1, . . . , n.

For instance, domain integral constraints of practical interest are the volume of
the domain while its perimeter defines a boundary integral constraint. Of course,
inequality constraints can be considered as well. To ensure well–posedness the
functions f , g, and h1, . . . , hn are assumed to be sufficiently regular on a sufficiently
large security set D ⊂ R

d, d = 2, 3.
The directional derivative with respect to a smooth variation field V is a scalar

quantity defined on the boundary Γ. If we restrict the shape functional (1) ac-
cording to

(3) J(Ω) =

∫

Ω

h(x)u(x) + h0(x)dx,

the shape gradient involves only the Neumann data of the state and its adjoint

∇J(Ω)[V] =

∫

Γ

〈V,n〉
{
hg + h0 −

∂p

∂n

∂(g − u)

∂n

}
dσ,

where the adjoint state p satisfies

(4) ∆p = h in Ω, p = 0 on Γ.

Therefore, one has to compute only the Dirichlet–to–Neumann map to evaluate
the shape gradient. Likewise, the shape Hessian admits also a representation as
boundary integral. It depends on first and second order tangential and normal
derivatives of the state and its adjoint, and the Neumann data of the associated
local shape derivatives, cf. [2, 3] for the details.
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Integration by parts shows that the class of functionals (3) includes also the
Dirichlet energy

J(Ω) =

∫

Ω

‖∇u(x)‖2dx

provided that u admits homogeneous Dirichlet data g = 0 in (2). In particular, in
this case the adjoint state coincides with the state, that is u = p. In accordance
with [5] the functional (3), its gradient as well as its Hessian are computable know-
ing only the boundary data associated with the state and its adjoint. Involving
suitable newton potentials, these boundary data are derived via boundary integral
equations.

The necessary condition ∇Lα(Ω,λ) = 0 of the Augmented Lagrangian for equal-
ity constrains

Lα(Ω,λ) = J(Ω) + λ
T




C1(Ω)−c1

...
Cm(Ω)−cm

Cm+1(Γ)−cm+1

...
Cn(Γ)−cn




+
α

2

∥∥∥∥∥∥∥∥∥∥




C1(Ω)−c1

...
Cm(Ω)−cm

Cm+1(Γ)−cm+1

...
Cn(Γ)−cn




∥∥∥∥∥∥∥∥∥∥

2

, α > 0,

is discretized by a Galerkin scheme employing spherical harmonics as ansatz and
test functions. The boundary data of the state and its adjoint have to be com-
puted very often with respect to different domains during the shape optimization
algorithm. Hence, we propose to solve the boundary integral equations efficiently
by a wavelet Galerkin scheme (cf. [1, 10, 12]). Particularly, in view of the calcula-
tion of the local shape derivatives, the arising very sparse system of equations can
be solved very fast for different right hand sides.

Compared to first order optimization methods, the Newton method provides a
higher performance since a line search becomes nearly obsolete. Combining the
Newton method with a second order update rule for the Langrange multiplier
(cf. [7, 11]) yields a very efficient and robust algorithm to solve the shape op-
timization problems under consideration. We demonstrate the efficiency of our
method by numerical examples concerning a class of shape optimization problems
from planar elasticity (cf. [4, 5]), electromagnetic shaping (cf. [6, 8]) and electrical
impedance tomography (cf. [9]).
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Adaptive Wavelet Methods for Partial Differential Equations

Nicholas Kevlahan

(joint work with O.V. Vasilyev, D. Goldstein and J. Alam)

In this talk I will review three approaches we have been developing for solving
nonlinear partial differential equations adaptively. Each method uses the adaptive
wavelet collocation method (AWCM) based on bi-orthogonal lifted wavelets [Sw] to
construct a computational grid adapted to the solution. Derivatives are calculated
using high-order finite differences, and the wavelet transform is used to interpolate
on the adapted grid. The wavelet decomposition naturally provides a set of nested
multiscale grids adapted to the solution, and we take advantage of this property
in developing our methods.

In the first method we implement a traditional time marching scheme for time-
dependent partial differential equations, but use AWCM to adapt the computa-
tional grid to the solution at each time step [KeVa, VaKe02]. The second method
uses the multiscale wavelet decomposition as the basis for an adaptive multilevel
method for nonlinear elliptic equations [VaKe04]. Finally, we have begun to in-
vestigate a combination of the first two approaches to produce an adaptive si-
multaneous space–time method. In this case, both the space grid and time grid
adapt locally to the solution, and the final solution is obtained simultaneously on
the entire space–time domain of interest. In the following I briefly outline each
method and give some examples.
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1. AWCM with time marching

The first approach is to use a classical time integration scheme, but to dy-
namically adapt the computational grid at each time step using AWCM [KeVa,
VaKe02]. This is done by filtering wavelet coefficients with magnitude less than a
threshold ǫ (removing a wavelet coefficient removes a grid point), and then recon-
structing the solution on the adapted grid in physical space. The method allows
for the change in the solution over one time step by adding nearest neighbour
wavelets (i.e. grid points) in both position and scale. The nearest neighbours in
space correspond to a CFL criterion of one (adding the nearest two neighbours
would correspond to CFL criterion of two, if necessary for the time scheme), while
adding nearest neighbours in scale allows for the creation of a scale twice as small
by a quadratic nonlinearity. Since all operations areO(N ) (where N is the number
of wavelets retained), the grid adaptation procedure is efficient for large problems.
Note that in this case the time step is uniform for all locations and length-scales
(although it can be adjusted to maintain a given tolerance at each discrete time).

I will first illustrate the basic features of the method by applying it to the
one-dimensional Burgers and moving shock equations. We have implemented this
approach to solve the penalized two- and three-dimensional incompressible Navier–
Stokes equations,

∂u

∂t
+ (u + U) · ∇u + ∇P = ν∆u − 1

η
χ(x, t)(u + U − Uo),(1)

∇ · u = 0,

where the last term on the rhs of (1) approximates the no-slip boundary conditions
on the surface of an obstacle in the flow as η → 0 (χ(x, t) defines the solid regions
of the flow, and uo is the obstacle’s velocity).

The AWCM method achieves steady-state compression ratios of 270 times for
fluid–structure interaction on large domains, and uses fewer computational ele-
ments than vortex methods for the same flow (although the cost per element is
likely higher for AWCM).

2. AWCM multilevel method for elliptic problems

As mentioned in the introduction, the wavelet multiresolution analysis provides
a natural framework for implementing an adaptive version of the multilevel method
for elliptic equations [VaKe04]. The multilevel iterative algorithm is similar in
spirit to multigrid methods [Br], but is different in the details of its implementation.
First, in contrast to multi-grid methods, the lower level grid is not necessarily
coarser at every region of the domain. Secondly, lower-order wavelet differentiation
is used for the approximate solver (smoother). Thirdly, wavelet interpolation is
used for both prolongation and restriction operators. Finally, as in the usual
multi-grid methods, gmres [Sa] is used as the exact solver.

As an example we consider the three-dimensional Poisson equation ∆u = f
with a localized source f . The grid adapts to the three-dimensional solution at
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the same time as the multilevel methods converges. We find that the L∞ error
converges linearly with the number of V-cycle iterations.

3. Simultaneous space–time solution using AWCM

The main drawback of our time-marching approach to evolution equations de-
scribed in §1 is that the time step is not truly adaptive. In intermittent problems
such as turbulence the time step (as well as the spatial grid) should depend on
position and scale. The most straightforward way to achieve this is to apply the
multilevel method described in §2 to a time evolution problem on a space–time
domain. There is no obvious choice for the boundary condition at t = tmax, but we
have found that a dynamical boundary condition (i.e. simply solving the equation
at that boundary) works well.

We consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

on the space–time domain [0, 1] × [0, 0.2], with periodic spatial boundary condi-
tions, initial condition u(x, 0) = sin(2πx), and viscosity ν = 10−2. The space–time
approach gives accurate results, and we obtain a truly adapted grid, in both space
and time. Note that small time steps are necessary only in the vicinity of the
shock. Further investigation is required to determine whether this approach is
more efficient than the classical time marching scheme. The correct size of the ad-
jacent zone is an outstanding question: unlike the case of time-marching methods,
there are no theoretical results on the appropriate number of neighbouring points
to retain for simultaneous space–time solution.
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B–Spline–Based Monotone Multigrid Methods

Angela Kunoth

(joint work with Markus Holtz)

We consider an elliptic variational inequality

find u ∈ K : a(u, v − u) ≥ f(v − u) for all v ∈ K,
employing a continuous, symmetric and H1

0– elliptic bilinear form a(·, ·), which is
to be solved on a closed convex subspace

K := {v ∈ H1
0 (Ω) : v(x) ≤ g(x) for all x ∈ Ω} ⊂ H1

0 (Ω),

where g ∈ H1
0 (Ω) represents an upper obstacle.

For the efficient numerical solution of such variational inequalities, monotone
multigrid (MMG) methods based on piecewise linear finite elements have been
investigated over the past decades, see [Ko1, Ko2] and the references therein. Es-
sential for the success of these methods is the appropriate approximation of the
obstacle on coarser grids. Since piecewise linear approximations work with geo-
metric considerations employing point values, the extension of the MMG method
to higher order basis functions has appeared to be difficult. On the other hand,
there are a number of problems which profit from higher order approximations.
Among these is the problem of prizing American options, formulated as a parabolic
boundary value problem involving Black–Scholes’ equation with a free boundary
which indicates when the option is to be exerted. In addition to computing this
free boundary, of particular importance are pointwise derivatives of the solution,
the value of the stock option, up to order two, the so–called Greek letters, to high
precision.

In this talk based on [HK], a monotone multigrid method has been presented
for discretizations in terms of B–splines of arbitrary order to solve variational in-
equalities of the above form. In order to maintain monotonicity (upper bound)
and quasi–optimality (lower bound) of the coarse grid corrections for the equiv-
alent linear complementary problem, we have proposed an optimized coarse grid
correction (OCGC) algorithm which is based on B–spline evaluation coefficients.
The OCGC scheme has been formulated by solving a linear constrained optimiza-
tion problem. For the solution process, we have exploited essential properties of
B–Splines, namely, positivity of B–Splines and total positivity of their refinement
matrices. We have proved that the OCGC algorithm is of optimal complexity of
the degrees of freedom of the coarse grid. Moreover, the resulting monotone multi-
grid method has been shown to be of optimal multigrid complexity and converges
with an optimal rate independent of the discretization.

Finally, the method has been applied to the valuation of American options. It
has been shown that a discretization based on B–Splines of order four in particular
meets the requirement of computing the pointwise error of the second derivative of
the value of the stock option up to high precision. Further results for the prizing
of options applying monotone multigrid methods can be found in [H].



Wavelet and Multiscale Methods 1815

References

[H] M. Holtz, On the computation of American option price sensitivities via multigrid
schemes, Manuscript, August 2004.

[HK] M. Holtz, A. Kunoth, Construction of B–spline based higher order monotone multigrid
methods, Manuscript, August 2004.

[Ko1] R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer.
Math. 69, 167–184, 1994.

[Ko2] R. Kornhuber, Adaptive Monotone Multigrid Methods for Nonlinear Variational Prob-
lems, Teubner, 1997.

Adaptive Multi-scale Methods for Inverse Problems

Peter Maass

(joint work with Stephan Dahlke)

We are analyzing adaptive methods for solving operator equations Af = g with
noisy data ||gδ−g|| ≤ δ, where A : X −→ Y is supposed to be a linear or non-linear
mapping between Hilbert spaces X and Y .

Classical adaptive methods use local refinements of the approximate solution
based on some a–posteriori error estimators. Those error estimators should be
local to allow suitable refinement strategies, and they usually require a boundedly
invertable operator in order to pull back a residual estimate in the image space to
the function space where the desired solution is living.

Typical inverse problems like applications in tomography or parameter identifi-
cation problems for partial differential equations share two properties which make
them - at least at a first glance - particular unsuitable for adaptive methods. First
of all, they lead to ill-posed operator equations, i.e., the inverse operator is not con-
tinuous and it is not defined on all of Y , see [8, 7]. This is taken care of by applying
regularization schemes like Tikhonov regularization with Tα = (A∗A + αI)−1A∗.
Moreover, local refinements of f lead to global changes of the data, i.e., no local
error estimates are possible.

¿From a philosophical point of view, there are two players in this game: the
operator A and the solution f . From this point of view, Tikhonov regularization
only pays attention to the operator, no information about f enters the construction
of Tα. As a consequence, the missing information has to be introduced via a
rather expensive iteration scheme (e.g., α-descent methods for satisfying Morozov’s
discrepancy principle). This provides the playground for adaptive methods, which
use information about the solution f at an earlier stage.

Probably the first systematic approach to adaptive methods for inverse problems
were proposed in [10, 9]. These papers introduce mollifier methods, which do not
aim at reconstructing f but rather functionals 〈f, ϕx〉, which can be tuned to give
pseudo-local approximations.

More recently, different approaches concerning adaptive multi–scale methods
have been published. In this context, adaptive methods can be used in different
ways:
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(1) presmoothing the noisy data gδ prior to reconstruction;
(2) adaptive forward solvers with prescribed accuracy ||uN − u|| ≤ ǫ;
(3) regularization by adaptive discretization.

Presmoothing the data has been analyzed in various ways, e.g., by inverse Sobolev
embedding [1, 11] or wavelet shrinkage [4]. The second approach is based on the
analysis in [2, 3, 5], its application to inverse problems has been outlined in [6].
Obviously, the last problem is the most demanding one and the topic of future
research.

In this talk, we will extend the first approach of Cohen et al. by analyzing two
stage regularization schemes Tα,λ = RαSλ, where Sλ : Y −→ Y is a pre-smoothing
step (wavelet shringkage) followed by a regularization scheme Rα.

We can show, that optimal convergence rates can also be achieved by an incom-
plete pre-smoothing, i.e., we only smooth the data up to level below range(A).
Hence, we require a subsequent regularization scheme. The advantage of such
a method as compared with classical methods without pre-smoothing is as fol-
lows: optimal convergence rates can be obtained with a substantially smaller reg-
ularization parameter, which avoids the typical oversmoothing of, e.g., Tikhonov
regularization.

Test calculations with simulated SPECT data confirm the theoretical conver-
gence rates.
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Multiresolution Finite Volume Schemes for Conservation Laws

Siegfried Müller

The solution of hyperbolic conservation laws typically exhibits locally steep gra-
dients and large regions where it is smooth. To account for the highly nonuniform
spatial behavior, we need numerical schemes that adequately resolve the different
scales, i.e., use a high resolution only near sharp transition regions and singulari-
ties but a moderate resolution in regions with smooth, slowly varying behavior of
the solution.

For this purpose, numerical schemes have been discussed or are under current
investigation that aim at adapting the spatial grid to the local behavior of the flow
field. A standard strategy is based on local indicators which are typically related to
gradients in the flow field or local residuals. Although these concepts turn out to
be very efficient in practice they offer no reliable error control. For this purpose,
a posteriori error estimates have been derived which aim at equilibrating local
errors. So far, this type of error estimators is only available for scalar problems.
Another approach employs (dual-)weighted residual error indicators for adaptive
grid refinement. This leads to meshes that are tailored to the cost-efficient com-
putation of the quantity of interest, e.g. drag coefficient or lift coefficient. The
approach gives very sparse grids but currently is not efficient for 3D instationary
problems.

In the early 90’s Harten [Ha] proposed to use multiresolution techniques in the
context of finite volume schemes applied to hyperbolic conservation laws. He em-
ployed these techniques to transform the arrays of cell averages associated with
any given finite volume discretization into a different format that reveals insight
into the local behavior of the solution. The cell averages on a given highest level
of resolution (reference mesh) are represented as cell averages on some coarse level
where the fine scale information is encoded in arrays of detail coefficients of as-
cending resolution. By means of the multiresolution analysis the flux evaluation
is controlled, i.e., cheap finite differences are employed in regions where the solu-
tion is smooth. By this strategy the computation is accelerated and the solution
remains within the same accuracy as the reference scheme, i.e., the scheme on
the finest computational mesh that uses the expensive flux evaluation throughout
the entire domain. However, since one works still on a uniform mesh the compu-
tational complexity stays proportional to the number of cells on the finest grid.
So far, Harten’s concept has been successfully implemented for two-dimensional
Cartesian meshes [BH1, BH2, CD, CDM, RCD], curvilinear meshes [DGM] and
unstructured meshes [A, BOLR, CDKP].

Parallel to Harten’s original idea a modified approach has been developed by
Müller et al. [GM, CKMP, M] that is aiming at reducing the computational costs
with regard to both computational time and memory requirements but still main-
taining the accuracy of the reference scheme. In contrast to this, the detail coeffi-
cients will be used here to create locally refined meshes on which the discretization
is performed. Of course, the crux in this context is to arrange this procedure in
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such a way that at no stage of the computation there is ever made use of the fully
refined uniform mesh. A central mathematical problem is then to show that the
solution on the adapted mesh is of the same accuracy as the solution on the refer-
ence mesh. By now the fully adaptive multiresolution concept has been applied by
several groups with great success to different real world applications, e.g., 2D/3D–
steady state computations of compressible fluid flow around air wings modeled
by the Euler and Navier–Stokes equations, respectively, as well as fluid-structure
interactions on block–structured curvilinear grid patches [BGH+, BLM], non–
stationary wave interactions in two-phase fluids on 2D Cartesian grids for Euler
equations [M, ABMV, ABM, DMV], backward–facing step on 2D triangulations
[CDM] and simulation of a flame ball modeled by reaction–diffusion equations on
3D Cartesian grids [RSTB].

So far a short-coming of this approach has been the lack of temporal adaptivity,
i.e., all cell averages are evolved in time by the same time step size τ . For reasons
of stability we are therefore obliged to choose τ such that the CFL condition for the
cells on the finest mesh is satisfied. However, for cells corresponding to a coarser
discretization we may use a larger time step to meet the local CFL condition.
Therefore it is natural to use locally varying time stepping.

First results on local time stepping have been published by Osher and Sanders
[OS] for one-dimensional scalar conservation laws. Here the space discretization is
fixed but non-uniform. Each element is evolved in time either by an entire time step
or a fixed number of smaller time steps. About the same time, Berger and Oliger
[BO] proposed the by now classical Adaptive Mesh Refinement (AMR) technique.
Here refined grids are laid over regions of the coarse mesh. In particular, the grids
need not to be nested but can have a different orientation than the coarse grid.
This allows for a local alignment of the grid with anisotropic effects such as shocks.
Each refinement level is propagated with its own time step. Information is passed
between the grids using injection and interpolation techniques.

Recently, a local time stepping strategy has been incorporated to the concept
of fully adaptive multiresolution schemes, cf. [MS]. Here ideas similar to the
predictor-corrector scheme [OS] are used. This has to be adjusted to the require-
ment that the resulting scheme provides a spatial accuracy that is comparable to
the spatial accuracy of the reference mesh. Therefore we have to address prop-
erly the issues of (i) a conservation-preserving flux evaluation at interface points,
(ii) the computation of appropriate prediction values on coarser levels, (iii) the
synchronization of the time evolution and (iv) the local grid refinement on the
intermediate time levels to track appropriately the movement of discontinuities.
Note that the resulting concept can be applied to multidimensional conservation
laws discretized by an explicit or implicit reference finite volume scheme,

The outline of the talk will be as follows. We start with a summary of the stan-
dard fully adaptive multiresolution concept recalling its core ingredients, namely,
the multiresolution analysis and the local grid adaptation. Then we outline the
concept for incorporating locally varying time stepping. Here we first consider an
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explicit time integration. These ideas are then extended to an implicit time inte-
gration. Numerical results verify the efficiency and the accuracy of our method.
We conclude with some remarks on open questions and future work.
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Smoothness Spaces and Nonlinear Approximation on the Sphere

Pencho Petrushev

A new characterization of the Besov and Triebel-Lizorkin spaces on the n-
dimensional sphere is given. Extremely well localized semi-orthogonal elements
(called “needlets”) are constructed on the sphere. It is shown that the Besov and
Triebel-Lizorkin on the sphere can be decomposed via needlets for the full range of
indices. The emphasis is placed on the Besov spaces involved in the theory of non-
linear approximation on the sphere. Some basic results of the theory of nonlinear
n-term approximation from needlets and its applications are presented as well.

Atomic Decomposition on Warped Wavelets and Muckenhoupt
Weights

Dominique Picard

(joint work with Gerard Kerkyacharian)

We consider the problem of replacing a standard (compactly supported) wavelet
expansion of a function f :

f(x) =
∑

I=(j,k)

βIψI(x),(1)

by a decomposition on atoms of the form {ψjk(G), j, k} where the standard
wavelet basis has been warped by a function G.

(2) f(x) =
∑

I=(j,k)

βIψI(G(x)).

This kind of atoms naturally appear when the function is observed in a non
regular design (in regression or denoising, see Kerkyacharian and Picard [KP04]),
or to catch some geometric features (see LePennec and Mallat ([LM03]), or to
handle local stationarity (see Clerc and Mallat ([CM03]).
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The aim of this talk is to investigate the properties of this new basis, and
especially to prove that if the warping function has a property of Muckenhoupt
type, this new basis has a behavior quite similar to a regular wavelet basis.

A closely connected problem is the following : Generally spaces of regular-
ity (Sobolev or Besov spaces) are defined with respect to the Lebesgue measure.
However in some cases, it can be more natural to consider other measures and
especially measures of the form ω(x)dx where ω is a weighting of the space.

In this case, we are interested in considering the standard expansion (1), but
eventually to measure its approximation performances in the spaces Lp(ω(x)dx).
Using a simple change of variables (valid under mild conditions on G), it is obvious
that the approximation properties of f in terms of the warped atoms correspond
to the approximation properties of f(G−1) in terms of the standard wavelet bases,
but measured with the weight ω(x) = 1

g(G−1(x)) .

1. What properties for atoms ?

Many properties of the possible atoms that are shared by wavelet bases can be
explored. However, we shall here concentrate on two special properties which are
especially important in the treatment of most statistical applications.

1.1. Shrinkage (or unconditional) property. There exists an absolute con-
stant K such that if |θi| ≤ |θ′i| for all i, then

(3) ‖
∑

i

θiei‖p ≤ K‖
∑

i

θ′iei‖p.

This property means in particular, that by thresholding or shrinking the coeffi-
cients we do not risk exploding the norm, and has many more important properties.

1.2. p-democratie property or Temlyakov-property. There exist cp and Cp

such that for any finite set of integers F we have :

(4) cp

∫ ∑

i∈F

|ei|p ≤
∫

(
∑

i∈F

|ei|2)
p
2 ≤ Cp

∫ ∑

i∈F

|ei|p.

This property is fundamental to express in a simple way the spaces of approxima-
tion by wavelet thresholding.

Both of the properties stated above are true for compactly supported wavelets.
What can be said more generally for warped bases, if we assume good properties
on G ?

2. Muckhenhoupt weights

The concept of Muckenhoupt weight has been introduced in [M72] (see also
[GR85] and[CF74]) and widely used afterwards in the context of Calderon-Zyg-
mund theory.
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Definition. (Muckenhoupt weights)For 1 < p < ∞, 1/p + 1/q = 1, a
measurable function ω ≥ 0 belongs to the Muckenhoupt class Ap if there exists
0 < C <∞ such that for any interval I included in R,

(
1

|I|

∫

I

ω(x)dx

)1/p (
1

|I|

∫

I

ω(x)−
q
p dx

)1/q

≤ C

For p = 1, ω ≥ 0 belongs to the Muckenhoupt A1 class if there exists 0 < C < ∞
such that,

ω∗(x) ≤ Cω(x) a.e.

where ω∗(x) is the Hardy-Littlewood maximal function.
For p = ∞, we set

A∞ = ∪p≥1Ap.

3. Results

3.1. Warped bases. Theorem. Let 1 < p < ∞, ω ∈ Ap, and ψj,k be a
compactly supported wavelet. Let T and S be two real measurable functions defined
on R such that

S(T (x)) = x, a.e.; T (S(x)) = x, a.e.

∀h ≥ 0, measurable function,
∫

R
h(T (x))dx =

∫
R
h(y)ω(y)dy(5)

the family {ψjk(T (.)), j ≥ −1, k ∈ Z} satisfies the properties of shrinkage and
p-democratie.

3.2. Weighted Besov spaces. One of the major advantages of regular Besov
spaces is that they can be expressed in terms of wavelet coefficients :

Under standard oscillating conditions on the wavelet ψ, we have,

f ∈ Bs,p,q ⇐⇒ [
∑

j≥−1

{2js2j/2(
∑

k∈Z

|βj,k|p2−j)1/p}q]1/q <∞.

If Bs,p,q(ω) denotes the Besov space where Lp(dx) is replaced by Lp(ω(x)dx),
we show in the following proposition that under conditions on ω, the direct sense of
the implication above is still true, if in the sum in k, 2−j is replaced by ω([ k

2j ,
k+1
2j ]).

Proposition. For 1 ≤ p ≤ ∞, let us suppose that ω is in Ap, and let us put
for every interval I ⊂ R

ω(I) =

∫

I

ω(x)dx

Then, if ψ is a compactly supported wavelet, such that
∫
ψ(x)xkdx = 0, k = 0, . . . , N − 1

then for

f =
∑

j,k

βjkψj,k, Ij,k = [
k

2j
,
k + 1

2j
]
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f ∈ Bs,p,q(ω) =⇒ [
∑

j

{2js2j/2(
∑

k∈Z

|βj,k|pω(Ij,k))1/p}q]1/q <∞

with the usual modification if q = ∞.
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Combining Multiresolution Technique with a Semi–implicit Scheme
for Two–phase Flows

Marie Postel

(joint work with F. Coquel, Q. H. Tran and N. Poussineau)

In the context of multiphase flows in oil pipelines, we study the following one
dimensional model problem






∂t(ρ) + ∂x(ρv) = 0,
∂t(ρY ) + ∂x(ρY v) = 0,
∂t(ρv) + ∂x(ρv2 + P ) = S(ρ, ρv),

where the unknowns are the mean values of the physical unknowns over the cross
section of a pipeline. We are solving this system for the density ρ, the mean
velocity v, which is here assumed to be the same for both oil and gas, and the gas
mass fraction Y . The pressure P is given by a thermodynamical equilibrium law
as a function of the density and the gas fraction.

We don’t solve this system numerically but consider instead a relaxed version




∂t(ρ) + ∂x(ρv) = 0,
∂t(ρY ) + ∂x(ρY v) = 0,
∂t(ρv) + ∂x(ρv2 + Π) = S(ρ, ρv),
∂t(ρΠ) + ∂x(ρΠv + a2v) = kρ(P (ρ, ρY ) − Π),

where k denotes the relaxation parameter. Here, a > 0 stands for a frozen (La-
grangian) sound speed to be prescribed according to some sub-characteristic con-
ditions (see [1]). At each time step, we solve the system with k = 0 and then force
the pressure Π to the equilibrium using the pressure law Π = P (ρ, , ρY ).
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The relaxation system is hyperbolic, all the fields being linearly degenerate.
It comes with two large eigenvalues corresponding to acoustic waves and a much
smaller double eigenvalue, v, which is actually the transport speed. The wave of
interest is the transport one. The other fast acoustic waves are not interesting
but impose a very restrictive CFL condition if an explicit scheme is used. In a
semi implicit finite volume scheme like the one developped in [3, 1], the fast waves
are handled with a linearized implicit formulation and the slow wave remains
explicitely solved. The CFL condition, governed by the explicit wave speed is
then more reasonable. On the other hand, a tridiagonal block matrix whose terms
involve the solution of the local Riemann problems, has to be constructed and
inverted at every time step. The semi-implicit scheme is therefore still quite costly,
and adaptive mesh refinement seems indicated to improve its performances since
the interesting quantity, the gas mass fraction in the mixture for instance, presents
localized singularities that are carried by the transport wave.

We combine this method with a multiscale analysis of the vector solution U in
its conservative variables similar to the one developped in [2] for explicit schemes,
which we will now present. The fine uniform grid of the underlying finite volume
scheme is taken as the finest level of a hierarchy of nested dyadic grids. The finite
volume solution can be represented by its mean values Uk = (uj,k) on any level
k, with 0 beeing the coarsest level. Starting from the representation on the finest
level K, we can iterate a standard projection operator P k+1

k to go from fine level
k + 1 to the immediately coarser one:

Uk = P k+1
k Uk+1, uj,k−1 =

1

2
(u2j,k + u2j+1,k),

and a centered reconstruction operator P k−1
k based on a mean values preserving

quadratic polynomial to recover mean values on the level k from the mean values
on the immediately coarser level:

Ûk = P k−1
k Uk,

{
û2j,k = uj,k−1 − (uj+1,k−1 − uj−1,k−1)/8,
û2j+1,k = uj,k−1 + (uj+1,k−1 − uj−1,k−1)/8.

There is a one to one mapping between the representation of the solution by its
mean values on the finest level and its mean values on the coarsest level plus all
the details defined at level k by

Dk, dj,k = u2j+1,k − û2j+1,k.

At each time step n , the solution is encoded, its details are tested against a level
dependent threshold εk = 2kε and a tree of indices T ε

n corresponding to significant
details is computed. This tree is then enlarged in order to ensure that it captures
all significant details also at next time step. The solution is then locally decoded
according to this tree, meaning that the finest grid representation will be used only
in the vicinity of singularities, while mean values on coarser cells will be sufficient
in regular regions. This provides the representation of the solution by its mean
value on the time dependent adaptive grid.
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The semi-implicit scheme is then applied to this non-uniformly sampled solu-
tion. At this stage, the accuracy of the uniform scheme on the finest level is main-
tained because although the data can be sampled on much coarser cells where the
solution is regular, the coefficients of the matrix and the residual are computed
using data on the finest grid. This can be obtained easily in the one dimensional
case by local reconstruction near the edges of the adaptive grid cells.

An important issue is the thresholding and prediction strategies used to design
the adaptive grid, if we want to retain a good behavior of the adaptive scheme
solution with respect to the uniform scheme one. First of all we checked numeri-
cally that although we are interested only in the gas mass fraction behaviour it is
important to track the singularities on all the solution components.

Concerning the prediction strategy, we use here the heuristic rules introduced by
Harten [4], which rely on the hyperbolicity of the equation: for an explicit scheme
with a given CFL condition lower than 1, the singularities will not move more than
one cell away in one time step. Therefore, knowing the tree T ε

n of relevant details

at time n, the predicted tree at time T̂ ε
n+1 can be designed by adding to T ε

n all its
immediate neighbours, plus the subdivisions of those details that are greater than a
given multiple of the threshold parameter. In our case, this prediction is only valid
for the details that move along with the transport wave, because those are treated
explicitely with a CFL less than 1. It might become insufficient for the details
moving at the speed of the acoustics wave for which the CFL condition can be
as high as 20. Fortunately these details are treated implicitely and are therefore
smoothed out by the diffusion inherent to the implicit scheme. This, plus the
gradedness that we impose to the tree in order to optimize the complexity of the
decoding-encoding algorithm, ensures that the singularities that are carried away
by the acoustic waves are still well captured by the tree.

We experiment on test cases including boundary conditions and source term
treatment that the efficiency in terms of computing time and memory requirements
is improved by a factor varying between 3 and 5 while retaining the accuracy
performances. In particular the L1 error between the adaptive scheme and the
uniform scheme solutions depends linearly on the thresholding parameters, which
is the theoretical behavior obtained for a non linear scalar equation and an explicit
scheme in [2].

Further developments will include analysis of the prediction strategy for the
semi-implicit scheme, better treatment of the boundary conditions and source
terms and implementation of local time stepping.

References

[1] M. Baudin, F. Coquel, and Q.-H. Tran. A semi-implicit relaxation scheme for modeling two-
phase flow in a pipeline. (Submitted), 2004.

[2] A. Cohen, S.M. Kaber, S. Müller, and M. Postel. Fully adaptive multiresolution finite volume
schemes for conservation laws. Math. Comp., 72(241):183–225 (electronic), 2003.
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Fast Iterative Solvers for Discrete Stokes Equations

Arnold Reusken

(joint work with Jörg Peters and Volker Reichelt)

We consider a class of Stokes equations on a bounded connected polyhedral
Lipschitz domain Ω in d-dimensional Euclidean space. We use the notation V :=
H1

0 (Ω)d for the velocity space and M = L2
0(Ω) := { p ∈ L2(Ω) |

∫
Ω
p(x) dx = 0 }

for the pressure space. The variational problem is as follows: given f ∈ L2(Ω)d

find {u, p} ∈ V ×M such that

(1)

{
(∇u,∇v) + ξ(u,v) − (div v, p) = (f ,v) for v ∈ V,

(div u, q) = 0 for q ∈M .

with a constant ξ ≥ 0. The L2 scalar product and associated norm are denoted by
(·, ·), ‖ · ‖, respectively. The zero order term ξ(u,v) is included in view of implicit
time integration methods applied to instationary Stokes equations.

For the discretization of this problem we use a pair of conforming LBB stable
finite element spaces. This results in a saddle point problem of the form

(2)

(
A BT

B 0

)(
x
y

)
=

(
f
0

)

Many different iterative methods for solving this discrete problem are known. One
possible approach is to apply multigrid techniques to the whole coupled system in
(2). Most other approaches are based on the prominent classical Uzawa method.
This Uzawa method requires that A−1x can be computed exactly. In many variants
of this method, which are often called inexact Uzawa methods, one tries to avoid
the exact inversion by using an inner iterative method, for example, a Jacobi-like
iteration or a multigrid method. A third possible strategy is to use (variants of)
the preconditioned MINRES method. Finally we mention the approach presented
in [2]. There the indefinite problem (2) is reformulated as a symmetric positive
definite problem. For most of these different approaches theoretical convergence
analyses are known. In [4] the performance of a few of these methods is compared
by means of systematic numerical experiments for a stationary 2D Stokes problem.

In this talk we consider three representative methods from the large class of
iterative Stokes solvers, namely the preconditioned CG method from [2] (denoted
by BPCG), the preconditioned MINRES method from [6, 7, 8] (denoted by PMIN-
RES) and the method from [1] (denoted by MGUZAWA). The topics discussed in
this talk are the following:

• For these three methods we discuss costs per iteration, known theoreti-
cal convergence results and some implementation issues. This makes it
possible to make a fair comparison of these methods.
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• For the MGUZAWA method we present a convergence analysis. This anal-
ysis is much simpler than the analyses presented in [1, 9]. The result that
we obtain is different from the ones in [1, 9] and gives a better explanation
of the observation that if one uses a very good preconditioner for A (like
multigrid) then even with a very low accuracy in the inner iteration the
MGUZAWA method converges.

• We present a comparative study of the performance of the three methods.
For this we consider a Stokes problem as in (1) in 3D. We treat both the
stationary (ξ = 0) and instationary (ξ > 0) case. For the discretization
we apply the popular Hood-Taylor P2 − P1 finite element pair. As a
preconditioner for A a standard multigrid method is used. For the Schur
complement preconditioner we use the mass matrix for the stationary case
and a more sophisticated preconditioner analyzed in [3] for the instationary
case.

The main results are a detailed comparative study of the three fast iterative solvers
for a 3D Stokes problem and a new convergence analysis for the MGUZAWA
method. A more detailed treatment can be found in [5].
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An Adaptive Multiresolution Method for Reaction–Diffusion
Equations: Applications to Flame Instabilities

Kai Schneider

(joint work with Olivier Roussel)

We present an adaptive multiresolution method for solving parabolic PDEs in
Cartesian geometry [2]. The numerical scheme is based on a finite volume dis-
cretization coupled with a discrete multiresolution analysis to adapt the grid in
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physical space dynamically to track the evolution of the solution in scale and space.
The time discretization is done by an explicit third order Runge–Kutta scheme, in
space we use second order schemes, either of ENO type for the convective terms
or centered schemes. The fluxes are evaluated on the adaptive grid where conser-
vativity is ensured. The implementation is based on a graded tree data structure,
which improves both CPU and memory performances, as no fine gridding is re-
quired in regions where the solution is smooth. A recursive procedure is used to
address each element of the tree. Although this concept is slightly more complex,
i.e. an O(N logN) complexity instead of O(N) (where N denotes the number of
active grid points), this choice enables us to avoid hash–tables, which require very
large arrays and therefore much memory which may be prohibitive for large scale
3D computations.

To illustrate the features and the efficiency of the method, we compute different
test problemens in one, two and three space dimensions, like convection–diffusion,
viscous Burgers and reaction–diffusion equations [2].

Then we present several applications to compute thermo–diffusive flame insta-
bilities. First, we show that pulsating planar flames can be efficiently computed
even for very large activation energies [5]. Depending on the Lewis and Zeldovich
numbers we observe stable or pulsating flames, the latter being either damped,
periodic or aperiodic in time. A bifurcation diagram in the Lewis–Zeldovich plane
is computed and the results are compared with previous FEM computations and
theoretical predictions. For Lewis numbers larger than 6 we find that the stability
limit is again increasing towards larger Zeldovich numbers and not monotonically
decreasing as predicted by the asymptotic theory. A study of the flame veloci-
ties for different Zeldovich numbers shows that the amplitude of the pulsations
strongly varies with the Lewis number. A Fourier analysis yields information on
their frequency.

Secondly, we study the interaction of spherical flame structures with adiabatic
walls [4]. We show that the Lewis number determines the behaviour of the flame-
wall interaction. When the flame is approaching the wall we observe for Lewis
numbers smaller than unity that the reaction rate is decreased, for unitary Lewis
number the reaction rate neither increases nor decreases and for Lewis numbers
larger than unity the reaction rate increases. Due to tangential diffusion the flame
front curvature is also modified, i.e. for small Lewis number the spherical flame
contracts, for large Lewis number it spreads out, while for unitary Lewis num-
ber the flame front remains perpendicular to the wall. The observed phenomena
present similarities with capillarity effects in fluid mechanics when a droplet hits
a wall.

Finally, we compute several flame ball-vortex interactions and study the role
played by the fluid flow on the evolution of the flame ball [3]. We observe the
roll-up of the flame ball around the vortex into a snail-like structure. We also put
into evidence the flammability limit of the flame ball in function of both vortex
and radiation intensities.



Wavelet and Multiscale Methods 1829

Current work is dealing with the parallel implementation of the algorithm on a
PC cluster to perform large scale 3D computations. To reach this goal, the data
structure is organized into a ”forest”, i.e. an ensemble of trees, each one working
on a different processor. Future work will focus on the extension of the scheme
to reactive Navier–Stokes equations, in order to take into account hydrodynamic
effects in combustion problems and to use the CVS (Coherent Vortex Simulation)
approach [1] to model and to simulate turbulent reactive flows on adaptive grids.
Time–adaptivity will also be investigated, since the currently used explcit time
discretization limits the time step to the smallest time scale to be resolved in
order to guarantee numerical stability.
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Wavelets for Linear Scaling Computation in Electronic Structure
Calculation

Reinhold Schneider

(joint work with H.J. Flad, W. Hackbusch and B. Khoromskij)

Numerical simulation of electronic structures derived from the multi-particle
Schrödinger’s equation play a prominent role in molecular physics, chemistry, solid
physics and material science. In the present talk we consider mean field equations
like Kohn-Sham equations based on density functional theory as well as Hartree-
Fock models for molecular systems with N electrons. At least the Hartree-Fock
model contains a nonlocal operator. Instead of computing the orbitals we com-
pute the so called density matrix which represents the kernel function in R

6 of the
spectral projection operator. We consider systematic basis functions subordinated
to different scales e.g. wavelets for the discretisation. We exploit the potential of
wavelets for hyperbolic cross approximation in high dimensional spaces together
with their ability for sparse representation of nonlocal operators to achieve linear
scaling with respect to the number of particles and basis functions (in a suit-
able setting). Optionally a new concept of Kronecker-product approximation of
operators introduced by Beylkin et al. [HFYGB] and Tyrtyshnikov [T] will be
presented.
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Adaptive Sparse Approximation of Elliptic Singularities

Christoph Schwab

(joint work with Pal Andrej Nitsche)

We consider the best N -term approximation of solutions of elliptic BVPs

Lu = f in Ω, Bu = g on ∂Ω

where Ω ⊂ R
d, d=2,3 is a polyhedron, L is a second order elliptic differential oper-

ator in divergence form and f,g are piecewise smooth boundary data by piecewise
polynomial functions of degree p ≥ 1.

In the case where Ω = (0, 1)d, we show that for differential operators L which
admit compressible matrices of order p in the sense of Cohen, Dahmen, DeVore, u
can be adaptively approximated using their approximation algorithm [CDD2000]
on anisotropic tensor products of univariate spline wavelets of degree p at rate
N−p′

where p′ < p, i.e. the curse of dimension can be overcome in these cases.
This result corresponds to numerical results obtained by Ch. Zenger and M.

Griebel and Bungartz and their students using adaptive sparse grids in hierarchical
FE-Bases.

The results are part of the doctoral dissertation of P.A. Nitsche.
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On the Compressibility of Operators in Wavelet Coordinates

Rob Stevenson

(joint work with Tsogtgerel Gantumur)

In [CDD02], Cohen, Dahmen, and DeVore proposed an adaptive wavelet algo-
rithm for solving operator equations. Assuming that the operator defines a bound-
edly invertible mapping between a Hilbert space and its dual, and that a Riesz
basis of wavelet type for this Hilbert space is available, the operator equation can
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be transformed into an equivalent well-posed infinite matrix-vector system. This
system is solved by an iterative method, where each application of the infinite
stiffness matrix is replaced by an adaptive approximation. For a certain range
of s > 0, determined by the compressibility of the stiffness matrix, i.e., by how
well it can be approximated by computable sparse matrices, it was proven that
if the errors of best linear combinations from the wavelet bases with N terms
are O(N−s), then approximations yielded by the adaptive method with N terms
also have errors of O(N−s), where their computation takes only O(N) operations.
With the available estimates for both differential and singular integral operators,
the compressibility of the stiffness matrix appears to limit the rate of convergence
of the adaptive method, in the sense that for solutions that have a sufficiently high
(Besov) regularity, these best N -term approximations converge with a better rate
than can be shown for the approximations produced by the adaptive method.

In this talk, using modified sparse matrix approximations and suitable quad-
rature rules to approximate their entries, we present improved results concerning
compressibility. From these results it will follow that for suitable wavelets as
biorthogonal spline wavelets with sufficiently many vanishing moments, for the
full range of s for which, under appropriate smoothness conditions, convergence of
the best N -term approximations of O(N−s) can be shown, the adaptive method
converges with that rate.
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Multiscale Finite Element Methods and Residual–Free Bubbles

Endre Süli

(joint work with Franco Brezzi, Andrea Cangiani, and Donatella Marini)

Classical computational algorithms for the numerical simulation of physical
phenomena have been designed to operate at a certain preselected scale fixed by
the choice of a discretisation parameter. The task of numerically computing or even
representing all of the physically relevant scales present in a multiscale problem
results in excessive algorithmic complexity; the increased complexity may take
the form of an extremely large set of unknowns in the discretisation and/or in a
demand for a large amount of computer memory and CPU time. Limitations of
these kinds have lead in recent years to the development of multiscale finite element
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methods for partial differential equations; see, for example, the survey paper of
Brezzi [2], the work of Hou, Wu and Cai [4] or that of Schwab and Matache [5].

One such class of algorithms are residual-free bubble finite element methods
which are parameter-free, stable numerical techniques that have been successfully
used for the approximate solution of a wide range of boundary-value problems
exhibiting multiple-scale behaviour.

The first half of the lecture was devoted to surveying the results of the article
[1]. The paper developed the general a priori error analysis of residual-free bubble
(RFB) finite element approximations to non-self-adjoint elliptic problems of the
form (εA+C)u = f subject to a homogeneous Dirichlet boundary condition, where
A is a linear symmetric second-order elliptic operator, C is a skew-symmetric first-
order linear differential operator, and ε is a positive parameter. The computational
domain Ω ⊂ R

d was subdivided into a shape-regular set {Th}h of d-dimensional
simplices, where h is a positive discretisation parameter and continuous piecewise
polynomial finite elements of degree k were used in conjunction with H1

0(T )-bubbles
on each element T ∈ Th.

Using a subtle result from function-space interpolation theory due to Luc Tartar
[6] which states that

[L2(T ),H1
0(T )]1/2,∞ ⊃ [L2(T ),H1(T )]1/2,1,

with continuous embedding, it was shown that the error between the analytical so-
lution u to the boundary value problem and its RFB finite element approximation
uRFB satisfies the error bound

ε1/2|u− uRFB|H1(Ω) + h−1/2‖C(u− uRFB)‖H−1(Ω)≤M
(
ε1/2hk + hk+1/2

)
|u|Hk(Ω).

Here, it is assumed that the analytical solution u belongs to Hk(Ω) ∩ H1
0(Ω) and

M is a positive constant which only depends on the shape-regularity constant of
the mesh and on ‖C‖H1(Ω)→L2(Ω), but not on u or ε.

If some local features of the solution u are known a priori, the approximation
properties of the RFB finite element space can be improved through enrichment
on selected edges of the partition by edge-bubbles that are supported on pairs
of neighbouring elements. Based on this idea, we introduced and analysed the
enhanced residual free bubble (RFBe) method for the numerical

approximation of convection-dominated diffusion equations. In two space di-
mensions we explored, both analytically and numerically, the accuracy of the
RFB and RFBe approximations focusing on the practically relevant preasymptotic
regime where the parameter ε is substantially smaller than the typical meshsize.
In particular, in the case when the analytical solution to the problem exhibits
an exponential boundary layer of thickness κ = ε| log ε| at the hyperbolic outflow
boundary, the following result holds [3].

Theorem. Suppose that u ∈ H1
0(Ω) is the solution to the boundary value prob-

lem with f ∈ W2
∞(Ω) and with a sufficiently smooth convective velocity field. As-

sume, further, that Th is an axiparallel shape-regular rectangular mesh on Ω of
spacing h ≫ κ and that ε ≤ 1/e. Then, the RFB approximation uRFB to u
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satisfies

ε1/2|u− uRFB|1,Ω + h−1/2‖C(u− uRFB)‖H−1(Ω)

≤ C1

(
(ε/h)1/2 + min

(
ε1/4, h1/2

))
+ C2,

while the RFBe approximation uRFBe to u satisfies

ε1/2|u− uRFBe|1,Ω + h−1/2‖C(u− uRFBe)‖H−1(Ω)

≤ C1

(
(ε/h)1/2 + min

(
ε1/4, h1/2

))
+ C3h.

Here C1, C2 and C3 are positive constants, independent of ε.
This result, which illuminates the improved accuracy of RFBe over RFB, was

substantiated by numerical experiments. For further details, we refer to [1] and
[3].
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Some Error Estimates in Learning Theory

Vladimir Temlyakov

(joint work with R. DeVore, G. Kerkyacharian, S. Konyagin, D. Picard)

We continue investigation of some problems in learning theory in the setting
formulated by F. Cucker and S. Smale [CS]. The goal is to find an estimator
fz on the base of given data z := ((x1, y1), . . . , (xm, ym)) that approximates well
the regression function fρ of an unknown Borel probability measure ρ defined on
Z = X × Y . Following [CS] we consider a problem of approximate recovery of a
projection fW of an unknown regression function fρ onto a given class of functions
W . It is known from [CS], [DKPT], [KT1], and [KT2] that the behavior of the
entropy numbers ǫn(W ) of W in the uniform norm plays an important role in the
above problem. We obtain sharp (in the sense of order) estimates for the error
between fW and fz for the classes W satisfying

(1) ǫn(W ) ≤ Dn−r, n = 1, 2, . . . , |f | ≤ D, f ∈ W.
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We observe that the error estimates exhibit a saturation phenomenon for the range
r > 1/2. We improve the error estimates by imposing one additional assumption
on the relation between fρ and W , namely, we assume fρ ∈ W .

Let X ⊂ Rd, Y ⊂ R be Borel sets, ρ be a Borel probability measure on Z =
X × Y . For f : X → Y define the error

E(f) := Eρ(f) :=

∫

Z

(f(x) − y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability measure on Y and
ρX - the marginal probability measure on X (for S ⊂ X , ρX(S) = ρ(S × Y )).
Define

fρ(x) :=

∫

Y

ydρ(y|x).

The function fρ is known in statistics as the regression function of ρ.
The next question is how to build fz ∈ H. We discuss a standard in statistics

method of empirical risk minimization that takes

fz,H = arg min
f∈H

Ez(f),

where

Ez(f) :=
1

m

m∑

i=1

(f(xi) − yi)
2

is the empirical error (risk) of f . This fz,H is called the empirical optimum.
We will assume that ρ and W satisfy the following condition.

(2) For all f ∈W, f : X → Y is such that |f(x) − y| ≤M a.e.

One of important questions is to estimate the defect function Lz(f) := E(f)−Ez(f)
of f ∈ W . If ξ is a random variable (a real valued function on a probability space
Z) then denote

E(ξ) :=

∫

Z

ξdρ; σ2(ξ) :=

∫

Z

(ξ − E(ξ))2dρ.

The following useful inequality has been obtained in [CS].
Theorem 1. Let W be a compact subset of C(X). Assume that ρ, W satisfy

(2). Then, for all ǫ > 0

(3) Probz∈Zm{ sup
f∈W

|Lz(f)| ≥ ǫ} ≤ N(W, ǫ/(8M))2e
− mǫ2

2(σ2+M2ǫ/3) .

Here σ2 := σ2(W ) := supf∈W σ2((f(x) − y)2). This theorem contains a factor
N(W, ǫ/(8M)) that may grow exponentially for classesW satisfying (1): N(W, ǫ) ≤
2(D/ǫ)1/r+1. We prove a stronger (in a certain sense) estimate than (3) un-
der assumption that W satisfies (1). For instance, in the case r > 1/2 we re-
place N(W, ǫ/(8M)) in an analogue of (3) by a constant C(M,D, r) indepen-
dent of ǫ. This strengthening of Theorem 1 pays off in improved estimates for
E(fz,W ) − E(fW ) when we do not assume that fρ ∈ W . The following result is
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essentially due to [CS] (see [DKPT]). Let W and ρ satisfy (1) and (2) then for
A ≥ A0(M,D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am− r
1+2r } ≥ 1 − e−c(M)A2m

1
1+2r

.

We prove in [KT1], for instance, for r > 1/2 that for W , ρ satisfying (1) and (2)
we have for A ≥ A0(M,D, r)

Probz∈Zm{E(fz,W ) − E(fW ) ≤ Am−1/2} ≥ 1 − e−c(M)A2

.

We also prove that one cannot improve the error estimate of order m−1/2 in the
setting with no assumptions on fρ.

It turns out that if we assume that fρ ∈ W we obtain significantly better
estimates. We prove in [KT1] the following estimate.

Theorem 2. Let fρ ∈ W and let ρ and W satisfy (1) and (2). Then there
exists an estimator fz such that for A ≥ A0(M,D, r)

Probz∈Zm{E(fz) − E(fρ) ≤ Am− 2r
1+2r } ≥ 1 − e−c(M)Am

1
1+2r

.
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The Electronic Schrödinger Equation — A Grand Challenge for
Numerical Mathematics

Harry Yserentant

The electronic Schrödinger equation describes the motion of electrons under
Coulomb interaction forces in the field of clamped nuclei and forms the basis
of quantum chemistry. The problem is that its solutions, the electronic wave-
functions, depend on 3N variables in the case of an atom or molecule with N
electrons. The direct numerical solution of the electronic Schrödinger equation
therefore represents a grand challenge. The talk is first concerned with the regu-
larity properties of the electronic wavefunctions that are compatible with the Pauli
principle, another basic principle of quantum mechanics. It is shown that these
solutions possess certain square integrable mixed weak derivatives of order up to
N + 1 and in this sense become smoother and smoother for a growing number
of electrons. This property is a possible point of attack for the development of
numerical methods. A construction of this type is presented.
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