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Introduction by the Organisers

Of the three organizers of the conference N. Hitchin is a mathematician, A. Ka-
pustin and W. Nahm are physicists. Ideas from physics, in particular from string
theory and related areas had a profound influence on algebraic and differential
geometry. Conversely, many developments in string theory use very recent math-
ematical results. There were 19 talks at the workshop, 12 by mathematicians and
7 by physicists, but in many cases an outside observer would have had difficulties
to sort them out.

Quantum field theory often allows continuous interpolations between geometrical
structures of topologically different manifolds. A particularly important example is
mirror symmetry, where the complexified Kähler cone of one manifold corresponds
to the moduli space of complex structures of the mirror manifold. Several talks ex-
plored geometrical and number theoretical aspects of this connection. Mirror sym-
metry can be understood in terms of torus fibrations and an isomorphism between
the quantum field theories given by maps to a torus and to its dual (T-duality).
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The B-field of string theory can be described in terms of non-commutative geom-
etry on the tori, and its effect on T-duality has been investigated. The quantum
field theories which provide these dualities are supersymmetric conformally invari-
ant quantum field theories in two dimensions. In mathematics, large parts of their
structures have been axiomatised in the language of vertex operator algebras, but
much remains to be done. A promising mathematical approach is provided by the
chiral de Rham complex. This cohomology of this complex seems to be invariant
under mirror symmetry, but its physical meaning is not yet clear. This led to
many discussions between mathematicians and physicists. Indeed, the free time
for discussions was at least as important as the lectures for learning the language
of researchers with a different background and for making use of their ideas.

An area in which the common understanding is well advance is topological field the-
ory. Here one has good axioms and many of the analytic problems of conformally
invariant quantum field theories can be ignored. One can solve rather complex
problems and one can make contact with new geometrical ideas, in particular gen-
eralised complex structures. The latter allow to interpolate between complex and
symplectic geometry, which should become important for both physics and math-
ematics. To understand all of conformal field theory at a similar mathematical
depth will take more time, but already now relations to mixed Hodge structures
have given much insight. Eventually many so far intractable problems should be
solvable by the use of quantum field theoretical ideas, for example the construction
of the non-singular Ricci flat metrics on K3.

Perturbative string theory can be described in terms of conformal field theory,
but the complete theory has more excitations than strings. Among them the best
understood are the D-branes, many features of which can be understood in terms
of boundary states in conformal field theory. Some of these branes are related
to complex submanifolds, others to certain Lagrangian submanifolds, and their
description involves twisted K-theory and derived categories.

The development of a common language between mathematicians and physicists is
well under way, and the workshop has made a contribution which all participants
found very stimulating. In Europe such meetings between mathematicians and
string theorists are rare, so the workshop was particularly useful. Much of the
time was reserved for informal discussions. On one evening there was a discussion
on the relation between classical and quantum geometry. Weather predictions for
the free afternoon had been bad, but finally the weather was splendid and the
supply of Black Forest cake matched the demand.
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Abstracts

Generalized geometry and the Hodge decomposition

Marco Gualtieri

In this talk, we review some of the concepts of generalized geometry, as intro-
duced by Hitchin and developed in the speaker’s thesis. We also prove a Hodge
decomposition for the twisted cohomology of a compact twisted generalized Kähler
manifold.

I. Geometry of T ⊕ T ∗. The sum T ⊕ T ∗ of the tangent and cotangent bundle
of an n-dimensional manifold has a natural O(n, n) structure, and

so(n, n) = ∧2T ⊕ End(T ) ⊕ ∧2T ∗.

Hence we may view 2-forms B and bivectors β as infinitesimal symmetries of
T ⊕ T ∗. We may also form the Clifford algebra CL(T ⊕ T ∗), which has a spin
representation on the Clifford module ∧•T ∗ as described by Cartan:

(X + ξ) · ρ = iXρ+ ξ ∧ ρ,

for X+ ξ ∈ T ⊕T ∗ and ρ ∈ ∧•T ∗. This means that we may view differential forms
as spinors1 for T ⊕ T ∗. From the general theory of spinors, this implies that there
is a Spino(n, n)-invariant bilinear form

〈, 〉 : ∧• T ∗ × ∧•T ∗ −→ detT ∗,

given by 〈α, β〉 = (α∧ σ(β))n, where σ is the operator which reverses the order of
any product.

Another structure emerging from the interpretation of forms as spinors is the
Courant bracket [, ]H on sections of T ⊕T ∗, obtained as the derived bracket of the
natural differential operator d+H ∧ · acting on differential forms, where d is the
exterior derivative and H ∈ Ω3

cl(M). When H = 0, we have the following

Proposition. The group of automorphisms of the Courant bracket for H = 0 is
a semidirect product of Diff(M) and Ω2

cl(M), where B ∈ Ω2
cl(M) acts as the shear

exp(B) on T ⊕ T ∗.

1Actually, the bundle of spinors differs from ∧
•T ∗ by tensoring with a line bundle, which can

be taken to be trivializable; we assume a trivialization has been chosen – this is called a dilaton
by physicists.
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II. Generalized complex geometry. A generalized complex structure is an
integrable reduction of T ⊕ T ∗ from O(2n, 2n) to U(n, n) (only possible when
dimR M = 2n), which is equivalent to the choice of an orthogonal complex struc-
ture

J ∈ O(T ⊕ T ∗), J 2 = −1.

The integrability condition is that the +i-eigenbundle of J ,

E < (T ⊕ T ∗) ⊗ C,

must be closed under the Courant bracket. If H is nonzero we call this a twisted
generalized complex structure. The Courant bracket is a Lie bracket when re-
stricted to E and therefore we may form the differential graded algebra

E = (∧•E∗, dE).

Theorem. The dga E is an elliptic complex and it gives rise to a Kuranishi
deformation space for any generalized complex structure. The tangent space to
the deformation space, in the unobstructed case, is H2(E).

For example, let J ∈ End(T ) be a usual complex structure, and form the general-
ized complex structure

J =

(
−J 0
0 J∗

)
.

Then, E = T0,1⊕T ∗
1,0, so that E is simply the Dolbeault complex of the holomorphic

multivectors. Consequently

H2(E) = H0(M,∧2T ) ⊕H1(T ) ⊕H2(O).

For a complex surface, a holomorphic bivector β always integrates to an actual
deformation, and so for CP 2, for example, we obtain a new generalized complex
structure which is complex along an anticanonical divisor (the vanishing locus of
β) and the B-field transform of a symplectic structure outside the cubic.

This provides an alternative interpretation of the extended deformation parame-
ter β, which is normally viewed as a noncommutative deformation of the algebra
defining CP 2. The usual translation parameter along the commutative elliptic
curve can be obtained by differentiating β along its vanishing set.

The previous example indicates that the algebraic type of a generalized complex
structure may jump along loci in the manifold. Indeed a generalized complex
structure on a 2n-manifold may have type 0, · · · , n, with 0 denoting the (generic)
symplectic type and n denoting the complex type. Type may jump up, but only
by an even number.

Theorem (Generalized Darboux theorem). Away from type jumping loci, a gen-
eralized complex manifold of type k is locally isomorphic, via a diffeomorphism
and a B-field transform, to Ck×R2n−2k

ω0
, where ω0 is the usual Darboux symplectic

form.
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Generalized complex manifolds also have natural sub-objects, called generalized
complex submanifolds. These sub-objects correspond exactly with the physicists’
notion of topological D-branes; in particular, one recovers in the symplectic case
the co-isotropic A-branes of Kapustin and Orlov. There is also a natural notion of
generalized holomorphic bundle supported on a generalized complex submanifold,
a concept which seems to correspond to D-branes of higher rank. One can even
see how such a brane could deform into several branes of lower rank. We will not
discuss these processes at this time.

III. Generalized Riemannian geometry. A generalized Riemannian metric is
a reduction of T⊕T ∗ from O(n, n) to O(n)×O(n). This is equivalent to specifying
a maximal positive-definite subbundle C+ < T ⊕ T ∗, which can be described as
the graph of b+ g, where g is a usual Riemannian metric and b is a 2-form.

Let ∗ = a1 · · · an be the product in CL(C+) < CL(T ⊕ T ∗) of an oriented or-
thonormal basis for C+. This volume element acts on the differential forms via
the spin representation, and is related to the Hodge star operator ⋆: if b = 0 then

⋆ρ = σ(σ(∗) · ρ).

For any generalized Riemannian structure, we may define the following positive-
definite Hermitian inner product on differential forms

h(α, β) =

∫

M

〈α, σ(∗)β̄〉,

which we call the Born-Infeld inner product, to coincide with the physics termi-
nology. In particular, we have the expression

〈α, σ(∗)β̄〉 = G(α, β)〈1, σ(∗)1〉 = G(α, β)
det(g + b)

det1/2 g
,

where G(α, β) is a positive-definite Hermitian metric on forms depending on g and
b satisfying (1, 1) = 1. The Born-Infeld inner product is a direct generalization of
the Hodge inner product of Riemannian geometry.

On an even-dimensional manifold, the adjoint of the twisted exterior derivative
dH is simply

d∗H = ∗ · dH · σ(∗) = ∗ · dH · ∗−1.

As in the Riemannian case, dH + d∗H is an elliptic operator and so, therefore, is
the Laplacian ∆dH = dHd

∗
H + d∗HdH .

Proceeding in the usual way, we may conclude that on a compact generalized Rie-
mannian manifold, every H-twisted de Rham cohomology class has a unique ∆dH -
harmonic representative. There is a gauge freedom here, in the sense that given
any 2-form b′, the automorphism eb′ takes harmonic representatives for (g, b,H)
to those for (g, b+ b′, H − db′).
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IV. Generalized Kähler geometry and Hodge decomposition. A general-
ized Kähler structure is given by two commuting generalized complex structures
(J1,J2) such that −J1J2 = G defines a generalized Riemannian metric on T⊕T ∗,
i.e. define C+ as the +1-eigenbundle of G. Both J1,J2 are in so(T ⊕T ∗), and via
the Spin representation they act on differential forms. J1 induces a decomposition
of forms into its eigenspaces

∧•T ∗ ⊗ C = U−n ⊕ · · · ⊕ U0 ⊕ · · · ⊕ Un,

Where Uk is the ik-eigenspace of J1. Furthermore, the exterior derivative dH

acting on Uk decomposes as the sum of the two projections ∂1, ∂1 to Uk+1, Uk−1

respectively, i.e.

C∞(Uk)
∂1

C∞(Uk+1)
∂1

.

The commuting endomorphism J2 engenders a further decomposition of the Uk:

Uk = Uk,|k|−n ⊕ Uk,|k|−n+2 ⊕ · · · ⊕ Uk,n−|k|.

In this way we obtain an orthogonal (p, q) decomposition of the differential forms
into the following diamond

U0,n

· · · · · ·
U−n+1,1 Un−1,1

U−n,0 · · · Un,0

U−n+1,−1 Un−1,−1

· · · · · ·
U0,−n

The exterior derivative then breaks into four components

dH = δ+ + δ− + δ+ + δ−,

according to the (p, q) decomposition, as follows:

Up−1,q+1 Up+1,q+1

Up,q
∂1

∂1

∂2

∂2

δ−

δ+

δ+

δ−

Up−1,q−1 Up+1,q−1

where we have, for definiteness, ∂1 = δ+ + δ− and ∂2 = δ+ + δ−. These operators
all fit into elliptic complexes, and the crucial calculation is that

δ
∗

+ = −δ+ and δ
∗

− = δ−.
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These simple generalized Kähler identities imply the equality of all Laplacians in
sight:

∆dH = 2∆∂1/2
= 2∆∂1/2

= 4∆δ±
= 4∆δ± ,

and so we obtain a (p, q) decomposition for the twisted cohomology of any com-
pact generalized Kähler manifold. Note that in the usual Kähler case, this (p, q)
decomposition is not the Dolbeault decomposition: it was called the Clifford de-
composition by Michelsohn, and there is an orthogonal transformation called the
Hodge automorphism taking it to the usual Dolbeault decomposition.

D-branes and π-stability

Tom Bridgeland

An N=2 superconformal field theory of the sort arising from the nonlinear sigma
model on a Calabi-Yau manifold has an associated topologically twisted theory
which in turn determines a triangulated category D whose objects are the branes
or boundary conditions of the theory. In fact there are two topological twistings,
usually called the A- and B-model, and these are exchanged by mirror symmetry.
The original SCFT contains more data than the topologically twisted theory, and
Douglas has shown that one manifestation of this extra data is the existence of
certain subcategories P ⊂ D whose objects are the so-called BPS branes.

The notion of a stability condition on a triangulated category was introduced in
order to axiomatise the properties of these subcategories of BPS branes. The
space of all stability conditions Stab(D) on a fixed category triangulated category
D provides a mathematical analogue of certain moduli spaces of SCFTs arising in
physics.

In this talk I gave the definition of a stability condition and defined the natural
topology arising on the space of all stability conditions Stab(D). I also related
stability conditions to the more familiar notion of a t-structure.

In the second half of the talk I discussed an example where D is the derived
category of coherent sheaves of the non-compact Calabi-Yau threefold X which is
the total space of the canonical line bundle OP2(−3). In this case the space Stab(D)
has a natural action of the annular braid group CBn which is the fundamental
group of the configuration space of three unordered points in C∗. The fundamental
domains for this action are labelled by quivers with relations, and the module
category of each such quiver is derived equivalent to the category of coherent
sheaves on X .
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tt∗ geometry and mixed Hodge structures

Claus Hertling

tt∗ geometry is a generalization of the notion of variation of Hodge structures.

Cecotti and Vafa [2] [3] established and studied it in 1991 and later in the context
of N = 2 supersymmetric field theories, especially in the case of Landau-Ginzburg
models. Here the central object is an algebraic function f : Y → C on an affine
algebraic manifold Y such that f has only isolated singularities and such that f
is tame at infinity.

A mathematically safe way to this tt∗ geometry uses oscillating integrals. Lefschetz
thimbles and oscillating integrals are discussed in [11] [12] [5, ch. 6]. The closely
related case of germs of holomorphic functions is treated in [7, ch. 8]; there also
the way to tt∗ geometry is given in detail. General results on the Gauss-Manin
system, its Fourier transform and the Brieskorn lattice of f : Y → C are provided
in [14]. The corresponding structures for unfoldings of f : Y → C are established
in [4].

One starts with the flat bundle of homology classes of Lefschetz thimbles in C∗

and the dual bundle H ′ → C∗. It contains a flat lattice bundle H ′
Z

and a flat real
bundle H ′

R
. The intersection form for Lefschetz thimbles induces a flat pairing

P : H ′
z ×H ′

−z → C. These are the topological data. Via oscillating integrals one
obtains a natural extension of H ′ → C∗ to a holomorphic vector bundle H → C.
Then the flat connection ∇ on H ′ has a pole of order ≤ 2 at 0. The flat pairing
evaluated on germs of holomorphic sections in H → C takes values in znOC,0 (here
dimY = n). The coefficients of the different powers of z are essentially K. Saito’s
higher residue pairings [12].

The data (H → C, H ′ → C∗, H ′
R
,∇, P ) with their properties are called a (TERP)-

structure in [7] [8]. If they satisfy certain conditions, they give a generalization
of a polarized Hodge structure and then they are called a (pos. def. tr. TERP)-
structure. This generalization has to be understood as follows (cf. [8] [7]).

H ′ → C∗ and H ′
R
→ C∗ are the analoga of a vector space and a real subspace.

The extension of H ′ → C∗ to H → C generalizes a Hodge filtration. Using H ′
R

and the flat structure, one can construct from H an extension to a holomorphic
vector bundle Ĥ → P1 with a pole of order ≤ 2 at ∞. This extension to ∞
generalizes the complex conjugate filtration of a Hodge filtration. In a Hodge
structure the Hodge filtration and the complex conjugate filtration are opposite.
The analogon of this condition is that Ĥ → P1 should be the trivial bundle. This is
a nontrivial condition. If it holds one can construct on the fiber H0 a C-antilinear
involution and, using the pairing P , a hermitian metric h. The second nontrivial
condition is that this metric h should be positive definite. Then one would have a
(pos.def.tr.TERP)-structure, generalizing a polarized Hodge structure.
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Theorem/Conjecture. The (TERP)-structure for f : Y → C as above is a
(pos.def.tr.TERP)-structure.

For physicists this should be a theorem, because it should follow from properties
of the Landau-Ginzburg model; the metric h is the ground state metric. For math-
ematicians this is a very interesting conjecture.

If true, it would be comparable to the fact that the cohomology of compact Kähler
manifolds carries Hodge structures. It would give a new viewpoint on and a new
understanding of the mixed Hodge structure of Sabbah [13] [14] for f : Y → C

and the mixed Hodge structure of Steenbrink for germs of holomorphic functions
with isolated singularities.

Using the mixed Hodge structures of Sabbah and Steenbrink as well as [1, Cor.
3.13] and a generalization of an argument of Dubrovin [6, Prop 2.2], the following
result, which is weaker than the conjecture above, can be proved.

Theorem. For r > 0 close to 0 and for r ≫ 0, the (TERP)-structure of r · f is
a (pos.def.tr.TERP)-structure.

The rescaling of f to r · f is the physicists renormalization. Denoting πr : C → C,
z 7→ 1

r z, one finds (TERP )(r · f) = π∗
r (TERP )(f). Therefore, if one (TERP)-

structure (TERP ) is given, one should study simultaneously the whole family
π∗

r (TERP ), r > 0.

This leads to two generalizations for (TERP)-structures of a fundamental 1–1 cor-
respondence between polarized mixed Hodge structures and nilpotent orbits of
pure Hodge structures ( [16, Thm. 6.16] and [1, Cor. 3.13]). The first generaliza-
tion concerns small r > 0, the second large r > 0.

The first generalization says that for r > 0 small π∗
r (TERP ) is a (pos. def. tr.

TERP)-structure if and only if a certain filtration F •
Sabbah, constructed in [14,

math.AG], is part of a polarized mixed Hodge structure. This can be proved us-
ing [16] [1].

Together with Sabbah’s result [13] and [14, math.AG] that in the case of
(TERP )(f) his filtration is part of a mixed Hodge structure, it shows the first
half of theorem 2. (In [13] [14] he does not discuss the polarization, but this can
be done.)

The second generalization gives conjecturally the following correspondence: for
r ≫ 0 π∗

r (TERP ) is a (pos.def.tr.TERP)-structure if and only if (TERP ) is a
(mixed.TERP)-structure.

The notion of a (mixed.TERP)-structure is defined in [8]; roughly it says that
the germ at 0 of the (TERP)-structure is formally isomorphic to a sum of tensor
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products of rank one irregular connections and some regular singular (TERP)-
structures, that each of these regular singular (TERP)-structures gives rise to a
polarized mixed Hodge structure, and that the Stokes structure is compatible with
the real structure.

The direction ⇐ in this correspondence can be proved using [1] and a generaliza-
tion of an argument of Dubrovin [6, Prop 2.2]. The direction ⇒ can be proved in
the case when the pole part of the order 2 pole at 0 is nilpotent using [16] and
in the rank 2 case using properties of Painlevé III, which were established in [10] [9].

(TERP )(f) is a (mixed.TERP)-structure. Together with the direction ⇐ in the
last correspondence it shows the second half of theorem 2.

I hope that the (TERP)-structures and tt∗-geometry will have many applications
to moduli of singularities, the distribution of their spectral numbers, the relation
to quantum cohomology and to mirror symmetry.

References

[1] Cattani, E., A. Kaplan, W. Schmid, Degeneration of Hodge structures, Annals of Math.,
123: 457–535, 1986.

[2] Cecotti, S., C. Vafa, Topological-antitopological fusion, Nuclear Physics, B 367: 359–461,
1991.

[3] Cecotti, S., C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math.
Phys., 158: 569–644, 1993.

[4] Douai, A., C. Sabbah, Gauss-Manin systems, Brieskorn lattices and Frobenius structures
(I), preprint, [math.AG/0211352], 57 pages.

[5] Douai, A., C. Sabbah, Gauss-Manin systems, Brieskorn lattices and Frobenius structures
(II), preprint, [math.AG/0211353], 22 pages.

[6] Dubrovin, B., Geometry and integrability of topological-antitopological fusion, Commun.
Math. Phys., 152: 539–564, 1992.

[7] Hertling, C., tt∗ geometry, Frobenius manifolds, their connections, and the construction for
singularities, J. reine angew. Math., 555: 77–161, 2003.

[8] Hertling, C., tt∗ geometry and mixed Hodge structures, preprint no. 2004/19 Institut Elie
Cartan, Nancy.

[9] Its, A.R., V.Yu. Novokshenov, The isomonodromic deformation method in the theory of
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Homological mirror symmetry for Fano surfaces

Denis Auroux

The goal of the work presented here (joint with L. Katzarkov and D. Orlov) is
to explicitly verify Kontsevich’s homological mirror symmetry conjecture for some
simple examples of Fano varieties, following ideas of Hori, Vafa, Kontsevich, Sei-
del, ...

The homological mirror symmetry conjecture treats mirror symmetry as an equiv-
alence between two categories naturally attached to a mirror pair of Calabi-Yau
manifolds X,Y : the (bounded) derived category DbCoh(X) of coherent sheaves
on X is equivalent to the (derived) Fukaya category DF (Y ) of Y , and vice-versa.

We focus on a different setting, that of Fano manifolds (i.e., X with c1(TX) > 0),
which mirror symmetry puts in correspondence with Landau-Ginzburg models, i.e.
pairs (Y,w) where Y is a noncompact manifold and w : Y → C is a holomorphic
function. The derived category of coherent sheaves of X is then expected to be
equivalent to a derived category of Lagrangian vanishing cycles associated to the
singularities of w, that we denote by DLagvc(w). This category, which should
include not only compact Lagrangian submanifolds of Y , but also some noncom-
pact objects which outside of a compact subset fiber in a special way above real
half-lines, is not rigorously defined yet in general. However, in the special case
where w is a complex Morse function, i.e. the critical points of w are isolated and
non-degenerate, a precise definition of the category of Lagrangian vanishing cy-
cles has been given by Seidel, which makes the explicit verification of homological
mirror symmetry possible on various examples.

More precisely, in this case DLagvc(w) can be realized as the (split-closed) derived
category of a finite directed A∞ category Lagvc(w, {γi}) associated to an ordered
collection of arcs (γi)1≤i≤r joining a reference point λ0 ∈ C to the various critical
values λ1, . . . , λr of w. The arcs γi determine vanishing cycles L1, . . . , Lr, which
are Lagrangian spheres inside the reference fiber Σ0 = w−1(λ0). The objects of
Lagvc(w, {γi}) are L1, . . . , Lr, with morphisms given by

Hom(Li, Lj) =





C|Li∩Lj| if i < j,
C · Id if i = j,
0 if i > j.

Morphism spaces are graded by Maslov index, and differentials and compositions
are defined using Floer theory in Σ0, i.e. by counting pseudoholomorphic discs
u : (D2, ∂D2) → (Σ0,

⋃
Li) with corners at specified intersection points, with

weights ± exp(−
∫

D2 u
∗ω). It is a result of Seidel that, while Lagvc(w, {γi}) de-

pends very much on the choice of {γi}, the derived category does not (in a sense,
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different systems of arcs correspond to different “presentations” of the same de-
rived category).

The main examples that we consider are the weighted projective planes X =
CP2(a, b, c) = (C3 − {0})/C∗, where a, b, c are positive integers and C∗ acts
by t · (x, y, z) = (tax, tby, tcz). X is a Fano orbifold, and its derived category
is generated by the exceptional collection 〈O,O(1), . . . , O(a + b + c − 1)〉, with
Hom(O(i), O(j)) isomorphic to the degree (j − i) part of the symmetric algebra
C[x, y, z] where deg(x) = a, deg(y) = b, deg(z) = c.

The mirror of X is the affine hypersurface Y = {xaybzc = 1} ⊂ (C∗)3 equipped
with the superpotential w = x+ y+ z and an exact symplectic form. The a+ b+ c
critical points of w are nondegenerate, and by explicitly determining the vanish-
ing cycles one can describe completely the category Lagvc(w, {γi}) for a suitable
choice of {γi} (morphisms, gradings, composition formulas). Putting these van-
ishing cycles in relation with the coherent sheaves generating DbCoh(X), one can
prove that DbCoh(X) ≃ DLagvc(w), i.e. homological mirror symmetry is verified
for weighted projective planes. Similar results have been obtained for Hirzebruch
surfaces or for certain Del Pezzo surfaces; in addition, partial results have been
obtained for higher-dimensional weighted projective spaces.

Perhaps the most exciting development coming out of these calculations is a re-
lationship between non-exact symplectic deformations of Y and certain noncom-
mutative deformations of X . Namely, in the case of weighted projective planes
Y ≃ (C∗)2, so H2(Y,C) = C, and hence Y carries non-exact symplectic forms. If
we equip Y with a symplectic form and a B-field such that

∫
T
[B + iω] = τ ∈ C,

where T = Y ∩ {|x| = |y| = |z| = 1} is the generator of H2(Y,Z), this deforms
Lagvc(w) by modifying the coefficients in the composition formulas (the areas of
the pseudoholomorphic discs in (Σ0,

⋃
Li) are modified). On the complex side,

this corresponds to a noncommutative deformation of CP2(a, b, c), where the un-
derlying weighted symmetric algebra C[x, y, z] is deformed by setting yz = λzy,
zx = µxz, xy = νyx, where λaµbνc = exp(iτ). Moreover, in the case of the usual
CP2 additional noncommutative deformations can be obtained by considering a
fiberwise compactification of Y , whose second cohomology has rank 2.
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Moduli spaces of local systems,
positivity and higher Teichmüller theory

Alexander Goncharov

(joint work with V. V. Fock)

Goncharov, Alexander

I. Let S be an oriented surface with boundary: S = S̄ − D1 ∪ . . . ∪ Dn, n > 0.
Assume that S is hyperbolic. Usually χ(S) < 0. The Teichmüller space for S is
defined as

T (S) : = {complex structures on S}/Diff0(S)

∼= {faithful representations

ρ : π1(s) → PSL2(R)}/PSL2(R) − conjug.

The mapping class group ΓS = Diff(S)/Diff0(S) acts on T (S). Let T ′′(S) ⊂ T (S)
be the subset of representations with unipotent monodromy around each boundary
component. The T (S) has a boundary with corners with the deepest stratum
T ′′(S). Define

T̃ (S) := {p ∈ T (S), plus choice of an eigenvalue

for the monodromy around each ∂Di}.

In the case when S is compact, N. Hitchin defined in 1992 a component in a space
of representations π1(S) → G(R) where G is a simple Lie group with trivial center.
He proved that given a complex structure on S, this component is isomorphic to
CN .

We are looking for an algebraic geometric avatar of the Teichmüller-Thurston
theory, which can be generalized to any G (split, semi-simple algebraic group over
Q with trivial center).

II. The moduli space XG,Ŝ . Let Ŝ be a pair (S, {x1, . . . , xm}), where the second

element of the pair is a collection of marked points on the boundary ∂S.

Definition. A framed G-local system on Ŝ is a pair (L, β), where L is a G-local
system on S and β is a flat section of the restriction of L ×G B to the punctured
boundary ∂S − {x1, . . . , xm}, where B is the flag variety for G.

Definition. XG,Ŝ is the moduli space of framed G-local systems on Ŝ.

Example. If Ŝ is a disc D̂n with n marked points on the boundary then

XG,n := XG,D̂n

∼= G\Bn.
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Let T be an ideal triangulation of a surface S′ with n punctures (S′ ∼
h.e.

S).

Restricting (L, β) to triangles and rectangles of the triangulation we get a rational
map

ΠT : XG,S −→
∏

triangles of T

XG,3 ×H{edges of T }.

Theorem. This map is a birational isomorphism.

Using different ideal triangulations T we get a ΓS-equivariant atlas on XG,S . We
prove that the transition functions for this atlas are subtraction-free. Thus for any
semifield K, e.g. K = R>0, we can define the set of K-valued points of XG,Ŝ.

Definition. The higher Teichumüller space for G is XG,Ŝ(R>0).

Definition. The lamination space for G is XG,Ŝ(Rt), where Rt is the tropical

semifield.

Theorem. For G = PSL2 we get the classical Teichumüller space T̃ (S) and the
space of Thurston’s measured laminations on S.

Our main conjecture relates XG,S to get another moduli space ALG,S related to

the Langland’s dual LG, which also has a canonical positive atlas on it.

Introduction to the chiral de Rham complex

Fyodor Malikov

This is a brief and elementary review of the work done jointly with A. Vaintrob,
V. Schechtman, and V. Gorbounov on sheaves of vertex algebras over smooth
manifolds. Let U be étale over C with an étale coordinate system x = {xi},
∂ = {∂xi}, 1 ≤ i ≤ N . To the pair (U, x) one attaches two vertex algebras:

(1) Och
U,x, generated by a pair of even fields, x(z), ∂(z), s.t. [∂(z), x(w)] =

δ(z − w), and
(2) Ωch

U,x, generated by x(z), ∂(z) as above and a pair of odd fields , dx(z),

∂dx(z), s.t. [∂dx(z), dx(w)] = δ(z − w).

Next one considers an arbitrary smooth manifoldX along with a covering by (U, x)
as above and attempts to sheafify the just introduced vertex algebras by glueing
over the intersections. This can be accomplished in the case of Ωch

N .

Lemma. Let Aut(U) be the automorphism group of U and Âut(U) the automor-
phism group of Ωch

U,x. There is an injection

Aut(U) → Âut(U).

This lemma allows one to define for any X a sheaf of vertex algebras Ωch
X to be

called a chiral de Rham complex. The correspondence

X → Ωch
X



String-Theorie und Geometrie 2027

is natural w.r.t. to étale morphisms X → Y .

One property of Ωch
X is that it is actually a vertex algebra with a square zero dif-

ferential. The usual de Rham complex, ΩX , embeds into it so that ΩX →֒ Ωch
X is

a quasi-isomorphism.

Another property of Ωch
X was discovered by Borisov and Libgober.

Theorem (Borisov-Libgober). Let EllX(q, y) be the elliptic genus of X. Then
EllX(q, y) equals the Euler character of Ωch

X w.r.t. to an appropriate double grading
of Ωch

X .

Here are two applications of the chiral de Rham complex.

• The following character formula is valid

2chH0(P2N ,Ωch
P2N ) = EllP2N (q, 1) + 1.

It follows that the elliptic genus has positive coefficients. One can argue,
therefore, that the vertex algebra H0(P2N ,Ωch

P2N ) provides a realization of
the elliptic genus just as the Monster vertex algebra provided a realization
of the j-function.

• Let Σ ⊂ PN−1 be a Calabi-Yau hypersurface. There is a spectral sequence,
(Er, dr), s.t.

(a) (Er, dr) ⇒ H∗(Σ,Ωch
Σ ),

(b) the 1st term, E1, is almost isomorphic to Witten’s chiral algebra of
the corresponding Landau-Ginzburg orbifold.

This implies the following explicit orbifold formula for the elliptic genus of Σ:

EllΣ(q, y) =
1
N

∑N−1
j,l=0(−1)N(j+l)+sje−πi(N−2)(2s+l−j2)

(
θ1((1−1/N)s+ 1

N (jτ+l),τ)

θ1(
1
N (s−jτ−l),τ)

)
,

where q = e2πiτ , y = e2πis.

Let us now turn to the problem of sheafification of the purely even vertex algebra
Och

U,x. In this case there is no analogue of the lemma, and there is no universal
such sheaf, but one defines a natural gerbe of such sheaves, to be called the gerbe
of chiral differential operators. The following holds true (for the sake of simplicity
we keep to the case of a complex analytic X):

• a sheaf of chiral differential operators exists over X iff c2 −
1
2c

2
1 = 0;

• if non-empty, the set of isomorphism classes of sheaves of chiral differential

operators over X is a torsor over H1(X,Ω2,cl
X );

• the automorphism group of any such sheaf is isomorphic to H0(X,Ω2,cl
X ).

An interesting example of this construction is provided by an algebraic semi-simple
complex Lie group G, in which case one establishes a 1-1 correspondence between
algebras of chiral differential operators overG and complex numbers – very much in
spirit of the true physicists’ WZW model. (This assertion can be made much more
precise.) The BRST reduction of these gives a classification of chiral differential
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operators over the corresponding flag manifold recovering thereby the Wakimoto
modules.
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Minimal Models and K-Theory

Volker Braun

(joint work with Sakura Schäfer-Nameki)

There are only certain values of the central charge which can occur in a N = 2
unitary CFT, they must be c ∈ { 3k

k+2 , k ∈ Z≥} ∪ [3,∞). The discrete values
c < 3 are rational with respect to the N = 2 chiral algebra, the so-called minimal
models1. There are 3 widely used constructions for these CFTs.

• The coset
su(2)k ⊕ u(1)2

u(1)k+2
with diagonal modular invariant.

• MMk, the W = xk+2 + y2 LG model.
• MMk/Z2, the W = xk+2 LG model.

The D-brane charges for the coset model are well understood. They can either be
determined by renormalization group flow, or as equivariant K-groups for twisted
complex K-theory [1, 5, 6], where the twist class is related to the level k.

tK
0
U(1)

(
SU(2)

)Z2

= 0 , tK
1
U(1)

(
SU(2)

)Z2

= Zk+1 .

Especially, they are torsion free abelian groups. Now recently Hori [2] argued that
the W = xk+2 Landau-Ginsburg (LG) model allows for non-vanishing charges for
the B type D-branes. We can verify that by an honest K-theory computation. In
summary, there are the following D-brane charge groups.

Model coset MMk MMk/Z2

K(A-branes) Zk+1 Zk+1 Zk+1

K(B-branes) 0 0 Zk+2

Obviously, the MMk and MMk/Z2 are different CFTs, and it is well known that
one can be obtained from the other as Z2 orbifold.

The LG B-branes can be understood as follows. If one were to use the usual LG
action on worldsheets with boundary, then the supersymmetry variation is not zero
but a boundary term. To cancel this and obtain an N = 2 SCFT one must add a
boundary action. A popular ansatz [3] contains a choice of matrix factorization

φ0, φ1 ∈ Mat(n,R) : W · 1n = φ0φ1 = φ1φ0 ,

where R
def
= C[z̄] is the polynomial ring in the LG fields. Different factorizations

yield different boundary theories, and hence describe different D-branes. This can
be formalized to a category MF whose objects are 2-periodic complexes

· · ·
φ0
−→ (R/W )n φ1

−→ (R/W )n φ0
−→ · · · ,

and maps are ordinary chain maps. In analogy with the usual B-model on a
Calabi-Yau manifold X , MF plays the role of Coh(X). This category needs to be

1In the following, I will only consider the A type minimal models for simplicity. The D and
E type can be treated similarly.
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extended to a triangulated category, and Kontsevich proposed the category DB.
It can be obtained as the homotopy category of MF, or as the stable category
associated to MF. This category then plays the role analogous to the derived
category D(CohX). Orlov [4] showed that DB ≃ Dsg

(
{W = 0}

)
, which gives a

nice geometrical interpretation as sheaves on the singularity.

One can [7] identify MF with the category of Cohen-Macaulay modules over R/W ,
which gives a computationally useful way to understand the matrix factorizations.
Here one must mod out the trivial matrix factorizations and the trivial module
R/W , but we will ignore this subtlety in the following. The Auslander-Reiten
(AR) quivers of the module categories are known. Especially, the AR quiver for
W = xn + y2 is the Z2 orbifolds of the W = xn AR quiver. The Z2 action fixes
one of the modules if n is even, and acts freely if n is odd. In the former case
one has to add an extra module, corresponding to a twisted sector. In any case,
one can easily compute the Grothendieck group of the module category, which I
already listed in the beginning.

The true importance of the minimal models is that they serve as building blocks
for string theory compactifications. For this, one has to construct a suitable c = 9
SCFT and then impose the GSO projection. This can be archived by tensoring
minimal models, a construction is known as Gepner models. For example, the
(k = 3)5 Gepner model corresponds to the Fermat quintic. We can check that

tK
i
U(1)5×Z5

(
SU(2)5

)(Z2)
5

⊗Z C = Ki(Quintic) ⊗Z C =

{
C204 i = 1

C4 i = 0 .

Of course, such an identity should be lifted to an equivalence of derived categories.
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Lagrangian Tori on the quartic surface

Paul Seidel

Let Y0 be a K3 surface. More concretely, we want to think of this as a quartic
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surface in CP 3, and equip it with the Kähler form obtained from the Fubini-Study
form; since we are taking the point of view of symplectic topology, any other Kähler
form in the same cohomology class (in particular the unique Ricci-flat one) will
do just as well, due to Moser’s Lemma.

An oriented Lagrangian surface L0 ⊂ Y0 has two basic topological invariants:
its homology class [L0] and its Maslov class µL0 ∈ H1(L0). For instance, the tori
which are fibres of the SYZ fibrations have zero Maslov class but nonzero homology
class, and so do all other special Lagrangian surfaces; while the small Clifford tori
lying in coordinate charts have zero homology class, but nonzero Maslov class.

Conjecture. If µL0 = 0, then necessarily [L0] 6= 0.

Note that this concerns Lagrangian tori only, because all other oriented Lagrangian
surfaces automatically have nontrivial homology classes (L0 · L0 = −χ(L0) being
nonzero). Questions concerning Lagrangian tori have a certain importance in
symplectic topology, because Luttinger surgery along such tori can be used to
produce new symplectic four-manifolds (the condition µL0 = 0 ensures that the
manifold obtained from the K3 surface by such a surgery still has c1 = 0).

There is some geometric evidence for the conjecture: first of all, similar results are
true for T 4 (by passing to the universal cover, and using the fact that Lagrangian
tori in R4 must have nonzero Maslov class, which is due to Polterovich) and for
resolutions of ADE surface singularities (by a more complicated geometric argu-
ment, still using Floer cohomology). Secondly, one can imagine a “proof” based on
the Thomas-Yau conjecture, together with the fact that after a generic deforma-
tion of the Calabi-Yau structure inside its moduli space, there are no more special
Lagrangian surfaces (just as after a generic deformation of the complex structure,
there are no more divisors).

The aim of this talk is to explain another approach to the conjecture: we retain
only the idea of generic deformation, and translate that to pure algebraic geom-
etry using Kontsevich’s homological mirror symmetry. Since homological mirror
symmetry is known to hold in the case of the quartic surface, one can expect to
actually obtain a proof of our conjecture in this way. However, several details still
remain to be checked.

Let X0 be any smooth projective variety, and A0 the category of coherent sheaves
on it. We will consider deformations A of A0 over C[[q]]/qN+1 (N = ∞ is also
allowed, with suitable caution). One can think of A in terms of the abstract defor-
mation theory of abelian categories, or more geometrically in terms of generalized
deformations of X0 (including twisted sheaves and deformation quantization). Up
to first order, such deformations are classified by an extended Kodaira-Spencer
class

κ ∈ H0(Λ2TX0) ⊕H1(TX0) ⊕H2(OX0).
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Any object E of A comes with a filtration qkE whose quotients qkE/qk+1E
are objects of A0. Multiplication by q yields an epimorphism qkE/qk+1E →
qk+1E/qk+2E. Suppose now that N = ∞; because of the noetherian nature of
A0, q

kE/qk+1E must then stabilize for k ≫ 0. If it stabilizes to 0, which means
that qkE = 0 for some k, we say that E is q-torsion. There is an obstruction
theory associated to this problem; in the case of K3s, one can use it to show that
if κ is generic, all objects E of A are q-torsion.

We now pass to the derived category, or rather a differential graded version of that.
Namely, let C0 be the dg category of bounded complexes of injective quasicoherent
modules onX0. A generalized deformation ofX0 induces a deformation (in a much
more obvious sense as before) of C0 to a dg category C linear over C[[q]]/qN+1. If
F is an object of C then its cohomologies Hk(F ) are objects of A. Together with
the Eilenberg-Moore spectral sequence

Ext∗(H∗(F ), H∗(F )) =⇒ H∗(homC(F, F )),

this implies that if κ is generic, the endomorphism ring H(homC(F, F )) of any
object F of C is a torsion q-module.

Finally let’s return to the quartic surface Y0. A Lagrangian torus with µL0 = 0
defines an object of the Fukaya category fuk0 of Y0. The deformation theory
of that category is governed by the Hochschild cohomology group HH2(fuk0).
A particular kind of deformations is obtained by changing the symplectic class;
infinitesimally, this is expressed by a map H2(Y0) → HH2(fuk0). For the quartic
surface, one can prove that this map is an isomorphism, so these are in fact all
deformations. If our Lagrangian torus satisfies [L0] = 0, it gives rise to an object
L of any deformed Fukaya category fuk, whose endomorphism ring is free over
C[[q]]/qN+1:

H(homfuk(L,L)) = H∗(T 2) ⊗ C[[q]]/qN+1.

The (cohomologically) full and faithful embedding fuk0 → C0 which is a weak
form of homologically mirror symmetry extends to an embedding fuk → C. For a
generic choice of deformation C, the image of L under this would be an object F
which violates the previously stated property. In this way, a proof of the conjecture
would be obtained.

Twisted generalised complex structures and topological field theory

Anton Kapustin

It was pointed out by E. Witten in 1988 that one can construct interesting exam-
ples of topological field theories by “twisting” supersymmetric field theories. [1]
This observation turned out to be very important for quantum field theory and
string theory, since observables in topologically twisted theories are effectively
computable on one hand and can be interpreted in terms of the untwisted theory
on the other. In other words, supersymmetric field theories tend to have large
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integrable sectors.

From the string theory viewpoint, the most important class of supersymmetric field
theories admitting a topological twist are sigma-models with (2, 2) supersymmetry.
Usually one considers the case when the B-field is a closed 2-form, in which case
(2, 2) supersymmetry requires the target M to be a Kähler manifold. In this case
the theory admits two different twists, which give rise to two different topological
field theories, known as the A and B-models. (More precisely, the B-model makes
sense on the quantum level if and only if M is a Calabi-Yau manifold. For the
A-model, the Calabi-Yau condition is unnecessary.) In any topological field theory,
observables form a supercommutative ring. For the A-model, this ring turns out to
be a deformation of the complex de Rham cohomology ring of M , which is known
as the quantum cohomology ring. It depends on the symplectic (Kähler) form on
M , but not on its complex structure. For the B-model, the ring of observables
turns out to be isomorphic to

⊕p,qH
p(ΛqT 1,0M),

which obviously depends only on the complex structure of M . Furthermore, it
turns out that all correlators in the A-model are symplectic invariants of M , while
all correlators in the B-model are invariants of the complex structure on M [2].

In the paper [3] we analyzed more general topological sigma-models for which
H = dB is not necessarily zero. It is well-known that for H 6= 0 (2, 2) super-
symmetry requires the target manifold M to be “Kähler with torsion” [4]. This
means that we have two different complex structures I± for right-movers and left-
movers, such that the Riemannian metric g is Hermitian with respect to either one
of them, and I+ and I− are parallel with respect to two different connections with
torsion. The torsion is proportional to ±H . The presence of torsion implies that
the geometry is not Kähler (the forms ω± = gI± are not closed). Upon topological
twisting, one obtains a topological field theory, and one would like to describe its
correlators in terms of geometric data on M . As in the Kähler case, there are
two different twists (A and B), and by analogy one expects that the correlators of
either model depend only on “half” of the available geometric data. Furthermore,
it is plausible that there exist pairs of (2, 2) sigma-models with H-flux for which
the A-model are B-model are “exchanged.” This would provide an interesting
generalization of Mirror Symmetry to non-Kähler manifolds.

The main result of Ref. [3] is that topological observables can be described in terms
of a (twisted) generalized complex structure on M . This notion was introduced by
N. Hitchin [5] and studied in detail by M. Gualtieri [6]; we review it below. One
can show that the geometric data H, g, I+, I− can be repackaged as a pair of com-
muting twisted generalized complex structures on M [6]. We show in Ref. [3] that
on the classical level the ring of topological observables and the topological metric
on this ring depend only on one of the two twisted generalized complex structures.
This strongly suggests that all the correlators of either A or B-models (encoded by
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an appropriate Frobenius manifold) are invariants of only one twisted generalized
complex structure. Therefore, if M and M ′ are related by Mirror Symmetry (i.e.
if the A-model of M is isomorphic to the B-model of M ′ and vice versa), then the
appropriate moduli spaces of twisted generalized complex structures on M and
M ′ will be isomorphic.

To state our results more precisely, we need to recall the definition of the (twisted)
generalized complex structure (TGC-structure for short). Let M be a smooth
even-dimensional manifold, and let H be a closed 3-form on M . The bundle
TM ⊕ TM∗ has a binary operation, called the twisted Dorfman bracket. It is
defined, for arbitrary X,Y ∈ Γ(TM) and ξ, η ∈ Γ(TM∗), as

(X ⊕ ξ) ◦ (Y ⊕ η) = [X,Y ] ⊕ (LXη − iY dξ + ιY ιXH) .

It is not skew-symmetric, but satisfies a kind of Jacobi identity. Its skew -
symmetrization is called the twisted Courant bracket. The bundle TM ⊕ TM∗

also has an obvious pseudo-Euclidean metric q of signature (n, n).

A TGC-structure on M is a bundle map J from TM⊕TM∗ to itself which satisfies
the following three requirements:

• J 2 = −1.
• J preserves q, i.e. q(J u,J v) = q(u, v) for any u, v ∈ TM ⊕ TM∗.
• The eigenbundle of J with eigenvalue i is closed with respect to the

twisted Dorfman bracket. (One may replace the Dorfman bracket with
the Courant bracket without any harm).

To any TGC-structure on M one can canonically associate a complex Lie alge-
broid E (which is, roughly, a complex vector bundle with a Lie bracket which
has properties similar to that of a complexification of the tangent bundle of M).
From any complex Lie algebroid E one can construct a differential complex whose
underlying vector space is the space of sections of Λ•(E∗) (which generalizes the
complexified de Rham complex of M). In Ref. [3] we showed that the space of
topological observables is isomorphic to the cohomology of this differential com-
plex. We also derived a formula for the metric on the cohomology, which makes
it into a supercommutative Frobenius algebra. Both the ring structure and the
topological metric depend only on one of the two TGC-structures available.
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Gerbe-modules and WZW branes

Krzysztof Gawȩdzki

(Bundle) gerbes [9] and gerbe-modules [1, 7], both equipped with a hermitian
connection, find natural application in analysis of sigma models in topologically
non-trivial situations. In (bosonic) sigma models, one considers maps

φ : Σ −→M

from a Riemann surface Σ to the target manifold M . The latter is equipped with
a metric γ , Kalb-Ramond 2-form B and a (possibly non-abelian) Chan-Paton
gauge field A. One attempts to compute Feynman path integrals∫

· · · e−S(φ) Dφ

with · · · standing for various insertions and the (abusively denoted) “classical
amplitudes”

e−S(φ) = exp
[
− ‖dφ‖2

L2 + i

∫

Σ

φ∗B
] ∏

i

trP e
i
R

ℓi

φ∗A

.

The last product is over the traces of holonomy of the gauge field A along the
φ-images of the boundary loops ℓi ⊂ ∂Σ. We ignore eventual contributions from
the dylatonic or tachyonic potential.

In the WZW model [11], M is a Lie group G (assumed compact and simple here)
with the left-right invariant metric defined by the bilinear form k

4π trXY on the

Lie algebra g. Only the exterior derivative dB = H is given: H = k

12π tr (g−1dg)3.
Since H is a closed but not exact 3-form on G, the B field exists only locally
and is determined up to closed 2-forms. In the presence of such topologically non-
trivial 2-form field, the definition of the classical amplitude (1) needs a refinement.

Let G be a (bundle) gerbe over M with (hermitian connection of) curvature H [9].
Such gerbes exist if and only if the periods of H are in 2πZ. In the latter case,
non(-stably)-isomorphic [10] choices of G are labeled by elements of H2(M,U(1)).
In particular, the isomorphism class of φ∗G belongs to H2(Σ, U(1)). For ∂Σ = ∅
the latter group is canonically isomorphic to U(1) and one may take the corre-
sponding number HolG(φ) (the “holonomy” of φ w.r.t. G) as the definition of
exp[i

∫
Σ φ

∗B] in the closed string sector.

For simply connected group G, the gerbe G with curvature H exists if and only
if k is an integer (in the normalization where trα2 = 2 for long roots). It is then
unique up to isomorphism. An explicit construction of G has been given in [8]. For
non-simply connected groups G′ = G/Z, where Z is a subgroup of the center of
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G, there is an obstruction [U ] ∈ H3(Z,U(1)) to the existence of the corresponding
gerbe G′ that pulls back to G [6]. Let the map Z ∋ z 7→ wz ∈ N(T ), with
N(T ) ⊂ G the normalizer of the Cartan subgroup T , be defined by the relation

z e2πiτ = w−1
z e2πi(zτ)wz

for τ and zτ belonging to the positive Weyl alcove AW in the Lie algebra t of T .
Let bz,z′ ∈ t be such that wzw

′
zw

−1
zz′ = eibz,z′ . Then one may take [5, 6]

Uz,z′,z′′ = eik tr λzbz′,z′′ ,

where λz is the simple weight for which z−1 = e2πiλz . Triviality of the cohomology
class [U ] selects the values of k for which G′ exists. They coincide with the values of
k found in [2] by demanding that the 3-form H ′ on G′ pulling back to H has peri-
ods in 2πZ. For [U ] = 1, the non-isomorphic gerbes G′ are labeled by the elements
of H2(Z,U(1)). The latter group is trivial for cyclic Z. For simple compact groups
only Spin(4n) has non-cyclic center Z2 ×Z2. Since H2(Z2 ×Z2, U(1)) = Z2 there
are two non-isomorphic gerbes G′

± on Spin(4n)/(Z2 × Z2) and two WZW theo-
ries, as already noted in [2]. The ambiguity is an example of Vafa’s discrete torsion.

The G-module E of rank N [1] is a version of an N -dimensional vector bundle
(with a hermitian connection) over M twisted by gerbe G. The twist renders the
holonomy HolE(ϕ) of loops ϕ : S1 → M ambiguous but in such a way that for
∂Σ = ⊔

i
ℓi,

HolG(φ)
∏

i

trHolEi(φ|ℓi)

is defined unambiguously. Given G and the G-modules Ei, the latter combination
may serve as the definition of the non-metric contributions to the open string am-
plitude (1). This works however only when H is an exact form since existence of
G-modules implies the latter property.

To escape that limitation, let us define a G-brane D as a pair (D, E) where D is
a submanifold of M and E is a G|D-module (whose existence requires only that
H |D be exact). Then the expression (1) may be still used to define the non-metric
contributions to (1) if Di = (Di, Ei) are G-branes and the classical field satisfies
the boundary conditions

φ(ℓi) ∈ Di ,

i.e. take the boundary values in the G-brane supports.

One is specially interested in boundary conditions that preserve the large part of
the bulk symmetries of the sigma models. The symmetry algebra of the closed
string sector of the WZW theory is ĝ⊕ ĝ, the double affine algebra. The G-branes
(D, E) that do not break the diagonal affine subalgebra are called “symmetric”.
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For symmetric branes, D must be a conjugacy class in G and the curvature 2-form
of the twisted gauge field of E must be equal to the scalar 2-form

FE =
1

8π
tr (g−1dg)

1 +Adg

1 −Adg
(g−1dg) .

Let, for τ in the positive Weyl alcove AW , Cτ denote the conjugacy class containing
e2πiτ . The rank 1 symmetric G-branes in G are of the form (Cλ/k, E1) for λ a weight
and E1 a rank 1 G|Cλ/k

-module (unique up to isomorphism). Since weights λ such

that λ/k is in AW also label the unitary representations of the symmetry algebra ĝ
at fixed k, there is a one-to-one correspondence between the latter and the rank 1
symmetric branes (so called Cardy’s case). The general symmetric branes (Cλ/k, E)
in G have

E ∼= E1 ⊕ . . . ⊕ E1

i.e. are isomorphic to “stacks” of rank 1 branes in physicists’ terminology.

In the non-simply connected group G′ = G/Z, the conjugacy classes are labelled
by Z-orbits [τ ] in AW , with the class C′

[τ ] pulling back to the union of Cτ ⊂ G with

τ ∈ [τ ]. Only the conjugacy classes C′
[λ/k] may support symmetric branes. There

is an obstruction

[V ] ∈ H2(Z,U(1)[λ/k]) ∼= H2(Z[λ/k], U(1))

to the existence of a rank 1 symmetric brane (C′
[λ/k], E

′
1), where Z[τ ] denotes the

stabilizer subgroup ⊂ Z of τ ∈ [τ ] and U(1)[τ ] the Z-module of U(1)-valued
functions on [τ ]. Explicitly, one may take [5]

Vλ/k;z,z′ = ei tr λbz,z′Vz,z′ ,

where δV = U . If [V ] is trivial (e.g. if Z[λ/k] is cyclic) then non-isomorphic

choices of E ′
1 are labeled by elements of H1(Z,U(1)[λ/k]) ∼= H1(Z[λ/k], U(1)), i.e.

by characters of Zλ/k] so that we have |Z[λ/k]| non-isomorphic rank 1 G′-modules
E ′
1(1), . . . E ′

1(|Z[λ/k]|). The general rank N symmetric G′-brane (C′
[λ/k], E

′) are then

isomorphic to “stacks” of rank 1 branes with

E ′ ∼= E ′
1(i1) ⊕ · · · ⊕ E ′

1(iN ) .

The only cases with non vanishing obstruction [V ] are the ones for the group G′ =
Spin(4n)/(Z2×Z2) with gerbe G′

− and the conjugacy classes C′
{λ/k} corresponding

to 1-point orbits of λ/k. They support only even rank symmetric branes (C′
{λ/k}, E

′)

isomorphic to “stacks” of rank 2 branes, i.e. with

E ′ ∼= E ′
2 ⊕ · · · ⊕ E ′

2 ,

where E ′
2 is a unique (up to isomorphism) rank 2 G′

−|C′
{λ/k}

-module giving rise

to a symmetric brane. In particular, there are no rank 1 (abelian) G′
−-branes

supported by conjugacy classes C′
{λ/k}. This is the phenomenon of spontaneous

gauge symmetry enhancement observed in [4] in the context of the Gepner models.
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The above geometric constructions, entering the consistent definition of the prob-
ability amplitudes of the classical field configurations, permit to extract specific
information about the quantized theory. This is so because the WZW model may
be easily (geometrically) quantized by transgression. In particular, a gerbe on G
over group G induces canonically a line bundle LG (with a hermitian connection)
over the loop group LG and the space of the states of the theory in the closed
string sector may be taken as the space Γ(LG) of sections of LG with a geometric
action of the double affine algebra ĝ⊗ ĝ. To find the bulk spectrum of the theory it
is then enough to identify the highest weight sections in Γ(LG). This was the route
followed in [2] to obtain the toroidal partition functions of the WZW models with
non-simply connected target groups given by modular invariant sesqui-linear com-
binations of affine characters. Similarly, a gerbe G over G and a pair of symmetric
G-branes (D0,D1) induce canonically a vector bundle ED1

D0
(again with a hermitian

connection) over the space ID1

D0
of maps of an interval into G mapping the ends into

the brane supports. Γ(ED1

D0
) provides then the spaces of boundary states carrying a

geometric action of ĝ. The spectrum of the theory in the open string sector may be
again determined by identification of the highest weight sections. This allowed [5]
to obtain a simple explicit relation between the spaces of boundary states in the
group G and G/Z theories, shed new light on the formulae for the annulus parti-
tion functions of the WZW models with G/Z targets previously postulated in [3]
and to obtain similar formulae for the operator product of the boundary operators.

The geometric approach to WZW theories sketched above provides a uniform
treatment of classical and quantum theories and should extend to other classes of
conformal boundary conditions, other target groups as well as to coset conformal
field theories.
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A-model and Chern-Simons Theory

A. Schwarz

E. Witten [1] has shown that open strings in A-model are related to Chern-Simons
theory in the case when the tangent space is a Calabi-Yau threefold. Replacing
Chern-Simons theory with its multidimensional analogy constructed in [2] (AKSZ)
one can generalise this statemsnt to an arbitrary symplectic manifold M .

It seems that one can start with modification of original Witten’s arfuments relat-
ing open strings ending in Lagrangian manifold L ⊂M with Chern-Simons theory
on L. To take into account instanton contributions one can combine the results
of [3](Fukaya) and [4](Cattaneo-Frohlich-Pedrini).

Let us take the map (iterated integra) a →
∫
h constructed in [4]. This map

transforms chains in string space S(L) into preobservables of Chern-Simons theory
on L and obeys the relation (9) (see page 4 of [4]). (This relation is stated in [4]
only for cycles in S(L) when

∫
h is an observable, but it seems that the proof goes

through also for chains). From other side, Fukaya [3] constructed a chain α in
string space S(L) that obeys

∂α+
1

2
{α, α} = 0

starting with pseudoholomorphic disks in M with boundary L. Applying the
iterated integral reconstruction to α we obtain a preobservable α̃ =

∫
h of Chern-

Simons theory on L. The preobservable α̃ obeys ±δα̃ + 1
2{α̃, α̃} = 0 this follows

from (39) of [4]. Adding α̃ to the Chern-Simons action of S we obtain an instanton
corrected action obeying equation {S+α̃, S+α̃} = 0. Corresponding differential on
the space of preobservables that can be considered as completed free algebra gen-
erated by forms C ∈ Ω∗(L) specifies an A∞-algebra structure. This A∞-algebra
is equipped with inner product coming from (even or odd) symplectic structure.
It coincides with A∞-algebra of Fukaya.

It is necessary to stress that the considerations based on results of [3], [4] give
only instanton corrections to Chern-Simons action. One of the possible ways to
obtain Chern-Simons action from A-model is based on the results of [5], [6]. In
these papers and A-model with several Lagrangian manifolds was analysed in the
limit when the distance between Lagrangian manifolds tends to zero. (This limit
corresponds to N coinciding D-branes in physics). Less rigorous way is based on
generalization of original Witten’s arguments.
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Arithmetic of Calabi-Yau Manifolds

Philip Candelas

(joint work with X. de la Ossa and F. Rodriguez-Villegas)

Calabi-Yau manifolds owe many remarkable properties to the special role that
they play in relation to supersymmetry and to string theory. It is a fundamental
fact that these manifolds depend holomorphically on parameters that determine
the complex structure and Kähler-class. The variation of the complex structure
of a Calabi-Yau manifold is naturally studied through it periods. These periods
are very ‘physical’ in that they enter prominently into the calculation of physical
quantities as, for example, when one calculates couplings that govern the low en-
ergy effective theory that results from the compactification of string theory on a
manifold. It comes, perhaps, as a surprise to a mathematical physicist that the pe-
riods have also an arithmetic significance, a fact that is known to number theorists.

Our first main result expresses the number of rational points of the quintic three-
fold over Fp, the field with p elements, in terms of the periods. To write out
the expression we have to recall some facts. The periods satisfy a system of dif-
ferential equations, the Picard-Fuchs equations, with respect to the parameters.
Specifically, for the family of quintic threefolds corresponding to the polynomial

P (x, ψ) =

5∑

i=1

x5
i − 5ψ x1x2x3x4x5

there are 204 periods, but among them there are four periods which we shall denote
by ̟0, ̟1, ̟2 and ̟3, which coincide with the periods of the mirror manifold
and satisfy the equation

L̟j = 0 with L = ϑ4 − 5λ

4∏

i=1

(5ϑ+ i) ,

where here and in the following it is convenient to take the parameter to be
λ = 1/(5ψ)5, and ϑ denotes the logarithmic derivative λ d

dλ . Consider now
the behaviour of the periods in the neighborhood of λ = 0. The Picard-Fuchs
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equation has all four of its indices equal to zero. Thus the solutions are asymptot-
ically like 1, logλ, log2 λ and log3 λ. We denote by f0 the solution that is analytic
at λ = 0; specifically this is the series

f0(λ) =
∞∑

m=0

(5m)!

(m!)5
λm .

We can choose the four periods to be of the form

̟0(λ) = f0(λ)
̟1(λ) = f0(λ) logλ+ f1(λ)

̟2(λ) = f0(λ) log2 λ+ 2f1(λ) log λ+ f2(λ)

̟3(λ) = f0(λ) log3 λ+ 3f1(λ) log2 λ+ 3f2(λ) logλ+ f3(λ)

where the fj(λ) are power series in λ.

For the case of Calabi-Yau manifolds that can be realised as hypersurfaces in toric
varieties, which is a wide class with the quintic as the simplest example, the man-
ifold can be associated with the Newton polyhedron, ∆, of the monomials that
appear in the polynomial that defines the hypersurface. In these cases, given ∆,
there is a purely combinatoric way of finding a differential system that the periods
satisfy; this yields the GKZ system. A fact which is not fully understood is that
the GKZ system is often of higher order than the Picard-Fuchs system. So while
it is true that the periods satisfy the differential system that one deduces from
∆ there are also often additional solutions of this system that are not periods.
These extra solutions are called semiperiods and their appearance is somewhat
mysterious. It turns out that for the quintic there is a semiperiod and it plays a
role in our expressions.

For the quintic the GKZ operator, L∆, is related to the Picard-Fuchs operator by

L∆ = ϑL = ϑ5 − λ

5∏

i=1

(5ϑ+ i) .

The first equality shows that the periods ̟j(λ) satisfy the new equation and the
second equality shows that the new operator has all five of the indices correspond-
ing to λ = 0 equal to zero. The semiperiod is thus of the form

̟4(λ) = f0(λ) log4 λ+ 4 f1(λ) log3 λ+ 6 f2(λ) log2 λ+ 4 f3(λ) logλ+ f4(λ) ,

with the power series f0, f1, f2, f3 as before. For ψ ∈ Fp, p 6= 5, we denote by ν(ψ)
the number of rational points of the manifold

ν(ψ) = #{x ∈ F5
p | P (x, ψ) = 0 } .

We denote also by nfj the truncation of the series fj to n terms. Thus for example

nf0(λ) =

n−1∑

m=0

(5m)!

(m!)5
λm .
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With these conventions we can state our result most simply for the case that 5
does not divide p− 1

ν(ψ) = pf0(λ
p4

) +

(
p

1 − p

)p

f ′
1(λ

p4

) +
1

2!

(
p

1 − p

)2
pf ′′

2 (λp4

) +

+
1

3!

(
p

1 − p

)3
pf ′′′

3 (λp4

) +
1

4!

(
p

1 − p

)4
pf ′′′′

4 (λp4

) (mod p5)

where the coefficients 1
j!

(
p

1−p

)j

are understood to be expanded p-adically. We

extend this result in three directions: by writing an exact p-adic expression, by
extending the result to finer fields with q = pr elements and by extending the
result to cover the interesting case that 5|q − 1.

The expressions we obtain for the numbers of Fp-rational points are computable in
a practical sense and this allows us to make some observations on the structure of
the ζ-function for these varieties based on numerical experiment. The ζ-function
is defined in terms of the Nr, the number of Fp-rational points of the projective
variety, by the expression

ζ(t, ψ) = exp

(
∞∑

r=1

Nr(ψ)
tr

r

)
.

and has an interesting structure which we discuss.

Our principal result in this direction is that for general ψ (that is ψ5 6= 0, 1,∞)
the ζ-function has the form

ζM(t, ψ) =
R1(t, ψ)RA(pρtρ, ψ)

20
ρ RB(pρtρ, ψ)

30
ρ

(1 − t)(1 − pt)(1 − p2t)(1 − p3t)

In this expression the R’s are quartic polynomials in their first argument and the
quantity ρ (= 1, 2 or 4) is the least integer such that pρ−1 is divisible by 5. Thus
R1, for example, has the structure

R1(t, ψ) = 1 + a1(ψ) t+ b1(ψ) pt2 + a1(ψ) p3t3 + p6t4

with a1 and b1 integers that vary with ψ. The other factors RA and RB have a
similar structure. It is intriguing that these factors are related to certain genus 4
Riemann curves.

Much is known about the structure of the ζ-function in virtue of the the Weil
conjectures (since proved). In particular we know even before performing specific
computation that the ζ-function for a Calabi-Yau threefold is a rational funcion
of t which has the structure

ζ(t) =
Numerator of degree 2h21 + 2 depending on the complex structure of M

Denominator of degree 2h11 + 2
.
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It is immediately apparent that the ζ-function does not treat the complex structure
and Kähler parameters symmetrically since the numerator depends nontrivially on
the complex structure parameters, for our family of quintics the numerator varies
nontrivially with ψ, while on the other hand the denominator depends only on the
number of Kähler parameters.

We would perhaps like to introduce a modified or quantum ζ-function, ζQ, that
respects mirror symmetry and which would have the property

ζQ
M(t) =

1

ζQ
W(t)

however such a function cannot be given by the classical definition since this would
immediately contradict the positivity of the Nr by giving NM,r = −NW,r. It is of
course possible to define

ζQ
M =

numerator of ζM
numerator of ζW

which will satisfy the desired relation; however without a more intrinsic definition
this does not seem to be very fruitful. While we do not propose here such an in-
trinsic definition nor do we know that such a definition exists nevertheless we find
it interesting to point out insights from mirror symmetry that may be pertinent.

An analog of the large complex structure limit seems to follow from the 5-adic
expansion of the ζ-function; specifically we find

ζM(t, ψ) =
1

ζW (t, ψ)
+ O(52)

moreover this relation holds independent of ψ. Thus we close with the strange
suggestion that the higher terms in the 5-adic expansion should be understood as
‘quantum corrections’.

Geometry of the Quantum Hall Effect in QED in 2+1 dimensions

Marianne Leitner

Introduction. When, in a two dimensional device, an electric field is turned on,
a transversal current is induced. By the Ohm-Hall law, particle flow and electric

force are coupled by e−2 times the conductivity matrix, ~J/e = σ/e2(e ~E), and
σH := σ21/e

2. In experiments, one additionally applies a constant magnetic field
perpendicularly to the plane, of strength F 12, in order to obtain nonzero Hall

conductivity σH . Here, Fµν = ∂µAν − ∂νAµ for ~A ∈ Γ(TR2), a gauge field.
Provided Fµν is sufficiently large and the Fermi energy EF lies in a gap, at zero
temperature, 2πσH turns out to integral (Integer Quantum Hall Effect). A very
similar effect occurs in QED2+1, but without magnetic field and with half integral
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2πσH . A comparison with the methods of solid state physics allows a better
understanding of this quantum field theory [1].

Integer Quantum Hall Effect. Soon after its discovery in 1980, this effect was
revealed to be of topological nature ( [2], [3]). For a single particle of charge e in a

potential A, the HamiltonianHA on C∞(R2) is polynomial in (~p−e ~A). To describe
particles in finite area, we introduce a lattice Λ ⊂ R2 w.r.t. which the potential

function is periodic. In particular, [(~p − e ~A), T
~A] = 0, where T

~A := eiτ
~A

T is a

twisted translation operator. For given ~λ ∈ Λ, T is the usual translation defined

by T~λf(~x) := f(~x+~λ), and τ
~A : Λ×R2 → R is given by τ

~A
~λ

(~x) ≡ e ~A(~λ)~x+ const.

Assuming the magnetic flux per unit cell F of Λ to be an even integer so that

T
~A defines a representation of Λ on C∞(R2), we restrict the domain of HA to F

by imposing quasi-periodic boundary conditions ~k ∈ T ∗ := R2/Λ∗. To be precise,

HA acts on functions ψ ≡ ψ~k decomposing as ψ(~x) = ei~k~xu(~x) with T
~Au = u.

Here, u is a section of the vector bundle over T = R2/Λ given by the magnetic

phase solely, i.e. u ≡ u~k ∈ L2
~A
(T ). Conjugation by e−i~k~x yields a Hamiltonian

HA(~k) with covariant derivative (~p−i~k−e ~A). We consider the eigenvalue problem

HA(~k)u
(n)
~k

= En(~k)u
(n)
~k

. If En(~k) is nondegenerate for all ~k, the corresponding

smooth family of spectral projectors P
(n)
~k

defines a complex rank-one eigenspace

bundle E(n) equipped with the adiabatic connection P
(n)
~k

◦∇~k which is Hermitian

and has curvature equal to

(1) TrH{P
(n)
~k

[∂k1P
(n)
~k

, ∂k2P
(n)
~k

]} = iσ
(n)
H (~k);

on the other hand, σ
(n)
H (~k) the n-th energy contribution to the Hall conductivity

associated to HA(~k). It follows that in the average over the boundary conditions,

(2) σ
(n)
H =

1

(2π)2

∫

T∗

σ
(n)
H (~k) d2k =

1

2π
c1[E

(n)]

i.e. 2πσ
(n)
H is the Chern number of E(n).

This procedure can be generalized to multi-fermion systems, letting P
(0)
~k

be the

projector onto the multi-fermion ground state. If the particles don’t interact, the

total Hall conductivity σH equals the sum over all σ
(n)
H for u

(n)
~k

in the Fermi sea.

In many situations, this yields a line bundle E
(0)
multi of multi-fermion ground states.

Zero Field Hall Effect. In case HA is the Schrödinger operator, the Chern

number vanishes if ~A ≡ ~0. Actually, a time reversal symmetry breaking term in
the Hamiltonian might suffice to produce nonzero Hall conductivity [4]. Let

H := ~σ ~p+mσ3, ~σ := (σj)
2
j=1, m ∈ R \ {0},

be the (nonmagnetic) massive Dirac operator in 2+1 dimensions. Then, pro-
vided EF ∈ (−|m|, |m|), the Hall conductivity at zero temperature is a Dirac
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sea quantity, σ
(T=0)
H ≡ σ

(−)
H . We choose the Hilbert space H = L2(T,C2) for

T := R2/Z2. Then, under Fourier transformation, for each ~k ∈ T ∗, H(~k) gets

mapped to ⊕ ~K∈(2πZ)2((
~k + ~K) ~σ +mσ3), and (1) becomes

(3) iσ
(−)
H (~k) =

∑

~K∈(2πZ)2

TrC2{P̂
(−)
~k+ ~K

[∂k1 P̂
(−)
~k+ ~K

, ∂k2 P̂
(−)
~k+ ~K

]}

(4) = −
i

2

∑

~K∈(2πZ)2

m

{(~k + ~K)2 +m2}3/2

= −
i

4π
sgn(m)

∑

~R∈Z2

e−|m||~R|−i~k ~R

by Poisson summation. In the average (2), the correction terms (|~R| 6= 0) vanish,
i.e.

(5) 2πσ
(−)
H = −

1

2
sgn(m).

Since degeneracies occur over T ∗, there is no need for 2πσ
(−)
H to be an integer.

In the multi-fermion description, (3) equals the trace (1) applied to the projector

P̂
(−)
~k

onto the multi-fermion ground state in Hilbert space ∧ ~K∈(2πZ)2C
2. Going

around the dual torus interchanges the wedge factors. Since there are infinitely
many interchanges, the corresponding total phase cannot be determined, and the
ground states fail to define a line bundle over T ∗.

Zero Field Hall Effect geometrically. Variation of ~k over T ∗ amounts to

considering the family Ĥ(~k) = ~σ~k + mσ3 parametrized over R2 resp. replacing

the sum in (4) by an integral over R2. We extend to R3 by writing Ĥ(k) = kσ
for σ := (σj)

3
j=1 and k ∈ Fm := {k ∈ R3|k3 = m} ∼= R2. By (4), the two form

1
2πσ

(−)
H (~k)dk1 ∧ dk2 generalizes naturally to

η(−) := −
1

8π
εαβγ kαdkβ ∧ dkγ

|k|3
.

Namely, η(−) is rotationally invariant. It is also homogeneous with
∫

S2 η
(−) = −1.

Thus ∫

Fm⊂R3

η(−) =

∫

F̃m⊂S2

η(−) = −
1

2π
sgn(m),

where F̃m ⊂ S2 denote the open upper (in case m > 0) resp. lower (m < 0) half-
sphere onto which Fm projects homeomorphically. This proves (5) geometrically,

describing σ
(−)
H as a solid angle.
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The Kubo formula in QM. The Kubo formula for the response of the current
Jµ to an electric perturbation of strength Eν has the form

(6) 〈Jµ〉(t) =

∫ t

−∞

σµν(t− t′)Eν dt
′ +O( ~E 2).

The Hall conductivity is obtained in the zero frequency limit. With eigenbasis

|u
(m)
~k

〉 to the Hamiltonian H(~k) as introduced above, standard first order pertur-

bation theory yields

(7) σ
(0)
H (~k) =

δ〈u
(0)
~k

|J2(~k)|u
(0)
~k

〉

e2δE1
= −2 Im

∑

m 6=0

〈u
(0)
~k

|v2
|u

(m)
~k

〉〈u
(m)
~k

|

(Em(~k) − E0(~k))2
v1|u

(0)
~k

〉

= −iTrH{P
(0)
~k

[∂k1P
(0)
~k
, ∂k2P

(0)
~k

]}.

More generally, if, for some index set I ⊆ N, {ui
~k
}i∈I ⊆ H is an orthonormal basis

of the eigenspace to the ground energy of H(~k), then U~k := ∧i∈I u
i
~k

defines a

multi-fermion ground state in the Hilbert space HI := ∧i∈IH, and

TrHI{PU [∂k1PU , ∂k2PU ]} =
∑

i∈I

TrH{Pui [∂k1Pui , ∂k2Pui ]},

where PU and Pui denote the projector on U ≡ U~k in HI and ui ≡ ui
~k

in H
respectively. An example has been discussed for the constant Dirac operator in
L2(T,C2).

The Kubo formula in (QED)3. The ground state current of the Euclidean

Dirac operator H
A
eucl. with positive mass term in 3 dimensional QED in a back-

ground field (F νη)2ν,η=0 is ( [5], [6])

(8) 〈0|Jµ|0〉 = −
1

8π
εµνη(eF νη)sgn(m), µ = 0, 1, 2.

Here, Fµν = ∂µAν − ∂νAµ for A = (Aj)2j=0 ∈ Γ(TR3). It has been remarked [7]

that, for µ, ν ∈ {1, 2}, (8) is just the Ohm-Hall law. In particular, the value of σH

can be read off, giving (5), as well as its independence of the field strength F 12.
(8) is deduced as follows:

(9)
δSeff[A]

δAµ(x)
=: e〈0|Jµ(x)|0〉 = −i

∫

R3

Kµν(x− x′) eAν(x′) d3x′ +O(A2),

with

Kµν(x− x′) := Trspin{γ
µ
eucl.Geucl.(x− x′)γν

eucl.Geucl.(x
′ − x)}.

Here the Euclidean Dirac matrices γµ
eucl. stand for the velocity operators and Geucl.

denotes the Green’s function for the nonmagnetic (A ≡ 0) operator Heucl.. (9) is
the relativistically invariant version of the quantum mechanical Kubo formula (6)
and its consequence (7).



String-Theorie und Geometrie 2047

Gauge invariant regularization reduces the effective action to second order in A to
the Chern Simons action

SCS[A] = κCS
1

8π2
εµνη

∫

R3

(∂µAν)Aη d
3x

for κCS = −2π sgn(m), thus giving (8). In particular, σH given by (5) is the Hall
conductivity for the regularized theory.
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Topological String Amplitudes for Regular K3 Fibrations

Emanuel Scheidegger

(joint work with Albrecht Klemm, Maximilian Kreuzer and Erwin Riegler)

I present work done in collaboration with Albrecht Klemm, Maximilian Kreuzer
and Erwin Riegler [1]. The talk is a direct continuation of the talk by Albrecht
Klemm on general aspects of topological string theory and its various incarnations
and relations to mathematics. Therefore, we first recall his table

Topological
model

Open string Closed string
Heterotic

string

A–model Chern–Simons theory

Gromov–Witten
theory

Gopakumar–Vafa
theory

Donaldson–Thomas
theory

Elliptic
genus

B–model
Holomorphic

Chern–Simons theory
Kodaira–Spencer
theory of gravity

The two rows are related by mirror symmetry, the open and closed string columns
are related by large N transitions, and the closed and heterotic string columns are
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related by a kind of S–duality. The aim is to compute amplitudes of the topolog-
ical string because, from a mathematical point of view, they contain information
about the enumerative geometry of the target space, and, from a physical point
of view, they compute certain F–terms in the low–energy effective action in four
dimensions. The direct computation of the Gromov–Witten, Gopakumar–Vafa,
or Donaldson–Thomas invariants is in most cases not known, presently. We will
therefore present two indirect methods, the holomorphic anomaly equation in the
Kodaira–Spencer theory of gravity together with mirror symmetry, and heterotic–
type II string duality applied to the elliptic genus, and show that they allow for a
computation of these invariants in cases that are out of reach by the direct ways.

Given a holomorphic map φ : Σg → X , from a Riemann surface Σg of genus g > 1
into a Calabi–Yau threefold X , the basic quantity of interest is the topological
string amplitude

F (g)(t, t̄) =

∫

Mg

3g−3∏

i=1

dτidτ̄i

3g−3∏

k=1

〈
|G · µk|

2
〉

The integral is over the moduli space Mg of genus g stable curves. The brackets

〈. . .〉 denote the path integral
∫
Dφ . . . exp(−S[φ] −

∑
i tiφ

(2)
i ) where S[φ] is the

action of a twisted non-linear σ–model associated to a N = (2, 2) superconformal
algebra. This algebra has four generators, the energy-momentum tensor T , the
BRST current Q, satisfying Q2 = 0, another odd currentG, and the U(1)R current
J . The most important relation of this algebra is T = {Q,G} which says that the
energy–momentum is BRST exact, i.e. the theory is topological. The current G
is folded into the Beltrami differentials µk of Σg via G ·µk =

∫
Σg

d2zGzzµk
z
z̄, and

similarly for the right–movers. Given a basis ωi generating the Kähler cone in
H2(X,Z), we expand the complexified Kähler class as ω =

∑
i tiωi, and finally, we

define φ
(2)
i = {Q, [Q,φ]}, an exactly marginal operator which is represents a defor-

mation of the Kähler structure in the A–model, or a deformation of the complex
structure in the B–model. In other words, the ti are coordinates on the moduli
space M of Kähler structures in the A–model, which by mirror symmetry yield
coordinates zi = zi(t) of the moduli space of complex structures on the mirror X∗

in the B–model.

From these definitions one would naively expect that F (g) is holomorphic in t. It
turns out, however, that the contributions to the integral from the boundary of
Mg are not BRST trivial, and lead to a dependence in t̄ which is captured by the
holomorphic anomaly equation [2]

(1) ∂̄k̄F
(g) =

1

2
C̄ij

k̄

(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)

)

where Di is the covariant derivative on M with respect to both the Levi–Civita
connection for the Weil–Petersson metric Gi̄ = ∂i∂̄K and the line bundle L → M
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with c1(L) = ω. From the three–point function Cijk on the sphere, we obtain

C̄ij

k̄
= e2KGiı̄Gj̄C̄ı̄̄k̄ is related to the antiholomorphic coupling C̄īj̄k̄, which is

symmetric in its indices and fulfils an integrability condition, known as the WDVV
equations, Dı̄C̄̄k̄l̄ = D̄C̄ı̄k̄l̄. It can therefore be derived from a section S of L−2

as C̄ı̄̄k̄ = e−2KDı̄D̄Dk̄S. One of the main prerequisites to solve (1) recursively is
the construction of S. It is convenient to define as intermediate steps of the above

integration Si = Gi̄∂̄̄S, Sik = Gkk̄ ∂̄k̄S
i, such that C̄ij

k̄
= ∂k̄S

ij . Integrating these
differential equations leads to an overdetermined system of equations, which can
be solved by using ansatz which turns out be a rational function in z = z(t).

The solution to the holomorphic anomaly equations can be written as [2] schemat-
ically as

(2) F (g)(t, t̄) = f(Cijk, C
(1)
i , S, Si, Sij , χ) + fg(t)

where f2(t) is the holomorphic ambiguity coming from the integration of (1). We
should stress that the solutions for F (g) in together with the Kähler potential K
and the Weil–Petersson metric Gi̄ are sufficient to obtain the full (t, t̄) dependence

of F (g). However, the determination of fg(t) is the main difficulty in finding an
explicit solution for a given X . The general form of fg(t), g > 0 is expected to be,
written in terms of the complex structure moduli z = z(t),

(3) fg(z) =

D∑

i=1

2g−2∑

k=0

p
(k)
i (z)

∆i
k

where D is the number of components ∆i of the discriminant, and p
(k)
i (z) are

polynomials of degree k. At present, it is not known how to determine the p
(k)
i (z)

a priori. Their structure is presumably related to the compactification of the com-
plex structure moduli space M, i.e. it is encoded in the boundary of M.

The only currently known way to derive the free energy of the topological A-model
on a Calabi–Yau manifold X

F(λ, t, t̄) =

∞∑

λ=0

λ2g−2F (g)(t, t̄)

is to use mirror symmetry, i.e. invert the mirror map t = t(z), and the solutions to
the holomorphic anomaly equation just described. Fhol(λ, t) = limt̄→0 F

(g)(λ, t, t̄)
can be expanded in terms of BPS state sums by performing a Schwinger loop
calculation [6], [3], [4] in the effective supergravity theory in four dimensions as

Fhol(λ, t) =

∞∑

g=0

λ2g−2F (g)(t) =
c(t)

λ2
+l(t)+

∞∑

g=0

∑

Q,m=1

n
(g)
Q

1

m

(
2 sin

mλ

2

)2g−2

qQm,

with qQ = exp(i〈Q, t〉). The cubic term c(t) is the classical part of the prepotential

F (0) without the constant term, and l(t) =
∑h1,1

i=1
ti

24

∫
X c2 ωi is the classical part
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of F (1). If we expand Fhol(λ, t), we find for the genus 2 contribution

F (2)(t) =
χ

5760
+
∑

Q

(
1

240
n

(0)
Q + n

(2)
Q

)
Li−1(q

Q)

We can compare this expression with the t̄ → 0 limit of (2). However, in order

to find the genus 2 instanton numbers n
(2)
Q we need in general additional informa-

tion. We have seen previously that the system of equations determining F (g) is
overdetermined, and we have solved it using an ansatz. Furthermore, we made an
ansatz for the holomorphic ambiguity fg(t) in (3). We therefore need additional
consistency checks in order to fix all the ambiguities. We can obtain them from

the following six sources. For low degrees Q, some of the n
(g)
Q can be computed

using classical algebraic geometry [5]. Next, we can use the expected behaviour
of the F (g) near the conifold locus in M, described by the vanishing of ∆con. It
is given by an asymptotic expansion of the c = 1 string at the selfdual radius.
Furthermore, at other singularities in the moduli space, a Calabi–Yau manifold
X can degenerate to another Calabi–Yau manifold X ′, having less moduli in gen-
eral. This degeneration is typically described via a birational map f : X 99K X ′.

The instanton numbers in this case are related by n
(g)
Q′ (X ′) =

∑
Q:f(Q)=Q′ n

(g)
Q (X).

Fourth, if X admits an elliptic fibration, we can take the local limit of a large ellip-
tic fiber, and obtain a non-compact Calabi–Yau manifold Y . Therefore, we can use
the results for local Calabi–Yau manifolds to check that for Q ∈ H2(Y ) ⊂ H2(X)

we have n
(g)
Q (X) = n

(g)
Q (Y ). On the other hand, if X admits a K3 fibration Fhol

has been evaluated using the heterotic-type II duality in the limit where the base
of the fibration is large by [6] and [8]. We extend their argument in several direc-
tions, and discuss in the remainder of the talk.

For C a curve in the class [C] in the K3 with C2 = 2g − 2 a formula for the
topological free energy was given in [5]. It is based on a specific model of the
moduli space of M2 branes, which leads to the Hilbert scheme of points on K3 [9]

Hhol(λ, t) =

(
1

2
sin(λ

2 )

)2 ∏

n≥1

1

(1 − eiλqn)2(1 − qn)20(1 − e−iλqn)2
.

Extending the argument in [5] for T 2 ×K3 we argue that for regular K3 fibrations
the higher genus invariants in the fiber classes are given by

(4) Fhol(λ, t) =
Θ(q)

q
Hhol(λ, t)

where Θ(q) is determined from the lattice embedding of i : Pic(K3) →֒ H2(X,Z).
As such, it depends on global properties of the fibration and in particular not
only on Pic(K3). This formula is clearly inspired by the results of heterotic-type
II duality [7], [8]. Θ(q) is related to an automorphic form of the classical duality
group SO(2, h1,1(X) − 1,Z) by the Borcherds lifting. One of our main results is
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that we can construct Θ(q) purely from the geometric data of the fibration and in
particular in cases where the heterotic dual is not known.

For two–parameter K3 fibrations with χ = −4(4+7k), k = 1, . . . , 4, and Pic(K3) =
〈2〉 we find

Θ(k)(q) = 2−8WE4

(
4W 12 − (76 + 7k)W 8X4 − (180 − 6k)W 4X8 − (4 − k)X12

)

are modular forms for Γ0(4) with W = θ3(
τ
2 ), X = θ4(

τ
2 ) and E4(τ) being an

Eisenstein series. This allows us to completely fix f2(t), e.g. for k = 1,

f2(z1, z2) =

(
2051

103680
+

965

5184
z2 −

615

4
z1(1 − 4z2)

)
1

∆s

+
−2 + 6757z1 − 5643648z2

1

60∆con
+

(1 − 1728z1)
3

120∆2
con
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Formal T -duality for holomorphic non-commutative tori

Tony Pantev

It is commonly believed [3, 7, 8] that the most general deformations of a complex
algebraic space X are captured by the deformations of the category Db(X) of co-
herent sheaves on X . We investigate the deformations of such derived categories
and the equivalences between them in the case when X is a complex analytic torus.

A particular family of infinitesimal deformations of Db(X) comes from deforming
the identity functor on Db(X). This family is naturally parameterized by the
second Hochschild cohomology HH2(X) of X [6]. By definition HH i(X) is the
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cohomology of RHomX×X(∆∗OX ,∆∗OX). If X is a manifold, the geometric
version of the Hochschild-Kostant-Rosenberg theorem [4,8] identifiesHH i(X) with
the coherent cohomology of the holomorphic polyvector fields on X . In particular

(1) HH2(X) ∼= H0(X,∧2TX) ⊕H1(X,TX) ⊕H2(X,OX).

Viewing HH2(X) as infinitesimal deformations of Db(X) we can interpret the
pieces in (1) as follows. Elements in H1(X,TX) correspond to deformations of X
as a complex manifold. Elements in H0(X,∧2TX) correspond to deforming the
multiplication on OX as an associative ⋆-product. Finally, elements in H2(X,OX)
correspond to deforming the trivial O×-gerbe on X .

Given two complex manifolds X and Y and an equivalence ϕ : Db(X) → Db(Y )
one obtains a natural isomorphism ϕ̃ : HH2(X)→̃HH2(Y ). In particular to every
deformation direction ξ ∈ HH2(X) for Db(X) we can associate a deformation
direction ϕ̃(ξ) ∈ HH2(Y ) for Db(Y ). The question we would like to investigate in
general is whether the equivalence ϕ̃ deforms along with Db(X) and Db(Y ) in the
directions ξ and ϕ̃(ξ).

An important special case is when X is a complex torus, Y = X∨ is the dual
torus, and ϕ is the classical Fourier-Mukai equivalence. An interesting feature of
this case is that ϕ̃ exchanges the non-commutative deformations of X with the
gerby deformations of Y and vise versa. Thus the corresponding deformation of
ϕ, if it exists, will have to exchange sheaves of different geometric origin. We
carry out this program to show that ϕ deforms to an equivalence of the derived
category of a formal non-commutative deformation of X and the derived category
of a formal gerby deformation of X∨.

More precisely, let X = V/Λ be a complex torus equipped with a holomorphic
Poisson structure Π. Since the holomorphic tangent bundle of a complex torus
is trivial, the bitensor Π ∈ H0(X,∧2TX) will necessarily be translation invariant
and hence will be of constant rank on X . The formal ⋆-quantizations of a com-
plex manifold equipped with a Poisson structure of constant rank are known to be
parameterized [2, 9, 10] by an affine space. In the case of a Poisson complex torus
(X,Π) the picture simplifies since one can use the Moyal product to construct a
canonical point XΠ in the moduli space of quantizations of (X,Π). This is the
the Moyal quantization of (X,Π). It is a formal space fibering XΠ → D over the
one dimensional formal disk D.

Next note that for a torus X and the dual torus X∨ we have a canonical iso-
morphism H0(∧2TX) ∼= H2(OX∨). Let B := ϕ̃(Π) ∈ H2(OX∨) be the element
corresponding to Π ∈ H0(∧2TX). An analysis of the N = 2 sigma model with
target X lead Kapustin [5] to predict that the classical Fourier-Mukai equivalence
ϕ will deform to an equivalence between the derived category of sheaves on a quan-
tum deformation of X corresponding to Π and the derived category of B-twisted
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sheaves on X∨. (Similar conjecture was made before by D.Orlov.)

In a joint work with O.Ben-Bassat and J.Block [1] we prove a formal version of
this conjecture. More presicely, we show that the cohomology class exp(~B) ∈
H2(OX∨ [[~]]×) classifies an O× gerbe BX

∨ on the formal space X∨×D. First we
prove the following geometric statement:

Theorem. Let X be a complex analytic torus, X∨ be the dual torus and Π ∈
H0(∧2TX) and B ∈ H2(X∨,O∨) be two matching infinitesimal deformations of
the categories Db(X) and Db(X∨) respectively. Then

(1) The gerbe BX
∨ → D admits a natural group structure. With this struc-

ture BX
∨ is a group stack (in general a non-commutative one) over D,

wich is an extension of the commutative group space X∨ × D → D by the
commutative group stack BO×

D
.

(2) The relative Picard stack Pic0(XΠ/D), parameterizing line bundles on the
formal non-commutative space, is a formal geometric stack (in the sense
of Artin) and is canonically isomorphic to BX

∨ as a group stack over D.
(3) There is a universal line bundle P on the product XΠ ×D BX

∨ which over
the closed point 0 ∈ D restricts to the standard Poincare bundle on X×X∨.

Finally, using the existence of P we prove a formal variant of the Kapustin-Orlov
conjecture:

Theorem. The Poincare sheaf P defines an integral transform between the derived
category of coherent sheaves on the non-commutative space XΠ and the derived
category of weight one coherent sheaves on the gerbe BX

∨. This equivalence is a
formal deformation of the standard Fourier-Mukai transform.

References

[1] O. Ben-Basat, J. Block, and T. Pantev, Non-commutative abelian varieties and Fourier-
Mukai transforms, 2004, in preparation.

[2] R. Bezrukavnikov and D. Kaledin, Fedosov quantization in algebraic context, 2003,
[arXiv:math.AG/0309290].

[3] A. Bondal, Poisson structures on projective spaces, MPI preprint, 1992.
[4] M. Gerstenhaber and D. Schack, A Hodge-type decomposition for commutative algebra

cohomology, J. Pure Appl. Algebra, 48(3): 229–247, 1987.
[5] A. Kapustin, Topological strings on noncommutative manifolds, 2004.
[6] B. Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra, 136(1): 1–56,

1999.

[7] M. Kontsevich, Topics in deformation theory, lecture notes by A.Weinstein, 1991, course
at UC Berkeley.

[8] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66(3):
157–216, 2003.

[9] R. Nest and B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holo-
morphic symplectic structures, and index theorems, Asian J. Math., 5(4): 599–635, 2001.

[10] A. Yekutieli, On Deformation Quantization in Algebraic Geometry, 2003,
[arXiv:math.AG/0310399].



2054 Oberwolfach Report 38/2004

Quivers

Alistair King

t t
! family of algebras An,m =

(
⋆ ⋆
0 ⋆

)

Morita equivalent to basic A = Ce1 ⊕ Ce2︸ ︷︷ ︸
S1⊕S2

⊕ Cx︸︷︷︸
X12

structure:

e1
2 = e1 e2

2 = e2 e1e2 = 0 = e2e1
e1x = x xe2 = x x2 = 0
e2x = 0 xe1 = 0

S = S1 ⊕ S2 semisimple, X = X12 S, S-bimodule, X ⊗s X = 0

e.g.

for generalAnm, S =

(
⋆ 0
0 ⋆

)
, X =

(
0 ⋆
0 0

)
, one might write l ln m

For general Q,

S =
⊕

i

Si and X =
⊕

i,j

Xij

A = S〈X〉 tensor algebra of X over S

= S ⊕X ⊕ (X ⊗s X) ⊕ . . .

Representations. V is a right A-module ! V = V e1 ⊕ V e2 and φx :
V e1 → V e2.

ve1x = vx vxe2 = vx

Similarly left A-module ! ψx : e2V → e1V

More invariantly
VA ! VS and right S-map V ⊗S X → V

AV ! SV and left S-map X ⊗S V → V

Theorem. For any finite-dimensional algebra A over C,

{{A-modules}} equivalent to {{ representations of Q with relarions}}

e.g. Xij = Ext1(Si, Sj)
∗
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Quivers with Relations.

Example t t t- -
3 3

3

Arrows: x1 x2 Relations: y1z2 − z1y2 = 0
y1 y2 z1x2 − x1z2 = 0
z1 z2 x1y2 − y1x2 = 0

invariantly t t t- -
V V

R

R = Λ2V ⊆ V ⊗ V

S = C{1,2,3}

X12 = X23 = V

A = S〈X〉/(R)

Theorem. (Beilinson) D(A) ∼= D(P 2)

Koszul Duality.

B:
t t t� �

S2V ∗
6

V ∗

3
V ∗

3

D(B) ∼= D(A)

(0 → S2V ∗ → V ∗ ⊗ V ∗ → R∗ → 0) mutation [Bondal...]

R comes from A∞-structure on Exti(S, S) (Feynman diagram in string theory)

⊕

n≥2

Ext1(S, S)⊗n −→ Ext2(S, S)

Anslander-Reiten Quiver.

e.g. A t t

t

a c

b
�

�
�+

Q
Q

Qs
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Projectives: Pa = a Pb = a c
b

Pc = c
Simples: Sa = a Sb = b Sc = c

Hom(Pi, Pj) =

{
1 i = j
0 i 6= j

Start from projectives and knit

b[−1]
���

@@R

a

@@R

c
���

a c
b ���

@@R

c
b

@@R

a
b ���

b
���

@@R

c[1]

@@R

a[1]
���

a c
b

[1]

by short exact sequences, e.g.

0 → a→ a c
b

→ c
b

→ 0

0 → a c
b

→ c
b

⊕ a
b

→ b→ 0

Quivers in String Theory (With N = 1 super symmetry).

e.g. C3/Z3 orbifold

t t

t

�
J

J
J
JĴ 









�

3

3 3

relations are implicit from CY 3 and dual to the arrows. (Serre duality in dim 3)

Ext2(Si, Sj) ∼= Ext1(Sj , Si)
∗ and D

(
LC

3

Z3

)
∼= D(Y )

Theorem. (McKay)
Crepant resolution of C/Z3 is Y = total space of − ωP2

l l�

J
J
JĴ 






�

l

1 1

1

3

3 3 -Seiberg Duality

APR tilt

l l-

J
J

JJ] 






�l

1 1

2

6

3 3
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Quivers in Particle Physics.

l l�

J
J
JĴ 






�

l

2 2

4

H

FL FR

Pati-Salam model

SU(2)L × SU(2)R × SU(4)

�
�

�
��

l l�

PPPPPi

l1
J
J
JĴ

B
B
B
B
B
B
BBN







�

�
�
�
�
�
�
�
��

l1

l

2 1

3
�

��

@
@

@
@R

�
�

�
��

SU(5) F = 5 + 10

H = 5 + 5̄

GUT@
@

@
@R

SO(10)

F = 16
H = 10

Standard Model

SU(2) × U(1) × SU(3)

F =




e ν
d u
d u
d u




Mirror Symmetry and Non-Archimedean Analytic Spaces

Yan Soibelman

(joint work with Maxim Kontsevich)

1. An integral affine structure on a manifold of dimension n is given by a torsion-
free flat connection with the monodromy reduced to GL(n,Z).

There are two basic situations in which integral affine structures occur naturally.
One is the case of classical integrable systems . Most interesting for us is a class of
examples arising from analytic manifolds over non-archimedean fields. It is moti-
vated by the approach to Mirror Symmetry suggested by us few years ago. From
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our point of view manifolds with integral affine structure appear in Mirror Sym-
metry in two ways. One considers the Gromov-Hausdorff collapse of degenerating
families of Calabi-Yau manifolds. The limiting space can be interpreted either
as a contraction of an analytic manifold over a non-archimedean field of Laurent
series C((t)), or as a base of a fibration of a Calabi-Yau manifold by Lagrangian
tori (with respect to the symplectic Kähler 2-form). On a dense open subset of
the limiting space one gets two integral affine structures associated with two inter-
pretations, the non-archimedean one and the symplectic one. Mirror dual family
of degenerating Calabi-Yau manifolds should have metrically the same Gromov-
Hausdorff limit, with the roles of two integral affine structures interchanged.

Very interesting question arises: how to reconstruct these families of Calabi-Yau
manifolds from the corresponding manifolds with integral affine structures? This
question was one of the main motivations for our project.

2. Our approach to the reconstruction of analytic Calabi-Yau manifolds from real
manifolds with integral affine structure can be illustrated in the following toy-
model example. Let S1 = R/Z be a circle equipped with the induced from R
affine structure. We equip S1 with the canonical sheaf Ocan

S1 of Noetherian C((q))-
algebras. By definition, for an open interval U ⊂ S1 algebra Ocan

S1 (U) consists of
formal series f =

∑
m,n∈Z

am,nq
mzn, am,n ∈ C such that infam,n 6=0(m + nx) >

−∞. Here x ∈ R is any point in a connected component of the pre-image of U
in R, the choice of a different component x → x + k, k ∈ Z corresponds to the
substitution z 7→ qkz. The corresponding analytic space is the Tate elliptic curve
(E,OE), and there is a continuous map π : E → S1 such that π∗(OE) = Ocan

S1 .

In the case of K3 surfaces one starts with S2. The corresponding integral affine
structure is well-defined on the set S2 \ {x1, ..., x24} ⊂ S2, where x1, ..., x24 are
distinct points. Similarly to the above toy-model example one can construct the
canonical sheaf Ocan

S2\{x1,...,x24}
of algebras, an open 2-dimensional smooth analytic

surface X ′ with the trivial canonical bundle (Calabi-Yau manifold), and a contin-
uous projection π′ : X ′ → S2 \ {x1, ..., x24} such that π′

∗(OX′) = Ocan
S2\{x1,...,x24}

.

The problem is to find a sheaf OS2 whose restriction to S2 \ {x1, ..., x24} is locally
isomorphic to Ocan

S2\{x1,...,x24}
, an analytic compact K3 surface X , and a continuous

projection π : X → S2 such that π∗(OX) = OS2 . We call this problem (in general
case) the Lifting Problem. At this time we do not know the conditions one should
impose on singularities of the affine structure, so that the Lifting Problem would
have a solution. We have solved it in the case of K3 surfaces . Here the solu-
tion is non-trivial and depends on data which are not visible in the statement of
the problem. They are motivated by Homological Mirror Symmetry and consist,
roughly speaking, of an infinite collection of trees embedded into S2 \ {x1, ..., x24}
with the tail vertices belonging to the set {x1, ..., x24}. The sheaf Ocan

S2\{x1,...,x24}

has to be modified by means of automorphisms assigned to every edge of a tree
and then glued together with certain model sheaf near each singular point xi.
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3. The relationship between K3 surfaces and singular affine structures on S2 is
of very general origin. Starting with a projective analytic Calabi-Yau manifold X
over a complete non-archimedean local field K one can canonically construct a PL
manifold Sk(X) called the skeleton of X . If X is a generic K3 surface then Sk(X)
is S2. The group of birational automorphisms of X acts on Sk(X) by integral PL
transformations. For X = K3 we obtain an action of an arithmetic subgroup of
SO(1, 18) on S2. Further examples should come from Calabi-Yau manifolds with
large groups of birational automorphisms.

Higher genus Topological String Amplitudes on CY-3 folds

Albrecht Klemm

The supersymmetric σ-model on a Calabi-Yau threefold M admits two topologi-
cal theories in which the world sheet spin operator is twisted either by the vector
U(1)V or the axial U(1)A of the N = (2, 2) super conformal world sheet algebra,
so that either QA = G+ + Ḡ+ or QB = G+ + Ḡ− becomes a scalar BRST op-
erator, which is well defined on all world sheet genera. While U(1)V exists on
any sympletic manifold M the U(1)A becomes anomalous in the quantized super-
symmetric σ-model unless M is Calabi-Yau manifold. One calls the topological
theories in which the observables are defined by the cohomology of QA/B the A-
and the B-model respectively [1].

For the A-model the observables can be identifies with H∗(M). The functional
integral over the σ-model maps localizes on the holomorphic embeddings of

Φ : Σg →M

and the path integral becomes merely a integral over the moduli space of those
maps. The virtual dimension of the integral is vdimMg(β) =

∫
[C]
c1(TM) +

(1 − g)(3 − dimC(M) is zero for all maps in the special case of CY 3folds. That
is the partition function Z =

∫
DΦ exp(−S(Φ, G,B)) gets, superficially discrete,

contributions from all genus g curves, which makes the CY 3fold case especially
interesting. The integrals

rg
β =

∫

Mg(β)

cvir(g, β)

over the stable compactification of maps from a genus g Riemann surface Σg into
a curve C ∈ M with [C] = β ∈ H2(M,Z) are called Gromow-Witten invariants.
The free energy F = log(Z) of the topological A-model has a natural expansion

F (λ, t) =
∞∑

g=0

λ2g−2Fg(t) =
∞∑

g=0

λ2g−2
∑

β

rg
βq

β

in the string coupling λ and qβ = exp[2πi
∫
[C]
B + iJ ] = exp[2πi

∑
i tidi]. Here

J is the Kählerform on M and B is the two-form of the Neveu-Schwarz anti-
symmetric background field, ti are complexified Kählerparameters and di ∈ Z,
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i = 1, . . . , h11(M) are the degrees specifying β ∈ H2(M,Z). F (λ, t) is not not
completely independent of the metric G (and the background field B) on M , but
is rather a family index on a complexified symplectic family of M . It is however
independent of the complex structure of M . Mirror symmetry maps it to a family
index on the mirror manifold W , which does not depend on the sympletic struc-
ture but only on the complex structure of W and is calculable in the topological
B model, see [2] for advanced methods.

The rg
β ∈ Q are sympletic invariants. Recently there have been conjectures [4]

that the following sympletic invariants carry the same information: The Gromow-

Witten invariants above, the Gopakumar-Vafa invariants, which are alternating
sums in the dimensions of the cohomology groups of the moduli space of D2-D0
branes [3], and the Donaldson-Thomas invariants which are virtual integrals over
the moduli space of torsions free sheaves on M [5]. The precise nature of the
conjecture is as follows. Gopakumar and Vafa define their invariants ng

β as

F (λ, t) =
∞∑

g=0

λ2g−2Fg(t) =
c(t)

λ2
+ l(t) +

∞∑

g=0

∑

β
m=1

ng
β(−1)g−1 [m](2g−2)

m
qβm ,

where [x] := q
x
2

λ − q
− x

2

λ and qλ = eiλ. The observation that ng
β ∈ Z in many

examples fits well with the interpretation of ng
β as counting BPS states. In simple

cases the direct calculation of the ng
β from the moduli space of D2-D0 branes have

been performed [6]. The partition function Z = exp(F ) has the following product
form 1

ZGW =

∞∏

β

[(
∞∏

r=1

(1 − qr
λq

Q)rn
(0)
β

)
∞∏

g=1

2g−2∏

l=0

(1 − q
g−1− l

2

λ qQ)(−1)g( 2g−2
l )n

(g)
β

]
.

This product form resembles the Hilbert scheme of symmetric products written in
terms of partition sums over free fermionic and bosonic fields as well as the closely
related product form for the elliptic genus of symmetric products. The constant

map piece can be written as M(qλ)−
χ(M)

2 where M(q) =
∏

m>0(1 − qm)−m is the
McMahon function. The relation with the Donaldson-Thomas invariants ñm

β ∈ Z

with the expansion

ZDT (M, qλ, q) =
∑

β,m∈Z

ñm
β q

m
λ qβ

is simply

ZGW = (M, qλ, q)M(qλ)
χ(M)

2 = ZDT (M,−qλ, q) .

We next present an overview over techniques to perform the calculation of higher
genus amplitudes and determine these symplectic invariants explicetly.

1Here we ignored an exp(
c(t)

λ2 + l(t)) factor.
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open closed
B

−
m

od
el

3d Chern−Simons

holomorphic
Chern−Simons Theory

Matrix model

Theory

Gravity

A
−

m
od

el

Family Indices
Ray−Singer Torsion

Kodaira Spencer

M
irr

or
 D

ua
lit

y

Open Closed Duality
’t Hooft Duality

Type II Heterotic
closed

Vector multiplets

non−perturbative
sector

Treshold Correction

Hyper multiplets

no nonperturbative
corrections

String−String Duality

Kaehler Gravity
Gromow−Witten

Invariants
Donaldson−Thomas
Gopakumar−Vafa

Beside the techniques of direct evaluating of the integral over the moduli of maps
by equivariant localization w.r.t. to an induced torus action in M pioneered by
Kontsevich, there are methods using the dualities indicated in the above scheme.
We will focus on the open closed dualities or large N transitions methods.

On non-compact toric Calabi-Yau like the total space of a line bundle M =
O(KB) → B over a toric base B the problem has recently be completly solved
using the topological Vertex [7]. These non-compact toric Calabi-Yau M can be
patched by C3 patches in a way, which is compatible with a gobal T 2 fibration.
The T 2 fiber and the a and b cycles in H1(T 2) are generated by the torus action
in every patch and the global data are encoded by the gluing of 1-cycles between
a patch and its three adjacent patches. With the vertex one can solve for the all
genus partition function on an arbitrary open toric CY variety in two steps

(1) The vertex calculates the most general open string amplitude in each patch
with arbitrary genus and arbitrary boundary conditions on three stacks
of Harvey-Lawson Special Lagrangian 3-cycles. The answer in a specific
framing can be written in the form

ZR1,R2,R3(qλ) = q
κ(R1)+κ(R3)
λ SRt

3
(qρ

λ)
∑

Q

SRt
1/Q(qR3+ρ

λ )SR2/Q(q
Rt

3+ρ
λ ) .

Here the boundary conditions of the open string are labeled by three rep-
resentations Ri of U(Ni), where Ni is number of branes in the it’h stack.
SR(x) and SR/Q(x) are Schur functions and relative Schur functions re-

spectively. Their arguments are the sets qR+ρ
λ = {qli(R)λ−i+ 1

2 } and qρ
λ =
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{q
1
2−i

λ }, where li(R) is the length of the i’th row of the Young-Tableaux of
the representation R and κ(R) = |R| +

∑
i li(R)(li(R) − 2j) with |R| the

total number of boxes in the Young-Tableaux. The all genus dependence

can be made explicit by expanding ZR1,R2,R3(qλ) =
∑

g λ
2g−2+hZ

(g)
R1,R2,R3

with h the number of holes. This open string amplitude is related by a
large N transition to Chern-Simons link invariants. The framing depen-
dence of the link invariants is reflected by an ambiguity in the definition
of the compactification of the open string moduli space.

(2) The vertex amplitudes have a natural gluing rule, when two patches are
joint [7]. More generally from two partition functions ZΓR(qλ)Q and
ZΓL(qλ)Q for toric varieties with graphs ΓR and ΓL with arbitrary bound-
ary conditions Q one can obtain the partition function of the total graph
as

ZΓR∪ΓL(qλ) =
∑

Q

ZΓL(qλ)Qe
−|Q|t(−1)(nQ+1)|R|qnQ

κ(Q)
2 ZΓR(qλ)Qt ,

where t is the complexified Kähler parameter, which corresponds to the
class of the edge joining the graphs. Qt is the representation corresponding
to transposed Young-Tableaux of Q and nQ ∈ Z is the framing choice. In
the gluing procedure these framings are related to the gluing of the 1-cycles
of the T 2 fiber. The expression between ZΓL(qλ)Q and ZΓR(qλ)t

Q can be
viewed as a “propagator” for Feynman rules for gluing the amplitudes.
Summing over all open string boundaries gives a closed string amplitude.

We further discussed the the identification of the vertex with the partition function
of a melting crystal [8], where the string λ gets identified with the Boltzmann
weight and its relation to the 3KP hierarchy [7].
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Sinead Ni Chiagain

sinead.nichiagain@ucd.ie

Department of Mathematics
Dublin Institute for Advanced
Studies
10, Burlington Road
Dublin 4
IRELAND

Prof. Dr. Vicente Cortes

cortes@iecn.u-nancy.fr

Institut Elie Cartan
-Mathematiques-
Universite Henri Poincare, Nancy I
Boite Postale 239
F-54506 Vandoeuvre les Nancy Cedex



2064 Oberwolfach Report 38/2004

Dr. Christian van Enckevort

enckevor@mathematik.uni-mainz.de

Fachbereich Mathematik
Johannes-Gutenberg-Universität
Mainz
Staudingerweg 9
55099 Mainz

Dr. Michael Flohr

flohr@itp-uni-hannover.de

Institute for Theoretical Physics
University of Hannover
Appelstr. 2
30167 Hannover

Prof. Dr. Krzysztof Gawedzki

kgawedzk@ens-lyon.fr

Claire.Desecures@ens.lyon.fr

Laboratoire de Physique
Ecole Normale Superieure de Lyon
46, Allee d‘ Italie
F-69364 Lyon Cedex 07

Prof. Dr. Alexander Goncharov

sasha@math.brown.edu

sasha@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53225 Bonn

Prof. Dr. Vassily Gorbounov

vgorb@ms.uky.edu

Dept. of Mathematics
University of Kentucky
Lexington, KY 40506-0027
USA

Dr. Marco Gualtieri

mgulatie@fields.utoronto.ca

15 Irving Place
Montreal, Quebec H9A1Y4
Canada

Prof. Dr. Claus Hertling

hertling@hilbert.math.uni-mannheim.de

Lehrstuhl für Mathematik VI
Fak. für Mathematik und Informatik
Universität Mannheim
Seminargebäude A 5
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Hönggerberg
CH-8093 Zürich
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