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Introduction by the Organisers

“Large Scale Stochastic Dynamics” is at the crossroad of probability theory and
statistical physics. One central theme of statistical physics is the emergent be-
havior resulting from the interaction of many identical components, the paradigm
being a fluid or a gas. On the atomistic scale they consist of a huge number of
identical molecules. Their motion is governed by Newton’s equations of classi-
cal mechanics (ignoring quantum effects). The emergent description, valid only
for particular initial states and on a sufficiently coarse space-time scale, are the
compressible Navier-Stokes equations of fluid dynamics. Roland Dobrushin (1929–
1995) and Frank Spitzer (1926–1992) had the vision that in the context of stochas-
tic dynamics with many identical components the issue of emergent behavior is
both mathematically challenging and important in modelling applications. The
latter judgement turned out to be more than true. Stochastic algorithms, such as
kinetic Monte Carlo, importance sampling, Monte Carlo Markov chains, Glauber
dynamics, and others, are daily practice. Their mathematical vision has evolved
over the past twenty years into a rich, multifaceted research program. Our work-
shop is like a snap-shot of the current activities. A partial list of topics reads

• hydrodynamic limit for multi-component stochastic lattice gases
• steady state large deviations for driven systems
• random walks in random environments
• directed polymer in a random potential, spin glasses
• statics and dynamics of interfaces
• glassy dynamics
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We had 49 participants from 11 countries, mostly probabilists, but also experts
from partial differential equations and statistical physics. They all enjoyed tremen-
dously the unique and stimulating atmosphere at the Mathematische Forschungsin-
stitut Oberwolfach and hope to return some day.

Claudio Landim,
Stefano Olla,
Herbert Spohn.
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József Fritz (joint with Bálint Tóth)
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Katalin Nagy (joint with József Fritz and Stefano Olla)
Equilibrium Fluctuations for a System of Harmonic
Oscillators with Conservative Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2272

Márton Balázs
Random walking shocks in interacting particle systems . . . . . . . . . . . . . . . . 2275

Stefan Großkinsky (joint with G.M. Schütz and H. Spohn)
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Abstracts

Competition interfaces in last-passage percolation and second class

particles

Pablo A. Ferrari

(joint work with Leandro P. R. Pimentel)

The particle configuration in the one-dimensional nearest neighbor totally asym-
metric simple exclusion process can be mapped into the growth interface of a
last-passage percolation model in Z2 (Rost, 1981).

The macroscopic behavior of the density profile of the exclusion process is gov-
erned by the Burgers equation (Benassi and Fouque 1987, Rezakhanlou 1991).
This corresponds to the “shape theorem” in last-passage percolation (Rost 1981,
Seppäläinen 1998). An important property of the exclusion process is that the so
called second class particles (that follow roughly the behavior of a perturbation
of the system) are asymptotically governed by the characteristics of the Burgers
equation. When there is only one characteristic, the second class particle follows
it (Ferrari 1992, 1994, Rezakhanlou 1995, Seppäläinen 2001); when there are in-
finitely many, the particle chooses one of them at random to follow (Ferrari and
Kipnis 1995). These results hold when the initial distribution is a product measure
with densities λ ∈ (0, 1], ρ ∈ [0, 1), to the left and right of the origin respectively.
The existence of infinitely many characteristics occur at points where the solution
of the Burgers equation is a rarefaction front. The rescaled position of the second
class particle converges almost surely to a random variable uniformly distributed
in the interval [1−2λ, 1−2ρ] as time goes to infinity (Mountford and Guiol 2004).

Pimentel (2004) shows that the competition interface between two growing clus-
ters in first-passage percolation, when suitable rescaled, converges almost surely
to a random direction with a so far unknown distribution. Motivated by the sim-
ilarity of these phenomena, we investigate the relation between the second class
particle and the competition interface in last-passage percolation. We conclude
that one object can be linearly mapped into the other (as processes) realization by
realization. Indeed, the difference of the coordinates of the competition interface
at time t is exactly the position of the second class particle at that time (Ferrari
and Pimentel 2004). The map permits to describe the distribution of the angle of
the competition interface for last-passage percolation in the random conic region
corresponding to the particle configuration distributed with the product measure
with densities λ and ρ to the left and right of the origin, respectively. The result is
as follows: Call ϕn the position in Z2 of the nth point of the competition interface
(this is a right-up path starting at (1, 1)). It holds almost surely,

(1) lim
n→∞

ϕn

|ϕn|
= eiθ
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where θ ∈ [0, 90o] is given by

(2) tan θ =





λρ
(1−λ)(1−ρ) if ρ ≥ λ

(
U−1
U+1

)2
if ρ < λ

and U is a random variable uniformly distributed in [1 − 2λ, 1 − 2ρ]. So that
there is a deterministic/random phase transition in the asymptotic inclination of
the boundaries of the conic region (corresponding to the particle densities), at the
point λ = ρ. More details in Ferrari and Pimentel (2004a). A similar phenomena
has been observed by Derrida and Dickman (1991) in first passage percolation.

On the other hand, the asymptotic behavior of the competition interface is
related to the geodesics, random paths maximizing the passage time. We show that
each semi-infinite geodesic has an asymptotic direction and that two semi-infinite
geodesics with the same direction must coalesce. This has also been proven by
James Martin (2004). The approach follows Newman (1995) who proved analogous
statements for first-passage percolation (see also Licea and Newman 1996 and
Howard and Newman 2001). As a consequence, we get a law of large numbers
for the competition interface in the positive quadrant (Z+)2; this corresponds to
λ = 1 and ρ = 0. In this restricted case, the method is an alternative to the proof
of Mountford and Guiol.
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H. Poincaré Anal. Non Linéaire 12, no. 2, 119–153.
[16] Rost, H. (1981) Nonequilibrium behaviour of a many particle process: density profile and

local equilibria. Z. Wahrsch. Verw. Gebiete 58, no. 1, 41–53.
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Lyapunov Exponent for the Parabolic Anderson Model in Rd

M.C. Cranston and T. Mountford

We consider the asymptotic almost sure behavior of the solution of the equation

u(t, x) = u0(x) +
κ

2

∫ t

0

∆u(s, x)ds+

∫ t

0

u(s, x)dWx(s)

where {Wx : x ∈ Rd} is a field of Brownian motions. In fact, we establish exis-
tence of the Lyapunov exponent, λ(κ) = limt→∞

1
t logu(t, x). We also show that

c1κ
1
3λ(κ) ≤ c2κ

1
5 as κ ↘ 0 under the assumption that the correlation function of

the background field {Wx : x ∈ Rd} is Cβ for 1 < β ≤ 2.
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Universality in Sherrington-Kirkpatrick’s Spin Glass Model

Philippe Carmona

(joint work with Yueyun Hu)

We show that the limiting free energy in Sherrington-Kirkpatrick’s Spin Glass
Model does not depend on the environment. It does not depend on the specific
realization of environment, nor does it depend on the law of the centered environ-
ment, up to some normalization constant.

The physical system is an N -spin configuration σ = (σ1, . . . , σN ) ∈ {−1, 1}N .

Each configuration σ is given a Boltzmann weight e
β√
N

HN (σ)+h
P

i σi where β =
1
T > 0 is the inverse of the temperature, h is the intensity of the magnetic inter-
action, HN (σ) is the random Hamiltonian

HN (σ) = HN (σ, ξ) =
∑

1≤i,j≤N

ξijσiσj ,

and (ξij)1≤i,j≤N is an i.i.d family of random variables, admitting order three mo-
ments, which we normalize:

(1) E[ξ] = 0 , E
[
ξ2
]

= 1 , E
[
|ξ|3
]
< +∞ .

The object of interest is the random Gibbs measure

〈f(σ)〉 =
1

ZN
2−N

∑

σ

f(σ)e
β√
N

HN (σ,ξ)+h
P

i σi ,

and in particular the partition function

ZN = ZN(β, ξ) = 2−N
∑

σ

e
β√
N

HN (σ,ξ)+h
P

i σi .
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We shall denote by g = (gij)1≤i,j≤N an environment of i.i.d Gaussian standard
random variables (N (0, 1)).

Recently, F. Guerra and F.L. Toninelli [1, 2] gave a rigorous proof, at the
mathematical level, of the convergence of free energy to a deterministic limit, in a
Gaussian environment,

1

N
logZN (β, g) → α∞(β) a.s. and in average.

Talagrand [4] then proved that one can replace the Gaussian environment by a
Bernoulli environment ηij , P (ηij = ±1) = 1

2 , and obtain the same limit: α∞(β).
We shall generalize this result.

Theorem 1. Assume the environment ξ satisfies (1). Then,

1

N
logZN (β, ξ) → α∞(β) a.s. and in average.

Furthermore, the averages αN (β, ξ)
def
= 1

N E[logZN(β, ξ)] satisfy

|αN (β, ξ) − αN (β, g)| ≤ 9E
[
|ξ|3
] β3

√
N
.

Therefore the limiting free energy α∞(β) does not depend on the environment,
hence the Universality in the title of this paper : this independence from the
particular disorder was already clear to Sherrington and Kirkpatrick [3] although
they had no mathematical proof of this fact (Guerra and Toninelli [2] provided
a physical proof in the case the environment is symmetric with a finite fourth
moment).

Notice eventually that α∞(β) can be determined in a Gaussian framework where
Talagrand [5] recently proved that it is the solution of G. Parisi’s variational for-
mula.

The universality property can be mechanically extended to the ground states,
that is the supremum of the families of random variables:

SN (ξ) = sup
σ

∑

1≤i,j≤N

σiσjξij =
√
N lim

β→+∞
1

β
logZN (β, ξ) .

F. Guerra and F.L. Toninelli [1, 2] proved that N−3/2SN(g) converges as and
in average to a deterministic limit e∞. Here is the generalization :

Theorem 2. Assume the environment ξ satisfies (1). Then,

N−3/2SN (ξ) → e∞ a.s. and in average.

Furthermore, the averages satisfy, for a universal constant C > 0,

N−3/2|E[SN (ξ)] −E[SN (g)]| ≤ C
(
1 + E

[
|ξ|3
])
N−1/6 .
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We end this introduction by observing that we do not need the random variables
ξij to share the same distribution. They only need to be independent, to satisfy (1)

and such that supij E
[
|ξij |3

]
< +∞.
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Kawasaki dynamics at critical temperature

Cedric Bernardin

We are interested in the variance of the occupation time of a site for an inter-
acting particle system known as Kawasaki dynamics. Formally, the dynamics is a

Markov process whose state space (or configuration space) is Ω = {0, 1}Z
d

. A con-
figuration η describes the occupation of sites in the sense that η(x) = 1 if there is a
particle on site x and η(x) = 0 otherwise. This interacting particle system (ηt)t≥0

consists of particles performing random walks over the sites of Zd with jump rates
depending on the interaction with nearby particles and satisfying the exclusion
rule: there is at most one particle by site. Consequently, a particle sitting on site
x jumps to site y with rate cx,y(η) only if the site y is not occupied by an another
particle (otherwise the jump is canceled). Consider a finite range and translation
invariant ferromagnetic potential (JA)A⊂Zd and an inverse temperature β > 0.
The formal Hamiltonian is given by

H(η) =
∑

A⊂Zd

JAη
A

where for a finite subset A of Zd

ηA =
∏

z∈A

η(z)

The lattice gas will be considered under a shift invariant Gibbs state µ associated
to the potential (JA)A and temperature β−1. It means that µ is a probability on
Ω satisfying the following DLR equations

µ
(
{η(x) = 1 | η{x}c}

)
=

(
1 + exp

[
β
∑

x∈A

JA\{x}η
A\{x}

])−1
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where η{x}c is an arbitrary outside configuration on {x}c. Every Gibbs measure
is reversible for the dynamics. Since the density of particles is conserved, these
measures are labeled by the density ρ of particles.
Let us fix the density ρ and the inverse temperature β and consider the gas in
thermal equilibrium under the Gibbs measure µρ,β . We will often omit the index
β (or ρ) when the temperature and density will be fixed. The expectation with
respect to µρ,β is denoted by < · >. The quantity of interest is the density-density
correlation function

(1) ut(x) =< ηt(x)η0(0) > −ρ2

The Fourier transform of ut, also known as structure function in the physical
literature, is defined by

(2) ût(k) =
∑

x∈Zd

e2iπk·xut(x)

The static compressibility χ = χ(ρ, β) is given by

χ =
∑

x∈Zd

u0(x) = û0(0)

This quantity is well defined for β < βc where βc is the inverse critical temperature
defined as the minimal β for which χ diverges.

In the case of general Kawasaki dynamics, little is known about the density-
density correlation function. Nevertheless, we know that time correlations cannot
decay exponentially because of the conservation law (cf. [2], p. 176)

ut(0) =< ηt(0)η0(0) > −ρ2 ≥ ct−d/2

In fact, we are not directly interested in the density-density correlation function
but in the time t variance σ2

t of the occupation time of a site. This last quantity
is related to the density-density correlation function by the following formula

(3) σ2
t = Eρ,β

[∫ t

0

(ηs(0) − ρ)ds

]2

= 2

∫ t

0

(t− s)us(0)ds

where Eρ,β denotes the expectation with respect to the law of the process (ηt)t≥0

starting from µρ,β .
Here is our main theorem.

Theorem 1. If β < βc, we have the following lower bounds for the Laplace trans-
form of the time t variance σ2

t :

lim inf
λ→0

n(λ)

∫ +∞

0

e−λtσ2
t dt ≥





C1χ(ρ)3/2 for d = 1

C2χ(ρ)2 for d = 2

Cd

∫

k∈[0,1]d

û2
0(k)∑d

j=1 sin2(πkj)
dk for d ≥ 3
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where Cd is a positive constant independent of ρ, β and the normalization function
n(λ) satisfies

n(λ) =





λ3/2 for d = 1

λ2(− logλ)−1 for d = 2

λ2 for d ≥ 3

In a Tauberian sense, this theorem means that






lim inf{ t−3/2σ2
t } > 0 for d = 1

lim inf {(t log t)−1σ2
t } > 0 for d = 2

lim inf {t−1σ2
t } > 0 for d ≥ 3

Remark that the normalization function is the same as the function given by Kip-
nis in [1] for the simple symmetric exclusion process, a simple example of Kawasaki
dynamics.

More interesting than the normalization function is the dependence on the com-
pressibility (and on the structure function for the dimension d ≥ 3) of the lower
bounds. These bounds are valid for all temperature greater than the critical tem-
perature defined as the temperature for which the static compressibility χ(ρ, β)
becomes infinite. In dimension d = 1, 2, they are clearly divergent as β → βc.
The case of the dimension d ≥ 3 is more intricate. Indeed, it is conjectured ([2],
pp.209-210) that for β = βc, the static structure function is of the following form

(4) û0(k) ∼k→0 ‖k‖−2+η

with the critical exponent η = 0.03 for d = 3 and η = 0 for d ≥ 4. Assuming
this fact, we obtain that the lower bounds remain finite as β goes to βc if and
only if d ≥ 7. In fact, at critical temperature, assuming that (4) reflects the real
behavior of the static structure function, we are able to give some lower bounds
for the Laplace transform of the time t variance of the occupation time. This is
the contain of the following theorem.

Theorem 2. Assume that at inverse critical temperature βc, the critical static
structure function is of the form

û0(k) ∼k→0 ‖k‖−2+ηΦ(k)

where Φ is a bounded continuous function such that Φ(0) > 0 and η is the critical
static exponent given by η = 1/4 for d = 2, η = 0.03 for d = 3 and η = 0 for
d ≥ 4.
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Then we have for sufficiently small λ,

∫ ∞

0

dte−λtσ2
t dt ≥





C2λ
−38/15 for d = 2

C3λ
−(11−4η)/(4−η) for d = 3

C4λ
−5/2 for d = 4

C5λ
−9/4 for d = 5

C6λ
−2| log(λ)| for d = 6

Cdλ
−2 for d ≥ 7

where Cd is a positive constant.

This theorem is established assuming only a static assumption concerning the
structure function. A more general hypothesis is that at critical temperature the
dynamical structure function is of the form:

ût(k) = ‖k‖−2+ηΨ(‖k‖zt)

Here, Ψ is some function vanishing at infinity such that Ψ(0) = 1. The parameter
z is known as the dynamical critical exponent. [2] presents an heuristic argument
to argue that z = 4− η. Assuming this conjectural value of the dynamical critical
exponent, one can establish equalities in the theorem just above. Hence, our results
are consistent with this conjectural value of z.
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On the Realizability of Point Processes with Specified One and Two

Particle Densities

Joel L. Lebowitz

(joint work with O. Costin, T. Kuna and E. R. Speer)

The microscopic structure of macroscopic systems, such as fluids, is best de-
scribed by the joint n-particle densities ρn(r1, ...rn), where the r1, ..., rn are posi-
tion vectors in Rd. The most important of these are the one particle density ρ1(r1)
and the pair density ρ2(r1, r2). For spatially homogeneous systems, the only ones
we shall consider here, ρ1(r1) = ρ and ρ2(r1, r2) = ρ2g(r1−r2) with g(r) = g(−r);
thus ρg(r) is the density of particles at a displacement r from the position of a
specified particle. For pure fluid phases g(r) → 1 as |r| → ∞.

The theory of classical equilibrium fluids is based in large part on finding good
approximations to g(r). This leads to an interesting and important question:
given a density ρ > 0 and a candidate g(r), obtained via some approximate the-
ory or just invented for capturing a certain behavior, do these arise from some
actual distribution of particles in d-dimensional space? That is, does there exist a
point process—a probability measure on sets of points in Rd—with density ρ and
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with pair density corresponding to the proposed g(r)? More generally, what are
necessary and sufficient conditions on ρ and g(r) for this to be true? For more
background on the long history of this realizability problem, see [1] and references
therein.

One may also consider the realizability problem on the lattice Zd. We assume
the exclusion condition that each lattice site contains at most one particle. Now
ρ is the probability that there is a particle on any fixed site and ρ2g(r1 − r2) the
probability that there are particles at r1 and r2; the exclusion condition corre-
sponds formally to g(0) = 0. In what follows we will frequently state results for
the continuum case, making some comment on the translation to the lattice when
that is more complicated than simply replacing integrals by sums.

There are some obvious conditions which ρ and g(r) must satisfy [1]:

ρ > 0 and g(r) ≥ 0;(1)

Ŝ(k) ≡ ρ+ ρ2

∫

Rd

eik·r [g(r) − 1] dr ≥ 0;(2)

VΛ ≡ ρ|Λ| + ρ2

∫ ∫

Λ

[g(r1− r2) − 1] dr1dr2 ≥ θ(1 − θ).(3)

In (3), VΛ is the variance of the number NΛ of particles in a region Λ ⊂ Rd and θ is
the fractional part of the mean ρ|Λ| of NΛ: ρ|Λ| = k+ θ with k = 0, 1, . . . and 0 ≤
θ < 1. These conditions may, however, be only the tip of the iceberg. Necessary
and sufficient conditions for realizability can be given in the form of an uncountable
number of positivity conditions on ρ and g(r) [2]: Given any functions f2(r1, r2)
and f1(r) such that, for any n points r1, . . . , rn,

∑
i6=j f2(ri, rj)+

∑
i f1(ri)+1 ≥ 0,

we must have

(4) ρ2

∫ ∫

Λ

g(r1, r2)f2(r1, r2)dr1dr2 + ρ

∫

Λ

f1(r)dr + 1 ≥ 0

for all Λ ⊂ Rd. Conditions (1)–(3) may be obtained from (4) by appropriate
choices of f1 and f2, but clearly represent just a very small subset of the latter
equations. Nevertheless, we must confess that we do not have at the present time
any example which satisfies (1)–(3) and not (4) in Rd. We do however have such
an example on the lattice Z, which we shall now describe. (The conditions for Zd

corresponding to (1)–(4) are obtained in the obvious way.)
Suppose that for r ∈ Z we define

(5) g(r) =

{
0, for r = 0,±1,
1, for |r| ≥ 2.

This g describes a model with on-site and nearest neighbor exclusion and with no
correlation, on the pair level, for sites separated by two or more lattice spacings.
It is then easy to check that (1)–(3) are satisfied for for ρ ≤ 1/3, but a simple
argument shows that in fact there is a critical density ρc < 1/3 such that the
process is not realizable for ρ > ρc (a numerical calculation indicates that ρc <
0.3287). On the other hand it is easy to construct explicitly a realization of (5)
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for ρ ≤ 1/4: Start with a Bernoulli measure on Z with density λ and then remove
any particle from an occupied site x if and only if site x+ 1 is also occupied. This
will yield a translation invariant state with density ρ = λ(1 − λ) ≤ 1/4 and with
g(r) given by (5). Whether (5) is realizable for any ρ > 1/4 (i.e., whether or not
ρc > 1/4) is a complete mystery to us at present. We can show, however, that the
state constructed above corresponds to a renewal process, for which the sequence
of interparticle distances is Markovian, and that such a renewal process with g(r)
given by (5) cannot exist for ρ > 1/4. (The corresponding result on R is discussed
in [1], where it is shown that a renewal process exists with

(6) g(r) =

{
0, for |r| ≤ 1,
1, for |r| > 1.

if and only if ρ ≤ 1/e. Here the maximum ρ consistent with (1)–(3) is 1/2.)
Let us now state a general theorem about realizability of a given ρ and g(r),

r ∈ Rd.

Theorem: Let

g(r) =

{
0, |r| ≤ D,
exp(−ϕ(r)), |r| > D,

where for some Φ ≥ 0,

(7)

n∑

i=1

ϕ(ri) ≥ −2Φ whenever |ri − rj | ≥ D, 1 ≤ i < j ≤ n.

Then ρ and g(r) are realizable whenever

(8) ρ ≤
(
e1+2Φ

∫

Rd

|g(r) − 1| dr
)−1

.

Note that condition (7) is satisfied for any D ≥ 0 (and Φ = 0) if ϕ(r) ≥ 0 for
all r, and for D > 0 (i.e., with a hard core) if ϕ(r) decays faster than |r|−(d+ε) for
|r| → ∞ [3]. A similar theorem holds in the lattice case Zd; the integral has to be
replaced by a sum and the hard core condition is automatically satisfied because
at most one particle can occupy any site. The theorem is a generalization of a
result of R. V. Ambartzumian and H. S. Sukiasian (A-S) [4], who considered only
the case ϕ ≥ 0 (g ≤ 1). For the example (5) the theorem gives existence only
for ρ ≤ (3e)−1, so it is clearly not optimal. Readers with a statistical mechanics
background will recognize the right hand side of (8) as the Ruelle-Penrose lower
bound for the radius of convergence of the fugacity expansion for an equilibrium
system with pair potential ϕ given by g(r) = e−ϕ(r) [3].

The construction by A-S of the point process corresponding to ρ and g(r), which
we follow, does not in general yield a Gibbs measure. The existence of a Gibbs
measure with a decaying pair potential which realizes a given ρ and g(r) was proven
by L. Koralov for lattice gases when ρ is sufficiently small and

∑
r
|g(r) − 1| < 2

[5]. In general, if any measure realizes ρ and g(r) then we can ask for the measure
which maximizes the entropy subject to the constraint of the given ρ and g; this
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should “formally” be a Gibbs measure with some pair potential [6]. There is no
guarantee, however, that this potential would have any good decay property.

Acknowledgments: We thank S. Goldstein and S. Torquato for many useful
discussions.
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Stochastic lattice gases with dynamical constraints and glassy

dynamics

Cristina Toninelli

(joint work with G.Biroli and D.S.Fisher)

I report results obtained in collaboration with G.Biroli and D.S.Fisher [9, 11, 10,
12] on some kinetically constrained lattice gases introduced in physical literature to
study glassy dynamics (see for review [6]). These are stochastic lattice gases with
hard core constraint and dynamics given by a continuous time Markov process
which consists of a sequence of particle jumps. The rates are chosen in order to
impose additional constraints (beyond hard core) to the allowed moves, namely
the jump from x to y can have zero rate even if y is empty. This is an attempt to
mimic the geometric constraints on the moves of a molecule in a dense liquid due
to neighboring molecules. These constraints could indeed cooperatively produce
a dramatic slowing down of dynamics at a finite density leading to liquid-glass
transition, a phenomenon which still remains to be understood.

I will focus on a class of models (KA) which were introduced in [4]. Let Λ ⊂ Zd

and m ∈ {1, . . . , 2d − 1}, a configuration is defined by giving for each x ∈ Λ the
occupation number ηx ∈ {0, 1}. The rate cx,y(η) for the jump from x to y is equal
to one if: i) y is nearest neighbor to x ii) and y is empty iii) and no more than
m nearest neighbors of x are occupied iv) and no more than m nearest neighbors
of y different from x are occupied. If one or more of the above constraints is not
satisfied the jump is not allowed, namely cx,y(η) = 0. Note that for m = 0 we
would recover the symmetric simple exclusion process (SSEP).

On a finite volume dynamics preserves the number of particles and the rates
satisfy the detailed balance w.r.t. the uniform measure νΛ,N on the hyperplane
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ΩΛ,N with N particles. Therefore the generator is reversible w.r.t. νΛ,N and
these are stationary measures. However, due to the degeneracy of rates, they are
not the unique invariant measures. Indeed there exist configurations which do
not evolve under dynamics and all measures concentrated on such configurations
are invariant too. For instance, if d = 2 and m = 1, frozen configurations can
be constructed by noticing that all the particles belonging to two fully occupied
consecutive rows are forever blocked. Therefore the process is not ergodic on ΩΛ,N ,
which decomposes into disconnected irreducible components. On the other hand
on infinite volume, i.e. for Λ = Zd, the rates satisfy detailed balance with respect
to Bernoulli product measure µρ at any ρ ∈ [0, 1]. A key question is whether the
process is ergodic in L2(µρ), i.e. if zero is a simple eigenvalue of the generator. In
this case spectral theorem would guarantee that time averages of local quantities
converge in the long time limit to averages over the equilibrium ensemble µρ. If
the process is ergodic for ρ ≤ ρc and not ergodic for ρ > ρc we say that and
ergodic/non-ergodic transition occurs at ρc. From numerical simulations [4] it has
been conjectured that such a transition occurs at ρc ' 0.881 for the model on
the cubic lattice with m = 3. Analogous ergodicity breaking transitions have been
found in different approximate theories for supercooled liquids (e.g. mode coupling
theory and random first order scenario) and have been advocated as the cause of
the slowing down of dynamics and the onset of liquid-glass transition.

Another relevant issue is the asymptotic displacement of a tagged particle.
Indeed, for many supercooled liquids, a striking decrease of the mean square dis-
placement of the tracer occurs near the glass transition [2]. For KA model, as
long as the process is ergodic, a central limit theorem holds [3] and the position
of the tagged particle in equilibrium converges, under diffusive space-time rescal-
ing, to Brownian motion with a density dependent self-diffusion coefficient DS(ρ).
This is expressed by a variational formula as in [7]. However, due to the degen-
eracy of rates, one cannot extend the strict positiveness for such formula proven
for SSEP in [7]. Furthermore, from simulations it has been conjectured that a
diffusive/sub–diffusive transition takes place at a critical density ρ̄, with DS = 0
for ρ > ρ̄. Indeed, on the cubic lattice with m = 3, data were found to fit well
with a transition at ρ̄ ' 0.881 and DS ∝ (ρ− ρ̄)3.1 for ρ→ ρ̄ from below [4].

Our first result [9, 11, 12] is that, for any value of the spatial dimension d and
the parameterm, an ergodic/non-ergodic transition does not occur at a non-trivial
density ρ ∈ (0, 1). More precisely, for m ≤ d−1 the process on the infinite volume
is not ergodic at any ρ ∈ (0, 1], while form > d−1 ergodicity holds at any ρ ∈ [0, 1).
The first statement can be easily established by noticing that, if m ≤ d − 1, any
fully occupied hypercube of particles can never be broken, therefore at any ρ there
exists a finite fraction of frozen particles. In the following we will focus on the
models with m > d, which are the interesting ones for the physical problem. In
these cases, through the construction of allowed paths among configurations, one
can identify an irreducible component which has unit probability w.r.t. any µρ

with ρ < 1. This, together with the product form of Bernoulli measure, allows
to establish ergodicity. Therefore, on any finite lattice the process is not ergodic
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and on the infinite lattice it is ergodic at any finite ρ. Furthermore, we derive a
crossover size above which the configuration space of the finite system is dominated
by a single ergodic component and below which finite size effects are important.
More precisely, fix a density ρ < 1 and a finite cube Λ ⊂ Zd of linear size `
and let M` be the irreducible component which is maximal w.r.t. µρ. From the
above result we have lim`→∞ µρ(M`) = 1. On the other hand, since at high density
blocked configurations are more important, limρ→1 µρ(M`) = 0. The simultaneous
limit `→ ∞ and ρ→ 1 depends on the relationship between ` and ρ: µρ(M`) → 1
(µρ(M`) → 0) for ` → ∞ faster (slower) than Ξ(ρ)d,m. This crossover length

scales as Ξ(ρ)m,d = exp◦s[c(m, d)/(1 − ρ)1/(m−d+1)], with exp◦s the exponential
iterated s times and c(m, d) constants in ρ. Only in the two-dimensional case
with m = 2 we determine the exact value of the constant, c(2, 2) = π2/18. The
rapid divergence of Ξ when ρ → 1 accounts for the apparent ergodic/non-ergodic
transition detected in simulations.

We have then studied the asymptotic displacement of the tagged particle. For
the two-dimensional case with m = 2 we prove that DS > 0 at any ρ ∈ (0, 1) [10].
The key ingredient is the identification of particular clusters of vacancies which
allow the displacement of the tagged particle when they are near it and that can
move using the vacancies they typically find around. These regions, which play an
analogous role as simple vacancies for SSEP, have a density dependent size and
distance which are both finite at any finite ρ and diverge faster than any power law
when ρ→ 1. This leads to a lower bound for DS vanishing faster than any inverse
power law. We conjecture that the same result holds in any dimension, namely
a diffusive/non-diffusive transition does not occur at any density.1 Furthermore,
we expect that the mechanism we identify not only provides a lower bound but
gives the correct scaling for DS when ρ → 1, that is DS ' 1/Ξd [9, 11, 12]. If
typical relaxation times scale as 1/DS, this would correspond to a super-Arrhenius
relaxation analogous to the one detected for supercooled liquids [2]. By performing
numerical simulations for the two dimensional case with m = 2 we successfully
checked that limρ→1(1 − ρ)lnDS(ρ) = 2c(2, 2) while the validity of the predicted
scaling for the three-dimensional case with m = 3 has been checked in [5].

Therefore, neither an ergodic/non-ergodic nor a diffusive/non-diffusive transi-
tion takes place for KA models 2 . However, at high density relaxation occurs only
through the cooperative motion of special regions whose typical size and distance
diverge very rapidly for ρ → 1. This accounts for the dramatic slowing down and
the glassy character of dynamics. Beyond the natural issue of establishing the
connection (if any) of such a mechanism with the one occurring in real systems,
several interesting questions remain open. A first issue concerns the macroscopic
behaviour, i.e. the evolution of density profiles. For non–degenerate rates, the

1The lacking step in the proof is the extension to more than two dimensions of the diffusivity
result for a particular problem of random walk on random environment. This, which we believe
to hold on physical and numerical grounds, is needed to establish that the special regions diffuse.

2In relation with the physical problem, it is relevant to study the mean field version of the
models obtained by considering the same dynamics on a Bethe lattice. In this case we find a
different scenario: an ergodic/non-ergodic transition occurs at a finite density [9, 11, 12].
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hydrodynamical limit [8] states that the coarse-grained density profile evolves un-
der a diffusion equation ∂tρ = ∇ (D(ρ)∇ρ). Although we conjecture that on large
enough length and time scales hydrodynamics will be valid at any ρ < 1 for ergodic
KA models, this seems to be hard to prove due to the degeneracy of rates. If the
conjecture is correct, another issue related to both experiments and simulations
[1] of glass-forming liquids, is the characteristic length and time scales beyond
which hydrodynamic behavior sets in and how these increase with density. Other
open questions are related to relaxation towards equilibrium. A natural quantity
to consider is the dynamical structure factor F (k, t), i.e. the Fourier transform of
the density-density correlation function at non-zero wave vector. For the simple
symmetric exclusion, F (k, t) decays exponentially at long times [8]. For KA mod-
els numerical simulations suggest that relaxation could be slower than exponential
(at least above some critical density). The decay is usually fitted by a stretched
exponential F (k, t) ∼ exp[−(t/τ(k))β ], with β < 1 [5]. This is again reminiscent
to the anomalous decay occurring at sufficiently low temperature in many glass-
forming liquids [2] and understanding whether and why this occurs for kinetically
constrained models could be very useful.
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Local Functional of Phase Separation Lines

Dmitry Ioffe

1. Introduction

For a large class of two-dimensional low temperature models of statistical me-
chanics in the phase co-existence regime the probabilistic structure of phase sep-
aration lines falls in the general framework of the thermodynamic formalism of
sub-shifts over countable alphabets. In this way statistical weights of phase bound-
aries are reinterpreted in terms of actions of Ruelle type operators with Lipschitz
continuous potentials and a local limit characterization of various observables of
these phase boundaries follows from from a spectral analysis of the latter. Recent
advances include a comprehensive implementation of such approach in the case of
the nearest neighbour Ising model model at all sub-critical temperatures.

Below I shall give examples of results which could be obtained along these lines
and try to stipulate a rather general features of the statistical weights on which
the theory relies.

2. Ising model in a strip

A canonical example of phase separation lines is given in the framework of the
nearest neighbour two dimensional Ising model below the critical temperature Tc.
Let

S∗
N = (1/2, 1/2) + [0, . . . , N − 1] × Z ⊂ Z2∗

be an infinite dual strip of width N . A spin configuration σ on S∗
N is an element

of {−1, 1}S
∗
N . Consider the so called Dobrushin’s boundary conditions

σ̄(y1, y2) = 1I{y2>0} − 1I{y2<0}.

Every σ ∈ {−1, 1}S
∗
N gives rise to the set of microscopic boundaries between re-

gions occupied by spins of different signs. Using a “rounding of corners” procedure
[DKS] contours can be represented as either open or closed self-avoiding curves
in R2. In fact to each σ there corresponds precisely one open crossing contour
γ = γ[σ] with end points at 0 and (N, 0)

The contour γ models the ~e1-oriented microscopic interface between co-existing
phases of the nearest neighbour Ising model at the inverse temperature β > βc,
where βc = 1/Tc is the phase transition threshold. The statistics P±

N,β of γ is

read from the Ising Gibbs distribution on {−1,+1}S
∗
N under Dobrushin boundary

conditions σ̄ defined above.

3. Large scale structure of γ

Our first result is an invariance principle for the interface γ under the diffusive
scaling. Similar results were previously obtained at very low temperatures using
the method of cluster expansions [DH, Ga, Hi]. Let γN be the scaling of γ by
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1/N in the horizontal (role of time) direction and by 1/
√
N in the vertical (role

of space) direction.

Theorem 3.1. For every β > βc the distribution of γN under P±
N,β weakly con-

verges on C0[0, 1] to the distribution of
√
κβB(·), where B(·) is the standard Brow-

nian bridge and κβ is the curvature of the boundary β- equilibrium crystal shape
in the horizontal direction.

The theorem has been proved in [GI], actually for Ising interfaces stretched in
arbitrary directions.

4. CLT for local functionals of γ

We continue to work with the Ising model on a strip with Dobrushin boundary
conditions. Each crossing contour γ = γ[σ] splits S∗

N into the upper (positive b.c.)
part and the lower (negative b.c) part. Let χx(σ) = ±1 be the indicator that xb
lies in the ± part. A general approach to local anti-symmetric functionals of γ has
been developed in [HIK]. Here I give two examples:

4.1. Excess magnetization. For x ∈ S∗
N let < σ(x)|γ >N,β be the conditional

expectation given that γ is the crossing contour of σ. Let also m∗
N (x) be the

expectation of σ(x) under the pure + boundary conditions on ∂S∗
N . Consider the

quantity,

∆N (σ) =
∑

x∈S∗
N

(< σ(x)|γ >N,β −χx(σ)m∗
N (x)) .

Theorem 4.1. The random variable ∆N/
√
N is asymptotically normal.

4.2. Glauber dynamics. Let L be a generator of Glauber dynamics on {−1, 1}S
∗
N

reversible with respect to P±
N,β. Define the signed area under the (random) inter-

face γ as AN (γ) = AN(σ).

Theorem 4.2. The random variable LAN (σ)/
√
N is asymptotically normal.

5. Properties of statistical weights

The probability distribution P±
N,β is based on statistical weights qβ (γ) on phase

separation lines γ. A simplifying feature of the two dimensional Ising model is that
these weights can be related by duality to the statistical weights which appear
in the high temperature expansion [CIV1, CIV2, PV]. On the other hand, the
Ornstein-Zernike theory developed in [CIV1] relies on the following four properties
of qβ (·):
Strict exponential decay of the two-point function: There exists C1 < ∞
such that, for all x ∈ Zd \ {0},

∑

λ: 0→x

qβ(λ) < C1 e
−|x|/C1 .



2250 Oberwolfach Report 43/2004

Finite energy condition: For any pair of compatible paths λ and η define the
conditional weight

q(λ | η) = q(λ q η)/q(η)

where λ q η denotes the concatenation of λ and η. Then there exists a universal
finite constant C2 < ∞ such that the conditional weights are controlled in terms
of path sizes |λ| as:

q(λ | η) < e−C2|λ| .

BK-type splitting property: There exists C3 < ∞, such that, for all x, y ∈
Zd \ {0} with x 6= y,

∑

λ: 0→x→y

q(λ) < C3

∑

λ: 0→x

q(λ)
∑

λ: x→y

q(λ) .

Exponential mixing : There exists C4 < ∞ and θ ∈ (0, 1) such that, for any
four paths λ, η, γ1 and γ2, with λ q η q γ1 and λ q η q γ2 both admissible,

q(λ | η q γ1)

q(λ | η q γ2)
< exp{C4

∑

x∈λ
y∈γ1∪γ2

θ|x−y|} .
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Current fluctuations in non-equilibrium diffusive systems

Thierry Bodineau

(joint work with Bernard Derrida)

Understanding the fluctuations of the steady state current through a system
in contact with two (or more) heat or particle reservoirs is one of the natural
questions arising in non-equilibrium physics [6, 5, 11]. We report on the paper [4]
where a functional for the current large deviations was proposed.

We consider a one dimensional diffusive open system of length N (with N large)
in contact, at its two ends, with two reservoirs of particles at densities ρa and ρb.
In the bulk, the system evolves under some conservative stochastic dynamics and,
at the boundaries, particles are created or annihilated to match the densities of
the reservoirs. Let Qt be the integrated current up to time t, i.e. the number
of particles which went through the system during time t. The large deviation
functional G associated to Qt can be written as

lim
t→∞

lim
N→∞

1

tN
log

〈
QtN2

tN
∼ q

〉
= −G(q, ρa, ρb) ,

where we used a diffusive scaling.

First of all, we would like to provide a heuristic derivation of the functional
G by thermodynamical considerations. This is based on the assumption that G
satisfies the following additivity principle. If we split a system of macroscopic unit
length into two parts of lengths x and 1 − x, then we assume that

G(q, ρa, ρb) = max
ρ

{
G(qx, ρa, ρ)

x
+
G(q(1 − x), ρ, ρb)

1 − x

}
.(1)

The idea of factorizing a partition function as the product of partition functions
in sub-domains may look innocuous from the perspective of equilibrium statistical
mechanics, however such property is not true in general. In particular the density
large deviation functional associated to the steady is not additive (see [7]). The
assumption behind (1) is that conditioned on the current deviation q, the system
remains essentially close to a fixed profile over a long period of time. This profile
is chosen in order to facilitate the current deviations and is a solution of the
variational principle (5).

The next step is to introduce the two macroscopic parameters from which the
functional can be recovered. Suppose that for ρa = ρ + ∆ρ and ρb = ρ with ∆ρ
small, the diffusion coefficient D(ρ) satisfies Fick’s law

〈Qt〉
t

=
1

N
D(ρ) ∆ρ .(2)

Suppose that for ρa = ρb = ρ the variance of the current can expressed in terms
of the conductivity σ(ρ)

〈Q2
t 〉
t

∼ 1

N
σ(ρ) .(3)
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If we keep dividing the system into smaller and smaller pieces and assume that
for a piece of small (macroscopic) size ∆x (i.e. of N∆x sites), the behavior is
essentially gaussian

1

∆x
G(q∆x, ρ, ρ+ ∆ρ) ' − [q∆x+D(ρ) ∆ρ]

2

2σ(ρ)∆x
,(4)

thus one finds a variational form for G

G(q, ρa, ρb) = min
ρ(x)

[∫ 1

0

[
q +D(ρ(x))ρ′(x)

]2

2σ(ρ(x))
dx

]
,(5)

where the minimum is over all the functions ρ(x) with boundary conditions ρ(0) =
ρa and ρ(1) = ρb.

For systems of purely classical interacting particles [11] in contact with two
reservoirs the theory is, to our knowledge, less developed. However, one may
wonder whether similar additivity principle pertains in this context and whether
some universal features can be predicted by the formula (5). Notice also that the
additivity principle can be used to study more complex diffusive networks including
loops and that the expression (5) satisfies the Gallavotti-Cohen symmetry [8].

A mathematical justification of (5) can be achieved for some stochastic dynam-
ics by using the formalism of hydrodynamic large deviations (see [10, 12]). In
particular for the SSEP, the variational principle (5) can be recovered and the
additivity principle justified a posteriori. In general only the space/time version
of (5) is valid, i.e. that the exponential cost of observing a current profile q(x, t)
over a period [0, T ] and a density profile ρ(x, t) such that ∂tρ = −∇xq is given by

G(q, ρ) =

∫ T

0

dt

∫ 1

0

dx

[
q(x, t) +D(ρ(x, t))ρ′(x, t)

]2

2σ(ρ(x, t))
.(6)

Observing a mean current q̂ = 1
T

∫ T

0
dt
∫ 1

0
dx q(x, t) amounts to integrate (6) over

time and this cannot always be reduced to (5). This was understood by Bertini,
De Sole, Gabrielli, Jona–Lasinio, Landim [3] who introduced a multi-dimensional
extension of (6) and exhibit a counter-example of (5) for a specific choice of D
and σ.
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The directed polymer in random environment is diffusive at weak

disorder

Francis Comets

(joint work with Nobuo Yoshida)

In this popular model, the polymer is a long chain of size n which is stretches
in one particular direction of Zd+1, and is modelled as a nearest neighbor path
in Zd. The environment is given by independent identically distributed random
variables η(n, x), with all finite exponential moments. The polymer is attracted
by large positive values of the environment, and repelled by large negative ones.
All these considerations lead to the polymer measure:

µn(dω) = Z−1
n exp{β

n∑

t=1

η(t, ωt)} P (dω)

with P the distribution of the simple random walk on the integer lattice Zd,
β ∈ [0,∞) a “temperature inverse” prescribing how strongly the polymer path ω
interacts with the medium, and Zn the normalizing constant making µn a prob-
ability measure on the path space. Note the measure µn depends on n, β and on
the environment η.

The issue is to study the asymptotics of the polymer ω as n → ∞ under
the measure µn, for typical realization of the environment; In particular, one is
interested in the exponent ξ ∈ [1/2, 1) such that

|ωn| is of order nξ

as n → ∞. The ground states (limit as β → ∞) of the model is the oriented last
passage percolation model, for which it is known, for d = 1 and very few specific
cases for the distribution of η, that ξ = 2/3 ([7], [10]): the path is superdiffusive,
in contrast with the simple random walk which is diffusive (corresponding to ξ =
1/2). Another quantity of interest is the exponent χ ∈ [0, 1/2] for the fluctuations
of the normalizing constant, i.e. such that

lnZn − an is of order nχ for some constant an
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as n → ∞. A number of predictions, conjectures and numerical estimates can
be found in the physical literature [5], [8], on the values on such exponents, and
relations between them. In particular, the scaling relation

χ = 2ξ − 1

is believed to hold. In fact, for d = 1, β = ∞ and a few specific cases for the
distribution of η, χ, it is proven that χ = 1/3, i.e., the scaling relation holds in
this case.

Weak and Strong disorder: Bolthausen [1] considered the positive martin-
gale Zn/EZn converges almost surely, and that a dychotomy takes place:

lim
n
Zn/EZn





> 0 a.s.
or

= 0 a.s.

A natural manner for measuring the disorder due to the random environment,
is to call weak disorder the first case, and strong disorder the second one.
Note that weak disorder can be defined as the region where χ = 0 and an =
n lnE[expβη(t, x)]. The terminology is justified, since the former case happens in
large enough dimension for small β (including β = 0), and the latter case for large
β and general unbounded environment. A more precise statement is given in the
next theorem. But first, the reader should be warned that weak disorder is not
equivalent to small β: Indeed, in dimension d = 1 or 2, strong disorder holds for
all β non-zero ([2], [3]).

Theorem: ([6] and [1]) Assume d ≥ 3 and β small enough so that

E(exp 2βη(t, x))

(E expβη(t, x))2
× P (∃n > 0 : ωn = 0) < 1 .

Then, weak disorder holds and, for almost every realization of the environment,

the rescaled path ω̂(n), t → ω̂
(n)
t := n−1/2ωnt, converges in law under µn to the

Brownian motion with diffusion matrix d−1Id.

This result was quite a surprise for the scientific community who did not expect
that diffusivity could take place!

The second moment method was used to derive the theorem. The assumption
on β means that the above martingale is bounded in L2, and it is far from being
necessary. To improve on it, it was necessary to wait for fifteen year: In the
following criterium, the crucial quantity is

In = µ⊗2
n−1(ωn = ω̃n) ,

i.e., the probability for two polymers ω and ω̃ independently sampled from the
polymer measure, to meet at time n.

Theorem: ([2] for the gaussian case, [3] for the general case). For non-zero β
it holds
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{
lim
n
Zn/EZn = 0

}
=
{∑

n

In = ∞
}

almost surely.

The result is obtained by writing the semi-martingale decomposition of
lnZn/EZn, and studying separately the terms. This is a refined (conditional) sec-
ond moment condition, and the criterium can also be used to obtain quantitative
information on the polymer measure itself, on its concentration and localization.

Now, it is natural to conjecture that diffusive behavior takes place in the full
weak disorder region. This indeed what we prove in this work in progress.

Theorem: Assume d ≥ 3 and weak disorder. For all bounded continuous
function F on the path space, we have

lim
n
µn[F (ω̂(n))] = EF (B)

in probability. (B is the Brownian motion with diffusion matrix d−1Id.)

The statement shows that indeed the scaling relation holds in the full weak
disorder region.

In the proof we introduce an infinite time horizon measure on the path space
which is a natural limit of the sequence µn. This measure is a time inhomoge-
neous Markov chain which depends on the environment. We cannot prove the
central limit theorem for this Markov chain directly. We need to average over
the environment. In order to prove convergence in probability with respect to
the environment, we use again a second moment method by introducing a second
independent copy of the polymer before performing this average. All through, we
make use of the convergence of the series

∑
In as the main technical ingredient.

To finish with, we mention an interesting open (so far) question. Does strong
disorder imply super-diffusivity? For instance, what happens in the case of small
dimension d and small β is not clear at all.
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Brownian Directed Polymers in Random Environment

Nobuo Yoshida

(joint work with Francis Comets)

We study the thermodynamics of a continuous model of directed polymers in
random environment. The directed polymer in this model is a d-dimensional Brow-
nian motion (up to finite time t) viewed under a Gibbs measure which is built up
with a Poisson random measure on R+ × Rd (=time × space). Here, the Poisson
random measure plays the role of the random environment which is independent
both in time and in space. We now give the definition of the random Gibbs measure
which we call the polymer measure.

• The Brownian motion: Let ({ωt}t≥0, P ) denote a d-dimensional standard
Brownian motion. To be more specific, we let the measurable space (Ω,F) be
C(R+ → Rd) with the cylindrical σ-field, and P be the Wiener measure on (Ω,F)
such that P{ω0 = 0} = 1.

• The space-time Poisson random measure: We let η denote the Poisson ran-
dom measure on R+ × Rd with the unit intensity, defined on a probability space
(M,G, Q).

• The polymer measure: We let Vt denote a “tube”around the graph
{(s, ωs)}0<s≤t of the Brownian path,

(1) Vt = Vt(ω) = {(s, x) ; s ∈ (0, t], x ∈ U(ωs)},
where U(x) ⊂ Rd is the closed ball with the unit volume, centered at x ∈ Rd. For
any t > 0, define a probability measure µt on the path space (Ω,F) by

(2) µt(dω) =
exp (βη(Vt))

Zt
P (dω),

where β ∈ R is a parameter and

(3) Zt = P [exp (βη(Vt))] .

The model considered here, enables us to use stochastic calculus, with respect
to both Brownian motion and Poisson process, leading to handy formulas for
fluctuations analysis and qualitative properties of the phase diagram.
We discuss:

• The normalized partition function, its positivity in the limit which distin-
guishes the weak and strong disorder phases.
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• The existence of quenched Lyapunov exponent, its positivity, and its agree-
ment with the annealed Lyapunov exponent.

• An almost sure central limit theorem for the Brownian polymer for d ≥ 3 and
β smaller than some β0.

• The longitudinal fluctuation of the free energy and some of its relations with
the overlap between replicas and with the transversal fluctuation of the path.
The results here includes an almost sure large deviation principle for the polymer
measure. Our fluctuation results are interpreted as bounds on various exponents
and provide a circumstantial evidence of super-diffusivity in dimension one.

• Relations to the Kardar-Parisi-Zhang equation.

References

[CY1] Comets, F., Yoshida, N. Brownian Directed Polymers in Random Environment To appear
in Commun. Math. Phys.

[CY2] Comets, F., Yoshida, N. Some New Results on Brownian Directed Polymers in Random
Environment, RIMS Kokyuroku 1386, 50–66, (2004).

[CSY] Comets, F., Shiga, T., Yoshida, N. Probabilistic analysis of directed polymers in random
environment: a review, Advanced Studies in Pure Mathematics, 39, 115–142, (2004).

Diffusive behavior of isotropic diffusions in random environment

Ofer Zeitouni

(joint work with Alain-Sol Sznitman)

We present results concerning the asymptotic behavior of isotropic diffusions
in random environment that are small perturbations of Brownian motion. When
the space dimension is three or more we prove an invariance principle as well as
transience. Our methods also apply to questions of homogenization in random
media. The proof is based on an induction scheme that propagates from scale to
scale a Hölder norm control on (truncated) transition probabilities, as well as a
large deviations control on the strength of “traps”.

Precise statements and a description of the main induction step are provided
C.R. Acad. Sci. Paris, Ser I, v. 339 (2004), pp. 429–434.

Spontaneous symmetry breaking in a driven two-species lattice gas

Gunter M. Schütz

(joint work with R.D. Willmann and S. Großkinsky)

While single-species driven diffusive systems in one dimension are largely un-
derstood, two-species models show a variety of phenomena that are a matter of
current research, such as phase separation and spontaneous symmetry breaking
(see [1] for a recent review). The first such model that was shown to exhibit
spontaneous symmetry breaking was a model with open boundaries that became
known as the ’bridge model’ [2, 3]. In this model, two species of particles move
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in opposite directions. Although the dynamical rules are symmetric with respect
to the two species, two phases with non-symmetrical steady states were found by
Monte Carlo simulations and mean-field calculations. While the existence of one
of the phases remains disputed [4, 5], a proof for the existence of the other one
was given for the case of a vanishing boundary rate [6].

All symmetry breaking models considered so far evolve by random sequential
update, corresponding to continuous time. We study a discrete time variation of
the bridge model with parallel sublattice update. The dynamics in the bulk is
deterministic, while stochastic events occur at the boundaries. Thus the complex-
ity of the problem is reduced, which allows to elucidate the mechanism by which
spontaneous symmetry breaking occurs in this model as well as to give a proof for
the existence of a symmetry broken phase.

The model considered here is defined on a one-dimensional lattice of length L,
where L is an even number. Sites are either empty (0) or occupied by a single
particle of either species A or B. The dynamics is defined as a parallel sublattice
update scheme in two half steps. In the first half-step particles are created and
annihilated at the two boundary sites with probability α and β, respectively,

| 0 . . . α−→ |A . . . |B . . . β−→ | 0 . . . (left)

. . . 0 | α−→ . . . B | . . . A | β−→ . . . 0 | (right) .

Note that at each boundary site, either annihilation or creation can take place in a
given time step, but not both. In the bulk, the following hopping processes occur
deterministically between sites 2i and 2i+ 1 with 0 < i < L/2:

A0
1−→ 0A 0B

1−→ B0 AB
1−→ BA.

In the second half-step, these deterministic bulk hopping processes take place
between sites 2i−1 and 2i with 0 < i ≤ L/2. Note that the dynamics is symmetric
with respect to the two particles species.

Phase diagram

The phase diagram of the model can be explored by Monte Carlo simulations.
Two phases are found:

• If α < β, the system exhibits a symmetric steady state. Here, the asymp-
totic bulk densities are ρA(i) = 0, ρB(i) = αβ/(α + β) if i is odd, and
ρA(i) = αβ/(α+ β), ρB = 0 if i is even.

• If α > β, the system resides in the symmetry broken phase. Assume the
A particles to be in the majority. Then, the bulk densities in the steady
state are ρB(i) = 0 for all i, ρA(i) = 1 for i even and ρA(i) = 1 − β for i
odd, so that the minority species is completely expelled from the system.

Thus, the dynamics of the majority species is as in the single species ASEP with
parallel sublattice update. For this system, an analytical expression for the steady
state density in a finite system is known [7]. The density profile of the majority
species in the broken phase of the sublattice bridge model equals that of the high
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density phase in the sublattice ASEP at the given parameters α and β. Particles
of the expelled species only enter the system by fluctuations exponentially small in
the system size L [8], so a typical symmetry broken configuration is stable against
fluctuations.

To establish spontaneous symmetry breaking we additionally have to show that
such a configuration can be reached from a symmetric initial condition within a
time which is increasing only algebraically in the system size. Due to the deter-
ministic bulk dynamics the state space of the process is not fully connected. But
it is obvious that the empty lattice can be reached from any initial configuration
as long as β > 0, so we take this as a symmetric initial condition. When one of the
boundary probabilities is 0 or 1, the steady state can be given exactly, consistent
with the above picture. But to avoid degeneracies in the following, we assume α,
β ∈ (0, 1) and α > β.

Symmetry breaking dynamics

Starting from the empty lattice, A (B) particles are created at every time step
with probability α at site 1 (L). Once injected, particles move deterministically
with velocity 2 (−2). Therefore, at time t = L/2 the system is in a state where
the density of A (B) particles is α (0) at all even sites and 0 (α) at all odd sites.
In this situation both creation and annihilation of particles are possible. However,
it turns out that the effect of creation of particles is negligible [8]: Whenever the
bulk density of A-particles is above β/2, the deterministic hopping transports on
average more A-particles towards site L than can be annihilated there. This leads
to the formation of an A-particle jam at the right boundary, blocking the injection
of B-particles, and vice versa a B-particle jam at the left boundary. In these jams,
the only source of vacancies is annihilation at the boundaries with probability β.
Therefore, in a jam, the density of A (B) particles at even (odd) sites is 1, while
that at odd (even) sites is 1−β. In each time step, the number of particles in each
of the two jams reduces by one with probability β. Due to fluctuations, one of the
jams, say the B-jam at the left boundary, is dissolved first. Then A-particles start
to reenter at the left boundary. Let ∆N1 be the number of entered A-particles
until the A-jam on the right boundary is dissolved. At this point the system is
again empty except for the ∆N1 entered A-particles and some finite fluctuations,
and the process of filling the lattice restarts. This establishes a cyclic behavior
and we summarize the main steps of the next cycle.

1. There are ∆N1 A-particles in the system.
2. The A-particles reach the right boundary and block the entrance of B’s.

A-particles still enter with probability α and exit with probability β < α, further
increasing the majority of A particles.

3. The B-particles reach the left boundary, blocking also the entrance of A’s.
4. The jam of B-particles is dissolved and A particles start to reenter.

Again, since α > β the majority of A-particles is increased and when the A-jam
at the right boundary is dissolved, the cycle is finished and starts with initial
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condition ∆N2 > ∆N1. The initial process from the empty lattice is a cycle
with ∆N0 = 0, and of course ∆N1 ∈ [−L/2, L/2] can also be negative due to

symmetry. But conditioning on a typical outcome ∆N1 = O(
√
L) of the first cycle

this fluctuation will be amplified after steps 2 and 4. This picture can be made
rigorous and one can show that

〈
∆Nk+1 − ∆Nk

∣∣∆Nk

〉
= 2
(
α/β − 1

)
∆Nk +O(1) .

Thus, for α < β the expected value of ∆Nk+1 −∆Nk is proportional to −∆Nk for
α < β. Fluctuations are strongly damped, leading to a symmetric phase. On the
other hand for α > β the difference is proportional to +∆Nk and thus fluctuations
are amplified towards one of the boundaries of the domain [−L/2, L/2]. Once the
boundary is reached, the amplification loop stops and one of the species will re-
main expelled from the system. The number of cycles to reach this symmetry
broken phase from a symmetric initial condition is of order logL and the time for
a cycle of order L, which yields an algebraic dependence.

We presented the sketch of a proof of spontaneous symmetry breaking for a
version of the bridge model with deterministic bulk dynamics. The amplification
loop sheds new light on the mechanism of symmetry breaking also for models
with stochastic bulk dynamics, where rigorous statements are only available for
degenerate boundary rates.
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Hyperbolic scaling problems: The method of compensated

compactness

József Fritz

(joint work with Bálint Tóth)

Historical remarks: A simple system with hyperbolic scaling is given by ṙk =
(1/2)(V ′(rk+1)−V ′(rk−1)) , where V ∈ C2(R) is convex at infinity, rk ∈ R and
k ∈Z . At a first glance ρε(t, x) := rk(t/ε) if |x − kε| < ε/2 solves ∂tρ = ∂xV

′(ρ)
as ε → 0. However, the first computer experiments performed by von Neumann
and coworkers [11] demonstrated that this numerical procedure does not converge
at all; see also Lax [9] for a rigorous treatment. In fact, the procedure should
be stabilized by an additional elliptic term as ṙk = (1/2)(V ′(rk+1)−V ′(rk−1)) +
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σ (rk+1 +rk−1−2rk) , where the value of σ > 0 may depend on initial data, see
[8,13]. In general, hyperbolic equations and systems of conservation laws develop
discontinuities (shocks), and a continuum of weak solutions emerges at the same
time. The most fundamental hyperbolic scaling problems are certainly those of
Hamiltonian systems of interacting particles; via physical arguments they result
in a system of Euler type equations like the familiar p-system: ∂tu+∂xp(v) = 0 ,
∂tv−∂xu = 0. The mathematics of two-component hyperbolic systems is much
more complex than that of a single equation, an existence theory goes back to
R. DiPerna [2,3], while the problem of weak uniqueness has been solved much
later, see A. Bressan [1]. Related results on the hydrodynamic limit (HDL) of
microscopic Hamiltonian systems are all restricted to exactly solvable models.

A fairly general method for deriving HDL of interacting stochastic systems
has been proposed by H.T. Yau [16], see also [12] on classical particle dynamics
with weak conservative noise. Unfortunately, this relative entropy method needs
smoothness of the macroscopic solution. Beyond shocks the coupling technique
of Rezakhanlou [14] works in case of one-component attractive models; the proof
relays on advanced methods of PDE theory. Here we are going to extend the
Tartar - Murat - DiPerna [15,10,2,3] theory of compensated compactness to sto-
chastic systems with two conservation laws. A first exposition of this method was
presented in [4], some non-attractive one-component models are discussed in [5,7],
HDL of the following two-component system is derived in [6].

Interacting exclusion processes: We consider particles with ±1 velocities on
Z with full exclusion, thus ωk = 0,±1 is the configuration at site k ∈ Z . The
microscopic evolution is generated by L = L0 + σ S , the dynamics consists of
independent exchanges at neighboring sites. The asymmetric component, L0 sends
(1, 0) to (0, 1) and (0,−1) to (−1, 0) at a unit rate, interaction means that (1,−1)
turns into (−1, 1) at rate two; any other action is banned. Finally, σ = σ(ε) > 0,
and the symmetric S exchanges ωk and ωk+1 at rate 1. The conserved quantities are
chosen as ηk := 1−ω2

k and ξk := −ωk , then L0ηk = φk+1−φk , L0ξk = ψk+1−ψk ,

φk =
1

2
(ηkξk+1 + ηk+1ξk) +

1

2
(ηk − ηk+1) ,

ψk =
1

2
(ηk + ηk+1 + 2ξkξk+1 − 2) +

1

2
(ηkξk+1 − ηk+1ξk) + ξk − ξk+1

are the fluxes. The symmetric component, S is acting as a discrete Laplacian; it
plays the role of the elliptic stabilization what we need even for numerical pro-
cedures. Since all stationary states are superpositions of Bernoulli measures, the
familiar Leroux system, ∂tρ+ ∂x(ρu) = 0 , ∂tu+ ∂x(ρ+ u2) = 0 is expected as the
result of HDL; ρ and u are the asymptotic densities of η and ξ , respectively.

Main result: For any ε > 0, l = l(ε) ∈ N and space-time process ζ let

ζ̂ε(t, x) :=
1

l

∑

k∈Z

a

(
x− kε

lε

)
ζk(t/ε)
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where a ≥ 0 is a smooth density of compact support. For example, if ζ := (η, ξ)

then ζ̂ε denotes the empirical process, and Ĵε corresponds to the microscopic flux
Jk := (φk, ψk) . Suppose that σ(ε) ≈ log(1/ε)

√
1/ε , l(ε) ≈

√
(1/ε) log(1/ε) , and

let Pε denote the distribution of ζ̂ε . We prove that Pε is tight in the strong topology

of L1
loc(R

2
+) , and all limit points are concentrated on weak entropy solutions of the

Leroux system. There is no result on uniqueness of the limit.

Compensated compactness: The first step of the proof is the usual one block

replacement of Ĵε with f(ζ̂ε) , where f(z) , z := (ρ, u) is just the flux of the Ler-
oux system. This follows by LSI for S . Next we introduce the Young measure

Θε(dt, dx, dz) = dt dx θε(t, x; dz) of ζ̂ε , its distribution is tight with respect to
the weak topology of measures, and all limit distributions are concentrated on
measure solutions of the Leroux sytem. To prove the Dirac property of the limit
distributions, we consider Lax entropy pairs (S, F ) and the related entropy produc-

tion Xε := ∂tS(ζ̂ε) + ∂xF (ζ̂ε) . The crucial point of the proof is to establish the
Murat decomposition Xε = Yε + Zε , where Xε → 0 in probability in H−1(R2

+) ,
while Zε is bounded in the space of measures; all that should be understood at
the level of the distribution of Young measures. Moreover, convex entropy pairs
satisfy the Lax entropy condition: lim supXε ≤ 0 in probability, in the sense of
distributions. Now we are in a position to conclude Tartar factorization: all limit
distributions of the Young measure satisfy

θ(t, x;S1F2 − S2F1) = θ(t, x;S1)θ(t, x;F2) − θ(t, x;S2)θ(t, x;F1)

a.e. with probability one for all couples (Si, Fi) of entropy pairs. This probabilistic
part of the argument is based on LSI and a general exponential moment bound.
The final step of the proof is to show that, due to Tartar factorization, entropic
measure solutions are weak entropy solutions in the Lax sense. Although there
are general results of DiPerna on this issue, his conditions can not be verified in
stochastic situations. However, in the case of the Leroux system we have two nice
families of entropies, namely Sa := ρ+ au− a2 and S̄a := |Sa| for a ∈ R , so that
an elementary calculation by Dafermos implies the final statement.

Concluding remarks: The probabilistic part of the argument above extends to
several two-component models, but the last step is restricted to the Leroux system.
Indeed, most physical systems of conservation laws have singular points where the
conditions of strict hyperbolicity and genuine nonlinearity break down, therefore
the general results of DiPerna and others do not apply. To exclude singularities
from the phase space, a Conley - Chueh - Smoller type maximum principle would
be needed for the Riemann invariants of the macroscopic equations. Unfortunately,
this is not available for microscopic stochastic models, but there is a minor hope
to prove it. In the case of one-component systems, the Lax entropy condition
is sufficient for uniqueness of HDL, see [7]. Systems are much more difficult, in
view of Bressan’s [1] results, we ought to verify the Oleinik entropy condition for
Riemann invariants; this is a formidable open problem.
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Perturbation of equilibria: a hydrodynamic limit

Bálint Tóth and Benedek Valkó

We present the results contained in [12]. We consider the pde
{

∂tρ+ ∂x

(
ρu
)

= 0

∂tu+ ∂x

(
ρ+ γu2

)
= 0

(1)

for (t, x) ∈ [0,∞) × (−∞,∞) where ρ = ρ(t, x) ∈ R+, u = u(t, x) ∈ R are density,
respectively, velocity field and γ ∈ R is a fixed parameter. For any fixed γ this is
a hyperbolic system of conservation laws in the domain (ρ, u) ∈ R+ × R.

Phenomenologically, the pde describes a deposition/domain growth – or, in
biological term: chemotaxis – mechanism: ρ(t, x) is the density of population



2264 Oberwolfach Report 43/2004

performing the deposition and u(t, x) is the negative gradient of the height of the
deposition.

The pde (1) is invariant under the following scaling:

ρ̃(t, x) := A2βρ(A1+βt, Ax), ũ(t, x) := Aβu(A1+βt, Ax),

where A > 0 and β ∈ R are arbitrarily fixed. The choice β = 0 gives the straight-
forward hyperbolic scale invariance, valid for any system of conservation laws.
More interesting is the β = 1/2 case. This is the natural scale invariance of the
system, since the physical variables (density and velocity fields) change covariantly
under this scaling. This is the (presumed, but never rigorously proved) asymptotic
scale invariance of the Kardar-Parisi-Zhang deposition phenomena. The nontrivial
scale invariance of the pde (1) suggests its universality in some sense. Our main
result indeed states its validity in a very wide context.

The parameter γ of the pde (1) is of crucial importance: different values of γ
lead to completely different behavior. Here are listed some particular cases which
arose in the past in various contexts:
— The pde (1) with γ = 0 arose in the context of the ‘true self-repelling motion’
constructed by Tóth and Werner in [13]. For a survey of this case see also [14].
The same equation, with viscosity terms added, appear in mathematical biology
under the name of (negative) chemotaxis equations (see e.g. [9], [8], [6]) ).
— Taking γ = 1/2 we get the ‘shallow water equation’. See [1], [5]. This is the
only value of the parameter γ when m = ρu is conserved and as a consequence the
pde (1) can be interpreted as gas dynamics equation.
— With γ = 1 the pde is called ‘Leroux’s equation’ which is of Temple class and
for this reason much investigated. For many details about this equation see [10].
In the recent paper [3] Leroux’s system has been derived as hydrodynamic limit
under Eulerian scaling for a two-component lattice gas, going even beyond the
appearance of shocks.

The goal of the paper [12] is to derive the two-by-two hyperbolic system of
conservation laws (1) as decent hydrodynamic limit of some systems of interacting
particles with two conserved quantities.

We consider one-dimensional, locally finite interacting particle systems with
two conservation laws with periodic boundary conditions which under Eulerian
hydrodynamic limit lead to two-by-two systems of conservation laws

{
∂tρ+ ∂xΨ(ρ, u) = 0

∂tu+ ∂xΦ(ρ, u) = 0,
(2)

with (t, x) ∈ [0,∞) × T, (ρ, u) ∈ D ⊂ R2. Here T = R/Z is the unit torus and
D is a convex compact polygon in R2. The system is typically strictly hyperbolic
in the interior of D with possible non-hyperbolic degeneracies on the boundary
∂D (see [11]). We consider the case of isolated singular (i.e. non hyperbolic)
point on the interior of one of the edges of D, call it (ρ0, u0) = (0, 0) and assume
D ⊂ {ρ ≥ 0} (otherwise we apply an appropriate linear transformation on the
conserved quantities). We investigate the propagation of small nonequilibrium
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perturbations of the steady state of the microscopic interacting particle system,
corresponding to the densities (ρ0, u0) of the conserved quantities. We prove that
for a very rich class of systems, under proper hydrodynamic limit the propagation
of these small perturbations are universally driven by the system (1) on the unit
torus, where the parameter γ := 1

2Φuu(ρ0, u0) (with a proper choice of space and
time scale) is the only trace of the microscopic structure. The proof is valid for
the cases with γ > 1.

The proof essentially relies on H-T. Yau’s relative entropy method (see e.g. [2],
[4], [7], [15]) and thus, it is valid only in the regime of smooth solutions of the pde
(1).

We should emphasize here the essential new ideas of the proof. Since we consider
a low density limit, the distribution of particle numbers in blocks of mesoscopic
size will have a Poissonian tail. The fluctuations of the other conserved quantity
will be Gaussian, as usual. It follows that when controlling the fluctuations of
the empirical block averages the usual large deviation approach would lead us to
the disastrous estimate E

(
exp{ε GAU ·POI}

)
= ∞. It turns out that some very

special cutoff must be applied. Since the large fluctuations which are cut off can
not be estimated by robust methods (i.e. by applying entropy inequality), only
some cancellation due to martingales can help. This is the reason why the cutoff
function must be chosen in a very special way, in terms of a particular Lax entropy
of the Euler equation (2). In this way the proof becomes an interesting mixture
of probabilistic and pde arguments. The fine properties of the limiting pde, in
particular the global behavior of Riemann invariants and some particular Lax
entropies, play an essential role in the proof. The radical difference between the
γ ≥ 1 vs. γ < 1 cases, in particular applicability vs. non-applicability of the Lax-
Chuey-Conley-Smoller maximum principle, manifests itself on the microscopic,
probabilistic level.
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Euler hydrodynamics of one-dimensional attractive particle systems

Ellen Saada

(joint work with C. Bahadoran, H. Guiol, K. Ravishankar)

We consider attractive, irreducible, finite-range, asymmetric, conservative par-
ticle systems on Z, with at most K particles per site (K ∈ N), and without neces-
sarily nearest-neighbor jumps or explicit invariant measures. We prove that their
hydrodynamic limit under Euler time scaling exists, and is given by the entropy
solution to some scalar conservation law with Lipschitz-continuous flux.

The simplest example of attractive system on Z is the asymmetric exclusion
process, for which the hydrodynamic limit is well-known, and is given by the
entropy solutions to the scalar conservation law

(1) ∂tu(t, x) + ∂xG(u(t, x)) = 0

where G(u) = γu(1 − u) is the macroscopic flux, and γ is the mean drift of a
particle.

The first approach to prove hydrodynamics for asymmetric exclusion was con-
structive, and developed among others by Andjel & Vares (1987), when the initial
datum is a single step with density λ to the left and ρ to the right (the Riemann
problem for (1)). Their proof combined the knowledge of the entropy solution to
(1) in that case (when G is strictly convex or concave, the latter has a simple ex-
plicit form), and comparison (thanks to attractiveness) with explicit equilibrium
systems; indeed, the extremal invariant and translation invariant measures of sim-
ple exclusion are Bernoulli product, of parameter the average particle density per
site (see Liggett (1985)). The second more general approach, due to Rezakhanlou
(1991) (see Kipnis & Landim (1999) for details), was based on entropy inequalities;
it also needed attractiveness, and the existence of product invariant measures. It
proved the hydrodynamic limit for the asymmetric exclusion process in any di-
mension, with an arbitrary initial datum in (1). In fact, both approaches apply
to other attractive systems with explicit invariant measures, such as zero-range or
misanthropes processes with ad hoc rates (provided the flux function is concave
or convex when using the Andjel & Vares (1987) approach).
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However, as soon as the rates do not satisfy some necessary algebraic condi-
tions, the invariant measures for misanthropes process are unknown, even for the
basic example of K-exclusion (see Seppäläinen (1999)). Our work enables us to
treat those cases, without a further restriction to nearest neighbor interaction (see
Rezakhanlou (2001)).

In Bahadoran et al. (2002), we studied processes with explicit product invariant
measures. We relax this assumption in Bahadoran et al. (2004). Our approach
relies on (i) a constructive proof of the hydrodynamic limit for Riemann initial
profiles, and (ii) a general result which shows that the hydrodynamic limit for
Riemann initial profiles implies the same for general initial profiles.

But we have first to give sense to a hydrodynamic equation of type (1), i.e.
to define a flux function G for the processes we consider. Even if the invariant
measures are unknown, we still have a one-parameter family of extremal invariant
and translation invariant measures {νρ, ρ ∈ R}, where R is a closed subset of [0,K]
containing 0 and K, and ρ represents the average particle density per site under
the non-explicit measure νρ. Then, for ρ ∈ R, we define G(ρ) ‘as usual’, by an
equilibrium expectation of the microscopic flux; otherwise, G(ρ) is defined by linear
interpolation. The function G is thus Lipschitz-continuous, and the existence and
uniqueness of an entropy solution to (1) for a Borel measurable initial datum can
be deduced from Kružkov (1970) (see also Bressan (2000)).

Point (i) is a generalization of the constructive method of Andjel & Vares (1987).
We relax the convexity assumption they need for the flux function by deriving a
variational formula for the Riemann entropy solution, taking into account the
restriction of densities to R (for an explicit construction of the Riemann entropy
solution when G ∈ C2(R), see Ballou (1970), or Godlewski & Raviart (1991)). We
then solve the R-valued Riemann problem.

Point (ii) is valid for finite-range attractive processes, and is inspired by the
Glimm’s scheme in the theory of hyperbolic conservation laws (see Glimm (1965),
Serre (1999)). We use an approximation scheme, thanks to a ‘finite propagation
property’ valid at microscopic and macroscopic levels, and a ‘macroscopic stability
property’ at particles’ level (that requires the finite-range assumption on the dy-
namics, see Bramson & Mountford (2002)). The former enables us to deal with a
succession of non-interacting Riemann problems, while the latter implies that the
hydrodynamic limit depends only on the density profile at time 0, and not on the
underlying microscopic structure. We first prove hydrodynamics for R-valued so-
lutions, by taking an initial density profile a.e. R-valued; then we extend the result
to general profiles, and obtain hydrodynamics for arbitrary entropy solutions.
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Diffusive limit for a tagged particle in asymmetric zero-range

Sunder Sethuraman

The zero-range process is a collection of random walks on Zd with transition
probability p(·) which interact in the time domain. That is, if there are k walkers
at a location i, then one of these “particles” jumps to j with rate g(k)p(j− i). The
function g : N → R+ from the non-negative integers to the non-negative reals which
quantifies the interaction is called the process rate. The configuration space is

Σ = NZ
d

, and the formal generator of the process is (Lφ)(η) =
∑

i,j∈Zd g(ηi)p(j−
i)(φ(ηi,j) − φ(η)) where ηi,j is the state obtained by moving a particle from i to
j. Construction of the Markov process generated by L has been done in [1] under
suitable conditions on g and p which include the case g(0) = 0, g(k) > 0 for k ≥ 1,
lim inf g(k) > 0 and g is Lipschitz, and also p is finite-range which we will assume
throughout.

The equilibrium measures for this system are well known, and turn out to
be in product form. Namely, there is a family of invariant measures Pρ, each
concentrating on a fixed density of particles ρ ≥ 0. The measure Pρ =

∏
i∈Zd µ

where the common marginal µ(k) = (1/Zρ)(α(ρ)k/(g(k) · · · g(1)) for k ≥ 1 and
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(1/Zρ) for k = 0 with normalization Zρ and α(ρ) chosen so that the mean number
of particles Eµ[X ] = ρ.

The problem studied is the asymptotic motion of a distinguished, or tagged,
particle in this system. Let x(t) be the position of the tagged particle at time t. It
turns out that the equilibrium measures for the process in the “reference-frame”
of x(t) are certain explicit “size-biased” versions of Pρ denoted Qρ (cf. [4]).

When initial configurations are distributed in equilibrium Qρ, the law of large
numbers has been proved limt→∞ x(t)/t = (α(ρ)/ρ)

∑
ip(i) a.s. Qρ, as well as an

invariance principle in Skorohod space when the jumps p are mean-zero,
∑
ip(i) =

0, that is limλ→∞(x(λ·)/
√
λ⇒ Bρ(·) whereBρ is Brownian motion with an explicit

covariance depending on ρ and p [4], [5]. See also [3] for some “non-equilibrium”
law of large numbers type results.

The results presented are diffusive variance bounds, under equilibrium Qρ, in
one dimension d = 1 when the jumps have drift

∑
ip(i) 6= 0. Namely,

0 < c1 ≤ VarQρ
(x(t))

t
≤ c2 < ∞

for constants c1 = c1(ρ, p), c2 = c2(ρ, p), and also a corresponding invariance
principle, under equilibrium Qρ, when the rate g is increasing, g(k)/k is decreasing,
and p is totally asymmetric nearest-neighbor–namely p(1) = 1,

lim
λ→∞

1√
λ

[x(λ·) − α(ρ)/ρ] ⇒ σ(ρ)B(·)

where B is standard Brownian motion and σ2(ρ) is the diffusion coefficient de-
pending on ρ.

The methods are through some bounds on certain H−1 norms, and a coupling
using the Newman-Wright theorem with respect to associated random variables
[2].
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Large deviations from a macroscopic scaling limit for particle systems

with Kac interaction and random potential

M. Mourragui

(joint work with Enza Orlandi)

We consider a d-dimensional particles system interacting via a two-body Kac
interaction and external random field given by independent random variables with
translational invariant distribution.

Kac’s potentials are two body interactions Jγ(|x−y|) with range 1
γ , and strength

γd, where γ is a dimensionless parameter. They were introduced in [KUH], and
then generalized in [LP], to present a rigorous derivation of the van der Waals the-
ory of a gas-liquid phase transition. Since then there has been several papers on
the subject. Recently many authors studied the equilibrium statistical properties
of spin systems with Kac potential for γ small but finite. We mention only some
of them [COP], [LMP]. In particular Random Field Kac models, in d = 1 and for
γ small and fixed, have been recently studied in [COP1], [COPV]. Many authors
studied also the time evolution of the macroscopic profile in particle systems in-
teracting via long range Kac potential either in the case of conservative dynamics
[LOP], [GL], [GLM], [MM], or in the case of non conservative dynamics [DOPT].
The formal Hamiltonian we consider is given by

(1) Hβ,α
γ (η) = −β

2

∑

x,y∈Zd

Jγ(x− y)η(x)η(y) −
∑

x∈Zd

α(x)η(x),

where β is a positive parameter and η(x) ∈ {0, 1}, η(x) = 1 if there is a particle
in x and η(x) = 0 means that the site is empty. The {α(x) x ∈ Zd} represent the
external random field on the sites x. They are assumed to be independent random
variables with translational invariant distribution, α(x) ∈ [−A,A] where A > 0.

Given the Hamiltonian (1) there is a standard way, see for example [Sp], to
construct a dynamics which conserves the number of particles and for which the
invariant measures are given by the one parameter family of Gibbs measures asso-
ciated to (1). Performing a diffusive scaling limit, in [MOS] a law of large numbers
when d ≥ 3 was established for the density field, starting from a sequence of mea-
sures associated to some initial density profile ρ0. The equation obtained for the
density field is the following nonlocal, non linear partial differential equation

(2)
∂ρ

∂t
=

1

2
∇ ·
(
σ(ρ)∇δG

δρ

)
, ρ(0, r) = ρ0(r),

where the energy functional G(ρ) is of the form

(3) G(ρ) =

∫
drg0(ρ(r)) −

β

2

∫ ∫
J(r − r′)ρ(r)ρ(r′)drdr′,

g0 is the (strictly convex) free energy density and σ(ρ) is the conductivity, or
mobility, of the system with only short range interaction, i.e. corresponding to
β ≡ 0 in (1). It is linked, in a regime of linear response, to the diffusion matrix



Large Scale Stochastic Dynamics 2271

D(ρ), defined in [FM], via the Einstein relationD(ρ) = σ(ρ)χ(ρ)−1, see [Sp], where
χ(ρ) is the static compressibility defined by

χ(ρ) = E

[ ∫
η(0)2dµα,λ0(ρ)(η) −

(∫
η(0)dµα,λ0(ρ)(η)

)2 ]
,

E stands for expectation with respect to the disorder. The g0 in (3) is the free
energy density given by

g0(ρ) = ρλ0(ρ) − p0(λ0(ρ))

where

p0(λ) = E

[
log
(
1 + eλ+α(0)

)]
,

and for any given ρ ∈ [0, 1], λ0(ρ) satisfies

ρ =
dp0

dλ
(λ0(ρ)) = E

[
eλ0(ρ)+α(0)

1 + eλ0(ρ)+α(0)

]
.

We show, in d ≥ 3, the large deviations principle for the empirical random
measures of the process briefly described above. The result holds almost surely
with respect to the random field and the rate function, which depends on the
statistical properties of the external random field, is lower semicontinuous and has
compact level sets. The restriction on the dimension (d ≥ 3) is a consequence of
the fact that the law of large numbers has been proven in [MOS] only for d ≥ 3.
Results in all dimensions for a process without the Kac type of interaction, i.e.
the one associated to the Hamiltonian (1) with β = 0, were announced by Quastel
in [Q].

The proof of the large deviations principle for our dynamics follows the paper
by J. Quastel, F. Rezakhanlou and S.R.S. Varadhan [QRV].
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Equilibrium Fluctuations for a System of Harmonic Oscillators with

Conservative Noise

Katalin Nagy

(joint work with József Fritz and Stefano Olla)

During the last 15 years great progress has been made in the hydrodynamic
limit theory of one component systems, whereas only a few results are available
on two component models, see [3, 6, 4, 7]. These latter all concern hydrodynamic
law of large numbers. Here we present an equilibrium fluctuation result for a two
component system. Stochastic perturbations of mechanical systems is certainly an
interesting field of hydrodynamic limit theory, see [3, 6, 5, 4, 2] for some examples.
The model we discuss here is also of this kind.

We regard a linearly ordered system of harmonic oscillators with conservative
noise. The oscillators are labeled by k ∈ Z, the configuration space is denoted

by Ω = (R × R)
Z
, a typical configuration is of the form ω = (pk, rk)k∈Z

where
pk denotes the velocity of the particle k and rk stands for the distance between
particle k and k + 1. The dynamics is described by the following set of stochastic
partial differential equations:

{
dpk(t) = (rk − rk−1)dt− γpkdt+

√
γpk+1dWk −√

γpk−1dWk−1

drk(t) = (pk+1 − pk)dt
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where k ∈ Z and {Wk}k∈Z
are independent Brownian motions and γ > 0 is the

friction coefficient. This model appeared first in the thesis of C. Bernardin and it
was proposed by his supervisor S. Olla.

For any β > 0 and ρ ∈ R the Gaussian product measures µβ,ρ on Ω with
marginal densities

µβ,ρ(dpk, drk) =
β

2π
exp

{
−β

2
(p2

k + (rk − ρ)2)

}
dpkdrk

are invariant measures of the process. The formal generator of the system reads
as

L = A + S
where

A =
∑

k∈Z

{(pk+1 − pk)∂rk + (rk − rk−1)∂pk}

S =
γ

2

∑

k∈Z

(pk+1∂pk − pk∂pk+1)
2
.

Here A is the Liouville operator of a chain of interacting harmonic oscillators, S is
the noise operator and acts only on velocities. It couples neighbouring velocities
in such a way that the total energy of the system is conserved. Actually the model
admits two conserved quantities: total interdistance (the sum of rk -s ) and total
energy (the sum of Hk -s, where Hk = 1

2p
2
k + 1

4r
2
k + 1

4r
2
k−1). Our aim is to study the

equilibrium fluctuation of these two conserved quantities under diffusive scaling.
We define the interdistance and energy fluctuation field as follows:

uε
t (ψ, ω) =

√
ε
∑

k∈Z

ψ(εk)(rk(t/ε2) − ρ)

eε
t (ϕ, ω) =

√
ε
∑

k∈Z

ϕ(εk)(Hk(t/ε2) − 1

β
− ρ2

2
)

where ϕ and ψ are smooth functions with compact support. We prove that
ξε
t = (uε

t , e
ε
t ) as a vector of two distribution valued processes converges in law

to the solution ξt = (ut, et) of the following pair of stochastic partial differential
equations of generalized Ornstein-Uhlenbeck type:

(1)





du = 1
γ ∆u+

√
2√

γβ
∇j1

de =
γ+ 1

γ

2 ∆e+
1
γ
−γ

2 ∆(ρu) +
√

2ρ√
γβ

∇j1 +

q

γ+ 1
γ

β ∇j2
where j1, j2 are independent δ-correlated space-time white-noises.

What makes this linear system interesting is the fact that one of the conserved
quantities, namely the energy is not a linear function of the system, and the
investigation of its fluctuation field is non trivial. While the derivation of the
stochastic differential equation for u is straightforward, to obtain that for e one
has to face two difficulties. Firstly we have to get rid of the singularity coming from
the asymmetric part of the generator. Secondly we need to replace the microscopic
current with linear functions of the conserved quantities.



2274 Oberwolfach Report 43/2004

For the sake of simplicity we suppose now that γ = β = 1, ρ = 0, and we
introduce the shorthand notation ∇1ak = ak+1 − ak, ∇∗

1ak = ak−1 − ak, ∆1ak =
ak+1 + ak−1 − 2ak. Then the stochastic equation for Hk is of the following form:

dHk = −∇∗
1Jk +

1

2
∆1p

2
k + ∇1pk−1pkdWk

where Jk = 1
2rk (pk + pk+1) is of non gradient type and this causes the singularity.

However using the fact that SJk = −Jk, Jk can be written as the sum of a
gradient term and a remainder which adds up only to the martingale part:

Jk =
1

2
∇1

(
p2

k + rk−1rk
)
−LJk,

and this eliminates the singularity.
The next task is to replace p2

k and rk−1rk with linear functions of the conserved
quantities. Actually rk−1rk will disappear in the limit of the fluctuation field while
to treat p2

k we can again get use of the generator of the system, namely:

p2
k =

p2
k + r2k

2
+
pkpk+1 − pkrk

2
− rk−1rk

2
− Lpkrk

2
.

Here Lpkrk results in a vanishing martingale term, while being eigenfunctions
of S an H−1 norm estimate shows that pkpk+1 and pkrk will also disappear. The
vanishing of rk−1rk is shown again with the help of the generator L applied to a
well chosen function, using H−1 norm estimates and some new ingredients. As its
treatment is more involved we skip technical details here. The treatment of the
martingale terms needs no special effort. The proof ends up with showing that
the limit of the fluctuation fields is the unique solution of the martingale problem
corresponding to the pair of equations (1) .
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Random walking shocks in interacting particle systems

Márton Balázs

It has been known for a while that many models from the field of stochastic
interacting particle systems have deterministic partial differential equations as
scaling limit, see e.g. the book of Kipnis and Landim [10], or Seppäläinen [11],
Tóth and Valkó [12]. In the so-called Eulerian scaling this equation is usually a
Burger-type one, developing shocks as entropy solutions from any decreasing initial
data. The microscopic structure of these shocks is of great interest. Many results
construct such structures from the viewpoint of the so-called second class particle,
which is an object coming from coupling of these models. Some examples are De
Masi, Kipnis, Presutti and Saada [5], Derrida, Lebowitz and Speer [6], Ferrari [7],
and Ferrari, Fontes and Kohayakawa [8]. As this particle has a complex random
motion in the system, it is not immediately clear how these structures look like
from a fixed, non-moving position. On the other hand, this way of looking at the
problem makes it difficult to deal with the case of multiple shocks. Ferrari, Fontes
and Vares develop these methods and handle this case in [9].

Another work in this area is by Balázs [1], who introduces a simple product
measure which shows the properties of a shock, and is stationary as seen by the
second class particle. This result is valid for the so-called exponential bricklayers’
process. Our aim here is to identify a structure corresponding to this distribution,
but this time as seen from a fixed, non moving position. This way of looking at
the problem makes it easy to handle multiple shocks as well, thus we can also
investigate how these shocks interact with each other at the microscopic level.

We consider the class of bricklayers’ processes, introduced in [1] and [2] based on
ideas of B. Tóth. These models are slight generalizations of the misanthrope (see
Cocozza-Thivent [4]) and also of the zero range processes. Each model from this
class has a special one-parametered family of one dimensional discrete measures.
If we fix that parameter and build the product of these measures for the sites,
then we obtain a time-stationary distribution of the model. Hence we have a one-
parametered family of equilibrium distributions; this parameter sets the slope of
the wall, a quantity corresponding to particle density in particle systems.

We consider product measures with the same marginals as for the stationary
distribution, except for that we allow the parameter to change from site to site.
The main result states that distributions in this class evolve to linear combinations
of distributions from the same class, but only in the special case of exponential
bricklayers’ process. The form of the linear coefficients allows us to interpret some
of the situations as ordinary random walks of shocks having discontinuity of size
one. We also obtain the nature of interaction between these shocks. It follows
that a group formed by a number of such one-sized jump shocks is of stochas-
tically bounded size in time, i.e. shocks of larger (integer-valued) discontinuities
represented by such a group are sharp under any kind of hydrodynamic scaling.

Belitsky and Schütz [3] derive results similar to ours for the simple exclusion
process with the use of a quantum algebra symmetry. Unfortunately, we were
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not able to develop the quantum formalism for our locally infinite state space
systems. However, there is a remarkable analogue between their work and the
present settings: in [3] special relations are required between the shock densities
and the particle jump rates. These relations are identical to those of Derrida,
Lebowitz and Speer [6] allowing there an exact (not only asymptotic) product-
description of the stationary distribution as seen from the second class particle. In
the present setting we specially require integer values for the size of discontinuities
of our shocks, in a very similar way as needed for the exact result of Balázs [1]
from the viewpoint of the second class particle.

Some open questions

In the case of the simple exclusion process, Derrida et al. [6] use matrix product
methods, Belitsky and Schütz [3] have a quantum matrix-algebra showing a special
commutation symmetry. How can one introduce the corresponding formalism in
our more general models? Where is the symmetry of type [3] for the exponential
bricklayers’ process?

We have two kind of shock-measures, one stationary as seen from the second
class particle, and one performing ordinary random walk. How are these two
related to each other? Is the latter ordinary random walk obtained by some
integrated law of the second class particle w.r.t. the shock-measure? Can this
integrated law be Markovian at all?
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Condensation in the Zero Range Process

Stefan Großkinsky

(joint work with G.M. Schütz and H. Spohn)

The zero range process (ZRP) is an interacting particle system without exclusion
interaction and was originally introduced in [1]. The state space is X = NΛ with
N = {0, 1, 2, . . .}, where we take Λ ⊂ Zd to be an arbitrary translation invariant
lattice. The jump rate g(ηx) of a particle at site x ∈ Λ depends only on the
occupation number ηx ∈ N, and the leaving particle jumps to a new site x + y
according to an irreducible probability distribution p(y) of finite range R. In
general the process is non-reversible for asymmetric p but this does not affect
results on the stationary measures.

There are rigorous results on the existence of the dynamics on general (infinite)
lattices when the rate function g : N → R is sublinear [2]. In this case the generator

(Lf)(η) =
∑

x∈Λ

R∑

y=−R

g(ηx) p(y)
(
f(ηx,x+y) − f(η)

)
,(1)

with Lipschitz continuous f : X → R defines a Markov process on X . Since we
consider translation invariant dynamics and lattices there are stationary product
measures ν̄φ with site independent marginals (see also [2])

ν̄1
φ(ηx) = W (ηx)φηx/Z(φ) , W (ηx) =

ηx∏

k=1

1/g(k) ,(2)

where φ > 0 is the fugacity and Z(φ) =
∑

k∈N
W (k)φk the normalizing partition

function. The measures are defined for all φ ∈ Dφ = [0, φc) where φc is the radius
of convergence of Z. The particle density R(φ) = 〈ηx〉ν̄φ

is monotonic increasing
in φ and invertible, with range Dρ = R(Dφ) = [0, ρc). If g is a non-decreasing
function then ρc = ∞ and there are product measures for every density.

In [3] it was found that for decreasing rates gb,γ(k) =
�

k>0

(
1 + b/kγ

)
with

either γ ∈ (0, 1), b > 0 or γ = 1, b > 2 it is Dφ = [0, 1] and Dρ = [0, ρc]. So there
are no product measures beyond a finite critical density ρc < ∞. Fixing initial
conditions with density ρ > ρc the system is expected to phase separate into a
homogeneous background with density ρc and a condensate with vanishing volume
fraction where all excess particles accumulate. This condensation is of particular
importance for two-species exclusion processes, where the ZRP with rates gb,γ can
be used as an effective model for domain wall dynamics, providing a criterion for
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phase separation [4]. On the other hand, as an (exactly solvable) example of a
condensation transition this phenomenon is intriguing already on the level of the
ZRP and there have been only non-rigorous studies so far.

Results

For general jump rates g on finite, translation invariant lattices ΛL of size L
there exist canonical stationary measures

µL,N(η) =
1

Z(L,N)

∏

x∈ΛL

W (ηx) δ

( ∑

x∈ΛL

ηx, N

)
,(3)

with fixed number of particles N ∈ N and canonical partition function Z(L,N).
We prove the above intuition on the condensation phenomenon by generalizing a
standard result for ρ ∈ Dρ on the equivalence of canonical (3) and grand canonical
ensemble (2) to densities ρ > ρc.

Theorem 1. Define the extended inverse of R(φ), Φ̄(ρ) =

{
Φ(ρ) , for ρ ∈ Dρ

φc , for ρ 6∈ Dρ
.

Then for every ρ ∈ [0,∞) and bounded cylinder test functions

µL,[ρL]
w−→ ν̄Φ̄(ρ) , for L→ ∞ .(4)

For ρ > ρc this proves the existence of the background phase with uniform product
distribution ν̄φc

. In general, the one-point marginal ν̄1
φc

decays subexponentially
and the next theorem shows that for some special cases the condensed phase typ-
ically consists only of a single site if L is large.

Theorem 2. Let ν̄1
φc

(k) ' k−b have a monotonic decreasing power law tail with
b > 2 and finite first moment ρc. Then for every ρ > ρc the normalized maximum
occupation number satisfies a weak law of large numbers

1

(ρ− ρc)L
max
x∈ΛL

η(x)
µL,[ρL]−→ 1 , for L→ ∞ .(5)

The proof uses large deviation estimates for subexponential distributions (see [5]
and references therein), generalizing results of [6].

The first result can be generalized to ZRPs with two particle species, which
have been introduced in [7, 8]. Such systems show a much richer phase diagram
involving simultaneous condensation of both species [9]. A general rigorous analy-
sis given in [10] shows that the fugacities (Φ̄1, Φ̄2)(ρ1, ρ2) of the background phase
are given by the unique maximizer of the thermodynamic entropy

S(ρ1, ρ2) = sup
(φ1,φ2)∈Dφ

(
ρ1 logφ1 + ρ2 logφ2 − logZ(φ1, φ2)

)
.(6)
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Studies of the relaxation dynamics for uniform initial conditions [5, 10, 11] reveal
an interesting coarsening phenomenon, which – in contrast to stationary results –
depends on space dimension and reversibility of the process.
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[4] Y. Kafri, E. Levine, D. Mukamel, G.M. Schütz, and J. Török. Criterion for phase separation

in one-dimensional driven systems. Phys. Rev. Lett. 89(3): 035702 (2002).
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Nonequilibrium CLT for a tagged particle in symmetric simple

exclusion

Milton Jara

(joint work with Claudio Landim)

I report the first nonequilibrium central limit theorem for a tagged particle.
Consider the one-dimensional nearest neighbor symmetric situation. In this con-
text, as already observed by Arratia [1], the scaling changes dramatically since
to displace the tagged particle from the origin to a site N > 0, all particles be-
tween the origin and N need to move to the right of N . This observation relates
the asymptotic behavior of the tagged particle to the hydrodynamic behavior of
the system. The correct scaling for the law of large numbers should therefore be
XtN2/N and we expect (XtN2 −E[XtN2 ])/

√
N to converge to a Gaussian variable.

The central limit theorem in equilibrium was obtained by Rost and Vares [2]

for a slightly different model. They proved that for each fixed t > 0, XtN2/
√
N

converges to a fractional Brownian motion Wt with variance given by E[W 2
t ] =

αt1/2. We extend their result to the nonequilibrium case.
The idea of the proof is to relate the position of the tagged particle to the well

known hydrodynamic behavior of the symmetric exclusion process. Since particles
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cannot jump over other particles, the position of the tagged particle is determined
by the current over one bond and the density profile of particles. Therefore, a
nonequilibrium central limit theorem for the position of the tagged particle follows
from a joint central limit theorem for the current and the density profile. Since
the current over a bond can itself, at least formally, be written as the difference
between the mass at the right of the bond at time t and the mass at time 0, a
central limit theorem for the position of the tagged particle should follow from a
nonequilibrium central limit theorem for the density field.
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A microscopic interpretation of Stefan’s melting and freezing problem

Glauco Valle

(joint work with Claudio Landim)

In this work we return to the classical Stefan’s freezing on the ground model
[3]. It could be described in the following way: Consider the real line occupied
by a heat conducting material (heat is transmitted only by conduction). This
material is initially almost everywhere characterized by a bounded and measurable
temperature function T : R → R. According to the temperature the material
could be in one of two phases, a liquid phase for positive temperatures and a solid
phase for negative temperatures. The temperature T = 0 is that of crystallization
at which both phases may occur. Then it is required the determination of the
temporal evolution of the temperature.

Lets consider this problem under more restrictive conditions. Suppose that at
initial time the liquid phase fills the domain 0 < u < ∞ at positive temperatures
and the solid phase fills the domain −∞ < u < 0 at negative temperatures. We
are able to determine a function B = B(t) describing the time evolution of the
boundary between the two phases and their temperature functions, respectively
ρ1(t, u) and ρ2(t, u) for the solid and liquid phases. It is well known that these
functions satisfy a Cauchy-Stefan Problem:

(1)






∂tρ1 = a1∂uuρ1 ; ∂tρ2 = a2∂uuρ2
dB(t)

dt = k{a1∂uρ1(t, B(t)) − a2∂uρ2(t, B(t))}
ρi(t, B(t)) = 0
ρi(0, ·) = ρ0

i (·)
B(0) = 0 ,

where ρ0
1 : R− → R− and ρ0

2 : R+ → R+ are bounded measurable functions, a1 ≥ 0
and a2 > 0 are the coefficients of heat conduction of the material with respect to
the solid and liquid phases and k > 0 is a scaling factor for the temperature.
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We give a simplified microscopic description of Stefan’s Model Throughout Ap-
propriated Interacting Particle Systems and scaling limit techniques. Such sort of
description have already been studied previously by Chayes and Swindle [1] in the
case of finite domains and coefficient a1 = 0.

For the informal description of the microscopic model, consider the one dimen-
sional lattice Z with each site being occupied by a molecular agglomerate of type
1 for the material in the solid state and of type 2 for the material in the liquid
state. According to its internal energy, each agglomerate is classified by a heat
unit of 0 or −1 for agglomerates of type 1 and 0 or 1 for agglomerates of type 2. A
interaction between neighboring sites occurs independently in the following way:
If the agglomerates are of the same type then their heat units are interchanged
after a exponential time of mean a1 for agglomerates of type 1 and after a ex-
ponential time of mean a2 for agglomerates of type 2. If the agglomerates are of
distinct type and the absolute value of their heat units are also distinct, the heat
unit of absolute value 1 drops to 0 and the type of the agglomerate whose unit had
absolute value 0 changes after a mean one exponential time. If the agglomerates
are of distinct type and the absolute value of their heat units are equal to 1, both
heat units drop to 0 after a mean one exponential time. Moreover, we start with
configurations such that the agglomerates are of type 1 if they are at the left of
the origin, otherwise they are of type 2. We also suppose that initially each site
of Z (resp. N) is occupied by an agglomerate of type 1 (resp. of type 2)

This model could be described as a coupling between two one dimensional
nearest-neighbor simple symmetric exclusion processes in the semi-infinite lattice.
To make this identification we simply put a particle at each site whose associated
agglomerate has heat unit of absolute value 1 and say directly that a site is of type
1 or 2 according to the type of the associated agglomerate.

We show that this system has a hydrodynamical behavior under diffusive scal-
ing whose hydrodynamical equation is a Cauchy-Stefan Problem of the type (1)
with scaling factor k = 1, where the temperature is the macroscopic heat density
profile. The general case with an arbitrary k can be obtained from the previous
one rescaling the temperature by k−1.

What makes this an interesting problem is the fact that the system consid-
ered is non-conservative and the usual methods to establish the Hydrodynamical
behavior could not be applied without an adaptation which is particular to the
model studied. We also refer to [4] and [2], where the hydrodynamics for other
non-conservative one-dimensional systems is considered.

References

[1] Chayes L., Swindle G.: Particle systems with moving boundaries, Ann. Prob. 24, 559-598
(1996)

[2] Landim C., Olla S., Volchan S.: Driven Tracer Particle and Einstein Relation in One Di-
mensional Symmetric Simple Exclusion Process, Commun. Math. Phys. 192, 287-307 (1998)
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Macroscopic current fluctuations in stochastic lattice gases

G. Jona-Lasinio

(joint work with L. Bertini, A. De Sole, D. Gabrielli, C. Landim)

The basic microscopic model is given by a stochastic lattice gas with a weak
external field and particle reservoirs at the boundary. More precisely, let Λ ⊂ Rd

be a smooth domain and set ΛN = NΛ ∩ Zd; we consider a Markov process on
the state space XΛN , where X is a subset of N. The number of particles at the
site x ∈ ΛN is denoted by ηx ∈ X and the whole configuration by η ∈ XΛN .
The dynamics of the particles is described by a continuous time Markov process
on the state space XΛN with transition rates cx,y(η) from a configuration η to
the configuration obtained from η by moving a particle from x to a neighbor site
y. Similar rates c±x describe the appearance or loss of a particle at the boundary
site x. We assume the rates satisfy the local detailed balance, see [4, II.2.6]. The
reservoirs are characterized by a chemical potential γ.

We introduce the empirical measure πN corresponding to the density as follows.
For each microscopic configuration η ∈ XΛN and each smooth function G : Λ → R,
we set πN (G) = N−d

∑
x∈ΛN

G(x/N)ηx Consider a sequence of initial configura-

tions ηN such that πN (ηN ) converges weakly to some density profile ρ0. Under
diffusive scaling, the empirical density at time t converges weakly, as N → ∞, to
ρ = ρ(t, u) which is the solution of the hydrodynamic equation [3, 4]

∂tρ = ∇ ·
[1
2
D(ρ)∇ρ− χ(ρ)∇V

]

with initial condition ρ0 and boundary condition fixed by the reservoirs. Here
D is the diffusion matrix, given by the Green–Kubo formula, see [4, II.2.2], χ is
the conductivity, obtained by linear response theory, see [4, II.2.5], and ∇V the
external field.

We now introduce the empirical current as follows. Denote by N x,y
t the number

of particles that jumped from x to y in the macroscopic time interval [0, t]. Here
we adopt the convention that N x,y

t represents the number of particles created
at y due to the reservoir at x if x 6∈ ΛN , y ∈ ΛN and that N x,y

t represents
the number of particles that left the system at x by jumping to y if x ∈ ΛN ,
y 6∈ ΛN . The difference Jx,y

t = N x,y
t − N y,x

t represents the total current across
the bond {x, y} in the time interval [0, t]. Fix a macroscopic time T and denote
by J N the empirical measure on [0, T ]×Λ associated to the current. For smooth
vector fields G = (G1, . . . , Gd), the integral of G with respect to J N is given

by J N (G) = N−(d+1)
∑d

i=1

∑
x

∫ T

0 Gi(t, x/N) dJx,x+ei

t , where ei is the canonical
basis and we sum over all x such that either x ∈ ΛN or x + ei ∈ ΛN . We
normalized J N so that it is finite as N → ∞. Given a density profile ρ let us
denote by J(ρ) = − 1

2D(ρ)∇ρ+χ(ρ)∇V the current associated to ρ. If we consider

an initial configuration ηN such that the empirical density πN (ηN ) converges to
some density profile ρ0, then the empirical current J N (t) converges, as N → ∞,
to J(ρ(t)), the current associated to the solution of the hydrodynamic equation.
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We next discuss the large deviation properties of the empirical current. Fix a
smooth vector field j : [0, T ]×Λ → Rd and a sequence of configurations ηN whose
empirical density converges to some profile ρ0. Then, by the methods in [3, Ch.
10], it is possible to show that

PN
ηN

(
JN (t, u) ≈ j(t, u)

)
∼ exp

{
−Nd I[0,T ](j)

}

where the rate function is given by

I[0,T ](j) =
1

2

∫ T

0

dt
〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉

in which ρ = ρ(t, u) is obtained by solving the continuity equation ∂tρ+∇ · j = 0
with initial condition ρ(0) = ρ0 and 〈·, 〉 is the inner product in L2(Λ, du). Of
course there are compatibility conditions to be satisfied, for instance if we have
chosen a j such that ρ(t) becomes negative for some t ∈ [0, T ] then I[0,T ](j) = +∞.

We want to study the fluctuations of the time average of the empirical current
over a large time interval [0, T ]; the corresponding probability can be obtained
from the space–time large deviation principle. Fix some divergence free vector
field J = J(u) constant in time and denote by AT,J the set of all currents j

such that T−1
∫ T

0
dt j(t, u) = J(u). The condition of vanishing divergence on J

is required by the local conservation of the number of particles. By the large
deviation principle, for T large we have

PN
ηN

( 1

T

∫ T

0

dt J N (t) ≈ J
)
∼ exp

{
−NdTΦ(J)

}

where the logarithmic equivalence is understood by sending first N → ∞ and then
T → ∞. The functional Φ is given by

Φ(J) = lim
T→∞

inf
j∈AT,J

1

T
I[0,T ](j)

By a standard sub–additivity argument it is indeed easy to show that the limit
exists. One can also prove that Φ is a convex functional.

The next step is the study the variational problem on the right hand side of the
previous equation. We derive an upper and a lower bound. Given ρ = ρ(u) and
J = J(u), ∇ · J = 0, let us introduce the functionals

U(ρ, J) =
1

2
〈J − J(ρ), χ(ρ)−1[J − J(ρ)]〉

U(J) = inf
ρ

U(ρ, J)

where the minimum is carried over all profiles ρ satisfying the boundary conditions.
When J is constant, that is in the one–dimensional case, the functional U is the
one introduced in [2].

From the convexity of Φ(J) it immediately follows that

Φ(J) ≤ U∗∗(J)

where U∗∗(J) is the convex envelope of U
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To obtain the lower bound let us denote by Ũ and Ũ the same functionals
introduced previously, but now defined on the space of all currents without the
conditions of vanishing divergence. Let also Ũ∗∗ be the convex envelope of Ũ .

Let j ∈ AT,J . By the convexity of Ũ∗∗ in the set of all currents, we get

1

T
I[0,T ](j) =

1

T

∫ T

0

dt Ũ(ρ(t), j(t)) ≥ 1

T

∫ T

0

dt Ũ(j(t))

≥ 1

T

∫ T

0

dt Ũ∗∗(j(t)) ≥ Ũ∗∗(J)

The upper and lower bounds are, in general, different. For a divergence free J
we have Ũ(J) = U(J) but since the convex envelopes are considered in different

spaces, we only have Ũ∗∗(J) ≤ U∗∗(J).
To understand the physical meaning of the convex envelope, suppose J = pJ1 +

(1−p)J2 and U(J) > U∗∗(J) = pU(J1)+(1−p)U(J2) for some p, J1, J2. The values

p, J1, J2 are determined by J and U . In addition we assume that U ∗∗ = Ũ∗∗. If
we condition on observing an average current J , the corresponding density profile
is not determined, but rather we observe with probability p the profile ρ̂(J1) and
with probability 1 − p the profile ρ̂(J2). When U is not convex we have thus a
situation in which the time averaged current J is realized with the coexistence of
two dynamical regimes: we have a dynamical phase transition.

The derivation of the upper bound shows that, if U is not convex, our result
differs from the one in [2]. On the other hand if Ũ∗∗(J) < U∗∗(J) it is possible
that one can improve it by exploring currents with non vanishing divergence. In
such a situation it is not clear to us if Φ can be directly related to U .

In the models where the diffusion coefficient D(ρ) is constant and the mobility
χ(ρ) is concave, for example in the symmetric simple exclusion where χ = ρ(1−ρ),
it is not difficult to see that Ũ is convex. Therefore in these cases Φ = U . In a
forthcoming paper we shall discuss models where non convexities appear.
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Large deviation functional and fluctuations of density in the WASEP

Camille Enaud

(joint work with Bernard Derrida)

The main results presented in this talk are published in [1] and [3]. We consider
the one dimensional weakly asymmetric simple exclusion process (WASEP) with
open boundaries where the weak asymmetry scales like q = 1− λ

L with the system
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size L. The system is in contact with two reservoirs at densities ρa and ρb which
exchange particles with respectively the first and the last site of the system. The
dynamics of this system is formally defined by the following generator L acting on
given functions g of the system configuration η = {ηi}i=1,...,L

Lg(η) =
L−1∑

i=1

ηi(1 − ηi+1)
[
g(ηi,i+1) − g(η)

]

+

L∑

i=2

qηi(1 − ηi−1)
[
g(ηi−1,i) − g(η)

]

+
[
ρa(1 − η1) + q(1 − ρa)η1

][
g(η1) − g(η)

]

+
[
qρb(1 − ηL) + (1 − ρb)ηL

][
g(ηL) − g(η)

]
,

where ηi,i+1 is the configuration obtained from η by exchanging the occupation
numbers of sites i and i+ 1 and ηi is obtained from η by changing the occupation
number of site i.

Using an ansatz called the matrix method [4], we show [1] that the steady state
probability of a given macroscopic profile {ρ} can be written, in a certain range
of boundary parameters, as a sum over weighted paths {y(x)},

dP({ρ}) ∼ D[{ρ}]
∫

{y}
e−LG({ρ},{y})D[{y}](1)

where the sum is over all positive continuous functions {y(x), 0 ≤ x ≤ 1}, and
the functional G is explicitly calculated in [1], equation (3.22). This allows us to
derive the large deviation functional F of the WASEP,

(2) F({ρ(x)}; ρa, ρb) = −K +

∫ 1

0

dx

{
ρ log

ρ

F
+ (1 − ρ) log

1 − ρ

1 − F

+ log (F (1 − F )λ − F ′) +
F ′

λF (1 − F )
log

(
− F ′

F (1 − F )λ− F ′

)}

where the function F (x) is the solution of the following differential equations

(F − ρ)F ′2 + F (1 − F )F ′′ + λF (1 − F )(F − 1 + ρ)F ′ = 0(3)

with the boundary conditions

F (0) = ρa F (1) = ρb(4)

This large deviation functional interpolates between two known results, the large
deviation functional of the symmetric case (SSEP) (where q = 1) [5] and the one
for the asymmetric case (ASEP) (where q is a constant smaller than 1) [6].

Another consequence of this ”sum over paths” picture is the computation of
the statistical properties of the fluctuations of density ρ(x) around the average
profile ρ̄(x) in the steady state [3]. We wrote them as a sum over two independent
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Gaussian processes,

(5)
√
L(ρ(x) − ρ̄(x)) =

√
ρ̄(x)(1 − ρ̄(x))

2
B′(x) +

1

2
Y ′(x) ,

where B(x) is a standard Brownian motion normalized such that
〈
[B(x) −B(x′)]2

〉
= |x− x′|(6)

while Y (x) is a centered Gaussian process whose distribution is formally given by
(7)

dQ({Y }) ∝ exp

{
−
∫ 1

0

dx

( −Jρ̄′(x)Y (x)2

2ρ̄(x)2(1 − ρ̄(x))2
+

Y ′(x)2

4ρ̄(x)(1 − ρ̄(x))

)}
D
[
{Y }

]

where D
[
{Y }

]
is the standard Feynman measure, and J is related to the average

current j by J = limL→∞ Lj.
From this, we deduce the 2-point correlation function: for x < y, we have

(8) L
(〈
η[Lx]η[Ly]

〉
−
〈
η[Lx]

〉 〈
η[Ly]

〉)
−→

L→∞

Jρ̄′(x)ρ̄′(y)
∫ x

0
du

ρ̄′(u)

∫ 1

y
dv

ρ̄′(v)∫ 1

0
du

ρ̄′(u)

.
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On a non-hierarchical version of the Generalized Random Energy

Model

Erwin Bolthausen

(joint work with Nicola Kistler)

The Random Energy Model (REM for short) had been introduced by Der-
rida as a simple model exhibiting spin glass behavior. Consider independent cen-

tered Gaussian random variables (HN (α))α∈ΣN
, ΣN

def
=
{
1, . . . , 2N

}
, with vari-

ance N. The partition function is defined by ZN (β)
def
= trα exp [βHN (α)] ,where

trα denotes averaging over α. The “quenched” free energy is defined by FN (β)
def
=

(1/N) logZN (β), and its limiting value f (β)
def
= limN→∞ (1/N) logZN (β) . The
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Gibbs measure on ΣN is GN,β (σ)
def
= ZN (β)−1 2−N exp [βHN (α)] . This is a ran-

dom probability distribution on ΣN . f (β) can be determined by an application of
the second moment method:

f (β) =

{
β2/2 for β ≤ βcr

def
=

√
2 log 2√

2 log 2β − log 2 for β ≥ βcr
def
=

√
2 log 2

.

β2/2 is of course just the “annealed free energy” limN (1/N) log E tr eβH .
More interesting is the description of the limiting Gibbs distribution. For a

continuous function f : R+ → R+, let PPP (t→ f (t)) stand for a Poisson point
process on R+ with intensity measure f. If f is integrable at ∞, then a realization
of the points has a maximal element, and we can order them downwards: η0 >
η1 > η2 > . . . . In case

∑
i ηi < ∞, we can “normalize” the point process by

introducing the random points ηi
def
= ηi/

∑
j ηj . We denote this operation on point

processes by N (·) , which then is a random probability distribution. With these
settings, one proves that for β >

√
2 log 2, the point process

∑
α δGN,β(α) converges

weakly as N → ∞ to N
(
PPP

(
t→ xt−x−1

))
, where x (β)

def
=

√
2 log 2/β.

For β ≤ √
2 log 2, the limiting Gibbs distribution is in a sense trivial: No single

configuration α ∈ ΣN charges a positive mass in the limit, i.e.
limN→∞ supα GN,β (α) = 0, almost surely. For proofs of these facts, see [7].

The REM is too simple to shed much light on spin glasses, as there are no corre-
lations between the energies. Derrida [5] introduced the Generalized Random

Energy Model (GREM for short) which is a model with correlations. These cor-
relations are tree-like organized. Consider a tree with 2N leaves and K branching
levels, with N large, where K stays fixed. We write the leaves as α = (α1, . . . , αK)
where αi ∈

{
1, . . . , 2N/K

}
, and write again ΣN for the collection of such α’s. We

attach centered Gaussian random variables with variance σ2
iN to bonds of the

tree at level i, where
∑

i σ
2
i = 1, and then we sum these Gaussians along the tree

to define the random energies for each leaf. Formally HN (α)
def
=
∑K

i=1X
(i)
α1,...,αi ,

where X
(i)
α1,...,αi are independent Gaussians with variance σ2

iN. The HN (α) are
then evidently Gaussians with variance N, like in the REM case, but there are
now correlations. Defining for α, α′ ∈ ΣN the overlap

R (α, α′)
def
= max {i : (α1, . . . , αi) = (α′

1, . . . , α
′
i)}

one has EHN (α)HN (α′) = N
∑R(α,α′)

i=1 σ2
i . If σ2

1 > σ2
2 > . . . > σ2

K , this model

has K critical levels of “symmetry breaking” at βcr
i

def
=

√
2 log 2/

√
Kσi. In the

intervals
[
βcr

i−1, β
cr
i

]
, the limiting free energy f (β) is a quadratic polynomial, with

curvature decreasing with i (see [5], [4]). Just below the first critical value, one
still gets the annealed free energy β2/2, and above the last, one has an affine
function. I am not giving the exact expression which is not very revealing. More

interesting is the behavior of the Gibbs measure. Let xi (β)
def
=

√
2 log 2/

√
Kσiβ.

Surprisingly, if β > βcr
K , the Gibbs distribution behaves as in the REM case:∑

α δGN (α) → N
(
PPP

(
t→ xKt

−xK−1
))
. For β ∈

(
βcr

i−1, β
cr
i

)
, 2 ≤ i ≤ K, the
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statement has to be modified properly, as then limN→∞ supα GN (α) = 0, again,
but looking at appropriate margins, the same statement is true (with xK replaced
by xi−1).

The GREM leads to an interesting clustering process which can be described

in the following way: Order the random energies (HN (α)) downwards: η
(N)
1 >

η
(N)
2 > η

(N)
3 > . . . . Then determine at which level a pair

(
η
(N)
i , η

(N)
j

)
has branched

off. If one looks at the pairs (i, j) which have branched just at level K−1 (or later),
this defines an equivalence relation, and therefore a partitioning on

{
1, 2, . . . , 2N

}
.

If one looks at the pairs which have branched at level K − 2 or later, this defines
a partitioning which is coarser than that before, and in this way one can go on,
and gets a sequence of clusterings which get coarser and coarser. In the end,
everything is clustered, of course. It turns out, that as N → ∞, this sequence of
clusterings converges in a sense to be made precise to a sequence of clusterings
of N. This sequence in the limit becomes independent of the Gibbs distribution.
Furthermore, the limiting clusterings have a very explicit Markovian structure, a
fact which had been found in [1]. For proofs of most of these facts, see [3].

A superficial generalization is the case where the branching number depends on
the level, i.e. where #αi = 2γiN ,

∑
i γi = 1. This leads after a trivial redefinition

of the critical values to the same results.
The GREM plays in important rôle in spin glass theory. Originally invented as

a simple model which exhibits replica symmetry breaking at various levels, it has
become clear that more interesting models, like the celebrated one of Sherrington-
Kirkpatrick, exhibit GREM-like behavior in the large N limit. Despite the spec-
tacular recent progress in understanding the SK-model (see [6], [8]), many issues
have not been clarified at all, the most prominent one being the so called ultra-
metricity. The GREM is of no use to investigate this, because it is ultrametrically
organized from the start, so it offers no means to get an understanding why many
systems are supposed to be ultrametric in the limit.

In [2] we have presented a simple, and natural, generalization of the GREM
which has no built in ultrametric structure. We however show, that in the limit,
the model is ultrametrically organized. We fix a number n ∈ N, and consider the
set I = {1, ..., n}, as well as a collection of positive real numbers {σ2

J}J⊂I such
that ∑

J⊂I

σ2
J = 1.

For convenience, we put a∅
def
= 0. The relevant subset of I will be only the ones

with positive a-value. For A ⊂ I we set

PA
def
= {J ⊂ A : σ2

J > 0}, P def
= PI .

For n ∈ N, we set ΣN
def
=
{
1, . . . , 2N

}
. We also fix positive real numbers γi,

i ∈ I, satisfying
n∑

i=1

γi = 1,
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and write Σi
N

def
= ΣγiN , where for notational convenience we assume that 2γiN is

an integer. For N ∈ N, we will label the “spin configurations” α as:

α = (α1, ..., αn), αi ∈ Σi
N ,

i.e. we identify ΣN with Σ1
N × · · · × Σn

N . For J ⊂ I , J = {j1, . . . , jk} , j1 <

j2 < . . . < jk, we write ΣN,J
def
=
∏k

s=1 Σjs

N , and for α ∈ ΣN , we write αJ for the
projected configuration (αj)j∈J ∈ ΣN,J . Our spin glass Hamiltonian is defined as

(1) H (α)
def
=
∑

J∈P
XJ

αJ

where XJ
αJ
, J ∈ P , αJ ∈ ΣN,J are independent centered Gaussian random vari-

ables with variance σ2
JN. The H (α) are then Gaussian random variables with

variance N . A special case is when P = {I} , i.e. when only σ2
J 6= 0, in which case

it has to be one. Then the H (α) are independent, i.e. one considers simply a set
of 2N independent Gaussian random variables with variance N. This is just the
REM.

The GREM is a special case: It corresponds to the situation where the sets
in P are “nested”, meaning that P consists of an increasing sequence of subsets.
Without loss of generality we may assume that in this case

(2) P = {Jm : 1 ≤ m ≤ k} , Jm
def
= {1, . . . , nm} ,

where 1 ≤ n1 < n2 < . . . < nk ≤ n.
Any of our models can be “coarse-grained” in many ways into a GREM. For

that consider strictly increasing sequences of subsets of I : ∅ = A0 ⊂ A1 ⊂ . . . ⊂
AK = I. We do not assume that the Ai are in P . We call such a sequence a chain

T = (A0, A1, . . . , AK) . We attach weights σ̂2
Aj

to these sets by putting

(3) σ̂2
Aj

def
=

∑

B∈PAj
\PAj−1

σ2
B ,

Evidently
∑K

j=1 σ̂
2
Aj

= 1, and if we assign random variables H (σ,T) , according

to (1), we arrive after an irrelevant renumbering of I at a GREM of the form (2).
We define the partition functions Z (β), and the free energies FN , f in exactly

the same way as before.
For any chain T, we attach to our model a GREM (H (σ,T))σ∈ΣN

, as explained
above, and then write f (T, β) for the corresponding limiting free energy. Our main
result is that our generalization of the GREM does not lead to anything new in
N → ∞ limit, shedding (hopefully) some modest light on the “universality” of
ultrametricity.

Theorem 1. f (β) is the free energy of a GREM. More precisely, there exists a
chain T such that

f (β) = f (T, β) , β ≥ 0 .
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f (T, β) is minimal in the sense that

f (β) = min
S

f (S, β) ,

the minimum being taken over all chains S.

There are also results about the limiting Gibbs distribution, and the overlap
structure which are of the same nature, stating that the limiting Gibbs distribution
is that of a REM, and the there is a limiting clustering, independent of the Gibbs
weights. These results however need a kind of “irreducibility” assumption, and
are in fact not true under the completely general assumptions given above. I am
not going into details here.
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Hydrodynamics of asymmetric particle systems with open boundaries

Christophe Bahadoran

In this note we consider various generalizations of the one-dimensional asymmetric
exclusion process on Z. These systems are driven lattice gases, whose hydrody-
namic limit is known to be governed by entropy solutions of scalar conservation
laws of the form

(1) ∂tρ(t, x) + ∂xG(ρ(t, x)) = 0

where ρ(t, x) ∈ [0, 1] is the density field, and G(ρ) is the macroscopic flux. For
instance, G(ρ) = ρ(1 − ρ) for the asymmetric exclusion process. See e.g. [6] or
[10] for the theory of (1) and definitions of entropy solutions. Our purpose is 1)
to describe the hydrodynamic behavior of these systems when they are restricted
to some finite macroscopic region of size (say) 1 and coupled to reservoirs with
prescribed densities at both ends; 2) to derive from this the stationary phase di-
agram, thus extending the result of [4] to more general systems and fluxes. We
will now give some examples, describe the boundary dynamics and state the main
results from [1].
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1. Attractive systems with product invariant measures. A simple and
interesting example is the exclusion process “with overtaking”. We are given non-
negative coefficients βj for j ∈ Z−{0}, finitely many of them positive. A particle
chooses right or left and moves to the first empty site in that direction, at rate βεj

if j particles are jumped over, with ε = 1 (resp. −1) if the jump is to the right
(resp. left). We further assume that βj+1 ≤ βj for j > 0, βj−1 ≤ βj for j < 0,
β1 + β−1 > 0. The hydrodynamic limit follows from [9], with an explicit polyno-
mial flux G vanishing at 0 and 1. Conversely, every polynomial flux vanishing at
0 and 1 can be generated by suitable parameters.

2. KLS-type models. Here a particle at site x chooses right (resp. left) with
probability p (resp. 1 − p), and hops to the next site in this direction with rate
b(d+, d−), where d+ (resp. d−) is the number of vacant sites between x and the next
particle in the chosen (resp. opposite) direction. We assume b(n,m) = b(n∧r,m∧
r) for some r (finite-range assumption), b nondecreasing (resp. nonincreasing) in
its first (resp. second) argument, b(0, .) = 0. If b satisfies some algebraic relations
(see [3]), the hydrodynamic limit (1) can be deduced from [9], with an explicit G.
This model contains the following KLS model introduced in [7]: particles jump
only to the right, with jump rates given (for |δ|, |ε| ≤ 1) by

0100 → 0010 with rate 1 + δ
1100 → 1010 with rate 1 + ε
0101 → 0011 with rate 1 − ε
1101 → 1011 with rate 1 − δ

with the additional condition ε ≥ |δ|. For large ε, the macroscopic flux exhibits
two local maxima separated by a local minimum (see [8]).

The boundary dynamics. A configuration η ∈ {0, 1}Z on the infinite lattice is
decomposed as follows: η = (η−, η0, η+), where η− is the restriction to sites x ≤ 0,
η0 to sites 1, . . . , N , and η+ to sites x > N . For a single reservoir on the left with
density ρl, the generator of the semi-infinite system on N − {0} is defined by

(2) Ll
ρl
f(η0, η

+) = IEνρl
[Lf(η−, η0, η+)|(η0, η+)]

where L denotes the generator of the infinite system on Z, and f(η0, η+) is a test
function. Note that Lf depends also on η−, because of the interaction between
the reservoir and the bulk. Hence the conditional expectation in (2), which means
that the boundary dynamics is a virtual extension of the bulk dynamics, where
jump rates from or to the reservoir are averaged (given the bulk configuration)
with respect to the virtual reservoir configuration η−, forced to be in the steady
state νρl

. Of course, in Ll
ρl

, jumps from (resp. to) the reservoir are seen as
particle creations (resp. annihilations) after averaging. Similarly one may define
the generator of the semi-infinite system at sites x ≤ N with a reservoir of density
ρr at the right end:

Lr
ρr
f(η−, η0) = IEνρr

[Lf(η−, η0, η+)|(η−, η0)]
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In the above examples, the resulting generator only modifies the dynamics within
finite range of the boundary (where creations and/or annihilations may take place).
This makes it possible to define the generator LN

ρl,ρr
of the finite system on

{1, . . . , N} with reservoirs at both ends. In the hydrodynamic scaling limit, we let
N → ∞, and consider the system at times of order N (Euler time scaling).

The hydrodynamic limit. We should normally expect boundary conditions
ρ(t, 0+) = ρl, ρ(t, 1−) = ρr in the hydrodynamic equation (1). However, the
results of [4] show that the bulk density profile in the stationary state need not
connect smoothly to the reservoir densities. This can be understood thanks to
the boundary conditions for (1) introduced in [2], and reformulated in [5]. We
define a set El(ρl) (resp. Er(ρr)) of admissible left (resp. right) boundary values
containing ρl (resp. ρr), but (generally) not reduced to it. We say that ρ(t, x)
satisfies the BLN boundary conditions, if it has traces at x = 0 and x = 1, with
ρ(t, 0+) ∈ El(ρl) and ρ(t, 1−) ∈ Er(ρr). The definition of El(ρl) and Er(ρr) de-
pends only on ρl, ρr and G (see [5]). The result of [2] is existence and uniqueness
of of a weak entropy solution to (1) in (0, 1) that satisfies the BLN boundary con-
ditions. Our first result is

Theorem 1. The hydrodynamic limit, under Euler time scaling, of the system
with generator LN

ρl,ρr
, is given by the unique entropy solution to (1) with BLN

boundary conditions.

From this result, we can deduce the hydrostatic profile as N → ∞ of the unique
invariant measure for the finite system. What we thus obtain is a rigorous proof
for the above models of the formula introduced in [8]: define

(3) ρstat(ρl, ρr) :=

{
arg infρ∈[ρl,ρr ]G(ρ) if ρl ≤ ρr

arg supρ∈[ρr,ρl]G(ρ) if ρl ≥ ρr

whenever the infimum or supremum is uniquely achieved. We prove that

Theorem 2. The limiting profile, as N → ∞, of the unique invariant measure for
LN

ρl,ρr
, is given by the flat density profile ρstat(x) = ρstat(ρl, ρr) for every x ∈ (0, 1).

This includes the classical three-phase diagram (low density, high density, max-
imal current) derived in [4] for the asymmetric exclusion process, and the more
complex seven-phase diagram evidenced in [8] in the presence of local minima.
Theorem 2 can be understood from Theorem 1 as follows: when the formulas in
(3) are uniquely defined, one can check that

El(ρl) ∩Er(ρr) = {ρstat(ρl, ρr)}

Thus, ρ(t, x) = ρstat(ρl, ρr) defines a stationary entropy solution of (1) with BLN
boundary conditions, which can be proved to be unique.



Large Scale Stochastic Dynamics 2293

References

[1] Bahadoran, C.: Hydrodynamics of asymmetric particle systems with open boundaries. In
preparation.
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Hitting times for independent random walks on Zd

Amine Asselah

(joint work with Pablo A.Ferrari)

We consider a system of asymmetric independent random walks on Zd, denoted
by {ηt, t ≥ 0}, stationary under the product Poisson measure νρ of marginal
density ρ > 0. We fix a pattern A, an increasing local event, and denote by τ
the hitting time of A. By using a Loss Network representation of our system,
at small density, we obtain a coupling between the laws of ηt conditioned on
{τ > t, η0 ∼ νρ} for all times t. When d ≥ 3, this provides sharp estimates for the
tail of τ , as well as bounds on the rate of convergence of the law of ηt conditioned
on {τ > t} towards its limiting probability measure as t tends to infinity.

Our main result reads as follows. Assume that d ≥ 3. There is ρc > 0 explicit
such that for any ρ < ρc, there are λ(ρ), β,M positive, such that for any t ≥ 0

(1) |eλ(ρ)tPνρ
(τ > t) − 1∫

uu∗dνρ
| ≤M exp(−βt).

Here λ(ρ) is the principal eigenvalue of the generator L with Dirichlet boundary
on A, and u (resp. u∗) is the principal eigenfunction of L (resp. of the adjoint L∗)
with Dirichlet boundary on A.

Also, we consider initial measures which are not product Poisson measures, but
are “sandwiched” between two product Poisson measures.
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Mutually catalytic branching: Continuum limit, Palm measures and

multiscale analysis

Andreas Greven

(joint work with D. Dawson and I. Zähle)

The talk addresses the question of the qualitative properties of the spatial con-
tinuum limit for multitype population models with and without type interaction,
close to critical dimension. This analysis highlights the qualitative change in be-
havior due to the type interaction which results in intermittency phenomena for
the hot spots of the fluctuations in mutually catalytic models.

We consider systems of countably many linearly interacting (migration) multi-
type diffusions where each single multitype diffusion may also exhibit an interac-
tion between the subpopulations of the different types at a site. The values of the
components are (for the two-type case) taken in (R+)2 and the components are in-
dexed by the hierarchical group ΩN =

⊕
N
ZN , ZN = {0, 1, . . . , N − 1}, the latter

with addition modulo N . Typical examples for the diffusive part of the evolution
mechanism in each component are the mechanisms of two-type independent Feller
branching diffusions, catalytic branching diffusions, mutually catalytic branching
diffusions, two-type Anderson models and the Fisher-Wright diffusions.

In all these cases one can consider the question whether a suitable mass-time-
space and if necessary an additional rate rescaling yields a spatial continuum limit
with the space of sites being the group Ω∞

N =
⊕

Z
ZN , which is viewed as the

continuum limit of ΩN . The time-space scaling has in particular the property
that the random walk on ΩN underlying the migration term in all these systems
converges to a Lévy jump process on Ω∞

N . This procedure is analogous to passing
from interacting systems indexed by Zd to measure valued processes on Rd.

For independent branching one obtains always nontrivial continuum limits with-
out any rate rescaling, while for the case of other model classes, namely catalytic,
mutually catalytic branching, this holds only for the critically recurrent case, other
cases need an up- or down-scaling of the rate depending on the migration mech-
anism.For the Anderson-model and the Fisher-Wright case one obtains for criti-
cally recurrent and transient underlying random walks degeneration of the limits,
namely one sees explosion of the fluctuations or a deterministic limit and only the
strongly recurrent walks allow nontrivial limits for the Fisher-Wright model.

The key phenomenon is the following dichotomy for the qualitative properties
of the continuum limit for branching models. In the case of strong recurrence of
the underlying symmetrized migration, we obtain at fixed times for the states of
the process densities (w.r.t. to the Haar measure on Ω∞

N ) of the two populations
and also of the current reaction terms i.e. the derivative of the increasing process
associated with the evaluations of the state of the process with test functions. The
latter is relevant in case of catalytic and mutually catalytic models. On the other
hand for critically recurrent and transient migration the reaction terms become
singular w.r.t the Haar measure of the group Ω∞

N . In the density case the task is
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to describe the structure of the density field, in the singular case the geometric
structure of the peaks of activity (hot spots).

For the continuum limit, one can now consider a further limit and let the pa-
rameter N → ∞ and identify the limiting objects and study their properties. A
simplification of the above procedure, introduced in [CDG03], is to consider the
problems above in the hierarchical mean-field limit, that is to first let in a space-
time-rate renormalized system tend N → ∞ and then later pass to the continuum
limit. Through this procedure we obtain a (possibly time-inhomogeneous) Markov
chain which allows to describe local qualitative properties of the continuum limit
and is called the small-scale characteristic. In order to justify the hierarchical
mean-field limit, the important question is, do we really get the same result by
interchanging the order of continuum limit and the limit N → ∞, as is expected?
This problem is first addressed for the two-type branching situation.

Next we apply the method of the hierarchical mean-field continuum limit sys-
tematically to branching and mutually catalytic branching. We analyze the local
small-scale properties of the hierarchical mean-field continuum limit in more detail,
namely we analyze the size of the regions of survival, respectively the monotype
regions and furthermore the strength of reaction of or between the types (hot
spots). More precisely their intensity and their spatial distribution. We intro-
duce the size-biased laws of the small-scale characteristic as a key concept which
in turn makes possible the use of the h-transform as a technical tool . Here the
catalytic and mutually catalytic processes exhibit for the same migration mecha-
nism much more peaked states than the classical branching case and the mutually
catalytic case exhibits some entirely new features which can be described as local
intermittency effects.
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Annealed deviations for random walk in random scenery

Wolfgang König

(joint work with N. Gantert and Z. Shi)

Let (Zn)n∈N0 be a d-dimensional random walk in random scenery, i.e., Zn =∑n−1
k=0 Y (Sk) with (Sk)k∈N0 a random walk in Zd and (Y (z))z∈Zd an i.i.d. scenery,

independent of the walk. The walker’s steps are assumed to have mean zero and
finite variance. For the purpose of this abstract, let S be simple random walk.

The random walk in random scenery has been introduced and analyzed in di-
mension d 6= 2 by H. Kesten and F. Spitzer [KS79] and by E. Bolthausen [B89]
for d = 2. Under the assumption that Y (0) has expectation zero and variance



Large Scale Stochastic Dynamics 2297

σ2 ∈ (0,∞), their results imply that

(1)
1

n
Zn ≈ a0

n =





n− 1
4 if d = 1,

( n
log n )−

1
2 if d = 2,

n− 1
2 if d ≥ 3.

More precisely, 1
na0

n
Zn converges in distribution towards some non-degenerate ran-

dom variable. In terms of the so-called local times of the walk,

(2) `n(z) =
n−1∑

k=0

1{Sk=z}, n ∈ N, z ∈ Zd,

the random walk in random scenery may be identified as

(3) Zn =
∑

z∈Zd

Y (z)`n(z) = 〈Y, `n〉.

It is the goal of the present work to identify the speed and the rate of the
logarithmic decay of P( 1

nZn > bn) for various choices of sequences (bn)n in (0,∞)
satisfying bn � a0

n. Furthermore, we want to explain, at least on a heuristic level,
the optimal joint strategy of the random walk and the scenery to meet the event
{ 1

nZn > bn} in the cheapest way.
In order to demonstrate the main idea of the investigation, let us derive a lower

bound for P( 1
nZn > u) for u > 0 fixed. Our ansatz is to fix a scale function 1 �

αn � n
1
d and to consider the event that the appropriately normalized rescaled local

times and the rescaled scenery resemble fixed given shape functions ψ2, ϕ : Rd →
[0,∞), respectively, where we impose the conditions

∫
ψ2 = 1 and 〈ψ2, ϕ〉 ≥ u.

This gives the lower bound

(4)
P( 1

nZn > u) ≥ P

(αd
n

n
`
(
b·αnc

)
≈ ψ2(·), Y

(
b·αnc

)
≈ ϕ(·)

)

≈ exp
{
− n

α2
n

I(ψ2)
}

exp
{
−αd

nJH(ϕ)
}
,

where the last line follows from well-known techniques in large-deviation theory,
and the rate functions are

I(ψ2) =
1

2
‖∇ψ‖2

2 and JH(ϕ) =

∫
sup
t>0

(
ϕ(x)t −H(t)

)
dx,

and H(t) = log E(etY (0)) is the cumulant generating function of the scenery. From
(4) we already see that the choice αn = n1/(d+2) is the proper choice for which we
can expect a non-trivial result. Indeed, A. Asselah and F. Castell [AC03] derived
a theorem on the logarithmic asymptotics of P( 1

nZn > u) for the case of bounded
sceneries Y , which we do not formulate here.

However, we are interested in sceneries unbounded from above. In general, the
random walk in random scenery with unbounded sceneries has interesting relations
to self-intersection properties of the walk, which makes this subject particularly



2298 Oberwolfach Report 43/2004

interesting. As an example, if the scenery is standard Gaussian, then the distri-
bution of Zn given the random walk is equal to a centred Gaussian with variance
equal to

∑
z∈Zd `n(z)2, the self-intersection number.

Our main result is the following.

Theorem. Suppose that log P(Y (0) > r) ∼ −Drq as r → ∞, for some D > 0 and

q > d
2 . Pick a sequence (bn)n∈N satisfying 1 � bn � n

1
q . Then

(5) lim
n→∞

n− d
d+2 b

− 2q
d+2

n log P

( 1

n
Zn > bn

)
= −KD,q,

where

(6) KD,q ≡ inf
{1

2
‖∇ψ‖2

2 +D‖ψ2‖−q
p : ψ ∈ H1(Rd), ‖ψ‖2 = 1

}
,

(where 1
p + 1

q = 1), and KD,q is positive.

The constant KD,q is zero in the subcritical cases where q < d
2 :

Proposition. (Positivity of KD,q) Fix d ∈ N and p, q > 1 satisfying 1
p + 1

q = 1.

(i) For any D > 0,

(7) KD,q = (d+ 2)
(D

2

) 2
d+2
(χd,p

d

) d
d+2

,

where

(8) χd,p = inf
{1

2
‖∇ψ‖2

2 : ψ ∈ H1(Rd) : ‖ψ‖2 = 1 = ‖ψ‖2p

}
.

(ii) The constant χd,p is positive if and only if d ≤ 2p
p−1 = 2q.

The constant χd,p is directly related to the well-known Gagliardo-Niremberg
constant. In [We83], the existence of a minimizer in (8) has been established;
indeed there is a minimizer which is rotationally symmetric, positive everywhere
and infinitely often differentiable. Uniqueness of the minimizer has been proven
in [MS81] for d ∈ {2, 3, 4} for all p ∈ (1, d

d−2 ] and for d ∈ {5, 6, 7} for p ∈ (1, 8
d ).
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Wetting transition for effective gradient interface models

Jean-Dominique Deuschel

The talk is in two parts. In the first part we review results on the wetting
transition for effective interface with gradient interaction, in the second we look
more closely at the (1 + 1) case, and show (Brownian) scaling limits of the model.

The effective interface is a (d + 1) model with discrete basis and continuous
height variables. Thus for x ∈ Zd, φx ∈ R denotes the height of the interface
above or below the site x. The interaction is of gradient type, i.e. depends only on
the height differences of two neighboring sites with a strictly convex potential. A
special case deals with quadratic potential which corresponds to a Gaussian also
called harmonic crystal or (discrete) massless field. One of the difficulties of this
model is the long range correlation due to the continuous symmetry. In particular,
we have delocalization in lower lattice dimensions d = 1, 2 but localization in higher
dimensions d ≥ 3, cf. [8]

We focus on the interaction of the interface with its basis or wall: {x ∈ Zd : φx =
0}. Two effects are considered: the repulsion and the weak pinning. The hard wall
condition or repulsion forbids negative heights, this produces a delocalization of
the interface, the so called entropic repulsion, cf. [1]. The weak pinning of reward
ε > 0 is concentrated at the wall and has the effect of localizing the interface in
any dimensions, cf. [7]. Thus the two effects compete and we say that a wetting
transition occurs at ε0 > 0, if the interface remains localized for strong pinning
parameter ε > ε0, respectively is delocalized for weak pinning ε ≤ ε0. Such a
transition takes place in lower lattice dimensions, d = 1, 2, cf. [3], but not in
higher dimensions d ≥ 3, cf. [2].

In the second part we study the path properties for the δ-pinning wetting model
in (1 + 1)-dimension, cf. [5]. In other terms, we study a random walk model with
fairly general continuous increments conditioned to stay in the upper half plane and
with a δ-measure reward for touching zero, that is the boundary of the forbidden
region. Such a model displays a wetting transition, according to the size of the
reward ε. Our focus is on getting a precise pathwise description of the system,
in both the delocalized phase, that includes the critical case, and in the localized
one. We then show that the properly rescaled interface converges in the delocalized
phase to a Brownian excursion, respectively a Brownian bridge at criticality. This
a generalization of the previous work of [6], which dealt with the special case
of the simple random walk. The proofs are based on a careful analysis of the
pinned sites and on excursion and regenerative set theory. Finally we present a
dynamical version: the Landau-Ginsburg model on a wall with or without pinning,
and discuss time-space scaling limit theorem to a partial stochastic differential
equation with repulsion of the Nualard Pardoux type, cf. [9], [4], [10].
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Entropy dissipation estimates in a Zero–Range dynamics

Pietro Caputo

(joint work with Gustavo Posta)

We consider the time decay of relative entropy functionals for a class of zero
range processes on the complete graph. The process is characterized by the jump
rate function c : N → R+, c(k) being the rate at which a vertex occupied by
k particles expels one. The expelled particle is then relocated at another vertex
chosen uniformly at random. We fix the number of vertices and the number of
particles and consider the process with arbitrary initial distribution µ. Letting
ν denote the reversible invariant measure and setting ft = dµt

dν (µt being the
distribution at time t of the process started with µ), the relative entropy functional
Ent(ft) = H(µt|ν) satisfies

(1)
d

dt
Ent(ft) = −E(ft, log ft) ,

where E(·, ·) denotes the Dirichlet form associated to the process. The entropy
dissipation estimate is a bound of the form

(2) Ent(f) ≤ γ E(f, log f) ,

where γ > 0 and the inequality holds for every nonnegative f . In view of (1) the
above estimate implies exponential decay of H(µt|ν) and γ can be used to estimate
from above the mixing time of the process.

In the case where the jump rates c are uniformly increasing functions we show
that the constant γ is finite uniformly in the number of vertices and the number
of particles. The measure ν is globally log–concave in this case and the result is
obtained by using a discrete version of the so–called Bakry–Emery criterium. In
particular, we establish estimates of the form

(3) E(f, log f) ≤ γ [E(−Lf, log f) + E(f, (−Lf)/f)] ,
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for all nonnegative f , where L denotes the generator of the dynamics and the term
in brackets in the right hand side above is the second time–derivative of Ent(ft)
at time t = 0+. We refer to [2] for the precise assumptions and statements.

We also study the standard case of possibly oscillating but roughly linearly
increasing rates. Here the uniform entropy dissipation estimate cannot follow by
a one–step computation as the one leading to (3). An important point is the
observation that the invariant measure ν is such that its marginals at each vertex
have bounded Radon Nikodym derivative wrt a log–concave probability measure.
An estimate of the form (3) is therefore available on each coordinate and the final
result is achieved by an adaptation of the iterative martingale approach.

In more than one way our results generalize and complement previous work in
[4, 1] for the spectral gap problem and [3] for the logarithmic Sobolev inequality.
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Mott law as lower bound for a random walk in a random environment

Alessandra Faggionato

(joint work with H. Schulz–Baldes and D. Spehner)

Suppose given an infinite set of random points {xj} ⊂ Rd distributed ac-
cording to some stationary simple point process with a bounded mean density
ρ. To each xj is associated a random energy mark Ej ∈ [−1, 1]. All marks are
drawn independently and identically according to a probability measure ν satisfy-
ing ν([−E,E]) ≥ c0E

1+α for some α ≥ 0 and c0 > 0. Within each such random
environment {xj , Ej}, let us consider a continuous-time random walk over the
points {xj} with energy dependent transition rates from xj to xk given by

(1) cxj ,xk
(Ej , Ek) = e−|xj−xk| e−β(|Ej−Ek|+|Ej |+|Ek|) ,

where the positive parameter β is the inverse temperature. Our main result states
that the random walk converges after appropriate space and time rescaling to a
Brownian motion and that the associated diffusion coefficient D(β) is bounded
from below by

(2) D(β) ≥ c1 β
− (α+1)d

α+1+d exp
(
−c2 β

α+1
α+1+d

)
,
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where d ≥ 2 is the dimension of space and c1 and c2 are some β-independent
constants. The exponential factor on the r.h.s. is precisely as in Mott’s law for
the DC conductivity in disordered solids which is discussed below.

Based on the following heuristics due to Mott [Mot, SE], we expect that the
power law in the exponential in (2) captures the good asymptotic behaviour of
lnD(β) in the low temperature limit β ↑ ∞ if ν([−E,E]) ∼ c0E

1+α as E → 0. As
β becomes larger, the rates (1) fluctuate widely with (xj , xk) because of the ex-
ponential energy factor. The low temperature limit effectively selects only jumps
between points with energies in a small interval [−E(β), E(β)] shrinking to zero as
β → ∞. Assuming that the diffusion coefficient is determined by those jumps with
the largest rate, one can obtain directly the characteristic exponential factor on
the right hand side of (2) by maximising these rates for a fixed temperature under
the constraint that the mean density of points xj with energies in [−E(β), E(β)]
is equal to ρ ν([−E(β), E(β)]) ∼ c0ρE(β)1+α. As the characteristic mean distance
|xj − xk| between sites with optimal jump rates also varies heavily with the in-
verse temperature β, one speaks of a variable range hopping regime. A crucial
(and physically reasonable, as discussed below) element of this argument is the
independence of the energies Ej . The selection of the points {xi} with energies in
the window [−E(β), E(β)] then corresponds mathematically to a p-thinning with
p = ν([−E(β), E(β)]). It is then a well-known fact that an adequate rescaling
of the p-thinning of a stationary point process converges in the limit p ↓ 0 (cor-
responding to β ↑ ∞) to a stationary Poisson point process (PPP) (e.g. [Kal,
Theorem 16.19]). Hence one might call the stationary PPP the normal form of a
model leading Mott’s law, namely the exponential factor on the r.h.s. of (2) and
we believe that proving the upper bound corresponding to (2) should therefore be
most simple for the PPP. In dimension d = 1, a different behaviour of D(β) is
expected [LB] and this will not be considered here.

Our main motivation for studying the above model comes from its importance
for phonon-assisted hopping conduction [SE] in disordered solids in which the Fermi
level (set equal to 0 above) lies in a region of strong Anderson localisation. This
means that, close to the Fermi level, the electron Hamiltonian has exponentially
localised quantum eigenstates with localisation centres xj and energy levels Ej .
The DC conductivity of such materials would vanish if it were not for the lattice
vibrations (phonons) at nonzero temperature. They induce transitions between
the localised states, the rate of which can be calculated from first principle by
means of the Fermi golden rule [MA, SE]. In the variable range hopping regime
at low temperature, an adiabatic or rotating wave approximation can be used
to treat quantum mechanically the electrons-phonon coupling [Spe]. Coherences
between electronic eigenstates with different energies decay very rapidly under the
resulting dissipative electronic dynamics and one can show that the hopping DC
conductivity of the disordered solid coincides with the conductivity associated with
a Markov jump process on the set of localisation centres {xj}, hence justifying
the use of a model of classical mechanics [BRSW]. Because Pauli blocking due
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to Fermi statistics of the electrons has to be taken into account, this leads to a
rather complicated exclusion process (e.g. [Qua, FM]). If, however, the blocking is
treated in an effective medium approximation, one obtains a family of independent
random walks with rates which in good first approximation are given by (1) in the
limit β ↑ ∞ [MA, AHL]. Let us discuss the remaining aspects of the model. The
stationarity of the underlying simple point process {xj} simply reflects that the
material is homogeneous, while the independence of the energy marks is compatible
with Poisson level statistics, which is a general rough indicator for the localisation
regime and has been proven to hold for an Anderson model [Min]. The exponent
α allows to model a possible Coulomb pseudogap in the density of states [SE].

Having in mind the Einstein relation between the conductivity and the diffusion
coefficient (which can be stated as a theorem for a number of models [Spo]), the
lower bound (2) gives a lower bound on the hopping DC conductivity. In the
above materials, the DC conductivity shows experimentally Mott’s law, namely
a characteristic low-temperature behaviour which is well approximated by the
exponential factor in the r.h.s. of (2) with α = 0 or α = d − 1, as predicted by
Mott [Mot] and Efros and Shklovskii [EF], respectively, based on the optimisation
argument discussed above. A first convincing justification of this argument was
given by Ambegoakar, Halperin and Langer [AHL], who first reduced the hopping
model to a related random resistor network, in a manner similar to the work of
Miller and Abrahms [MA], and then pointed out that the constant c2 can be
estimated using percolation theory [SE]. Our proof of the lower bound (2) is much
inspired by this work, together with some classical results for random walks in
random environment obtained by De Masi, Ferrari, Goldstein and Wick [DFGW].
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jg@math.tu-berlin.de

Institut für Mathematik
Fakultät II; Sekr. MA 7-5
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Andreas Greven

greven@mi.uni-erlangen.de

Mathematisches Institut
Universität Erlangen-Nürnberg
Bismarckstr. 1 1/2
91054 Erlangen

Dr. Stefan Grosskinsky

stefang@ma.tum.de

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München

Prof. Dr. Alice Guionnet

aguionne@umpa.ens-lyon.fr

alice-guionnet@umpa.ens-lyon.fr

Dept. de Mathematiques, U.M.P.A.
Ecole Normale Superieure de Lyon
46, Allee d’Italie
F-69364 Lyon Cedex 07



Large Scale Stochastic Dynamics 2307

Prof. Dr. Dmitri Ioffe

ieioffe@ie.technion.ac.il

Faculty of Industrial Engineering &
Management
Technion
Israel Institute of Technology
Haifa 32000
ISRAEL

Dr. Milton Jara

monets@impa.br

Instituto Nacional de Matematica
Pura e Aplicada; IMPA
Estrada Dona Castorina 110
Rio de Janeiro, RJ - CEP: 22460-320
BRASIL

Prof. Dr. Gianni Jona-Lasinio

gianni.jona@roma1.infn.it

Jona@roma1.infn.it

Dipartimento di Fisica
Universita degli Studi di Roma I
”La Sapienza”
Piazzale Aldo Moro, 2
I-00185 Roma

Prof. Dr. Christian Klingenberg

klingen@mathematik.uni-wuerzburg.de

Institut für Angewandte Mathematik
und Statistik
Universität Würzburg
Am Hubland
97074 Würzburg

Dr. Wolfgang König

koenig@math.tu-berlin.de

Institut für Mathematik / FB 3
Sekr. MA 7-5
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Tomasz Komorowski

komorow@golem.umcs.lublin.pl

komorow@hektor.umcs.lublin.pl

Institute of Mathematics
UMCS
pl. Marii Curie-Sklodowskiej 1
20-031 Lublin
POLAND

Prof. Dr. Claudio Landim

landim@impa.br

Instituto de Matematica Pura e
Aplicada - IMPA
Jardim Botanico
Estrada Dona Castorina, 110
22460 320 Rio de Janeiro, RJ
BRAZIL

Prof. Dr. Joel L. Lebowitz

lebowitz@math.rutgers.edu

Center for Math. Sciences Research
RUTGERS, The State University
Hill Center, Busch Campus
110 Frelinghuysen Road
Piscataway, NJ 08854-8019
USA

Prof. Dr. Michail Loulakis

M.Loulakis@statslab.cam.ac.uk

Dept. of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
GB-Cambridge CB3 OWB

Rossana Marra

marra@roma2.infn.it

rossana.marra@roma2.infn.it

Dip. di Fisica
Universita di Roma Tor Vergata
Via d. Ricerca Scientifica 1
I-00133 Roma



2308 Oberwolfach Report 43/2004

Prof. Dr. Thomas Mountford

thomas.mountford@epfl.ch

Institut de Mathematique Bernoulli
Ecole Polytechnique Federale
de Lausanne
CH-1015 Lausanne

Prof. Dr. Mustapha Mourragui

Mustapha.Mourragui@univ-rouen.fr

Analyse et Modeles Stochastiques
Universite de Rouen
UPRES-A CNRS 6085
site Colbert
F-76821 Mont Saint Aignan

Katalin Nagy

knagy@bolyai1.elte.hu

Department of Probability and
Statistics
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