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Introduction by the Organisers

The conference was motivated by the recent solutions of two longstanding ques-
tions. The first one is Kato’s square root problem, i.e. whether for an elliptic
operator in divergence form on L2(R

n) we have
∥∥L1/2u

∥∥ ≤ C ‖∇u‖ + C ‖u‖ for

u ∈ W 1
2 (Rn). After a long development over 40 years this was shown in a joint

effort by P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian.
For a new approach to this important result via Dirac operators and extensions of
it, see the abstracts of A. McIntosh and S. Keith. The second problem, attributed
to Brézis in the eighties, asks whether the Cauchy problem for every generator
of an analytic semigroup A in an Lq(Ω)-space with 1 < q < ∞ has maximal Lp-
regularity, i.e. does the solution y of the Cauchy problem y′ = Ay + f , y(0) = 0,
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satisfy ‖y‖W 1
p (R+,Lq) ≤ C ‖f‖Lp(R+,Lq). Recently G. Lancien and N.J. Kalton gave

counterexamples to this questions while L. Weis gave a characterization of maximal
Lp-regularity in terms of R-boundedness. This criterium has since been shown to
be useful in establishing maximal regularity for large classes of Cauchy problems
for elliptic differential operators with rather general coefficients and boundary val-
ues, e.g. Schrödinger operators with singular potentials and Stokes operators (see
the abstracts of M. Hieber, P. Kunstmann, J. Prüss and R. Schnaubelt). Applica-
tions of maximal regularity to non-linear differential equations were presented in
the talks of H. Amann and G. Simonett.

The two problems of Kato and Brézis share a common background in the math-
ematical methods employed in their solution, e.g. the H∞-functional calculus for
sectorial operators in Banach spaces, boundedness of singular integral operators
and square function estimates. Obviously, further progress will depend on an in-
depth study of these methods and their interrelations. The workshop contributions
featured some of the most recent progress in these directions.

N.J. Kalton used deep results from Banach space theory to crystallize the diffi-
cult perturbation theory of the H∞-functional calculus. Some of the randomiza-
tion techniques he used can be seen as an extension of the classical square function
estimates from Lp-spaces to general Banach spaces. This method also underlies
boundedness results for Fourier multiplier operators, Calderón-Zygmund opera-
tors and wavelet transforms for functions with values in a Banach space with
the UMD-property (see the abstracts of W. Arendt, O. Blasco, T. Hytonen and
C. Kaiser) and applications of those to spectral theory (A. Gillespie). Also in the
scalar-valued case several extensions of basic methods in the theory of singular
integral operators were presented, e.g. new spaces of BMO- and H1-type associ-
ated to a given operator (X. Duong), Calderón-Zygmund operators associated to
non-doubling measures (J. Garcia-Cuerva), bilinear pseudo-differential operators
(A. Nahmod) and optimal domains for convolution operators (W. Ricker). As so
often, new tools in harmonic analysis lead to new results for the H∞-functional
calculus of partial differential operators (M. Cowling, X. Duong).

Some of the talks reached beyond the circle of questions raised by the problems
of Kato and Brézis. They were closely connected to the main topics by a shared
methological background in spectral theory and harmonic analysis. Ch. Thiele dis-
cussed an approach to non-linear differential equations via the non-linear Fourier
transform. B. Jefferies and J. van Neerven described the connection between
spectral theory, square function estimates and stochastic integration on infinite
dimensional Banach spaces. S. Grivaux and Y. Latushkin gave applications of
spectral theory to instability and stability theorems for evolutionary systems. The
talks of of J. Eschmeier, M. Haase and F. Sukochev were focused on the functional
calculus and its applications in operator theory.

The varied background of the participants lead to a number of new collabo-
rations started during the workshop. Last but not least, the unique setting of
Oberwolfach and a week of beautiful sunshine contributed to a memorable and
successful meeting.
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Abstracts

Vector-valued multiplier theorems on Hölder and on Besov spaces

Wolfgang Arendt

We analyse operator-valued versions of the classical Marcinkiewicz theorem for
periodic multipliers on Hölder and Besov spaces. In contrast to the situation in
Lp, in these spaces the boundedness conditions of Marcinkiewicz- or of Michlin
type suffice; R-boundedness ist not needed, but higher order conditions may have
to be considered.

1. Periodic Hölder spaces

Let X be a Banach space, 0 < α < 1, and denote by

Cα(T, X) := {u : T → X : ‖u‖α <∞}
the periodic Hölder space where

‖u‖α := sup
t6=s

‖u(eit) − u(eis)‖
|t− s|α .

Let Y be a second Banach space and let Mn ∈ L(X,Y ) (n ∈ Z).

Definition. The sequence (Mn)n∈Z is a Cα-multiplier if for each u ∈ Cα(T, X)
there exists v ∈ Cα(T, Y ) such that

Mnû(n) = v̂(n) (n ∈ Z) ,

where û(n) =
∫
T

u(z)z−ndz denotes the n− th Fourier coefficient of u.

Then, by the uniqueness theorem and the closed graph theorem, there exists a
bounded operator T : Cα(T, X) → Cα(T, Y ) such that

(Tu)∧(n) = Mnû(n) (n ∈ Z)

for all u ∈ Cα(T, X).
We consider two conditions on the sequence M := (Mn)n∈Z which we call the

Marcinkiewicz conditions of order 1 and 2, respectively

(M1) ‖M‖1 := sup
n∈Z

(‖Mn‖ + |n| ‖Mn+1 −Mn‖) <∞

and

(M2) ‖M‖2 := ‖M‖1 + sup
n∈Z

(n2‖Mn+1 − 2Mn +Mn−1‖) <∞ .

Theorem 1. [ABB]. If condition (M2) is satisfied, then (Mn)n∈Z is a Cα-
multiplier.
This result holds for arbitrary Banach spaces, and it is proved in [ABB] by a direct
convolution estimate without using dyadic decomposition. An alternative way is
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described in the following section. If we interprete Mn+1 −Mn as the first deriv-
ative, then (M1) is analogous to Michlin’s condition on R (instead of T).

In fact, Marcinkiewicz considered the more general condition

(Mvar) sup
j≥0

∑

2j−1≤|k|≤2j

‖Mk+1 −Mk‖ <∞

which we call Marcinkiewicz’s variational condition. He showed in the scalar case
that this variational condition implies (Mn)n∈Z to be an Lp-multiplier for 1 < p <
∞. Clearly,

(M2) ⇒ (M1) ⇒ (Mvar) .

It is remarkable, that condition (Mvar) is not sufficient for (Mn)n∈Z being a
Cα-multiplier even in the scalar case [ABB]. The space Cα is a special Besov space
and in fact, one can characterize precisely for which Besov spaces Marcinkiewicz’s
classical result holds. This is the topic of the following section.

2. Multipliers on periodic Besov spaces

For each s ∈ R , 1 ≤ p , q < ∞ the periodic Besov space B2
p,q(T, X) is

defined via dyadic decomposition in the Fourier image with help of a partition
of unity. It depends on the three indices s, p, q but not on the choice of the
partition of unity up to some basic assumptions. We refer to [AB04a] for the
details. Bsp,q(T, X) is a space of distributions contained in Lp(T, X) if s > 0.
Moreover, Bmp,1(T, X) ⊂ W p

m(T, X) ⊂ Bmp,∞(T, X) for each m ∈ N. Hölder spaces
coincide with special Besov spaces,

Bs∞,∞(T, X) = Cs(T, X) (0 < s < 1) .

Theorem 2. [AB04a]. Let X,Y be a Banach spaces, s ∈ R, 1 ≤ p, q ≤ ∞. The
following assertions are equivalent:

(i) Each sequence (Mn)n∈Z ⊂ L(X,Y ) satisfying (Mvar) is a Bsp,q-multiplier.
(ii) X and Y are UMD-spaces and 1 < p, q <∞.

The proof is based on a suitable choice of the partition of unity.

It was Amann [Am] who dicovered that Michlin’s theorem holds for vector-
valued Besov spaces over R for arbitrary Banach spaces if Michlin’s condition of
order 2 is imposed (see Section 3). A similar result had been announced by Weis
[W01]. The above theorem is the periodic analogous result which is proved and
applied to periodic Cauchy problems in [AB04a]. As in Girardi-Weis [GW] for the
real line, also in the periodic case, condition (M2) may be replaced by the weaker
condition (M1) if X and Y have non-trivial Fourier type (see [AB04a]).
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3. Characterizations of Hilbert spaces

In the preceding section we saw that on Besov spaces it is of interest to consider
higher order Marcinkiewicz conditions. For Lp-multipliers the situation is differ-
ent. Pisier had discovered, as a consequence of Kwapien’s theorem, that bounded
lacunary sequences of operators are Lp-multipliers if and only if the underlying
space is a Hilbert space. Because of the recent interest in operator-valued mul-
tiplier theorems and their applications to evolution equations the situation was
analyzed in detail in [AB04b]. We formulate the result for multipliers on R con-
sidering merely the case where X = Y (and refer to the periodic case and the case
where X 6= Y to [AB02]).

Theorem 3. [AB04b]. Let X be a Banach space, 1 < p < ∞. The following are
equivalent:

(1) X is a Hilbert space;
(ii) for some 1 < p <∞ , m ∈ N each function M ∈ C∞(R,L(X)) satisfying

sup
x∈R

sup
ℓ=0,···m

‖(1 + |x|ℓ)M (ℓ)(x)‖ <∞

is an Lp(R, X)-multiplier;
(iii) for all 1 < p <∞ each M ∈ C1(R \ {0},L(X)) satisfying

sup
x 6=0

{‖M(x)‖ + ‖xM ′(x)‖} <∞

is an Lp(R, X)-multiplier.

Thus, on Banach spaces different from Hilbert spaces, in Weis’ multiplier the-
orem [W01] on Lp(R, X) R-boundedness is definitely needed even if higher order
Michlin conditions are considered. This contrasts the situation in Besov spaces.
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H∞-calculus for differential operators

Peer Christian Kunstmann

We present results on extrapolation and comparison for the H∞-calculus, which
address the following problem: Suppose that A is a sectorial operator in L2(Ω)
where, e.g., Ω ⊂ Rn is open, and that A has a bounded H∞-calculus in L2(Ω).
Under which conditions the realization of A in Lp(Ω) has a bounded H∞-calculus
for (suitable) p 6= 2?
In the first part we extrapolate using certain weighted norm bounds, which gener-
alize kernel estimates of Gaussian type. In the second part we compare fractional
domain spaces with those of another operator, which is already assumed to have
a bounded H∞-calculus.

Extrapolation: Let Ω ⊂ Rn and suppose that −A is the generator of a C0-
semigroup Tt in L2(Ω). Let m ≥ 1. It is not hard to see that the Gaussian
estimate

(1) |k(t, x, y)| ≤ Ct
n

2m exp

(( |x− y|2m
t

) 1
2m−1

)
,

where k(t, x, y) denotes the integral kernel of Tt, is the special case (p, q) = (1,∞)
of the following generalized Gaussian estimate

(2) ‖1B(x,t1/(2m))Tt1B(y,t1/(2m))‖Lp→Lq ≤ Ct
n

2m ( 1
p− 1

q ) exp

(( |x− y|2m
t

) 1
2m−1

)
.

The following theorem, obtained in joint work with Sönke Blunck ([1], [2]), gener-
alizes results on maximal Ls-regularity in [6], [3], and on the H∞-calculus in [5]
and [4]. It is the first result in this context that allows for a restricted range in
the Lp-scale.

Theorem 1. Let A be a sectorial operator in L2(Ω) of angle ω(A) < π/2. If
(Tt) := (e−tA) satisfies (2) for some 1 ≤ p < 2 < q ≤ ∞, then A is R-sectorial in
Lr(Ω), p < r < q, of angle ωR(Ar) = ω(A2)
If, in addition, A has an H∞-calculus in L2(Ω), then A has an H∞-calculus in
Lr(Ω), p < r < q, and the infimum ωH(Ar) of the angles equals the sectoriality
angle ω(A2) of the operator in L2.

The proof of R-sectoriality uses the following key estimate

(3) Nq,t1/(2m)(Ttf)(x) ≤ CMpf(x),

where Nq,ρg(x) = ρ−n/q‖g‖Lq(B(x,ρ)) and Mpf(x) = supρ>0Np,ρg(x) is the p-
maximal function (cf. [1]). The proof of the H∞-result relies on a weak type
(p, p)-criterion which uses bounds of the form (2) and a suitable replacement of
the well-known Hörmander condition to apply Calderon-Zygmund theory to non-
integral operators (cf. [2]). The result in [2] is the first to use Calderon-Zygmund
theory for operators which act boundedly only on a restriction of the Lp-scale, i.e.,
only on an interval I 6= (1,∞).
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Theorem 1 may be applied to operators in divergence form but also to operators
in non-divergence form. The main point is to establish (2) which is more easy
than to prove (1) and possible also in a number of cases where (1) does not hold.

Example 1. Uniformly elliptic operators in divergence form on Rn of order
2m < n, i.e., operators of the form

Au(x) =
∑

|α|=|β|=m

∂α
(
aαβ(x) (∂αu) (x)

)
,

where aαβ ∈ L∞(Rn,C) (cf. [1]). For this class, the indices p = 2n/(n + 2m),
q = 2n/(n− 2m) are known to be optimal.

Example 2. Schrödinger operators −∆ + V on Rn with singular potentials V ,
e.g., potentials from a pseudo-Kato class (cf. [1]). Here the indices p and q depend
on certain form bounds of the potential. which are also known to fail (1).

Comparison (joint work with N.J. Kalton and L. Weis [7]): We present an extrap-
olation result for the H∞-calculus which uses “comparison” of fractional domain
spaces of a given operator A with those of a simpler operator B, which is known
to have a bounded H∞-calculus.

Theorem 2. Let (X0, X1) be an interpolation couple of reflexive and B-convex
spaces. Assume that B has an H∞-calculus on X0 and X1, A is almost R-sectorial
on X0, X1 and there are α < 0 < β such that

(4) (X0)
·
α,A = (X0)

·
α,B, (X1)

·
β,A = (X1)

·
β,B.

Then A has an H∞-calculus on all complex interpolation spaces Xθ = [X0, X1]θ,
θ ∈ (0, 1).

Here, for a Banach space X and a sectorial operator C in X , the occurring spaces
(X)·γ,C are defined as (D(Cγ), ‖Cγ · ‖)∼, i.e., as completion of the fractional do-
main space for the homogeneous norm. The proof of this result relies on a new
Rademacher interpolation method which is tailor-made for the H∞-calculus: An
operator has a bounded H∞-calculus on a Banach space if and only if its fractional
domain spaces interpolate by Rademacher interpolation (cf. [7]).

Example 3. Theorem 2 may be used to reobtain boundedness of the H∞-calculus
for elliptic operators A of order 2m in non-divergence form on Rn whose highest
order coefficients are Hölder continuous: TakeB = 1+(−∆)m,X0 = L2(Rn), X1 =
Lp(Rn), and β = 1. B has a bounded H∞-calculus in Xj and the domains of A
and B are comparable in Xj. Moreover, due to the Hölder continuity assumption,

it is also possible to show R-sectoriality of A in the Bessel potential space H−γ
2

for some small γ > 0. This may be shown to yield the first comparison in (4) for
−γ/(2m) < α < 0 (cf. [7]).

For greater flexibility, we allow the operator A to act in a scale of spaces Y· which
are complemented in the spaces X· of the scale the operator B acts in. The
simplest case Xj = Yj , Pj = I gives back Theorem 2.
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Theorem 3. Let (X0, X1) be an interpolation couple of reflexive and B-convex
spaces with complemented subspaces (Y0, Y1) and associated projections P0, P1 com-
patible with the interpolation couple. Assume that B has an H∞-calculus on X0

and X1, A is almost R-sectorial on Y0, Y1 and there are α < 0 < β such that

(5) P0((X0)
·
α,B) = (Y0)

·
α,A, P1((X1)

·
β,B) = (Y1)

·
β,A.

Then A has an H∞-calculus on all complex interpolation spaces Yθ = [Y0, Y1]θ,
θ ∈ (0, 1).

With X0 = L2(Ω)n, X1 = Lp(Ω)n and Yj = PXj where P denotes Helmholtz
projection, Theorem 3 can be used to prove the following new result on the Stokes
operator.

Theorem 4. Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω ∈ C1,1. Then
the Stokes operator A = −P∆ has a bounded H∞-calculus on Lpσ(Ω) for any
1 < p <∞, with angle ωH(Ap) = 0.

Here Lpσ(Ω) = PLp(Ω)n. The proof is done by comparison with the Dirichlet
Laplacian B = −∆ on Lp(Ω)n, which is known to have an H∞-calculus for 1 <
p <∞. Theorem 4 generalizes results due to Y. Giga (∂Ω ∈ C∞) and A. Noll and
J. Saal (∂Ω ∈ C3).
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Lipschitz spaces and Calderón-Zygmund operators associated to
non–doubling measures

Jose Garcia-Cuerva

(joint work with A. Eduardo Gatto)

In the setting of a metric measure space (X, d, µ) with an n−dimensional Radon
measure µ, we show that Lipschitz spaces are preserved by Calderón-Zygmund
operators T associated to the measure µ. Also, for the Euclidean space Rd with an
arbitrary Radon measure µ, we give several characterizations of Lipschitz spaces
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on the support of µ, Lip(α, µ), in terms of mean oscillations involving µ. This
allows us to view the “regular ”BMO space of X. Tolsa as a limit case for α→ 0
of the spaces Lip(α, µ).

1. Calderón-Zygmund Operators

(X, d, µ) will be a metric measure space with the property

(1) µ(B(x, r)) ≤ Crn,

Lemma 1. For every γ > 0 and every r > 0 :
∫

B(x,r)

1

d(x, y)n−γ
dµ(y) ≤ Crγ and

∫

X\B(x,r)

1

d(x, y)n+γ
dµ(y) ≤ Cr−γ

• Lipschitz spaces f : X → C satisfies a Lipschitz condition of order β ∈]0, 1[
provided

(2) |f(x) − f(y)| ≤ Cd(x, y)β for every x, y ∈ X.

The smallest constant in inequality (2) will be denoted by ‖f‖Lip(β). The linear
space of all Lipschitz functions of order β, modulo constants, becomes, with the
norm ‖ ‖Lip(β), a Banach space, which we shall call Lip(β).

• A singular kernel on (X, d, µ) will be a measurable function K(x, y) on
X ×X \ {x = y} satisfying the following conditions:

(1) |K(x, y)| ≤ A1

d(x,y)n ,

(2) |K(x1, y) −K(x2, y)| ≤ A2
d(x1,x2)

δ

d(x1,y)n+δ for 2d(x1, x2) ≤ d(x1, y),

(3)
∣∣∣
∫
ε<d(x,y)<RK(x, y)dµ(y)

∣∣∣ ≤ B for all 0 < ε < R.

(4) lim
ε→0

∫
ε<d(x,y)<R

K(x, y)dµ(y) exists for µ−almost every point x.

• For K as above, we define the truncated kernels

Kε(x, y) = K(x, y)χ{d(x,y)>ε}(x, y).

• For f ∈ Lip (α), 0 < α < δ ≤ 1, we define

T̃εf(x) =

∫

X

(Kε(x, y) −K1(x0, y)) f(y)dµ(y)

• Finally, we can define the singular integral operator T̃ by

T̃ f(x) = lim
ε→0

T̃εf(x)

It follows from the properties of K(x, y) and Lemma 1 that the limit exists
µ−almost everywhere.

We can prove the following result

Theorem 1.1. Let K be a singular kernel as above and let T̃ be the corresponding

singular integral operator. Let 0 < α < δ ≤ 1. Then T̃ is a bounded operator on

Lip (α), if and only if T̃ (1) is constant.
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2. Characterization of Lipschitz spaces

µ will be a fixed Radon measure on Rd. All balls that we consider will be
centered at points in the support of µ.

• Let β be a fixed constant. A ball B is called β−doubling if

µ(2B) ≤ βµ(B).

Lemma 2. Let f ∈ L1
loc(µ). If β > 2d, then, for almost every x with respect to µ,

there exists a sequence of β−doubling balls Bj = B(x, rj) with rj → 0, such that

lim
j→∞

1

µ(Bj)

∫

Bj

f(y)dµ(y) = f(x).

Theorem 2.1. For a function f ∈ L1
loc(µ), the conditions I, II, and III below, are

equivalent

(I) There exist a constant C1 and numbers fB,one for each ball B, such that
these two properties hold: For any ball B with radius r

(3)
1

µ(2B)

∫

B

|f(x) − fB|dµ(x) ≤ C1r
α,

and for any ball U such that B ⊂ U and radius (U) ≤ 2r.

(4) |fB − fU | ≤ C1r
α,

(II) There is a constant C2 such that

(5) |f(x) − f(y)| ≤ C2|x− y|α

for µ−almost every x and y in the support of µ.
(III) For any given p, 1 ≤ p ≤ ∞, there is a constant C(p), such that for every

ball B of radius r, we have

(6)

(
1

µ(B)

∫

B

|f(x) −mB(f)|pdµ(x)

)1/p

≤ C(p)rα,

where mB(f) = 1
µ(B)

∫
B f(y)dµ(y) and also for any ball U such that B ⊂ U

and radius (U) ≤ 2r.

(7) |mB(f) −mU (f)| ≤ C(p)rα,

In addition, the quantities: inf C1, inf C2, and inf C(p) with a fixed p are equiv-
alent.

• The linear space of all Lipschitz functions of order α, with respect to µ,modulo
constants, becomes, with the norm inf C2 of Theorem 2.1, a Banach space, which
we shall call Lip(α, µ).

• It is easy to see that Lip(α, µ) coincides with the space of Lipschitz functions
of order α on the support of µ. By the extension theorem of Banach any Lipschitz
function of order α with respect to µ has an extension to Rd that is a Lipschitz
function of order α with an equivalent norm.
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• For 0 < α ≤ 1, a telescoping argument shows that (4) is equivalent to

(8) |fB − fU | ≤ C′
1radius(U)α

for any two balls B ⊂ U.
• If we further assume that µ is n−dimensional, we see that (8) is also equivalent

to

(9) |fB − fU | ≤ C′′
1KB,Uradius(U)α,

for any two balls B ⊂ U, where KB,U is the constant introduced by X. Tolsa ,
given by

KB,U = 1 +

NB,U∑

j=1

µ(2jB)

(2jr)n
,

with NB,U equal to the first integer k such 2kradius(B) ≥ radius(U). Indeed (9)
for comparable balls, that is, for radius(U) ≤ 2radius(B), reduces to (4) because,
in this case, KB,U is controlled by an absolute constant.

Note that (3) and (9) make sense also for α = 0 and the space defined by them
is the space RBMO(µ) of X. Tolsa. Therefore, the spaces Lip(α, µ), 0 < α ≤ 1
can be seen as members of a family containing also RBMO(µ).
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Optimal domains for convolution operators in Lp(G)

Werner J. Ricker

Let G be a compact abelian group with dual group Γ und µ be a finite regular

Borel measure on G. For p ∈ [1,∞) the convolution operator C
(p)
µ : f 7→ f ∗ µ is a

bounded linear operator of Lp(G) into itself. It always commutes with translations,

that is, it is a p-multiplier operator. The Lp(G)-valued set function m
(p)
µ : E 7→

C
(p)
µ (χ

E
) = χ

E
∗µ is σ-additive, i.e. it is a vector measure on the Borel σ-algebra of

G. Consequently, the domain space Lp(G) of C
(p)
µ can be continuously imbedded

into the space L1(m
(p)
µ ) of all m

(p)
µ -integrable functions, equipped with its mean

convergence topology, and the integration operator Iµ,p : f 7→
∫
G
fdm

(p)
µ is then an

extension of C
(p)
µ from Lp(G) to the larger domain space L1(m

(p)
µ ). The important
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feature of this extension is that L1(m
(p)
µ ) is the optimal lattice domain for C

(p)
µ .

That is, within the class of all Banach function spaces (based on G relative to
normalized Haar measure λ) with order continuous norm, containing Lp(G), and

to which C
(p)
µ can be extended as a bounded linear operator (still maintaining its

values in Lp(G)), the space L1(m
(p)
µ ) is the maximal one. This is a consequence

of some general results in [2].
The determination of the optimal domain and the extension of particular opera-

tors of analysis is an old problem. Consider a bounded linear operator T : C(K) →
C, with K a compact Hausdorff space. By the Riesz representation theorem T
has an integral representation with respect to some regular Borel measure ν on
K. Then T has a continuous linear extension to all spaces Lp(ν) with 1 ≤ p ≤ ∞,
say, and L1(ν) is the optimal one. In [4] the optimal domain for certain Sobolev
imbeddings, within the class of (rearrangement invariant) Banach function spaces,
is determined; see also [3] for further results in this direction. For the classical

Volterra operator V in Lp([0, 1]) given by V (f) : t 7→
∫ t
0
f(s) ds, the optimal do-

main space and the corresponding extended operator are identified in [7]. Other
classes of Volterra operators are treated in [1].

This talk (joint work with Prof. S. Okada) reports on our work in [6] concerning

the optimal domain and the extension of C
(p)
µ to its optimal domain, in the setting

of Lp(G) and for general finite regular Borel measures µ. For the special class of
measures of the form µ = gdλ with g ∈ L1(G) we refer to [5].

Theorem 1. Let 1 ≤ p < ∞ and µ be a (non-zero) finite regular Borel measure
on G. The following assertions hold.

(i) A Borel measurable function f : G → C belongs to the optimal domain

L1(m
(p)
µ ) of C

(p)
µ , if and only if,

∫

G

|f | · |ϕ ∗ µ̃| dλ <∞, ϕ ∈ Lp
′

(G),

where p−1 + (p′)−1 = 1 and µ̃ : E 7→ µ(−E) is the reflection of µ. Moreover,

‖f‖
L1(m

(p)
µ )

:= sup
{∫

G

|f | · |ϕ ∗ µ̃| dλ : ‖ϕ‖p′ ≤ 1
}
.

(ii) The natural inclusions

Lp(G)
J(p)

µ→֒ L1(m(p)
µ )

Λ(p)
µ→֒ L1(G)

are continuous, with the estimates

‖µ̂‖∞ ≤ ‖J (p)
µ ‖ ≤ |µ|(G)

and

‖χ
G
‖
L1(m

(p)
µ )

≤ ‖Λ(p)
µ ‖ ≤ ‖µ̂‖−1

∞

holding, where |µ| is the variation measure of µ and µ̂ is the Fourier-Stieltjes

transform of µ. Moreover, L1(m
(p)
µ ) is a translation invariant subspace of L1(G).
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(iii) The extension of C
(p)
µ to its optimal domain, namely the integration map

Iµ,p : L1(m
(p)
µ ) → Lp(G), has operator norm 1 and is given by

Iµ,p : f 7→
∫

G

f dm(p)
µ = f ∗ µ, f ∈ L1(m(p)

µ ).

Consider the space of measures

M0(G) := {µ a finite regular Borel measure on G with µ̂ ∈ c0(Γ)}.
For G infinite, it always contains L1(G) as a proper subspace and is itself a proper

subspace of all measures on G. It is known, for 1 < p < ∞, that C
(p)
µ : Lp(G) →

Lp(G) is compact if and only if µ ∈ M0(G). When is the extended operator

Iµ,p : L1(m
(p)
µ ) → Lp(G) compact? This can be described rather precisely via the

following result (where |m(p)
µ | denotes the variation measure of the vector measure

m
(p)
µ ).

Theorem 2. Let 1 < p < ∞ and µ be a (non-zero) finite regular Borel measure
on G. The following assertions are equivalent.

(i) The extension Iµ,p : L1(m
(p)
µ ) → Lp(G), of the operator C

(p)
µ , is compact.

(ii) There exists g ∈ Lp(G) such that µ(E) =
∫
E
g dλ, E ⊆ G Borel.

(iii) The Lp(G)-valued vector measure m
(p)
µ has finite variation.

(iv) The optimal domain L1(m
(p)
µ ) = L1(G) is as large as possible.

(v) L1(|m(p)
µ |) = L1(G).

(vi) L1(|m(p)
µ |) = L1(m

(p)
µ ).

(vii) There is a Bochner λ-integrable integrable function F : G → Lp(G) such
that

m(p)
µ (E) =

∫

E

F dλ, E ⊆ G Borel.

(viii) There is a Pettis λ integrable function H : G→ Lp(G) such that

m(p)
µ (E) =

∫

E

H dλ, E ⊆ G Borel.

It can happen that the optimal domain L1(m
(p)
µ ) = Lp(G), e.g. if µ is the Dirac

measure at some point of G (i.e. no genuine extension is possible).

Theorem 3. Let G be infinite and 1 < p <∞.

(i) If µ ∈M0(G) \ {0}, then Lp(G) ⊆ L1(m
(p)
µ ) is a proper (dense) inclusion.

(ii) The inclusion L1(m
(p)
µ ) ⊆ L1(G) is proper and dense whenever µ is not of

the form gdλ for some g ∈ Lp(G).

Question: For µ ≥ 0 it is known that

N (p)
µ :=

{
f ∈ L1(G) : |f | ∗ µ ∈ Lp(G)

}
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equals L1(m
(p)
µ ), and for arbitrary µ that N

(p)
|µ| ⊆ L1(m

(p)
µ ). Is it always the case

that N
(p)
|µ| = L1(m

(p)
µ )?
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Lp boundedness of pseudodifferential operators with operator valued
symbols and application

Pierre Portal

(joint work with Željko Štrkalj)

Given a UMD Banach space X , we consider pseudodifferential operators of the
form

Taf(x) =

∫

Rn

eix.ξa(x, ξ)f̂ (ξ)dξ,

where a is a (symbol) map from R2n to B(X) (the space of bounded linear oper-

ators acting on X) and f̂ denotes the Fourier transform of some (Schwartz class)
X-valued function. We look for classes of symbols a such that Ta extends to a
bounded operator on Lp(R

n;X) (for 1 < p < ∞). If X has finite dimension, this
is a classical problem in harmonic analysis (see chapters VI and VII of [S93]).
In the infinite dimensional setting the situation is, however, not well understood.
The case of x independent, scalar-valued symbols has been treated by Bourgain
in [B86] whereas the case of operator-valued Fourier multipliers had to wait until
the results of Weis in [W01]. With a dependancy in x results have been obtained
by Hieber and Monniaux (in [HM00]) under the additional assumption that X is
a Hilbert space. The general case has then been treated by Štrkalj in his PhD
thesis [St00]. The proof of his result was, however, rather involved and never pub-
lished. The purpose of the present work, which is joint with Željko Štrkalj is to
present a hopefully simpler proof of a similar result. The class of symbols under
consideration is the following.
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Definition 1. Let 0 ≤ δ < 1, 0 < r < 1, n ∈ N and m ∈ N. Consider a : R2n →
B(X). We say that

a ∈ S0
1,δ(r,m,X)

if the following hold.

(1) ∀α ∈ (Z+)n |α| ≤ m ∃Cα > 0 ∀(x, y) ∈ R2n

R({(1 + |ξ|)|α|∂αξ a(x+ ty, ξ) , ξ ∈ Rn , t ∈ R}) ≤ Cα,

(2) ∀α ∈ (Z+)n 0 < |α| ≤ m ∃Cα > 0 ∀(x, y) ∈ R2n ∀ξ ∈ Rn

‖∂αξ a(x, ξ) − ∂αξ a(y, ξ)‖ ≤ Cα|x− y|r(1 + |ξ|)δr−|α|.

In the above definition R(Φ) ≤ C means that Φ ∈ B(X) is R-bounded with
constant not greater than C. Our main result is then the following.

Theorem 2. Let X be a UMD space , 1 < p <∞, a ∈ S0
1,δ(r,m,X) and

m > max( 2n
1−δ , 2n+ 4), then Ta extends to a bounded operator on Lp(R

n;X).

As an application, we consider the question of Lp-maximal regularity (i.e. the
existence of a unique solution u ∈W 1,p([0, T ];X) such that t 7→ A(t)u(t) belongs to
Lp(0, T ;X)) of the following abstract parabolic problem, where (A(t), D(A(t)))t∈[0,T ]

is a family of generators of analytic semigroups.

(NACP )

{
u′(t) −A(t)u(t) = f(t) ∀t ∈ [0, T ],

u(0) = 0,

We make the following assumptions.

(AT ) ∃K > 0 ∃0 ≤ α < β ≤ 1 ∃φ ≤ ψ <
π

2
∀(t, s) ∈ [0, T ]2 ∀λ 6∈ Σψ,

‖A(t)R(λ,−A(t))(A(t)−1 −A(s)−1)‖ ≤ K
|t− s|β

1 + |λ|1−|α|
.

(RA) ∃φ ∈ (0,
π

2
) ∃M > 0 σ(A(t)) ⊂ Σφ ∀t ∈ [0, T ]

and R({(1 + |λ|)R(λ,−A(t)) ; λ 6∈ Σφ , t ∈ [0, T ]}) ≤M.

As a corollary of the above mentioned theorem, we then obtain the following.

Corollary 3. Let X be a UMD Banach space, 1 < p <∞ and
(A(t), D(A(t)))t∈[0,T ] be a family of operators satisfying (RA) and (AT). Then

(NACP) has Lp-maximal regularity.
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Spectral mapping theorems for holomorphic functional calculi

Markus Haase

In this talk we present some recently obtained results on spectral mapping
theorems of the type

(1) f(σ̃(A)) = σ̃(f(A)),

where A is a closed operator on a Banach space X and f is a meromorphic func-
tion such that f(A) is properly defined. The symbol σ̃(A) denotes the extended
spectrum

σ̃(A) :=

{
σ(A) if A is bounded

σ(A) ∪ {∞} if A is unbounded

of the operator A. This is a then a non-empty, compact subset of the Riemann
sphere C∞.

Although most of our results and proofs are generic, we stick to a particular
case for A and f . Namely, we require A to be a sectorial operator of angle ω
(0 ≤ ω < π) on X , by which we mean a closed operator A such that σ(A) ⊂ Σω
and

sup{‖λR(λ,A)‖ |λ ∈ C \ Σω′} <∞
for each ω < ω′ < π. (Here, Σω := {0 6= z ∈ C | | arg z| < ω} is the open sector of
angle 2ω symmetric with respect to the positive real axis.) The minimal ω with
this property is called the sectoriality angle and is called ω(A). For convenience
we also require A to be injective.

Since the late 1950’s for such operators a definition of the so-called fractional
powers Aα (α ∈ C) was known and Balakrishnan established the spectral map-
ping theorem σ̃(Aα) = σ̃(A)α for all α ∈ C\iR. Ten years later, namely in the late
1960’s, also a definition of the logarithm logA was given, and Nollau could show
the remarkable fact, that B := logA is a so-called strip type operator, i.e., has
spectrum in a horizontal strip {z | |Im z| ≤ ω} with its resolvent bounded outside
every larger strip. (We could show in [1] that the minimal strip height for log(A)
equals the sectoriality angle ω(A).) However, it remained open up to now, whether
also σ̃(logA) = log(σ̃(A)) holds.

The key to answer this question in the positive lies in setting up a whole func-
tional calculus for A. Take ω(A) < ϕ < π and let

E := H∞
0 (Σϕ) := {f : Σϕ −→ C hol. | ∃ s, C > 0 : |f(z)| ≤ Cmin{|z|s |z|−s}.

For e ∈ E define

e(A) :=
1

2πi

∫

Γ

e(z)R(z,A) dz
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where Γ = ∂Σω′ for (any) ω(A) < ω′ < ϕ. By the resolvent identity and Cauchy’s
theorem, this yields an algebra homomorphism

Φ := (e 7→ e(A)) : E −→ L(X)

with ψ(A) = A(1 + A)−2 for ψ(z) = z
(1+z)2 . This elementary calculus is now

extended to a larger class of functions. Define

Reg E := {e ∈ E | e(A) is injective} and

M(Σϕ) := {f : Σϕ −→ C∞ | f is meromorphic}
and call f ∈ M(Σϕ) regularizable, if there exists e ∈ Reg E such that also ef ∈ E .
(Recall that M(Σϕ) is a field and E is a subalgebra of it.) For regularizable f the
operator

(2) f(A) := e(A)−1(ef)(A)

is a closed operator and is independent of the chosen regularizer e. This gives a
mapping

M(Σϕ)A −→ {closed operators on X}
where we denote by M(Σϕ)A the set of all regularizable functions.

This construction is a generalization of a well-known procedure which goes
back to Bade and McIntosh. There and in most of the more recent accounts,
the regularizers are chosen to be rational functions, namely powers of the function
ψ defined above. Let us make the following remarks.

(1) By abstract reasoning one obtains the usual rules:

f(A) + g(A) ⊂ (f + g)(A) and f(A)g(A) ⊂ (fg)(A),

with “=” if g(A) is a bounded operator.
(2) Let λ ∈ C and f ∈ M(Σϕ)A. Then

1

λ− f(z)
∈ M(Σϕ)A ⇐⇒ λ− f(A) is injective,

and in this case (λ − f)−1(A) = (λ − f(A))−1. This shows that one can
detect the point spectrum of each operator f(A) by the functional calculus.

(3) One immediately obtains a definition of r(A) for each rational function
r = p

q in case that {q = 0} ∩ Pσ(A) = ∅.
(4) Our definition (2) is flexible in that one has certain freedom choosing a

regularizer for a particular function. Also, since not only holomorphic but
meromorphic functions are involved, one has access to each single spectral
point of A. This is the key to spectral mapping results.

In the paper [3] we have cast the above procedure in an even more abstract setting.
There one can find proofs for the above assertions and also related results.

Let us now come to the main spectral mapping results. The difficulty in obtain-
ing a result of the form (1) lies in the fact that the function f is not necessarily

defined on a neighborhood in C∞ of Σω
C∞

. (Otherwise one could reduce the
question to the Dunford-Riesz calculus where the Spectral Mapping Theorem is
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known to hold.) Hence the set C := {0,∞} ∩ σ̃(A) of critical points needs special
consideration. However, if we disregard these points for a moment, we obtain an
inclusion which holds without further restrictions.

Theorem 1.(H. 2004) Let f ∈ M(Σϕ)A. Then f(σ̃(A) \ C)
C∞ ⊂ σ̃(f(A)).

To obtain a “full” spectral mapping theorem, one has to require not only that
f should be defined, i.e., have limits, at the critical points but rather that these
limits are approached “fast enough”.

Theorem 2. (H. 2004) Let f ∈ M(Σϕ)A have limits at the points of C which
are approached “fast enough”. Then f(σ̃(A)) = σ̃(f(A)).

The exact meaning of “fast enough” differs for both spectral inclusions. For
“⊃” one only has to require a limit c such that f − c is still integrable with respect
to |dz|/|z|. For the inclusion “⊂” we have to require an “almost logarithmic”
convergence rate. Polynomial convergence would suffice in any case.

Let us browse through some examples. Theorem 2 gives us the (well-known)
equalities

σ̃(Aα) = σ̃(A)α (α ∈ C \ iR) and

σ̃(e−tA) = e−tσ̃(A) (t > 0, ω(A) < π/2).

Unfortunately, the case of the logarithm is not covered by Theorem 2. However,
one can set up a functional calculus for strip type operators (as in [1]) and prove an
inclusion theorem like Theorem 1 also for this calculus. Since one has (ez)(logA) =
A one obtains

σ̃(log(A)) = log(σ̃(A))

from these two inclusion theorems.

Finally, we remark that in case f shows wild behaviour in the critical points C,
even a “weak” spectral mapping theorem may fail. (This corresponds to the failing
of a weak spectral mapping theorem for semigroups.) Namely by using Zabczyks
example one can find a sectorial operator A of angle 1 on a Hilbert space H , having
even a bounded H∞-calculus, such that for f(z) := zi one has

f(σ̃(A) \ C) ⊂ {|z| ≤ 1}, but σ(Ai) ∩ {|z| = e} 6= ∅.
Proofs of Theorem 1 and Theorem 2 as well as related results and references

can be found in [2]. For more information on holomorphic functional calculi, see
[4].
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Spectral Theory in Banach Spaces and Harmonic Analysis 1899

Basic analytic questions on the nonlinear Fourier transform

Christoph Thiele

(joint work with Terence Tao)

In harmonic analysis, one studies continuity and mapping properties of opera-
tors such as the Fourier transform in various function spaces. We discuss analogues
of some basic mapping properties of the Fourier transform for certain nonlinear
variants of the Fourier transform that are sometimes referred to as scattering trans-
forms. A series of articles by Beals and Coifman from the 1980s starting with [1]
is a good precedent for the motivation and type of analysis we propose.

Scattering transforms come in many facets, and the algebraic and geometric
part of the subject alone occupies a vast literature. But a recent surge of papers
such as [4], [9], [7], and [5] on basic analytic properties shows that these properties
are not fully understood even for simple models.

We restrict attention to one simple model of the scattering transform. Assume
F is a sufficiently nice function on the real line and consider the following initial
value problem with real parameter k:

g′(x) = g(x)F (x)e−2πixk

g(−∞) = 1 .

This initial value problem can be explicitly solved as

log(g(x)) =

∫ x

−∞

F (y)e−2πiyk dy

where on the right hand side we have partial Fourier integrals. Thus log(g(∞)) =

F̂ (k) is the Fourier transform of F . Now consider a matrix valued differential
equation

(1) G′(x) = G(x)

(
0 F (x)e−2πikx

F (x)e2πikx 0

)

G(−∞) =

(
1 0
0 1

)

The solution to this differential equation can no longer be expressed as an explicit
integral, because the coefficient matrices for different x do not commute. We define
the nonlinear Fourier transform of F to be

︷︸︸︷
F (k) = G(∞) =

(
a(k) b(k)

b(k) a(k)

)

where it is easy to see that G(∞) has the structure claimed here.
Using Picard iteration, one obtains a multilinear expansion of the functions

a and b which obviously depend nonlinearly on F . One obtains that in linear
approximation a is approximated by the constant 1 and b by the linear Fourier

transform of F . This is further justification for calling
︷︸︸︷
F the nonlinear Fourier

transform of F .
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The first order system (1) is equivalent to a second order scalar differential
equation. One can choose this equation to be the time independent Schrödinger
equation with potential F 2 − F ′ and energy −k2. In this context the functions
1/a and b/a become the classical transmission and reflection coefficients of the
Schrödinger operator, which manifests the connection to scattering theory.

The following analogues of classical estimates for the Fourier transform are
known.

Nonlinear Riemann Lebesgue (a denotes the first entry in the matrix
︷︸︸︷
F ):

‖
√

log |a|‖∞ ≤ C‖F‖1

Nonlinear Hausdorff Young for 1 < p < 2

(2) ‖
√

log |a|‖p′ ≤ Cp‖F‖p
Nonlinear Plancherel:

(3) ‖
√

log |a|‖2 = ‖F‖2

The first inequality follows easily from Gronwall’s inequality. The second in-
equality was only recently proved though not explicitly stated by M. Christ and A.
Kiselev in [4]. The Plancherel identity follows from an argument using a contour
integral which has been known for a long time. In linear approximations these
conjectures become the corresponding classical (in)equalities, safe for the value of
the constants.
The first two inequalities extend to hold for the maximal function supx

√
log |a(k, x)|

where a(k, x) is the diagonal element of the solution G(x) of (1). However, the
inequality in the limiting case p = 2 remains unknown:
Conjecture 1:

‖ sup
x

√
log |a(., x)|‖2 ≤ C‖F‖2

This conjecture is a nonlinear variant of Carleson’s theorem [2]. With C. Mus-
calu and T., Tao, the author has proved a Walsh analogue of a slightly weaker
form (weak type estimate) of this theorem [6].

Another interesting question is
Conjecture 2: The constant Cp in (2) can be chosen uniformly as p tends to 2.

In the linear case such a statement would follow from the endpoint estimates and
an interpolation argument, but in the nonlinear situation no valid interpolation
argument is known.

While an isometric identity such as (3) in the linear setting implies injectivity of
the Fourier transform, the nonlinear Fourier transform turns out not to be injective
on L2(IR) (A. Volberg and P. Yuditskii, [9]). This raises the question of describing
the fibers of the nonlinear Fourier transform. In joint work with T. Tao the author
has worked out completely the case of rational functions a and b ([8]).

If one considers only functions F supported on the right half line, thus restricts
the nonlinear Fourier transform to a map from L2([0,∞), then it is injective and
indeed bicontinuous in an explicit topology on the target space (J. Sylvester and
D. Winebrenner, [7]). This target space is a nonlinear variant of a Hardy space.
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Similarly there is a conjugate nonlinear Hardy space, which is the nonlinear Fourier
transform of L2([−∞, 0]). A general function in L2(IR) can be written as the sum
of a function F− supported on the left half line and a function F+ on the right
half line. Between the relevant Fourier transforms one has the simple identity

(
a b

b a

)
=

(
a− b−
b− a−

)(
a+ b+
b+ a+

)

This is a multiplicative analogue of the decomposition of L2(IR) into Hardy space
and conjugate Hardy space. However, as follows from the discussion above, for
given left hand side the multiplicative splitting is not necessarily unique. The
problem of decomposition of a matrix function into the product of two functions,
each of which have some additional holomorphicity conditions, is called a Riemann
Hilbert problem. Understanding non-uniqueness of the Riemann Hilbert problem
is equivalent to understanding non-uniqueness of the inverse nonlinear Fourier
transform.

A motivation for understanding the nonlinear Fourier transform comes from
the study of integrable nonlinear partial differential equations. Just as the linear
Fourier transform can be used to solve constant coefficient linear PDE, the nonlin-
ear Fourier transform can be used to solve certain nonlinear PDE. As an example
we discuss the Cauchy problem for the modified Korteweg de Vries equation, which
is an equation for a function F (t, x) in a time variable t and a one dimensional
space variable x:

Ft = Fxxx+ 6F 2Fx

F (0, x) = F0(x)

A formal solution to this problem is given as follows: If (a(k), b(k)) is the nonlinear
Fourier transform of F0, then

(a(k), e8ik
3tb(k))

is the nonlinear Fourier transform of F (t, .). Thus modulo ability of taking and in-
verting the nonlinear Fourier transform, there is an explicit solution to the Cauchy
problem for the modified Korteweg de Vries equation.

The fact that the nonlinear Fourier transform does not behave well in L2(IR)
has recently been extended by Colliander, Christ, and Tao to the theorem that
mKdV is not well posed in L2(IR) in the sense that the solution map from initial
data to data at time t is not uniformly continuous in L2(IR) [3].

A more detailed discussion of these topics will appear in the Park City Mathe-
matics Series 2003, [8].
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A q-variation functional calculus for power-bounded operators on
certain UMD spaces

Alastair Gillespie

(joint work with Earl Berkson)

We report on some recent work concerning the development of a functional
calculus for an invertible operator U on a UMD Banach space X for which

c ≡ sup
n∈Z

‖Un‖ <∞.

This involves the Marcinkiewicz q-classes Mq(T), which are defined as follows.
Let {sk}k∈Z be the dyadic points in the interval (0, 2π) defined by

sk = 2k−1π (k ≤ 0), sk = 2π − 2−kπ (k > 0),

and let {∆k}k∈Z be the dyadic arcs of the unit circle, given by

∆k = {eix : x ∈ [sk, sk+1]}.
For 1 ≤ q <∞ and ϕ : T → C, define the q-variation varq(ϕ,∆k) by

varq(ϕ,∆k) = sup

{
N∑

n=1

|ϕ(eixn−1) − ϕ(eixn)|q
}1/q

,

where the supremum extends over all partitions

sk = x0 < x1 < · · · < xN = sk+1

of [sk, sk+1]. The Marcinkiewicz q-class Mq(T) is defined as the class of all func-
tions ϕ : T → C such that

‖ϕ‖Mq(T) ≡ sup
z∈T

|ϕ(z)| + sup
k∈Z

varq(ϕ,∆k) <∞.
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It is readily seen that, with pointwise algebraic operations and norm ‖ · ‖Mq(T),
Mq(T) is a Banach algebra. Note that M1(T) is the usual class of Marcinkiewicz
multipliers on T. Also, let BV (T) denote the Banach algebra of all functions
ϕ : T → C of bounded variation, with norm

‖ϕ‖BV (T) = sup
z∈T

|ϕ(z)| + var1(ϕ̃, [0, 2π]),

where ϕ̃(λ) = ϕ(eiλ) for 0 ≤ λ ≤ 2π. For 1 < q1 < q2 <∞, we have

BV (T) ⊂ M1(T) ⊂ Mq1(T) ⊂ Mq2(T),

with each inclusion norm-contractive.

It was shown in [5] that, given an invertible operator U on a UMD space X
such that

c ≡ sup
n∈Z

‖Un‖ <∞,

there is a projection-valued function E(·) : [0, 2π] → B(X) (with certain natural
properties) such that U has a spectral representation

U =

∫ ⊕

[0,2π]

eiλ dE(λ).

Operators with a spectral representation of the above form (whether or not power-
bounded) are called trigonometrically well-bounded and were introduced in [1].
They always have a continuous BV (T) functional calculus given by

ϕ→ ϕ(U) ≡
∫ ⊕

[0,2π]

ϕ(eiλ) dE(λ) (ϕ ∈ BV (T)).

Here,
∫ ⊕

[0,2π]
ϕ(eiλ) dE(λ) denotes

ϕ(1)E(0) +

∫ 2π

0

ϕ(eiλ) dE(λ),

the integral existing in the strong operator topology as a Riemann-Stieltjes inte-
gral. (For a detailed discussion of this type of integration, see [7] or the abbreviated
account in [2].)

In later developments, using Bourgain’s vector-valued version of the Marcinkiewicz
multiplier theorem for UMD spaces, it was shown in [3] that, given an invertible
operator U on a UMD space X for which

c ≡ sup
n∈Z

‖Un‖ <∞,

there is an M1(T) functional calculus

ϕ→ ϕ(U) =

∫ ⊕

[0,2π]

ϕ(eiλ) dE(λ)
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with norm at most c2KX , where KX is a constant depending only on the space
X . Furthermore, the Coifman-Rubio de la Francia-Semmes multiplier theorem [6]
was used to show in [4] that when, in particular, X is a closed subspace of some
space Lp(µ), 1 < p < ∞, 1 ≤ q < ∞ and |p−1 − 2−1| < q−1, U has an Mq(T)-
functional calculus, given by the same integral formula, with norm at most c2Kp,q.
In the present talk, we show that a similar result holds when U acts on a member
of a class I of UMD spaces. This class is defined as those (necessarily UMD)
spaces X for which there exists a compatible couple X0 and X1 for Calderón’s
complex method of interpolation, with X0 a Hilbert space and X1 a UMD space,
such that X is isomorphic as a Banach space to a subspace an intermediate space
[X0,X1]t for some t in the range 0 < t < 1. The class I contains all Lp spaces and
the von Neumann-Schatten ideals Cp for 1 < p <∞, as well as every UMD lattice
of measurable functions on a σ-finite measure space. Whether or not every UMD
space is in fact an intermediate space of the above form appears to be unknown.
The main result presented in this talk is as follows.

Theorem. Let X be a closed subspace of an intermediate space [X0,X1]t as above
and let U be an invertible operator on X such that c ≡ supn∈Z ‖Un‖ <∞, so that

U has a spectral representation U =
∫ ⊕

[0,2π]
eiλ dE(λ). Then, for each q in the

range 1 ≤ q < t−1, there is a constant KX,q such that U has an Mq(T) functional
calculus given by

ϕ→ ϕ(U) ≡
∫ ⊕

[0,2π]

ϕ(eiλ) dE(λ)

and satisfying ‖ϕ(U)‖ ≤ c2KX,q‖ϕ‖Mq(T) for ϕ ∈ Mq(T).

The proof of this result entails establishing a vector-valued Mq(T) multiplier the-
orem for [X0,X1]t and then using a transference argument. Notice that the result
implies that, for 1 < p < ∞ and 1 ≤ q < ∞, every invertible power-bounded
operator on Cp has an Mq(T) functional calculus whenever |p−1 − 2−1| < (2q)−1.
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Function spaces associated with operators with kernel bounds

Xuan Thinh Duong

This lecture presents some recent results on function spaces associated with
operators with kernel bounds. It is based on the joint works [ADM],[DY1],[DY2]
of the author with Pascal Auscher, Alan McIntosh, and Lixin Yan.

The classical Hardy spaces and BMO spaces on Rn can be represented through
the Laplacian (−∆) on Rn. They are, respectively, the natural substitutes for the
spaces L1(Rn) and L∞(Rn) in the theory of Calderón-Zygmund singular opera-
tors. However, when we study singular operators whose kernels do not possess the
required smoothness of kernels of Calderón-Zygmund operators such as Hölder con-
tinuity or the Hörmander (almost L1) condition, then the classical Hardy spaces
and BMO spaces are not necessarily the most suitable spaces for the study of these
operators.

Let L be a linear operator acting on L2(Rn). We assume the following condi-
tions:

(i) L generates a bounded analytic semigroup e−tL on L2(Rn);
(ii) The semigroup e−tL has a kernel pt(x, y) which satisfies the upper bound

|pt(x, y)| ≤ ht(x, y) = t−n/mg(
|x− y|
t1/m

)

in which m is a positive constant and g is a positive, bounded, decreasing function
satisfying

lim
r→∞

rn+ǫg(r) = 0

for some ǫ > 0;
(iii) L has a bounded holomorphic functional calculus on L2(Rn). For the defi-

nition and properties of operators with a bounded holomorphic functional calculus
on L2, we refer reader to [CDMY].

We now define the Hardy space and the BMO space associated to the operator
L as follows.

Definition 1: We define the area integral function of a function u by

Au(x) =

{∫

Γ(x)

|tLe−tLu(y)|2 dydt
tn+1

}1/2

where Γ(x) is the cone of vertex x given by Γ(x) = {(y, t) ∈ Rn× [0,∞) : d(x, y) ≤
t}.

The Hardy space H1
L(Rn) is defined by

H1
L(Rn) = {f ∈ L1(Rn) : ||f ||H1

L
= ||Af ||L1(Rn) <∞}.

Definition 2: We denote

M = {f ∈ L2
loc(R

n) :

∫

Rn)

|f(x)|
1 + |x|n+ǫ

dx <∞}.
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The space BMOL(Rn) is defined as the set of all functions f ∈ M such that

||f ||BMOL = sup
1

|B|

∫

B

|f(x) − e−r
m
BLf(x)|dx <∞

where the supremum is taken on all the balls B.
We can show the following properties.
Theorem 3:
(a) When L is the Laplacian, the Hardy space H1

L(Rn) and the BMOL(Rn)
space coincide with the classical Hardy space and BMO space, respectively.

(b) Assume that T is a linear operator which is bounded from Lp(Rn) to Lp(Rn)
for some p, 1 < p ≤ ∞.

(i) If T is also bounded from H1
L(Rn) to L1(Rn), then T is bounded from

Lq(Rn) to Lq(Rn) for all q, 1 < q ≤ p.
(ii) If T is bounded from L∞(Rn) to BMOL(Rn), and p <∞, then T is

bounded from Lq(Rn) to Lq(Rn) for all q, p ≤ q <∞.
(c) The space BMOL(Rn) is the dual space of H1

L∗(Rn) where L∗ is the adjoint
operator of L.

For the proofs of the Theorem 3 and other properties of the Hardy spaceH1
L(Rn)

and the BMO space BMOL(Rn) such as the molecular decomposition and John-
Nirenberg inequality, we refer the reader to [ADM], [DY1] and [DY2].
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T 1 and Tb theorems in UMD spaces

Tuomas Hytönen

(joint work with Lutz Weis)

Let T be a linear operator from S (Rn) to S ′(Rn) and K(x, y) a locally inte-
grable function on Rn × Rn minus the diagonal. We say that K is the kernel of
T if Tf(x) =

∫
K(x, y)f(y)dy for all f ∈ D(Rn) and almost every x outside the

support of f .
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K is said to satisfy the standard estimates if, for some 0 < γ ≤ 1,

|x− y|nK(x, y) is bounded on x 6= y,

|x− y|n+γK(x, y) −K(x′, y)

|x− x′|γ is bounded on 0 <
|x− x′|
|x− y| <

1

2
, and

|x− y|n+γK(x, y) −K(x, y′)

|y − y′|γ is bounded on 0 <
|y − y′|
|x− y| <

1

2
.

We say that T is a Calderón-Zygmund operator if it has a kernel K which
satisfies the standard estimates.

Denote A r
h f := r−n/2f(r−1(· − h)). T is said to have the weak boundedness

property if 〈A r
h ψ, T (A r

h φ)〉 is bounded when the variables range over r > 0, h ∈
Rn, and all φ, ψ in a bounded subset of D(Rn).

If T is a Calderón-Zygmund operator, the remarkable T 1 theorem of G. David
and J.-L. Journé [2] states that T is bounded in the norm of L2(Rn) if and only if
each of the following three conditions is satisfied: (i) T has the weak boundedness
property, (ii) T 1 ∈ BMO(Rn), and (iii) T ′1 ∈ BMO(Rn).

Here the objects T 1 and T ′1 can be given a meaning as distributions mod-
ulo constants. The classical theory shows that a Calderón-Zygmund operator is
bounded on L2(Rn) if and only if it is bounded on Lp(Rn) for all 1 < p <∞.

Although the conditions of the T 1 theorem are necessary and sufficient, it is
sometimes not feasible in practice to check directly whether T 1 ∈ BMO(Rn) and
T ′1 ∈ BMO(Rn) for some operators (such as the Cauchy integral on a Lipschitz
graph). To overcome this problem, David, Journé and S. Semmes [3] proved a
more general Tb theorem, in which the rôle played by the constant function 1 in
T 1 was taken by an arbitrary para-accretive function b on Rn. The notion of para-
accretivity generalizes that of accretivity, which simply requires that Re b(x) ≥ δ >
0 for a.e. x ∈ Rn.

One can equally well consider an operator T from S (Rn) to the operator-
valued distribution space S ′(Rn,L (X)), where X is a Banach space, and having
an L (X)-valued kernel K(x, y) in the same sense as above. Then one may define
the action of T on X ⊗ S (Rn) (a dense subspace of Lp(Rn, X) for p < ∞) by
〈ψ, T (x ⊗ φ)〉 := 〈ψ, Tφ〉x, and inquire about its boundedness in the norm of
Lp(Rn, X) for 1 < p <∞ . There now exist even two approaches to a T 1 theorem
for such operators for a UMD space X .

The first one, based on an investigation of T on the Haar system and a decom-
position of the operator into pieces which can be related to martingale transforms,
was devised by T. Figiel [4] already in the 80’s. He considers only scalar-valued
kernels K; however, incorporating the recent R-boundedness techniques into his
method, one can also use it to obtain an operator-valued version of the result.
The other, Fourier-analytic approach, which was directly designed to handle also
operator-valued kernels, was more recently invented by L. Weis and myself [6].

For scalar-valued kernels K, Figiel showed that the T 1 theorem generalizes to
UMD spaces word by word: If T is a Calderón-Zygmund operator, X is a UMD
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space and 1 < p <∞, then T is bounded in the norm of Lp(Rn, X) if and only if
T satisfies the weak boundedness property and T 1, T ′1 ∈ BMO(Rn).

As for the operator-valued setting, in view of the principle that the way of gen-
eralizing classical theorems to Banach spaces is to replace boundedness conditions
by R-boundedness, we define the standard R-estimates for an L (X)-valued ker-
nel K by replacing every occurrence of the word “bounded” in the definition of
the standard estimates by “R-bounded”. We also define the weak R-boundedness
property of T by modifying the definition of the weak boundedness property in a
similar way.

The following special T 1 theorem is proved in [6]: Let X be a UMD space and T
a Calderón-Zygmund operator whose L (X)-valued kernel satisfies the standardR-
estimates. Let further T 1 = 0 = T ′1. If T has the weak R-boundedness property,
then it is bounded in the norm of Lp(Rn, X) for all 1 < p < ∞. If X also enjoys
Pisier’s property α, then we even have a necessary and sufficient condition as
follows: The collection (A r

h )′TA r
h , where r > 0 and h ∈ Rn, is R-bounded on

Lp(Rn, X) if and only if T satisfies the weak R-boundedness property.
Obtaining a full T 1 theorem is then mainly a question of boundedness of the

paraproduct operators P (g, ·), where g = T 1 and g = T ′1; however, this is a del-
icate problem already in infinite-dimensional Hilbert spaces. A counterexample
of F. Nazarov, S. Treil and A. Volberg [7] shows that the natural necessary con-
dition [g(·)x ∈ BMO(Rn, X) uniformly for x ∈ BX , the unit ball of X ] is not
sufficient in general. We have shown in [6] that a sufficient condition is obtained
by requiring that g ∈ BMO(Rn, U), where U →֒ L (X) is a UMD space such that
BU is an R-bounded subset of L (X) (and actually somewhat weaker but more
technical assumptions would do); however, it is unclear how far this is from what
is necessary.

I have also considered an operator-valued Tb theorem in [5], using a combination
of ideas from Figiel’s martingale approach to the vector-T 1 theorem, and from
R. Coifman and S. Semmes’ new proof (found in [1]) of the scalar-Tb theorem.
The idea is to replace the Haar system by a different martingale-like basis of
L2(Rn), which is carefully chosen in dependence on the particular para-accretive
function b. Again, one obtains the Lp(Rn, X)-boundedness of T (for X UMD
and 1 < p < ∞) under the assumptions of the standard R-estimates and the

weak R-boundedness property, provided that Tb = 0 = T ′b̃ for two para-accretive
functions b and b̃. More generally one can allow the membership of Tb and T ′b̃ in
appropriate BMO-type spaces, just like above.
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Perturbing the H∞−calculus

Nigel Kalton

(joint work with Lutz Weis)

Let X be a complex Banach space and suppose A is a sectorial operator on X .
Suppose A admits an H∞−calculus for some sector Σφ = {z : | arg ζ| < φ}. Next
suppose that B is another sectorial operator such that the domain of B coincides
with the domain of A and one has equivalence of A and B in the sense that

(1) ‖Ax‖ ≈ ‖Bx‖ x ∈ Dom(A).

It is known from an example of McIntosh and Yagi that these hypotheses do not
imply that B will necessarily also have an H∞−calculus (for some sector) [5]. On
the other hand Auscher, McIntosh and Nahmod [1] showed that if X is a Hilbert
space and one additionally supposes that Dom (A−1) = Dom (B−1) and

(2) ‖A−1x‖ ≈ ‖B−1x‖ x ∈ Dom (A−1)

then, indeed B must have an H∞−calculus.
This result can be generalized to arbitrary Banach spaces if one introduces the

concept of an almost Rademacher sectorial operator. We say that B is almost
Rademacher sectorial if {λB(λ − B)−2} is Rademacher-bounded outside some
sector Σφ. We then can let ω̃R(A) be the infimum of all angles for which this
condition holds. Similarly we let ωH(B) be the infimum of all φ so that B has an
H∞(Σφ)−calculus.

Theorem 1. Let A be a sectorial operator on a complex Banach space X which
admits an H∞−calculus and suppose B is another sectorial operator satisfying (1)
and (2). Then B admits an H∞-calculus if and only if B is almost Rademacher
sectorial and ωH(B) = ω̃R(B).

See [3] and [4] for two approaches to results of this type, and some generaliza-
tions. Let us say that B is a compact perturbation of A if B = A + KA where
K : X → X is a compact operator. Then the assumption of almost Rademacher
sectoriality on B can be relaxed:
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Theorem 2. Let A be a sectorial operator on a complex Banach space X which
admits an H∞−calculus and suppose B is a sectorial operator which is a compact
perturbation of A and satisfies (1) and (2). Then B admits an H∞-calculus (for
some angle).

It is however desirable to have theorems where one relaxes (2) and assumes only
(1). Since counterexamples exist in this setting, one needs additional assumptions
on B. These conditions can of course involve A. For example see the perturbation
result in [2].

If we write B = (1+T )A one can ask what assumptions on the bounded operator
T will suffice, independent of the choice of A. In fact a rather complete answer
can be given to this problem.

Let T be an operator on a Hilbert space H. We recall the singular values of T
are denoted by sn(T ). We define I as the ideal of operators T so that

(3)
∞∑

n=1

sn(T )

n
<∞.

This ideal is dual to the well-known Matsaev ideal. Note that every T ∈ I is
compact if sn(T ) = O((log(n+ 1))−1−ǫ then T ∈ I.

Theorem 3. Let H be a Hilbert space and suppose T ∈ I. Suppose A is
a sectorial operator with an H∞−calculus and that B = A + TA is a sectorial
operator. Then B admits an H∞−calculus.

The role of the ideal I is connected with the lower triangular projection (respect
to some fixed orthonormal basis). It is a classical result of M.G. Krein that the
lower triangular projection maps the trace-class into the Matsaev ideal (see [6]
for a recent proof) and dually also maps I into B(H). Conversely if T has the
property that Theorem 3 holds for every choice of A then the lower-triangle of
T is bounded. This shows the result is essentially best possible. In particular
compact perturbations do not preserve the H∞−calculus (unless we also assume
(2)).

To extend this result to arbitrary Banach space involves some loss of precision.
We define the approximation numbers of T by

an(T ) = inf{‖T − F‖ : rank (F ) < n}.

Theorem 4.Let X be a complex Banach space and suppose A is a sectorial
operator admitting an H∞−calculus. Let T : X → X be an operator satisfying the
condition:

∞∑

n=1

an(T ) logn

n
<∞.

Then if B = A+ TA is a sectorial operator, B also admits an H∞−calculus.
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Ergodic properties of measure-preserving bounded linear operators
and unimodular point spectrum

Sophie Grivaux

(joint work with Frédéric Bayart)

We report here on some recent joint work with Frédéric Bayart (Université
Bordeaux 1, France). The results presented here are taken out of the two preprints
[2] and [3].

1. Introduction

The main topic of this report is hypercyclicity and frequent hypercyclicity of
bounded operators on Banach spaces. In what follows, we will denote by X a
separable infinite dimensional Banach space, and by T a bounded operator on X .
The operator T is said to be hypercyclic if there exists a vector x in X whose orbit
Orb(x, T ) = {T nx;n ≥ 0} under the action of T is dense in X . Any hypercyclic
operator is of course cyclic, and a simple Baire Category argument shows that T
is hypercyclic if and only if it is topologically transitive, i.e. for every pair (U, V )
of non empty open subsets of X , there exists an integer n such that T−n(U) ∩ V
is non empty. In particular the set of hypercyclic vectors for a given hypercyclic
operator is a dense Gδ subset of X .

The notion of hypercyclicity is connected to the Invariant Subset Problem (T
has no non trivial invariant closed set if and only if every non zero vector is
hypercyclic for T ). For instance, the fact that every separable infinite dimensional
space supports a hypercyclic operator ([1]) can be used to show the following ([7]):

– any normed space of countable algebraic dimension supports an operator with
no non trivial invariant closed set.

– any dense set {vn;n ≥ 0} of linearly independent vectors of a Banach space
X is the orbit of the first vector v0 under the action of some bouded operator T
on X : {T nv0;n ≥ 0} = {vn;n ≥ 0}.
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Hypercyclicity is also connected with the study of topological dynamics. For
instance, the notion of chaos for operators has been introduced and investigated
by Godefroy and Shapiro in [6]: T is chaotic if and only if it is hypercyclic and
has a dense set of vectors with periodic orbit (there exists an n ≥ 1 sucht that
T nx = x). We state here the Godefroy-Shapiro Criterion for hypercyclicity and
chaos ([6]), which motivates part of the work we are going to present in the sequel:

Theorem 1.1. Let H+(T ) be the linear space spanned by the eigenspaces ker(T −
λI), |λ| > 1, and H−(T ) the space spanned by the eigenspaces ker(T −λI), |λ| < 1.
If H+(T ) and H−(T ) are dense in X, then T is hypercyclic. If moreover the space
H0(T ) spanned by the eigenspaces ker(T − λI), where λ is an nth root of unity, is
dense in X, then T is chaotic.

Thus the eigenvectors associated to eigenvalues of modulus 1 are important in
investigating the chaotic behaviour of an operator. For more about hypercylicity
and related topics, we refer the reader to the two surveys [9] and [10].

2. Frequently hypercylic operators

We now investigate another form of hypercyclicity, called frequent hypercyclic-
ity: instead of studying the global behaviour of open sets under the action of T ,
we focus on one specific orbit and try to see how well it fills the space:

Definition 2.1. The operator T is frequently hypercyclic if there exists a vector
x ∈ X such that for every non empty open set U , the set of integers n such that
T nx belongs to U has positive lower density:

lim inf
N→+∞

1

N
# {n ≤ N ; T nx ∈ U} > 0.

For instance, any multiple ωB, |ω| > 1, of the standard backward shift on one
of the spaces ℓp, 1 ≤ p < +∞, is frequently hypercyclic. On the other hand,
the backward shift on the Bergman space is an example of a hypercyclic operator
which is not frequently hypercylic.

Frequent hypercyclicity differs deeply from the original notion of hypercyclicity,
because the Baire Category Theorem is no longer available in this setting: it can
be showed under mild assumptions that the set of frequently hypercyclic vectors
for T is not a residual subset of X . Moreover, it seems that frequent hypercyclicity
depends much more on the Banach structure of the space than hypercyclicity does:
for instance, every infinite dimensional separable space supports a hypercyclic
operator, but it may reasonably be conjectured that some spaces do not support
any frequently hypercyclic operator.

There is a natural link between frequent hypercyclicity and ergodic properties
of operators seen as measure-preserving transformations of the space X . We now
focus on this aspect of the theory: suppose that T : (X,B,m) −→ (X,B,m)
is a measure-preserving transformation of the probability space (X,B,m): for
every A ∈ B, m(T−1(A)) = m(A). Then T is said to be ergodic if for every
A,B ∈ B with m(A) > 0 and m(B) > 0, there exists an integer n such that
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m(T−n(A) ∩ B) > 0. If T is ergodic, Birkhoff’s ergodic theorem implies that for
every A ∈ B, 1

N# {n ≤ N ; T nx ∈ A} tends to m(A) as N goes to infinity for
m-almost every x ∈ X .

So suppose that for some bounded operator T , we manage to construct a non
degenerate measure m (i.e. m(U) > 0 for every non empty open set U) with
respect to which T defines a measure-preserving ergodic transformation. Then T
will be frequently hypercylic. It turns out that such ergodic properties are best
investigated in terms of eigenvectors associated to unimodular eigenvalues (which
is not surprising in view of the Godefroy-Shapiro Criterion). We restrict ourselves
to the case where T is a bounded operator on a complex infinite dimensional
separable Hilbert space H .

Definition 2.2. Let σ be a probability measure on T. The operator T is said to
have a σ-spanning set of eigenvectors associated to unimodular eigenvalues if for
every measurable subset A of T such that σ(A) = 1, the kernels ker(T − λI) for
λ ∈ A span a dense subspace of H. If σ is continuous (σ({λ}) = 0 for every
λ ∈ T), then T is said to have a perfectly spanning set of eigenvectors associated
to unimodular eigenvalues.

For instance: any multiple ωB, |ω| > 1, of the backward shift on ℓ2 has a
perfectly spanning set of unimodular eigenvectors (take σ to be the normalized
length measure on the circle).

Theorem 2.3. Suppose that T has a perfectly spanning set of unimodular eigen-
vectors. Then there exists a non degenerate gaussian measure on H with respect to
which T defines an ergodic measure-preserving transformation. This implies that
T is frequently hypercyclic.

We consider here centered complex gaussian measures on H (which are in par-
ticular probability measures such that

∫
H
||x||2dm(x) is finite). Such measures are

completely defined by their covariance operator S: 〈Sx, y〉 =
∫
H〈x, z〉〈y, z〉dm(z),

which is positive, self-adjoint and of trace class. The support of m is the norm
closure of the range of S. Finding a non degenerate gaussian invariant measure for
T boils down to finding a positive, injective, self-adjoint and of trace class opera-
tor S such than TST ∗ = S, which is in turn equivalent to finding an isometry V
and a Hilbert-Schmidt operator K with dense range such that TK = KV ∗. Such
questions have already been investigated by Flytzanis in [5]. The isometry V is
built out of the multiplication operator by the independent variable λ on L2(T, σ),
and K is constructed using the eigenvectors of T . When the unimodular eigen-
vectors of T span a dense subspace of H , T admits a non degenerate invariant
gaussian measure m ([5]). When T has a perfectly spanning set of unimodular
eigenvectors, T is weak-mixing with respect to m, and even strong-mixing when σ
can be chosen absolutely continuous with respect to the Lebesgue measure on the
circle. The proof of these ergodicity results uses Wiener’s theorem and the theory
of Fock spaces.
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3. The Hypercyclicity Criterion Problem

This work was motivated in part by the Hypercyclicity Criterion Problem (see
[6] for instance), which was shown in [4] to be equivalent to the following open
question of Herrero:

Question 3.1. If T is hypercyclic on X, is the direct sum T ⊕ T of two copies of
T hypercylic on X ⊕X?

The answer is known to be yes when T satisfies some additional “regularity
condition” ([8]): when T is upper-triangular for instance, or when T has a dense
set of vectors with bounded orbit. There is a kind of formal similarity between
the notions of topological transitivity and ergodicity, and in the case of a measure-
preserving transformation T on a probability space (X,B, µ), it is known that
T × T is ergodic on (X ×X,B⊗B, µ⊗ µ) if and only if T is weak-mixing. But an
operator which is not frequently hypercylic cannot be ergodic with respect to an
invariant measure whose support is the whole space (if it were, Birkhoff’s theorem
would imply that it is frequently hypercyclic). It was conceivable to think that
both problems were in some sense related, but the results presented above seem
to point out that the situation is much more involved.
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Maximal Lp-regularity and H∞-calculus for elliptic differential
operators

Matthias Hieber

(joint work with R. Denk, G. Dore, J. Prüss and A. Venni)

In this talk we consider vector-valued elliptic boundary value problems subject to
general boundary conditions and show that under suitable assumptions its real-
ization AB in Lp(G;E) for 1 < p < ∞ has maximal Lp-regularity or admits even
a bounded H∞-calculus.

More precisely, consider the problem

λu + A(x,D)u = f in G

Bj(x,D)u = gj on ∂G, j = 1, . . . ,m.

Here E is a UMD-Banach space, G ⊂ Rn+1 is an open connected set with compact
C2m-boundary ∂G and f : G → E and gj : ∂G → E, j = 1, . . . ,m are given
functions. The operator A is a differential operator of order 2m of the form
A(x,D) =

∑
|α|≤2m aα(x)Dα with variable B(E)-valued coefficients aα(x) and Bj

is given by Bj(x,D) =
∑

|β|≤mj
bjβ(x)D

β with variable B(E)-valued coefficients

bjβ(x) for j = 1, . . . ,m. We assume that m,n,m1, . . . ,mm are natural numbers
with mj < 2m (j = 1, . . . ,m). Assuming the Lopatinskii-Shapiro conditions,
Agmon, Douglis, Nirenberg [ADN59] and [Sol66] proved the existence of a unique
solution to the above problem satisfying

||u||W 2m
p

≤ C[||f ||p + ||u||p +
∑

j

||gj||
W

2m−mj−1/p
p

]

Seeley [See68], [See69] proved in a series of papers that the operatorsAB associated
to this problem admits bounded imaginary powers on Lp provided the coefficients
of A and Bj are smooth. For a generalization of this result, see [Duo90]. For
related results see also [PS93], [DM96], [DR96], [DS97]. In this talk we show
that AB is a R-sectorial operator and admits a bounded H∞-calculus even in the
vector-valued setting under mild assumptions on the coefficients. In fact, let A(·)
be a B(E)-valued polynomial on Rn which is homogeneous of degree 2m ∈ N,
i.e. A(ξ) =

∑
|α|=2m aαξ

α, ξ ∈ Rn. We call such a homogeneous B(E)-valued

polynomial A(·) of degree 2m ∈ N parameter-elliptic (see [Ama01],[DHP03]) if
there is an angle φ ∈ [0, π) such that the spectrum σ(A(ξ)) satisfies

(1) σ(A(ξ)) ⊂ Σφ for all ξ ∈ Rn, |ξ| = 1.

We then call φA := inf{φ : (1) holds} = sup|ξ|=1 | argσ(A(ξ))| the angle of

ellipticity of A. For D = −i(∂1, . . . , ∂n) we call A(D) =
∑

|α|=2m aαD
α parameter

elliptic, if its symbol A(ξ) is parameter-elliptic.
For fixed p ∈ (1,∞), we will assume the following conditions.

(RS) Smoothness Condition.
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(i) aα ∈ C(G,B(E)) for each |α| = 2m and lim|x|→∞,x∈G aα(x) = aα(∞) exists in
the case where G is unbounded;

(ii) aα ∈ [L∞ + Lrk
](G,B(E)) for each |α| = k < 2m with rk ≥ p and 2m− k >

n/rk;

(iii) bjβ ∈ C2m−mj (∂G,B(E)) for each j, β.

(E) Ellipticity Condition.

There exists φA ∈ [0, π) such that the following assertions hold.

(i) The principal symbol A#(x, ξ) =
∑

|α|=2m aα(x)ξα is parameter-elliptic with

angle of ellipticity ≤ φA for each x ∈ G and for x = ∞ in case G is unbounded.

(ii) (Lopatinskii-Shapiro Condition.) Set Bj#(x,D) :=
∑

|β|=mj
bjβ(x)D

β , B# :=

(B1#, . . . , Bm#), and let ν(x) denote the outer normal of G in x ∈ ∂G. For each
x0 ∈ ∂G and each ξ′ in the tangent space of ∂G at x0, the ODE-problem in R+

(λ+ A#(x0, ξ
′ − ν(x0)Dy))v(y) = 0 y > 0,

Bj#(x0, ξ
′ − ν(x0)Dy)v(0) = hj , j = 1, . . . ,m

has a unique solution v ∈ C0(R+;E) for each (h1, . . . , hm) ∈ Em and each λ ∈
Σπ−φA

∪ {0} with |ξ′| + |λ| 6= 0.

Suppose now that for φA ∈ [0, π) the boundary value problem (A,B1, . . . ,Bm)
satisfies smoothness and ellipticity conditions (RS) and (E) above. Let AB denote
the realization of A(x,D) in X = Lp(G;E) with domain

(2) D(AB) = {u ∈ H2m
p (G;E) : Bj(x,D)u = 0, j = 1, . . . ,m}.

Then the following result is true (see [DHP03], Theorem 8.2 or also [DV02] for
related results)

Theorem 1. Assume (RS) and (E). Then for each φ > φA there exists ωφ ≥ 0
such that ωφ +AB is R-sectorial with φRωφ+AB

≤ φ.

In particular, if φA < π
2 then the parabolic initial-boundary value problem

∂tu+ (AB + ωφ)u = f, t > 0,

u(0) = 0,

has the property of maximal regularity in Lq(R+;Lp(G;E)) for each q ∈ (1,∞).

The proof is based is on the characaterization of maximal Lp-regularity in terms
of R-bounds for λ(λ+A)−1 due to Weis [Wei01]. For a different approach see the
work of Kunstmann and Weis [KW04].

To state the second result of this talk we introduce another smoothness condi-
tions on the coefficients of A.

(H) Smoothness Conditions:
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aα ∈ BUCρ(G,B(E)) for some ρ ∈ (0, 1) and each α with |α| = 2m, aα(∞) =
lim|x|→∞ aα(x) exists if G is unbounded and |aα(x) − aα(∞)| ≤ c|x|−ρ, x ∈
G with |x| ≥ 1.

Then our second result reads as follows (see [DDHPV04], Thm. 2.3).

Theorem 2. Let E be a UMD-Banach space, n,m ∈ N and 1 < p <∞. Let G be
a domain in Rn+1 with compact C2m-boundary ∂G. Suppose that for φA ∈ [0, π)
the boundary value problem (A,B1, . . . ,Bm) satisfies smoothness and ellipticity
conditions (RS), (H) and (E) above.

Let AB denote the realization of A(x,D) in X = Lp(G;E) with domain

D(AB) = {u ∈ H2m
p (G;E) : Bj(x,D)u = 0, j = 1, . . . ,m}.

Then for each φ > φA there is µφ ≥ 0 such that µφ + AB ∈ H∞(Lp(G;E)) with
φ∞µφ+AB

≤ φ.

The proof is based on “randomizing norm techniques” developed by Kalton and
Weis [KW01] and on kernel estimates for the resolvent obtained in [DHP03].

For different and very interesting approaches, see the work of Blunck and Kun-
stmann [BK03] and the recent work of Kalton, Kunstmann and Weis [KKW04].
For the case of VMO-coefficients on Rn see [DL02].
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Quadratic estimates and functional calculi of perturbed dirac
operators

Alan McIntosh

(joint work with Andreas Axelsson and Stephen Keith)

By about 40 years ago the theory of differential operators in L2 spaces was
basically well understood. Such topics as accretive operators and sesquilinear
forms, semigroups, fractional powers and interpolation theory had been developed,
along with applications to nonlinear evolution equations. However a question
posed by T. Kato [5] remained unsolved.

It can be expressed as follows. Let V ,H1 and H2 be Hilbert spaces with V
densely and continuously embedded in H1. If S is a closed linear operator from
H1 to H2 with domain D(S) = V and ‖Su‖+‖u‖ ≈ ‖u‖V , and A ∈ L(H2) satisfies
Re(ASu, Su) ≥ κ‖Su‖2 for some κ > 0, then the sesquilinear form J : V ×V → C
defined by J [u, v] = (ASu, Sv) is ω-sectorial for some ω ∈ [0, π2 ). Its associated

operator L = S∗AS in H1 is ω-accretive, and thus has a square root
√
L which is

ω
2 -accretive and satisfies

√
L
√
L = L. The question is whether D(

√
L) = V with

equivalence of norms.
Indeed the answer to this question is negative as was shown in [7]. Nevertheless

Kato’s interest was in differential operators, so what became known as the Kato
square root problem concerned the case when H1 = L2(R

n), H2 = L2(R
n;Cn),

V = W 1
2 (Rn), S = ∇ and A = (ajk) ∈ L∞(Rn;L(Cn)). In this case

J [u, v] = (A∇u,∇v) =

∫ ∑
ajk(x)

∂u

∂xk

∂v

∂xj
dx
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and so L = −divA∇. For such operators, it is true that D(
√
L) = V with

‖
√
Lu‖ ≈ ‖∇u‖. A consequence is that J [u, v] = (

√
Lu,

√
L∗v) for u, v ∈ D(

√
L) =

D(
√
L∗) = V .

In one dimension, this result was proved in the joint work of R. Coifman and
Y. Meyer with the current author [4], along with the solution of a conjecture
of A. Calderón on the boundedness of the Cauchy integral on Lipschitz curves.
In full generality, it was proved by P. Auscher, S. Hofmann, M. Lacey and Ph.
Tchamitchian, together with the current author [2]. In the meantime there were
many developments and partial results. A good survey is given by C. Kenig in [6].

Kato also asked about analytic dependence of the square root on a parameter,
as this question arose in his study of hyperbolic evolution equations. Suppose that
At ∈ L∞(Rn;L(Cn)) are self adjoint and depend analytically on t ∈ (−1, 1). Then

Lt = −divAt∇ are positive self adjoint operators which satisfy ‖
√
Ltu‖ ≈ ‖∇u‖.

This question was whether the operators
√
Lt ∈ L(W 1

2 (Rn);L2(R
n)) depend ana-

lytically on t. The answer is positive, as follows as a corollary of the above estimate
‖
√
Lzu‖ ≈ ‖∇u‖ for the non-selfadjoint operators obtained on holomorphically ex-

tending At to Az for z in a region of the complex plane.
In my recent paper with A. Axelsson and S. Keith [3], we built upon the proof

of the Kato estimate to obtain the following result concerning first order elliptic
systems acting on a Hilbert space H = L2(R

n;CN ).
Let Γ be a homogeneous first order differential operator acting in the space H

which satisfies Γ2 = 0 as well as an ellipticity condition ‖∇u‖ ≤ c(‖Γu‖ + ‖Γ∗u‖)
for all u ∈ Γ(H)⊕ Γ∗(H), and let Π = Γ + Γ∗. Consider perturbations of the type
ΠB = Γ +B−1Γ∗B where B ∈ L∞(Rn;L(CN )) satisfies Re(Bu, u) ≥ κ‖u‖2.

Under these assumptions there is a (non–orthogonal) Hodge decomposition of

H into closed subspaces: H = R(Γ∗
B) ⊕ N (ΠB) ⊕ R(Γ), where N and R denote

the nullspace and range of an operator. Moreover the operator ΠB has spectrum
in the double sector Sω = {z ∈ C : | arg(±z)| ≤ ω} where ω = sup | arg(Bu, u)|,
and satisfies resolvent bounds ‖(ΠB − λI)−1‖ ≤ C/dist (λ, Sω) for λ /∈ Sω.

These results follow from operator theory, but a proof of the quadratic estimate
stated next requires the full strength of the harmonic analysis.

Our main result is that ΠB satisfies quadratic estimates
∫ ∞

0

‖ΠB(I + t2Π2
B)−1u‖2 t dt ≤ C‖u‖2

for all u ∈ H. This estimate implies that ΠB has a bounded functional calculus
[1], i.e.

(1) ‖f(ΠB)u‖2 ≤ C‖f‖
∞
‖u‖2

for all u ∈ R(ΠB) = R(Γ∗
B) ⊕ R(Γ) and all f ∈ H∞(Soµ), where Soµ is the open

double sector Soµ = {z ∈ C : | arg(±z)| < µ} for µ > ω.
It is a consequence of this result that f(ΠB) depends holomorphically on B.

This in turn implies perturbation estimates of the form

(2) ‖f(ΠB+A)u− f(ΠB)u‖2 ≤ C‖f‖
∞
‖A‖

∞
‖u‖2
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provided ||A||∞ is not too large.
This theorem implies many of the results in the Calderón program such as the

boundedness of the Cauchy operator on Lipschitz curves and surfaces. Let us see
how it generalises the Kato estimate.

On combining the Hodge decomposition with (1) in the case when f(z) =

z/
√
z2, we obtain the equivalence ‖Γu‖ + ‖Γ∗Bu‖ ≈ ‖ΠBu‖ ≈ ‖

√
ΠB

2u‖.
The square root problem of Kato follows in the special case when we take CN

to be the complex exterior algebra ∧ on Rn and Γ to be the exterior deriative d,
i.e. set N = 2n, CN = ∧ = ∧CRn = ⊕nk=0∧k, and Γ = d = ∇∧. Suppose B
splits as Bk(x) : ∧k → ∧k, 0 ≤ k ≤ n for a.a. x ∈ Rn, with B0 = I and B1(x) =
A(x) : Cn → Cn. On making the identification d : L2(Rn;∧0) → L2(Rn;∧1)
with ∇ : L2(Rn;C) → L2(Rn;Cn), and d∗ : L2(Rn;∧1) → L2(Rn;∧0) with
−div : L2(Rn;Cn) → L2(Rn;C), and restricting our attention to u ∈ ∧0, we
obtain the Kato estimate ‖∇u‖ ≈ ‖

√
−divA∇u‖ for all u ∈ L2(Rn;C).

The new result however has implications for the whole Hodge–Dirac operator
d + d∗. Rather than discussing these for operators acting in H = L2(R

n;∧), let
us consider the implications for spectral projections of the Hodge–Dirac operator
d+ d∗g on a compact manifold M with a Riemannian metric g.

The operator d+d∗g is a selfadjoint operator in the Hilbert space H = L2(M ;∧T ∗M),
and so there is an orthogonal decomposition

H = N (d + d∗g) ⊕H+
g ⊕H−

g

where H±
g are the positive and negative eigenspaces of d+ d∗g. The projections of

H onto H±
g are E±

g = ξ±(d+ d∗g) where the functions ξ± : Soµ ∪ {0} −→ C defined
by

ξ±(z) =

{
1 if ±Re z > 0
0 if ±Re z ≤ 0

are holomorphic on Soµ. The subscript g denotes dependence on the metric g.
If the metric is perturbed to g + h, then the adjoint of d with respect to the

perturbed metric has the form d∗g+h = B−1d∗gB for an associated positive selfad-

joint multiplication operator B. The perturbation result (2) can be transferred to
this context, thus giving

(3) ‖E±
g+h − E±

g ‖ ≤ C‖h‖∞ := ess supx∈M |hx|

provided ‖h‖∞ is not too large, where

|hx| = sup{|hx(v, v)| : v ∈ TxM , gx(v, v) = 1}.

What (3) tells us is that these eigenspaces depend continuously on L∞ changes
in the metric. Indeed the eigenspaces depend analytically on L∞ changes in the
metric. This result is possibly surprising in that the local formula for d∗g+h in
terms of d∗g depends on the first order derivatives of h.
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The Kato square-root problem on Lipschitz domains

Stephen Keith

(joint work with A. Axelsson and A. McIntosh)

In joint work with Andreas Axelsson and Alan McIntosh we solve the Kato
square-root problem for elliptic systems on Lipschitz domains with mixed bound-
ary conditions. This answers a question posed by J.-L. Lions in 1962. To do this
we develop a general theory for quadratic estimates and the functional calculi of
complex perturbations of Dirac-type operators on Lipschitz domains.

Let us now formulate the Kato square-root problem for elliptic operators on
Lipschitz domains with mixed boundary conditions. Let Ω ⊂ Rn, n ∈ N, be
a bi-Lipschitz image of Ω′ ⊂ Rn, where Ω′ is a bounded smooth domain, or an
unbounded smooth domain that coincides with upper half plane R+ × Rn−1 on
the complement of a bounded set. In particular Ω may be a strongly Lipschitz
domain. Let Σ1 be an extension domain in the boundary Σ of Ω, with Σ \ Σ1 an
extension domain, and let

V =
{
u ∈ H1(Ω;C) : γu ∈ H

1/2
0 (Σ1;C)

}
.

Here γ is the trace operator and H1(Ω;C) and H
1/2
0 (Σ1;C) are Sobolev spaces of

complex-valued functions defined on Ω and Σ1, respectively.
Given a matrix A with (A)j,k = aj,k where aj,k ∈ L∞(Ω;C) for each j, k =

0, 1, . . . , n, let JA : V × V −→ C be given by

JA[u, v] =

∫

Ω

(
a00uv + a0,j

∂u

∂xj
v + aj,0u

∂v

∂xj
+ aj,k

∂u

∂xk

∂v

∂xj

)
dx

for every u, v ∈ V . An implicit sum is taken over the recurring indices in the above
formula.
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Suppose that JA satisfies the following accretivity condition: there exists c > 0
such that

(1) Re JA[u, u] ≥ c
(
‖∇u‖2 + ‖u‖2

)

for every u ∈ V . Here and below (·, ·) and ‖ · ‖ denote the inner product and norm
on L2(Ω;C). Then JA is a densely defined, closed, sectorial sesqui-linear form.
Consequently, there exists an operator LA on L2(Ω;C) with D(LA) ⊂ V uniquely
determined by the property that it is m-sectorial and satisfies JA[u, v] = (LAu, v)
for every u ∈ D(LA) and v ∈ V . The square root

√
LA of LA is then the unique

m-accretive operator with
(√
LA
)2

= LA. For an explanation of this terminology
and these results see [4, VI – Theorem 2.1, V – Theorem 3.35, VI – Remark 2.29].
The Kato square-root problem is to determine whether domain D

(√
LA
)

= V .
The Kato square-root root problem for second order elliptic operators on Ω =

Rn was solved by P. Auscher, S. Hofmann, M. Lacey, Ph. Tchamitchian, and the
third author in [1], and for higher order elliptic operators and systems on Rn

by Auscher, Hofmann, Lacey, Tchamitchian, and the third author in [2]. The
Kato square-root problem for second order elliptic operators on strongly Lipschitz
domains with Dirichlet or Neumann boundary conditions was solved by Auscher
and Tchamitchian in [3] by reduction to [1]. This left open the Kato square-root
problem with mixed boundary conditions.

The following theorem solves the Kato square-root problem for second order
elliptic operators on Lipschitz domains with mixed boundary conditions. This
result is new for both smooth and Lipschitz domains, and answers a question
posed by J.-L. Lions in 1962 [5, Remark 6.1].

Theorem 1. We have D
(√
LA
)

= V with ‖√LAu‖ ≈ ‖∇u‖ + ‖u‖ for every
u ∈ V. The comparability constant implicit in the use of “≈” depends only on c,
the maximum L∞-norm amongst aj,k, and constants implicit in the definition of
Ω .
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Maximal regularity and regularity for parabolic equations

Gieri Simonett

(joint work with J. Escher and J. Prüss)

The theory of maximal regularity is a powerful tool for the treatment of nonlinear
parabolic problems. In this note an outline is given on how maximal regularity, in
conjunction with the implicit function theorem, can be used to establish regularity
properties for a wide array of parabolic evolution equations.

In order to explain the main idea of our approach, let us consider the model
problem of a family of graphs {Γ(t) = graph(u(·, t)) ; 0 ≤ t ≤ T } over Rn, evolving
according to the mean curvature flow

(1) ∂tu−
(
δij −

∂iu∂ju

1 + |∇u|2
)
∂i∂ju = 0, u(0) = u0,

where 1 ≤ i, j ≤ n, and where δij denotes the Kronecker delta. Equation (1) is a
quasilinear parabolic evolution equation of second order. To economize notation
we set

F (u) := −
(
δij −

∂iu∂ju

1 + |∇u|2
)
∂i∂ju

and restate equation (1) as

(2) ∂tu+ F (u) = 0, u(0) = u0.

Let Ej := buc2j+s(Rn), j = 0, 1, be the little Hölder spaces. The mapping F is
real analytic, that is,

(3) F ∈ Cω(E1, E0).

Given that F is differentiable, one can consider the linearized problem

(4) ∂tv + F ′(u)v = f, v(0) = v0,

where F ′(u) is the Fréchet derivative of F at u ∈ E1. Next we introduce the
anisotropic spaces

E0(I) := C(I, E0), E1(I) := C1(I, E0) ∩ C(I, E1),

where I = [0, T ] is a fixed interval. Clearly, the trace operator γ0 : E1(I) → E1,
v 7→ v(0) is linear and continuous. It can be shown, and this is the essential part of
the analysis, that the linear problem (4) enjoys the property of maximal regularity.
By definition, this means that

(5) (∂t + F ′(u), γ0) ∈ Isom(E1(I),E0(I) × E1)

for any function u ∈ E1. That is, the linear mapping (∂t+F
′(u), γ0) is a topological

isomorphism between the indicated spaces. It is here where maximal regularity
begins to unfold. It implies that the linear problem (4) has a unique solution
v ∈ E1(I) for any given right hand side (f, v0) ∈ E0(I) × E1. The solution v has
optimal regularity, and therefore, no loss of regularity can occur for the linearized
problem. Existence of a unique solution in E1(I) to the nonlinear problem (2)
can now be obtained by a reiteration argument and the contraction principle.
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As an immediate outcome, one sees that there is also no ‘loss of derivatives’ for
the nonlinear problem. (This is also true if F is fully nonlinear). It should be
noted that iteration techniques based on the Nash-Moser implicit function theorem
usually result in a loss of derivatives.

We give a brief account on how the property of maximal regularity in conjunc-
tion with a scaling argument (or a parameter trick) will show that the solution
u ∈ E1(I) of (2) is real analytic in space and time for any positive time.

Let u be the unique solution of (2) defined on a maximal interval of existence
[0, t+(u0)). Let T ∈ (0, t+(u0)) be a fixed number and set I := [0, T ]. For any
given parameters (λ, µ) ∈ R × Rn with λ ∈ (−ε0, ε0) one can set

(6) uλ,µ(t, x) := u(t+ tλ, x+ tµ), (t, x) ∈ I × Rn.

It is easy to see that uλ,µ ∈ E1(I) for all (λ, µ), provided ε0 is sufficiently small.
Since the mapping F commutes with translations, that is,

(7) τaF (u) = F (τau), u ∈ E1, a ∈ Rn,

one finds that v := uλ,µ ∈ E1(I) satisfies the parameter dependent equation

∂tv + (1 + λ)F (v) − (µ|∇v) = 0, v(0) = u0,

or equivalently, that v := uλ,µ solves

(8) Φ(v, (λ, µ)) = 0

where Φ(v, (λ, µ)) := (∂tv + (1 + λ)F (v) − (µ|∇v), γ0v − u0). It follows from (3)
that the mapping

Φ : E1(I) × ((−ε0, ε0) × Rn) → E0(I) × E1

is real analytic. Moreover, Φ(ū, (0, 0)) = (0, 0), where ū := u|I . It is a consequence
of the maximal regularity property (5) that the Fréchet derivative D1Φ(ū, (0, 0))
of Φ with respect to v satisfies

(9) D1Φ(ū, (0, 0)) = (∂t + F ′(ū), γ0) ∈ Isom(E1(I),E0(I) × E1).

The implicit function theorem now allows to solve equation (8) for v in terms of
(λ, µ) in an open neighborhood U of (0, 0) ∈ R × Rn. One concludes that

(10) [(λ, µ) 7→ uλ,µ] ∈ Cω(U,E1(I)).

Consequently, the mapping

(11) [(λ, µ) 7→ uλ,µ(t0, x0) = u(t0 + t0λ, x0 + t0µ)] : U → R

is real analytic for any fixed (t0, x0) ∈ I × Rn with t0 > 0. Hence, the solution u
of the mean curvature flow (1) is analytic in space and time for any positive time
t ∈ (0, t+(u0)).

It is now clear that the only properties needed to carry through the arguments
are (3), (7), and the crucial maximal regularity property (5). The nature of the
mapping F is completely immaterial: it can be fully nonlinear, can act as a non-
local mapping, and it can be of any order.
The idea of using parameters to prove regularity properties of solutions goes back
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to Angenent [1, 2]. The strategy of using translations to show analyticity in space
was first employed in [5] for a free boundary problem for the flow of an incom-
pressible fluid in a porous medium of infinite extent. In that context the mapping
F happens to be fully nonlinear, nonlocal, and of first order. Translations were
also used in [4] for the Stefan problem with surface tension in the case where the
free interface is represented as the graph of a function over Rn.

The advantage of applying maximal regularity relies on the fact that one can re-
sort to the implicit function theorem. The difficulty, of course, lies in establishing
maximal regularity for a given partial differential equation.

Our approach described so far relies on the fact that we can use translations on Rn,
and that the mapping F is equivariant with respect to translations. The approach
can be generalized in two directions. First, it can be generalized to parabolic
equations on a symmetric Riemannian manifold M , where one assumes that the
nonlinear mapping F is equivariant with respect to the Lie group which acts as a
transformation group on M . This has been done in [6]. Here we just give a sketch
on how the translation-parameter trick can be localized. In order to do so, we pick
x0 ∈ Rn and choose a smooth cut-off function χ ∈ D(Rn) with

(12) supp (χ) ⊂ B(x0, ε0),

where ε0 can be chosen as small as we wish for. Instead of (6) we can now consider
the parameter-dependent function

(13) uλ,µ(t, x) := u(t+ tλ, x+ tχ(x)µ), (t, x) ∈ I × Rn.

The function v := uλ,µ also satisfies a parameter-dependent equation

(14) ∂tv + Fλ,µ(v) = 0, v(0) = u0.

The new difficulty now lies in showing that the mapping [(v, (λ, µ)) 7→ Fλ,µ(v)] is
analytic.

Complete proofs and examples are given in [7]. We also refer to [3] for further
generalizations and refinements. The localized parameter-trick will be used to
establish regularity results for free boundary problems, such as the Stefan problem
with surface tension, and the Navier-Stokes equations with surface tension.
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On Taylor coefficients of vector-valued Bloch functions

Oscar Blasco

1. Introduction

The following notes are based upon the results on the paper with the same title
(see [2]).

Let X,Y be complex Banach spaces. Let Bloch(X) denote the space of X-
valued analytic functions on the unit disc verifying that ||f ||Bloch(X) = ||f(0)|| +
sup|z|<1(1 − |z|2)||f ′(z)|| <∞. We write Bloch instead of Bloch(C).

Definition 1.1. A sequence (Tn)n in L(X,Y ) is said to be a multiplier between
Bloch(X) and ℓ1(Y ), to be denoted (Tn) ∈

(
Bloch(X), ℓ1(Y )

)
, if (Tn(xn))n belongs

to ℓ1(Y ) whenever f(z) =
∑∞

n=0 xnz
n belongs to Bloch(X).

We endow the space with the norm in L(Bloch(X), ℓ1(Y ).

Let us now recall the scalar-valued result on multipliers due to J.M. Anderson
and A.L.Shields (see[1]) that we want to extend to the vector-valued setting:

(1) (Bloch, ℓ1) = ℓ(2, 1)

where, for 1 ≤ p, q ≤ ∞ we denote by ℓ(p, q) the spaces of sequences (αn)n in X
such that

( ∞∑

k=0

( 2k+1∑

n=2k

|αn|p
)q/p)1/q

<∞,

with the obvious modifications for p = ∞ or q = ∞.
For a complex Banach space X we write ℓ(p, q,X) for space of sequences in X

for which ‖xn‖ ∈ ℓ(p, q)
The information about Taylor coefficients that can be achieved from the previ-

ous result is the following:
There exist a constants C1, C2 > 0 such that

(2) C1‖(αn)n‖2,∞ ≤ ‖φ‖Bloch ≤ C2‖(αn)n‖1,∞

for any φ(z) =
∑∞
n=0 αnz

n.
The aim of this note is to understand whether (2) and (1) have natural ex-

tensions to vector-valued functions and how the vector-valued analogues of them
depend on some geometrical properties on the Banach space X .

Out of the study on the problem and some partial result one can get the fol-
lowing general fact:

Theorem 1.2. Let H be a Hilbert space and let Y be a Banach space. Then
(
Bloch(H), ℓ1(Y )

)
= ℓ(2, 1,L(X,Y )).
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2. The problems

Problem 1: For which Banach spaces X does it hold that

(3) f(z) =

∞∑

n=0

xnz
n ∈ Bloch(X) ⇒ (xn)n ∈ ℓ(2,∞, X)?

To this aim let us give the following definitionnition.

Definition 2.1. Let X be a complex Banach space. We definitionne

ΛBloch,ℓ1(X) : {(λn)n ⊂ C : Tn = λn.I ∈ (Bloch(X), ℓ1(X))}.
It is easy to see that Problem 1 can be rephrased as follows: For which Banach

spaces X does it hold that ΛBloch,ℓ1(X) = ℓ(2, 1)?

Theorem 2.2. Let H be a Hilbert space. Then there exists a constant C > 0 such
that

||(xn)n||2,∞ ≤ C||f ||Bloch(H)

for all f(z) =
∑∞

n=0 xnz
n ∈ Bloch(H). Hence ΛBloch,ℓ1(H) = ℓ(2, 1).

Let us give some sketch of the proof:
Step 1: Given f ∈ Bloch(H) we associate a bounded operator Tf : A1 → H

by the formula Tf(un) = xn, where un(z) = (n + 1)zn where A1 stands for the
Bergman space of analytic functions φ such that

∫
D
|φ(z)|dA(z) <∞.

Step 2: Use that (A1)
∗ = Bloch and show

∑
n |〈λnun, g〉| ≤ C for any ||(λn)||2,1 ≤

1 and ||g||Bloch ≤ 1.
Step 3: Use that A1 is isomorphic to ℓ1 and, by invoking Grothendieck theorem,

we obtain that Tf is absolutely summing and hence the result now follows from
Step 2.

OPEN QUESTION: Does ΛBloch,ℓ1(X) = ℓ(2, 1) imply X is isomorphic to a
Hilbert space?.
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Boundedness of bilinear pseudodifferential operators

Andrea R. Nahmod

(joint work with Árpád Bényi and Rodolfo Torres)

We study bilinear pseudodifferential operators beyond the so called Coifman-
Meyer class, and aim at including those symbols that naturally from the non-
smooth multipliers generalizing the bilinear Hilbert transform when they become
x-dependent. Our goal is to understand how the bilinear pseudodifferential setup
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differs from the linear pseudodifferential one in terms of symbolic calculus and
boundedness properties on products of Lebesgue and/or Sobolev spaces.

We considered two families of classes of bilinear symbols BSmρ,δ and B̃Smρ,δ;θ
defined as:

(1) |∂αx ∂βξ ∂γησ(x, ξ, η)| ≤ Cαβγ(1 + |ξ| + |η|)m+δ|α|−ρ(|β|+|γ|),

respectively

(2) |∂αx ∂βξ ∂γησ(x, ξ, η)| ≤ Cαβγ(1 + |η − tan θ ξ|)m+δ|α|−ρ(|β|+|γ|)

for all (x, ξ, η) ∈ R3n, all multi-indices α, β and γ, and some positive constants
Cαβγ . In one dimension, the latter condition expresses the decay of the derivatives
of the symbol in terms of the distance from the frequency pair (ξ, η) to the line Γθ
at angle θ with respect to the axis η = 0 and up to a constant depending on θ is
equivalent to the condition,

(3) |∂αx ∂βξ ∂γησ(x, ξ, η)| ≤ Cαβγ(1 + dist((ξ, η); Γθ)
m+δ|α|−ρ(|β|+|γ|)

When θ = −π/4, condition (2) becomes |∂αx ∂βξ ∂γησ(x, ξ, η)| ≤ Cαβγ(1 + |ξ +

η|)m+δ|α|−ρ(|β|+|γ|) and we simply write B̃Smρ,δ to denote ˜BSmρ,δ;−π/4. In general,

the classes BSmρ,δ and B̃Smρ,δ are not comparable. We are interested in bilinear

pseudodifferential operators, defined apriori from S(Rn)× S(Rn) into S′(Rn), of
the form

(4) Tσ(f, g)(x) =

∫

Rn

∫

Rn

σ(x, ξ, η)f̂ (ξ)ĝ(η)eix·(ξ+η)dξdη.

The study of bilinear operators with symbols in the class BS0
1,0 started in

the works of Coifman and Meyer [9], [10], [11]. They used techniques related
to Littlewood-Paley theory to prove that this class produces bilinear operators
bounded on products of Lp spaces. The class BS0

1,1 is the largest one that gives rise
to bilinear pseudodifferential operators which can be realized as singular integral
operators with ’bilinear kernels’ of Calderón-Zygmund type. But the latter is a
“forbidden” class, in that it yields unbounded operators on products of Lebesgue
spaces and is not to close under transposition. Nevertheless, in [3] a substitute
estimates is obtained in the spirit of the Leibniz rule for products of functions and
proved that operators with forbidden symbols are bounded on products of Sobolev
spaces with positive smoothness. Here we obtain new results concerning classes of
order m, BSm1,0 and BSm1,1.

The investigation of classes B̃S0
1,0;θ was initiated by the pivotal work of Lacey

and Thiele [20], [21] in the special case of the bilinear Hilbert transform. It was
continued by Gilbert and Nahmod [14], [15] in the general bilinear multiplier setup.
They proved that, in the one dimensional case, for x-independent symbols σ in

B̃S0
1,0;θ, θ 6= 0, π/2,−π/4, Tσ is bounded on products of appropriate Lebesgue

spaces. Muscalu, Thiele, and Tao [23] treated the multilinear setup. When θ =
0, π/2, or −π/4, Γθ becomes a ’degenerate subspace’ and these results do not
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apply anymore. However, the operators may still be bounded by other reasons.
This is the case -for example- when the symbols in question also belong to the
Coifman-Meyer class or when the bilinear operators can be represented as linear
combinations of tensor products [7] of Calderón-Zygmund operators. In those
cases, if an additional cancellation property along the antidiagonal is satisfied, it
was in [8] that Tσ can be extended as a bounded operator from Lp × Lp

′

into the
Hardy space H1; see also [7], [12], [13] and [15]. Furthermore, note that if the
symbol depends only on the sum of the frequency variables ξ and η, σ(x, ξ, η) =
σ0(x, ξ + η), then σ0 is a (classical) linear symbol in the class S0

1,0 and Tσ(f, g) =
Tσ0(fg), where Tσ0 is the linear pseudodifferential operator with symbol σ0. It is
well known that Tσ0 is bounded on Lebesgue spaces [25], therefore, using Hölder’s
inequality, one immediately gets boundedness of Tσ on product of Lebesgue spaces.

The general x-dependent case presents new fascinating challenges. The main

question being, what are the precise additional conditions a symbol in the B̃Smρ,δ;θ
class must satisfy to ensure boundedness in the product of Lebesgue and - or -
Sobolev spaces.

In what follows we continue our investigation into these issues and present some
ideas to further our understanding of the rather drastic change in the passage from

the class BS0
1,0 to the class B̃S0

1,0. We do so by developing a symbolic calculus
for the composition of classical linear pseudodifferential operators with bilinear

pseudodifferential operators having symbols in the class B̃Sm1,0 and by making a

connection to the bilinear Calderón-Vaillancourt class BS0
0,0 [5] [2].

The Bilinear Classes BSm1,0 and BSm1,1. A bilinear operator T : S ×S → S′

has two formal transposes T ∗1 and T ∗2 defined via 〈T (f, g), h〉 = 〈T ∗1(h, g), f〉 =
〈T ∗2(f, h), g〉, for all f, g, h in S. For example, for operators Tσ which are transla-
tion invariant, σ(x, ξ, η) = σ(ξ, η), and the symbols of the transposes are given by
σ∗1(ξ, η) = σ(−ξ − η, η), σ∗2(ξ, η) = σ(ξ,−ξ − η). For symbols that depend on x
the situation is much more complicated. Nevertheless, in the case of symbols that
belong to BSm1,0, one can compute the symbols of the transposes via an asymptotic
formula. In [3] it is shown that BSm1,0,m ≥ 0, produce a class of operators which
is closed by transposition; but that the class BSm1,1 - which contains BSm1,0 - pro-
duces operators which are not necessarily bounded on product of Lebesgue spaces.
Thus it follows from a theorem in [16] that BSm1,1 is not closed under transposi-
tions. Here we prove a positive result about this ’forbidden’ class by considering
products of Sobolev spaces with positive smoothness.

Every operator Tσ with a symbol in the class BSm1,1,m ≥ 0, has a bounded

extension from Lpm+s×Lqm+s into Lrs, provided that 1/p+ 1/q = 1/r, 1 < p, q, r <
∞, and s > 0. Moreover,

(5) ‖Tσ(f, g)‖Lr
s
≤ C(p, q, r, s, n,m, σ)(‖f‖Lp

m+s
‖g‖Lq + ‖f‖Lp‖g‖Lq

m+s
).

Actually a more general boundedness result from Lpm+s × Lqm+t into Lrmin(s,t)
is

true provided 1/p+ 1/q = 1/r, 1 < p, q, r <∞, and s, t > 0. The proof is adapted
after the proof given in [3] for the case m = 0. It makes use of a decomposition
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into elementary symbols due to Coifman and Meyer and a square function type
estimate for the Sobolev space norm of a sum of functions with spectra supported in
appropriate balls that can be traced back to Meyer’s work [22]; see also Lemma 3 in
[3]. The result above implies in particular, that the smaller class BSm1,0 also yields

bounded operators from Lpm+s × Lqm+s into Lrs for s > 0. Moreover, since BSm1,0
is closed under transpositions; duality and interpolation give also boundedness of
operators in this class from Lpm+s × Lqm into Lr or from Lpm × Lqm+s into Lr, for
s > 0. Since symbols in BS0

1,0 yield bounded operators from Lp × Lq into Lr,
interpolation with the above would give a weaker boundedness, say, from Lp×Lqs
into Lr for this class. But by using interpolation in the argument one loses the nice
Leibniz rule estimates. We can fix these gaps by proving that for the smaller class
BSm1,0 the result above also holds for s = 0 and moreover that the Leibniz rule

property is preserved. Denote by Jk = (I −∆)k/2 the Fourier multiplier operator
with symbol (1 + |ξ|2)k/2 ∈ Sk1,0.

Given σ a symbol in BSm1,0,m ≥ 0; there exists symbols σ1 and σ2 in BS0
1,0 such

that, for all f, g ∈ S, we can decompose Tσ(f, g) = Tσ1(J
mf, g) + Tσ2(f, J

mg)..
Consequently, Tσ has a bounded extension from Lpm×Lqm into Lr, provided 1/p+
1/q = 1/r, 1 < p, q, r <∞ and,

(6) ‖Tσ(f, g)‖Lr ≤ C(p, q, r, n,m, σ) (‖f‖Lp
m
‖g‖Lq + ‖f‖Lp‖g‖Lq

m
).

One could replace the hand side of (6) with C (‖f‖Lp1
m
‖g‖Lq1 + ‖f‖Lp2‖g‖Lq2

m
),

where 1/p1 + 1/q1 = 1/p2 + 1/q2 = 1/r, 1 < p1, p2, q1, q2, r <∞.

A natural question to ask is whether the same boundedness properties hold for

the class B̃Sm1,0. If one assumes that m is sufficiently large then one can show the
result above holds for this class as well. A heuristic explanation of this fact is
that for the choice of m above one needs not worry about dealing with negative
powers of the quantity 1 + |ξ+ η| and a similar reduction to the class BS0

1,0 holds
again. One should compare this with the Kato-Ponce commutator estimates [18]
that hold for all m ≥ 0. Due to the special structure of the operators considered
there (derivatives of product of two functions), one can interpolate the estimates
that hold for both m large and m = 0 to cover the whole range of m’s. Due to the
generality of the problem we consider here, we miss the “endpoint” m = 0 as we
explain below.

Symbolic calculus for the composition Sk1,0 ◦ B̃Sm1,0. It is well known that
the classes Sm1,0 admit a symbolic calculus both for composition and transposition.
This calculus shows, for example, that there is an asymptotic formula for the
composition of two operators with symbols in such classes which has the product
of the symbols as its main term. A similar asymptotic expansion exists for the
transposes of such operators; see e.g. [25]. We have already discussed the existence
of a symbolic calculus for transposes of the bilinear class BSm1,0. Concerning the
composition of bilinear operators, several definitions are easy to imagine yet it is
not clear which is the most natural or useful one. An interesting situation arises
when one tries to compose a linear pseudodifferential operator with a bilinear



Spectral Theory in Banach Spaces and Harmonic Analysis 1931

pseudodifferential operator. Indeed, one important instance of such composition
is provided by Jk Tσ. Motivated by the linear counterpart problem which has a

positive answer, and since both classes BSm1,0 and B̃Sm1,0 could be viewed as bilinear
extension of Sm1,0, we asked the following natural questions:

1. For a ∈ Sk1,0 and σ ∈ BSm1,0, is it true that LaTσ = Tλ with λ ∈ BSm+k
1,0 ?

2. For a ∈ Sk1,0 and σ ∈ B̃Sm1,0, is it true that LaTσ = Tλ with λ ∈ B̃Sm+k
1,0 ?

The answer to the first question is negative. If we consider both a and σ to
be x-independent, then it is easy to see that the composition symbol is λ(ξ, η) =
a(ξ + η)σ(ξ, η). Even in the simplest case where a ∈ S0

1,0 and σ ∈ BS0
1,0, the

most we can say about λ is that it is in B̃S0
1,0. In fact, the failure of enough

decay as to make λ belong to the smaller class BS0
1,0 has nothing to do with the

x-independence of a. Similarly, our argument fails if we replace the class B̃Sm1,0

with BSm1,0 or if we consider a general symbol σ ∈ B̃Sm1,0;θ with θ 6= −π/4.
We show that the answer to the second question is affirmative. The ideas employed
are inspired by some of the proofs given in the linear case by Hörmander [17], Kohn
and Nirenberg [19], and Stein [25], but additional technical difficulties need to be
overcome in the bilinear setting. We also obtain an asymptotic expansion for λ.

The interest in having a symbolic calculus for composition lies in its potential
application to study boundedness on Sobolev spaces. The usual way to go about
this is to reduce the study of operators of order m on Sobolev spaces to the study
of operators of order 0 on Lebesgue spaces; see, e.g., [25] for a detailed treatment

of the linear case. Unfortunately, being in the class B̃S0
1,0 alone is not enough to

yield bounded operators on products of Lebesgue spaces [2]. There is, however,
a connection of the symbolic calculus with the Calderón-Vaillancourt class BS0

0,0

which gives boundedness of operators of order m [4] [2].
Further Sobolev extensions We conclude with a few interesting observa-

tions about the boundedness of generic bilinear multipliers on products of Sobolev
spaces.

If the symbolσ is x-independent and Tσ is bounded from Lp × Lq into Lr, with
1/p+1/q = 1/r, r > 1, then Tσ is also bounded from Lps×Lqs into Lrs for all s ≥ 0.

Better local estimates can be achieved as long as we restrict the range of the
index s. Let a ∧ b denote the largest integer strictly smaller than min(a, b).

If the symbolσ is x-independent and Tσ is bounded from Lp × Lq into Lr, with
1/p + 1/q = 1/r, r > 1, then Tσ is also bounded from Lps × Lqs into Lrs

s , where
1/rs = 1/p+ 1/q − s/n and 0 ≤ s ≤ n/p ∧ n/q.

In particular, we recover a useful multiplication result that can be found, for
example, in the book of Runst and Sickel [24]. An application of this result to the
inverse conductivity problem is given in the work of Brown and Torres [6]. Let u ∈
Lps and let v ∈ Lqs, with 1 < p, q <∞, 1/p+ 1/q ≤ 1, and 0 ≤ s < nmin(1/p, 1/q).
Then uv ∈ Lr

∗

s , where 1/r∗ = 1/p+ 1/q − s/n.
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Remarks (i) The bilinear Hilbert transform and all its generalizations as bilin-
ear (not necessarily smooth) multipliers in [14], [15] are bounded on products of
Sobolev spaces like the ones considered in our propositions.
(ii) Similar arguments to the ones used in the proofs above show that the state-
ments above remain true for x-dependent symbols in the class BS0

1,0.
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[5] Á. Bényi and R. H. Torres, Almost orthogonality and a class of bounded bilinear pseudodif-
ferential operators, Math. Res. Lett. 11 (2004), 1-11.

[6] R. M. Brown and R. H. Torres, Uniqueness in the inverse conductivity problem for conduc-
tivities with 3/2 derivatives in Lp, p > 2n, J. Fourier Anal. Appl. 9 (2003), 563-574.

[7] R. R. Coifman and L. Grafakos, Hardy space estimates for multilinear operators. I., Rev.
Matem. Iberoam. 8 (1992), no. 1, 45–67.

[8] R. R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy
spaces, J. Math. Pures Appl. 72 (1993), 247-286.

[9] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular
integrals, Trans. Amer. Math. Soc. 212 (1975), 315-331.

[10] R. R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multi-
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Spectral properties of noncommuting operators

Brian Jefferies

The talk outlines the application of Clifford analysis techniques to functional
calculi for finite systems of linear operators acting in a Banach space. A recent
book [1] describes progress to date. Emphasis has been on obtaining the ”richest”
functional calculus for a system of operators in a given class, leading to a notion
of joint spectrum. In particular, for n selfadjoint operators, A = (A1, . . . , An) the
joint spectrum γ(A) obtained is the support of the Weyl functional calculus for
A. If the elements of A commute with each other, then γ(A) is the support of
the joint spectral measure. If A1, . . . , An are bounded linear operators with real
spectra in a Banach space, then γ(A) is just the Taylor spectrum [9].

The fundamental formula is the higher dimensional analogue

(1) f(A) =

∫

∂Ω

Gω(A)n(ω)f(ω) dµ(ω).

of the Riesz-Dunford functional calculus for a single operator. Following a sugges-
tion of A. McIntosh (C. 1988), the Cauchy kernel ω 7−→ Gω(A) is defined via a
plane wave decomposition formula in Clifford analysis. If n = 2 and σ(〈A, s〉) ⊂ R

for |s| = 1, the relevant representation of the Cauchy kernel takes the form

Gω(A) = − sgn(y0)

8π2

∫

S1

(〈yI − A, s〉 − y0sI)
−2 ds

for ω = y0e0 + y, y0 ∈ R \ {0}, y ∈ R2 [1, 3].
The set γ(A) of singularities of ω 7−→ Gω(A) is a subset of Rn+1 and serves as

the joint spectrum of A. The application of Clifford analysis methods is limited
to operators whose spectra do not collectively stray too far from the real axis.

Applications include the study of the support of the fundamental solution of
the symmetric hyperbolic system

∂u

∂t
+

n∑

k=1

Ak
∂u

∂xk
= 0

of partial differential equations and H∞-functional calculi for commuting systems
of operators acting in a Hilbert space, satisfying “square function extimates”, for
example, the differentiation operators on a Lipschitz surface. Formula (1) makes
sense for functions that are left monogenic in the sense of Clifford analysis and
have suitable decay at zero and infinity (following the argument of A. McIntosh [8]
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in C). However, there is a correspondence between bounded monogenic functions

f̃ and bounded holomorphic functions f in sectors via the formula

(2) f(z) =

∫

∂Ω

Gω(z)n(ω)f̃(ω) dµ(ω), z ∈ Cn.

For ω ∈ Rn+1, the Cauchy kernelGω(z) is a holomorphic extension in z ∈ Cn of the
Cauchy kernel in Clifford analysis. In this manner, we obtain an H∞-functional
calculus f 7−→ f(A1, . . . , An) for commuting systems of operators acting in a
Hilbert space satisfying square function estimates in a similar way to the case
n = 1 [1, 2].

Another point of contact is with functional calculi indexed by families of con-
tinuous probability measures µ = (µ1, . . . , µn) on [0, 1], so called Feynman op-
erational calculi [1, 4, 5, 6, 7]. The equally weighted functional calculus with
µ1 = µ2 = · · · = µn corresponds to the Weyl functional calculus. It is a natural
idea to replace one of the time-ordering measures in Feynman’s operational calcu-
lus for functions f of two variables by the one dimensional Wiener process 〈Wt〉t≥0

to represent the solution Xt of the linear stochastic differential equation

dXt +AXtdt = BtXtdWt

as Xt = fdt,dWt(−A,B)X0 in terms of the stochastic functional calculus associated
with the operator A, the operator valued function 〈Bs〉s≥0, the time ordering
measure dt and the time-ordering process 〈Ws〉s≥0 over the interval [0, t]. Here f
is the entire function (z1, z2) 7→ ez1+z2 of two complex variables and −A is the
generator of an analytic semigroup acting on a Banach space. The possibility of
obtaining such a representation for general processes B seems to be closely related
to the maximal regularity of A and the existence of an H∞-functional calculus.
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Lp–regularity of parabolic differential equations on Rd with unbounded
coefficients

Roland Schnaubelt

(joint work with Giorgio Metafune, Diego Pallara, Jan Prüss, Abdelaziz Rhandi)

We study elliptic partial differential operators of the form

Au = div (a∇u) + F · ∇u− V u

on Rd with unbounded coefficients. Such operators occur as Schrödinger operators
or as generators of transition semigroups arising in stochastic analyis. It is known
that A endowed with a suitable domain D(A) generates a strongly continuous
semigroup T (t), t ≥ 0, on Lp(Rd), 1 ≤ p < ∞, if the dissipativity condition
pV + divF ≥ 0 holds. Then u(t, x) = T (t)f(x) solves the parabolic problem
∂tu(t, x) = Au(t, x), t ≥ 0; u(0, x) = f(x), x ∈ Lp(Rd), provided that f ∈
D(A). But one needs additional conditions to obtain analyticity of t 7→ T (t) (for
t > 0). Analyticity fails already for the Ornstein–Uhlenbeck operator Au(x) =
tr aD2u(x) + (bx,∇u(x)), where a = aT > 0 and b 6= 0 are real d× d matrices.

Our main interest, however, is directed to a precise description of the domain
and to consequences of this description to qualitative properties of the semigroup.
We concentrate on cases where D(A) is given as the intersection of the domains of
the summands of A. For brevity we do not state all assumptions precisely and give
only a few references. In the cited papers one finds all details and more relevant
literature.

First, we treat the case that V = 0. We assume that a = aT ∈ C1
b (R

d,Rd×d) sat-
isfies a ≥ δI > 0 and an oscillation condition at infinity and that (F ′(x)a(x)ξ, ξ) ≤
c |ξ|2 or x, ξ ∈ Rd, see [MPR]. There are examples fulfilling our conditions such
that F (x) grows as |x| log |x|. On the other hand, the operator Au(x) = u′′(x) −
sign(x) |x|1+ǫu′(x) (ǫ > 0) does not even generate a semigroup on Lp(R). Employ-
ing a non–commutative Dore–Venni theorem, we prove that A with D(A) = {f ∈
W 2,p(Rd) : F · ∇u ∈ Lp(Rd)} generates a C0–semigroup on Lp(Rd), 1 < p < ∞.
By completely different methods this result was recently shown in [MPV] assuming
in addition that F is globally Lipschitz. We then study global regularity of the
density ρ of the invariant measure dµ of T (t) assuming that it exists (i.e, it holds∫
ρ T (t)f dx =

∫
ρf dx for all f ∈ L∞(Rd)). It turns out that ρ ∈W 2,q(Rd) for all

q < ∞. This fact follows from the inclusion D(A) ⊂ W 2,p(Rd) for all p ∈ (1,∞)
and standard semigroup theory. See [BKR] for a different approach to the global
regularity of invariant measures.

In a second part, we investigate the case of a dominating potential. At first,
consider the Ornstein–Uhlenbeck type operator AOUu = ∆u − ∇Φ · ∇u where
Φ ∈ C2(Rd), e−Φ ∈ L1(Rd), and |D2Φ| ≤ ǫ |∇Φ|2 + cǫ for all ǫ > 0. It turns out
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that it is convenient to study AOU on the space Lp(Rd, dµ), 1 < p < ∞, with
the (invariant) measure dµ = e−Φ dx. If one transforms AOU to Lp(Rd) (with
the usual Lebesgue measure), one obtains an operator Au = ∆u + F · ∇u − V u,
where the resulting F and V satisfy V ≥ −c0 and |F | ≤ κ(1 + c0 + V )1/2. In
this sense the potential ‘dominates’ the drift. Moreover, one deduces the dissi-
pativity condition θV + divF ≥ 0 for some θ < p and the oscillation condition
|∇V | ≤ γV 3/2 + cγ for all γ > 0 (*). (Here we omit some technical details.)
Under these assumptions, we show that A generates an analytic semigroup on
Lp(Rd), 1 < p < ∞, having maximal regularity of type Lq and that A has the
domain D(A) = {u ∈ W 2,p(Rd) : V u ∈ Lp(Rd)}, see [MPRS]. By means of
the resulting elliptic Lp– estimates and duality, we further prove that A with
domain D(A) = D(∆) ∩ D(V ) generates an analytic semigroup on the spaces
C0(R

d) and L1(Rd). Going back to the Ornstein–Uhlenbeck type operator on
the weighted space, one sees that AOU has the domain D(AOU ) = W 2,p(Rd, dµ)
and generates an analytic semigroup on Lp(Rd, dµ), 1 < p < ∞, having maximal
regularity of type Lq. Under additional smallness conditions on the constant κ,
similar theorems have been established in [CV] and [DPV] by different methods.
The result on Lp(Rd) holds in fact for diffusion coefficients a ∈ C1

b (R
d,Rd×d)

satisfying aT = a ≥ δI > 0. Moreover, the estimate (*) must only hold for a
sufficiently small γ. There are examples showing that this smallness condition is
quite sharp. We employ variational apriori estimates, localization/covering proce-
dures and semigroup theory. A crucial ingredient is the weighted gradient estimate
‖V 1/2 |∇u| ‖p ≤ c(‖∆u‖ + ‖V u‖p) (**) which allows to control the drift term by
the diffusion term and the potential.

We have also investigated the case of non–uniformly elliptic diffusion coeffi-
cients a = aT ∈ C1(Rd, (Rd×d) such that a > 0 and |a(x)| grows at most as
|x|2 log |x| at infinity, see [MPPS]. In this case A on the domain D(A) = {f ∈
W 2,p
loc (Rd) : V u, div (a∇u) ∈ Lp(Rd)} generates an analytic semigroup with max-

imal Lq–regularity on Lp(Rd), 1 < p < ∞. In the assumptions and the proofs,
one has to replace at some points the euclidean norm |y| by the quadratic form
(a(x)y, y). If p > 2, we require in addition an oscillation condition on a which in-
volves V and the lower and upper bounds of a(x). The latter assumption is needed
to show a suitable extension of the gradient estimate (**). Finally, one allow for
an isolated singularitiy x0 of V and F if the assumptions hold on Rd \ {x0}.

The papers [MPPS], [MPRS], [MPS] can be found on
http://cantor1.mathematik.uni-halle.de/reports/
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Characteristic functions for row contractions

Jörg Eschmeier

(joint work with T. Bhattacharyya and J. Sarkar)

Let T ∈ L(H) be a contraction on a complex Hilbert space. The defect operators
D = (1 − T ∗T )1/2 and D∗ = (1 − TT ∗)1/2 of T and T ∗ can be used to define the
unitary matrix operator

UT =

(
T ∗ D
D∗ −T

)
∈ L(H ⊕D, H ⊕D∗) ,

where D = ImD and D∗ = ImD∗ are the defect spaces of T and T ∗. The transfer
function of UT , that is, the analytici operator-valued map ΘT : D → L(D,D∗),

ΘT (z) = −T +D∗(1 − zT ∗)−1zD

is called the characteristic function of T . It was used by Sz.–Nagy and Foias [8]to
build functional models for completely non-unitary (cnu) contractions and to de-
velop an extensive theory of Hilbert space contractions.

The characteristic function is a complete unitary invariant for cnu contractions.
More precisely, two analytic operator-valued functions Θ : D → L(D,D∗) and
Θ′ : D → L(D′,D′

∗) are said to coincide if there exist unitary operators τ : D → D′

and τ∗ : D∗ → D′
∗ with Θ′(λ)τ = τ∗Θ(λ) for all λ ∈ D.

Theorem 1 (Sz.–Nagy and Foias [8]) Two cnu contractions T ∈ L(H) and
R ∈ L(K) are unitarily equivalent if their characteristic functions coincide.

In the one-variable case this observation is only the starting point for a rich
theory describing properties of contractions in terms of their characteristic func-
tions. In more recent papers, e.g. by Drury [4], Müller-Vasilescu [6], Popescu [7],
Arveson [1, 2], an analogous multivariable theory for contraction tuples on the
unit ball B in Cn was initiated.

A commuting tuple T = (T1, . . . , Tn) ∈ L(H)n is called a row contraction if the
row matrix operator Hn → H , (xi) 7→

∑n
i=1 Tixi, is a contraction. The adjoint of

the row operator T is a column operator T ∗ ∈ L(H,Hn). Exactly as in the one-
variable case, one can define the characteristic unitary UT ∈ L(H ⊕D, Hn ⊕D∗),
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where D ⊂ Hn and D∗ ⊂ H are the defect spaces of T and T ∗. We define the
characteristic function of T as the transfer function ΘT : B → L(D, D∗),

ΘT (z) = −T +D∗(1 − ZT ∗)−1ZD

of UT , where Z : Hn → H , (xi) 7→
∑n
i=1 zixi, denotes the row multiplication with

z ∈ B.

Unlike the one-dimensional case, it is not enough to exclude unitary parts to
make sure that the characteristic function becomes a complete unitary invariant.
Indeed, if V is a cnu coisometry, then the characteristic functions of the cnu pairs
(V, 0) and (0, V ) coincide, although these pairs are far from being (componentwise)
unitarily equivalent.

By definition a row contraction T ∈ L(H)n is completely non-coisometric (cnc)
if there is no closed invariant subspace M 6= {0} for T ∗ such that T ∗|M is a
spherical isometry. A commuting tuple V ∈ L(H)n is a spherical isometry if∑n

i=1 V
∗
i Vi = 1. We say that T is of type C·0 if the operators

n∑

i1,...,ik=1

Tik . . . Ti1T
∗
i1 . . . T

∗
ik =

∑

|α|=k

γαT
αT ∗α

(
γα =

|α|!
α!

)

converge strongly to zero.

Theorem 2 (Bhattacharyya–Eschmeier–Sarkar [3]) Two cnc row contractions
T ∈ L(H)n and R ∈ L(K)n are unitarily equivalent if and only if ΘT and ΘR

coincide.

The proof of this result uses functional models constructed with the help of
the characteristic functions. Define H(D) as the space of all analytic functions
f =

∑
α aαz

α ∈ O(B,D) with ‖f‖2 =
∑
α ‖aα‖2/γα < ∞. It is well known that

H(D) is a functional Hilbert space which, for n = 1, coincides with the D-valued
Hardy space on the unit disc. The characteristic function of a row contraction
induces a contractive multiplier between H(D) and H(D∗).

Theorem 3 (Ball–Trent–Vinnikov, Eschmeier–Putinar [5]) Let S ⊂ B and
f : S → L(D,D∗) be arbitrary. Equivalent are:

(i) f extends to a multiplier F ∈ M
(
H(D), H(D∗)

)
with norm bounded by

1;

(ii) Kf(z, w) = 1−f(w)f(z)∗

1−〈w,z〉 defines a positive definite function on S × S;

(iii) there is a Hilbert space H and a unitary operator

U =
(
A B
C D

)
∈ L(H ⊕D, Hn ⊕D∗)

such that f(z) = D + C(1 − ZA)−1ZB for z ∈ S.
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The construction of the functional model is based on the following dilation the-
orem.

Theorem 4 Let T ∈ L(H)n be a row contraction. Then the map

j : H → H(D∗), j(h) =
∑

α

γα(D∗T
∗αh)zα

intertwines T ∗ ∈ L(H)n and M∗
z = (M∗

z1 , . . . ,M
∗
zn

) ∈ L
(
H(D∗)

)n
such that

(i) jj∗ +MΘTM
∗
ΘT

= 1H(D∗),
(ii) j is isometric if and only if T is of type C·0,
(iii) j is injective if and only if T is cnc.

The different parts of the proof can be found in Müller-Vasilescu [6], Arveson
[2] and in Bhattacharyya–Eschmeier–Sarkar [3].

In the C·0-case the map j induces a unitary equivalence between the given row
contraction T and the compression of Mz to the model space HT = H(D∗) ⊖
ImMΘT .

If ΘT and ΘR coincide via unitaries τ and τ∗, then τ∗ induces a unitary equiv-
alence between the functional models of T and R. A complete proof can be found
in [3]. In the completely non-coisometric case the above arguments have to be
slightly modified. Details will be presented elsewhere.
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Stochastic integration in UMD spaces

Jan van Neerven

(joint work with Mark Veraar and Lutz Weis)

We report on a joint work with Mark Veraar and Lutz Weis [6].
Building upon previous work by Rosiński and Suchanecki [8] and Brzeźniak

and the author [1], a systematic theory of stochastic integration for Banach space-
valued functions with respect to Brownian motions has been constructed in [7]
using a recent idea of Kalton and Weis to study vector-valued functions through
certain operator-theoretic properties of the associated integral operators [4]. In
the work presented here, the results of [7] are extended to a theory of stochastic
integration for stochastic processes taking values in a UMD space.

Let (γn) be a sequence of independent standard Gaussian random variables on
some probability space (Ω,P). A bounded operator T : H → E acting from a
separable real Hilbert space H with orthonormal basis (hn) into a real Banach
space E is said to be γ-radonifying if the Gaussian sum

∑
n γn Thn converges in

L2(Ω;E). This definition is independent of the choice of (γn) and (hn), and the
vector space γ(H,E) of all γ-radonifying operators from H to E is a Banach space
with respect to the norm ‖ · ‖γ(H,E) defined by

‖T ‖2
γ(H,E) := E

∥∥∥
∑

n

γn Thn

∥∥∥
2

.

Let W = (W (t))t>0 be a Brownian motion on (Ω,P). The main result of [7]
can be formulated as follows.

Theorem 1 ([7]). For a function ψ : [0, T ] → E such that 〈ψ, x∗〉 ∈ L2(0, T ) for
all x∗ ∈ E∗, the following assertions are equivalent:

(1) For every measurable set A ⊆ [0, T ] there exists an E-valued random vari-
able ηA such that for all x∗ ∈ E∗ we have

〈ηA, x∗〉 =

∫

A

〈φ(t), x∗〉 dW (t) almost surely;

(2) There exists an operator Sψ ∈ γ(L2(0, T ), E) such that for all f ∈ L2(0, T )
and x∗ ∈ E∗ we have

〈Sψf, x∗〉 =

∫ T

0

f(t)〈ψ(t), x∗〉 dt.

Writing ηA =
∫
A
ψ(t) dW (t), for all 1 6 p < ∞ we have E

∥∥∥
∫ T
0
ψ(t) dW (t)

∥∥∥
p

hp

‖Sψ‖pγ(L2(0,T ),E)), with equality for p = 2.

If the equivalent conditions of the theorem are satisfied, then ψ is said to be
stochastically integrable with respect to W .

Denote by FW = (FW
t )t>0 the augmented filtration generated by W . A

stochastic process φ : [0, T ] × Ω → E is said to be FW -weakly progressive if
for all x∗ ∈ E∗ the real-valued process 〈ψ, x∗〉 is progressively measurable with
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respect to FW . Such a process is said to be elementary progressive if it is of the

form φ =
∑N
n=1 1(tn,tn+1] ⊗ ξn, where ξn is an FW

tn -measurable simple random
variable with values in E. Assuming that E is a UMD space, Garling [3] proved
the following two-sided decoupling inequality for elementary progressive processes,
valid for 1 < p <∞:

EΩ

∥∥∥
∫ T

0

φ(t) dW (t)
∥∥∥
p

hp,E EΩ×Ω̃

∥∥∥
∫ T

0

φ(t) dW̃ (t)
∥∥∥
p

.

Here W̃ is a Brownian motion on a probability space (Ω̃, P̃) and the integral on the
right hand side is defined pathwise with respect to Ω. By Fubini’s theorem, the
Kahane-Khinchine inequalities and Theorem 1, the right hand side is proportional
to

EΩ×Ω̃

∥∥∥
∫ T

0

φ(t) dW̃ (t)
∥∥∥
p

hp EΩ

(
EΩ̃

∥∥∥
∫ T

0

φ(t) dW̃ (t)
∥∥∥

2)p/2
= EΩ‖Sφ‖pγ(L2(0,T ),E),

where Sφ : Ω → γ(L2(0, T ), E) satisfies 〈Sφ(ω)f, x∗〉 =
∫ T
0
f(t)〈φ(t, ω), x∗〉 dt for

all f ∈ L2(0, T ) and x∗ ∈ E∗ almost surely. As a consequence, the mapping Sφ 7→∫ T
0 φ(t) dW (t) extends to an isomorphism from the closure in Lp(Ω; γ(L2(0, T ), E))

of the elementary progressive processes onto a certain closed subspace of Lp(Ω;E).
Using a version of the Pettis measurability theorem for FW -measurable processes
in combination with Itô’s martingale representation theorem and approximation
arguments, the range of this isomorphism can be identified as the subspace of all
mean zero FW

T -measurable elements of Lp(Ω;E). The result is an extension of
Itô’s martingale representation theorem to UMD-valued processes, which is the
main ingredient in the proof of the following theorem:

Theorem 2. Let E be a UMD space and let p ∈ (1,∞). For a weakly progressive
process φ : [0, T ]× Ω → E such that 〈φ, x∗〉 ∈ Lp(Ω;L2(0, T )) for all x∗ ∈ E∗, the
following assertions are equivalent:

(1) For every measurable set A ⊆ [0, T ] there exists a random variable ηA ∈
Lp(Ω;E) such that for all x∗ ∈ E∗ we have

〈ηA, x∗〉 =

∫

A

〈φ(t), x∗〉 dW (t) in Lp(Ω);

(2) There exists a random variable Sφ ∈ Lp(Ω; γ(L2(0, T ), E)) such that for
all f ∈ L2(0, T ) and x∗ ∈ E∗ we have

〈Sφ(ω)f, x∗〉 =

∫ T

0

f(t)〈φ(t, ω), x∗〉 dt for almost all ω ∈ Ω.

Writing ηA =
∫
A
φ(t) dW (t) we have E

∥∥∫ T
0
φ(t) dW (t)

∥∥p hp,E E‖Sφ‖pγ(L2(0,T ),E).

If the equivalent conditions of the theorem are satisfied, then φ is said to be
Lp-stochastically integrable with respect to W . Note that the scalar stochastic
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integral on the right hand side in (1) is well defined in Lp(Ω) by the Burkholder-
Davis-Gundy inequalities. When combined with our generalized Itô representa-
tion theorem, the equivalence of norms in the last line of the theorem leads to
Burkholder-Davis-Gundy inequalities for UMD-valued FW -martingales.

Theorem 2 can be applied to show that every continuous Lp-martingale (Mt)t>0

with respect to the filtration FW , with values in a UMD space E and satisfying
M0 = 0, is Lp-stochastically integrable with respect to W on every interval [0, T ]
and satisfies

E

∥∥∥
∫ T

0

Mt dW (t)
∥∥∥
p

.p,E T
p
2 E‖MT ‖p.

In particular this applies to the continuous Lp-martingale Mt :=
∫ t
0 φ(s) dW (s),

where φ is an Lp-stochastically integrable process with values in E.
The idea to use decoupling inequalities to construct a theory of stochastic inte-

gration in UMD spaces is due to McConnell [5] who used convergence in probability
rather than Lp-convergence. McConnell first generalized Garling’s inequalities to
obtain decoupling inequalities for tangent sequences with values in UMD spaces
and used these to prove that a progressive process with values in a UMD space E is
stochastically integrable if and only if its trajectories are stochastically integrable
almost surely as E-valued functions. His arguments depend heavily on the equiv-
alence of the UMD property and the geometric notion of ζ-convexity. By using
stopping time arguments, our Theorem 2 can be localized to recover McConnell’s
result under somewhat weaker measurability assumptions. An advantage of this
approach is that it uses the UMD property in a direct and elementary way through
Garling’s inequality. An Itô formula is obtained as well.

Our results can be extended to processes with values in L (H,E), where H
is a separable real Hilbert space and E is a real UMD space; the integrator is
then an H-cylindrical Brownian motion. In a subsequent paper we shall apply
the results to the study of existence, uniqueness, and regularity of certain classes
of nonlinear stochastic evolution equations in E, thereby extending parts of the
theory of stochastic evolution equations in Hilbert spaces developed by Da Prato
and Zabczyk [2] and many others, to the setting of UMD spaces.

References

[1] Z. Brzeźniak and J.M.A.M. van Neerven, Stochastic convolution in separable Banach
spaces and the stochastic linear Cauchy problem, Studia Math. 143 (2000), 43–74.

[2] G. Da Prato and J. Zabczyk, “Stochastic Equations in Infinite Dimensions”, Encyclopedia
of Mathematics and its Applications, Vol. 44, Cambridge University Press, Cambridge, 1992.

[3] D. J. H. Garling, Brownian motion and UMD-spaces, in: “Probability and Banach Spaces”
(Zaragoza, 1985), 36–49, Lecture Notes in Math. 1221, Springer-Verlag, Berlin, 1986.

[4] N. Kalton and L. Weis, The H∞-functional calculus and square function estimates,
preprint.

[5] T. R. McConnell, Decoupling and stochastic integration in UMD Banach spaces, Probab.
Math. Statist. 10 (1989), 283–295.

[6] J.M.A.M. van Neerven, M.C. Veraar, and L. Weis, Stochastic integration of processes
with values in a UMD Banach space, in preparation.



Spectral Theory in Banach Spaces and Harmonic Analysis 1943

[7] J.M.A.M. van Neerven and L. Weis, Stochastic integration of functions with values in a
Banach space, to appear in Studia Math.
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Spectral multipliers for the Kohn sublaplacian on the sphere in Cn

Michael Cowling

(joint work with O. Klima and A. Sikora)

The sphere S in Cn has a natural sublaplacian L. We find the optimal s such that a

Hörmander multiplier theorem with index s holds for L.

Hörmander’s theorem for Fourier multipliers [7] specialises to functions of the
Laplacian. By a Hörmander theorem with index s, we mean a result of the follow-
ing form, where Hs stands for the Sobolev space of functions with s derivatives in
L2(R), and L for a nonnegative selfadjoint operator on L2(S).

Model Theorem. Suppose that m : [0,∞) → C is bounded and Borel-measurable.
Suppose also that 0 6= ϕ ∈ C∞

c (0,∞) and that

‖m(t·)ϕ(·)‖Hs ≤ C ∀t > 0.

Then m(L), initially defined on L2(S), extends continuously to all the spaces Lp(S)
when 1 ≤ p ≤ ∞ and is bounded if 1 < p < ∞. Further, m(L) is bounded from
H1(S) to L1(S) and is of weak type (1, 1).

The model theorem theorem implies that L has an H∞(Sǫ) functional calculus
for all positive ǫ, where Sǫ = {z ∈ C : | arg(z)| < ǫ}, and

‖m(L)‖ ≤ C ǫ−s‖m(L)‖H∞ ∀m ∈ H∞(Sǫ).

Conversely, if such inequalities hold for all positive ǫ, then a model theorem holds,
with a possibly different index [4, Theorem 4.10]. The model theorem implies that

‖Liu‖Lp→Lp ≤ C(1 + |u|)2s|1/p−1/2| ∀u ∈ R.

In Rn, a Hörmander multiplier theorem for (minus) the Laplacian ∆ with index s
holds if and only if s > n/2, but A. Sikora and J. Wright [10] showed that

‖∆iu‖Lp→Lp ≤ C(1 + |n|)n|1/p−1/2| ∀u ∈ R.

The Kohn sublaplacian L on the sphere in Cn is of interest in complex analysis,
and as a model subelliptic operator. It may be defined by

L = −∆ + T 2 ,

where ∆ denotes the Laplace–Beltrami operator on the sphere and T denotes the
unit vector field on S pointing in the iz direction at the point z.

Theorem. A Hörmander multiplier theorem with index s for the Kohn sublapla-
cian holds when s > n− 1/2, and this is best possible.
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Define the metric (distance function) d on S by

d(z, w) = |1 − z · w|1/2,
where z · w is the usual Hermitian inner product. It is easy to check that the
Lebesgue measure of the ball B(w, t) with centre w and radius t satisfies

|B(w, t)| ≤ Cmin(t2n, 1) ∀t > 0.

Equipped with this metric and Lebesgue measure, S is a space of homogeneous
type in the sense of Coifman and Weiss [2]. Therefore the Hardy space H1(S)
is a well defined “atomic H1 space” [3]. Consequently, it is possible to prove a
Hörmander theorem with index s when s > n using the results of Coifman and
Weiss.

The key step in proving the multiplier theorem is to associate to a multiplier m
a kernel km : S × S → C and to establish that

(1)

∫

d(x,y)>2d(y,y′)

|km(x, y) − km(x, y′)| dx ≤ C ∀y, y′ ∈ S.

Thus the task is to control a term of the form∫

d(x,y)>ǫ

|k(x, y)| dx.

Fourier analysis is used to prove Hörmander’s multiplier theorem. On Rn,
∫

|f(x)| dx ≤
(∫

1

(1 + |x|)2s dx
)1/2(∫

(1 + |x|)2s|f(x)|2 dx
)1/2

;

the first factor on the right hand side converges provided that s > n/2, and the

second is essentially the Hs norm of f̂ , the Fourier transform of f ; in the ultimate
analysis, this is why n/2 is the critical index for the classical Hörmander theorem.
In our case, we decompose the integral into integrals over annuli:

∫

d(x,y)>ǫ

|k(x, y)| dx =

∞∑

n=0

∫

2n+1ǫ≥d(x,y)>2nǫ

|k(x, y)| dx,

and in each annulus we use the trivial estimate

(2)

∫

B(y,2δ)\B(y,δ)

|k(x, y)| dx ≤ |B(y, 2δ) \B(y, δ)|1/2
(∫

S

|k(x, y)|2 dx
)1/2

An argument of R.B. Melrose [9] shows that the distribution cos(t
√
L)δw (a

solution to the wave equation involving L) is supported in B(w,
√

2t). We define
the even function Mn : R → C by Mn(ξ) = mn(ξ

2). Then at least formally,

mn(λ) = Mn(
√
λ) =

1

2π

∫ ∞

−∞

M̂n(t) cos(t
√
λ) dt,

where M̂n is the Fourier transform of Mn, so

mn(L) =
1

2π

∫ ∞

0

[
M̂n(t) + M̂n(−t)

]
cos(t

√
L) dt
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and

kmn(·, y) =
1

2π

∫ ∞

0

[
M̂n(t) + M̂n(−t)

]
cos(t

√
L)δy dt;

by Melrose’s finite propagation speed result,
∫ ǫ

0

[
M̂n(t) + M̂n(−t)

]
cos(t

√
L)δy dt

is supported in B(y,
√

2ǫ). If m is smooth enough, then M̂n vanishes fast enough
to control the decay of kmn(x, y) as x moves away from y. This argument,
due to J. Cheeger, M. Gromov and M. Taylor [1], is a more abstract version of
Hörmander’s analysis, but it only yields a multiplier theorem when s > n, because
|B(y, t)| behaves like a multiple of t2n for small t, and no smaller exponent will
do.

The trick which is needed is the use of a weight w: we replace (2) by
∫

B(y,2δ)\B(y,δ)

|k(x, y)| dx

≤
(∫

B(y,2δ)\B(y,δ)

w(x, y)−1 dx

)1/2 (∫

S

|k(x, y)|2w(x, y) dx

)1/2

.

If w(x, y) = d(x, y)α, then the first integral on the right hand side behaves as
δn−α/2; the weight effectively lowers the homogeneous dimension. The cost of
this is that one needs weighted L2 estimates: ordinary L2 estimates follow from
the Plancherel theorems for Lie groups or for spherical harmonic expansions, but
weighted Plancherel theorems are trickier.

Up to this point, everything is in my paper with Sikora [6], where we also prove
weighted L2 estimates for the sphere in C2 using harmonic analysis on SU(2).
It is now possible to prove the general theorem for the sphere in Cn using the
weighted L2 estimates in the M.Sc. thesis of Klima [8] — the key to these is a
careful study of complex spherical harmonics. A paper [5] with the details is in
preparation.
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Evans functions and modified Fredholm determinants

Yuri Latushkin

(joint work with Fritz Gesztesy and Konstantin A. Makarov)

We announce a general formula relating the Evans function [JK, S] and the
(modified) Fredholm determinant of a “sandwiched resolvent” [GM] for first-order
nonautonomous differential equations. For simplicity, we formulate our results only
for the case of L1-perturbations of differential equations with L∞-coefficients.

Let J denote one of the sets R+ = [0,∞), R− = (−∞, 0], or R. On J we
consider the differential equation y′ = M(·)y, M ∈ L∞(J ; Cd×d) and denote by
Φ(·) its fundamental matrix solution normalized by Φ(0) = I. If Q is a given
projection in Cd such that mQ,J := supx∈J ‖Φ(x)QΦ(x)−1‖ <∞, then the upper
and lower general (or Bohl ) exponents are defined as follows (see, e.g., [DK]):

κg(Q; J) = inf
{
α ∈ R

∣∣∣ sup
x≥x′,x,x′∈J

‖e−α(x−x′)Φ(x)QΦ(x′)−1‖ <∞
}
,

κ′
g(Q; J) = sup

{
α ∈ R

∣∣∣ sup
x≤x′,x,x′∈J

‖e−α(x−x′)Φ(x)QΦ(x′)−1‖ <∞
}
.

A system {Qj}nj=1, 1 ≤ n ≤ d, of disjoint projections in Cd is called the finest
exponential splitting of order n over J if the following holds: Q1 + · · · + Qn = I,
mQj ,J < ∞, the segments [κ′

g(Qj ; J),κg(Qj ; J)], j = 1, . . . , n, are disjoint, and
there is no exponential splitting of order n+1. In the following we assume that the
projections Qj are numbered such that κg(Qj ; J) < κ′

g(Qj+1; J); we set Q0 = 0,
Qn+1 = I, and ε0 = (1/2)min{κ′

g(Qj ; R) − κg(Qj−1; R) : j = 1, . . . , n}.
We assume that the equation y′ = M(·)y with M ∈ L∞(R; Cd×d), has an

exponential dichotomy on R with the dichotomy projectorQ. Moreover, we denote
by {Qj}nj=1 the finest exponential splitting over R for this equation and remark
that the projections Q and Qj are uniquely defined [DK, sec. IV.4]. In addition,
there exists a k ∈ {1, . . . , n} such that Q = Q1 + · · · + Qk and I − Q = Qk+1 +
· · · +Qn. Thus, κ′

g(Qj ; R) ≤ κg(Qj ; R) < 0 for j = 1, . . . , k and 0 < κ′
g(Qj ; R) ≤

κg(Qj ; R) for j = k+1, . . . , n. Clearly, {Qj}nj=1 is also an exponential splitting for

y′ = M(·)y over R+ and over R− with the corresponding segments [κ′+
j ,κ

+
j ] and

[κ′−
j ,κ

−
j ] of general exponents; in the remainder of this announcement we denote

κ′±
j = κ′

g(Qj ; R±), κ±
j = κg(Qj ; R±), j = 1, . . . n.



Spectral Theory in Banach Spaces and Harmonic Analysis 1947

Next, we consider the perturbed differential equation y′ = [M(·) + R(·)]y
with R ∈ L1(R; Cd×d). Let {Q̃+

j }nj=1, respectively, {Q̃−
j }nj=1 be any exponen-

tial splitting for y′ = [M(·) + R(·)]y over R+, respectively, over R−. We will use

“∼” to denote all objects related to the splitting {Q̃±
j }nj=1 relative to the fun-

damental matrix solution Φ̃(·) of the equation y′ = [M(·) + R(·)]y; for instance,

κ̃+
j = inf{α ∈ R : supx≥x′≥0 ‖e−α(x−x′)Φ̃(x)Q̃+

j Φ̃(x′)−1‖ < ∞}, etc. We recall

(cf. [DK, Sec. IV.5.3]), that the general exponents κ±
j , κ′±

j are stable under L1-

perturbations in the following sense: Let ‖R(·)‖ ∈ L1(R±) and assume a given
exponential splitting {Q±

j }nj=1 over R± for y′ = M(·)y. Then for each ε ∈ (0, ε0),

there exists an exponential splitting {Q̃±
j }nj=1 over R± for y′ = [M(·)+R(·)]y which

is ε-close to {Q±
j }nj=1, that is, the inequalities κ′±

j − ε ≤ κ̃′
±

j and κ̃±
j ≤ κ±

j + ε

hold for j = 1, . . . , n. For an explicit construction of {Q̃±
j }nj=1 we refer to [DK,

Thm. IV.5.1].
Suppose that the perturbation R satisfies the following hypothesis: There exists

a δ ∈ (0, ε0) such that
∫ ∞

0

e(κ
+
j −κ

′+
j +δ)x ‖R(x)‖dx <∞, j = 1, . . . , k,

∫ 0

−∞

e−(κ−

j −κ
′−

j +δ)x ‖R(x)‖dx <∞, j = k + 1, . . . , n.

Theorem 1. Let ε ∈ (0, δ) and assume that {Q̃±
j }nj=1 is any exponential split-

ting for y′ = [M(·) + R(·)]y over R± which is ε-close to {Qj}nj=1. Then for each

γ ∈ (ε, δ), the perturbed equation y′ = [M(·) + R(·)]y has absolutely continuous
matrix solutions Yj(·), j = 1, . . . , k, on R+ and Yj(·), j = k + 1, . . . , n, on R−,

respectively, such that for the forward filtration Ẽ+
j (x) =

⊕j
i=1 Im(Q̃+

j (x)) and for

the backward filtration Ẽ−
j (x) =

⊕n
i=j Im(Q̃−

i (x)) the following assertions hold:

Yj(x) ∈ Ẽ+
j (x)\Ẽ+

j−1(x), x ∈ R+,

sup
x≥0

e−(κ′+
j −γ)x‖Yj(x) − Φ(x)Qj‖ <∞, j = 1, . . . , k,

Yj(x) ∈ Ẽ−
j (x)\Ẽ−

j+1(x), x ∈ R−,

sup
x≤0

e−(κ−

j +γ)x‖Yj(x) − Φ(x)Qj‖ <∞, j = k + 1, . . . , n.

These solutions are unique up to terms of lower exponential order. Moreover, if

{Q̃±
j }nj=1 is the splitting used in [DK, Thm. IV.5.1], then y′ = [M(·) + R(·)]y

has a unique set of absolutely continuous matrix solutions Yj(·) such that Yj(·) ∈
Im(Φ̃(·)Q̃+

j Φ̃(·)−1), j = 1, . . . , k, on R+, respectively, Yj(·) ∈ Im(Φ̃(·)Q̃−
j Φ̃(·)−1),

j = k + 1, . . . , n, on R−, and the above assertions hold for each γ ∈ (ε, δ).
In fact, the solutions Yj(·) are solutions of some explicit integral equations.
Definition. If Yj(·), j = 1, . . . , n, are the matrix solutions in Theorem 1, then

the Evans determinant E associated with the (ordered ) pair of equations y′ = M(·)y



1948 Oberwolfach Report 36/2004

and y′ = [M(·) +R(·)]y is defined as follows:

E = det[Y1(0) + · · · + Yk(0) + Yk+1(0) + · · · + Yn(0)].

One can show that E does not depend on the choice of solutions Yj(·) in
Theorem 1. Thus, the Evans determinant is uniquely determined by the pair of
equations y′ = M(·)y and y′ = [M(·) + R(·)]y. If M = M(·; z) and R = R(·; z)
depend (analytically) on a (spectral) parameter z ∈ Ω with Ω a domain in C,
then the above definition yields the Evans function, E = E(z). The latter is a
particularly useful tool in detecting isolated eigenvalues of differential operators
obtained by linearizing PDEs along special solutions such as travelling waves; we
refer to [JK, S] for basic notions and an extensive review of the literature on this
subject. We emphasize that unlike our definition, the Evans function is usually
defined only up to a nonvanishing (analytic) multiplier (cf. [JK, S]).

Using the polar decomposition R(x) = VR(x)|R(x)|, we represent the perturba-

tion R as a product R = RℓRr, where Rℓ(x) = VR(x)|R(x)| 12 and Rr(x) = |R(x)| 12 ,
x ∈ R. Moreover, we consider in L2(R; Cd) a first order differential operator,
G, with domain the Sobolev space W 2

1 (R; Cd), defined by the formula Gu =
u′ −M(·)u, u ∈ W 2

1 (R; Cd). Since by our assumptions the equation y′ = M(·)y
has an exponential dichotomy on R, the operator G has a bounded inverse, G−1,
which is an integral operator with integral kernel K given by the formula

K(x, x′) =

{
Φ(x)QΦ(x′)−1, x > x′,

−Φ(x)(I −Q)Φ(x′)−1, x < x′.

Since ‖R(·)‖ ∈ L1(R), the “sandwiched resolvent” RrG
−1Rℓ is a Hilbert-Schmidt

integral operator with integral kernel Rr(x)K(x, x′)Rℓ(x
′), x, x′ ∈ R.

Theorem 2. The Evans determinant E for the pair of equations y′ = M(·)y and
y′ = [M(·) + R(·)]y and the 2-modified Fredholm determinant associated with the
Hilbert-Schmidt operator RrG

−1Rℓ are related as follows:

det2(I +RrG
−1Rℓ) =E exp

( ∞∫

0

tr
[
Φ(x)QΦ(x)−1R(x)

]
dx

−
0∫

−∞

tr
[
Φ(x)(I −Q)Φ(x)−1R(x)

]
dx

)
.

We refer to [KS] for a related result on Schrödinger equations.
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Double operator integrals and commutators

Fyodor A. Sukochev

1. Let H be a separable Hilbert space, M ⊆ L(H) be a semi-finite von Neu-
mann algebra equipped with faithful normal semi-finite trace τ . If E(0,∞) is a
r.i. function space then E = E(M, τ) denotes the corresponding “non-commutative
symmetric operator space”. We write Lp instead of Lp(M, τ). If M = L(H) and
τ = Tr, then E is a (classical) symmetrically normed ideal of compact operators.
In this case Lp coincides with Sp — Schatten-von Neumann ideal.
An R-flow on (M, τ) is an ultra-weakly continuous (equivalently, σ(M,M∗)-con-
tinuous) representation γ = {γt}t∈R on M by ∗-automorphisms of M, which are
τ -invariant. The ∗-automorphisms γt has a unique extension γEt on E . {γEt }t∈R

is a strongly continuous group (equivalently, C0-group) whenever E(0,∞) is a
separable r.i. space. Let infinitesimal generator δE of γEt be defined as follows

Dom(δE) = {x ∈ E : ‖ · ‖E − lim
t→0

γEt (x) − x

t
exists},

δE(x) = ‖ · ‖E − lim
t→0

γEt (x) − x

t
, x ∈ Dom(δE).

δE is a densely defined closed operator whenever E(0,∞) is a separable r.i. space,
moreover

δE(x∗) = (δE(x))∗, δE(xy) = δE(x)y + xδE(y), ∀x, y ∈ E ∩M.

Hence δE is a partially defined derivation on M.
Problem. For which scalar functions f : R → R, is f(x) ∈ Dom(δE), whenever
x = x∗ ∈ Dom(δE)?
In particular, in order to guarantee that f(x) ∈ E , whenever x = x∗ ∈ E we shall
assume everywhere below that function f satisfies the following

(NC) f ∈ C1
b (R), f(0) = 0.

Here C1
b (R) is collection of all continuously differentiable functions with bounded

derivative.
Proposition 1.[AdPS]Let S ⊆ L(H) be a linear subspace equipped with a norm
‖ · ‖S, a : Dom(a) 7→ H be a s.a. operator such that (i) (S, ‖ · ‖S) is a Banach
space; (ii) ‖x‖ 6 ‖x‖S for every x ∈ S; (iii) eitaxe−ita ∈ S for every x ∈ S;
(iv) ‖eitaxe−ita − x‖S → 0 as t → 0 for every x ∈ S. Define the C0-group
γ = {γt}t∈R of ∗-automorphisms in S by γt(x) = eitaxe−ita for every x ∈ S and
t ∈ R. If δ : Dom(δ) 7→ S is the infinitesimal generator of γ then Dom(δ) admits
the following description. Operator x ∈ S belongs to Dom(δ) if and only if the
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following two conditions hold (a) x(Dom(a)) ⊆ Dom(a); (b) [a, x] ∈ S. Moreover,
δ(x) = i[a, x] for every x ∈ Dom(δ).
Now we can consider the following example. Let a : Dom(a) 7→ H be a s.a. oper-
ator, Define C∗-algebra Sa as follows

Sa = {x ∈ L(H) : ‖eitaxe−ita − x‖L(H) → 0, as t→ 0}.

Algebra Sa satisfies the conditions (i)–(iv) of proposition 1 with respect to group
γt(x) = eitaxe−ita, x ∈ Sa. Hence, γ = {γt}t∈R is a C0-group on Sa. The
infinitesimal generator δ : Dom(δ) 7→ Sa of γ is a densely defined closed symmetric
derivation on the C∗-algebra Sa. It follows from the proposition 1 that Dom(δ)
admits the following description. x ∈ Sa belongs to Dom(δ) if and only if (a)
x(Dom(a)) ⊆ Dom(a); (b) [a, x] ∈ Sa.
Let the C1-function fη : (−1, 1) 7→ R (0 < η < 1) be defined as follows

fη(t) = |t|
(

log

∣∣∣∣log
|t|
e

∣∣∣∣
)−η

, t 6= 0, fη(0) = 0.

Theorem 2.[AdPS] There exist s.a. operators a : Dom(a) 7→ H, x ∈ K(H) ⊆ Sa

such that (i) x(Dom(a)) ⊆ Dom(a); (ii) [a, x] ∈ Sa; (iii) ‖[a, fη(x)]‖ = ∞.
The latter indeed means that there exist a C∗-algebra Sa, closed densely defined
symmetric derivation δ : Dom(δ) 7→ Sa on Sa, an operator x = x∗ ∈ Dom(δ) such
that fη(x) /∈ Dom(δ).
Let us consider a special case M = L(H). Let SE be a symmetrically normed
ideal, a : Dom(a) 7→ H be a self-adjoint operator γt(x) = eitaxe−ita (x ∈ SE) be
a C0-group of automorphisms, δE : Dom(δE) 7→ SE be its infinitesimal generator.
In this special case the problem can be reformulated as follows
Problem′.For which scalar functions f , is [f(x), a] ∈ SE , whenever [x, a] ∈ SE?
If x =

∑
k λkpk is a spectral decomposition of an operator x = x∗ ∈ SE ⊆ K(H)

and ψf (λ, µ) = (f(λ) − f(µ))/(λ − µ), then

=
∑

m,s

pm[f(x), a]ps =
∑

m,s

pm

[∑

k

f(λk)pk, a

]
ps =

∑

m,s

(f(λm) − f(λs))pmaps

=
∑

m,s

ψf (λm, λs) (λm − λs)pmaps =
∑

m,s

ψf (λm, λs) pm[x, a]ps.

The last double sum is nothing else but “Double Operator Integral” that expresses
the link between [f(x), a] and [x, a]. The exact meaning of manipulations above
is given below.
2. Let a,b be two s.a. operators affiliated with M, ea, eb be the spectral measures
of those operators. For all sets A,B ∈ B(R) (=σ-algebra of all Borel sets on R)
let us define the operators

P aE(A)(x) = ea(A)x, QbE(B)(x) = xeb(B), x ∈ E .

P aE , QbE are σ-additive commuting measures, taking their values in L(E).
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Now let the mapping P aE ⊗ QbE : A(R2) 7→ L(E) (from the algebra A(R2) of all
Borel rectangles in R2) be defined as follows

P aE ⊗QbE(A×B) = P aE(A)QbE(B).

In general, P aE ⊗QbE cannot be extended to a σ-additive measure on B(R2); it is
a finitely additive measure on A(R2) of (in general) unbounded variation.
However, in the special case E = L2, the finitely-additive measure P aL2

⊗QbL2
can

be extended to a σ-additive measure on B(R2), taking its values in orthogonal
projections in L(L2). Consequently, for every function ϕ ∈ B(R2) (=collection of
all bounded Borel functions on R2) the following spectral integral exists

T a,bϕ,L2
=

∫

R2

ϕd(P aL2
⊗QbL2

), ‖T a,bϕ,L2
‖2,2 6 C‖ϕ‖∞.

Definition 3. A function ϕ ∈ B(R2) will be called P aE ⊗QbE integrable if

T a,bϕ,E(E ∩ L2) ⊆ E ∩ L2,

and T a,bϕ,E is continuous on E ∩ L2 with respect to ‖ · ‖E . In this case T a,bϕ,E has a
unique bounded extension on E , denoted as

T a,bϕ,E =

∫

R2

ϕd(P aE ⊗QbE).

Now we are in a position to introduce two classes of functions on R. We write
“f ∈ (1)” if either f ∈ C1+ε

b (R) (=the collection of all continuously differentiable
functions with bounded derivative such that |f ′(t1)−f ′(t2)| 6 L|t1−t2|ε, t1, t2 ∈ R,
for some absolute constant L) or Ff ′ ∈ Mb(R) (=collection of all bounded mea-
sures on R); “f ∈ (2)” if f is a continuously differentiable function and derivative
f ′ is of bounded total variation over R. Let E(0,∞) be a r.i. separable function
space, then our results are as follows
Theorem 4.[dPS1] Let a, b be s.a. operators affiliated with M, f be a function.
If any of the following two conditions holds (i) f ∈ (1); (ii) f ∈ (2) and E(0,∞)
has non-trivial Boyd indices; then function ψf is P aE ⊗QbE integrable.
Theorem 5.[dPS2] Let γEt be a C0-group generated by an R-flow on M, f ∈
(NC). If any of the following conditions is satisfied (i) f ∈ (1); (ii) f ∈ (2) and
E(0,∞) has non-trivial Boyd indices; then f(x) ∈ Dom(δE) whenever x = x∗ ∈
Dom(δE) and

δE(f(x)) = T x,xψf ,E
(δE(x)).

Remark 6. For function fη introduced above we have that fη /∈ (1) but fη ∈ (2),
because fη has monotone derivative.
3. We know that in general the condition f ∈ (NC) is NOT sufficient to guarantee
that f(x) ∈ Dom(δ) whenever x = x∗ ∈ Dom(δ). The natural question is for
which r.i. spaces E(0,∞) the condition f ∈ (NC) is indeed sufficient. The only
space for which the positive result is obtained is E = L2.
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Corollary 7.[PS] If a function f ∈ (NC) then f(x) ∈ Dom(δ2) whenever x =
x∗ ∈ Dom(δ2) and

δ2(f(x)) = T x,xψf ,L2
(δ2(x)).

Theorem 8.[PS] Let E be a separable r.i. sequence space with trivial Boyd in-
dices. There exist a C1-function fE : (−1, 1) 7→ R (that depends on r.i. E),
a s.a. operator x ∈ SE and a s.a. operator a : Dom(a) 7→ H such that (i)
x(Dom(a)) ⊆ Dom(a); (ii) [a, x] ∈ SE ; (iii) [a, fE(x)] /∈ SE .
The latter means that for every symmetrically normed ideal SE with trivial Boyd
indices there exist a C1-function, a C0-group γt with generator δ : Dom(δ) 7→ SE

and an operator x = x∗ ∈ Dom(δ) such that fE(x) /∈ Dom(δ).
References.
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Wavelet transform for functions with values in Banach spaces

Cornelia Kaiser

(joint work with Lutz Weis)

Let ψ 6= 0 be in L2(R) such that its Fourier transform ψ̂ is in L2(R
∗). (With

R∗ we denote the multiplicative group R \ {0} with invariant measure dt
|t| .) Such

a ψ we call an admissible wavelet. Without loss of generality we can assume that

‖ψ̂‖2
L2(R∗) =

∫
R\{0}

|ψ̂(t)|2 dt|t| = 1. By ψt we denote the dilated version of ψ, i.e.,

ψt(u) = 1
|t|ψ(ut ), where t ∈ R \ {0} and u ∈ R.

For a Banach space X and a function f in the Schwartz class S(R, X) we define
the continuous wavelet transform Wψf of f with respect to ψ by

(Wψf)(t, s) = (ψt ∗ f)(s) =

∫

R

1
|t|ψ( s−ut )f(u)du, s ∈ R, t ∈ R \ {0}.

If X = C, it is well-known (see e.g. [1, 3]) that Wψ extends to an isometry from
L2(R) into L2(R

∗ × R), i.e.,

‖f‖2
L2(R) =

∫

R

∫

R\{0}

|(Wψf)(t, s)|2 dt|t|ds.

Now one can ask the question if a similar result holds for f ∈ L2(R, X), where X
is an arbitrary Banach space. If X is a Hilbert space, we still obtain an isometry
from L2(R, X) into L2(R

∗×R, X). For Banach spaces X however we don’t obtain
equivalence of norms in general. But if we change the norm (and the space) on
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the right hand side in an appropriate way, we can still prove equivalence of norms,
at least in the case that X is a UMD space.

More precisely, take an admissible wavelet ψ ∈ L2(R) such that its Fourier

transform ψ̂ is absolutely continuous on R \ {0} and
∫

R\{0} |tψ̂′(t)|2 dt|t| is finite.

Then, if p, q ∈ (1,∞) and X = Lq(Ω, µ) for some σ-finite measure space (Ω, µ),
we obtain

‖f‖Lp(R,X) ∼
∥∥∥∥
(∫

R\{0}

|(Wψf)(t, ·)|2 dt|t|
)1/2∥∥∥∥

Lp(R,X)

.

For the proof we use an operator-valued Mihlin type multiplier theorem from [5].
For general UMD spaces X we can prove a similar result, using the generalized
square functions introduced in [4]. For more details and the proofs we refer to [2].
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The operator sum method - revisited

Jan Prüss

1. Introduction

In recent years the method of operator sums has become an important tool for
proving optimal regularity results for partial differential and integro-differential
equations, as well as for abstract evolutionary problems, see for instance [5, 11].
This method has been invented in the fundamental paper of da Prato and Grisvard
[2] and has been developed further in the case of two commuting operators, A and
B, by Dore and Venni [4], Prüss and Sohr [13], and more recently by Kalton and
Weis [6]. Since in these results the sum A+B with natural domain D(A+ B) =
D(A) ∩D(B) has similar properties as A and B, one obtains the important fact
that the method can be iterated, and hence, complicated operators can be built
up from simpler ones.

If the operators are noncommuting, matters are, naturally, much more involved.
However, it is known that the Da Prato-Grisvard theorem remains valid if A and
B satisfy certain commutator estimates. Such conditions were already introduced
by Da Prato and Grisvard [2] and later on, Labbas and Terreni [7] proposed
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another, more flexible one. In Monniaux and Prüss [8], the Dore-Venni theorem
was extended to the noncommuting case, employing the Labbas-Terreni condition.

An extension of the Kalton-Weis theorem to the noncommutative case for the
Labbas-Terreni condition has been obtained by Strkalj [14] provided the underlying
Banach space is B-convex. However, no such results are known for the Da Prato-
Grisvard condition, and it is also not known whether or not the result of Monniaux
and Prüss or Strkalj can be iterated. It is the purpose of this paper to present a
noncommutative version of the Kalton-Weis theorem, employing the commutator
condition of Labbas and Terreni, as well as that of Da Prato and Grisvard, without
any assumption on the Banach space. Under stronger hypotheses we show that the
sum A+B admits an H∞-calculus, so that the sum method can also be iterated
in the noncommuting case.

A linear operator A on a Banach space X with domain D(A), range R(A),
kernel N(A) is called sectorial if

• D(A) and R(A) are dense in X ,
• (−∞, 0) ⊂ ρ(A) and |t(t+A)−1| 6 M for t > 0.

Here ρ(A) means the resolvent set of A. The class of all sectorial operators will
be denoted by S(X). If A is sectorial, then it is closed, and it follows from the
ergodic theorem that N(A) = 0. We define the spectral angle φA of A by means of

φA := inf{φ > 0 : ρ(−A) ⊃ Σπ−φ, Mπ−φ <∞},
where Mφ := sup{|λ(λ +A)−1 : λ ∈ Σφ}.

If A is sectorial, the functional calculus of Dunford given by

ΦA(f) := f(A) :=
1

2πi

∫

Γ

f(λ)(λ −A)−1dλ

is a well-defined algebra homomorphism ΦA : H0(Σφ) → B(X), where H0(Σφ)
denotes the set of all functions f : Σφ → C that are holomorphic and decay
polynomially at 0 and at ∞. Here Γ denotes a contour Γ = eiθ(∞, 0] ∪ e−iθ[0,∞)
with θ ∈ (φA, φ). A is said to admit an H∞-calculus if there are numbers φ > φA
and M > 0 such that the estimate

(1) |f(A)| ≤M |f |H∞(Σφ), f ∈ H0(Σφ),

is valid. In this case, the Dunford calculus extends uniquely to H∞(Σφ), see for
instance [3] for more details. We denote the class of sectorial operators which
admit an H∞-calculus by H∞(X). The infimum φ∞A of all angles φ such that (1)
holds for some constant C > 0 is called the H∞-angle of A.

Let T ⊂ B(X) be an arbitrary set of bounded linear operators on X . Then T
is called R-bounded if there is a constant M > 0 such that the inequality

(2) E(|
N∑

i=1

εiTixi|) ≤ME(|
N∑

i=1

εixi|)

is valid for every N ∈ N, Ti ∈ T , xi ∈ X , and all independent symmetric {±1}-
valued random variables εi on a probability space (Ω,A, P ) with expectation E.
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The smallest constant M in (2) is called the R-bound of T and is denoted by
R(T ). A sectorial operator A is called R-sectorial if the set

{λ(λ+A)−1 : λ ∈ Σπ−φ} is R-bounded for some φ ∈ (0, π).

The infimum φRA of such angles φ is called the R-angle of A. We denote the class
of R-sectorial operators by RS(X). The relation φRA ≥ φA is clear.

Finally, an operator A ∈ H∞(X) is said to admit an R-bounded H∞-calculus if
the set

{f(A) : f ∈ H∞(Σφ), |f |H∞(Σφ) ≤ 1}
is R-bounded for some φ ∈ (0, π). Again, the infimum φR∞

A of such φ is called the
RH∞-angle of A, and the class of such operators is denoted by RH∞(X).

We refer to the monograph of Denk, Hieber, and Prüss [3] for further informa-
tion and background material, as well as to the preprint Prüss and Simonett [12]
for the proofs of the results presented below.

2. The Main Result

In this section we formulate our main result for noncommuting operators. We
first recall the commutator condition introduced by Da Prato and Grisvard [2].
Suppose that A and B are sectorial operators, defined on a Banach space X , and
suppose that

(3)





0 ∈ ρ(A). There are constants c > 0, α, β > 0, β < 1, α+ β > 1,
ψA > φA, ψB > φB, ψA + ψB < π,
such that for all λ ∈ Σπ−ψA , µ ∈ Σπ−ψB

(λ +A)−1D(B) ⊂ D(B) and
|[B(λ +A)−1 − (λ+A)−1B](µ+B)−1| ≤ c/(1 + |λ|)α|µ|β .

Then it was shown in [2] that the closure L = A+B is invertible, sectorial and
φL ≤ max{ψA, ψB} holds, provided the constant c in (3) is sufficiently small.

A different, more flexible condition was later introduced by Labbas and Terreni
[7]. It reads as follows.

(4)






0 ∈ ρ(A). There are constants c > 0, 0 ≤ α < β < 1,
ψA > φA, ψB > φB, ψA + ψB < π,
such that for all λ ∈ Σπ−ψA , µ ∈ Σπ−ψB

|A(λ +A)−1[A−1(µ+B)−1 − (µ+B)−1A−1]| ≤ c/(1 + |λ|)1−α|µ|1+β .

In Monniaux and Prüss [8], the Labbas-Terreni condition was employed to extend
the Dore-Venni theorem to the noncommuting case. In particular, in this paper it
is proved that A+B with natural domain is closed and sectorial with spectral angle
φA+B ≤ max{ψA, ψB} provided X ∈ HT , A,B ∈ BIP(X), and (4) holds with
a sufficiently small constant c > 0. The Kalton-Weis theorem has been extended
to the noncommuting case by Strkalj [14] provided the Labbas-Terreni conditions
holds with sufficiently small c > 0 and X is B-convex.
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We are now in a position to state our main result.

Theorem 2.1. Suppose A ∈ H∞(X), B ∈ RS(X) and suppose that (3) or (4)
holds for some angles ψA > φ∞A , ψB > φRB such that ψA + ψB < π.
Then there is a constant ν ≥ 0 such that ν + A + B is invertible and sectorial
with φnu+A+B ≤ max{ψA, ψB}. We may choose ν = 0 if c is sufficiently small.
Moreover, if in addition B ∈ RH∞(X) and ψB > φR∞

B , then ν+A+B ∈ H∞(X)
and φ∞ν+A+B ≤ max{ψA, ψB}.

3. Parabolic Equations on Wedges and Cones

In this section we consider an application of our main result to the diffusion
equation on a domain of wedge or cone type, that is, on the domain G = Rm×CΩ,
where Ω ⊂ Sn−1 is open with smooth boundary ∂Ω 6= ∅, and CΩ denotes the cone

CΩ = {x ∈ Rn : x 6= 0, x/|x| ∈ Ω}.
We then consider the problem

(5)





∂tu− ∆u = f in G× (0, T )
u = 0 on ∂G× (0, T )

u|t=0 = 0 on G.

Here m ∈ N0 and 2 ≤ n ∈ N. The function f is given in a weighted Lp-space, i.e.

f ∈ Lp(J × Rm;Lp(CΩ; |x|γdx)),
where γ ∈ R will be chosen appropriately, and J = [0, T ].

Introducing polar coordinates x = rζ and using the Euler transform r = eξ,
we obtain a problem in the standard unweighted space X = Lp(J × Rm × Ω× R)
which reads

(∂t − ∆y)e
2ξv + P (∂ξ)v − ∆ζv = g,

with some second order polynomial P (z). Note that the first two operators do not
commute. Applying our main result to this problem in X we obtain the following
result, which originally is due to Nazarov [9].

Theorem 3.1. Let 1 < p <∞ and suppose that γ ∈ R is subject to condition

(6) λ1 > (2 − n/p− γ/p)(n− n/p− γ/p)

where λ1 > 0 denotes the first eigenvalue of the Laplace-Beltrami operator on
Ω ⊂ Sn−1 with Dirichlet boundary conditions.
Then for each f ∈ Lp(J ×Rm;Lp(CΩ, |x|γdx))) there is a unique solution u of (5)
with regularity

u, u/|x|2, ∂tu,∇2u ∈ Lp(J × Rm;Lp(CΩ, |x|γdx))).
The solution map [f 7→ u] defines an isomorphism between the corresponding func-
tion spaces.
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For simplicity we have chosen the integrability exponent p ∈ (1,∞) to be the same
for the variables t, x and y. By the arguments given above it also follows that we
may choose different exponents for these variables, and we may arrange them in
any order.

We note that the method described above can be applied to other problems on
cone and wedge domains, like the Navier-Stokes equations, or free boundary value
problems with moving contact lines and prescribed contact angles. These will be
topics for our future work.
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[7] R. Labbas, B. Terreni. Somme dópérateurs linéaires de type parabolique. Boll. Un. Mat. Ital.

7 (1987), 545–569.
[8] S. Monniaux, J. Prüss. A theorem of the Dore-Venni type for noncommuting operators.

Transactions Amer. Math. Soc. 349 (1997), 4787–4814.
[9] A.I. Nazarov. Lp-estimates for a solution to the Dirichlet problem and to the Neumann

problem for the heat equation in a wedge with edge of arbitrary codimension. J. Math. Sci.
(New York) 106 (2001), 2989–3014.

[10] J. Prüss. Evolutionary Integral Equations and Applications. Volume 87 of Monographs in
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Maximal regularity and quasilinear evolution equations

Herbert Amann

1. Abstract theory

Let E0 and E1 be Banach spaces such that E1
d→֒ E0, set J := JT0 := [0, T0) for

some fixed positive T0, and suppose that 1 < p <∞. Put

W1
p (J) := W1

p

(
J, (E1, E0)

)
:= Lp(J,E1) ∩W 1

p (J̊ , E0).
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Then

B ∈ L∞

(
J,L(E1, E0)

)

possesses the property of maximal Lp regularity on J with respect to (E1, E0)
if the map

W1
p (J) → Lp(J,E0) × E, u 7→

(
u̇+Bu, u(0)

)

is a bounded isomorphism, where E is the real interpolation space (E0, E1)1/p′,p
and the overdot denotes the distributional derivative on J̊ . Since (e.g., [1, Theo-
rem III.4.10.2])

W1
p (J) →֒ C(J,E), (1)

u(0) is well defined. The set of all such maps B is denoted by

MRp(J) := MRp

(
J, (E1, E0)

)
.

We also write MR := MR(E1, E0) for the set of all C ∈ L(E1, E0) such that the
constant map t 7→ C belongs to MRp(J). Since the latter property is independent
of p and the (bounded) interval (e.g., [3]), this notation is justified.

We are interested in quasilinear evolution equations of the form

u̇+A(u)u = f(u) on J̊ , u(0) = u0. (2)

By a solution on JT , where 0 < T ≤ T0, we mean a u ∈ W1
p,loc(JT ) satisfying (2)

in the sense of distributions on J̊T or, equivalently, a.e. on JT .
Henceforth, we write C1− for spaces of locally Lipschitz continuous maps, and

C1− if the Lipschitz continuity is uniform on bounded subsets of the domain (which
is always the case if the latter is finite dimensional).

Due to (1) it is natural to assume that

(A, f) ∈ C1−
(
E,L(E1, E0) × E

)
. (3)

Indeed, this type of assumption has been used in practically all investigations
of (2). In particular, Clément and Li [11] were the first to study (2) — in a concrete
setting — by imposing the maximal regularity hypothesis that A(e) ∈ MR for
each e ∈ E. Recently, Prüss [13] has extended this method to a nonautonomous
abstract setting.

An assumption like (3) uses only part of the information contained in the state-
ment: u ∈ W1

p (J). Consequently, it imposes stronger restrictions on (A, f) than

the hypothesis that this map be defined on W1
p (J), which, after all, is the space

in which solutions live.
Considering a map

(A, f) : W1
p (J) → L∞

(
J,L(E1, E0)

)
× Lp(J,E0)

we say that it possesses the Volterra property if, given u ∈ W1
p (J) and 0 < T < T0,

the restriction of (A, f)(u) to JT depends on u |JT only. Now we can formulate
our main result, whose proof is found in [2].

Theorem Suppose that
• A ∈ C1−

(
W1
p (J),MRp(J)

)
;
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• f − f(0) ∈ C1−
(
W1
p (J), Lr(J,E0)

)
for some r ∈ (p,∞], and f(0) ∈ Lp(J,E0);

• (A, f) possesses the Volterra property;
• u0 ∈ E.
Then:
• there exist a maximal T ∗ ∈ (0, T0] and a unique solution u of (2) on J∗ := JT∗ ;
• the map (A, f, u0) 7→ u is locally Lipschitz continuous with respect to the natural

Fréchet topologies of the spaces occurring above;
• if u ∈ W1

p (J
∗), then J∗ = J , that is, u is global.

The following proposition gives two important sufficient conditions for maximal
regularity in the nonautonomous case.

Proposition (i) If B ∈ C(J,MR), then B ∈ MRp(J).

(ii) Let V
d→֒ H

d→֒ V ′ be real Hilbert spaces and let B ∈ L∞

(
J,L(V, V ′)

)
be

such that there exist constants α > 0 and β ≥ 0 with
〈
v,B(t)v

〉
+ β ‖v‖2

H ≥ α ‖v‖2
V , a.a. t ∈ J, v ∈ V,

where 〈·, ·〉 : V × V ′ → R is the duality pairing. Then B ∈ MR2

(
J, (V, V ′)

)
.

Proof (i) has been shown in [14] by constructing an evolution family. A simple
direct proof is given in [3].

(ii) is a consequence of the well known Galerkin approach to evolution equations
in a variational setting, essentially due to J.-L. Lions (see [2] for details). �

2. Applications

To give an idea of the scope of the Theorem we consider two model problems.
For this we suppose that

• Ω is a bounded Lipschitz domain;

• a ∈ C1−(R,R) and a(ξ) ≥ α > 0 for ξ ∈ R.

We also set Q := Ω × J and Σ := ∂Ω × J .

Example 1 (nonlocal problems) Let a0,m ∈ L∞(Ω) and 1 ≤ λ < 1 + 4/n. De-
note by Ω′ a measurable subset of Ω. Then the nonlocal parabolic problem

∂tu−∇ ·
(
a
(
m
∫
Ω′u(x, ·) dx

)
∇u
)

= a0 |u|λ−1 u+ f0 on Q,

u = 0 on Σ,

u(·, 0) = u0 on Ω,

has for each f0 ∈ L2(Q) and u0 ∈ L2(Ω) a unique maximal weak solution u. If f0
and u0 are positive, then so is u. It is global if a is bounded and a0 ≤ 0. �

By a maximal weak solution we mean, of course, a

u ∈ W1
2,loc

(
J∗,
(
H̊1(Ω), H−1(Ω)

))
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satisfying u(0) = u0 and

〈v, u̇〉 +
〈
∇v, a

(
m
∫
Ω′u(x, ·) dx

)
∇u
〉

=
〈
v, a0 |u|λ−1 u+ f0

〉

a.e. on J∗ and for every v ∈ D(Ω).
We mention that an application of the results in [13], based on hypothesis (3),

would require λ = 1.
Problems of this type have been intensively studied by M. Chipot and coworkers

(cf. [4]–[10] and [15]–[18]). More precisely, in those papers the differential equations
are either of the form

∂tu− a
(
〈v, u〉

)
∆u = f0,

where v ∈ L2(Ω), or they are semilinear with nonlocal lower order terms. (The
Laplace operator can be replaced by a general second order elliptic operator.) It
is crucial that a

(
〈v, u(·, t)〉

)
is a pure function of t, that is, independent of x ∈ Ω.

The proofs, except the ones in [18], rely on Schauder’s fixed point theorem and
are completely different from our approach.

Example 2 (equations with memory) Assume that Ω has a C2 boundary, that
b, f ∈ C1−(R,R), that k ∈ Lρ(R

+,R) for some ρ > 1, and µ is a bounded Radon
measure on [0,∞) with suppµ ⊂ [0, S) for some 0 < S ≤ ∞. Also suppose that
2/p+ n/q < 1. Then

∂tu−∇ ·
(
a(µ ∗ u)∇u

)
+ k ∗

(
∇ · (b(u)∇u)

)
= f(u) + f0 on Q,

u = 0 on Σ,

u = u on Ω × (−S, 0],

has for each f0 ∈ Lp
(
J,H−1

q (Ω)
)

and each

u ∈ W1
p

(
(−S, 0),

(
H̊1(Ω), H−1(Ω)

))

a unique maximal weak solution

u ∈ W1
p,loc

(
(−S, T ∗),

(
H̊1
q (Ω), H−1

q (Ω)
))
. (4)

If there exists r > 0 such that suppµ ⊂ [r, S), then the unique maximal weak
solution in (4) of

∂tu−∇ ·
(
a(µ ∗ u)∇u

)
= f0 on Q, u = 0 on Σ

with u |(−S, 0] = u is global. �

Choosing for µ the Dirac measure supported on {r} for some r > 0, it follows
that the retarded quasilinear parabolic problem

∂tu−∇ ·
(
a
(
u(t− r)

)
∇u
)

= f0 on Q,

u = 0 on Σ,

has for each f0 ∈ Lp
(
J,H−1

q (Ω)
)

and each u ∈ W1
p

(
(−S, 0],

(
H̊1
q (Ω), H−1

q (Ω)
))

,
where S > r, a unique global weak solution in (4) (with T ∗ = T ).

It should be remarked that problems like the one of Example 2 cannot be treated
at all by theorems invoking hypotheses of type (3).
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There is a large literature on parabolic equations involving delays and memory
terms. However, most of it concerns semilinear equations. Very little seems to be
known about an Lp theory for quasilinear equations with memory terms in the
top order part (see [12] and the references therein, and [19]). In fact, we do not
know of any result for quasilinear equations in which (nondistributed) delay terms
occur within the diffusion matrix.

For proofs of the above facts and many more examples we refer to [2].
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