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Introduction by the Organisers

Compactness is undoubtedly one of the central and most relevant notions in
mathematics. The present mini-workshop was centered around some important
compactness problems connected to interpolation theory and to the theory of func-
tion spaces, two very closely related areas. Our aim was to bring together leading
experts and active younger researchers in these fields. The mini-workshop was
attended by 16 participants from Germany (5), Spain (5), Israel (2), Poland (2),
Sweden (1) and United States (1), and the main problems we dealt with can, more
specifically, be grouped as follows.

1. Interpolation of compactness and related properties
1.1. Complex interpolation of compact operators
1.2. Real interpolation of compactness and similar properties

2. Compact embeddings in function spaces
2.1. Entropy numbers of such embeddings and

applications to spectral theory of differential operators
2.2. Entropy techniques in sequence spaces

Let us shortly describe these topics.
1.1. An outstanding problem in interpolation theory is the question, whether

the complex interpolation method preserves compactness of operators. This is
open since 40 years, and by now only partial answers are known. Recently a new
and promising general approach has been proposed. We discussed this approach.

1.2. For the real interpolation method, however, it is well-known that it does
preserve compactness. So it is quite natural to ask for quantitative versions of this
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purely qualitative result, for instance in terms of the measure of non-compactness,
or in terms of entropy numbers. Another natural question is to study whether
similar properties, like weak compactness, for example, are stable under real in-
terpolation as well. These problems were addressed in some talks.

2.1. The sequence of entropy numbers (ek(T ))∞k=1 of a bounded linear op-
erator T between quasi-Banach spaces can be considered as a quantification of
compactness, since T is compact if and only if limk→∞ ek(T ) = 0. The basis for
applications to spectral theory is the famous Carl-Triebel inequality, which relates
entropy numbers of Riesz operators to its eigenvalues. Many concrete problems
lead to the investigation of compact embeddings of certain function spaces, e.g.
Sobolev or Besov spaces. In the talks both a survey on the general framework as
well as new entropy estimates for specific embeddings were given.

2.2. Using various methods, for instance wavelet or atomic decompositions,
the function space embeddings can very often be reduced to embeddings of (fairly
complicated) sequence spaces. For the estimation of their entropy numbers one
needs many different techniques, some of them quite new. Such techniques also
were the subject of talks.

Finally, several other aspects of interpolation were treated in talks, e.g. approx-
imation spaces, bilinear interpolation, relation to eigenvalues and operator ideals.
We list the abstracts of all talks in chronological order.

The scientific program started with two survey lectures by Triebel and Cwikel,
leading experts in their fields, followed by two more survey-style talks of the or-
ganisers. Then all other participants reported on own recent research results. In
addition to this ”official” program, which was already scheduled in advance, there
was a number of further activities. Several participants offered a second talk, on
another topic of common interest, or continued their respective talks in order to
explain some technicalities in greater detail. The remaining time was used for
many intensive discussions in smaller groups, and on Friday a problem session
was held. The aim was to summarize the results of the mini-workshop and to
discuss and collect several relevant problems, thus pointing out possible directions
for further research in our field.

Concerning social activities, one should mention the traditional hiking tour to
St. Roman on Wednesday afternoon and the, maybe less traditional, joint session
of all three parallel mini-workshops. The aim of this informal interdisciplinary
session was to explain very briefly the kind of problems and ideas of our respective
areas. Before this meeting there were serious doubts whether the intended goal
would be achievable in only a few minutes, but afterwards it was general opinion
that we have had a surprisingly inspiring and interesting evening, giving in fact a
rough impression of the other two research areas.

Last but not least, the organisers would like to express their gratitude to the
director and the authorities of the Mathematisches Forschungsinstitut Oberwol-
fach for making this mini-workshop possible and for the constant support in its
organisation and preparation. On behalf of all participants we thank all members
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of the staff for creating the unique working atmosphere, which made our stay so
pleasant and which contributed substantially to the success of our mini-workshop.
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Abstracts

Compact embeddings in function spaces

Hans Triebel

We outline the symbiotic relationship between

1. spectral theory of compact operators in abstract quasi-Banach spaces,
2. function spaces on Rn and on bounded domains Ω in Rn,
3. compact embeddings in weighted sequence spaces,
4. representations of function spaces in terms of elementary building blocks.

1. The well-known Riesz theory for compact operators T in complex Banach
spaces can be extended to quasi-Banach spaces B and

(1) |λk(T )| ≤




k∏

j=1

|λj(T )|




1/k

≤
√

2ek(T ), k ∈ N,

where λk(T ) are the eigenvalues of T (counted to their algebraic multiplicity and
ordered by decreasing magnitude) and ek(T ) are the entropy numbers of T . Recall
that ek(T ) is the infimum of all ε > 0 such that the image TUB of the unit ball
UB in B can be covered by 2k−1 balls of radius ε. Details, proofs and references
may be found in [ET].

2. Let s ∈ R, 0 < p ≤ ∞ (p < ∞ in the F -case), 0 < q ≤ ∞. Then Bs
pq(Rn)

and F s
pq(Rn) are the two well-known scales of function spaces covering (fractional)

Sobolev spaces, classical Besov spaces and Hölder-Zygmund spaces. The spaces
Bs

pq(Ω) and F s
pq(Ω) for bounded domains Ω in Rn are defined by restriction of the

respective spaces on Rn to Ω. Then the embedding

(2) idB : Bs1

p1q1
(Ω) →֒ Bs2

p2q2
(Ω)

is compact if, and only if, s2 < s1 and s2 − n
p2

< s1 − n
p1

(similar for the F -spaces)

and in this case

(3) ek(idB) ∼ k−
s1−s2

n , k ∈ N.

The spectral theory of (regular, singular, fractal) elliptic (pseudo-)differential op-
erators can often be reduced (via suitable factorisations) to (2),(3), and then to
(1). As for the theory of function spaces we refer to [T1,T2] and, in connection
with (2),(3), to [ET,T3].

3. Let δ > 0, Mj ∼ 2jd for some d > 0, 0 < p ≤ ∞ and

∥∥λ |ℓp
(
2jδℓMj

p

)∥∥ =




∞∑

j=0

2jδp

Mj∑

r=1

|λjr |p



1/p

,
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λ = {λjr} ⊂ C. Let

0 < p1 ≤ ∞,
1

p∗ =
1

p1
+
δ

d
, p∗ < p2 ≤ ∞.

Then

(4) idℓ : ℓp1

(
2jδℓMj

p1

)
→֒ ℓp2

(
ℓMj
p2

)

is compact and

(5) ek(idℓ) ∼ k−
δ
d
+ 1

p2
− 1

p1 , k ∈ N,

[T3,HT], and the references given there.

4. Elements f of Bs
pq(Rn) or F s

pq(Rn) can be represented in terms of wavelet
bases and wavelet frames, typically of type

(6) f =

∞∑

j=0

∑

m∈Zn

λjmajm(·),

where ajm are elementary building blocks (for example Daubechies wavelets) re-
lated to balls of radius ∼ 2−j and centred at 2−jm, and {λjm} are elements of some
sequence spaces. When reduced to bounded domains Ω one arrives at sequence
spaces as considered in 3. We refer to [T3-T5,HT].

Then (2),(3) can be reduced to (4),(5) via (6),
which in turn results in a far-reaching spectral theory via (1).
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[T5] H. Triebel. A note on wavelet bases in function spaces. In: Orlicz Centenary

Vol., Banach Center Publ. 64, Warszawa 2004 (to appear)

Some thoughts about complex interpolation of compact operators

Michael Cwikel

(joint work with Fedor Nazarov)

The following question was initially considered by Alberto Calderón [1] some
forty years ago, when he developed his powerful and beautiful theory of complex
interpolation spaces.
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Question 1: Suppose that A0 and A1 are compatible Banach spaces, i.e., they
form a Banach pair, and that so are B0 and B1. Suppose that T : A0 + A1 →
B0 +B1 is a linear operator such that T : A0 → B0 compactly and T : A1 → B1

boundedly. Does it follow that T : [A0, A1]θ → [B0, B1]θ compactly for each
θ ∈ (0, 1) ?

Calderón [1] solved Question 1 in the affirmative, in the case where the spacesB0

and B1 satisfy a certain approximation property. Since then affirmative answers
have also been obtained under quite a number of other conditions on the spaces B0

and B1 and/or the spaces A0 and A1. For such partial results and other related
material we refer, for example, to [10], [12], [4], [5], [2], [6], [7], [8], [11], [13] and
[1]. However, in its general form as stated above, Question 1 remains open. We
do not even know the answer to the following seemingly simpler variant of it:

Question 2: Same as Question 1, but under the stronger hypothesis that
T : A1 → B1 is also compact.

This talk briefly surveys some of the above–mentioned previous partial results
and then describes some recently observed reductions of the problem, which in the
future may perhaps lead to positive answers to Question 1 and/or Question 2.

We also make some remarks about Calderón’s compactness result, which is
formulated in [1] without explicitly mentioning any operators. Its statement is
made in terms of the space F(B0, B1) of analytic vector valued functions used by
Calderón in the definition of his spaces [B0, B1]θ. Let K0 be some compact subset
of B0, let E be some measurable subset of the real line with positive measure, and
let K be the subset of the unit ball of F(B0, B1) consisting of those functions f
for which f(it) ∈ K0 for all t ∈ E. Then Calderón’s theorem states, subject to the
above–mentioned approximation hypothesis on the spaces B0 and B1, that the set
{f(θ) : f ∈ K} is a compact subset of [B0, B1]θ.

We show that certain compactness results like this one, even though they do
not mention a second couple (A0, A1) nor operators T mapping from Aj to Bj ,
are in fact equivalent to results expressed in terms of (A0, A1) and T . We have
to assume that E = R and use a slight variant, due to Jaak Peetre, of Svante
Janson’s orbital characterization of the complex method [9].

We consider some new questions, expressed in terms of the following notation
and terminology.

D is the closed unit disk. N is a (usually very big) positive integer. Let
H∞(D,CN ) be the space of all CN valued functions f(z) = (φ1(z), φ2(z), ..., φN (z))
where each φj is in H∞(D). Let ‖·‖p denote the ℓp norm on CN .

Question 3: Let f1, f2, ...., fk be k functions in H∞(D,CN ). For each fixed z ∈
D, let M(z) be the subspace of CN defined by M(z) = span{f1(z), f2(z), .., fk(z)}.
Suppose that g is another function in H∞(D,CN ) which satisfies ‖g(z)‖p ≤ 1 for
all z ∈ D and also

distℓp(g(z),M(z)) ≤ ε for almost every z ∈ T.

Does it follow that distℓp(g(0),M(0)) ≤ ε ?
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At first sight Question 3 looks very reasonable. However there is an almost
embarrassingly simple example which shows that the answer to it is no. This is
unfortunate, since a positive answer to it would have implied a positive answer to
Question 1. The ill–fated Question 3 is nevertheless a good motivating model for
the following more elaborate question:

Question 4: Let f1, f2, ...., fk be k functions in H∞(D,CN ). For each fixed z ∈
D, let M(z) be the subspace of CN defined by M(z) = span{f1(z), f2(z), .., fk(z)}.
For each positive ε, does there exist some subspace S of CN , whose dimension
depends only on k and ε, with the following property: Whenever g is a function
in H∞(D,CN ) which satisfies ‖g(z)‖p ≤ 1 for all z ∈ D and also

distℓp(g(z),M(z)) ≤ ε for almost every z ∈ T,

then distℓp(g(0), S) ≤ ψ(ε) ?
Here ψ : (0,∞) → (0,∞) is a fixed function of one variable (i.e., it does not

depend on k or N) which satisfies limε→0 ψ(ε) = 0 ?
A positive answer to Question 4 for p = ∞, would imply a positive answer to

Question 2. If, furthermore, such an answer can be obtained with ψ(ε) = εr for
some positive constant r, then this would imply a positive answer to Question 1.

So far we have positive answers only to certain variants of Question 4. Some of
them apply when g is merely harmonic, rather than analytic. On the other hand,
if p = ∞, and if we allow g to be merely harmonic, there are examples which
strongly suggest that the answer to the harmonic version of Questions 4 is no,
even when k = 1.
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Interpolation and operator ideals

Fernando Cobos

In 1964, Lions and Peetre [6] proved a compactness result that applies to the
real interpolation method and to the complex method. This result turned out to
be an important tool for establishing a number of other compactness theorems
in interpolation theory and it has been used as a model to investigate the be-
haviour of other ideal properties. An important contribution in this direction is
due to Heinrich [5] and refers to closed injective and surjective operator ideals.
A quantitative version of Heinrich’s theorem was established by Cobos, Manzano
and Mart́ınez [2] by using the functionals γJ (T ), βJ (T ) which measure how far
is an operator T ∈ L(A,B) from a given operator ideal J . Recall that the outer
measure γJ (T ) is defined as the infimum of all σ > 0 such that for some Banach
space E and some operator R ∈ J (E,B) we have T (UA) ⊆ σUB + R(UE). The
inner measure βJ (T ) is the infimum of all positive numbers σ such that for some
Banach space F and some S ∈ J (A,F ) the inequality ‖Tx‖B ≤ σ ‖x‖A + ‖Sx‖F

holds for all x ∈ A.
Another quantitative approach to Heinrich’s result has been developed by Co-

bos, Cwikel and Matos [1] and applies to general intermediate spaces A with
respect to a Banach couple A = (A0, A1). For this, they also need the functions

ρA(t) = inf{J(t, a) : a ∈ A0 ∩A1, ‖a‖A = 1}, ψA(t) = sup{K(t, a) : ‖a‖A = 1}.

In particular, they proved that if T ∈ L(B,A) with βJ (TB,A0
) = 0, then

βJ (TB,A) ≤ βJ (TB,A1
) limt→0(t/ρA(t)). If T ∈ L(A,B) with γJ (TA0,B) = 0, then

γJ (TA,B) ≤ γJ (TA1,B) limt→∞(ψA(t)/t). This investigation has been continued
by Cobos, Manzano, Mart́ınez and Matos [3], who gave also applications to em-
beddings between Banach function lattices.

We describe some of their results, as well as, the following one due to Cobos
and Pustylnik [4]: Let F be a Banach function lattice intermediate with respect
to the couple (L1[0, 1], L∞[0, 1]). Then a necessary and sufficient condition for the
inclusion L∞[0, 1] →֒ F to be strictly singular is that limt→0 t/ρF (t) = 0. We finish
the talk with some results for other measure spaces.
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Old and new entropy techniques

Thomas Kühn

The concept of metric entropy of sets was already introduced in 1932 in a pa-
per on metric and topological dimension theory by Pontrjagin and Schnirelman
[PS]. But then it took more than three decades until mathematicians began to
understand the far reaching importance of metric entropy. So it was only in the
late 1950s - mainly initiated by the famous 1959 survey paper by Kolmogorov and
Tihimirov [KT] - when attention was focused again on this notion, and when it
became a subject of intensive research. Later on the concept was modified and
adapted to operators, see e.g. [P]. Since then metric entropy has found numerous
applications in such diverse branches of mathematics as, for instance, analysis (op-
erator theory, spectral theory), approximation theory, probability theory, coding
theory, computational complexity, mathematical theory of learning.

Let K be a subset of a metric space (X, d). Recall that, given ǫ > 0, the
covering number N(ǫ,K) is defined as the minimal number n such that K can be
covered by n balls in X of radius ǫ. Often it is enough to consider the quantity
H(ǫ,K) := log2N(ǫ,K), which is usually referred to as Kolmogorov’s ǫ-entropy.
Obviously,K is relatively compact if and only ifN(ǫ,K) (or, equivalently, H(ǫ,K))
is finite for every ǫ > 0.

Sometimes, especially in connection with operators, it is more convenient to
change the point of view, that means to fix the number of balls and to ask for the
minimal radius. For a (bounded linear) operator T : X → Y between two (quasi)
Banach spaces the k-th dyadic entropy number ek(T ) is the infimum of all ǫ > 0
such that T (BX) can be covered by 2k−1 balls in Y of radius ǫ, where BX denotes
the unit ball in X . Clearly, T is compact if and only if limk→∞ ek(T ) = 0, thus
the rate of decay of ek(T ) as k → ∞ describes the ”degree” of compactness of T .
Via the Carl-Triebel inequality (see formula (1) in Hans Triebel’s lecture) entropy
numbers are intimately related to eigenvalues, a fact on which all applications to
spectral theory of differential operators are based.

Typically in such applications, one has to estimate entropy numbers of certain
embeddings in function spaces. In many cases, using splines, wavelets, atomic or
subatomic decompositions, the problem can be shifted to a sequence space setting.
Although this simplifies the original problem already considerably, the resulting
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sequence spaces are usually quite complicated (multi-indexed, vector-valued, with
weights). Therefore, in order to find asymptotically sharp entropy estimates, it is
essential to have a full arsenal of entropy techniques at hand.

The main aim of this talk is to give an overview over these techniques. Some of
them are by now almost standard (at least to specialists), but still very powerful,
some others are quite new and rather elaborate or tricky. Every technique will
be illustrated by a typical example/application, explaining in this way the main
underlying ideas. Here is a list of the techniques that will be discussed:

• Factorization methods
• Volume estimates
• Combinatorial arguments
• Interpolation methods
• Operator ideal techniques
• Random techniques
• Tensor product techniques

The applications are:

(1) the Carl-Triebel inequality (factorization and volume estimates)
as well as entropy estimates for

(2) identities ℓnp → ℓnq (combinatorics and interpolation),
(3) diagonal operators with polynomial diagonal (operator ideal techniques)
(4) diagonal operators with logarithmic diagonal (random techniques)
(5) certain tensor product operators from ℓp(X) to ℓq(Y ) (tensor techniques)

Most of these results are well known. For (1)–(3) we refer to the monographs by
Pietsch [P], König [Kö], and Carl and Stephani [CS]; the extension to operators in
quasi-Banach spaces was mainly done by Edmunds and Triebel [ET]. Concerning
random techniques (Dudley’s and Sudakov’s inequalities, and their refinements)
see Pisier’s book [Pi]. Result (4) is contained in the article [K1], while (5) is very
recent work [K2]. To conclude with, we state one typical result of [K2].

Theorem. Let T : X → Y be an operator between quasi-Banach spaces and let
D : ℓp → ℓq, 0 < p, q ≤ ∞, be a diagonal operator. Assume that

ek(T ) ∼ k−α and ek(D) ∼ k−β

for some α > 0 and β > max(0, 1/p− 1/q). Then, if α 6= β,

ek(D ⊗ T : ℓp(X) → ℓq(Y )) ∼ k−min(α,β) .

In the limiting case α = β similar two-sided estimates can be shown, which
are optimal up to logarithmic factors. Using this result, one can improve some
entropy estimates for embeddings of Besov spaces in spaces of Lipschitz type.
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[Kö] H. König, Eigenvalue distribution of compact operators, Birkhäuser, Basel, 1986.
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Closed operator ideals and indices

Luz M. Fernández-Cabrera

Let E and F be rearrangement invariant spaces on [0, 1] with fundamental
functions having regular variation at 0 and the embedding E →֒ F failing to be
disjointly strictly singular. Then, spaces E and F cannot be distinguish by means
of the spaces Lp[0, 1]. This result was proved by Garćıa del Amo, Hernández,
Sánchez and Semenov [3]. To understand it fully, it is useful to consider the notion
of inclusion indices. Recall that if L∞[0, 1] →֒ E →֒ L1[0, 1] then the inclusion
indices of E are defined by δE = sup{p ≥ 1 : E →֒ Lp[0, 1]}, γE = inf{p ≤ ∞ :

Lp[0, 1] →֒ E}. The conclusion of the result means that δE = γE = δF = γF .
Since Lp−spaces can be obtained applying the complex interpolation method to
the couple (L∞[0, 1], L1[0, 1]), it is natural to wonder whether inclusion indices
are only a special case of an abstract notion, with more ample applications. This
investigation has been carried out in a joint paper with Cobos, Hernández and
Sánchez [1]. In this talk I will describe some of our results.

Let A0 and A1 be Banach spaces with A0 →֒ A1. We assume that A0 is not
closed in A1. For 0 < θ < 1, we put Aθ = (A0, A1)[θ]. Given any Banach space A
with A0 →֒ A →֒ A1, the indices of A relative to the scale {Aθ}0≤θ≤1 are defined
by

δA = sup{θ : Aθ →֒ A} , γA = inf{θ : A →֒ Aθ}.
Our first result shows that the interpolation theorems for closed operator ideals

can be used to compare the indices of two spaces. We have also computed the
indices analytically by using the functions ψA(t) = sup{K(t, a) : ‖a‖A = 1} and
ρA(t) = inf{J(t, a) : a ∈ A0, ‖a‖A = 1}. It turns out that

γA = lim sup
t→∞

logψA(t)

log t
, δA = lim inf

t→∞

log ρA(t)

log t
.

As a consequence we can estimate the grade of proximity between two interme-
diate spaces A →֒ B when the embedding fails an ideal property that the inclusion
Aθ →֒ A has. Here γA < θ. Applying these results to function spaces on [0, 1] we



Mini-Workshop: Compactness Problems in Interpolation Theory 2113

recover the result of [3] and the extension established in [2] to spaces not necessar-
ily rearrangement invariant. Results proved in [2] for Banach spaces of sequences
can be recovered as well. Our approach also applies to [0,∞) with the Lebesgue
measure. Furthermore, we can derive results for function spaces near to L∞[0, 1]
and spaces close to L1[0, 1].
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Measures of non-compactness and real interpolation

Pedro Fernández-Mart́ınez

(joint work with F. Cobos and A. Mart́ınez)

Let A and B be Banach spaces and let T ∈ L(A,B) be a bounded linear
operator acting from A into B. The (ball) measure of non-compactness of T is
defined by

β(T ) = inf
{
r > 0 s.t. T (UA) ⊆

⋃

finite

{bj + rUB}
}

where UA (resp. UB) stands for the closed unit ball of A (resp. B).
Clearly β(T ) = 0 if and only if T is compact. Otherwise, β(T ) measures how

far the operator T is from being compact.
In this talk we study the behaviour under real interpolation of the measure of

non-compactness (see [1]). Previous result on this question have been obtained by
Edmunds and Teixeira [4] (see also the monograph by A. Pietsch [9], Prop.12.1.11
and 12.1.12 and that of Triebel [6] § 1.16). These results require the assumption
that one of the Banach couples degenerates into a Banach space, i.e. A0 = A1

or B0 = B1, or that they are different but the image couple (B0, B1) satisfies a
certain approximation condition.

We consider here the case of general couples without assuming any approxi-
mation hypothesis on them, and we show (using the techniques in [2]) that the
following logarithmically convex inequality holds:

β (T : (A0, A1)θ,q −→ (B0, B1)θ,q) ≤ cβ(T : A0 −→ B0)1−θβ(T : A1 −→ B1)θ

In the special case where one restriction of T is compact we recover Cwikel’s
compactness theorem.
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Entropy numbers of embeddings of weighted Besov spaces.

I. Polynomial weights with perturbations

II. Weights of subpolynomial growth

Hans-Gerd Leopold and Leszek Skrzypczak

(joint work with T. Kühn and W. Sickel)

We investigate the asymptotic behaviour of the entropy numbers of the compact
embedding

Bs1

p1,q1
(Rd, w) →֒ Bs2

p2,q2
(Rd)

of the weighted Besov space Bs1

p1,q1
(Rd, w) into the unweighted space Bs2

p2,q2
(Rd).

Here w is a smooth, strictly positive function on Rd and a distribution f belongs to
the weighted Besov space Bs

p,q(Rd, w) if the product wf belongs to the unweighted

space Bs
p,q(Rd).

The problem of estimation of entropy numbers of the above compact embed-
ding was first treated by D.Haroske and H.Triebel in [HT 1], where polynomial
weights were considered. Possible applications of the estimates to spectral theory
of differential and pseudo-differential operators were described in a second paper,
cf. [HT 2].

To estimate the asymptotic behaviour of the entropy number for a larger range
of weights and the full range of parameters (s, p, q) we use the following strategy.
First of all we reduce the problem to the level of sequence spaces via wavelet bases
of weighted Besov spaces. This concept was developed in [KLSS1] and [HT 3]. To
estimate the entropy numbers of the corresponding sequence space embeddings we
use the known estimates for embeddings of finite dimensional ℓp spaces as well as
the estimates of entropy numbers of diagonal operators acting between sequence
ℓp spaces together with the proper splitting of the original embedding operators.
The technique of the operator ideals is often used to glue the estimates of different
parts of the splitting together. We consider the following types of weights.

(1) polynomial weights wα(x) = (1 + |x|2)α/2, α > 0
(2) logarithmic weights w0,β(x) = (1 + log(1 + |x|))β , β > 0
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(3) polynomial weights perturbed (for |x| ≥ 1) by a slowly varying function
ϕ, wα,ϕ(x) = wα(x)ϕ(|x|).

Slowly varying (in the sense of Kohlbecker) roughly means that ϕ(|x|) is small
in comparison with wα(x) for large |x|. Any power of (1 + log(1 + |x|)) is an
example of a slowly varying function, but the class is of course much wider.

The symbol an � bn means that there exist a constant c > 0 such that an ≤
c bn for all n ∈ N, while an ∼ bn stands for an � bn � an. Furthermore let
1
p∗

= ( 1
p1

− 1
p2

)+ and δ = s1 − s2 − d( 1
p1

− 1
p2

).

A previous version of the following results is contained in [KLSS1].

Theorem 1. Let 0 < p1, p2, q1, q2 ≤ ∞, s1 > s2, and let ϕ be a slowly varying
function. Then for the entropy numbers of the embedding

id : Bs1

p1,q1
(Rd, wα,ϕ) → Bs2

p2,q2
(Rd)

it holds

en(id) ∼






n
− δ

d
−( 1

p1
− 1

p2
)

if d/p∗ < δ < α

n−α
d
−( 1

p1
− 1

p2
)(ϕ(n1/d))−1 if d/p∗ < α < δ .

Clearly, the theorem covers also polynomial weights (ϕ ≡ 1), but the most
difficult case α = δ is not contained. In that so-called limiting case we gave in
[KLSS2] a new and simpler proof of the following result for polynomial weights.

Theorem 2. Let 0 < p1, p2, q1, q2 ≤ ∞ and s1 > s2. Suppose

α = δ > d/p∗ and set τ :=
s1 − s2
d

+
1

q2
− 1

q1
.

Consider the embedding id : Bs1

p1,q1
(Rd, wα) → Bs2

p2,q2
(Rd).

(i) If τ 6= 0, then en(id) ∼ n−
s1−s2

d (1 + logn)max(τ,0) .

(ii) If τ = 0, then n−
s1−s2

d � en(id) � n−
s1−s2

d (1 + log logn)
1

q1 .

The corresponding estimates for logarithmic weights look as follows.

Theorem 3. Let 0 < q1, q2 ≤ ∞ , 0 < p1 ≤ p2 ≤ ∞, δ > 0 and β > 0. Then for
the embedding

id : Bs1

p1,q1
(Rd, w0,β) → Bs2

p2,q2
(Rd)

one has

en(id) ∼





n
−( 1

p1
− 1

p2
)(

logn
) 1

p1
− 1

p2
−β

if β ≥ 1
p1

− 1
p2

,

n−β if β < 1
p1

− 1
p2

.
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A new class of approximation spaces and operator ideals

Evgeniy Pustylnik

Let X be a quasi-Banach space and let Gn, n ∈ IN0, be a sequence of subsets
of X with the following properties:

G0 = {0}, Gn ⊂ Gn+1, λGn ⊂ Gn, Gn +Gm ⊂ Gn+m ,

so that, for any f ∈ X , we can define its approximation numbers

an(f,X) = inf
g∈Gn−1

‖f − g‖X .

Let E = F(l1, l∞) be arbitrary symmetric sequence space, defined by some inter-

polation functor F . Denote by Ẽ the corresponding sequence space Ẽ = F(l̃1, l∞),
where

l̃1 = {a = (an) : ‖a‖el1
=

∞∑

n=1

|an|/n <∞} ,

(for more details see [1]). Now, for arbitrary positive increasing function ϕ(t) with
positive extension indices, we define an approximation space Xϕ,E as the set of all
f ∈ X such that

‖f‖Xϕ,E
= ‖

(
ϕ(n)an(f,X)

)
‖ eE <∞.

For approximation spaces thus obtained, we prove the standard statements of
approximation theory analogous to [2]:

a) equivalent formula of norms ‖f‖Xϕ,E
= ‖

(
ϕ(2n)a2n(f,X)

)
‖E ;

b) representation theorem: an element f ∈ X belongs to Xϕ,E if and only if it
can be represented in a form f =

∑∞
1 gn such that any gn ∈ G2n and

‖f‖repr
Xϕ,E

= inf ‖ϕ(2n)gn‖E <∞.

c) interpolation theorem: a space Xϕ,E is interpolation between spaces Xϕ,E0

and Xϕ,E1
if and only if the space E is interpolation between spaces E0 and E1

and in both cases one can use the same interpolation functor.
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Some other properties and interrelations with interpolation theory also are
found. At last, all results are applied to operator spaces X = L(A,B), where
the set Gn is defined as the set of all operators with the rank no greater than n.
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Distance of L1-functions to the ball of radius tin the space Lip α

Natan Krugljak

If the function f ∈ L1 = L1(Rn) is given, it is easy to calculate the distance
from it (in the metric of L1) to the ball of radius t of the space L∞ as follows:

ρ(f,Bt(L∞))L1
=

∫
(|f | − t)+ dx.

However, if instead of the space L∞ we consider another space, for example the
space Lip α, the situation becomes much more complicated. From the point of view
of real interpolation it is enough to have a formula up to the following equivalence,
which we will call the radial equivalence.

Definition. We will call two non-negative functions on R+ radial equivalent (no-
tation f ≈R g) if it is possible to find positive constants c1, c2, c3, and c4 such
that

f(t) ≤ c1g(c2t) and g(t) ≤ c3g(c4t)

for all t ∈ R+.

From [C] it follows that the usual seminorm in the space Lip α

‖f‖Lip α = sup
x 6=y

|f(x) − f(y)|
|x− y|α

is equivalent to

‖f‖Lip α ≈ sup
Q

∫
Q |f(x) − fQ|

|Q|1+
α
n

= sup
Q

1
|Q|

∫
Q
|f(x) − fQ|

(|Q|
1

n )α
, fQ =

∫
Q f

|Q| ,

where sup is taken over all cubes Q with sides parallel to the coordinate hyper-
planes. In particular, for α = 0 instead of the space Lip α we obtain the space
BMO. Using the technique developed in the paper by Bennett-Sharpley [BS] it
is possible to obtain the following formula for the distance to the ball of radius t
of the space BMO :

ρ(f,Bt(BMO))L1
≈R t ·

∣∣{x ∈ Rn | f ♮(x) > t
}∣∣ ,

where f ♮(x) = supQ∋x( 1
|Q|

∫
Q |f(x) − fQ|) is the Fefferman-Stein maximal func-

tion. Therefore, it looks natural to try to obtain an analogous formula for the
distance ρ(f,Bt(Lip α))L1

. This hope is justified; however, instead of the measure
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of the set

{
x ∈ Rn

...f ♮(x) > t

}
we need to take another quantative. To formulate

the result let us consider the set of cubes Ωt defined by the formula

Ωt =

{
Q |

∫
Q |f(x) − fQ|

|Q|1+
α
n

> t

}

and denote by |Ωt|α the sup(
∑

|Qi|1+
α
n ), where sup is taken over all families of

pairwise disjoint cubes from Ωt .

Theorem. Let f ∈ L1 be given. Then the distance from f to the ball of radius t
of Lipα is given by the formula

ρ(f,Bt(Lip α))L1
≈R t · |Ωt|α

with the constants of equivalence independent of f and t.

Remark. In the case α = 0 the formula is equivalent to the formula of distance
to the ball of radius t of the space BMO (the proof is based on the Besicovitch
covering theorem). Therefore, the theorem provides an extension of the previous
formula to the case of the space Lip α.

The proof of the Theorem is based on a technique (covering lemma and smooth
analogs of Calderon-Zygmund decomposition) developed in [K].
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Compact operators between real interpolation spaces

Antón Mart́ınez

(joint work with F. Cobos and L.M. Fernández-Cabrera)

The behaviour of compact operators under interpolation is a question that
has received much attention during the last few years. Talking only about the
real method, it was shown in the joint papers of one of the present authors with
Edmunds and Potter [2], with Fernandez [3] and with Peetre [6], that properties
of vector valued sequence spaces related to the real interpolation space (A0, A1)θ,q

are very useful to study the behaviour of compact operators under interpolation.
These efforts were culminated by Cwikel [7] who proved that if T : Ā −→ B̄ with
T : A0 −→ B0 compact then T : (A0, A1)θ,q −→ (B0, B1)θ,q is also compact.
Later, approach developed in [2, 3, 6] was used by Cobos, Kühn and Schonbek [5]
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to give a broad generalization of Cwikel’s result, including a function parameter
version and even compactness theorems for other interpolation methods.

Another side of these ideas has been shown very recently by other of the present
authors in [9], where she has characterized compact operators between real inter-
polation spaces in terms of weaker compactness conditions and convergence of
certain sequences of operators involving projections on the vector valued sequence
spaces.

In this talk we show some results of the paper [4], where we continue the research
of [9] working now with general K-functors and general J-functors. The interest
of these interpolation methods has been pointed out by many authors. See, for
example, the books by Brudny̌ı and Krugljak [1], as well as the papers by Cwikel
and Peetre [8], Janson [10] and Nilsson [11].

We establish necessary and sufficient conditions for compactness of operators
acting between K-spaces, between J-spaces and from a J-space into a K-space.
Moreover, we show by means of examples that conditions required on the sequence
space that define the K-functor (respectively, the J-functor) are essential for the
result.

When we specialize the results we recover the theorems of [9], but we also
obtain new results. In particular, we get a characterization of compact operators
between real interpolation spaces that blends conditions found in [9]. As another
application of our characterizations we obtain extended versions of compactness
results of [2, 3, 5, 6, 7].
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Weak compactness and general J- and K- methods

Antonio Manzano

(joint work with F. Cobos, L.M. Fernández-Cabrera, and A. Mart́ınez)

The behaviour of weak compactness under interpolation has attracted consid-
erable attention since Davis, Figiel, Johnson and Pelczyński [7] established their
celebrated result on factorization of weakly compact operators. For the classi-
cal real method (A0, A1)θ,q , relevant contributions on this problem are due to
Beauzamy [1] and Heinrich [H] (other related results can be found in [9], [6] and
[4]).

But the real method is not enough to describe all interpolation spaces with re-
spect to many important couples. For example, applying this method to (L1, L∞)
we only obtain Lp and Lp,q spaces, while Lorentz spaces, Marcinkiewicz spaces
and the majority of symmetric spaces are interpolation spaces with respect to
(L1, L∞). However, as a famous result of Calderón and Mitjagin says, any inter-
polation space with respect to the couple (L1, L∞) is K-monotone and so it can
be obtained by the general K-method (see [2]).

The generalK-method has been studied widely, as well as the general J-method,
and the interest of both interpolation methods has been pointed out by many
authors (we refer to the book by Brudny̌ı and Krugljak [2] for wide information
and relevant references about these methods).

Aizenstein and Brudnyi [2], Section 4.6, and Masty lo [10] have investigated
the interpolation of weakly compact operators by the general K-method. In all
cases, the techniques used by these authors are based on specific properties of the
K-space.

We develop a new approach that allows us to establish interpolation results for
general K- and J- spaces at the same time, as well as to apply them to other closed
operator ideals different from weakly compact operators. In particular, we cover
the cases of Rosenthal operators and Banach-Saks operators. The new approach
is based on ideas of Heinrich [H] and our previous results in [3] and [5].
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Entropy numbers in vector valued sequence spaces

Tomas Schonbek

(joint work with P. Fernández-Mart́ınez)

In this talk we consider the following question. Assume T is a bounded linear
operator from the quasi-Banach space X to the quasi-Banach space Y and for N ∈
N let T̃ = T̃N be the operator (xn)N

n=1 7→ (Txn)N
n=1 from XN to Y N . We consider

XN , Y N as quasi-Banach spaces normed with (weighted) lp, lq norms, respectively;

0 < p ≤ q ≤ ∞. How do the entropy numbers ẽk = ek(T̃ : ℓNp (X) → ℓNq (Y )) of T̃
relate to the entropy numbers ek = ek(T : X → Y ) of T ? Apart from its intrinsic
merit, solving this problem would allow one to extend the methods used by Cobos,
Fernández and Mart́ınez in [1] to estimate the measure of non-compactness of an
operator under real interpolation, to estimating the entropy numbers of such an
operator.

We further simplify the problem assuming q = ∞ and use a combinatorial
approach to estimating the entropy numbers of T̃ based on the following idea. For
each ρ > 0 we construct an approximation to a set SN (ρ) of vectors contained in
the closed ball of radius ρ of ℓNp (X) such that if x, y ∈ SN (ρ) and x 6= y, then
‖Tx − Ty‖Y > 1; if x ∈ X and ‖x‖X ≤ ρ, then there exists y ∈ SN (ρ) such
that ‖Tx − Ty‖Y ≤ 1. Let KN (ρ) be the cardinality of the set SN (ρ). Because
KN(ρ) ≤ 2k−1 implies ẽk ≤ 1/ρ, it suffices to estimate KN (ρ) to get an estimate
for the entropy numbers. To achieve this estimate, the following simple recurrence
formula for KN is established, where 0 = ρ0 < ρ1 < · · · < ρn = ρ is a partition of
the interval [0, ρ] and λ(ρ) = K1(ρ):

KN+1(ρ) ≤ λ(ρ1)KN(ρ) +

n∑

k=2

(λ(ρk) − λ(ρk−1))KN

(
(ρp − ρp

k−1)1/p
)

Assuming a moderate growth of λ as a function of ρ; specifically that there
exists γ > 0 such that λ((n+ 1)γ) ≤ κλ(nγ) for some constant κ > 0, n = 1, 2, . . .,
we obtain that there exist positive constants C, a, b, d, r (not depending on k or
N) such that

(1) ẽk ≤ Celog( k
b
)−log log( abN

k
+1) for k < Nd+ 1 , and

(2) ẽk ≤ Ce k−1

N
+log N

r
if λ(γ) = 1 and k ≥ dN + 1.

The growth condition on λ is satisfied if the entropy numbers of T decay suffi-
ciently fast: ek ∼ k−α for α ≥ 1. For details, see [2].
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Optimal approximation of elliptic problems by linear and nonlinear

mappings

Winfried Sickel

(joint work with Stephan Dahlke and Erich Novak)

Let H be a Hilbert space and let B = {g1, g2, . . .} be a countable subset of H .
Then the best n-term approximation of g ∈ H with respect to B is defined to be

σn(g,B)H := inf
i1,... ,in

inf
c1,... ,cn

‖ g −
n∑

k=1

ck gik
‖H .

For C ≥ 1 let

BC := {B : B ⊂ H , B is a Riesz basis of H with constants A,B > 0 , B/A ≤ C} .
Here the constantsA,B, related to the Riesz basis B = {g1, g2, . . .}, are the optimal
positive numbers in the inequality

A
( ∑

k

|ck|2
)1/2

≤
∥∥∥

∑

k

ck gk

∥∥∥
H

≤ B
( ∑

k

|ck|2
)1/2

which has to be valid for any set of coefficients ck ∈ C, k = 1, 2, . . . . Let G be a
Hilbert space and let S : G → H be an isomorphism. Let F be a quasi-normed
subspace of G. Then, parallel to the approximation numbers of S, we introduce
the quantities:

enon,C
n (S, F,H) := inf

B∈BC

sup
‖f‖F ≤1

σn(Sf,B)H , n = 1, 2, . . . .

Similar widths, even in a more general context, have been considered by Temlyakov
[T]. In the particular situation, where H = Hs(Q) is a fractional order Sobolev
space on Q = [0, 1]d, F = Bs+t

p,q (Q) is a Besov space and S is the identity operator,

S = I : Bs+t
p,q (Q) → Hs(Q) we have obtained the following.

Theorem. Let −∞ < s <∞, 0 < p, q ≤ ∞ and

t > d max
(

0,
1

p
− 1

2

)
.

Let C ≥ 1. Then there exists a constant c1 such that

enon,C
n (I, Bs+t

p,q (Q), Hs(Q)) ≤ c1 n
−t/d
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holds for all natural numbers n. In case 0 < p ≤ 2 there exists a positive constant
c2 such that

enon,C
n (I, Bs+t

p,q (Q), Hs(Q)) ≥ c2 n
−t/d

holds.

Remark. In the preprint [DNS] we discuss consequences of this Theorem for
our model problem, the Poisson equation on a general Lipschitz domain. In par-
ticular, we compare nonlinear methods of approximation of the solution with linear
methods.
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On interpolation of bilinear operators

Mieczys law Masty lo

Multilinear operators arise naturally in many areas of classical, harmonic anal-
ysis as well as functional analysis, including the theory of Banach operator ideals.
The latest progress in study of the bilinear Hilbert transform and bilinear multipli-
ers of Marcinkiewicz type has stimulated the need of development of a systematic
analysis of bilinear operators. Interpolation of bilinear operators is a classical
problem in interpolation theory. The situation for the real and complex method
of interpolation is well understood however few results are known for other inter-
polation methods. We present some new results on interpolation of multilinear
operators between products of Banach spaces generated by abstract methods of
interpolation in the sense of Aronszajn and Gagliardo. A variant of bilinear in-
terpolation is proved for bilinear operators from corresponding weighted c0-spaces
into Banach spaces of non-trivial periodic Fourier cotype. This result is then ex-
tended to the spaces generated by minimal and maximal methods of interpolation
determined by quasi-concave functions. In the case when a maximal costruction is
generated by Hilbert spaces, we obtain a general variant of bilinear interpolation
theorem. Combining this result with the abstract Grothendieck theorem of Pisier
yields further results. The results are applied in deriving a bilinear interpolation
theorem for Calderón-Lozanovsky, for Orlicz spaces and an embedding formula for
(E, p)-summing operators.
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Continuity envelopes in spaces of generalised smoothness, and

applications

Dorothee D. Haroske

(joint work with A.M. Caetano and S.D. Moura)

Continuity envelopes provide a new tool to characterise various types of function
spaces by their smoothness properties (with respect to Lipschitz continuity); in
particular, we consider

EX
C (t) = sup

‖f |X‖≤1

ω(f, t)

t
, t > 0,

for function spacesX , and claim that EC(X) =
(
EX

C
, uX

C

)
gives precise information

about X ; here uX
C

is an additional fine index. We continue and extend recent first
results ([H], [T]) now in the context of spaces of generalised smoothness, say,

X = B
(s,Ψ)
p,q (Rn), where Ψ might be an ‘admissible’ or, more general, a slowly

varying function.
In joint work with A.M. Caetano (Aveiro) and S.D. Moura (Coimbra), [CH], [HM],
we proved, for instance, that

EC

(
B(s,Ψ)

p,q

)
=

(( ∫ 1

t

Ψ(y)−q′ dy

y

)1/q′

, q

)
,

n

p
< s ≤ n

p
+ 1, 0 < p, q ≤ ∞,

assuming
(
Ψ(2−j)−1

)
j∈N

6∈ ℓq′ when s = n
p + 1; for 0 < q ≤ ∞ the number q′ is

given by 1
q′

= max
(

0, 1 − 1
q

)
.

From results like this we can derive Hardy-type inequalities, sharp assertions on
limiting embeddings, and estimates for the asymptotic behaviour of approximation
numbers of related compact embeddings. The proofs involve different characterisa-
tions of the underlying spaces like the Fourier-analytically based definition, atomic
decompositions, and equivalent norms involving differences.
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Banach operator ideals and eigenvalue estimates

Mieczys law Masty lo

We surevy some recent results from [1] and [2]. Let E, F and G be Banach
sequence spaces, (en) be the standard unit vector basis in c0 and Mn be the set
of all n×n complex matrices. Our aim is to give estimate ΛE(T ) ≤ f(n) ‖T ‖F [G],
where

ΛE(T ) =
∥∥∥

n∑

i=1

λi(T )ei

∥∥∥
E
, ‖T ‖F [G] =

∥∥∥
n∑

j=1

∥∥∥
n∑

i=1

τijei

∥∥∥
G
ej

∥∥∥
F

for all T = (τij) ∈ Mn and f : N → R+ is a function which does not depend on
T . It is shown (see [1]) that under some geometrical conditions the above men-
tioned estimate holds for a large class of sequence spaces with f(n) ≃ log(1 + n).
Combining this estimate with some furher geometrical estimates for Kronecker’s
matrices, we obtain that if ℓϕ is an Orlicz sequence space such that ϕ is a su-

permultiplicative Orlicz function such that t 7→ ϕ(
√
t) is equivalent to a convex

function, then Λℓϕ
(T ) ≤ C ‖T ‖ℓϕ∗

[ℓϕ] where ϕ∗ is a Young’s conjugate function of
ϕ, ϕ is the minimal submultiplicative function dominating ϕ and C = C(ϕ) > 0.
For the power function ϕ(t) = tp, 2 ≤ p < ∞, we obtain C = 1, and this gives a
celebrated result of Jonhson, König, Maurey and Retherford [3].

For a Banach sequence space E containing ℓ2, the Banach operator ideal of
(E, 2)-summing operators consists of all operators T between Banach spaces for
which {‖T (xn)‖} ∈ E for all weakly 2-summable sequences {xn}. Based on inter-
polation theory, recently several key results within the theory of (q, 2)-summing
operators and its applications have been extended to the more general case of
(E, 2)-summing operators. We only present a variant for (E, 2)-summing oper-
ators of a striking composition formula due to H. König, J.R. Retherford and
N. Tomczak-Jaegermann [4], which in its original formulation says that the com-
position TN ◦ ... ◦ T1 of N operators Tk between Banach spaces which are (qk, 2)-
summing, is 2-summing and compact provided that 1/q1 + ...+ 1/qN > 1/2.
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Mini-Workshop: Compactness Problems in Interpolation Theory 2127

Participants

Prof. Dr. Fernando Cobos

cobos@mat.ucm.es

Depto. de Analisis Matematico
Facultad de Matematicas
Universidad Complutense de Madrid
E-28040 Madrid

Prof. Dr. Michael Cwikel

mcwikel@techunix.technion.ac.il

Department of Mathematics
Technion
Israel Institute of Technology
Haifa 32000
ISRAEL

Dr. Luz M. Fernandez-Cabrera

luz fernandez-c@mat.ucm.es

Departamento de Matematica Aplicada
Escuela Universitaria de
Estadistica, Universidad
Complutense de Madrid
E-28040 Madrid

Dr. Pedro Fernandez-Martinez

pedrofdz@um.es

Departamento de Matematica Aplicada
Facultad de Informatica
Universidad de Murcia
Campus de Espinardo
E-30071 Espinardo Murcia

Dr. Dorothee Haroske

haroske@minet.uni-jena.de

Mathematisches Institut
Friedrich-Schiller-Universität
Ernst-Abbe-Platz 1-4
07743 Jena

Prof. Dr. Natan Kruglyak

natan@sm.luth.se

Department of Mathematics
Lulea University of Technology
S-97187 Lulea

Prof. Dr. Thomas Kühn
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