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Introduction by the Organisers

The analysis of algorithms and data structures, started by D. Knuth, is a rapidly
growing area at the interface of Mathematics and Theoretical Computer Science.
Probability theory enters the subject in a natural way when studying an algo-
rithm as to its performance over randomized inputs and/or if an algorithm itself
takes randomization steps. The latter holds true for so-called divide and conquer
algorithms, which were a central topic of this workshop. The sorting algorithm
Quicksort is presumably the most prominent example. While early work was
mostly based on the generating function approach, the last two decades have seen
an increasing number of contributions based on probabilistic methods involving
martingales, random trees and other stochastic processes. The first article of this
type was written in the eighties by L. Devroye, a Humboldt award winner of 2004
and also one of the organizers. Later another pioneering contribution came by
U. Rösler who, by introducing weighted branching processes and the contraction
method, determined the asymptotic distributional behavior of Quicksort. One
can say that much of the work presented at this workshop is to some extent spawn
by these articles.

The aim and scope of the mini-workshop was to bring together leading junior
and senior experts in the field with a strong probabilistic background and a focus
on divide an conquer algorithms and related data structures. There were 16 one
hour talks presented by 12 of the 14 participants from 7 countries. Main topics were
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branching processes, the contraction method, the asymptotic analysis of random
trees, stochastic fixed point equations and randomized algorithms.
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Abstracts

Random records and cuttings in trees

Svante Janson

We consider random cutting down of rooted trees, defined as follows [6]. If T is
a rooted tree with number of vertices |T | ≥ 2, we make a random cut by choosing
one edge at random. Delete this edge so that the tree separates into two parts,
and keep only the part containing the root. Continue recursively until only the
root is left. We let X(T ) denote the (random) number of cuts that are performed
until the tree is gone.

The same random variable appears when we consider records in a tree. Let
each edge e have a random value λe attached to it, and assume that these values
are i.i.d. with a continuous distribution. Say that a value λe is a record if it is the
largest value in the path from the root to e. Then the number of records is again
given by X(T ), as is easily seen.

There are also vertex versions of cuttings and records. For cuttings, choose a
vertex at random and destroy it together with all its descendants. Continue until
the root is chosen and thus the whole tree is destroyed. For records, we assign
i.i.d. values λv to the vertices, and define a record as above. Again, there is an
equivalence between cuttings and records. The edge and vertex versions are closely
related, and the results are essentially the same.

These random variables can be studied both for deterministic trees and for
random trees.

If the tree is a path, we have the classical record problem studied by Rényi, [9].
Our main results are for the case when the tree Tn itself is random, more pre-

cisely a random conditioned Galton–Watson tree (also known as simply generated
tree) with n vertices. (It is well-known that examples include random labelled
trees and random binary trees.) Since both the records (or cutting) and the tree
now are random, X(Tn) can be regarded in (at least) two ways.

First, we can regardX(Tn) as a random variable, obtained by picking a random
tree Tn and then a random cutting of it. This point of view has been taken by Meir
and Moon [6] (mean and variance for Cayley trees), Chassaing and Marchand [3]
(asymptotic distribution for Cayley trees), Panholzer [7, 8] (asymptotic distribu-
tion for some special families of simply generated trees, and for non-crossing trees).
We extend these results to all conditioned Galton–Watson trees. (All unspecified
limits are as n→ ∞.)

Theorem 1. Let Tn be a conditioned Galton–Watson tree of size n, defined by an
offspring distribution ξ with mean E ξ = 1 and finite variance σ2 > 0. Then,

X(Tn)

σn1/2

d−→ Z,
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where Z has a Rayleigh distribution with density xe−x2/2, x > 0. Moreover, if
E ξm <∞ for every m > 0, then all moments converge and thus, for every r > 0,

EX(Tn)r ∼ σrnr/2
EZr = 2r/2σrΓ

(

r
2 + 1

)

nr/2.

The other point of view is to study X(Tn) as a random variable conditioned
on Tn. In other words, we consider the random procedure in two steps: First
we choose a random tree T = Tn. Then we keep this tree fixed and consider
random cuttings of it; this gives a random variable X(T ) with a distribution that
depends on T . Normalizing as in the theorem above, we consider the distribution
of σ−1n−1/2X(Tn) given Tn; this is thus a random probability distribution. We
then can show that this random probability distribution converges in distribution
to a random probability distribution (that does not depend on ξ); this random
distribution has moments that can be expressed as functionals of a Brownian
excursion.

The proofs are based on Aldous’ theory of the continuum random tree [1, 2].
Finally, we study the case when the tree is a (deterministic) complete binary

tree of size n. In this case, both the methods and results are different. There is
now a periodicity in the result. This is not surprising for complete binary trees,
but it is a bit surprising that the periodicity is in the fractional part {lgn−lg lgn}.
Theorem 2. Suppose that n→ ∞ such that {lgn− lg lg n} → γ ∈ [0, 1]. Then

(

X(Tn) − n

lg n
− n lg lg n

lg2 n

) / n

lg2 n

d−→ −Wγ

where Wγ has an infinitely divisible distribution with characteristic function

E eitWγ = exp
(

if(γ)t+

∫ ∞

0

(

eitx − 1 − itx1[x < 1]
)

dνγ(x)
)

,

where f(γ) := 2γ − 1− γ and the Lévy measure νγ is supported on (0,∞) and has
density

dνγ

dx
= 2{lg x+γ}x−2.

The strategy of the proof is to approximate X(Tn) by a sum of independent
random variables derived from {λe}; it turns out that only exceptionally small
values at level ≈ lg lgn have a significant influence on X(Tn). We will then apply
a classical limit theorem for triangular arrays.

For details, see [4, 5].
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Moment conditions for weighted branching processes

Dirk Kuhlbusch

The talk presents moment conditions determining the asymptotic behaviour of
weighted branching processes (WBP) and weighted branching processes in random
environments (WBPRE).
In the case of a WBPRE (Zn)n≥0, the underlying reproduction mechanism is
driven by a stationary ergodic sequence (Un)n≥0 of (random) probability mea-
sures which can be viewed as environmental changes over time. In the first part of
the talk, we obtain a nonnegative martingale by normalizing the underlying pro-
cess with its conditional means (given the environmental sequence) and present
necessary and sufficient conditions guaranteeing L1-convergence of this martingale.
These conditions are substantially simplified in the case of i.i.d. environmental se-
quences. The proofs of these results are based on a change of measure on the set
of weighted family trees associated with the underlying process, thus adapting the
techniques used in [5] and [4] for Galton-Watson processes and branching random
walks.
The second part of the talk focusses on ordinary WBP (deterministic and nonva-
rying environments). Given any p ∈ (1,∞), we give a complete characterization
of Lp-convergence of the corresponding martingale. Moreover, we analyse when
the martingale limit has finite moments with respect to a certain class of regularly
varying functions. The techniques used for these results exploit the inherent dou-
ble martingale structure, generalizing the methods used in [1] for Galton-Watson
processes.
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Two-way chaining with reassignment

Luc Devroye

(joint work with K. Dalal and E. Malalla)

In classical uniform hashing with chaining, a set of s keys are inserted into a
hash table with n separate chains (or linked lists) via a uniform hash function.
The insertion time is constant, and the average search time is proportional to
the load factor of the hash table α := s/n. However, even for constant load
factor, the worst-case search time (the length of the longest chain) is asymptotic
to logn/ log logn, in probability [17, 24].

Azar et al. [2] suggested a novel approach called the greedy two-way chaining
paradigm. It uses two independent uniform hash functions to insert the keys where
each key is inserted on-line into the shorter chain, with ties broken randomly. The
insertion time is still constant, while the average search time cannot be more than
twice the average search time of classical uniform hashing. However, the expected
maximum search time is only 2 log2 logn + 2α + O(1) [2, 3, 21]. The two-way
chaining paradigm has been effectively used to derive many efficient algorithms
[4, 5, 6]. A further variant of on-line two-way chaining [25] improves the maximum
search time by a constant factor.

On the other hand, one can show that the off-line version of two-way chain-
ing, where all the hashing values of the keys are known in advance, yields bet-
ter worst-case performance [2, 7, 22]. Czumaj and Stemann [7] proved that if
s ≤ 1.67545943...×n, one can find an assignment for the keys such that the maxi-
mum chain length is at most 2, w.h.p. (with high probability, i.e., with probability
tending to one as n → ∞). There is a large gap between the worst-case perfor-
mances of the on-line and off-line versions of two-way chaining. Subsequently, one
naturally wonders if it is possible to design an efficient on-line two-way chaining
algorithm whose worst-case search time is close enough to its off-line one, while
preserving constant insertion time and O(α) average search time. Our goal here
is to obtain constant expected maximum search and deterministic O(1) insertion
times when the load factor of the hash table is constant.

Many hashing schemes that achieve constant worst-case search time have been
developed [10, 11, 12, 15]. However, these schemes use a large number of hash
functions, sometimes employ rehashing techniques, and have insertion times that
are constant only in expected amortized sense. The closest to our work is a new
hashing scheme called cuckoo hashing [23, 9] which utilizes the two-choice par-
adigm to improve the worst-case performance, but it relies also on the idea of
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reallocation of the inserted keys. It inserts n keys into a hash table that is par-
titioned into two parts, each of size ⌈ (1 + ǫ)n ⌉, for some constant ǫ > 0. It uses
two independent hash functions. Each key is hashed initially by the first function
to a cell in the first sub-table. If the cell is full, then the new key is inserted there
anyway, and the old key is kicked out to the second sub-table to be hashed by
the second function. The same rule is applied in the second sub-table. Keys are
moved back and forth until a key moves to an empty location or a limit of O(log n)
moves is reached. When the limit is reached, new independent hash functions are
chosen, and the whole table is rehashed. The worst-case search time is at most
two, but the insertion time is constant only in an amortized expected sense. An
off-line and static version of this algorithm previously appeared in [22].

In our presentation at oberwolfach, we presented a two-way chaining algo-
rithm that is close to cuckoo hashing while achieving constant worst-case insertion
time, deterministically, and constant worst-case search time asymptotically almost
surely, when the load factor is constant. The space consumption is also linear. The
idea is based on the structure of a random multi-graph, a key reallocation tech-
nique, and a deamortization method. The algorithm is divided into stages where
at each stage the hash table is modelled by a random graph with n vertices rep-
resenting the chains and m edges denoting the the pairs of hash values for the
keys inserted during the stage. Inserting keys into chains corresponds to orienting
edges towards vertices. Our goal then is to minimize the maximum out-degree.
This model has been used earlier to analyze the off-line version of two-way chain-
ing [7]. When the graph is a forest, it is easy to orient the edges such that the
maximum out-degree is one. In order to keep the maximum out-degree as low as
possible, some edges need to be reoriented when two trees are joined during the
hashing process, and this means that the corresponding keys also need to be real-
located. Furthermore, cycles could occur in the random graph. Since the hashing
process is on-line, we use a queue to control the orientation process, thereby ensur-
ing that every insertion operation takes only a constant time of work. This leads
us to the elegant deamortization method introduced by Gajewska and Tarjan [16].

A key is immediately assigned a bin according to its first hash value. Finding
out in which tree of the forest a value lies, we follow arrows up to the root of the
tree stored so far. Unfinished work (root finding and reorientations) are left in the
queue, as we permit ourselves to carry out a constant number of steps per insertion.
Thus, if the queue is long, all the keys involved in the queue are quite arbitrarily
placed. Fortunately, if m < (1− ǫ)n/2, then the (random) graph consists basically
of trees and a few unicyclic components. As edges that cause a cycle are ignored
(and thus, the corresponding keys are also arbitrarily placed), we only store trees.
The maximal tree is known to be O(log n) in size, and O(1) in size on average.
This implies that the queue will never be long, and thus, all keys involved in it
are very likely different and even from different components in the forest. Hence,
the (temporary) arbitrary placement of keys increases the maximal chain length
by O(1) with high probability. The placement of cycle-causing keys also accounts
for no more than O(1) w.h.p. Furthermore, the tree structure orientation assures
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that those keys that have been included in the trees are all placed in different bins.
If m exceeds the bound given above, then we junk the forest, and start anew as
soon as the limit (1− ǫ)n/2 is reached, assigning keys in the same way using newly
built forests. This can be repeated about 2m/((1− ǫ)n times. The maximal chain
length is thus not more than a constant times the number of such stages.

We can thus show that if m = ⌊ βn ⌋ ≤ s = O(n log n) for some constant
β < 1/2, and if we pick the constant amount of work we do per insertion as
an appropriate function of β, then w.h.p. the maximum search time is at most
2 ⌈ s/m ⌉+6 and the maximum chain length is at most ⌈ s/m ⌉+3. The maximum
is taken over the entire history of all chains, not just at the end. The theorem
confirms that if the load factor of the hash table s/n = O(1), then asymptotically
almost surely the maximum search time is constant. Since there is a trivial lower
bound of 2s/n, we see that we are roughly within 1/β of the best possible, recalling
that β can be picked arbitrarily close to 1/2.
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Branching random walks on trees and the Brownian snake

Svante Janson

(joint work with Jean-François Marckert)

Consider a rooted ordered finite tree T where each edge is assigned a real number
called value. We then let, for every vertex v, Sv be the sum of the values of the
edges along the paths from the root to v. We will assume that the values of the
edges are independent random variables with a common distribution. We let Y
denote one of these values.

We study the case when the tree itself is random, more precisely a random
conditioned Galton–Watson tree (or simply generated tree) with n vertices.

Each Sv is a sum of i.i.d. variables, and the number of terms is the depth of
v, which typically is of the order n1/2. Hence, by the central limit theorem, Sv is
typically of order n1/4 if EY = 0 and VarY <∞, but Sv is typically of order n1/2

if EY 6= 0.
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To study the case EY = 0 in more detail, we take the values n−1/4Sv in the
order given by the depth first walk on the tree, extend this by linear interpolation
to a continuous function, and rescale to obtain a function rn(s) on [0, 1].

Before proceeding, recall that the Brownian snake [4, 7] is a random function
that can be described as follows: Let ζ(s) be a random non-negative function on
a given interval I; in our case, ζ is a standard Brownian excursion on I = [0, 1].
(Another common version is with ζ reflected Brownian motion on [0,∞).) Then
the corresponding Brownian snake W (s, t) is a random function of two variables
(or stochastic field), s ∈ I and t ≥ 0, such that conditioned on ζ, W (s, t) is a
Gaussian process with mean EW (s, t) = 0 and covariance function, if s1 ≤ s2,

Cov
(

W (s1, t1),W (s2, t2)
)

= min
(

t1, t2, inf
u∈[s1,s2]

ζ(u)
)

.

In particular, for fixed s, t 7→ W (s, t) is a Brownian motion stopped at t = ζ(s).
Two such Brownian motions for s1 and s2 are identical for t ≤ infu∈[s1,s2] ζ(u),
and then evolve independently.

Let r(s) := W (s, ζ(s)) (known as the head of the snake).
Assume EY = 0 and VarY = 1, and let n→ ∞. It has been shown by Mar-

ckert and Mokkadem [8] and Chassaing and Schaeffer [3] in special cases, and by

Gittenberger [5] in general, assuming E |Y |8+ε <∞, that then rn
d−→ r in C[0, 1]

(i.e. in the uniform topology).
We want to weaken the moment condition on Y as far as possible. First, it is

easy to see that rn → r in the sense of finite-dimensional distributions without
further assumptions. Weak convergence in C[0, 1] is equivalent to the convergence
of the finite-dimensional distributions together with tightness. Often, the tightness
is a technical nuisance that can be verified with more or less work. Here, that is
not the case and we need a stronger condition on Y in order to obtain convergence.

Theorem 1. Assume EY = 0. Then rn
d−→ r in C[0, 1] if and only if P(|Y | ≥

y) = o(y−4).

In particular, this holds if EY 4 < +∞, and no weaker moment condition suf-
fices.

When this condition fails, we do not have convergence because the extreme
values of Y will cause thin spikes in rn. These spikes are at random positions,
and are therefore not seen by the finite-dimensional distributions. We also have

convergence rn
d−→ r in, for example, L2[0, 1].

If Y have tails that are exactly of the order y−4, then rn converges in distribution
to a “hairy snake”, i.e. a Brownian snake with hairs added. The hairs are vertical
line segments going up or down from the snake; their positions and lengths are
given by a Poisson process, so the number of them is infinite, but there is only a
finite number of them with length larger than a given number.

Note that this limiting object, the hairy snake, is not a function, and therefore
the convergence does not take place in C[0, 1]. Instead we identify continuous func-
tions on [0, 1] with their graphs, and obtain convergence in the space of compact
subsets of R2. This seems to be a novel type of convergence in this context.
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If the tails of Y are even larger, the spikes dominate and we may after suitable
rescaling obtain convergence to a flat (or dead) hairy snake, with hairs as above
added to the line segment from (0, 0) to (1, 0), and thus without the Brownian
part.

The proofs are based on Aldous’ theory of the continuum random tree [1, 2].
For details, see [6].
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Recent developments on the contraction method

Ralph Neininger

In this talk we describe a systematic approach to limit laws for sequences of random
vectors which satisfy distributional recursions as they appear under various mod-
els of randomness for parameters of trees, characteristics of divide-and-conquer
algorithms, or, more generally, for quantities related to recursive structures.

While there are also strong analytic techniques to the subject we extend and
systematize a more probabilistic approach, the contraction method. This method
was first introduced for the analysis of Quicksort by Rösler (1991) and further
on developed independently by Rösler (1992) and by Rachev and Rüschendorf
(1995). The name of the method refers to the fact that the analysis makes use
of an underlying map of measures, which is a contraction with respect to some
probability metric.

In this context often an approach based on the minimal L2 metric ℓ2 is used
along the lines of Rösler’s original work on Quicksort. Although the ℓ2 approach
works well for many problems leading to non-normal limit distributions its main
defect is, that it typically will not work for normal limit laws. To overcome this
problem, we propose to use as alternative metrics the Zolotarev metrics ζs which
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are more flexible and at the same time still manageable. The advantage of alterna-
tive metrics as the Zolotarev metric for the analysis of algorithms had already been
demonstrated at some examples in the paper Rachev and Rüschendorf (1995).

The flexibility of the ζs metrics consists in the fact that, where for s = 2 we
reobtain the common ℓ2 theory, we may also use ζs with s > 2, which gives
access to normal limit laws or, s < 2, leading to results where we can weaken the
assumption of finite second moments, an assumption being usually present in the
ℓ2 approach.

In his 1999 paper “Normal convergence problem? Two moments and a recur-
rence may be the clues.” Pittel stated as a heuristic principle that various global
characteristics of large size combinatorial structures such as graphs and trees are
asymptotically normal if the mean and variance are “nearly linear” in n. As tech-
nical reason he argued that the normal distribution with the same two moments
“almost” satisfies the recursion. He exemplified this idea at the independence num-
ber of uniformly random trees. An essential step in the proof of our limit theorem
is the introduction of an accompanying sequence which fulfills approximatively a
recursion of the same form as the characteristics do and is formulated essentially
in terms of the limiting distribution. This is similar to the technical idea proposed
by Pittel.

In Neininger and Rüschendorf (2004) we obtain a general limit theorem for
divide-and-conquer recursions where the conditions are formulated in terms of
relationships of moments and a condition ensuring the asymptotic stability of the
recursive structure. These conditions can quite easily be checked in a series of
examples and allow to (re)derive many examples from the literature. In fact, for
the special case of normal limit laws we need — according to Pittel’s principle —
the first and second moment to apply the method.

As applications of our general transfer result we (re)-derive various central limit
laws for random recursive structures, ranging from the size of m-ary search trees
or random tries, path lengths in digital search trees, tries, and Patricia tries, via
top-down mergesort and the maxima in right triangles to parameters of random
recursive trees and plane-oriented versions thereof.

We also show how refined asymptotics of the moments for these problems can
be turned into rates of convergence in Zolotarev’s metric.
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The Contraction Method for max-Recursive Sequences

Ludger Rüschendorf

We consider max-recursive sequences (Yn) which satisfy a recursive stochastic
equation of the form

(1) Yn
d
=

k
∨

r=1

(

Ar(n)Y
(r)

I
(n)
r

+ br(n)
)

where Ar(n), br(n) are stochastic factors, I
(n)
r are random subgroup sizes, 0 ≤

I
(n)
r ≤ n−1, and

(

Y
(r)
k

)

r=1,...,k
are iid copies of Yk. This type of recursions arises

typically in the analysis of worst cases, of the height of trees or in parallel search
algorithms.

After normalization and assuming convergence of the normalized coefficients
the first problem is to analyze limit equations of the form

(2) X
d
=

k
∨

r=1

(ArXr + br)

where Ar, br are random. The right-hand side defines an operator T on the set of
all probability measures M on IR1 defined by

(3) Tµ
d
=

k
∨

r=1

(ArXr + br) with (Xr) independent, Xr
d
= µ.

The following general existence and uniqueness result is due to Neininger and
Rüschendorf (2004). We denote for s > 0 by ℓs the minimal Ls-metric.

Theorem 1: Let Ar, br ∈ Ls, µ0 ∈ M and ζs := E
∑k

r=1 |Ar|s < 1 and let
ℓs(µ0, Tµ0) < ∞. Then the stochastic equation (2) has a unique solution in
Ms(µ0) = {µ ∈ M : ℓs(µ, µ0) <∞}.

The proof of Theorem 1 is based on the following contraction property: For any
s > 0 and any P,Q ∈ M holds

(4) ℓs(TP, TQ) ≤
(

E
l
∑

r=1

|Ar|s
)1/s∧1

ℓs(P,Q).

(4) extends an earlier related contraction result in Rachev and Rüschendorf (1992)
which was applied there to limit theorems for maxima. Based on this theorem the
following limit theorem for max-recursive sequences was established in Neininger
and Rüschendorf (2004).

Theorem 2: Consider the max-recursive equation in Ls given in (1). We assume

A1) Stabilization:
(

A
(n)
1 , . . . , A

(n)
k , b1(n), . . . , bk(n)

)

Ls

−→ (A∗
1, . . . , A

∗
k, b

∗
1, . . . , b

∗
k)
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A2) Contraction condition:

E
k
∑

r=1

|A∗
r |s < 1

A3) Nondegeneracy: For all ℓ ∈ IN and r = 1, . . . , k holds

E
[

1{I
(n)
r ≤ℓ}∪{I

(n)
r =n}|A

(n)
r |s

]

−→ 0.

Then ℓs(Xn, X
∗) → 0 where X∗ is the unique solution of the limit equation

X∗ =

k
∨

r=1

(A∗
rX

∗
r + b∗r)

in the class of distributions with finite sth moments.

One direct application of Theorem 2 is the limit theorem for the worst case Mn

of the FIND algorithm

(5) Mn
D−→M∗

where M∗ is the unique solution in Ms, s > 1 of

(6) M
d
= 1 + UM ∨ (1 − U)M̄.

This result was first given in Grübel and Rösler (1996) based on process theory
for the FIND process.

References
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Stochastic fixed points of max-type

Uwe Roesler

Our aim is to give an overview on solutions of the fixed point equation (FPE)

(1) X
D
= sup

i∈IN
(TiXi + Ci)

of max-type. The random variables (Ti, Ci)i, Xj , j ∈ IN are independent and Xi

has the same distribution as X. We consider here only positive factors Ti and
exclude trivial cases.

The oldest literature on max-type equations seems to be Rachev and Rueschen-
dorf in 92 [3] using ideal metrics. An overview of examples is in Aldous-Bandyopa-
dhyay 04 [1], however under a different point of view.
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Stochastic FPE appear naturally in tree structures, the weighted branching pro-
cess [6]. Let V = IN∗ be the rooted branching tree of finite sequences. Every node
v ∈ V carries a random cost function C(v) and every edge (v, vi) carries a random
factor Ti(v). Different families behave independently, (C(v), T1(v), T2(v), . . .), v ∈
V are iid rvs, but within the families we allow arbitrary dependence,

C(v), T1(v), T2(v), . . .

dependent for fixed v. The weight or layer L(v) of a node v is the product of all
factors on the path back to the root.

Common objects are the sum Zn :=
∑

|v|=n L(v)C(v) or the largest value

Ln := sup|v|=n L(v)C(c). They satisfy the backward recursive equations Zn+1 =
∑

i TiZn(i) and Ln+1 = supi TiLn(i). Under suitable conditions converge Zn or
Ln to some limit X, which satisfy a FPE of sum-type respectively of max-type

X
D
=
∑

i

TiXi X
D
= sup

i
TiXi.

FPEs with cost function appear by summing over all nodes up to the n-th genera-
tion. The equation (1) comes up as the limit ofXn :=

∑

|v|=n

∑

w L(w)C(wv||w|+1)

summing over all strict ancestors w of v.

The contraction method [6] was exploited by Neininger-Rueschendorf 03 [4].
The minimal lp-metric is well suited for additive cost functions Ci, the weighted
Kolmogorov distance for no costs. However, for zero cost the problem arises of
choosing a good starting distribution.

We concentrate now on no costs, Ci ≡ 0. Notice equation (1) is equivalent to
each of the following

lnX
D
= sup

i
(lnXi + ln Ti)

1

X

D
= inf

i

1

Ti

1

Xi
Xα D

= sup
i
Tα

i X
α
i

α > 0. In particular the max-type and min-type solutions are the same. Using
P ( 1

X ≥ t) = F (t) FPE (1) is equivalent to survival function solutions

(2) F (t)
D
= E

∏

i

F (tTi).

There are two classes of solutions of (1), X unbounded and X bounded. The
first is connected to FPEs of sum-type and the second to a monotone operator.
These approaches are supplementary to each other.

Theorem 1 (Jagers-Roesler). If m(α) := E
∑

i T
α
i = 1 and m′(α) ≤ 0 for some

α > 0 then (2) has the solution F (t) = Ee−tαW where W is a non trivial solution

of W
D
=
∑

i∈IN Tα
i W (i).

The existence of a non trivial solution W for the factors Tα
i follows in this

generality by a result of Lyons. The Laplace transform ϕ(t) = Ee−tW solves
ϕ(t) = E

∏

i ϕ(tTα
i ). F (t) = ϕ(tα) does the job.
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In the case
∑

i T
α
i ≡ 1 the solutions W are constant c and F (t) = e−tαc. These

solutions appear as additional solutions to the Quicksort FPE,

(3) X
D
= UX1 + (1 − U)X2 + C.

If Q is the Quicksort distribution satisfying (3) then Q plus a constant solves also
(3). These are all solutions of (3).

Theorem 2 (Caliebe-Roesler). Assume the max-type FPE has a solution such
that 0 < F (t) < 1 for all t. If the factors are bounded between some constants 0 <
c1 ≤ c2 <∞ then the max-type solution is unique up to multiplicative constants.

The monotone operator approach was introduced by Jagers-Roesler 04 [5]. Con-
sider the operator K(µ) = supi(TiXi + Ci), where Xi ∼ µ. Fact: If µ � K(µ) in
stochastic order, then Kn(µ) increases to a fixed point of K. The FP can have
mass at infinity. Under certain conditions we obtain a measure on the positive
reals. For simplicity we present only Peter’s water delay example.

Peter’s water delay: The edges of a binary rooted tree are open or closed by
iid Bernoulli(p) rvs. Water poured into the root crosses an open edge with no time
delay and otherwise has one unit time delay. When does the first water arrive at
n-th generation and converges τn to a limit τ? Taking the view of Galton-Watson
processes, open=offspring, the event τ = 0 of instantaneous water at infinity has
the probability 1 minus the extinction probability of the Galton-Watson process.
Strict positivity is equivalent to 2p > 1. Notice, for every path the delay time of
water will be infinity. The rv X = 2−τ solves (2) with iid factors T1 and T2 and
distribution P (T1 = 1) = p = 1 − P (T1 = 1/2).

All solutions of (2) are known for deterministic factors.

Theorem 3 (Alsmeyer-Roesler). If the factors are real numbers then (2) has
non-trivial solutions if and only if m(α) = 1 for some α > 0. If the closed group
generated by the factors Ti

–is IR> then the only solutions are F (t) = e−ctα

–is {rZZ} then the only solutions are F (t) = exp(−tαh(t)), where h is r-multipli-
cative periodic and F decreasing.

The proof runs by Choquet-Deny Theorem and cannot be applied to random
factors.
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A Stochastic Fixed Point Equation Related to Weighted Branching

Gerold Alsmeyer

(joint work with Uwe Rösler)

Given a sequence T = (Tj)j∈J of real random variables, we consider the sto-
chastic fixed point equation

W
d
=

∑

j≥1

TjWj + C, (1)

for i.i.d. real-valued random variables W,W1,W2, ... which are independent of

(C, T ), T
def
= (Tj)j≥1. Here we will focus on the homogeneous case where C = 0.

The goal is to find all (distributional) fixed points of these equations, that is all
distributions of W such that (1) holds true.

Put N
def
=
∑

j≥1 1{Tj 6=0}. Our mild standing assumptions are

P(N ≥ 2) > 0 (A1)

and
P(|Tj | ∈ {0, 1} for all j ≥ 1) < 1. (A2)

Fixed points of (1) turn up in a natural way as limits of recursive equations of
the form

W (n+1) d
=

∑

j≥1

T
(n)
j W

(n)
j + C(n), n ≥ 0. (2)

Here (T (n), C(n)), W
(n)
1 ,W

(n)
2 , ... are independent random variables for each n ≥ 0.

The joint distribution of C(n) and T (n) = (T
(n)
1 , T

(n)
2 , ...) is given and converges

to that of (C, T ). The W
(n)
j ’s are copies of W (n). The first study of a recursive

system of type (2) was given by Rösler (1991) for the sorting algorithm Quicksort

which might still be the most prominent example. In this case W(n) denotes the
normalization of the number of key comparisons necessary to sort a list of n distinct

items. With U
d
= Unif(0, 1) and g(t)

def
= 1+2t log t+2(1−t) log(1−t) for t ∈ (0, 1)

the weak limit of W (n) satisfies the fixed point equation

W
d
= UW1 + (1 − U)W2 + g(U) (3)

and is in fact the unique solution having zero mean and finite variance.
Given a vector T = (Tj)j≥1 satisfying (A1), (A2), define the smoothing trans-

form K on the set of probability measures on R by

K(µ)
def
= L

(

∑

j≥1

TjWj

)

(4)
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where W1,W2, ... are independent random variables with distribution µ and where
L(X) means the distribution of a random variable X . The infinite sum does not
need to exist but if it does it is understood in the sense of almost sure conver-
gence. By the independence of T and (Wj)j≥1, this also implies a.s. convergence
of
∑n

j=1 tjWj for P(T ∈ ·)-almost all (tj)j≥1.

Denote by D(K) the domain of K, viz the set of all probability distributions µ
for which K(µ) is well defined in the just explained manner, and by

F
def
= {µ ∈ D(K) : µ = K(µ)}

the set of fixed points of K (= solutions of (1)). Notice that F always contains the
trivial fixed point δ0, the point mass at 0. With this setup at hand the first part
of the talk provides some basic properties of K, notably the weighted branching
process representation of fixed points: Plainly, if Kn denotes the n-fold iteration
of K, then

F ⊂ D∗(K)
def
= ∩n≥1D(Kn).

Let V be the infinite tree with vertex set ∪n≥0IN
n where IN0 def

= {∅}. Each vertex
v = (v1, ..., vn), shortly written as v1v2...vn, is uniquely connected to the root ∅
by the path ∅ → v1 → v1v2 → ... → v of length |v| = n. Given i.i.d. copies

T (v) = (Tj(v))j≥1, v ∈ V, of T , define L(∅) def
= 1 and L(v)

def
= Tv1(∅)Tv2(v1) · ... ·

Tvn
(v1...vn−1) for any v = v1...vn ∈ V of length n ≥ 1. Then L(v) gives the total

weight of the unique path from the root to v under multiplication. For any further

w ∈ V, put also Lw(∅) def
= 1 and Lw(v)

def
= Tv1(w)Tv2 (wv1) · ... · Tvn

(wv1...vn−1)
which is the same as L(wv)/L(w) whenever L(w) 6= 0.

Now let X(v), v ∈ V, be i.i.d. random variables with common distribution µ
and define Wn =

∑

|v|=n L(v)X(v), n ≥ 0. (Wn)n≥0 forms a stochastic sequence

called weighted branching process. It satisfies the backward equation Wn+1 =
∑

j≥1 TjWn,j where the Wn,j =
∑

|v|=n Lj(v)X(jv), j ≥ 1, are i.i.d. copies of Wn.

Hence Kn(µ) = L(Wn) for each n ≥ 0. In particular, all Wn have distribution µ
if µ is a fixed point of K. In this case it is now easily seen that

W
d
=

∑

|v|=n

L(v)W (v) (5)

for every n ∈ IN where the W (v), |v| = n, are i.i.d. copies of W .
If µ is a fixed point with characteristic function (ch.f.) ϕ then (5) may be

restated as

ϕ(t) = E

(

∏

|v|=n

ϕ(L(v)t)

)

, t ∈ R (6)

for every n ∈ IN . Put L
def
= (Lv(w))v,w∈V and ΘuL

def
= (Luv(w))w∈V for u ∈ V.

Embarking on the observation that Φn(L, t)
def
=
∏

|v|=n ϕ(L(v)t) is a martingale

for each t we explain that it converges to a limit Φ(L, t) outside a null set not
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depending on t and that Φ(L, ·) is a random ch.f. satisfying EΦ(L, ·) = ϕ and

Φ(l, t) =
∏

|v|=n

Φ(Θvl, l(v)t) (7)

for all n ≥ 1 and t ∈ R. As to the map K given by (4), the implications of
this result are as follows: To each µ ∈ F there exists a kernel Pµ(l, ·) with ch.f.
Φ(l, ·), characterized through (7). Let G be the set of all kernels with this property
(identifying those which differ only on P(L ∈ ·)-null sets) and notice that G forms
a convolution semigroup, i.e. P1(l, ·), P2(l, ·) ∈ G implies P1(l, ·) ∗P2(l, ·) ∈ G. Let
further G(F) be the semigroup generated by F under convolution. With this we
arrive at the following disintegration result:

Proposition. For any ν ∈ G(F) with ch.f. ψ there exists a P(L ∈ ·)-null set
N such that

Ψ(l, t)
def
= lim

n→∞

∏

|v|=n

ψ(l(v)t)

exists for all t ∈ R and l ∈ N c and is the ch.f. of an element Pν in G. If K denotes
the mapping ν 7→ Pν , then K is a homomorphism from (G(F), ∗) to (G, ∗), that is

K(ν1 ∗ ν2) = K(ν1) ∗ K(ν2) (8)

for all ν1, ν2 ∈ G(F). Furthermore,

ν
def
= EPν(L, ·) =

∫

Pν(l, ·) Q(dl) (9)

is always an element of F satisfying ν = ν for ν ∈ F, and the restriction of K to
F a bijection between F and G.

The fact that, by (9), every fixed point µ of K can be written as a Q-mixture of

distributions, Q
def
= P(L ∈ ·), namely µ =

∫

Pµ(l, ·)Q(dl), suggests to take a closer
look at this decomposition. By drawing on the theory of independent infinitesimal
triangular schemes, Caliebe(2003) showed that Pµ(l, ·) is infinitely divisible for
Q-almost all l if T satisfies (A1), (A2) and furthermore

L∗
n

def
= sup

|v|=n

|L(v)| → 0 a.s. (10)

It follows from our disintegration approach that the last condition is automatically
satisfied if F contains nontrivial elements. Apart from this the first part of the
theorem below is a restatement of Caliebe’s result while the remaining parts pro-
vide further information on the parameters in the Lévy-Khinchine representation
of the ch.f. Φ(l, t) of Pµ(l, ·).

Theorem. Let T = (Tj)j≥1 satisfy (A1), (A2) and µ be a nontrivial fixed
point. Then the following assertions hold true:

(a) For Q-almost all l, Pµ(l, ·) is infinitely divisible, i.e. µ constitutes a mix-
ture of infinitely divisible distributions. Its ch.f. ϕ has a mixed Lévy-Khinchine



2150 Oberwolfach Report 41/2004

representation via ϕ = EΦ(L, ·) and

log Φ(L, t) = iγ(L)t− σ2(L)t2

2
+

∫

(

eitu − 1 − itχ(u)
)

Γ(L, du) a.s. (11)

where, for each l ∈ T, Γ(l, ·) is a measure on R∗ satisfying
∫

(u2 ∧ 1) Γ(l, du) <∞,

γ(l) ∈ R, σ2(l) ≥ 0, and χ(u)
def
= u 1[−1,1](u) + 1(1,∞)(u) − 1(−∞,−1)(u).

(b) The functions γ(l), σ2(l) and the Lévy kernel Γ(l, ·) satisfy the relations

γ(L) =
∑

|v|=n

(

L(v)γ(ΘvL) +

∫

(

χ(L(v)u) − L(v)χ(u)
)

Γ(ΘvL, du)

)

a.s.,

σ2(L) =
∑

|v|=n

L(v)2σ2(ΘvL) a.s.,

Γ(L, ·) =
∑

|v|=n

1{L(v) 6=0}δL(v) ⋆ Γ(ΘvL, ·) a.s.

for all n ≥ 1, where ⋆ means multiplicative convolution.

We finally give an outline of how to proceed further in order to determine
the elements of F. This is work in progress with various technical problems still
unsolved. We also give a brief account of the case of deterministic weights T1, T2, ...
for which a complete answer is given in Alsmeyer and Rösler(2004).
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Asymptotics for tails and moments

Svante Janson

(joint work with Jim Fill and probably others)

This talk describes some preliminary results and work in progress on tail esti-
mates for certain random variables that appear as limits in problems coming from
random trees or analysis of algorithms.

First, it is pointed out that a general theorem by Kasahara and Davies, see [3]
gives the equivalence, under quite general conditions, between asymptotics for tail
probabilities of a random variable, asymptotics for moments, and asymptotics for
the moment generating function.

Secondly, we presented a very recent result (found during this workshop after
yesterday’s talk by Uwe Rösler) giving estimates for the moments (and thus tail
estimates) for solutions to fixed-point equations of the Max-recursive type, for
example for the limit variable for MAX-FIND.
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Thirdly, we discussed a family of limit random variables that arises in the study
of Catalan trees; most of them can be expressed as functionals of a Brownian
excursion (using the methods of Aldous [1, 2]) and then the asymptotics can
be found using the well-known large deviation principle for Brownian motion.
This involves finding a certain constant as the solution to a non-linear variational
problem; in some case we can solve this exactly, but in others we only have upper
and lower bounds for this constant (differing by a few percent).
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Phase changes in random point quadtrees

Hsien-Kuei Hwang

(joint work with H.-H. Chern and M. Fuchs)

Point quadtrees. Point quadtrees were introduced by Bentley and Finkel (1974)
and have become useful data structures for spatial data in low dimensions. Hence-
forth, we will simply say quadtrees instead of point quadtrees. Given a sequence
of points in Rd, we can construct the quadtree (associated to the given sequence)
as follows. The first point in the sequence is placed at the root, which splits the
space Rd into 2d quadrants. The root has at most 2d subtrees, corresponding to
the quadtrees (constructed recursively by the same procedure) of points falling
in each quadrant. By construction, such trees allow operations like range search
and partial match queries. When d = 1, they are nothing but the binary search
trees. For more information and applications, see the two books by Samet (1990a,
1990b).

Random quadtrees. To understand the typical shapes and behaviors of quad-
trees, the following probability model is always adopted. Assume that the given
(sequence of) random variables are independently, identically and uniformly dis-
tributed in the hypercube [0, 1]d. Then construct the quadtree; the resulting tree
is called a random quadtree.

Known probabilistic properties. Many parameters of random quadtrees have
been studied in the literature:

• depth (the distance to the root of a randomly chosen node): Devroye
and Laforest (1990), Flajolet et al. (1993), Flajolet and Lafforgue (1994),
Flajolet et al. (1995), Devroye (1999);

• page usage: Hoshi and Flajolet (1992), Flajolet et al. (1995);
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• number of node types: Labelle and Laforest (1995, 1996), Flajolet et al.
(1995), Minh and Jacob (2000), Mahmoud (2002);

• height (the number of nodes in the longest path starting from the root):
Devroye (1987, 1998);

• partial-match queries: Flajolet et al. (1993), Flajolet et al. (1995), Nei-
ninger and Rüschendorf (2001), Mart́ınez et al. (2001), Chern and Hwang
(2003);

• total path length (sum of the distances of all nodes to the root): Flajolet
et al. (1993), Flajolet et al. (1995), Neininger and Rüschendorf (1999).

In particular, limit distributions were derived in Flajolet and Lafforgue (1994),
Devroye (1998) for depth, in Neininger and Rüschendorf for total path length.

Random fragmentation model. This work was partly motivated by the follow-
ing physical model for quadtrees proposed by Dean and Majumdar (2002). Their
model is roughly described as follows. Pick a point at random in [0, x]d for some
x ≫ 1 (under some law). This point then splits the original space into 2d quad-
rants. Continue the same process for all 2d quadrants until the volumes are less
than unity. The limit distribution of the total number of splittings is claimed to be
normal for 1 ≤ d ≤ 8 and is not known for d ≥ 9. The fragmentation process can
easily be described in terms of trees with at most 2d branches for each node, and
such trees may be regarded as certain approximation model for random quadtrees.

Main aim. Our purpose of this work is to develop asymptotic tools for proving
that the same phase change phenomenon for limit laws holds in random quadtrees
(not under the approximate model of Dean and Majumdar). We will also derive
finer results reflecting deeper changes of other stochastic behaviors. Since the
number of nodes (corresponding to the number of splittings in the model of Dean
and Majumdar, 2002) is n in quadtrees with n keys, we consider instead the number
of leaves and show that it is asymptotically normally distributed for 1 ≤ d ≤ 8 and
that the normalized random variables do not converge to a fixed limit law. Finer
results like Berry-Esseen and local limit theorems are also derived for 1 ≤ d ≤ 8.
The tools we develop are of some generality and apply for a very wide class of
“toll functions” (which is δn,1 for the number of leaves).

Main results. Let Xn denote the number of leaves in a random quadtree of n
nodes. When d = 1, the asymptotic normality is known since David and Barton
(1962) since there is a bijection between Xn and the number of peaks in random
permutation of n elements; see Devroye (1991), Flajolet et al. (1997) for the local
limit theorem.

Our results are summarized as follows. Let X∗
n := (Xn − E(Xn))/

√

V(Xn).

– If 1 ≤ d ≤ 8, then (Xn − µn)/(σ
√
n)

d−→ N(0, 1) for some explicitly
computable constants µ and σ, where N(0, 1) denotes a standard normal
distribution; if d ≥ 9 then the sequence of random variables X∗

n does not
converge to a fixed limit law.
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– If 1 ≤ d ≤ 7, then the Kolmogorov distance between X∗
n and N(0, 1) is

of order n−1/2; if d = 8, then the distance is of order n−3( 3
2−

√
2). Both

orders are tight up to the implied constants in the O-terms. In each case,
we also have a corresponding local limit theorem.

Methods of proof. We apply the recursive moment-transfer approach introduced
in Hwang (2003), which is a refined method of moments. The general asymptotic
tools are based on studying the so-called perturbed Cauchy-Euler differential equa-
tions of the form

P0(θ)f(z) =
∑

1≤j<d

(1 − z)jPj(θ)f(z) + g(z),

where the Pj ’s are polynomials of degrees ≤ d and θ := (1−z)(d/dz). In our case,
P0(z) = zd − 2d and the main asymptotic problem is to derive asymptotics of the
coefficients [zn]f(z) when those of g(z) are known to some extent, where [zn]f(z)
denotes the coefficient of zn in the Taylor expansion of f .
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Transfer theorems and asymptotic distributional results for m-ary
search trees

James Allen Fill

(joint work with Nevin Kapur)

This talk is based on two papers [2] [3]. We derive asymptotics of moments
and distributions, under the random permutation model (for an introduction, see,
for example, [5]) on m-ary search trees (fundamental data structures for searching
and sorting), for functionals f that satisfy recurrence relations of a simple additive
form. More precisely, we assume that f(T ) for a tree T with n ≥ m−1 keys equals
∑m

i=1 f(Li(T ))+tn, where (tn) is a given sequence, usually called the toll sequence,
and Li(T ) denotes the ith subtree pendant from the root of T . Many important
functionals including the space requirement [tn = 1], internal path length [tn =
n − (m − 1)], and the so-called shape functional [tn = ln

(

n
m−1

)

] fall under this
framework. The approach is based on establishing transfer theorems that link the
order of growth of the input into a particular (deterministic) recurrence to the
order of growth of the output. The transfer theorems are used in conjunction
with the method of moments to establish limit laws (see [2] for details, and for
historical references). It is shown that (i) for suitably “small” toll sequences we
have asymptotic normality if m ≤ 26 and typically periodic behavior if m ≥ 27;
(ii) for “moderate” toll sequences we have convergence to non-normal distributions
if m ≤ m0 (where m0 ≥ 26) and typically periodic behavior if m ≥ m0 + 1; and
(iii) for “large” toll sequences we have convergence to non-normal distributions for
all values of m.

Very recent research greatly sharpens understanding of periodic cases. Con-
sider for example the space requirement of m-ary search trees under the random
permutation model when m ≥ 27 is fixed. Chauvin and Pouyanne [1] have shown
using martingale techniques that the space requirement of an m-ary search tree
on n keys equals

1

Hm − 1
(n+ 1) + 2Re[nλ2Λ] + ǫnn

Reλ2 ,

where Hm is the mth harmonic number
∑m

i=1 i
−1, the complex constant λ2 is the

root of the polynomial

φ(z) := (z + 1)(z + 2) · · · (z +m− 1) −m!
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having second largest real part and (for definiteness) positive imaginary part, Λ is a
complex-valued random variable, and ǫn → 0 a.s. and in L2 as n→ ∞. Extending
the elementary but powerful “contraction method,” we identify the distribution
of Λ. To our knowledge, this is the first application of the contraction method to
an oscillatory case.

In future research, we plan to show how our periodic-case contraction-method
technique can be extended rather generally to other additive functionals under the
random permutation model and, beyond these, to generalized Pólya urn schemes
and multi-type branching processes as studied in [4]. In fact, we hope to prove
periodic-case results as strong as those in [8], [6], and (perhaps) [7] for the non-
periodic case.
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The contraction method in infinite-dimensional spaces

Svante Janson

(joint work with Michael Drmota and Ralph Neininger)

The contraction method has since it was introduced by Rösler [4] found a num-
ber of applications, in particular in the analysis of algorithms. It has been extended
to random vectors in finite-dimensional spaces [2, 3] and to infinite-dimensional
Hilbert spaces [1] (with the ℓ2-metric).

We discuss the possibility to use the Zolotarev ζs metric in a Banach space. The
main problem is completeness. We cannot show this in Banach spaces in general,
or in natural spaces like C[0, 1], but we can do it in Hilbert spaces.

Theorem 1. Let s > 0 and let H be a separable Hilbert space. The Zolotarev
metric ζs is a complete metric on the set of all H-valued random variables with
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given k:th moments for k = 0, 1, . . . , ⌈s⌉ − 1. (The k:th moment lies in the k:th

projective tensor power H⊗̂k.)

Using this theorem, the proof in [3] works without changes also for Hilbert space
valued variables.

In a tentative application, that is still work in progress, we apply this to the
profile of random binary trees (and other trees). The relevant random variables can
be represented as continuous functions on an interval [a, b]. It is desirable to obtain
uniform convergence in C[a, b], but this Banach space is not a Hilbert space and we
do not know whether the Zolotarev metric is complete for it. Instead, we observe
that the random functions in this case may be extended to analytic functions in a
domain in the complex plane; we then use a Bergman space of analytic functions,
which is a Hilbert space. We can thus use the contraction method there and obtain
convergence in the Bergman space, which implies uniform convergence on compact
subsets, and in particular on [a, b].
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[3] R. Neininger & L. Rüschendorf, A general limit theorem for recursive algorithms and com-

binatorial structures. Ann. Appl. Probab. 14 (2004), 378–418.
[4] U. Rösler, A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl., 25 (1991), 85–
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The profile of m-ary search trees generated by van der Corput
sequences

Wolfgang Steiner

In the last years, the height of binary search trees generated by sequences which are
uniformly distributed modulo 1 has been studied. Devroye and Goudjil [2] proved
that the height of the tree generated by the first N elements of the Weyl sequence
{nα} satisfies H(N) ∼ 12

π2 logN log logN for almost all α ∈ (0, 1). It is therefore
larger than the height of a random binary search tree (c logN with c ≈ 4.31107
almost surely). They also showed that, for every sequence (cN )N≥1 which decreases
monotonically from 1 to 0, we have some α such that H(N) ≥ cNN infinitely
often. On the other hand, Dekking and van der Wal [1] proved H(N) = o(N)
for all uniformly distributed sequences modulo 1. Random suffix search trees
(which are related to the Lehmer sequences {x0q

n}) were studied by Devroye and
Neininger [3].

In this talk, we consider the van der Corput sequence (xn)n≥1 to the base q for
some integer q ≥ 2, defined by

xn =
∑

j≥0

ǫj(n)q−j−1, where n =
∑

j≥0

ǫj(n)qj
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is the (unique) q-ary digital expansion of n with digits ǫj(n) ∈ {0, 1, . . . , q−1}. We
generate anm-ary search tree by successively inserting x1, x2, . . . at the appropriate
place. Let d(n) be the depth of the node where xn is inserted. To study the
distribution of the depth, we use the generating function

B(z, u) =

∞
∑

j=0

∞
∑

k=0

bjkz
kuj with bjk = |{n ∈ {qj , . . . , qj+1 − 1} : d(n) = k}|.

It is convenient to look also at the m-ary search trees generated only by the
elements xn ∈ (i/q, 1) for some i ∈ {0, . . . , q−2}. Denote the generating functions
of these trees by Bi(z, u) (with B0(z, u) = B(z, u)). Then we have







B0(z, u)
...

Bq−2(z, u)






= zA(u)







B0(z, u)
...

Bq−2(z, u)






+







Q0(u)
...

Qq−2(u)







for some matrix of polynomials A(u) and some polynomials Qi(u). This gives

B(z, u) =
Q(z, u)

1 − P (z, u)

for some polynomials P (z, u), Q(z, u).
The following theorems follow almost directly from this representation.

Theorem 1. Expected value and variance of the depth are given by

EN =
1

N

∑

n≤N

d(n) = µ logq N + O(1)

VN =
1

N

∑

n≤N

(d(n) − EN )2 = σ2 logq N + O(1)

with

µ =
q′(1)

q
=

∂P
∂z (1, 1/q)

1
q

∂P
∂u (1, 1/q)

, σ2 =
q′′(1)

q
+ µ− µ2,

where q(z) denotes the analytic solution of P (z, 1/q(z)) = 1 with q(1) = q.

Theorem 2. If m 6= qM for all integers M , then we have, for every δ > 0,

1

N
|{n ≤ N : d(n) < EN + xVN}| =

1√
2π

∫ x

−∞
e−t2/2dt+ O

(

(logN)−1/2+δ
)

uniformly for all real x as N → ∞ and

|{n ≤ N : d(n) = k}| =
N√

2πVN

(

exp

(

− (k − EN )2

2VN

)

+ O
(

(logN)−1/2+δ
)

)

uniformly for all nonnegative integers k as N → ∞.
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Set M = ⌊logq m⌋. For m = qM , m = 2 (binary search trees) and q = 2 (the
binary van der Corput sequence), we have simple formulae for µ and σ:

m = qM : µ =
1

M
, σ = 0(1)

m = 2 : µ = (q − 1)

(

1

2
+

1

q

)

, σ2 =
(q − 1)(q − 2)(q2 + 3q − 6)

12q2
(2)

q = 2 : µ =
1

M + m
2M − 1

, σ2 =

(

m
2M − 1

) (

2 − m
2M

)

(

M + m
2M − 1

)3(3)

A close look at the structure of the tree provides asymptotics for the height.

Theorem 3. The height of the tree is given by

H(N) = max
n≤N

d(n) =
1

M + hq,M ( m
qM )

logq N + O(1),

where hq,M : [1, q) → [0, 1) is a monotonically increasing function.

For m < q (M = 0), hq,0(m) is approximately 1/
⌈

q−1
m−1

⌉

.
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About the height of an extended class of random trees

Nicolas Broutin

(joint work with Luc Devroye)

Extreme parameters of random structures are one of the corner stones of anal-
ysis of algorithms. A probabilistic approach has been used by Devroye [2, 3, 4] to
obtain the height of various kind of random trees, including random binary search
trees, uniform recursive trees. We aim at unifying the results that are known and
present a unique method that allows to derive the height of a large class of ran-
dom trees. Our approach permits to obtain some pay off and to get some new
applications.

Our work relies on the study of a tree of random variables instead of a tree
that is randomly built. More formally, consider an infinite rooted b-ary tree T∞.
Assign independently to each node a random vector {(Z1, E1), . . . , (Zb, Eb)}, where
Z1, . . . , Zb and E1, . . . , Eb are distributed like Z and E respectively. Dependence
is allowed between the random variables of a single random vector, but E and Z
are always assumed independent. We map the variables of each random vector
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Figure 1. The curve CZ,E (ρ on the horizontal axis, α on the
vertical one) for uniform recursive trees, where b = 2, E =
exponential(1) and Z = binomial(1/2).

to the edges down the node so that each edge e receives a couple (Ze, Ee). Let
π(u) be the set of edges from the root to the node u. We introduce two additional
random variables, Du =

∑

e∈π(u) Ze, that will account for the depth of the nodes,

and Gu =
∑

e∈π(u)Ee, that has some meaning for the shape of the tree. The

random tree Tn is made by pruning the nodes u for which Gu ≥ n. We then define
the height Hn = max{Du, u ∈ Tn}. Quite naturally, Hn is related to some large
deviation properties. Recalling Crámer’s Theorem for large deviations of sums of
i.i.d. random variables X1, X2, . . . , we introduce the rate function Λ⋆

X such that

− logP

{

n
∑

i=1

Xi ≥ xn

}

= Λ⋆
X(x)n+ o(n),

assuming E
{

eλX
}

<∞ for some λ > 0. Then we can state our main result: under
some minor technical conditions,

Hn

n
−−−−→
n→∞

c

in probability, where c is the unique maximum value of α/ρ along the curve CZ,E(b)
and

(1) CZ,E(b) = {(ρ, α) : Λ⋆
Z(α) + Λ⋆

E(ρ) = log b, ρ ≤ EE,α ≥ EZ} .
The curve CZ,E turns out to be increasing and concave so that there exist a

unique maximal value of α/ρ in the domain to be considered. An example of curve
is shown on Figure 1.

One can notice that the trees we intend to study have logarithmic height. This
is because our cutting scheme produces trees Tn that have an exponential number
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of nodes. Using some age dependent branching processes, we are able to fix this
minor problem and obtain the correct rate of growth.

Applications include of course random binary search trees (Z = 1 and E =
exponential(1)), random recursive trees (Z = binomial(1/2), E = exponential(1)).
But we may also obtain some new results. Lopsided trees were introduced by
Kapoor and Reingold [5], and studied mostly by Golin [1] on the basis of Varn
codes [6]. These are codes in which characters have an encoding whose length
may change. Therefore, algorithms processing sequences with such encodings are
better represented by some trees whose edges have costs that change depending
on their positions: from a node u, the edge to the first child costs c1, c2 to the
second, . . . , cb to the bth one. We define a random version of lopsided trees by
the following process: we start from a unique ancestor, and at each step we pick
a random vertex and replace it by a node with all of its children. This can be
generalized by replacing a uniform random vertex by some fixed deterministic
tree. The equations one obtains for the height of these kinds of random trees are
implicit and one has to turn towards numerical methods to get the asymptotic
constants c involved in Theorem 1. Remember that this is already the case for
random binary search trees.
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Silhouette and profile of binary search trees

Rudolf Grübel

Let Tn be the binary search tree associated with a random permutation of
{1, 2, . . . , n}. For each t ∈ [0, 1] let Xn(t) be the level of the external node of Tn

along the path through the tree given by the binary expansion of t. This associates
a stochastic process (Xn(t))0≤t≤1 with Tn, the silhouette of the tree.

Regarding t 7→ Xn(t) as a random variable on the standard probability space
we obtain a random probability mass function Ψ(Tn) = (Ψk(Tn))k=1,2,..., where
Ψk(Tn) is the Lebesgue measure of the subset of the unit interval where Xn takes
the value k; Ψ(Tn) can be interpreted as a discounted version of the profile of the
tree Tn.
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We obtain asymptotic bounds for the expected ℓ2-distance of the random se-
quence Ψ(Tn) from the Poisson mass function with parameter logn, as n → ∞.
Problems of this type have often been tackled with methods from classical asymp-
totic analysis (singularity analysis, saddlepoint method). Here we use a more
probabilistic approach, in particular Poisson approximation for the convolution
of Bernoulli distributions and various conditioning steps that can be interpreted
directly in terms of the underlying random mechanism.

On the contraction method with degenerate limit equation

Ralph Neininger

A large number of parameters of recursive combinatorial structures, random trees,
and recursive algorithms satisfy recurrences of the divide-and-conquer type

Yn
L
= YIn

+ bn, n ≥ n0

where n0 ≥ 1, (In, bn), (Yk) are independent, bn is random and In is a random

index in {0, . . . , n} with P (In = n) < 1 for n ≥ n0, and
L
= denotes equality

in distribution. Typical parameters Yn range from the depths of random trees,
the number of various sub-structures in combinatorial structures, various cost
measures of algorithms to parameters of communication models, and many more.

The contraction method is an efficient and quite universal probabilistic tool for
the asymptotic analysis of recurrences as stated above. It has been introduced for
the analysis of the Quicksort algorithm by Rösler (1991) and further developed
independently in Rösler (1992) and Rachev and Rüschendorf (1995). It has been
applied since then successfully to a large number of problems.

Recently, a fairly general unifying limit theorem for this type of recurrences has
been obtained by the contraction method in Neininger and Rüschendorf (2004a) in
the nondegenerate case, where the limit distribution of the normalized recurrence
is uniquely characterized by a fixed point equation. By this result one in general
obtains the limit distribution from the limiting recurrence and asymptotics of
moments.

In this talk we extend the contraction method to a general limit theorem for
the degenerate case. In the degenerate case the characterizing equations for the

normalized algorithm degenerate in the limit to the trivial equation X
L
= X and

thus give no indication on the limit distribution. This case is also quite common
in many examples.

To derive a limit in distribution for (Yn) by the contraction method the first
step is to introduce a scaling of Yn, say Xn := (Yn − µn)/σn, where µn = EYn

and σn =
√

Var(Yn) and to derive a recurrence relation for Xn:

Xn
L
=
σIn

σn
XIn

+ b(n), where b(n) =
1

σn
(bn − µn + µIn

)

and with independence relations as above.
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The next step to prove a limit theorem for Xn is to establish convergence of
the random coefficients in the recursive equation:

σIn

σn
→ A, b(n) → b,

thus leading to a limit equation of the form

X
L
= AX + b.

Here, (A, b) and X are independent. Essential for the application of the con-
traction method is that the limit equation has a unique solution under appropriate
constraints. The final step of the method is to establish convergence of the Xn to
the solution of the limit equation.

In this talk we discuss a case which appears quite often for parameters Xn with
logarithmic orders for the variance. Here, in the limiting equation we are led to
the case A = 1, b = 0, i.e., to the degenerate limit equation

X
L
= X.

The degenerate limit equation does not give any hint to a limit of the recursive
sequence (Xn) and so the contraction method does not work in this case. However,
a number of recurrences leading to a degenerate limit equation can be treated by
the following theorem of Neininger and Rüschendorf (2004b):

Theorem: Assume that (Yn)n≥0 satisfies the recursion stated above with ‖Yn‖3 <
∞ for all n ≥ 0 and

lim sup
n→∞

E log

(

In ∨ 1

n

)

< 0, sup
n≥1

∥

∥

∥

∥

log

(

In ∨ 1

n

)∥

∥

∥

∥

3

<∞.

Furthermore assume that for real numbers α, λ, κ with 0 ≤ λ < 2α the mean and
the variance of Yn satisfy

‖bn − µn + µIn
‖3 = O (lnκ n) , σ2

n = C ln2α n+O(lnλ n),

with some constant C > 0. If

β := 3
2 ∧ 3(α− κ) ∧ 3(α− λ/2) ∧ (α− κ+ 1) > 1,

then
Yn − EYn√
C lnα n

L−→ N (0, 1)

and we have the following rate of convergence for the Zolotarev-metric ζ3:

ζ3

(

Yn − EYn
√

Var(Yn)
,N (0, 1)

)

= O

(

1

lnβ−1 n

)

.
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