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The Komplexe Analysis workshop, organised by J.P. Demailly (Grenoble), K.
Hulek (Hannover) and Th. Peternell (Bayreuth), was held August 22-27. The
meeting was attended by over 40 participants from many European countries,
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Levi flat hypersurfaces and non-Kaehler geometry to classification theory, classical
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Abstracts

Application of complex analysis to oscillating integrals

Daniel Barlet

Let (XR, 0) be a germ of real analytic subset in (RN , 0) of pure dimension n+ 1
with an isolated singularity at 0. Let

(fR, 0) : (XR, 0) −→ (R, 0)

a real analytic germ with an isolated singularity at 0, such that its complexification
fC vanishes on the singular set S of XC. We also assume that XR − {0} is
orientable.
To each A ∈ H0(XR − f−1(0),C) we associate a n−cycle Γ(A) (”explicitly”
described) in the complex Milnor fiber of fC at 0 such that the non trivial terms
in the asymptotic expansions of the oscillating integrals

∫

A
eiτf(x)ϕ(x) when

τ → ±∞ can be read from the spectral decomposition of Γ(A) relative to the
monodromy of fC at 0.
The use of the Gauss-Manin connection associated to fC in this classical problem
already appears in [M.74]. Special cases of the results decribed here were obtained
in [B.M. 02] (with also a ”complex version”) and [B.03].
We consider also the case where ∂A = {0} (corresponding to an A coming from
H0(XR−{0},C)). The terms in the asymptotic expansion of

∫

A
eiτf(x)ϕ(x) which

are negative powers of τ are also describe in this case (they are not interesting
without the hypothesis ∂A = {0}) by the mean of a ”natural” lift of the (closed)
cycle Γ(A) to a compact cycle in the Milnor’fiber of fC at 0. This last result
generalizes [B.99].
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Beauville surfaces without real structures and group theory

Ingrid C. Bauer

(joint work with F. Catanese and F. Grunewald)

In [Bea] (see p. 159) A. Beauville constructed a new surface of general type with
K2 = 8, pg = 0 as a quotient of the product of two Fermat curves of degree 5 by the
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action of the group (Z/5Z)2. Inspired by this construction, in the article [Cat00],
dedicated to the geometrical properties of varieties which admit an unramified
covering biholomorphic to a product of curves, the following definition was given:

Definition. A Beauville surface is a compact complex surface S which
1) is rigid, i.e., it has no nontrivial deformation,
2) is isogenous to a higher product, i.e., it is a quotient S = (C1 ×C2)/G of a

product of curves of resp. genera ≥ 2 by the free action of a finite group G.

Moreover, the following was proven:

Theorem. (Catanese) Let S = (C1 × C2)/G be a surface isogenous to a prod-
uct. Then any surface X with the same topological Euler number and the same
fundamental group as S is diffeomorphic to S. The corresponding moduli space

M top
S = Mdiff

S is either irreducible and connected or it contains two connected
components which are exchanged by complex conjugation.

If S is a Beauville surface this implies: X ∼= S or X ∼= S̄.
We adress the following problems:

Question 1. Existence and classification of Beauville surfaces, i.e., a) which finite
groups G can occur?

b) classify all possible Beauville surfaces for a given finite group G.

Question 2. Is the Beauville surface S biholomorphic to its complex conjugate
surface S̄?

Is S real (i.e., does there exist a biholomorphic map σ : S → S̄ with σ2 = id)?

Remark. Beauville surfaces which are not biholomorphic to their complex con-
jugate surfaces are counterexamples to the Friedman-Morgan speculation (1987)
that two algebraic surfaces are diffeomorphic if and only if they are in the same
connected component of the moduli space.

For different counterexamples to the above compare [Cat03], [C-W04], [K-K02],
[Man01].

In order to reduce the description of Beauville surfaces to some group theoretic
statement, we need to recall that surfaces isogenous to a higher product belong to
two types:

1) S is of unmixed type if the action of G does not mix the two factors, i.e.,
it is the product action of respective actions of G on C1, resp. C2.

2) S is of mixed type, i.e., C1 is isomorphic to C2, and the subgroup G0 of
transformations in G which do not mix the factors has index precisely 2 in G.

The datum of a Beauville surface can be described group theoretically.

Definition. Let G be a finite group.
1) A quadruple v = (a1, c1; a2, c2) of elements of G is an unmixed Beauville

structure for G if and only if
(i) the pairs a1, c1, and a2, c2 both generate G,
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(ii) Σ(a1, c1) ∩ Σ(a2, c2) = {1G}, where

Σ(a, c) :=
⋃

g∈G

∞
⋃

i=0

{gaig−1, gcig−1, g(ac)ig−1}.

We write U(G) for the set of unmixed Beauville structures on G.
2) A mixed Beauville quadruple forG is a quadruple M = (G0; a, c; g) consisting

of a subgroup G0 of index 2 in G, of elements a, c ∈ G0 and of an element g ∈ G
such that

i) G0 is generated by a, c,
ii) g /∈ G0,
iii) for every γ ∈ G0 we have gγgγ /∈ Σ(a, c).
iv) Σ(a, c) ∩ Σ(gag−1, gcg−1) = {1G}.
We call M(G) the set of mixed Beauville quadruples on the group G.

Remark. 1) Every Beauville structure on a finite group G gives rise to a Beauville
surface. From (1) i) we obtain two Galois coverings λi : C(ai, ci) → P1 (Rie-
mann’s existence theorem) and Condition (1), ii) assures that the action of G on
C(a1, c1) × C(a2, c2) is free.

2) Let be ι(a1, c1; a2, c2) = (a−1
1 , c−1

1 ; a−1
2 , c−1

2 ). Then S(ι(v)) = S(v). (Note
that ᾱ = α−1, γ̄ = γ−1.)

Proposition. Let G be a finite group and
v = (a1, c1; a2, c2) ∈ U(G).
Assume that {ord(a1), ord(c1), ord(a1c1)} 6= {ord(a2), ord(c2), ord(a2c2)} and

that ord(ai) < ord(aici) < ord(ci). Then S(v) ∼= S(v) if and only if there are
inner automorphisms φ1, φ2 of G and an automorphism ψ ∈ Aut(G) such that,
setting ψj := ψ ◦ φj , we have ψ1(a1) = a−1

1 , ψ1(c1) = c−1
1 , and ψ2(a2) = a2

−1,
ψ2(c2) = c2

−1.

In particular S(v) is isomorphic to S(v) if and only if S(v) has a real structure.

Remark. Dropping the assumption on the orders of ai, ci, we can define a finite
permutation group AU(G)such that for v, v′ ∈ U(G) we have : S(v) ∼= S(v′) if and
only if v is in the AU(G)-orbit of v′.

Theorem. The following groups admit unmixed Beauville structures v such that

S(v) is not biholomorpic to S(v):
1. the symmetric group Sn for n ≥ 8 and n ≡ 2 mod 3,
2. the alternating group An for n ≥ 16 and n ≡ 0 mod 4, n ≡ 1 mod 3, n 6≡ 3, 4

mod 7.

The following result shows that there are Beauville surfaces which are biholo-
morphic to their complex conjugate surface, but do not have a real structure.

Theorem. Let p > 5 be a prime with p ≡ 1 mod 4, p 6≡ 2, 4 mod 5, p 6≡ 5 mod 13
and p 6≡ 4 mod 11. Set n := 3p+ 1. Then there is an unmixed Beauville surface S
with group An which is biholomorphic to the complex conjugate surface S̄, but is
not real.
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For mixed Beauville surfaces the situation is more complicated, but we suc-
ceed to give a general construction for finite groups admitting a mixed Beauville
structure.

Let H be non-trivial group. Let Θ : H × H → H × H be the automorphism
defined by Θ(g, h) := (h, g) (g, h ∈ H). We consider the semidirect product
H[4] := (H×H)⋊Z/4Z where the generator 1 of Z/4Z acts through Θ on H×H .

Since Θ2 is the identity we find H[2] := H × H × 2Z/4Z ∼= H × H × Z/2Z as a
subgroup of index 2 in H[4].

We have now

Lemma. Let H be a non-trivial group and let a1, c1, a2, c2 be elements of H.
Assume that

1. the orders of a1, c1 are even,
2. a2

1, a1c1, c
2
1 generate H,

3. a2, c2 also generate H,
4.(ord(a1) · ord(c1) · ord(a1c1), ord(a2) · ord(c2) · ord(a2c2)) = 1.
Set G := H[4], G

0 := H[2] as above and a := (a1, a2, 2), c := (c1, c2, 2). Then

(G0; a, c) is a mixed Beauville structure on G.

As an application we find the following examples

Theorem. Let p be a prime with p ≡ 3 mod 4 and p ≡ 1 mod 5 and consider the
group H := SL(2,Fp). Then H[4] admits a mixed Beauville structure u such that

S(u) is not biholomorphic to S(u).

Remark. Note that the smallest prime satifying the above congruences is p = 11
and we get that G has order equal to 6969600.
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Extension of equivariant vector bundles

Michel Brion

Consider a homogeneous space X0 = G/K, where G is a complex linear alge-
braic group and K is a complex algebraic subgroup. Let V0 be a G-equivariant
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complex vector bundle on X0 and let X be a G-equivariant compactification of X0

(i.e., X is a compact complex algebraic variety where G acts with an open orbit
isomorphic to X0). Does V0 extend to an equivariant vector bundle on X ?

This question arises naturally when studying equivariant vector bundles on
quasi-homogeneous varieties. It was raised by Kostant in the setting where G
is an adjoint semisimple group, K is the fixed point subgroup of an involutive
automorphism θ of G, and X is the wonderful compactification of the symmetric
space G/K (as introduced in [3]). In fact, Kostant asked for a canonical extension,
in view of applications to representation theory of real reductive groups. I refer
to Syu Kato’s paper [5] for a precise formulation of his question, and a positive
answer in the case of an adjoint semisimple group K regarded as the symmetric
space K ×K/diag(K).

Returning to the general setting, it is easy to see that V0 extends to an equi-
variant vector bundle on some equivariant compactification X(V0) (depending on
V0); then V0 extends to those compactifications which have an equivariant map
onto X(V0). As a consequence, V0 extends to an arbitrary compactification, but
only as a coherent G-linearized sheaf. However, V0 may admit no extension as a
vector bundle on certain “small” compactifications.

For example, consider the homogeneous space X0 := Cn \ {0} under G := GLn,
and its equivariant compactification X := Pn. Let V0 be the pull-back of the
tangent bundle of P

n−1 under the projection C
n \ {0} → P

n−1. Then V0 is a
homogeneous vector bundle on X0. Further, if n ≥ 3 then V0 does not extend to
a vector bundle on the open subset X0 ∪ {0} = Cn of X , as follows from a result
of Horrocks [4].

In my talk, I presented an affirmative answer to Kostant’s question for certain
complex adjoint symmetric spaces. Any such space G/K satisfies the inequality

rk(G/K) ≥ rk(G) − rk(K),

where rk(G) (resp. rk(K)) denotes the rank of G (resp. K), i.e., the dimension
of a maximal subtorus, and likewise, rk(G/K) denotes the rank of the symmetric
space G/K, i.e., the dimension of a maximal subtorus S of G such that θ(x) = x−1

for any x ∈ S. Let us say that G/K is of minimal rank if this inequality is an
equality. With this definition, the main result of the talk is

Theorem 1. Let X be the wonderful compactification of a complex adjoint sym-
metric space G/K of minimal rank. Then any equivariant vector bundle on G/K
extends to an equivariant vector bundle on X, generated by its global sections and
having trivial higher cohomology groups.

Here is an outline of the proof; details will be given in [2]. Recall that the
equivariant vector bundles on any homogeneous space G/K are in bijection with
the K-modules M , via M 7→ LG/K(M). For a symmetric space G/K, the group
K is reductive. Thus, all the K-modules are semisimple, and it suffices to extend
LG/K(M), where M is simple. By the Borel-Weil theorem, M is the space of
global sections of some K-equivariant line bundle LK/BK

(µ), where BK is a Borel
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subgroup of K, and µ is a character of BK identified with the corresponding one-
dimensional BK-module. In other words, V0 is the direct image of the equivariant
line bundle LG/BK

(µ) under the equivariant fibration

π0 : G/BK → G/K

with fiber being the flag variety K/BK . To obtain the desired extension, I will
construct an equivariant compactification of π0 over X , where LG/BK

(µ) extends
to an equivariant line bundle.

There exists a Borel subgroup B of G such that B ∩K = BK . Then the orbit
Y0 := B/BK is closed in G/K, since K/BK is closed in G/B. Let Y be the closure
of Y0 inX , this is a B-stable subvariety. Consider the “induced” G-varietyG×BY ,
an equivariant compactification of G×B B/BK

∼= G/BK . This variety is provided
with G-equivariant morphisms

π : G×B Y → X

(a compactification of π0) and

f : G×B Y → G/B

(a compactification of the natural map f0 : G/BK → G/B). Further, for any
character λ of B, there is an equivariant line bundle f∗LG/B(λ) on G ×B Y ; it
extends LG/BK

(µ) if and only if λ extends µ. Under this assumption,

V := π∗(f
∗LG/B(λ))

is a coherent G-linearized sheaf on X which restricts to V0 on X0.

To show that V is indeed locally free and satisfies the assertions of Theorem
1, one applies the theorem on cohomology and base change to the morphism π.
Indeed, under the assumptions of Theorem 1, π turns out to be flat with reduced
fibers. In fact, it follows from [1] that the fibers of π realise a flat degeneration of
the flag variety K/BK to a union of Schubert varieties in the larger flag variety
G/B. Further, again under the assumptions of Theorem 1, the dominant weight µ
of K turns out to extend to a dominant weight λ of G. So the proof is completed
by using known homological properties of the line bundle LG/B(λ) on unions of
Schubert varieties, together with the semicontinuity theorem for π.

Among the adjoint symmetric spaces, those of minimal rank form a rather re-
stricted class: they consist of the products of homogeneous spaces K×K/diag(K)
(where the group K is simple), PSL2n/PSp2n, PSO2n/PSO2n−1, and E6/F4.
The argument of Theorem 1 extends to further examples of symmetric spaces,
e.g., to G(m+n/GLm × GLn and SO2n/GLn; indeed, these spaces G/K contain
several closed B-orbits, but all of them are multiplicity-free, and any dominant
weight of K extends to a dominant weight of G. This argument also extends to
the spherical homogeneous spaces of minimal rank, as introduced and classified by
Ressayre in [6].

It would be interesting to describe the category of equivariant vector bundles
on wonderful compactifications of symmetric spaces of minimal rank, generalizing
Syu Kato’s description [5] in the case of group compactifications, and to obtain
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an intrinsic characterization of those bundles constructed above. Also, it is easily
shown that the rational cohomology ring of the wonderful compactification of
any adjoint symmetric space is generated by Chern classes of equivariant vector
bundles, but finding explicit generators of this ring is an open problem. The above
construction is one step towards its solution for spaces of minimal rank.
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Polygon spaces, tangents to quadrics and special Lagrangians

Ciprian S. Borcea

Special Lagrangians have a recognized importance in Mirror Symmetry, most emphat-
ically in relation to the Strominger-Yau-Zaslow conjecture [SYZ]. Yet, there’s only a
sparse collection of explicit examples with known topology in the compact (projective)
case [Br2]. We propose two series of examples, based, respectively, on polygon spaces and
spaces of common tangent k-planes to quadrics. The first series is explored here in more
detail due to wider connections with toric geometry, root systems, and Batyrev-Borisov
duality.

Polygon spaces: We consider planar polygons with prescribed length for all
edges, up to equivalence under Euclidean motions. Self-intersection or degen-
eration to a line is permitted. With edge-length-vector q = (q1, ..., qn) normalized
by

∑n
i=1 qi = 2, the corresponding configuration space V n−3

q has the expected real
dimension (n− 3) for any q in the interior of the second hypersimplex:

∆(2, n) = {q ∈ Rn | 0 ≤ qi ≤ 1,

n
∑

i=1

qi = 2 }

Singularities occur only when all vertices are collinear. In the parameter space
this corresponds to ‘walls’:

∑n
i=1 ǫiqi = 0, ǫi = ±1, which divide ∆(2, n) into

‘chambers’. Topology may vary only upon crossing some wall, and chambers
equivalent under permutations σ ∈ Sn give smooth diffeomorphic polygon spaces
V n−3

q ≈ V n−3
σ(q) . (Double) tori can be obtained by starting with a triangle and then

proceeding with small enough truncations at the vertices.
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Rational complexifications (mod reflection): When dividing further by reflec-
tion ι in a line, V n−3

q /ι has a natural complexification via the corresponding space
of spatial polygons. In particular, for rational q, the complexification can be in-
terpreted as the Geometric Invariant Theory quotient (P1)

n//qPSL(2), which is
a rational complex projective variety. This direction is well illustrated in the liter-
ature: e.g. [Kly] [HK]. Here, we pursue:

Calabi-Yau complexifications: With zi ∈ C, ziz̄i = 1, unit vectors along
the edges, V n−3

q is described (mod S1) by conjugate equations:
∑n

i=1 qizi =

0 and
∑n

i=1 qiz̄i = 0, which propose the complexification:

n
∑

i=1

qizi = 0,

n
∑

i=1

qi
1

zi
= 0, z ∈ Pn−1(C)

The resulting complex projective variety DV n−3
q will be called a Darboux variety,

since the case n = 4 of articulated quadrilaterals is treated in this manner in [D].
However, all cases n > 4 require desingularization.

Theorem 1. The standard Cremona blow-up P̃C
n−1 → Pn−1 which resolves the in-

determinacies of (zi) 7→ (1/zi) induces a resolution D̃V
n−3

q of the Darboux variety

DV n−3
q , for generic q ∈ Pn−1. D̃V

n−3

q is a Calabi-Yau manifold (i.e. has trivial
canonical bundle) and is given as a codimension two complete intersection in the

toric variety PΠn−1
= P̃C

n−1.

Here Πn−1 stands for a permutohedron of dimension (n − 1), obtained as a ‘well
truncated simplex’. PΠn−1

denotes the toric variety defined by the normal fan
of Πn−1. This is related to the root system An−1 since PΠn−1

gives a resolution
of the toric variety defined by the normal fan of the polytope of roots. Using
Batyrev-Borisov duality [BB], this leads to:

Theorem 2. The mirror family for the family of resolved Darboux varieties D̃V
n−3

q

is given by complete intersections of type (1, ..., 1) (1, ..., 1) in (P1)
n−1.

Considering that PΠn−1
contracts to (P1)

n−1, and real points of Calabi-Yau man-
ifolds defined over R correspond to special Lagrangians [Br1], we find (planar)
polygon spaces as special Lagrangians for adequate parameters in both families.

The polygon space interpretation explains a wealth of birational properties of Dar-
boux varieties: birational automorphisms corresponding to reflections in diagonals,
fiber product presentations for any diagonal etc. There’s also:

Proposition 3. DV n−3
q is the Hessian of the ‘diagonal’ cubic:

{
n

∑

i=1

1

q2i
w3

i = 0} ⊂ Pn−2 = {w |
n

∑

i=1

wi = 0} ⊂ Pn−1
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The toric considerations can be extended to other centrally symmetric polytopes;
in particular, there’s a similar scenario for the ‘well truncated cube’, i.e. the BC
type of root systems.

Tangents to quadrics: Let Q = {Q1, ..., Qd+1} be d + 1 smooth quadrics in
P2d+1(C), in general position. Let T (k)(Q) ⊂ G(k + 1, 2d+ 2) denote the variety
of projective k-subspaces tangent to all quadrics Qi, for 0 ≤ k ≤ 2d.

Theorem 4. T (k)(Q) are of Calabi-Yau type i.e. can be resolved to smooth pro-

jective Calabi-Yau manifolds T̃ (k)(Q) of dimension d+ k(2d− k).

For Q∗ = {Q∗
1, ..., Q

∗
d+1} the dual quadrics, we have T (k)(Q) = T (2d−k)(Q∗), and

adequate birational models T [k](Q) allow inclusions:

T [0](Q) ⊂ T [1](Q) ⊂ ... ⊂ T [d](Q)

For k = 0, some possibilities for the real points can be found in [LdM].
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Immersed Levi-flat hypersurfaces into non negatively curved complex
surfaces

Bertrand Deroin

We prove that there is no Levi-flat immersion of a Riemann surface foliation of
class C1 of a 3-dimensional compact manifold into the complex projective space,
if the foliation carries a harmonic current absolutely continuous with respect to
Lebesgue measure, with a density bounded from above and below. We give also
rigidity results for Levi-flat immersion of class C1 of such Riemann surface foliation
into complex surfaces of non negative curvature.
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The qualitative properties of singular holomorphic foliations by curves of the
complex projective plane are, as far as I know, not already well understood. How-
ever, in affine coordinates x and y there are given by the very simple differential
equations

dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where P and Q are complex polynomials in x and y.

In the real case, the classical Poincaré-Bendixson theorem asserts that every
solution of such an equation accumulates in the real projective plane to a singu-
larity or to a cycle. The analog of this theorem in the complex domain in not
known and is called the exceptionnal minimal set conjecture: it states that every
leaf of a holomorphic foliation of the complex projective plane accumulates on a
singularity. If such a leaf were not accumulating on a singularity, then its closure
would be a compact lamination by holomorphic curves of the complex projective
plane. Conjecturally, the only one are the algebraic curves.

Several authors have made contributions to this problem when the total space
of the lamination is a compact 3-dimensional manifold. A real hypersurface of
a complex surface is said to be Levi-flat if it is foliated by holomorphic curves.
In chronological order, Siu [Si], Iordan [Io] and Cao/Shaw/Wang [C-S-W] have
proved that there is no compact Levi-flat hypersurface in CP 2 of class C8, C4 and
C2. For that purpose, they study the inverse of the operator ∂ on the exterior of
the Levi-flat, and the regularity of the solution near the boundary.

In this talk I would like to explain a dynamical proof that there is no compact
Levi-flat hypersurface in the complex projective plane. The regularity that I need
is very strong. However under this regularity I show that there is not even an im-
mersed compact Levi-flat in CP 2, and I prove some rigidity properties of immersed
compact Levi-flat hypersurfaces in complex surfaces of non negative curvature.

A harmonic current is a linear operator on the space of smooth 2-forms on the
leaves of F ,

positive and ∂∂-closed. Garnett [Ga] proved the existence of a harmonic current,
showing that it appears naturally as an invariant measure by the diffusion along
the leaves with respect to a conformal metric. Our regularity assumption is the
existence of a harmonic current which is absolutely continuous with respect to
the Lebesgue measure, with a density bounded from above and below. Such a
harmonic current is said to be AC. Our main result is the following.

Theorem. Let S be a complex surface carrying a metric of non negative Ricci
curvature Ω, and F be a Riemann surfaces foliation of class C1 of a 3-dimensional
closed manifold M . Then if F has an AC harmonic current C then every Levi-flat
immersion 1 π : M → S of class C1 satisfies π∗Ω = 0 or F is a quotient of the
horizontal foliation of CP 1 × S1.

1A Levi-flat immersion is an immersion of class C1 which is holomorphic along the leaves.
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Because on the complex projective plane the Fubini-Study metric has strictly
positive curvature, we obtain the following corollary.

Corollary. Let F be a Riemann surface foliation of class C1 of a 3-dimensional
closed manifold M . Then if F has an AC harmonic current there is no Levi-flat
immersion π : M → CP 2 of class C1.

There are many other examples of surfaces of non negative curvature. First,
we have the Del Pezzo surfaces, for which there exists a metric of positive curva-
ture. These surfaces are completely understood: there is only CP 1 × CP 1, and
the blow-up of CP 2 at d = 0, . . . , 8 points. Our theorem states that if a Riemann
surface foliation of class C1 immerses holomorphically along the leaves into a Del
Pezzo surface and possesses a AC harmonic current, then it is the quotient of the
horizontal foliation of CP 1 × S1. When the curvature can vanish, the complete
classification seems to be unknown. For instance, among the blow-up of the com-
plex projective plane in 9 points, the author does not know the surfaces carrying
a hermitian metric of non negative curvature, unless it is an elliptic fibration. The
description of the directions where the curvature vanishes seems to be very difficult
too.

Idea of the proof. The general idea is to think of an immersed Levi-flat hyper-
surface as a 1-parameter family of holomorphic curves, and to extend the classical
notions coming from algebraic geometry that are available on compact curves.
For instance, in [H-M] they study the self-intersection of a foliation cycle and they
prove that it vanishes for a Levi-flat hypersurface.

Against a harmonic current, numerical invariants of this kind has been intro-
duced by Candel (see [Gh]); namely the Chern-Candel class of a holomorphic line
bundle over a Riemann surface foliation. If E → F is a holomorphic line bundle
over a Riemann surface foliation, then the Chern-Candel class of E against a har-
monic current C is the real number c1(E,C) := 1

2πC(Ω), where Ω is the Chern
curvature along the leaves of a hermitian metric |.| on E.

One invariant of special interest for us is the Chern-Candel class of the normal
bundle of the leaves of a Levi-flat hypersurface, and is called the normal class. Our
main contribution is to prove that when the harmonic current is AC, the normal
class is bounded by the opposite of the Euler characteristic 2, or the foliation is a
quotient of the horizontal foliation of CP 1×S1. We obtain this result by identifying
the normal class to the action, which has been introduced by Frankel to measure
how far is the harmonic current from a closed (1, 1)-current. We then generalize
Frankel’s inequality proved in [Fr]. The theorem follows from an application of
adjunction formula.

Thanks. I would like to thank the Institute of Mathematics of Oberwolfach and
the organizers of the Komplexe Analysis meeting to give me the opportunity of

2The Euler characteristic is the Chern-Candel class of the tangent bundle to the leaves.
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lecturing. I thank Étienne Ghys, who suggested to me this problem. This work
has partially been done while the author was a host of the UNAM in Cuernavaca.
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Indices of 1-forms on singular varieties

Wolfgang Ebeling

(joint work with Sabir M. Gusein-Zade and José Seade)

Let (X, 0) be the germ of a complex analytic variety of pure dimension n and
ω be a (complex and, generally speaking, continuous) 1-form on (X, 0) with an
isolated singularity at the origin. Three different notions of an index of the isolated
singular point 0 of ω are discussed:

• the radial index indrad(ω;X, 0) [1, 2],
• the homological index indhom(ω;X, 0) of a holomorphic 1-form on the germ

of a complex analytic variety with an isolated singularity (inspired by
X. Gómez-Mont and G.-M. Greuel) [2],

• and the index ind(ω;X, 0) (analogue of the GSV-index for vector fields,
defined by the speaker and S. M. Gusein-Zade) for a holomorphic 1-form
on an isolated complete intersection singularity.

Let ω be holomorphic. If (X, 0) is smooth, then all three indices coincide. If
(X, 0) is an isolated complete intersection singularity , then it follows from Greuel’s
work that

indhom(ω;X, 0) = ind(ω;X, 0)

ind(ω;X, 0) − indrad(ω;X, 0) = µ,
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where µ is the Milnor number of (X, 0).
Let (X, 0) be a germ of a complex analytic space of pure dimension n with an

isolated singular point at the origin. Then we can show that the difference

indhom(ω;X, 0)− indrad(ω;X, 0)

between the homological and the radial indices does not depend on the 1-form ω.
Therefore we can consider the difference

ν(X, 0) = indhom(ω;X, 0) − indrad(ω;X, 0)

as a generalized Milnor number of the singularity (X, 0).
Consider the absolute De Rham complex of (X, 0)

0 −→ OX,0
d

−→ Ω1
X,0

d
−→ . . .

d
−→ Ωn

X,0 −→ 0

and let

χ̄(X, 0) :=

n
∑

i=0

(−1)n−ihi(Ω
•
X,0, d) − 1

be the reduced Euler characteristic of this complex.

Theorem 2. [2] One has
ν(X, 0) = χ̄(X, 0)

if

(i) (X, 0) is a curve singularity,
(ii) (X, 0) ⊂ (Cd+1, 0) is the cone over the rational normal curve in CPd.

Statement (i) implies that the invariant ν(X, 0) is different from the Milnor
number introduced by R.-O. Buchweitz and G.-M. Greuel for such singularities.
Statement (ii) was obtained with the help of H.-Ch. von Bothmer and R.-O. Buch-
weitz. For d = 4 this is Pinkham’s example of a singularity which has smoothings
with different Euler characteristics.

Question Is ν(C, 0) = χ̄(X, 0) always true?

J.-P. Brasselet, D. Massey, A. J. Parameswaran, and J. Seade introduced the no-
tion of the local Euler obstruction Euf,X(0) of a holomorphic function f : (X, 0) →
(C, 0) with an isolated critical point on the germ of a complex analytic variety
(X, 0). We adapt the definition to the case of a 1-form and define the local Euler
obstruction Eu(ω;X, 0) of ω [1].

Let (X, 0) ⊂ (CN , 0) be an arbitrary germ of an analytic variety with a Whitney
stratification X =

⋃q
i=0 Vi, V0 = {0}. For a stratum Vi, i = 0, . . . , q, let Ni be the

normal slice in the variety X to the stratum Vi (dimNi = dimX − dimVi) at a
point of the stratum Vi, let ℓ : CN → C be a generic linear function, and let ni be
the radial index of the 1-form dℓ on Ni.

Theorem 3. [1] One has

indrad(ω;X, 0) =

q
∑

i=0

ni · Eu(ω;Vi, 0) .
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We also have an ”inverse” of this formula. For the differential of a function
the radial index is related to the Euler characteristic of the Milnor fibre of the
function. This gives an expression for the local Euler obstruction of the differential
of a function in terms of Euler characteristics of some Milnor fibres.
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Anti-self-dual hermitian metrics on Inoue surfaces

Akira Fujiki

(joint work with Massimiliano Pontecorvo)

Let S be a compact smooth complex surface. If S admits an anti-self-dual (abbr.
asd) hermitian metric which is not conformal to a Kähler metric, then it is known
that S must be a surface of class VII, i.e., the fist betti number b1(S) = 1. So
far very little is known as to which surfaces of class VII may admit asd hermitian
metrics and what their moduli should look like.

The only exception is the case b2(S) = 0, where the complete classification is
known by Pontecorvo [6]: S is necessarily a Hopf surface and all the surfaces and
metrics are explicitly describable. This classification also shows that every Hopf
surface does not admit an asd hermitian metric; indeed, the existence property of
such metrics is not stable under small deformation of complex structures.

When b2(S) > 0, if we assume further that S is minimal, only examples so
far known are those constructed explicitly by LeBrun [5], where S is a parabolic
Inoue surface for which the unique elliptic curve on it has a “real” period and the
metrics are invariant by the unique holomorphic circle action on the surface.

The purpose of our study now is to produce further asd hermitian metrics on
various surfaces of class VII such as Inoue and Enoki surfaces, by a variant of the
method of Donaldson-Freedman [1] and Kim-Pontecorvo [4]. Namely we first fix
an asd metric (which is never hermitian) on the connected sum mP

2 of m copies
of complex projective plane P

2 (with reversed oritentation) for some m > 0. We
then pass to the associated twistor space and use the complex geometric method
to produce asd hermitian metrics on surfaces of class VII with global spherical
shell. As the initial metrics we take the asd metrics constructed by Joyce [3] on
mP

2. Indeed, the structure of the associated twistor space Z has been studied in
detail in [2]. The most typical applicatin of our method is the following

Theorem. On any hyperbolic or half Inoue surface S there exists a real m-
dimensional family of asd hermitian metrics on S, where m = b2(S).
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A similar, but somewhat weaker result also holds true for parabolic Inoue sur-
faces and Enoki surfaces. One difference is that these surfaces depend on continu-
ous parameters, while the surfaces in Theorem depend only on discrete parameters.

For instance recall that among minimal surfaces of class VII a hyperbolic Inoue
surface is characterized by the existence of two cycles of rational curves on it.
Moreover, each hyperbolic Inoue surface is completely determined by the cyclic
sequences of self-intersection numbers of the irreducible components of these two
cycles, up to “transpositions”. On the other hand, a parabolic Inoue surface
contains a unique elliptic curve, whose period gives its continuous moduli. Here
the asd hermitian metric is supposed to exist only when this period is “real”. In
any case it is interesting to compare our asd metrics with those constructed by
LeBrun [5].

The proof of Theorem roughly goes as follows. Let Z be one of the Joyce twistor
spaces as above. Take a pair of pair of “elementary” surfaces (S+

i , S
−

i ), i = 1, 2, on
Z. S±

i are smooth toric surfaces and Li := S+
i ∩ S−

i are twistor lines in Z. Take

the blowing-up µ : Z̃ → Z with center the disjoint union of Li. The exceptional
divisors Qi := µ−1(Li) are isomorphic to each other and by identifying Qi by a

suitable isomorphism ϕ : Q1 → Q2 inside Z̃ we obtain a singular complex 3-space
Ẑ := Z̃/ϕ together with a pair of disjoint rational surfaces (Ŝ+

1 , Ŝ
−

1 ) with ordinary

double curves on Ẑ as the proper transform of (S+
1 , S

−

1 ). We then construct

a smoothing (by deformations) of the pair (Ẑ; (Ŝ+
1 , Ŝ

−

1 )) → (Zt; (S
+
1t, S

−

1t)) with
some complex parameter t, where Zt and S±

1t are smooth for general values of t.
The real structure σ : Z → Z lifts or extends to all the above objects (under

certain conditions), and for some ‘real’ value of the parameter t, Zt turns out to
be a twistor space of an asd hermitian metric on the complex surface S±

1t, which
turns out to be a hyperbolic Inoue surface if we choose ϕ and t suitably. Moreover,
we can show that in this way all the hyperbolic Inoue surfaces are obtained by a
suitable choice of the initial Joyce metric.

Note finally that Joyce metrics depend on m − 1 real parameters, which con-
tribute as part of the parameters of asd hermitian metrics on hyperbolic Inoue
surfaces mentioned in Theorem. It is interesting to try to understand the na-
ture of these parameters and the whole moduli space of such metrics on a fixed
hyperbolic Inoue surface.
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Addition formulas for theta functions, and linear systems on abelian
varieties

Samuel Grushevsky

In this talk we prove a conjecture of Buchstaber and Krichever that a certain
addition formula for theta functions characterizes Jacobians among all abelian
varieties, obtain cubic equations for the hyperelliptic locus, and explain how this
is related to trisecants and translates of the 2Θ linear system. This report is based
on the results that appeared as [Gr].

The unique holomorphic solution of

{f(x+ y) = f(x)f(y) | ∀x, y ∈ C
n}

is f(x) = exp(a·x) for some a ∈ C
n. If we try to generalize this functional equation

and consider {1 = φ(x + y)f(x)f(y)}, where f and φ are different functions, the
exponent remains the only solution. However, it was observed by Buchstaber and
Krichever in [BK] that if one considers a further generalization

1 =
n

∑

i=0

φi(x+ y)fi(x)fi(y),

then the properly adjusted theta functions of Jacobian varieties of genus n provide
solutions. More precisely, Buchstaber and Krichever prove the following statement
(here we have rewritten their formula in terms of theta functions rather than
Baker-Akhiezer functions and homogenized the equation):

Addition formula ([BK]). Let C be a curve of genus g and let A0, . . . , Ag+1 ∈
C ⊂ J(C) be arbitrary g+ 2 points on C, considered embedded into its Jacobian.
Then for appropriately chosen functions φi (which are computed explicitly in [BK])
the following holds ∀x, y ∈ Cg:

0 =

g+1
∑

i=0

φi(x+ y)θ(Ai + x)θ(Ai + y), (∗)

where θ denotes the usual Riemann’s theta function.

Buchstaber and Krichever conjectured that this addition formula characterizes
Jacobians among all principally polarized abelian varieties. We prove their con-
jecture under a (necessary) general position assumption.

Theorem ([Gr]). If for some g + 2 points A0, . . . , Ag+1 ∈ X on a g-dimensional
abelian variety X , which are in general position in a certain sense1, there exist
functions φi such that the addition formula (∗) is satisfied ∀x, y ∈ Cg, then X

1We thank G. Pareschi and M. Popa for pointing out that a general position assumption is nec-
essary and providing a counterexample to the statement without the general position assumption.
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is the Jacobian variety of some curve, and the points {Ai} lie on an Abel-Jacobi
image of this curve inside X .

Proof (Idea). We use Riemann’s bilinear addition theorem θ(2x)θ(2y) = K(x +
y) ·K(x− y), where K denotes the Kummer theta map K : X → P2g

−1 sending a
point x ∈ X to the set of the values of theta functions of the second order {Θ[ε](x)}
at this point. Upon rescaling x and y by 2, the formula (∗) thus becomes

0 =

g+1
∑

i=0

φi(x + y)K(Ai + x+ y) ·K(x− y).

We recall that the theta functions of the second order form a basis for sections of
the bundle 2Θ over X . Note now that as a function of x− y the above is a linear
combination 0 = ~v ·K(x − y), where ~v does not depend on (x − y). Since this is
a linear combination of the basis, it vanishes identically iff ~v = 0, so we obtain a

vector identity. 0 =
∑g+1

i=0 φi(x+ y)K(Ai + x+ y). This is simply saying that for
all z ∈ Cg the g + 2 points K(Ai + z) are collinear.

Now this is exactly the Gunning’s multisecant formula from [Gu]. Moreover, if
some g − 1 of φi(z) are zero at some point z, then the remaining three Kummer
images are collinear, and thus we get a trisecant of the Kummer image. Generically
(and this is where we need the general position assumption), the locus of such z
should be of dimension g − (g − 1) = 1, and thus we can apply the trisecant
criterion of Fay-Gunning-Welters stating that if there is a 1-dimensional family of
trisecants, the abelian variety is a Jacobian. �

The multisecant condition or the addition formula (∗) can also be interpreted
as follows. Consider any section of the linear system 2Θa — as a function of
z ∈ X , it is a linear combination ~v ·K(z + a) for some vector v ∈ C2g

. Then the
number of conditions imposed by a set of points {Ai} on 2Θa is equal exactly to
the dimension of the linear span of {K(Ai + a)}. In this reformulation a result
similar to the theorem above, but with a different general position assumption,
was recently independently obtained by Pareschi and Popa in [PP] as the first
step in trying to develop a theory for abelian varieties paralleling the Castelnuovo
theory for the projective space.

Writing down the coefficients φi in (∗) explicitly, following [BK], allows one to
obtain explicit equations for theta functions characterizing Jacobians. However, it
is only possible to get equations involving only theta constants, and not arbitrary
shifts, for the case of hyperelliptic curves.

Theorem. An abelian variety X is the Jacobian of a hyperelliptic curve with
some special choice of the basis of cycles if and only if for some fixed azygetic set
of characteristics [ai, bi] the following cubic equations

∑

ε
Θ[ε](z)Θ[ε](z)Θ[σ](z)

=
∑

ε

g
∑

k=0

(−1)(ε+σ,ak+1)Θ[ε](z)Θ[ε+ bk]Θ[σ + bk](z),
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are satisfied for all z and all characteristics σ, and moreover a certain general
position assumption is satisfied.

Remark: It would be interesting to understand the locus of abelian varieties with
g+2 chosen points satisfying the addition formula (∗), but not the general position
assumption. If this locus were small or tractable, then one would see that the
Jacobian or hyperelliptic locus is defined by relatively few equations, which would
lead to interesting results on the cohomological dimension of the moduli space of
abelian varieties.
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Cartan decomposition of the moment map

Peter Heinzner

(joint work with Gerald Schwarz)

Let Z be a complex space with a holomorphic action of the complex reductive
group UC, where UC is the complexification of the compact Lie group U . We
assume that Z admits a smooth U -invariant Kähler structure and a U -equivariant
moment mapping µ : Z → u∗, where u is the Lie algebra of U and u∗ its dual.
We assume that G ⊂ UC is a (for simplicity closed) Lie subgroup such that the
Cartan decomposition UC = U exp(iu) ≃ U × iu induces a Cartan decomposition
G = K exp(p) ≃ K × p where K = U ∩ G and p ⊂ iu is an (AdK)-stable
linear subspace. We have the subspace ip ⊂ u and by restriction an induced
“moment” mapping µip : Z → (ip)∗. We define Mip to be the zeroes of µip, and
we define M to be the zeroes of µ. For a given µ we have the set SUC(M) := {z ∈

Z; UC · z ∩M 6= ∅} of semistable points with respect to µ and the UC-action on
Z. We call SG(Mip) := {z ∈ Z; G · z ∩ Mip 6= ∅} the set of semistable points
of Z with respect to µip and the G-action on Z. Most of our results have the
hypothesis that Z = SUC(M). In general, SUC(M) is a proper open subset of Z,
but we can force equality by replacing Z by SUC(M). If Z is a Stein space then
it admits a smooth strictly plurisubharmonic U -invariant exhaustion function ρ.
Associated with ρ is a U -invariant Kähler structure and a moment mapping µ.
Moreover, for any such µ, the equality Z = SUC(M) holds automatically. Another
interesting example of equality is the case where Z is the set of semistable points
(in the sense of geometric invariant theory) given by a UC-linearized ample line
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bundle. Also in this case there exists a U -invariant Kähler structure on Z and a
µ such that Z = SUC(M).

We show that Mip is the correct analogue of the usual Kempf-Ness set M when
considering the action of G. Specifically, we have the following.

Theorem 1. Let Z, G, Mip and M be as above and assume that Z = SUC(M).
Then Z = SG(Mip) and the G-action has the following properties.

(1) Let z ∈ Mip. Then G · z ∩ Mip = K · z and Gz = Kz · exp(pz) where
pz denotes the elements of p such that the corresponding vector field on Z
vanishes at z.

(2) An orbit G · z is closed if and only if G · z ∩Mip 6= ∅.
(3) There is a quotient space Z//G which parameterizes the closed G-orbits in

Z. The inclusion Mip → Z induces a homeomorphism Mip/K ≃ Z//G.
(4) Let z ∈ Z such that G · z is closed. Then there is a locally closed real

analytic Gz-stable subset S of Z, z ∈ S, such that the natural map G×Gz

S → Z is a real analytic G-isomorphism onto the open set G·S. Moreover,
S can be chosen such that G · S is saturated with respect to the quotient
map Z → Z//G.

(5) Let z ∈ Z and suppose that Y ⊂ G · z is closed and G-stable. Then there
is a Lie group homomorphism λ : R → G such that limt→+∞ λ(t) · z exists
and is a point in Y .

The space Z//G is rather nice. For example, it follows from (3) that it is
Hausdorff and from (4) one can deduce that it is locally homeomorphic to real
semi-analytic sets.

Of course, there is much earlier work on quotients and slice theorems for actions
of complex reductive groups, and there is also earlier work for actions of real
groups. In particular, in the latter case, there are the papers of Richardson-
Slodowy [RiSl90] and Luna [Lu75]. Here one has a complex representation space
V of UC and real forms VR of V and G of UC. One considers the action of G on
VR. Our results are more general in that our actions are not necessarily algebraic,
the group G is not necessarily a real form of UC and we consider the quotient of
Z, not just of a real form of Z.

Perhaps the most interesting new observation is that the existence of Z//G is
closely related to µip and is given by Mip/K. In the case where G is a real
form there are also results about the structure of the G-action on Lagrangian
submanifolds X of Z using moment map techniques (see, e.g., O’Shea and Sja-
maar [O’SSj00] and references therein). This case is also rather special. The
µip-component of µ on X is completely determined by µ. One establishes results
concerning M and the UC-action on Z and then restricts to X . This works be-
cause X ∩M = X ∩Mip and because the map µk : Z → k∗ obtained by restricting
µ to k is constant on X .

Besides the results mentioned above, we also consider several topics pertain-
ing to proper actions and compact isotropy groups. In particular we show the
following.
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Theorem 2. Assume that Z = SUC(M). Let X be a G-stable closed subset of Z
such that the G-action on X is proper. Then the natural map G×K (Mip∩X) → X
is a homeomorphism and a real analytic isomorphism if X and µip are real analytic.

We have a similar decomposition for the subset Compip(Z) of points z ∈ Z such
that G · z is closed and Gz is compact. The results on proper actions are applied
to obtain decompositions, due to Mostow, for groups and homogeneous spaces.
The application relies on properties of a very special strictly plurisubharmonic
exhaustion of UC related to the Cartan decomposition.

Most of our results rely upon the notion of µip-adapted sets. A µip-adapted
subset of Z is a K-invariant subset A of Z such that for all z ∈ Z and ξ ∈ ip, the
curve (exp itξ) · z lies in A for a connected set J of t ∈ R. Moreover, we require
that if t+ := supJ < ∞, then µip(exp(it+ξ) · z)(iξ) > 0 and a similar negativity
condition if t− := inf J > −∞. The main technical point is to show that every K-
orbit in Mip has a neighborhood basis of open µip-adapted sets. The µip-adapted
sets have very nice properties. For example, if A1 and A2 are µip-adapted, then
G ·A1 ∩G ·A2 = G · (A1 ∩A2).

If we drop our usual assumption that Z = SUC (M) but retain that every K-
orbit in Mip has a basis of open µip-adapted neighborhoods, then we can show
that SG(Mip) is open in Z and that Theorem 1 holds for Z replaced by SG(Mip).
If U (hence G) is commutative, then the condition on µip-adapted neighborhoods
is automatic (and SG(Mip) is open). It would be interesting to know if SG(Mip)
is always open in Z!

This results should be considered as a first part of a project where actions of
real semisimple Lie groups G on complex manifolds will be investigated from the
Hamiltonian point of view. Semisimplicity ensures that GC = UC. For a general
complex manifold Z, where G acts on Z by holomorphic transformations, there is
no hope that GC acts holomorphically, e.g., if Z is a bounded domain in some Cn.
But GC always acts locally on Z and several of the observations in this paper are
valid also in this case. Moreover, if G is a compact Lie group and Z is a Stein space,
then one has the powerful concept of the existence of a universal complexification
of the G action on Z (see [He91] and [HeIa97]). We plan to consider this kind of
question later. But even in the case where GC = UC acts on Z holomorphically
a lot of questions remain open. Examples indicate that it should be extremely
interesting to clarify the interplay of the various geometric objects associated with
µ, µip and µk.
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Bound on the number of curves of a given degree through a general
point of a projective variety

Jun-Muk Hwang

This work was motivated by the following result of J.M. Landsberg’s.

Theorem 1 ([L2, Theorem 1]) Let X be an irreducible projective variety of
dimension n in a projective space and let x ∈ X be a general point. Then the
number of lines lying on X and passing through x is either infinite or bounded by
n!.
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It is remarkable that the bound n! is optimal: it is achieved when X is a smooth
hypersurface of degree n in Pn+1. However, even if we disregard the optimality of
the bound, the uniformity of the bound is already quite remarkable. Namely, the
fact that the bound depends only on the dimension n ofX is worth noticing. When
interpreted as such a uniform boundedness result, Theorem 1 naturally leads to
the following questions.

Question 1 What about curves of higher degree? Is the number of curves of
degree d > 0 lying on X and passing through a general point x ∈ X either infinite
or bounded by a number depending only on d and n?

Question 2 What about the case when there are infinitely many lines through
a general point x? Is the number of components of the space of lines lying on X
and passing through a general point x ∈ X bounded by a number depending only
on n?

Question 3 What about non-general points? Is the number of lines lying on X
through any given point of X either infinite or bounded by a number depending
only on n?

In Landsberg’s proof, the uniformity comes from his earlier result [L1] that a
line osculating to order n + 1 at a general point of X must be contained in X .
The differential-geometric argument of [L1] using the moving frame method seems
difficult to be generalized to handle above questions.

We introduce an approach to these questions, using tools from the study of
uniform lower bounds for the Seshadri numbers of an ample line bundle at general
points of a variety ([EKL],[HK]). Our result on Question 1 and Question 2 can be
stated as follows. Let us denote by Curvesd(X,x) the space of curves of degree d
lying on a projective variety X and passing through a point x ∈ X .

Theorem 2 Let n and d be two positive integers. Then there exists a positive
real number µn,d determined by n, d with the following property. For any irreducible
projective variety of dimension n in a projective space and any general point x ∈ X,
the number of components of Curvesd(X,x) is bounded by µn,d.

Regarding Question 3, there is a counter-example. Let k be an odd integer
and consider the Fermat surface Xk

0 +Xk
1 +Xk

2 +Xk
3 = 0 in P3. Then through

the point (1,−1, 0, 0) there are at least k distinct lines defined by X0 + X1 = 0

and X2 + e
2πj

√
−1

k X3 = 0, 1 ≤ j ≤ k. Given any dimension n ≥ 2 and an integer
M > 0, by taking the Segre product of the Fermat surface with a smooth variety
of dimension n − 2 containing no lines, we get an example of a smooth variety
of dimension n where the number of lines through any point in a codimension 2
subset is finite, but larger than M . This example suggests that the following result
of ours gives a more or less optimal answer to Question 3.

Theorem 3 Let n and d be two positive integers. Then there exists a positive
real number νn,d determined by n, d with the following property. Let X ba an
irreducible projective variety of dimension n in a projective space. Then there
exists a subvariety R of codimension ≥ 2 in the smooth locus of X such that for
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any smooth point of X off R, the number of the components of Curvesd(X,x) is
bounded by νn,d.

The rough idea of the proofs of Theorem 2 and Theorem 3 is the following.
First it is easy to get a bound depending on the degree of X . This is possible by
the effective bound on the number of components of Chow varieties obtained in
recent works on effective bounds on the number of maps dominating varieties of
general type, e.g. [Gu] and [Ts]. Now to prove Theorem 2 and Theorem 3, the
strategy is to construct a foliation on X ‘generated by curves of degree d’. This
foliation has the property that its general leaf contains all curves of degree d lying
on X passing through a general point of the leaf, and it is the foliation of minimal
rank with this property. This construction is motivated by the construction of
rationally connected fibration in the study of uniruled varieties ([Ko]). To prove
Theorem 2, we may replace X by a leaf of the foliation. The heart of the proof of
Theorem 2 is to show that the degree of the leaf can be bounded in terms of n and
d. This is achieved by using an argument from Ein-Kc̈hle-Lazarsfeld’s work on
Seshadri numbers ([EKL]). The proof of Theorem 3 is by an induction argument
using Theorem 2 and by a study of the foliation in codimension 1.
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Threefolds with big and nef anticanonical bundles

Priska Jahnke

(joint work with Thomas Peternell and Ivo Radloff)

We start the classification of almost Fano threefolds, i.e., of smooth threefolds
X where the anticanonical divisor −KX satisfies the two conditions

−KX .C ≥ 0 for all irreducible curves C ⊂ X , and (−KX)3 > 0.

We will always assume that there is equality −KX .C = 0 for at least one curve,
i.e., X not Fano.

In the surface case, the second Hirzebruch surface Σ2 is an easy example. The
anticanonical system |−KΣ2

| is spanned, but not ample, mapping Σ2 to the quadric
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cone xy = z2 in P3. We may think of Σ2 either as a deformation of P1×P1, or as a
desingularisation of the quadric cone, obtained by deforming the smooth quadric
Q2 ≃ P1 × P1.

The picture is in fact always quite similar. By the Base Point Free Theorem,
on any almost Fano threefold, |−mKX | is spanned for m≫ 0. The corresponding
map (with connected fibers)

ψ : X −→ X ′

contracts all anticanonically trivial curves. By assumption, ψ is not an isomor-
phism. The resulting X ′ is a Gorenstein Fano threefold with canonical singular-
ities. We call X ′ an anticanonical model of X . Note that the map is crepant,
i.e.,

KX = ψ∗(KX′).

In this sense, our X plays the role of a terminal modification of X ′ in the sense of
[R83]. One of the questions we are interested in is whether any X is a deformation
of a smooth Fano threefold as in our example above.

The classification of smooth Fano threefolds is due to Iskovskikh and Mori and
Mukai. The singular case, allowing canonical or terminal singularities, is a still
ongoing project which is far from being complete. The first steps are the following:

(1) Boundedness: (−KX)3 ≤ 72 ([P04]), implying finiteness of the classifica-
tion problem ([Ma70], [B01]);

(2) Generatedness: complete list of all canonical Gorenstein Fano threefolds
X ′, where the anticanonical system | − KX′ | itself is not base point free
([JR04]);

(3) Anticanonical embedding: complete list of all canonical Gorenstein Fano
threefolds X ′, where the anticanonical system | −KX′ | is base point free,
but not very ample, called hyperelliptic ([CSP04]).

The three steps allow us to essentially focus on those X where | −KX | is spanned
and where the map defined by this system has indeed connected fibers, i.e., already
conicides with ψ.

In the first step of our classification, we moreover restrict to the case where
the Picard group is as simple as possible. In the Fano case this means Pic ≃ Z,
whereas in our situation

Pic(X) ≃ Z ⊕ Z.

Then ψ either contracts a finite number of curves, or a single irreducible divisor D
to a point or a curve. In the first case it is known that X ′ (now having terminal
singularities) admits a smoothing, i.e., is a deformation of a smooth Fano threefold
([N97]). In the divisorial case this question is essentially open.

Our classification uses Mori theory (see [Mo82]). Since KX is not nef, there
exists an extremal contraction

φ : X −→ Y

with −KX is φ–ample. The target Y in our case is one of the following:

• Y ≃ P1 and φ is a Del Pezzo fibration,
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• Y ≃ P2 and φ is a conic bundle,
• Y is a (terminal) Fano threefold and either

– X = BlC(Y ) with a smooth curve C and Y is smooth, or
– X = Blp(Y ) and Ysing ⊂ {p}.

For our classification we compare ψ and φ. For example in the case ψ contracts a
divisor D to a point or a curve, we obtain 15 families of del Pezzo fibrations, 14
families of conic bundles and 41 families of blow-up’s at the moment (see [JPR04]).
It is already clear by now that some of them cannot be deformations of smooth
Fanos. Finding the true reason for this is what we are trying at the moment.
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A complex ball uniformization for the moduli spaces of del Pezzo
surfaces via periods of K3 surfaces

Shigeyuki Kondo

We give a complex ball uniformization of the moduli spaces of del Pezzo surfaces
by using the theory of periods of K3 surfaces. First of all we recall the work of
Allcock, Carlson, Toledo [ACT] in which they gave a complex ball uniformization
of the moduli space of smooth cubic surfaces by using the periods of abelian
varieties. Let S be a smooth cubic surface given by f3(x0, x1, x2, x3) = 0 in P3

where f3 is a homogeneous polynomial of degree 3. Note that S is a del Pezzo
surface of degree 3. Then consider the cubic threefold V given by t3 = f3 on which
a projective transformation g of order 3 naturally acts. The intermediate Jacobian
J(V ) of V is a 5-dimensional abelian variety with an automorphism ι of order 3
induced by g whose period is contained in the Siegel upper half plane. The fact
that the period of J(V ) is an eigen-vector of ι implies that the period domain of
J(V ) is a 4-dimensional complex ball.

Now let S be a del Pezzo surface of degree d. By definition, S is a smooth
quadric or the blowing ups of P2 at 9 − d points in general position. We consider
only the cases d = 1, 2, 3, 4 because in other cases del Pezzo surface is rigid. Instead
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of abelian varieties, we consider a K3 surface X with an automorphism σ of finite
order associated to a smooth del Pezzo surface S. For example, if S is of degree 2,
its ani-canonical map is a double covering of P2 branched along a smooth quartic
curve C (We remark that this correspondence gives us an isomorphism between
the moduli of smooth del Pezzo surfaces of degree 2 and that of smooth non-
hyperelliptic curves of genus 3). Then by taking a 4-cyclic cover of P2 branched
along C, we have a K3 surface with an automorphism σ of order 4 (if C is given
by f4(x0, x1, x2) = 0, then X is a quartic surface given by t4 = f4). The period
domain of the above K3 surfaces is a bounded symmetric domain of type IV and
of dimension 12. The fact that the period of X is an eigen-vector of σ implies
that the period domain of the pairs (X,σ) is a 6-dimensional complex ball B. The
image of the period map is the complement of the union H of hypersurfaces in
B. We call H the discriminant locus. By taking the quotient by an arithmetic
subgroup Γ, we have a coarse moduli space (B\H)/Γ of smooth del Pezzo surfaces
of degree 2 (Here we use the Torelli type theorem for K3 surfaces). We remark
that H/Γ consists of two components. A generic member of them corresponds to
a plane quartic curve with a node or a hyperelliptic curve of genus 3. For more
details we referee the reader to [K1].

In cases of d = 1, 4, see Remarks 4–6 in [K2]. In case of d = 3, the result is a
joint work with Igor Dolgachev and Bert van Geemen [DGK]. In cases of d = 1, 3
and 4, these complex ball uniformizations are closely related to the work of Deligne
and Mostow [DM]. By the same way, we can give a complex ball uniformization
of the moduli of curves of genus 4 ([K2]) and a uniformization of the moduli of
curves of genus 6 by a symmetric domain of type IV ([K2], Remark 3).

It is an interesting problem to construct an automorphic form on B vanishing
exactly on the discriminant locus H , if it exists. In fact, Allcock and Freitag
[AF] found it in case of cubic surfaces (d = 3) by using Borcherds theory [B] on
automorphic forms on a bounded symmetric domain on type IV.
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[DGK] I. Dolgachev, B. van Geemen, S. Kondō, A complex ball uniformaization of the moduli

space of cubic surfaces via periods of K3 surfaces, math.AG/0310342.
[DM] P. Deligne, G. W. Mostow, Monodromy of hypergeometric functions and non-lattice in-

tegral monodromy, Publ. Math. IHES, 63 (1986), 5–89.
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Braid monodromy of hypersurface singularities

Michael Lönne

Reporting on main results of [7] we introduce braid monodromy invariants asso-
ciated to any right-equivalence class of hypersurface singularities. These invariants
are investigated and determined in case of hypersurface singularities of Brieskorn
Pham type.

A holomorphic function, more precisely a holomorphic function germ is usually
studied by means of versal unfoldings, e.g. given by a function

F (x, z, u) = f(x) − z +
∑

biui.

In case of a semi universal unfolding the unfolding dimension is given by the
Milnor number µ = µ(f) and we get a diagram

z, u1, ..., uµ−1 Cµ ⊃ D = {(z, u)|F (0, z, u) = 0 = ∇F (0, z, u)}
↓ ↓

u1, ..., uµ−1 Cµ−1 ⊃ B = {u|F ( , 0, u) is not Morse}

The restriction p|D of the projection to the discriminant D is a finite map, such
that the branch set coincides with the bifurcation set B.

The key observation for the present work is, that a suitable restriction of p to

a subset of p
−1

(Cµ−1 \ B) \ D is a fibre bundle in a natural way. Its fibres are
diffeomorphic to the µ-punctured disc and its isomorphism type depends only on
the right equivalence class of f .

Thanks to Moishezon the study of complements of plane curves by the methods
of Zariski and van Kampen has been revived [9], and has found a lot of applica-
tions, e.g [10, 11]. Conceptionally recast as braid monodromy theory it has been
successfully generalized to the complements of hyperplane arrangements and it
has found an interesting new interpretation in the theory polynomial coverings by
Hansen, [2, 4].

Based on this interpretation the fibre bundle obtained from p|D naturally gives
rise to a braid monodromy homomorphism, which is in fact given by the Lyashko
Looijenga map, [8], up to an inner automorphism of Brµ and is an invariant of
the unfolded function.

As in the case of plane curves the method of van Kampen, [6], leads to an
explicit presentation of the fundamental group of the discriminant complement
C

µ \ D in terms of generators and relations.

We address the problem to find the invariants and the group presentations for
π1(C

µ \ D) in case of polynomial functions of a special kind:
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Definition: A polynomial f ∈ C[x1, ..., xn] is called Brieskorn Pham poly-
nomial, if with li ∈ Z>0

f(x1, ..., xn) = xl1+1
1 + · · · + xln+1

n .

Our main results are most naturally stated referring to the geometrically distin-
guished Dynkin diagram associated to f by Pham, Gabrielov and Hefez & Lazzeri,
[12, 3, 5].
Definition: Let In := {i1...in | 1 ≤ iν ≤ lν , 1 ≤ ν ≤ n} be a set of multiindices
ordered lexicographically,

(1) Multiindices i, j ∈ In are called correlated, if i < j and jν ∈ {iν , iν + 1},
(2) Multiindices i, j, k ∈ In are called correlated, if i < j, i < k, j < k are.

Then up to sign the intersection graph is given by the set In of vertices and the
set {(i, j)| i < j corr.} of edges.
Theorem. The braid monodromy group of a Brieskorn-Pham polynomial
xl1+1

1 + · · · + xln+1
n is generated by the following twist powers:

σ3
i,j : i < j correlated
σ2

i,j : i < j not correlated

σj,kσ
2
i,jσ

−1

j,k : i < j < k correlated

The most important corollary drawn from this theorem is a presentation of the
fundamental group of the discriminant complement which can be computed by the
method of Zariski and van Kampen and provides a partial answer to a problem of
the list [1] of Brieskorn.
Theorem. The fundamental group π1(C

k − D) for a Brieskorn Pham polynomial

xl1+1
1 + · · ·xln+1

n has a finite presentation

〈ti, i ∈ I | titjti = tjtitj , i < j corr.,
titj = tjti, i < j not corr.,
titjtkti = tjtktitj , i < j < k corr. 〉
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A foliation of S5 by complex surfaces and its moduli space

Laurent Meersseman

(joint work with Alberto Verjovsky)

Let X be a smooth (that is C∞) manifold of dimension 2n+ 1 equipped with a
smooth foliation F . The foliation F is called a foliation by complex manifolds if it
has a foliated atlas (Uα, φα) modelled on Cn × R such that the changes of charts

(z, t) ∈ φα(Uα ∩ Uβ) ⊂ C
n × R

φβ◦φ−1
α−→ (ξαβ(z, t), ζαβ(t)) ∈ φβ(Uα ∩ Uβ) ⊂ C

n × R

are holomorphic along the leaves, that is ξαβ is a biholomorphism for fixed t.
In other words, the leaves of F are complex manifolds and TF , the tangent

bundle to the foliation, is endowed with a smooth and integrable almost complex
operator J . In fact, (TF , J) is a smooth integrable and Levi-flat CR-structure.

As an example, take X = S3 endowed with the Reeb foliation. It has a compact
leaf diffeomorphic to S1 × S1. The other leaves are diffeomorphic to R2. Fix an
orientation and a smooth riemannian metric on X . By restriction, it defines an
orientation and a metric on each 2-dimensional leaf of F . Then define J as the
rotation of angle +π/2. This defines a smooth almost complex operator on TF .
Since the leaves have (real) dimension 2, it is automatically integrable. We thus
obtain a smooth foliation of S3 by complex surfaces. The compact leaf is an elliptic
curve and the other leaves are biholomorphic to C.

This leads to the following question.

Question 3. For which values of n does there exist a foliation by complex mani-
folds on S2n−1?

In this abstract, I will describe such a foliation on S5 and give some of its
properties. In particular, I will define the notion of a coarse moduli space of a
foliation by complex manifolds and compute it in this case.

Theorem 2. There exists a foliation by complex surfaces on S5.

Let F0 be the foliation of [2]. As a smooth foliation, it is a variation of the
Lawson foliation of S5 [1]; however it is topologically different. There are two
compact leaves which are primary Kodaira surfaces. The non-compact leaves
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are C
∗-bundles over an elliptic curve, or line bundles over an elliptic curve or

biholomorphic to the affine surface {z3
1 + z3

2 + z3
3 = 1} of C3.

Let me give some properties of F0. I first need some general definitions. Let
X be a smooth manifold of dimension 2n + 1 equipped with a smooth foliation
Fdiff . Define the set C(X,Fdiff) as the set of foliations by complex manifolds on
X which are diffeomorphic to Fdiff (modulo CR-isomorphisms). We call this set
the set of complex structures on the foliation Fdiff . It can be empty, and if not,
can be finite or infinite dimensional (see [3]).

Assume now that C(X,Fdiff) has a structure of a complex manifold M . Let
π : (W,J) → B be a deformation family of Fdiff . This means that B is a complex
manifold, that W is a smooth manifold equipped with a CR structure J and finally
that π is a CR submersion such that

(i) the level sets Wt of π are diffeomorphic to X .
(ii) the CR structure J defines a foliation by complex manifolds Ft on Wt which
is diffeomorphic to Fdiff .

Then there exists a natural map from B to M : it maps t to the point of M
corresponding to Ft in C(X,Fdiff ).

In this context, we may adapt the notion of coarse moduli space. We say that M
is a coarse moduli space for Fdiff if, given any deformation family π : (W,J) → B
of Fdiff , the natural map B → M is holomorphic (more a technical condition
about stability by pull-backs).

We have

Theorem 3. The set C(S5, (F0)diff ) can be identified with C3. Moreover C3 is a
coarse moduli space for (F0)diff .

This result has to be understood has a rigidity result. The key property is that,
if F and F ′ are diffeomorphic to (F0)diff and have biholomorphic compact leaves,
then they are CR isomorphic. In other words, a complex structure on (F0)diff is
completely determined by the data of the complex structures on the two compact
leaves.

Moreover, the two compact leaves are always primary Kodaira surfaces, that is
elliptic bundles over an elliptic curve. Indeed one shows that both are quotient of
a fixed C∗-bundle over the same elliptic curve Eα by a complex homothety (which
may be different for each compact leaf). Therefore, the complex structure on the
two compact leaves is entirely described by a triple (α, β, β′) ∈ C3 representing
the modulus of the common base and the moduli of the fibers. This explains the
C3 appearing in the statement of the Theorem.
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Automorphisms of hyperkäher manifolds

Keiji Oguiso

In [Mc], McMullen has found a very interesting K3 automorphism, namely,
an automorphism having a Siegel disk. One of remarkable properties of such a
K3 automorphism is that it is of positive entropy but has no dense orbit in the
Euclidean topology. My surprise is that the target K3 surface is necessarily of
algebraic dimension 0 (though it admits an automorphism of infinite order) and,
contrary to the projective case, the character of some automorphism on the space
of the two forms is not a root of unity. One can also make a simply-connected 4-
dimensional counterexample of Kodaira’s problem about algebraic approximation
of compact Kähler manifolds from his K3 surface [Og1], as a supplement of a work
of Voisin [Vo].

The rest is a review of my work about automorphisms of a hyperkähler manifold
[Og1, 2], which is inspired by McMullen’s K3 automorphism.

Let M be a compact Kähler manifold. We denote the biholomorphic automor-
phism group of M by Aut (M). Due to the works of Yomdin, Gromov and Fried-
land ([Yo], [Gr], [Fr]), the topological entropy e(g) of an automorphism g ∈ Aut (M)
can be defined by e(g) := log δ(g). Here δ(g) is the spectral radius, i.e. the max-
imum of the absolute values of eigenvalues, of g∗|H∗(M). One has e(g) ≥ 0, and
e(g) = 0 iff the eigenvalues of g∗ are on the unit circle S1. A subgroup G of
Aut (M) is said to be of null-entropy (resp. of positive-entropy) if e(g) = 0 for
∀g ∈ G (resp. e(g) > 0 for ∃g ∈ G).

A hyperkähler manifold (a HK mfd, for short) is a compact complex simply-
connected Kähler manifold M admitting an everywhere non-degenerate global
holomorphic 2-form ωM such that H0(M,Ω2

M ) = CωM . Recall that H2(M,Z)
admits a natural Z-valued symmetric bilinear form called BF-form or Bogomolov-
Beauville-Fujiki’s form ([Be], see also an excellent survey [Hu, Section 1]). The
existence of BF-form sometimes allows one to study HK mfds as if they were K3
surfaces (= 2-dimensional HK mfds).

The next two theorems are proved in [Og1, 2]:

Theorem 4. Let M be a HK mfd. Let ρ(M) be the Picard number of M . Then:

(1) If M is not projective, then Aut (M) is almost abelian of finite rank. More pre-
cisely, if the Néron-Severi group NS(M) is of negative definite w.r.t. BF-form
(resp. if otherwise, i.e. if BF-form on NS(M) is degenerate), then Aut (M) is
almost abelian of rank at most one (resp. at most ρ(M) − 1). Moreover, in the
first case, it is of rank one iff Aut (M) has an element of positive entropy. In
the second case, Aut (M) is always of null-entropy.

(2) Let G < Aut (M). Assume that M is projective and G is of null-entropy.
Then G is almost abelian of rank at most ρ(M) − 2.

Here, a group G is called almost abelian of finite rank r if there are a normal
subgroup G(0) of G of finite index, a finite group K and a non-negative integer r
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which fit in the exact sequence 1 −→ K −→ G(0) −→ Zr −→ 0. The rank r is
well-defined.

Theorem 5. Let X be a K3 surface, G < Aut (X), and g ∈ Aut (X). Then:

(1) G is of null-entropy iff either G is finite or G makes an elliptic fibration on
X, say ϕ : X −→ P1, stable. Moreover, the estimate in the first theorem (2) is
optimal for K3 surfaces.

(2) g is of positive entropy iff g has a Zariski dense orbit.

The second theorem gives an algebro-geometric characterization of (the positiv-
ity of ) the topological entropy of a K3 automorphism. This result is also inspired
by the following question of McMullen [Mc]:

Question 4. Does a K3 automorphism g have a dense orbit (in the Euclidean
topology) when a K3 surface is projective and g is of positive entropy?

Note that McMullen’s automorphism has a Zariski dense orbit but no dense
orbit in the Euclidean topology.

Let us return back to the first theorem. In the statement (1), the first (resp.
second) case exactly corresponds to the case a(M) = 0, a(M) = 1(= dimM/2)
when M is a K3 surface. Here a(∗) is the algebraic dimension of ∗. From this and
a work of Matsushita [Ma] about fiber space structures on a projective HK mfd
(which says that the dimension of the base space is either 0, dimM/2 or dimM),
I cannot help posing the following question here:

Question 5. Is the algebraic dimension a(M) ∈ {0, dimM/2, dimM} for a HK
mfd M?
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The non-Petri locus for pencils

Edoardo Sernesi

(joint work with A. Bruno)

On a smooth projective curve Γ of genus γ we consider the following conditions
on a pair (L, x) ∈ Picd−1(Γ) × Γ for any d such that γ+1

2 + 1 ≤ d ≤ γ:

(*) h0(L(−x)) 6= 0, h0(L(x)) ≥ 2, h1(L2) 6= 0

We prove the following:

Theorem 1. If Γ is a general curve then for all d as above the set of (L, x)’s
satisfying conditions (*) is finite and non empty.

Consider the coarse moduli space Mg of nonsingular curves of genus g ≥ 3
and for each pair of positive integers d, r let P r

g,d ⊂ Mg be the locus of curves C
carrying a gr

d L for which the Petri map

H0(L) ⊗H0(ωL−1) → H0(ω)

is not injective. It is a proper closed subset which we call the non-Petri locus. We
apply the previous theorem to prove the following:

Theorem 2. For each g, d such that g
2 + 1 ≤ d ≤ g − 1 the locus P 1

g,d has a
divisorial component.

This theorem has been recently proved by G. Farkas using different methods.
Our proof consists in associating to a pair (L, x) on Γ the cuspidal curve C = Γ/2x
endowed with the invertible sheaf L of degree d which pulls back to L(x) on Γ. If
(L, x) satisfies conditions (*) then L has non-injective Petri map. From this fact
and from theorem 1 one derives the proof of theorem 2.

Numerically decomposing the intersection of algebraic varieties

Andrew J. Sommese

(joint work with Jan Verschelde and Charles W. Wampler)

In [6] an approach was formulated to numerically compute solution sets of
systems of complex polynomials. The approach was by representing an irreducible
i-dimensional component X of a polynomial system

(1) f(x) :=







f1(x1, . . . , xN )
...

fn(x1, . . . , xN )







by “generic” points, where these are modeled by the intersection of X with a
“random” (N − i)-dimensional linear subspace of CN . If such a set of points could
be found, homotopy continuation would generate as many “widely-spaced” points
as desired on X .
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In a series of articles, [1, 2, 3, 4], an efficient algorithm was developed and
implemented in software that, when given as input a system f as in Eq.1, outputs
the dimensions and degrees of the irreducible components of f−1(0), and gives
generic points of the form described above for each component.

A new algorithm from the upcoming article [5] was presented. This algorithm
has for input two sets of “generic points” of two irreducible components (A a
component of f(x) = 0 and B a component of a possibly identical system g(x) = 0)
and as output, it has the dimensions, degrees, and sets of “generic points” of the
components of A ∩B.

As one application of this method, a new “equation-by-equation” method of
finding isolated solutions of polynomial systems was presented. This algorithm has
the theoretical potential, which has been supported by some preliminary runs, to
solve polynomial systems that are orders of magnitude beyond what can currently
be solved.
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Complex geometric applications of Gauge Theory

Andrei Teleman

(joint work with Matei Toma)

A classical problem in Complex Geometry asks:

Question: Let X be a complex surface. Which differentiable vector bundles E
on X do allow holomorphic structures?

Using the classification of differentiable vector bundles on 4-manifolds, the prob-
lem can be reformulated as follows:
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For which triples (r, c1, c2) ∈ N×H2(M,Z)×Z exists there a holomorphic rank r
vector bundle E on X with c1(E) = c1, c2(E) = c2?

A result of Schwarzenberger solves the problem in the algebraic case:

Answer: A vector bundle E on an algebraic surface X admits holomorphic struc-
tures if and only if c1(E) ∈ NS(X).

In the non-algebraic case the problem is not completely solved. We refer to
[ABT], [To1], [To2] for results in particular cases.

Let E be a differentiable rank r bundle on X and c ∈ NS(X). Following the
conventions in [BLP], we put:

∆(E) := 2rc2(E)−(r−1)c1(E)2 , m(r, c) := r inf

{

−
r

∑

i=1

( c

r
− µi

)2

| µi ∈ NS(X)

}

.

Note that m(r, c) ≥ 0 if X is non-algebraic, because in this case the intersection
form is negative on the Neron-Severy group. A holomorphic rank r bundle E is
called filtrable if it admits a filtration

0 ⊂ E1 ⊂ · · · ⊂ Er−1 ⊂ E

by subsheaves of ranks rk(Ei) = i. The main result in the non-algebraic case is
the following theorem of Bănică&Le Potier.

Theorem: [BLP] Let X be a non-algebraic surface and a differentiable rank r
bundle on X.

(1) If E admits holomorphic structures, then ∆(E) ≥ 0.
(2) E admits filtrable holomorphic structures if and only if c1(E) ∈ NS(X)

and ∆(E) ≥ m(r, c1(E)), excepting the case when X is a K3 surface with
a(X) = 0, ∆(E) = 2r and c1(E) ∈ rNS(X).

In the excepted case, E admits no holomorphic structure.

Therefore, it remains to decide whether bundles E with 0 ≤ ∆(E) < m(r, c1(E))
admit holomorphic structures or not. Such holomorphic structures cannot be
filtrable, so it is very difficult to detect them. To every class c ∈ NS(X) we
associate the set

Hol(r, c) := {∆(E)| E is a holomorphic r-bundle on X with c1(E) = c} ,

which is a subset of [−(r − 1)c2 + 2rZ] ∩ [0,∞). Our problem reduces to the
computation of the sets Hol(r, c). The smallest element in Hol(r, c) will be denoted
by ∆min(r, c).

In [TT1] we solved completely the existence problem for holomorphic structures
on rank 2 vector bundles over non-algebraic K3 surfaces:
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Theorem: [TT1] Let X be a non-algebraic K3 surface. For every c ∈ NS(X)
one has

Hol(2, c) = [−c2 + 4Z] ∩ [min(6,m(2, c)),∞) ,

excepting the case when a(X) = 0 and c ∈ 2NS(X). In this case

Hol(2, c) = Hol(2, 0) = {0} ∪ (4Z>0 + 4) .

The proof uses the Kobayashi-Hitchin correspondence in the non-algebraic case
([DK], [LT]) and the explicit form of the Donaldson polynomial invariants of K3
surfaces, as given in [KM].

These methods apply to any non-algebraic Kählerian surface. For a closed, con-
nected, oriented 4-manifold M , we denote by w2(Hom(π1(M), PU(2))) the set of
Stiefel-Whitney classes of flat PU(2) bundles over M . If P is a PU(2)-bundle over
M with w2(P ) 6∈ w2(Hom(π1(M), PU(2))), then the Uhlenbeck compactification

M
ASD

g (P ) of the moduli space of g-ASD connection does not contain flat instan-
tons, and all strata of this compactification are regular, for a generic Riemannian
metric g on M . Therefore, the Donaldson polynomial invariant

qP : H2(M,Z)dP −→ Z

associated with P is well defined. Here we assume of course that the complex
expected dimension

dP := −p1(P ) +
3

2
(b1(M) − b+(M) − 1)

is an integer.
Our result for a general Kählerian surface X is:

Theorem: [TT2] Let X be a Kählerian surface, c ∈ NS(X) and c̄ ∈ H2(M,Z2)
its reduction modulo 2. Then one of the following holds:

(1) c̄ ∈ w2(Hom(π1(M), PU(2))). In this case ∆min(2, c) = 0.
(2) c̄ 6∈ w2(Hom(π1(M), PU(2))) and ∆min(2, c) is realised by a filtrable holo-

morphic 2-bundle.
(3) c̄ 6∈ w2(Hom(π1(M), PU(2))) and ∆min(2, c) is realised by a non-filtrable

holomorphic 2-bundle E with H2(End0(E)) 6= 0.
(4) ∆min(2, c) = min{−p1(P )| w2(P ) = c̄, qP 6= 0} hence, in this case,

∆min(2, c) coincides with a differential topological invariant of X.

The proof is based on a version of Donaldson’s non-vanishing theorem [DK].

Note that, for a holomorphic 2-bundle E with H2(End0(E)) 6= 0, there exists a
dominant morphism p : Y → X defined on a Kählerian surface Y , such that p∗(E)
is filtrable. In most cases Y is a 2-sheeted cover of X branched along a bicanonical
divisor of X . Therefore, such bundles, as the filtrable ones, can be constructed
”by classical methods”. Our result shows that:
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When ∆min(2, c) cannot be obtained using holomorphic bundles given by classi-
cal methods, then it coincides with a differential topological invariant.
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non-algébriques, J. Reine Angew. Math. 378 (1987), 1-31.

[DK] Donaldson, S., Kronheimer, P.: The Geometry of Four-Manifolds, Oxford Univ. Press,
1990.

[KM] Kronheimer, P., Mrowka, T.: Embedded surfaces and the structure of Donaldson’s poly-
nomial invariants, J. Differential Geom. 41 (1995), 573-734.
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