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Introduction by the Organisers

At this workshop various aspects of Arithmetic Algebraic Geometry have been
discussed. It was organized by G. Faltings, G. Harder (Max-Planck-Institute for
Mathematics Bonn) and N. Katz (Princeton university)

The main goal of this field is, to obtain information on the solution of diophan-
tine problems by applying the tools provided by algebraic geometry.

The workshop was attended by 42 participants and we had the total number of
18 talks.

A very interesting diophantine problem, which has a very geometric flavour,
is the investigation of the structure of the Brauer group of a scheme or more in
geometric terms of a complex algebraic variety. This aspect has been discussed
in the talks by Gabber, who reported on some recent progress in direction of the
purity conjecture. It has also been discussed in the talks of Lieblich and de Jong,
in which some more geometric questions have been discussed.

Another tool to obtain information on diophantine problems is provided by p-
adic methods. Here certain analogies between classical analytic theory over C and
p-adic analytic theory have to be developed. We have to understand the meaning
of local systems. This topic was discussed in the talks of Deninger and Ramero.
Minhyong Kim outlined a program how to used a p-adic unipotent Albanese map
to prove finiteness in diophantine geometry, for instance the classical theorem of
Siegel.

Shimura varieties are certainly interesting objects in Arithmetic Algebraic Ge-
ometry, they provide interesting examples of algebraic varieties. Ben Moonen’s
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talk was on the borderline between p-adic methods and Shimura varieties. Laumon
reported on the fundamental Lemma for U(n). Various talks discussed the Galois
representations attached to automorphic forms and abelan varieties (Bültel, Edix-
hoven,Harris, Diamond). In the talks of Pink and Ullmo Wildeshaus, Rapoport,
M. Kings and Ullmo some other aspects of this field were discussed.

Goncharov discussed some interesting aspects of higher Teichmüller theory.

MSC Classification: 11D45; 14F42,14H60; 22E35
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Abstracts

On purity for the Brauer group

Ofer Gabber

For a scheme X let Br′(X) be the torsion subgroup of H2(Xet, Gm) (an element
is torsion iff it is killed by a locally constant function X → Z>0). We have an
injection Br(X) →֒ Br′(X) which is an isomorphism if X is affine ([3] II) and if X
admits an ample line bundle (proved differently by the author and by de Jong).
For a local ring R with maximal ideal m let UR denote the punctured spectrum
Spec(R)−{m}. The purity conjecture for the Brauer group (Auslander-Goldman
[1] 7.4, Grothendieck [6] III §6) asserts that if X is a regular (locally nœtherian)
scheme and Z ⊂ X a closed subset of codimension ≥ 2 then Br′(X)→ Br′(X−Z)
is an isomorphism. This is equivalent to

Conjecture 1. Let R be a strictly henselian regular local ring. Then

(∗) (dim(R) ≥ 2)⇒ Br′(UR) = 0 .

Conjecture 1 holds if dim(R) = 2 (cited references) and if dim(R) = 3 ([3] I).
The theorem announced on [3] p. 204 implies that if X is a regular scheme and

Y ⊂ X a nowhere dense regular subscheme then Br′(X)
∼
−→ Br′(BℓY X). This

together with Br-purity in dimension ≤ 3 and purity of the branch locus can be
used to show the following.

Theorem 1. Let X be a regular scheme and π : X ′ → X a birational blowing-up
with regular center. If x ∈ X and for every y ∈ π−1(x) the strict henselization
Osh

X′,y satisfies (∗), then Osh
X,x satisfies (∗).

Conjecture 1 holds for n-torsion when 1/n ∈ R by [2], when R is equal charac-
teristic, and when R is formally smooth over a discrete valuation ring ([4] 2.10).

We note that (∗) for R is equivalent to (∗) for the completion R̂. We have the
following fact (used below in a non nœtherian case).

Theorem 2. Let (A, fA) be an henselian pair with f s.t. AnnA(fn) = AnnA(fn+1)

for some n, Â the f -adic completion of A, U ⊂ Spec(A) a quasi-compact open sub-

set containing D(f), Û the inverse image of U in Spec(Â). Then

Br′(U)
∼
−→ Br′(Û) .

One can generalize Conjecture 1.

Conjecture 2. Let R be a strictly henselian complete intersection nœtherian
local ring of dimension ≥ 4. Then Br′(UR) = 0.

Conjecture 3. Let R be a complete intersection nœtherian local ring of dimension
3. Then Pic(UR) is torsion free.
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Conjecture 2 implies Conjecture 3 (apply Conjecture 2 to Rsh[[x, y]]/(xy)). One
can restate Conjecture 3 as vanishing of local flat cohomology: H2

{m}(Spec(R), µn) =

0 for every n > 0. This holds for constant coefficients since for R = Rsh, UR is
simply connected ([5] X 3.4).

We recall ([5] XI 3.13) that for R as in Conjecture 2, Pic(UR) = 0. Thus
Conjecture 2 is equivalent to the vanishing of H2(UR, µn) for every n > 0. One
can show that Conjecture 2 implies a similar vanishing with coefficients in any
finite flat commutative group scheme over R.

Conjecture 2 holds for n-torsion when 1/n ∈ R. More generally:

Theorem 3. Let R = Rsh be a complete intersection nœtherian local ring of
dimension d. Then for all i < d and n > 0 an integer invertible in R,

Hi
{m}(Spec(R), Z/nZ) = 0 .

This can be reduced as in [2] to the case where R is essentially of finite type
over a discrete valuation ring, which holds by ([7] 2.6).

Theorem 4. If R→ R′ is a finite flat relative complete intersection extension of
local rings as in Conjecture 2 then Br′(UR)→ Br′(UR′) is injective.

Consider π : Spec(R′) → Spec(R) and the R group scheme G = π∗ Gm/Gm.
The statement of the theorem is equivalent to H1(UR, G) = 0. We may assume R is
complete, write R = R0/I where R0 is a formal power series ring over a Cohen ring
and I is generated by a regular sequence, and find a finite flat extension R0 → R′

0

s.t. R′ ≃ R′
0 ⊗

R0

R. Let X be the formal completion of UR0 along UR. One checks

that a G-torsor on UR lifts to a G0-torsor on X, and using Leff(UR0 , UR) ([5] X
2) the torsor extends from X to an open subscheme V ⊂ UR0 , and H1(V, G0) = 0
using above mentioned results.

Theorem 5.

(1) Conjecture 2 holds if R ⊃ Fp.
(2) Conjecture 2 holds if dim(R) ≥ 5.

It suffices to consider Conjecture 2 for p-torsion elements where p > 0 is the
residue characteristic of R. Part (1) is shown by applying Theorem 4 to extensions

of the form R[f
1/p
1 , . . . , f

1/p
n ]. In part (2) one can apply Theorem 2 to reduce to

the case that R is complete and p is a non-zero-divisor in R. Let X be the p-adic
formal completion of Spec(R). Using part (1) one shows that if A is an Azumaya
algebra on UR then A|X is End of a vector bundle. By Leff, A|V is End of a vector
bundle for some open subscheme V of UR containing UR/pR. By parafactoriality
this extends to UR.

Theorem 6. Conjecture 1 holds for p-torsion when R is of dimension 4, of mixed
characteristic (0, p), and contains µp.



Arithmetic Algebraic Geometry 1973

Corollary. Conjecture 1 holds when R is of dimension 4 and of mixed character-
istic (0, p) and there is a sequence of birational blowing-ups with regular centers

Xn → . . .→ X0 = Spec(R̂)

s.t. the components of multiplicity not divisible by p− 1 of the divisor of p on Xn

constitute a normal crossings divisor.
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Moduli of Azumaya Algebras

Max Lieblich

Let X be a smooth, geometrically connected, projective variety over a field k.
Given a reductive algebraic group G, it is natural to wonder about the structure of
the stack of G-torsors on X . When G = PGLn, this is essentially the same as the
stack of Azumaya algebras on X of degree n. Thus, one might hope that there is an
interaction between the Brauer group of X and the geometry of the moduli space
of PGLn-bundles. This suspicion indeed bears fruit; in particular, one can use the
structure of the moduli space when X is a smooth, geometrically connected curve
or surface over a finite, local, or algebraically closed field to deduce information
about the “period-index problem” for unramified Brauer classes.

Using Giraud’s non-abelian cohomology [3], one can associate to any PGLn-
torsor T an algebraic stack X which is a µn-gerbe over X and a locally free
sheaf V of rank n on X such that the torsor associated to End(V ) is naturally
isomorphic to T . Furthermore, the isomorphism class of X as an X-stack depends
only on the class of the torsor T in H2(X, µn) arising from the presentation 1 →
µn → SLn → PGLn → 1. Thus, one relates moduli of PGLn-torsors on X
with a fixed cohomology class to moduli of certain sheaves on a fixed algebraic
stack X . The subclass of sheaves arising in this way are the twisted sheaves , and
they are characterized by the way in which the inertia stack of X acts on them.
From this (sheaf-theoretic) point of view, one immediately gets a candidate for a
compactification of the space of PGLn-torsors; namely, allow torsion free twisted
sheaves F on X . Instead of taking the endomorphism algebra End(F ), one
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must take the “derived endomorphism algebra” REnd(F ), yielding a generalized
Azumaya algebra. There is a sense in which these objects form an Artin stack,
giving a compactification of the stack of Azumaya algebras. One can also define
a natural notion of stability, which agrees with classical definitions of stability
for PGLn-torsors when the characteristic is 0 but possibly diverges in positive
characteristic. (Details may be found in [6].)

Using these ideas, one can prove the following theorems, among others. First,
suppose C is a smooth curve over an algebraically closed field k and C → C is a µn-
gerbe. By Tsen’s theorem, C is isomorphic to the gerbe of nth roots of an invertible
sheaf L . Given an invertible sheaf M , let Twss

C/k(n, M ) denote the stack of

semistable C -twisted sheaves of rank n and determinant M , and let Shss
C/k(n, M )

denote the stack of semistable sheaves on X of rank n and determinant M .

Theorem. There is an isomorphism

Twss
C/k(n, M )

∼
→ Shss

C/k(n, M ⊗L
∨)

which preserves the stable loci.

Now suppose X is a surface and let Twss
X /k(n, c) denote the Artin stack of

semistable twisted sheaves of rank n, trivial determinant, and second Chern class
c. Let GAzss

X/k(n, [X ], 2nc) denote the associated stack of semistable generalized

Azumaya algebras on X of rank n2, cohomology class [X ], and second Chern class
2nc.

Theorem. For sufficiently large c, the stack Twss
X /k(n, c) is non-empty, l.c.i.,

generically smooth and geometrically irreducible. The same is true of the stack
GAzss

X/k(n, [X ], 2nc).

(For the geometrically minded, this theorem is a very weak algebraic analogue
of results of Taubes on the stable topology of the space of self-dual connections on
a G-bundle [9].) The proof proceeds along lines very similar to O’Grady’s proof
of the corresponding result for untwisted sheaves [4, 8].

Recall that to any Brauer class over a field α ∈ Br(K), one can associate two
natural invariants: the period of α is the order of α in Br(K), while the index of
α is the square root of the rank of a central division K-algebra representing α. It
is well-known that per(α) divides ind(α) and that ind(α) divides some power of
per(α). If K is the function field of an n-dimensional variety over an algebraically
closed field, one is naturally led to conjecture that for any α ∈ Br(K) one has
ind(α)| per(α)n−1. When n = 1, this follows trivially from Tsen’s theorem. When
n = 2, this was recently proven by de Jong (for per(α) prime to char(k)) [1]. One
consequence of the above theorems is the following.

Corollary. Let X be a smooth geometrically connected surface over a field k, and
let α ∈ Br(X) be a Brauer class of period prime to char(k).

(i) If k is finite or algebraically closed, then per(α) = ind(α).
(ii) If k is local and X has smooth reduction, then per(α)| ind(α)2



Arithmetic Algebraic Geometry 1975

(iii) If in (ii) one has that α is unramified on a smooth model of X over the
integers of k, then per(α) = ind(α).

From part (i), one recovers de Jong’s result in the unramified case (and one
can in fact recover the ramified case using the same techniques of proof). The
proof in this case uses de Jong and Starr’s generalization of the Graber-Harris-
Starr theorem [2], applied to a space of twisted sheaves on a curve over k(t). The
proof for finite and local k ultimately follows from an application of the Lang-Weil
estimates [5] to the spaces of twisted sheaves on a surface. In both cases, the goal
is to find a rational point on the relevant moduli space. Further details may be
found in [6] or [7].
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The unipotent Albanese map and Diophantine geometry

Minhyong Kim

Given a compact smooth hyperbolic curve X over a number field F , we can con-
sider its points X(Fv) in some non-archimedean completion Fv of F . Depending
on some mild hypotheses one can define a p−adic logarithmic Albanese map

j1 : X(Fv)→ H1(Xv)/F 0

where the H1 refers to De Rham homology and we are taking the quotient by the
Hodge filtration. This map can be used (Chabauty) to prove Faltings’ theorem
on finiteness of X(F ) in certain circumstances, for example, if the Mordell-Weil
rank of the Jacobian is strictly less than the genus of X . One proves this by
showing that the pull-back via j1 of some non-trivial linear function on H1/F 0

has to vanish on the global points. On the other hand, such a pull-back lies inside
the ring of Coleman functions, and hence, has only finitely many zeros on X(Fv).

Our program is to generalize this technique by lifting j1 to

jn : X(Fv)→ Un/F 0
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where U = π1(Xv, x) is the pro-unipotent De Rham fundamental group of Xv and
Un is the quotient via the n+1-th level of the descending central series. This lift is
constructed by using the crystalline structure on the De Rham fundamental group.
The idea then is that the coordinate ring of Un/F 0 provides many more functions
(p−adic multiple polylogarithms) with which one attempts to annihilate the global
points. At the moment, this program is not realized because of a lack of control
in global Galois cohomology. However, there are interesting relations to vanishing
conjectures of Jannsen, and the finiteness theorem of Siegel on P1\{0, 1,∞} can be
proved using this idea and Soulé’s vanishing theorem for Tate twists. Eventually,
a careful analysis of the function spaces involved should give some effectivity (on
numbers of points) and results in higher-dimensions as well.

Local systems on the p-adic punctured disc

Lorenzo Ramero

Let us fix the following notation :

• K is an algebraically closed field of characteristic zero, complete for a
non-archimedean norm | · | : K → R, and of residue characteristic p > 0.
• ℓ 6= p is a prime number, and Λ is the algebraic closure of the finite field

Fℓ.
• ∆ is the abelian group Q × R, which we endow with the lexicographic

ordering (relative to the standard ordering on the factors Q and R). We
let also ∆+ := {δ ∈ ∆ | δ ≥ 0}, and for any δ := (q, r) ∈ ∆, we set δ♮ := q.

For any real number r > 0, the punctured disc over K of radius r is the open
subset D(r)∗ of the analytic affine line A1

K , whose set of K-rational points is :

D(r)∗(K) = {x ∈ K | 0 < |x| ≤ r}.

Depending on one’s favorite viewpoint, D(r)∗ can be viewed as a rigid analytic va-
riety ([3]), or as an analytic adic space ([4]), or alternatively as a non-archimedean
analytic space à la Berkovich ([2]). Then one may endow D(r)∗ with an étale
topology, and a Λ-local system on the punctured disc is a locally constant sheaf of
finite dimensional Λ-vector spaces on the resulting étale site D(r)∗ét. (The category
of such Λ-local systems is independent of the chosen foundational viewpoint.)

In my talk I explained the following result.

Theorem 1. ([5, Th.4.2.42]) Let F be a Λ-local system on the punctured disc
D(1)∗, and suppose that H1(D(1)∗ét, F ) is a finite dimensional Λ-vector space (in
which case we say that F has bounded ramification). Then there exist :

(a) a connected subdomain U ⊂ D(1)∗ such that U ∩ D(r)∗ 6= ∅ for every
r > 0;

(b) a break decomposition of the restriction to U of F :

F|U ≃
⊕

δ∈∆+

F (δ)
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consisting of local systems F (δ) (on the étale site of U). �

These break decompositions enjoy the following properties :

• (Functoriality). Denote by C the category consisting of all pairs (G , U),
where U ⊂ D(1)∗ is an open subset fulfilling condition (a) of theorem 1,
and G is a Λ-local system on Uét; a morphism (G , U) → (G ′, U ′) in C is
a map of Λ-modules G|U∩U ′ → G ′

|U∩U ′ . Then, for every δ ∈ ∆+, the rule

F 7→ (F (δ), U) defines a functor from the category of Λ-local systems on
D(1)∗ with bounded ramification, to the category C.
• (Tannakian condition). Moreover, suppose that F and G are two Λ-local

systems on D(1)∗ with bounded ramification. Then, for every δ, δ′ ∈ ∆+

we have :

F (δ) ⊗Λ G (δ′) ⊂

{
(F ⊗Λ G )(max(δ, δ′)) if δ 6= δ′

⊕ρ≤δ(F ⊗Λ G )(ρ) otherwise

and an analogous compatibility condition with the break decomposition
of HomΛ(F , G ).
• (Hasse-Arf theorem). We have the integrality condition :

δ♮ · rkΛF (δ) ∈ N for every δ ∈ ∆+.

Remarks. (i) More generally, the theorem holds when Λ is an artinian local ring
in which p is invertible, and such that Λ is the filtered union of its finite subrings.
(Then, one says that a Λ-local system has bounded ramification if its cohomology
is a Λ-module of finite type.)

(ii) The boundedness condition on F is independent of the radius of the punc-
tured disc. That is, F has bounded ramification if and only if there exists r ∈ (0, 1]
such that H1(D(r)∗ét, F ) is of finite type over Λ, if and only if the same holds for
all r ∈ (0, 1]. This condition really means that the Swan conductor of F “at the
missing origin” of the punctured disc, is finite.

(iii) I expect that the subset U appearing in theorem 1 can always be chosen
to be a punctured disc (of some possibly smaller radius) centered at the origin. In
this case, one could rephrase the theorem by saying that the Tannakian category of
germs of Λ-local systems around the origin admits a Hasse-Arf filtration, defined
as in the recent paper by Y.André [1]. The methods of [1] would then allow to
derive very strong structural properties for such local systems. I hope to address
this question in a future work.
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Fundamental Lemma and Hitchin Fibration for Unitary Groups

Gerard Laumon

(joint work with Ngô Bao Châu)

Let G be an unramified reductive group over a non archimedean local field F .
The Langlands Fundamental Lemma is a family of conjectural identities between
orbital integrals for G(F ) and orbital integrals for endoscopic groups of G which
have been precisely formulated by Langlands and Shelstad. The Langlands Fun-
damental Lemma is a key tool for proving many cases of Langlands functoriality
and for computing the zeta functions of Shimura varieties.

Our main result is that the Langlands Fundamental Lemma holds in the par-
ticular case where F is a finite extension of Fp((t)), G = U(n) is a unitary group
and p > n. Hales and Waldspurger have shown that this particular case implies
the Langlands fundamental lemma for unitary groups of rank < p when F is any
finite extension of Qp.

We follow in part a strategy initiated by Goresky, Kottwitz and MacPherson.
Our main new tool is a deformation of orbital integrals which is constructed with
the help of the Hitchin fibration for unitary groups over projective curves.

More precisely both sides of the “Fundamental Lemma” are linear combinations
of orbital integrals. Those orbital integrals count selfdual OF -lattices in finite
dimensional hermitian F -vector spaces V which are stable under certain hermitian
endomorphisms of V . In particular they are the numbers of rational points of
varieties over the residue field of F , the affine Springer fibers.

The affine Springer fibers do not behave well in families. However, up to home-
omorphisms the affine Springer fibers are isomorphic to étale coverings of com-
pactified Picard schemes of projective curves, which behave well in families. This
is our first key observation.

Our second key observation is that the Hitchin fibrations give us natural group
theoretical families of compactified Jacobians of curves. In fact we deduce the
Langlands Fundamental Lemma from a global result which relates the ℓ-adic co-
homology of some Hitchin fiber for U(n) and the ℓ-adic cohomology of a corre-
sponding Hitchin fiber for the endoscopic group U(n1) × U(n2), n = n1 + n2. In
addition to the Hitchin fibration, our main tools are the Atiyah-Borel-Segal lo-
calization theorem in equivariant cohomology, Deligne’s purity theorem in ℓ-adic
cohomology and a Bertini theorem of Poonen.
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Construction of abelian varieties with given monodromy

Oliver Bültel

1. Description of the theorem

The following result is a consequence of the main theorem of [2]:

Theorem 1. Let G/Qℓ be a connected semisimple group, and write γ for the order
of the automorphism group of its root datum (over Qac

ℓ ). Let ρ : G → GL(C/Qℓ)
be a faithful, finite dimensional, linear representation, and p /∈ {2, ℓ} be a prime.
Then there exists a polarized abelian scheme (Y, λ) of dimension smaller than or
equal to

γ2((dimQℓ
C)3 − (dimQℓ

C)2)

+γ((1 + dimQℓ
G)(dimQℓ

C)2 − dimQℓ
GdimQℓ

C)

over a projective and smooth pointed Fac
p -curve S

ξ
← Spec Fac

p , together with an
embedding f : C →֒ VℓYξ, such that:

(i) the image of f is π1(S, ξ)-invariant and totally isotropic with respect to
the ℓ-adic Weil pairing,

(ii) the image of the π1(S, ξ)-operation on C (pulled back by means of f) is a
compact open subgroup of ρ(G(Qℓ)).

A key ingredient in the proof is a careful study of certain maps between PEL
type Shimura varieties. This gives one the possibility to apply the theorems of
Tate, Zahrin, and Serre-Tate to more than one abelian variety.
More specifically let n be a positive integer, let L be a CM field and let Y (0) and
Y (1) be two complex abelian varieties with OL-operation such that for all x ∈ OL:

tr(x|Lie Y (k)) =

{
Φ(x) k = 0

(n− 1)Φ(x) + Φ′(x) k = 1
,

where Φ, Φ′ : L → C are two CM types for L. Then for every k ∈ {0, . . . , n}
there is one and only one complex abelian variety Y (k) whose period lattice is
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canonically isomorphic to:

(1) H1(Y
(0)(C), Z)⊗OL

1−k ⊗OL

k∧

OL

H1(Y
(1)(C), Z),

moreover Y (k) has an operation of OL and the formula

tr(x|Lie Y (k)) =

(
n− 1

k

)
Φ(x) +

(
n− 1

k − 1

)
Φ′(x)

holds. In order to utilize our Y (k) in characteristic p we need to know the following:

Lemma 2. There exists a canonical algebra morphism

op(k) : symk
L End0

L(Y (1))→ End0
L(Y (k)),

which in the ℓ-adic and crystalline homologies of Y (1) and Y (k) looks like

f⊗Lk 7→ (x1−k
0 x1 ∧ · · · ∧ xk 7→ f(x0)

1−kf(x1) ∧ · · · ∧ f(xk)).

Remark 3. The formula for f given above is only meaningful if one has, analogs
of (1) in the ℓ-adic and crystalline settings. However, these are obtained from the
main result of [1].

The proof of the above lemma in characteristic 0 is easy, in characteristic p it
is more roundabout. There are several steps:

Step 1. Use the theorem of Tate to prove that the operator defined by the formula
in lemma 2 sends symk

L End0
L(Y (1))⊗L Lλ into End0

L(Y (k))⊗L Lλ for all primes
λ (including those over p).

Step 2. Prove that the formation of Y (k) preserves isogeny classes. This is done
by factoring an isogeny into several factors of degree p, and by checking that degree
p isogenies can be lifted into characteristic 0. In particular this shows that op(k) has
the requested property when restricted to the set {f⊗Lk|f ∈ End0

L(Y (1))×, ff∗ =
1}.

Step 3. Use the steps 1 and 2 and a density argument to show that op(k) behaves
well on elements of the form f⊗Lk. However these elements generate the L-vector
space symk

L End0
L(Y (1)).

Example 4. Let us call Y (1) “supersingular” if and only if End0
L(Y (1)) is a central

simple algebra of rank n2 over L. This may differ from the usual definition, as
the Newton cocharacter may not be a scalar but is merely contained in the center
of the unitary group which defines the Shimura variety. For example, Y (1) is
supersingular if there exists an isogeny to a product of n copies of an abelian 1

2 [L :

Q]-fold X , assumed to have a OL-operation. In this case op(k) is surjective so that
lemma 2 gives an explicit description of the algebra End0

L(Y (k)) as Mat(
(
n
k

)
, L).

The proof of theorem 1 is now a deformation argument: We start with a su-
persingular Y (1) and pick a deformation Ỹ (1) over a powerseries ring such that
End0

L(Ỹ (k)) is a prescribed subalgebra of End0
L(Y (k)). Using Zarhin’s theorem

and some bookkeeping of tensors in EndL(
∧2

L . . . ), one gets the result.
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2. Further questions

The Mumford-Tate conjecture implies a strong link between monodromy groups
of abelian varieties in characteristic 0 and the theory of Shimura varieties of Hodge
type, i.e. subvarieties X ⊂ Ag × Q, that can be described as a quotient of a
symmetric-Hermitian domain by a congruence subgroup.
However, the curious occurence of all groups in theorem 1, including say G2 (in
this case there is also a construction of Nick Katz, [3]) cries for a generalization
of the concept of a Shimura variety in characteristic p. In particular this envis-
aged generalization should explain the structure of the corresponding deformation
spaces of crystals with additional structure.
A related problem is the study of moduli spaces of abelian varieties with cer-
tain additional endomorphisms, cf. [4] for example: It is not known whether
there exists a simple abelian variety Y over an algebraically closed field, such that

2 dim Y
dimEnd0(Y )

= 3
2 . It seems likely that one can use the methods of [5] to compute

the dimension of moduli spaces of such abelian varieties, but this does not settle
whether or not the endomorphism algebra changes at the generic point.
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[2] O. Bültel, Construction of abelian varieties with given monodromy http :
//www.rzuser.uni− heidelberg.de/̃ t91/bueltel/

[3] N. Katz, Notes on G2, determinants, and equidistribution
[4] F. Oort, “Question 2A”, in: Some questions in algebraic geometry, 1995
[5] M. Rapoport, T. Zink, Period Spaces for p-divisible Groups, Annals of Mathematics Studies

141, Princeton University Press 1996

Computation of mod l Galois representations associated to modular
forms

Bas Edixhoven

For simplicity, I just concentrated on the modular form

∆ = q
∏

n≥1

(1− qn)24 =
∑

n≥1

τ(n)qn

of level one and weight 12. For l prime, let Vl be the 2-dimensional mod l Galois
representation associated to ∆. We assume that the image of the Galois group
contains the special linear group of Vl (this excludes only finitely many l).

The project is then to show that one can compute Vl in time polynomial in l,
where “computing Vl” means: give the minimum polynomial over the rationals
of a generator of the finite Galois extension Kl whose group is the image of the
representation on Vl. The space Vl occurs in the l-torsion of the jacobian of
the modular curve X1(l). The problem is that the genus of this curve grows
quadratically with l, so that one cannot find Vl using computer algebra. The idea
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(Couveignes) is to use numerical computations and a height estimate of a suitably
constructed generator of Kl. In December 2000 (see streaming video at the MSRI)
I described such a construction of a generator, and how to use Arakelov theory to
get the height estimate.

Since 2003 this is joint work with Couveignes and Robin de Jong. Recent results
of Franz Merkl, and of Jorgenson-Kramer, on Green’s functions allow us to finish
the height estimate, and to show that the numerical work can be done p-adically
for p a suitable small prime. The results are being written up now.

Rational Curves on Varieties

A.J. de Jong

(joint work with Jason Starr)

Introduction

In this note we work over an uncountable algebraically closed field k of charac-
teristic zero. First we recall some definitions and results. The term “rationally
0-connected” defined below is usually referred to as “rationally connected” in the
literature.

Definition. (a) A variety X is called rationally 0-connected if for two general
points x1, x2 in X there exists a morphism f : P1 → X whose image contains
both x1 and x2.
(b) A smooth projective variety X is called Fano if the canonical divisor KX is
anti-ample, i.e., −KX is ample.

Theorem. (Campana, Kollár-Miyaoka-Mori) A Fano variety is rationally 0-
connected.

Theorem. (Graber-Harris-Starr, see [B]) Suppose that f : Y → C is a noncon-
stant projective morphism of varieties and B is a curve. Assume that Yk(C) is

rationally 0-connected. Then f has a rational section, i.e., X(k(C)) 6= ∅.

In the talk we described briefly some thoughts on higher dimensional versions of
these two theorems. Higher dimensional in the sense that 0-connectedness gets
replaced by 1-connectedness and “curve” is replaced by “surface”.

Speculation

We would like to propose the following guiding principle even though it is quite
possibly false as stated:

(GP) Suppose f : Y → S is a dominant projective morphism of varieties such
that S is a surface and Yk(S) is rationally 1-connected. Then the only obstruction

to f having a rational section should be an element α ∈ Br(k(S)). More precisely:
for S′ → S a dominant morphism of surfaces, we have Y (k(S′)) 6= ∅ if and only if
α|k(S′) = 0.
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Remarks. (a) It may be necessary to assume that S is projective and to add
conditions on the singular fibres of f as well as the discriminant divisor.
(b) We do not have a good definition of the term “rationally 1-connected” except
in the special case described below.
(c) It is possible that one should replace the Brauer class α with another type of
cohomology class, but we insist that it should be in a target group that can be
defined independently of f : Y → S. Having a class is necessary as is shown by
the existence of Brauer-Severi varieties.

Example Definition. Suppose that X is smooth and projective and that Pic(X) =
ZOX(1). In this case we say that X is rationally 1-connected if and only if X is
rationally 0-connected and for all e >> 0 and general points x1, x2 of X the space

Mx1,x2(X, e)

is an open subvariety of a rationally 0-connected variety. HereMx1,x2(X, e) is the
space of maps φ : (C, c1, c2) → (X, x1, x2), where C is a smooth projective genus
zero curve, deg φ∗OX(1) = e, and φ(ci) = xi.

Higher order Fano conditions

In this subsection we use some terminology and notation from the theory of Kont-
sevich mapping spaces and we assume that k = C. Let X be a smooth projective
variety over k. Let β ∈ H2(X, Z) be a homology class. Let M̄ be the Kontsevich
mapping space

M̄ = M̄0,0(X, β).

(Note that this is actually a stack.) There is a universal curve p : C → M̄ and a
universal map f : C → X . The expected dimension of M̄ is 〈−KX , β〉+dim X−3,
and every component has at least this dimension. Assume that M̄ actually has
this dimension. If this is so then one can show that the canonical class KM̄ of M̄
is equal to the following expression

p∗f
∗
(
c2(Ω

1
X)−

1

2
K2

X

)
−

1

2〈−KX , β〉
p∗f

∗K2
X

+
∑

β=β′+β′′

〈−KX , β′〉〈−KX , β′′〉 − 4〈−KX , β〉

2〈−KX , β〉
∆β′,β′′

This seems to suggest that the combination c2(Ω
1
X)− 1

2K2
X plays an important role

in determining the Kodaira dimension of the moduli space of rational curves on X .
The coefficients in front of the boundary components ∆β′,β′′ are “usually” positive,
but somehow these contributions are of a lower order of importance. Anyhow, it
occurred to us that this suggests the following question.

Question. Suppose that X is Fano and that c2(Ω
1
X) − 1

2K2
X is negative (eg. its

intersection product with every surface on X is negative). Does it follow that X
is rationally 1-connected?
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Of course for the moment this question only makes sense if X has Picard group
Z. We can compute what this condition means when X is a smooth complete
intersection of type (d1, . . . , dc) in Pn:

X Fano⇔
∑

di ≤ n,

c2(Ω
1
X)− 1

2K2
X < 0⇔

∑
d2

i ≤ n

This is suggestive since the second condition also comes up in Tsen’s theorem.

General hypersurfaces

Theorem. (Starr following work by Harris-Starr) A general hypersurface of degree
d in Pn is rationally 1-connected if d2 ≤ n.

Work in progress. The theorem remains true for d2 ≤ n + 1, d ≥ 3. We can prob-
ably also deal with the case of general complete intersections of type (d1, . . . , dc)
in Pn where

∑
d2

i ≤ n + 1.
Note that this is for the general hypersurface or complete intersection, and

not for any given hypersurface. In particular we don’t know whether a Fermat
hypersurface of degree d in Pn, with d2 ≤ n + 1 is rationally 1-connected (except
when d = 1, 2 of course). This is interesting because the standard example of a
family of smooth hypersurfaces over a surface which doesn’t have a rational point
is the family

Σ0≤i,j≤d−1s
itjXd

(i,j) = 0

over S with k(S) = k(s, t). This lies in a projective space with homogenous co-

ordinates X(i,j), i.e., in Pd2−1. We do not think there is a class α ∈ Br(k(S)) as
in (GP) above (allthough we haven’t proved this). Hence, if the Fermat hypersur-

face of degree d ≥ 3 in Pd2−1 is rationally 1-connected then the family above is a
counter examople to (GP).

How to prove (GP)?

A very sketchy outline of a possible proof of the guiding principle is the following.
As a first step one chooses a Lefschetz fibration S → P1. Then for every t ∈ P1

one considers the restriction of f : Y → S to the fibre over t, i.e., this gives
ft : Yt → St. For each integer e >> 0 one considers the space of sections Σe

t of
ft of degree e (for example take the degree with respect to some auxilliary ample
invertible sheaf on Y ). Putting together the spaces Σe

t gives a space Σe → P1. To
show that f : Y → S has a rational section is equivalent to proving that for some
e the map Σe → P1 has a rational section. By the Graber-Harris-Starr theorem
of the first section it suffices to show that Σe

t (or a suitable irreducible component
of it) is rationally 0-connected. This is where the hypothesis on the rational 1-
connectedness of the general fibre of Y → S is supposed to come in, but for the
moment we can only succeed in proving this under additional hypotheses.

Without going into further detail on the precise form of the theorem, let us
mention a consequence which is of independent interest.



Arithmetic Algebraic Geometry 1985

Theorem. Let k be any algebraically closed field. Fix integers 1 ≤ ℓ < 1
2n, and

let G(ℓ, n) denote the Grassmanian of ℓ-planes in an n-dimensional vector space.
Suppose we have Y → S, L ∈ Pic(Y ) such that
(a) S is a smooth and projective surface over k,
(b) for all s ∈ S(k), we have Ys

∼= G(ℓ, n), and
(c) L|Ys

is the ample generator of Pic.
Then Y (k(S)) 6= ∅.

This is the theorem that allows us to improve the “period equals index” result of
[dJ] to all possible brauer classes on surfaces in any characteristic.
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The Conjectures of Mordell-Lang and André-Oort

Richard Pink

The Mordell-Lang conjecture, proved by the combination of work of Faltings,
Raynaud, Vojta, and Hindry, is the following statement:

Conjecture 1 (Mordell-Lang). Let A be an abelian variety over C and

Λ :=
{
a ∈ A

∣∣ ∃n ∈ Z>0 : na ∈ Λ0

}

the division group of a finitely generated subgroup Λ0 ⊂ A. Let Z ⊂ A be an
irreducible closed algebraic subvariety such that Z ∩Λ is Zariski dense in Z. Then
Z is a translate of an abelian subvariety of A.

The Manin-Mumford conjecture is the special case Λ0 = 0, where Λ is the group
of torsion points on A.

Next, an irreducible component of a Shimura subvariety of a Shimura variety S, or
of its image under a Hecke operator, is called a special subvariety of S. A special
point s ∈ S is one for which {s} is a special subvariety of dimension zero. The
André-Oort conjecture, which to date is only partially known by work of André,
Edixhoven, Moonen, and Yafaev, states:

Conjecture 2 (André-Oort). Let S be a Shimura variety over C, and let Λ ⊂ S
denote the set of all its special points. Let Z ⊂ S be an irreducible closed algebraic
subvariety such that Z ∩ Λ is Zariski dense in Z. Then Z is a special subvariety
of S.
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The two conjectures are related not only by formal analogy, but also by the fact
that special points on Shimura varieties are intimately connected with torsion
points of abelian varieties with complex multiplication. In fact, the direct analogue
of the André-Oort conjecture for mixed Shimura varieties includes the Manin-
Mumford conjecture.

Like André earlier, I was motivated by this to try to encompass the two kinds of
conjectures into a single natural general conjecture. So far I have succeeded only
partially. The natural framework seems to be that of mixed Shimura varieties, and
one must generalize the notion of special subvarieties. A Shimura morphism is a
morphism between two mixed Shimura varieties that is induced by a homomor-
phism between the underlying algebraic groups. Consider two Shimura morphisms
i : T → S and ϕ : T → T ′ and a point t′ ∈ T ′. Then an irreducible component
of i

(
ϕ−1(t′)

)
, or of its image under a Hecke operator, is called a weakly special

subvariety of S. The proposed conjecture is this:

Conjecture 3. Let S be a mixed Shimura variety over C and Λ ⊂ S the generalized
Hecke orbit of a point s ∈ S. Let Z ⊂ S be an irreducible closed algebraic subvariety
such that Z ∩Λ is Zariski dense in Z. Then Z is a weakly special subvariety of S.

There are three kinds of evidence for this, each of which centers on a different
extremal case. The first concerns special points and easily reduces to the André-
Oort conjecture:

Remark 4. For a pure Shimura variety and the generalized Hecke orbit of a special
point, Conjecture 3 becomes a particular case of the André-Oort conjecture. If in
addition Z is a curve, it is thus proved by Edixhoven and Yafaev.

The second case concerns a family of abelian varieties π : A → S, where A is a
mixed Shimura variety, S is a pure Shimura variety, and π is a Shimura morphism:

Theorem 5. For subvarieties of A contained in a fiber of π, for all π : A → S
as above, Conjecture 3 is equivalent to the Mordell-Lang conjecture, and hence
known.

The third case concerns the opposite extreme of special points. It results from
work of Serre on the Mumford-Tate conjecture and from results of Clozel and
Ullmo on equidistribution of Hecke operators:

Theorem 6. Let S be a Siegel moduli space of abelian varieties of dimension g,
where g is odd or 2 or 6. Let s ∈ S be a point that does not lie in any proper
special subvariety of S. Then any infinite subset of the generalized Hecke orbit
of s is Zariski dense in S. In particular, Conjecture 3 is true for s ∈ S and any Z.

In each case the reduction is relatively simple; the real hard work is done in the
cited literature. One may hope to prove the conjecture eventually by a combination
of the individual approaches.

For full details and references see [1].
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Boundary motive of a Shimura variety

Jörg Wildeshaus

In recent work [W], I introduced the notion of the boundary motive ∂Mgm(X)
of a scheme X over a perfect field. By definition, it measures the difference be-
tween the motive Mgm(X) and the motive with compact support M c

gm(X), as
defined and studied in the book [VSF]. I developed a number of tools to com-
pute the boundary motive in terms of the geometry of a compactification of X :
co-localization, invariance under abstract blow-up, and analytical invariance.

The purpose of the talk was to sketch what is necessary from this theory to
obtain a proof of the motivic version of the theorems on degeneration of mixed
sheaves in the Baily–Borel compactification of a Shimura variety ([P] for étale and
ℓ-adic sheaves, [BW] for Hodge modules).

We use the usual notation from Shimura data and varieties (see e.g. [BW,
Sect. 1]). Let SK = SK(G,H) be a pure Shimura vaiety, and SK

1 a boundary
stratum. It is (up to an error due to the free action of a finite group) itself a pure
Shimura variety Sπ(K1) = Sπ(K1)(G1,H1). The group G1 is the maximal reductive
quotient of a certain subgroup P1 of G. Denote by i the closed immersion of SK

1 ,
and by j the open immersion of SK in the Baily–Borel compactification (SK)∗. In
the terminology introduced in [W, Sect. 3], the theorem on degeneration is about
the identification of Mgm(SK

1 , i!j!Z), the motive of SK
1 with coefficients in i!j!Z.

The geometric approach is of course the one from [P] and [BW]; that the main
reduction steps of [loc. cit.] are possible in the motivic setting results from the
tools developed in [W]. Invariance under abstract blow-up [W, Thm. 4.1] replaces
the usual application of proper base change, in order to show that one can per-
form the identification of Mgm(SK

1 , i!j!Z) in a toroidal compactification SK(S) of
SK . Denote the pre-image SK

1 in SK(S) by S′. It is then true that the formal
completion of SK(S) along S′ is isomorphic to the quotient by the free action of a
certain arithmetic group ∆1 of the formal completion of a relative torus embedding
along a certain union Z of strata. The generic stratum is the (mixed) Shimura
variety SK1 = SK1(P1,X1) associated to the group P1, and the combinatorics of
Z is contractible. SK1 is a torus torsor of relative dimension u1 over an Abelian
scheme over Sπ(K1). One uses a ∆1-equivariant version of analytical invariance
[W, Thm. 5.1] in order to identify Mgm(SK

1 , i!j!Z) with RΓ(∆1, Mgm(Z, i!j!Z)).
Hence the problem is reduced to compute the motive with coefficients in i!j!Z of a
union of strata in a torus embedding. This can be done in some generality. Since
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the combinatorics of Z is contractible, the result has a particularly easy shape:
one has

Mgm(Z, i!j!Z) = Mgm(SK1)[u1] .

Putting everything together, we get the analogue of Pink’s Theorem:

Theorem. There is a canonical isomorphism

Mgm(SK
1 , i!j!Z) ∼−−→ RΓ(∆1, Mgm(SK1))[u1] .
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July 2004, 29 pages, available under http://www-math.univ-paris13.fr/prepub/pp2004/

Mod p period domains

Ben Moonen

(joint work with Torsten Wedhorn)

The goal of my talk was to report on joint work with Torsten Wedhorn, about
certain objects that we call F -zips; see [5]. If S is a base scheme of characteristic
p > 0 then by an F -zip over S we mean a vector bundle M equipped with a
descending filtration C•, an ascending filtration D•, and with a collection of OS-

linear isomorphisms φi :
(
gri

C

)(p) ∼
−→ grD

i .
Our motivation for looking at such objects comes from the following geometric

example. Let f : X → S be a smooth proper morphism of schemes in characteristic
p > 0. We assume that the sheaves Rbf∗Ω

a
X/S are locally free and that the Hodge-

de Rham spectral sequence degenerates at E1-level. The de Rham cohomology
sheaves M = Hm

dR(X/S) are then locally free OS-modules that come naturally
equipped with a structure of an F -zip, taking C• to be the Hodge filtration, D•

the conjugate filtration, and φi the isomorphism given by the (inverse) Cartier
operator.

In our work we obtain a complete classification of F -zips over an algebraically
closed field. It turns out that F -zips over k = k̄ are essentially combinatorical
objects. In order to state our result, let us first define the type of an F -zip M over
a connected basis S as the function τ : Z→ Z≥0 given by τ(i) = rankOS

(
gri

C

)
. In

the geometric example considered above, the type is given by the Hodge numbers
hi,m−i of the fibres of f .
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Theorem 1. Let k be an algebraically closed field of characteristic p > 0. Let
τ : Z→ Z≥0 be a function with finite support i1 < · · · < ir. Let nj := τ(ij), write
J = (nr, . . . , n1), and let n := n1 + · · ·+ nr. Then there is a bijection

{
isomorphism classes of F -zips

of type τ over k

}
←→ (Snr

× · · · × Sn1)\Sn =: JW .

More precisely, to each u ∈ JW we associate a “standard F -zip” Mu
τ over Fp such

that any F -zip M over k is isomorphic to Mu
τ ⊗Fp

k for some uniquely determined

u ∈ JW .

In the case of an abelian variety X over a perfect field k, the F -zip structure
on H1

dR(X/k) gives the Dieudonné module of the p-kernel group scheme X [p].
In this special case, our classification theorem was proven (up to differences in
terminology) by Kraft in [1]. It was realized by Ekedahl and Oort that this can
be used to define a stratification of the moduli space Ag of abelian varieties in
characteristic p. This Ekedahl-Oort stratification is a very useful tool in the study
of Ag; see Oort, [6] and [7].

Our theory of F -zips enables us to extend these ideas to arbitrary families
f : X → S satisfying certain conditions, and to de Rham cohomology in arbitrary
degree. We define a generalized Ekedahl-Oort stratification of the base scheme S.
In fact, our theory gives a natural scheme-theoretic definition of these strata, which
is new even in the case of abelian varieties. The result can be stated as follows.

Theorem 2. Let τ and JW be as in Theorem 1. Let M = (M, C•, D•, φ•)
be an F -zip of type τ over a scheme S of characteristic p. For u ∈ JW we
define a subfunctor Su

M of S by the condition that a morphism g : T → S factors

through Su
M if and only if g∗M is fppf-locally isomorphic to Mu

τ ⊗Fp
OT . Then

Su
M ⊂ S is representable by a locally closed subscheme of S, and the map

∐

u∈JW

Su
M −֒→ S

is a bijective monomorphism (i.e., a partition of S).

For the proof of Theorems 1 and 2 we study the Fp-scheme Xτ whose S-valued
points are the triples (C•, D•, φ•) such that (On

S , C•, D•, φ•) is an F -zip of type τ
over S. The algebraic group GLn,Fp

naturally acts on Xτ . Theorem 1 amounts to
a classification of the GLn-orbits in Xτ .

We think of Xτ as a “mod p analogue” of a compactified period domain. Indeed,
if we let #S → S be the GLn-torsor of trivialisations of the underlying vector
bundle M then we get a natural “mod p period map” #S → Xτ , analogous to the
period maps arising in Hodge theory. It turns out that there is a unique open GLn-
orbit Xord

τ ⊂ Xτ , the “ordinary locus”, which is to be thought of as the interior of
the period domain. In this picture, the other strata correspond to degenerations
of the data that constitute an F -zip.
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In order to study the GLn-orbits in Xτ , we express the latter in more group-
theoretical terms. We introduce varieties ZJ that are semi-linear variants of the
varieties studied by Lusztig in [2]. We consider these varieties in the general
context of a (not necessarily connected) reductive group G over a finite field.
Write (W, I) for the Weyl group of G with its set of simple reflections. As further
input for the definition of ZJ we need two subsets J , K ⊆ I, and a Weyl group
element x ∈ W satisfying certain assumptions. Write UP for the unipotent radical
of a parabolic P ⊂ G. Then ZJ is the Zariski sheafification of the functor that
classifies triples

(
P, Q, [g]

)
with P and Q parabolic subgroups of types J and K,

respectively, and with [g] a double coset in UQ\G/F (UP ) such that Q and gF (P )
are in relative position x. We prove that ZJ is a smooth variety of dimension equal
to dim(G). The group G naturally acts on ZJ .

The connection with the theory of F -zips is as follows. Let τ and J be as in
Theorem 1, and take G = GLn,Fp

. We identify W = Sn. The ordered partition J =
(nr, . . . , n1) corresponds to a subset of the set I of simple reflections. For K ⊆ I
we take the subset corresponding to the opposite partition (n1, . . . , nr), and for
x we take the element of minimal length in the double coset WKw0WJ , where
WJ and WK ⊂ W are the subgroups generated by J and K, respectively, and
where w0 ∈ W is the longest element. We show that with these choices, there is a
GLn-equivariant isomorphism between Xτ and the variety ZJ . Theorem 1 is then
a consequence of the following general result about the varieties ZJ .

Theorem 3. There is a bijection between the set of G-orbits in ZJ and the set
JW ⊂ W of elements w ∈ W that are of minimal length in their coset WJw. (So
JW is in bijection with WJ\W .)

The idea for the proof of this theorem is the following. Let
(
P, Q, [g]

)
be a point

of ZJ . We define a new pair of parabolics (P1, Q1) by

P1 := (P ∩Q)UP , Q1 := (Q ∩ gF (P1)g
−1)UQ .

In a sense that can be made precise, the pair (P1, Q1) is a refinement of the pair
(P, Q). Repeating this process, we get a sequence of pairs (Pn, Qn) that stabilizes.
Then the bijection in Theorem 3 is obtained by sending the point

(
P, Q, [g]

)
to

the element of W that measures the relative position of Pn and Qn for n≫ 0.

The same ideas as sketched here can be applied to study F -zips with certain
additional structures, such as a bilinear form or an action of a semi-simple algebra.
We apply this to abelian varieties, K3-surfaces, and to good reductions of PEL-
Shimura varieties. In this last case, we give a new proof of the dimension formula
for Ekedahl-Oort strata that was obtained in [4] using the results of [9]. In fact, this
is a consequence of the following general result on the dimensions of the G-orbits
in ZJ .

Theorem 4. For u ∈ JW , let Ou ⊂ ZJ be the corresponding G-orbit under the
bijection of Theorem 3. Then

codim(Ou, ZJ) = dim(ParJ)− ℓ(u) ,
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where ℓ(u) is the length of u in the Coxeter group W , and where ParJ is the
variety of parabolics of type J .

For further results on the ordinary locus in good reductions of PEL moduli
spaces we refer to [3] and [8].
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Modular forms from Shimura curves

Michael Rapoport

(joint work with S. Kudla and T. Yang)

This is a report on joint work with S. Kudla and T. Yang on generating series
arising from special cycles on Shimura curves.

Let B be an indefinite quaternion division algebra over Q. Let Γ = O×
B , where

OB is a fixed maximal order in B. The “Shimura curve” associated to B is the
orbifold

[Γ\H±].

It is related to the following moduli problem M. To a scheme S, it associates
the category of pairs (A, ι) consisting of an abelian scheme A over S and an
action ι : OB → End(A) satisfying the determinant condition. If S is a scheme of
characteristic zero, this last condition simply says that A is of relative dimension
2. Then

M(C) = [Γ\H±].
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Let t ∈ Z>0. Consider the moduli problem Zt overM. It associates to a scheme
S the category of triples (A, ι, x) where x ∈ End(A, ι) satisfies tr(x) = 0 and
Nm(x) = t · idA. We form the generating series

φ1 = − vol(M(C)) +
∑

t>0

deg(Zt)q
t ∈ C[[q]].

Proposition 1.1. φ1 is the q-expansion of a holomorphic modular form of weight
3
2 .

This seems to be a classical result. It is proved in [4] by identifying φ1 with an
Eisenstein series which is the analogue for B of Zagier’s Eisenstein series [6] for
M2(Q).

In the remainder of the talk I sketched arithmetic analogues of the above statement.
The moduli problemM is represented by a Deligne-Mumford-stack which is proper
and flat over Spec Z. It is smooth outside the ramification primes of B and
semistable everywhere. Similarly, for every t ∈ Z>0, the moduli problem Zt is
representable by a DM-stack which is finite and unramified over M. It is finite
over Spec Z outside the ramification primes of B, but can contain irreducible
components of the special fiber of M at primes of bad reduction. Set Zt = ∅ for
t < 0. Then for any t ∈ Z\{0}, Kudla [1] has constructed a Green’s function gt(v)
for Zt(C) which depends on a parameter v ∈ R>0. The pair (Zt, gt(v)) defines an

element Ẑt(v) in the arithmetic Chow group ĈH
1
(M). We form

φ̂1 =
∑
Ẑt(v)qt.

Here Ẑ0(v) = −[ω̂] − (0, log v + c), where [ω̂] is the class of the metrized Hodge

line bundle under the natural identification P̂ic(M) = ĈH
1
(M) and where c is

an explicit constant. This is a Laurent series in q with coefficients in ĈH
1
(M)

depending on v.

Theorem 1.2. φ̂1 is a (non-holomorphic) modular form of weight 3
2 and of level

Γ0(4D(B)) with values in ĈH
1
(M).

Here D(B) is the product of the ramification primes of B.

To explain the meaning of the statement of the theorem, recall that the arithmetic
Chow group splits canonically into a direct sum of a finite-dimensional C-vector

space ĈH
1
(M)0 and the vector space C∞(M(C))0 of smooth functions onM(C)

with total volume 0. Correspondingly, the series φ̂1 is the sum of a series φ̂0
1 in q

with coefficients in ĈH
1
(M)0 and a series φ̂∞

1 in q with coefficients in C∞(M(C))0.
The statement of the theorem is that there is a smooth function on H+ with values

in ĈH
1
(M)0 which satisfies the usual transformation law for a modular form of

weight 3
2 and of level Γ0(4D(B)) whose q-expansion is equal to φ̂0

1, and a smooth
function on H+×M(C) which satisfies the usual transformation law for a modular
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form of weight 3
2 and of level Γ0(4D(B)) in the first variable and whose q-expansion

in the first variable is equal to φ̂∞
1 . Obviously, the series φ̂0

1 satisfies the above

condition if for any linear form ℓ : ĈH
1
(M)0 → C the series ℓ(φ̂1) with coefficients

in C is a non-holomorphic modular form of weight 3
2 and level Γ0(4D(B)) in the

usual sense.

An important ingredient of the proof of the above theorem is the Borcherds con-
struction of special divisors [3]. For some linear forms ℓ one can explicitly identify

the modular form ℓ(φ̂1). For instance, the first proposition can be viewed as giving

an explicit expression for ℓ(φ̂1), where ℓ is the degree map

deg : ĈH
1
(M) −→ CH1(M⊗Z C) −→ Z.

Similarly, consider the Gillet-Soulé pairing

〈 , 〉 : ĈH
1
(M)× ĈH

1
(M) −→ ĈH

2

R(M) = R.

The last identification comes from the fact thatM is geometrically connected. If

ℓω(φ̂1) = 〈[ω̂], φ̂1〉, then ℓω(φ̂1) can be identified with the derivative of a specific
Eisenstein series [4].

One can form a similar generating series for 0-cycles on M instead of divisors on
M. It has the form

φ̂2 =
∑

T∈Sym2(Z)∨

ẐT (v)qT .

The coefficients ẐT (v) ∈ R depend on v ∈ Sym2(R)>0. Let T be positive-definite,
and consider the DM-stack ZT over M which to S associates the category of
triples (A, ι, x), where x = (x1, x2) ∈ End(A, ι)2 satisfies tr(x1) = tr(x2) = 0 and
1
2 (x, x) = T . Then if ZT has support disjoint from the ramification primes of B,
it has finite support and we put

ẐT (v) = log |ZT | (independent of v).

The extension of this definition to the remaining T ∈ Sym2(Z)∨ is somewhat
arbitrary, and is in part dictated by the desire to make the following theorem hold
true.

Theorem 1.3. φ̂2 is (the q-expansion of) a non-holomorphic Siegel modular form
of genus 2, of weight 3

2 and level Γ0(4D(B)).

This modular form can be identified with the derivative of an explicit Siegel Eisen-
stein series.

The previous two theorems are related by the following inner product formula.
Let

d : H+ ×H+ −→ H
(2)
+

be the “diagonal” embedding into the Siegel upper half space of genus 2, with

d(τ1, τ2) = diag(τ1, τ2) =

(
τ1 0
0 τ2

)
.
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Theorem 1.4. We have

〈φ̂1(τ1), φ̂1(τ2)〉 = d∗(φ̂2(τ1, τ2)).

Explicitly, for any t1, t2 ∈ Z and v1, v2 ∈ R>0, we have

〈Ẑt1(v1), Ẑt2(v2)〉 =
∑

T∈Sym2(Z)∨

diag(T )=(t1 ,t2)

ẐT (diag(v1, v2)).

As a consequence of these theorems one obtains a formula for the self-intersection
number of the metrized Hodge bundle, which is reminiscent of the corresponding
formula of Bost and Kühn [5] in the case of the modular curve.

Corollary 1.5.

〈ω̂0, ω̂0〉 = 4 · ζD(B)(−1) ·

[
ζ′(−1)

ζ(−1)
+

1

2
−

1

4

∑

p|D(B)

p + 1

p− 1
log p

]

Here the notation ω̂0 indicates that we have taken Bost’s normalization of the
metric on ω.
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Vector bundles on p-adic curves and parallel transport

Christopher Deninger

(joint work with Annette Werner)

On a compact Riemann surface every finite dimensional complex representation
of the fundamental group gives rise to a flat vector bundle and hence to a holo-
morphic vector bundle. By a theorem of Weil, one obtains precisely the holo-
morphic bundles whose indecomposable components have degree zero [W]. It was
proved by Narasimhan and Seshadri [Na-Se] that unitary representations give rise
to semistable bundles of degree zero. Moreover, every stable bundle of degree zero
comes from an irreducible unitary representation.

We have established a partial p-adic analogue of this theory, generalized to
representations of the fundamental groupoid [De-We1]. The following is one of
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our main results. Recall that a vector bundle on a smooth projective curve over a
field of characteristic p is called strongly semistable if Frν∗

p E is semistable for all
ν ≥ 0. Here Frp is the absolute Frobenius morphism.

Let X be a smooth projective curve over Qp and assume for simplicity that X

has a smooth model X over Zp. The special fibre Xk is then a smooth projective

curve over k = Fp.
Theorem. Let E be a vector bundle of degree zero on X which extends to

a bundle on X with strongly semistable reduction. Then there are functorial iso-
morphisms of “parallel transport” along étale paths between the fibres of ECp

on
XCp

. In particular one obtains a representation ρE,x of π1(X, x) on Ex for every
point x in X(Cp). The parallel transport is compatible with tensor products, duals,
internal homs, pullbacks and Galois conjugation.

In fact, the theorem holds more generally if the reduction of the model X is a
semistable irreducible curve.

The theorem applies in particular to line bundles of degree zero on X . In
this case the p-part of the corresponding character of π1(X, x) was already con-
structed by Tate using Cartier duality for the p-divisible group of the abelian
scheme Pic0

X/Zp
cf. [Ta] § 4 and [De-We2]. His method does not extend to bundles

of higher rank.
Let us now discuss our theory in more detail. After this we can sketch the proof

of the theorem.
We first investigate the category SX,D consisting of finitely presented proper

Zp-morphisms π : Y → X whose generic fibre is a finite covering of Y which is
étale outside of a divisor D on X . The important point is that for given π in
SX,D there is an object π′ : Y ′ → X in SX,D lying over π with better properties,
e.g. cohomologically flat of dimension zero or even semistable. We also construct
certain coverings π using the theory of the Picard functor which are used several
times.

Then we define and investigate categories BXCp ,D and B
♯
XCp ,D involving a di-

visor D on X and also an analogous category BXo,D for a fixed model X of X .
Here o is the ring of integers in Cp. These are defined as follows. The category
BXo,D consists of all vector bundles E on Xo such that for all n ≥ 1 there is a
covering π in SX,D with π∗E trivial modulo pn. We prove that this condition has
to be checked for n = 1 only. If E is already defined on X then it even suffices
that π∗

kEk is trivial where πk is the special fibre of some π.
Next, BXCp ,D consists of all bundles which are isomorphic to the generic fibre

of a bundle E in BXo,D for some model X of X . These categories are additive and
stable under extensions. We prove that for every bundle E on XCp

there is a finite
étale covering α : Y → X such that α∗E extends to a vector bundle on a model of

Y . This is the motivation for defining B
♯
XCp ,D as the category of vector bundles

on XCp
whose pullback along α lies in BYCp ,α∗D for some finite α which is étale

over X \D. We obtain an additive category which is closed under extensions and
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contains all line bundles of degree zero. All vector bundles in B♯ are semistable
of degree zero.

We then define and study certain isomorphisms of parallel transport along étale

paths in U = X \ D for the bundles in the category B
♯
XCp ,D. In more technical

terms, we construct an exact ⊗-functor ρ from B
♯
XCp ,D to the category of continu-

ous representations of the étale fundamental groupoid Π1(U) on Cp-vector spaces.
The basic idea is this: Consider a bundle E in BXo,D and for a given n ≥ 1 let
π : Y → X be an object of SX,D such that π∗

nEn is a trivial bundle on Yn. Here the
index n denotes reduction modulo pn. Consider points x and x′ in X(Cp) = X(o)
and choose a point y in Y = YCp

above x. For an étale path γ from x to x′ i.e.
an isomorphism of fibre functors, let γy be the corresponding point above x′. For
a “good” cover π we have isomorphisms

Exn

y∗
n∼
←− Γ(Yn, π∗

nEn)
(γy)∗n∼
−−−→ Ex′

n
.

We define the parallel transport ρE(γ) : Ex
∼
−→ Ex′ as the projective limit of the

maps ρE,n(γ) = (γy)∗n◦(y
∗
n)−1. This parallel transport is then extended to BXCp ,D

and B
♯
XCp ,D. We also prove that the functor mapping a bundle E in B

♯
XCp ,D to

its fibre in a point x ∈ U(Cp) is faithful.
Using a Seifert–van Kampen theorem for étale groupoids we show that for a

bundle E which is in B♯ for two disjoint divisors, one actually obtains a parallel
transport along all étale paths in X .

The proof of the theorem above starts with a characterization due to Lange and
Stuhler [LS] of the strongly semistable bundles on a smooth projective curve over
a finite field: These are exactly the bundles whose pullback by a finite surjective
morphism becomes trivial. Hence we have to lift finite covers in characteristic p
to characteristic zero. The main point here is to construct a morphism of models
whose reduction factors over a given power of Frobenius. Somewhat surprisingly
this is possible. In fact our method allows us to construct two coverings π in SX,D

and π′ in SX,D′ for two disjoint divisors D and D′ such that π∗
kEk and π′∗

k Ek are
both trivial. By the above theory, one gets the parallel transport on all of XCp

.
Recently Faltings has announced a p-adic version of non-abelian Hodge the-

ory [Fa]. He proves an equivalence of categories between vector bundles on XCp

endowed with a p-adic Higgs field and a certain category of “generalized represen-
tations” which contains the representations of π1(X, x) as a full subcategory. His
methods are different from ours. In particular Faltings uses his theory of almost
étale extensions. It follows from his results that in the theorem above the functor
sending E to the representation ρE,x : π1(X, x)→ GL(Ex) is not only faithful but
also full. Note that the category of continuous representations of the fundamental
groupoid Π1(X) is a full subcategory of the category of continuous representations
of π1(X, x) via the fibre functor in x.
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Moduli spaces of local systems, positivity and higher Teichmüller
theory

Alexander Goncharov

(joint work with V. V. Fock)

I. Let S be an oriented surface with boundary: S = S̄−D1∪ . . .∪Dn, n > 0.
Assume that S is hyperbolic. Usually χ(S) < 0. The Teichmüller space
for S is defined as

T (S) : = {complex structures on S}/ Diff0(S)

∼= {faithful representations

ρ : π1(s)→ PSL2(R)}/PSL2(R)− conjug.

The mapping class group ΓS = Diff(S)/ Diff0(S) acts on T (S). Let
T ′′(S) ⊂ T (S) be the subset of representations with unipotent monodromy
around each boundary component. The T (S) has a boundary with corners
with the deepest stratum T ′′(S). Define

T̃ (S) := {p ∈ T (S), plus choice of an eigenvalue

for the monodromy around each ∂Di}.

In the case when S is compact, N. Hitchin defined in 1992 a component
in a space of representations π1(S)→ G(R) where G is a simple Lie group
with trivial center. He proved that given a complex structure on S, this
component is isomorphic to CN .

We are looking for an algebraic geometric avatar of the Teichmüller-
Thurston theory, which can be generalized to any G (split, semi-simple
algebraic group over Q with trivial center).

II. The moduli space XG,Ŝ . Let Ŝ be a pair (S, {x1, . . . , xm}), where the

second element of the pair is a collection of marked points on the boundary
∂S.
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Definition 1. A framed G-local system on Ŝ is a pair (L, β), where L
is a G-local system on S and β is a flat section of the restriction of L×GB
to the punctured boundary ∂S − {x1, . . . , xm}, where B is the flag variety
for G.

Definition 2. XG,Ŝ is the moduli space of framed G-local systems on Ŝ.

Example 3. If Ŝ is a disc D̂n with n marked points on the boundary then

XG,n := XG,D̂n

∼= G\Bn.

Let T be an ideal triangulation of a surface S′ with n punctures (S′ ∼
h.e.

S). Restricting (L, β) to triangles and rectangles of the triangulation we
get a rational map

ΠT : XG,S −→
∏

triangles of T

XG,3 ×H{edges of T }.

Theorem 4. This map is a birational isomorphism.

Using different ideal triangulations T we get a ΓS-equivariant atlas on
XG,S. We prove that the transition functions for this atlas are subtraction-
free. Thus for any semifield K, e.g. K = R>0, we can define the set of
K-valued points of XG,Ŝ .

Definition 5. The higher Teichmüller space for G is XG,Ŝ(R>0).

Definition 6. The lamination space for G is XG,Ŝ(Rt), where Rt is the

tropical semifield.

Theorem 7. For G = PSL2 we get the classical Teichmüller space T̃ (S)
and the space of Thurston’s measured laminations on S.

Our main conjecture relates XG,S to get another moduli space ALG,S

related to the Langland’s dual LG, which also has a canonical positive
atlas on it.

On Serre’s conjecture over totally real fields

Fred Diamond

Serre conjectured that all continuous, irreducible, odd representations ρ : GQ →
GL2(F̄p) arise from modular forms. If ρ is modular, then proven refinements
provide recipes for the possible weights and levels of the forms giving rise to it.
A natural generalization to the context of a totally real field F predicts that any
continuous, irreducible, totally odd ρ : GF → GL2(F̄p) arises from Hilbert modular
forms. As in the case of F = Q, one expects that the minimal level at which ρ
arises is the Artin conductor of ρ, up to powers of primes over p. This is known to
hold in most cases by work of Jarvis, Fujiwara and Rajaei, assuming ρ is modular.
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A conjectural recipe for the possible weights has been formulated (jointly with
Buzzard and Jarvis) in the case where p is unramified in F . First one defines
a weight σ to be an irreducible F̄p representation of GL2(OF /p). There is then
a natural notion of ρ being modular of weight σ from which one can recover
the classical weights and p-level structures of characteristic zero Hilbert modular
eigenforms giving rise to ρ. The weight part of Serre’s conjecture is then a recipe
giving the set of weights for which ρ is modular in terms of the local representations
ρv = ρ|GFv

. More precisely, for each prime v over p, the restriction ρv determines
a set of representations Σ(ρv) of GL2(OF /v), and the conjectural set of weights
for ρ consists of their tensor products.

When ρv is semsimple, it turns out that Σ(ρv) typically has 2fv and consists
precisely of the Jordan-Holder constituents of the reduction of an irreducible char-
acteristic zero representation of GL2(OF /v). Moreover this observation estab-
lishes a curious bijection between {2-dimensional semisimple F̄p-representations
of GFv

}/inertial equivalence and {irreducible Q̄p-representations of GL2(OF /v)
not factoring through det}, with a rather different flavor from the local Langlands
correspondence.

Suppose now that ρv is not semisimple and write ρv ∼

(
ξ1 ∗
0 ξ2

)
. Then

Σ(ρv) is a subset of Σ(ρss
v ) determined by the corresponding class cρv

∈ V =

H1(Fv, ξ1ξ
−1
2 ). More precisely, suppose for simplicity that ξ1ξ

−1
2 is not trivial or

cyclotomic. Then for each subset S of the set of embeddings of OF /v in F̄p, there
is an |S|-dimensional subspace VS ⊂ V and a weight σS(ρv) ∈ Σ(ρss

v ) such that

σS(ρv) ∈ Σ(ρv) ⇔ cρv
∈ VS .

Joint work with Dembélé and Roberts provides some numerical evidence that
the set of weights is as conjectured, and work of Jarvis and Gee provides some
theoretical evidence, but on the whole, the problem of proving it for F 6= Q is
very much open.

Deformations of automorphic Galois representations and applications

Michael Harris

(joint work with Richard Taylor and in part with Laurent Clozel)

This is a report on joint work in progress with Richard Taylor, and in part
with Laurent Clozel. Any errors or omissions in the present text are my sole
responsibility.

The original objective of my project with Taylor, begun in 1996, was to extend
the theorem of Taylor-Wiles to automorphic forms in higher dimension, where
the Galois representations are of dimension n > 2 in general. I remind you that
the Taylor-Wiles theorem, which has been generalized in various directions by
Diamond and Fujiwara, asserts that, in favorable circumstances, if a mod l rep-
resentation ρ̄ of Gal(Q̄/E) lifts to an l-adic representation which comes from au-
tomorphic forms on GL(n) of a certain type, where E is totally real or CM field,
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then any lifting with minimal additional ramification also comes from automorphic
forms. By “favorable circumstances” I mean, for example, that l > n, so we can
apply Fontaine-Laffaille (nearly ordinary would also work) and ρ̄ should be abso-
lutely irreducible and with image not too small. The work of Wiles on GL(2), and
later Skinner-Wiles and Breuil-Conrad-Diamond-Taylor, showed that the lifting
theorem remained true under more general ramification conditions. This is the
problem of ”level raising” that involves a different range of techniques.

Work of Taylor’s student Russ Mann, together with base change arguments,
showed that the minimality condition could be dropped, assuming a specific gen-
eralization to GL(n) of a step in the level-raising theory called Ihara’s Lemma,
which I will formulate later. I will assume an appropriate version of Ihara’s Lemma,
which we have so far been unable to prove, and will state our main theorem under
this assumption.

Let F (resp. E) be a number field, which we will assume totally real (resp. CM).
For the moment we stick with F . Let Sl denote the set of primes of F dividing
l. Following Fontaine and Mazur, we say an n-dimensional l-adic representation
ρ of Gal(F̄ /F ) is of geometric type if it is unramified outside the finite set S

∐
Sl

of primes of F , where S ∩ Sl = ∅; and if at every v ∈ Sl it has Fontaine’s de
Rham property, which means in particular that it allows us to associate a set of
Hodge-Tate numbers hp(ρ) to ρ, with n =

∑
hp(ρ) (varying with v in general).

Following Clozel, we define an automorphic representation π of GL(n, Q) if π∞

has integral infinitesimal character – which means it can be associated to a Hodge
structure.

Conjecture. (a) Let ρ be an irreducible n-dimensional l-adic representation of
GF of geometric type. Then there is a cuspidal automorphic representation of
GL(n, Q) πρ of algebraic type associated to ρ, in the sense that L(s, πρ) = L(s, ρ)
where the former is the L-function associated by automorphic theory. In particular,
L(s, ρ) has an analytic continuation to an entire function satisfying the usual sort
of functional equation.

(b) Conversely, if π is an automorphic representation of GL(n, Q) of algebraic
type, then there exists an l-adic representation ρπ of geometric type associated to
π.

A theorem of Taylor-Wiles type is the following:

Prototype of generalized Taylor-Wiles theorem. Suppose ρ is as in (a),
and suppose πρ exists. Let ρ′ be a second n-dimensional p-adic representation,
with ρ′ ≡ ρ (mod p). Suppose moreover that

(i) ρ′ satisfies a minimality condition, typically that ρ′ is no more ramified
than ρ̄ := ρ (mod l) at primes in S or otherwise, apart from primes in Sl.

(ii) Some more precise condition on the restriction of ρ′ to Gal(Kρ,q/Qq), for
q ∈ S−Sl e.g. that ρ′ and ρ have isomorphic restrictions to Gal(Kρ′,q/Qq).

(iii) A specific Fontaine-type condition on the restriction of ρ′ to Gal(Kρ′,v/Fv)
for v ∈ Sl; in practice, ρ and ρ′ are assumed crystalline and have the same
Hodge-Tate numbers).
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(iv) Additional conditions, e.g.
(a) ρ (mod l) is irreducible, even after restriction to F (ζl)

+ and has big
image,

(b) l > n and is unramified in F .

Then ρ′ also satisfies the Fontaine-Mazur conjecture (a).

Here is an unenlightening definition of “big image”. Let O = OK . The polar-
ization condition implies that ρ extends to a homomorphism

ρ̃ : Gal(Q/F )→Gn(O) := [GL(n,O)×GL(1,O)] ⋉ {1, c}

where c(g, µ) = (µtg−1, µ) (more than one extension is in principle possible...) Let
ρ̄̃ := ρ̃ (mod l), H = Im(ρ̄̃) ∩Gal(Q/Q(ζl)

+). We say H is “big” if

(i) H0(H, ad(ρ̄)) = H1(H, ad(ρ̄)) = 0;
(ii) For any irreducible submodule W ⊂ A(ρ̄) there exists h ∈ H ∩ GL(n, k)

and α ∈ k such that the α-generalized eigenspace Vh,α of h is of dimension
1 and πh,α ◦ W ◦ ih,α 6= 0 where πh,α and ih,α are respectively the h-
equivariant projection on Vh,α and the inclusion.

The original Taylor-Wiles theorem applies to n = 2 and for specific conditions
(ii-iv). The generalization due to Wiles, and Taylor and his collaborators more
generally,in the case n = 2 removes condition (i). We always assume that all
primes in S split completely in E/F .

Theorem A. (MH-Taylor). (F totally real.) Let K be a finite extension of
Qℓ, with residue field k. Suppose Vl is an n-dimensional K-vector space and
ρ : Gal(Q/F )→GL(n, K) is as in (a), and suppose πρ exists and is cohomological
at infinity (this will be automatic). Suppose moreover that

(1) Polarized of weight n− 1: there is a Galois-invariant bilinear form

Vl ⊗ Vl→Q(1− n),

of parity (−1)n−1;
(2) Regular: hp(ρ) ≤ 1 for all (p), and hp = hn−1−p (in practice ρ will be pure

of weight n− 1 by construction)
(3) At some finite place v0 of F πρ is either supercuspidal or Steinberg. In the

supercuspidal case this implies that ρ |Gv0
is irreducible, and we assume this is still

true of ρ̄. In the Steinberg case there is a way around this.
Suppose ρ′ is as above and satisfies conditions (i)-(iv) and is polarized ((2) and

(3) are automatic). Then πρ′ also exists.

For E CM rather than totally real, we replace condition (1) by the hypothesis

that V ∨
l

∼
→−→ V c

l (1−n). The weight condition can be relaxed somewhat. In fact,
we only consider CM fields of the form E = F ·K where K is imaginary quadratic,
though it should be possible to treat more general cases by a descent argument.

The theorem is proved by working with automorphic forms on definite uni-
tary groups U(B) attached to division algebras U(B) over E (= F · K if nec-
essary). These are like the groups that occur in my book with Taylor, except
they are positive-definite everywhere. This allows us to construct Taylor-Wiles
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systems without difficulty, because the Hecke algebra modules in question are in
0-dimensional cohomology. Conditions (1) and (2) are unavoidable for cohomolog-
ical representations. There are reasons to believe ”most” representations, in some
sense, are of this type. On the other hand, (3) is a symptom of our dependence on
the current state of the stable trace formula, and is likely to be unnecessary in the
near future. Note that (1) and (2) are conditions on ρ′ whereas (3) is a condition
on πρ′ , but by the results of my book with Taylor (3) is in fact a condition on ρ′.

The above theorem was proved by 1998, under versions of condition (ii) that
have been gradually relaxed as we learned more about the compatibility of local
and global correspondences; some minor restrictions remain. We are presently in
the process of writing an article (possibly with Clozel) with the same statement,
except that the end is as follows. From now on I will work with E CM rather than
F .

Theorem B (almost completely verified). Suppose ρ and πρ are as in the
previous theorem and satisfy (1)-(3). Suppose ρ′ is as in the Fontaine-Mazur
conjecture, is polarized, and satisfies conditions (ii)-(iv) (i) is optional). Assume
an appropriate version of Ihara’s Lemma, e.g. Conjecture 1, below. Then πρ′ also
exists.

Recall that k is the residue field of O.

Conjecture 1 (Ihara’s Lemma, version 1). Let Mk denote the module of k-
valued modular forms on U(B) which are fixed by the Iwahori subgroup at v ∈ S′,
and let Mv

k denote the k[GL(n, Fv)]-module generated by Mk. Localize at a non-
Eisenstein prime of T. Then every irreducible GL(n, Fv)-submodule of Mv

k is
generic (has a Whittaker model over k).

Degeneration of polylogarithms and special values of L-functions of
totally real fields

Guido Kings

In this talk we explained the degeneration of the polylogarithm on Hilbert
modular varieties S for a totally real field F and its connection with special values
of partial zeta functions for the field F . This generalizes a previous result of Huber
and the author [HK] and is connected to work of Sczech [S] and Nori [N] through
the formulation given by Beilinson and Levin [BL] (unpublished).

To be more precise we need some notation: Let π : A → S be the universal
abelian variety and H the dual of R1π∗Q. For any x ∈ A(S)tors \ 0 we get
Eisensteinclasses by specializing the polylogarithm on A (as defined by Beilinson,
Levin and Wildeshaus)

x∗polk ∈ Ext2g−1
MHM(S)(Q, SymkH(g)).
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Let ∂S be the boundary of the Baily-Borel compactification S̄ of S and i : ∂S →֒ S̄
resp. j : S →֒ S̄ the associated immersions. We get

(1) Ext2g−1
MHM(S)(Q, SymkH(g))→ Ext2g−1

MHM(∂S)(Q, i∗Rj∗SymkH(g))

→ HomMHM(∂S)(Q, i∗Rj∗SymkH(g)) ∼= HomMHM(∂S)(Q, Q).

The aim is to compute the image of x∗polk under this composition, which we
call the residue map. A cusp of S is given by a quotient p : O⊕2

F → b, which is
projective OF -module of rank 1. Let f ⊂ OF be a fractional ideal, O∗

f := {a ∈
O∗

F |a totally positive, a ∼= 1 mod f} and ǫ : (F ⊗ R)∗ → {±1} a sign character, δ
the different of F . Define

L(b, x, f, ǫ, s) :=
∑

λ∈(bδ)−1/O∗
f

ǫ(λ)e2πiTrxλ

|N(λ)|s

for Res > 1. For x ∈ (f−1)⊕2 we get p(x) ∈ bf−1. The main result is that the
residue of x∗polk is (g = [F : Q])

res(x∗polk) = |N(δ)|−
1
2 N(b)

2g(−1)g−1((n− 1)!)g

(2πi)k
L(b, p(x), f, ǫ, n)

if k = gn and ǫ is trivial if n is even, or ǫ is the product of g non-trivial characters
if n is odd. In all other cases the residue is zero. The proof uses purely topological
methods and the result of Sczech, Nori in the form of Beilinson-Levin. David
Blottière considers in his Ph.D. thesis this question from the point of view of
Levin’s explicit computation of the polylogarithmic currents in [L].
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Equidistribution of special subvarieties of Shimura varieties

Emmanuel Ullmo

(joint work with L. Clozel)

This is a report on a joint work with L. Clozel [1].
Let S be a Shimura variety over C. One can define a set of special points of S

(points with complex multiplication) and a set of special subvarieties (subvarieties
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of Hodge type). The André-Oort conjecture says that a component of the Zariski
closure of a set of special points is a special subvariety. An other formulation is:

Conjecture 0.1. (André-Oort) Let X be a subvariety of S. There exists a finite
set of special subvarieties (Z1, . . . , Zr) of S contained in X such that any special
subvariety of S contained in X is contained in ∪r

i=1Zi.

A Shimura variety is associated to a Shimura datum (GQ, X) where GQ is a
reductive Q-algebraic group and X is the G(R)-conjugacy class of a morphism
α : S = ResC/RGm → GR. A special subvariety Z is associated to a sub-Shimura
datum (HQ, XH). Special points are associated to a sub-Shimura datum (TQ, xT )
where T is a torus (and xT is a zero-dimentional variety).

Definition 0.2. A ”strongly special” subvariety of S is a special subvariety of S
associated to a sub-Shimura datum (HQ, XH) such that

(i) HQ is semi-simple.
(ii) HQ is not contained in a proper Q-parabolic subgroup of GQ.

The dimension of a strongly special subvariety is > 0.

Theorem 0.3. Let X be a subvariety of S. There exists a finite set of strongly
special subvarieties (Z1, . . . , Zr) of S contained in X such that any strongly special
subvariety of S contained in X is contained in ∪r

i=1Zi.

A special subvariety Z of S is endowed with a canonical probability measure
µZ on S with support Z. The theorem is a consequence of the folowing ”ergodic”
result:

Theorem 0.4. Let Zn be a sequence of strongly special subvarieties of S and µn

the associated sequence of probability measures. There exists a strongly special sub-
variety Z and a subsequence Znk

such that µnk
converges weakly to µZ . Moreover

for k big enough Znk
⊂ Z.

The proof uses results from ergodic theory (Ratner’s theory [4] and some results
by Mozes-Shah [3]) and the theory of Shimura varieties as explained by Deligne
[2].

Example Let S be the moduli space of principally polarized abelian varieties of
dimension g. For all totally real number field F of degree g we can define a familly
of strongly special subvarieties parmetrizing abelian varieties with multiplication
by F (Hilbert modular varieties). If Zn is a ”strict” sequence of Hilbert modular
varieties of S, then the associated sequence of‘probability measure µn weakly con-
verges to the total measure µS . A sequence of special subvarieties Zn is said to be
strict if for all special subvarieties Z 6= S of S the set {n ∈ N | Zn ⊂ Z} is finite.
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