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Introduction by the Organisers

The mini-workshop Ehrhart Quasipolynomials: Algebra, Combinatorics, and
Geometry, organised by Jesús De Loera (Davis) and Christian Haase (Durham),
was held August 15th-21st, 2004. A small group of mathematicians and com-
puter scientists discussed recent developments and open questions about Ehrhart
quasipolynomials. These fascinating functions are defined in terms of the lattice
points inside convex polyhedra. More precisely, given a rational convex poly-
tope P for each positive integer n, the Ehrhart quasipolynomials are defined as
iP (n) = #

(

nP ∩ Zd
)

. This equals the number of integer points inside the di-
lated polytope nP = {nx : x ∈ P}. The functions iP (n) appear in a natural
way in many areas of mathematics. The participants represented a broad range of
topics where Ehrhart quasipolynomials are useful; e.g. combinatorics, representa-
tion theory, algebraic geometry, and software design, to name some of the areas
represented.

Each working day had at least two different themes, for example the first day of
presentations included talks on how lattice point counting is relevant in compiler
optimization and software engineering as well as talks about tensor product multi-
plicities in representation theory of complex semisimple Lie Algebras. Some special
activities included in the miniworkshop were (1) a problem session, a demonstra-
tion of the software packages for counting lattice points Ehrhart (by P. Clauss),
LattE (by J. De Loera et al.), and Barvinok (by S. Verdoolaege), (2) a guest
speaker from one of the research in pairs groups (by R. Vershynin),and (3) a nice
expository event where each of the three mini-workshops sharing the Oberwolfach
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facilities had a chance to introduce the hot questions being pursued to the others.
The atmosphere was always very pleasant and people worked very actively. For
instance, two of the talks reported on new theorems obtained during the mini-
workshop. The organizers and participants sincerely thank MFO for providing a
wonderful working environment, perhaps unique around the world. We also thank
Günter M. Ziegler for his support and encouragement. In what follows we present
the abstracts of talks following the order in which talks were presented.

MSC Classification:
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Abstracts

Nested families for vector partition function

Charles Cochet

(joint work with V. Baldoni-Silva, M. Beck, M. Vergne)

The main goal of this talk is to describe a new method for computing vector
partition functions and associated Ehrhart quasi-polynomials. As an application
to representation theory, we will also discuss about the efficient computation of
weight multiplicity and tensor product coefficients (or Littlewood-Richardson co-
efficients).

Let Φ be a r × N integral matrix, with columns φj . For any vector a ∈ Rr

lying in the cone generated by columns of Φ, we define the convex polyhedron
P (Φ, a) as the set of non-negative N -dimensional vectors x satisfying Φx = a. We
assume that Φ has full rank. We also assume that ker(Φ)∩Rr

+ = {0}, so that the
polyhedron is a polytope (bounded). Then the vector partition function k(Φ, a)
counts the number of integral points in P (Φ, a).

As the motivation, we begin with recalling a previous algorithm for vector
partition function by Baldoni-Vergne ([BSV01]), specialized by Baldoni-DeLoera-
Vergne ([BSDLV03]) to the case of ths matrix Φ which vectors are positive roots
for the Lie algebra Ar. Roughly speaking, this algorithm gives vector partition
function as a sum of iterated residues of rational functions, over the set of special
permutations. When compared to classical algorithms, this method can not only
give associated Ehrhart polynomial, but is also unaffected by an increase of the size
of weights. However, since the residue operation is expensive, this algorithm could
not perform computation in spaces of as high dimension, like previous algorithms.

An increase of the time spent to compute the set which we sum over can be
affordable, if this set is finally smaller (and consequently decreases the total number
of residues to compute). This is the starting point of the new method that we
describe in this talk.

This new algorithm still relies on sums of iterated residues. But sums are over
nested families, an object arising from specific flags associated to the set of vectors
which are columns of Φ. As expected, the number of residues to compute has
much decreased. Although nested families are complicated to compute, the extra
time needed is neglectible with regards to the time saved on residue computation.

This method was implemented in the case where columns of Φ are positive
roots of the simple Lie algebra of type B. This led to a Maple procedure, named
KostantB. We emphasize that this procedure is not sensitive to the size of coordi-
nates of input vector.

Now a few words about an application in representation theory (by C). We are
interested in the two following computational problems in the case of a classical Lie
algebra: the multiplicity cµ

λ of the weight µ in the representation V (λ) of highest
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weight λ; the multiplicity cν
λ µ of the representation V (ν) in the tensor product of

representations of highest weights λ and µ (Littlewood-Richardson coefficient).
Softwares LıE (from van Leewen et al., see [vL94]) and GAP (from Geck et al.,

see [GAP]), and Maple packages coxeter/weyl (from Stembridge, see [Ste95]),
use Freudenthal’s and Klimyk’s formulas, and work for any semi-simple Lie algebra
g. Unfortunately, these formulas are very sensitive to the size of weights.

Our approach to these two problems is through Kostants’ and Steinberg’s formu-
las, giving weight multiplicities and tensor product coefficients as sums of vector
partition function. Using the above new method for vector partition function,
we get a fast algorithm for weight multiplicities and tensor product coefficients,
that can handle associated Ehrhart quasi-polynomials, and specially designed for
weights with huge coordinates.

For the moment, the computation of weight multiplicities and tensor product
coefficients (not yet Ehrhart quasi-polynomials) for Br has been implemented in
a Maple program named Multiplicities.B.mws (C, see [Coc]). This program,
efficient up to B6, is complementary to previous softwares and packages. It follows
previous work for Ar (C, see [Coc03]), using other results on vector partition
function (Baldoni-DeLoera-Vergne, see [BSDLV03]).
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Two Conjectured Generalizations of the Saturation Theorem

Tyrrell B. McAllister

(joint work with J. De Loera)

We present two conjectures regarding polytopes arising in the representation
theory of complex semisimple Lie algebras. Both of these conjectures imply the
Saturation Theorem of Knutson and Tao as a special case.
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Given highest weights λ, µ, and ν for a complex semisimple Lie algebra g, we
denote by Cν

λµ the multiplicity of the irreducible representation Vν in the tensor
product of Vλ and Vµ; that is,

Vλ ⊗ Vµ =
⊕

ν

Cν
λµVν .

The values Cν
λµ are known as Clebsch-Gordan coefficients. In the particular case

in which g is of type Ar, they are also called Littlewood-Richardson coefficients.
Given highest weights λ, µ, and ν for a Lie algebra of type Ar, there is a

polytope Hν
λµ, called a hive polytope, with the property that Cν

λµ equals the number
of integer lattice points in Hν

λµ. Knutson and Tao introduced these polytopes and

used them to prove the Saturation Theorem ([5]; see also a nice exposition of their
proof in [2]).

Theorem. (Saturation) Given highest weights λ, µ, and ν for a Lie algebra of
type Ar, and given an integer N > 0, the Littlewood-Richardson coefficient Cν

λµ

satisfies

Cν
λµ 6= 0 ⇐⇒ CNν

Nλ,Nµ 6= 0.

The hive polytope Hν
λµ is defined to be the set of solutions to a particular

system of linear equalities and inequalities. We put

(1) Hν
λµ =

{

h ∈ R
(r+1)(r+2)/2 :

Bh = b(λ, µ, ν),
Rh ≤ 0

}

,

where B and R are integral matrices, and b(λ, µ, ν) is a 3r-dimensional integral
vector depending on λ, µ, and ν. Knutson and Tao proved the Saturation Theorem
by showing that every nonempty hive polytope contains a nonintegral vertex. We
conjecture that this integrality result extends to the larger class of polytopes of
the form

{

h ∈ R
(r+1)(r+2)/2 :

Bh = b,
Rh ≤ c

}

,

where b and c may take on any integral values for which the resulting polytope is
nonempty.

We show that, to prove this conjecture, and therefore to prove the Saturation
Theorem, it suffices to prove following.

Conjecture 1. Fix an integer r > 0 and let B and R be the matrices in (1).
Then the convex hull of the points whose coordinates are the columns of the block
matrix

[

B 0
R I

]

has a unimodular triangulation by simplices whose vertices are among these points.

We have verified this conjecture up to r = 6 using placing triangulations.
Our second conjecture concerns a class of polytopes which perform for arbitrary

semisimple Lie algebras the same role that Hive polytopes serve in type Ar. Let
highest weights λ, µ, and ν for a semisimple Lie algebra g be given. Berenstein
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and Zelevinsky define ([1]) a polytope BZν
λµ which contains exactly Cν

λµ integral
lattice points, where Cν

λµ is a Clebsch–Gordan coefficient for g.
Using Barvinok’s lattice point enumeration algorithm, we can compute the

Ehrhart quasi-polynomials CNν
Nλ,Nµ of the BZ–polytopes. These computations mo-

tivate our second conjecture.

Conjecture 2. Given highest weights λ, µ, and ν of a Lie algebra of type Ar, Br,
Cr, or Dr, put

CNν
Nλ,Nµ =











f1(N) if N ≡ 1 modM,
...

fM (N) if N ≡ M modM.

Then the coefficients of each fi are all nonnegative.

The type Ar case of this conjecture was conjectured by King, Tollu, and Toumazet
in [4]. That Conjecture 2 implies the Saturation Theorem follows from a result of
Derksen and Weyman ([3]) showing that the Ehrhart quasi-polynomials of Hive
polytopes are in fact just polynomials.
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Enumerating Integer Projections of Parametric Polytopes

Sven Verdoolaege

(joint work with M. Bruynooghe)

Many compiler techniques depend on the ability to count the number of integer
points that satisfy a given set of linear inequalities. Typically, a subset of the
variables are identified as the parameters ~p and the number of possible values
for the other, “counted” variables ~y needs to be counted as a function of those
parameters. If each variable is either a parameter or counted, then the problem
is equivalent to the enumeration of parametric polytopes, which can be computed
efficiently using a technique based on Barvinok’s decomposition of unimodular
cones [1, 3, 5].

In general, the linear inequalities may also involve additional, existentially quan-
tified variables ~ǫ and then the object is to count the number of possible integer
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values for ~y in function of the parameters ~p This problem is equivalent to enumer-
ating an integer projection of a parametric polytope. Pugh [4] addresses the closely
related problem of counting the number of solutions to Presburger formulas, but
his technique seems underspecified and has apparently never been implemented.
One of the substeps is also clearly exponential in the input size. More recently,
a technique was outlined for integer projections of non-parametric polytopes [2],
but it appears not to have been implemented yet and it is not immediately clear
how easily it can be extended to the parametric case.

Consider the polyhedron P defined by the given set of linear inequalities in
(d + d′ + n)-dimensional space, where d, d′ and n are the number of counted
variables, existential variables and parameters. Our technique manipulates this
polyhedron directly through a set of simplification rules, which either reduce the
number of existential variables, shrink the polyhedron or split the problem into
several smaller subproblems.

Pick an existential variable ǫi and take a pair of inequalities such that the
coefficients of ǫi have opposite signs. The two inequalities determine a range for ǫi

as a function of the other variables. If no such pair exists or if this range admits
at least one integer solution over the whole of P , then ǫi can be eliminated. If a
pair exists such that at least one of the inequalities is independent of the other
existential variables and such that the range admits at most one solution, then ǫi

can be treated as a counted variable.
In general, P will need to be split such that each part is closer to removal of

an existential variable. If the splitting constraint is independent of the existential
variables, the enumerations of both parts can simply be summed. Otherwise, we
need to take the disjunction of both enumerations E1 and E2. If d = 0, this can
be computed as E1 + E2 − E1E2. If d 6= 0, we first treat all counted variables as
parameters and then sum the resulting enumeration over the counted variables.
Finding good splitting constraints remains a challenge, though.
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Ehrhart Polynomials for Program Analysis, Optimization and

Compiling

Philippe Clauss

Ehrhart polynomials have many applications concerning compiler design. Their
use in this field was initiated as i re-discovered Eugène Ehrhart’s results and met
him in Strasbourg in 1994. I proposed an extension to any number of parameters
[1, 2] and linked my work to Loechner and Wilde’s work on the parametric ver-
tices of a parameterized polyhedron [3], resulting in the first ever made Ehrhart
polynomials computation program in 1996. The implemented algorithm consists
in the following steps :

• given a system of parameterized linear rational inequations,
• compute the validity domains (domains where the vertices have constant

definitions) and the parametric coordinates of the vertices,
• for each validity domains,

– since the general form of the associated Ehrhart polynomial is known
(degree, period),

– count the number of points for some initial values of the parameters
(using a loop scanning the polytope),

– solve a system of linear equations whose solutions are the Ehrhart
polynomial coefficients.

One well-known model in computer science used to analyze programs is the so-
called polytope model [4]: all iterations of a nested loop are represented as integer
points whose coordinates are the indices values. Since these values span a convex
domain, the integer points define a lattice polytope. Moreover, the considered
nested loops are often parameterized by some size parameters. Hence we must
consider parameterized polytopes.

Between the many applications in program analysis and optimization, we present
data layout transformations defined by Ehrhart polynomials for data spatial lo-
cality optimization. This technique, detailed in [5, 6], consists in reorganizing in
memory array elements referenced in a nested loop in the same order as they are
accessed during the execution. This improves the cache behavior of the nested loop
since all data of any loaded cache block will be entirely and successively accessed.
The number of cache misses are therefore significantly reduced. This is done by
computing the number of iterations executed before the one referencing a given
array element. We show an example where the execution time becomes 16 times
faster.

Despite the several software implementations for computing Ehrhart polynomi-
als presented in this mini-workshop, it is unfortunately not yet possible to consider
such computations into a compiler like gcc. However, embedded systems designers
can already be Ehrhart polynomials users since more time is given to conceive a
system which will be produced and distributed in a huge number of units. Anyway,
some more efforts are still needed to accelerate Ehrhart polynomials computation.
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Moreover, many other extensions should be considered since applications do
exists in compiler design. Some kind of non-linear equations arise in program
analysis that are not yet handled by nowadays Ehrhart polynomials computation
methods, although Ehrhart has shown in [7] that problems of the form P +nP ′ > 0,
where P and P ′ are polynomials in 2 variables and n is a parameter define a set
of integer solutions whose count is an Ehrhart polynomial.

In many cases, it would be sufficient to approximate an Ehrhart polynomial by
only computing its higher degree coefficient. A cheaper and faster algorithm for
this purpose would have many applications as well. But since it is known that
this coefficient is the volume of the considered polytope, the cost is related to the
computation cost of the volume.

Due to the growing complexity of computer systems, dynamic analysis of pro-
grams is also considered. It consists in collecting traces during the run of a pro-
gram and then model them in order to understand the program behavior. Since
computer programs generally have a relatively repetitive and periodic behavior, it
could be interesting to detect a kind of ”Ehrhart polynomial behavior”. Such a
representation model would then provide an interesting way to reuse static analysis
techniques of the polytope model for dynamic analysis.

Finally, another motivating objective is to be able, starting from a given Ehrhart
polynomial, to find a polytope whose number of lattice points is equal to this
Ehrhart polynomial. This would allow to generate program codes (loops scanning
the so-found polytopes) having some interesting properties.
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On the unimodality of h∗-vectors

Christos A. Athanasiadis

Let P be a d-dimensional integral polytope in RN with Ehrhart polynomial
i(P, r) = #(rP ∩ ZN ) and h∗-vector h∗(P ) = (h∗

0, h
∗
1, . . . , h

∗
d) defined by

(1)
∑

r≥0

i(P, r)tr =
h∗

0 + h∗
1t + · · · + h∗

dt
d

(1 − t)d+1
.

It is well known that the h∗
i are nonnegative integers. Our main concern will be

to describe sufficient conditions on P for h∗(P ) to be unimodal, meaning that
h∗

0 ≤ h∗
1 ≤ · · · ≤ h∗

j ≥ h∗
j+1 ≥ h∗

d for some 0 ≤ j ≤ d. More specifically we draw
our attention to the following two conjectures. Let RP denote the semigroup ring
of P over a field K, graded so that (1) is the Hilbert series of RP .

Conjecture 1. If RP is standard and Gorenstein then h∗(P ) is unimodal.

Conjecture 2. If h∗
i = h∗

d−i for all 0 ≤ i ≤ d then h∗(P ) is unimodal.

Conjecture 1 was stated more generally for standard graded Gorenstein domains
by Hibi [2] and Stanley [5]. Conjecture 2 is due to Hibi [3].

We will discuss the proof of a recent partial result [1] towards Conjecture 1,
namely an affirmative answer under the additional assumption that all pulling
triangulations of P are unimodular, as well as applications to the motivating case
of order polytopes of graded partially ordered sets, originally discovered by Reiner
and Welker [4], and to the case of the Birkhoff polytope of doubly stochastic n×n
matrices. We also discuss some features that possible counterexamples to these
conjectures should have.
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Quasi-polynomials Arising from Group Actions

Petr Lisoněk

We adhere to the standard definition [4] according to which a sequence is quasi-
polynomial if its ordinary generating function (o.g.f.) is a univariate rational func-
tion with rational coefficients such that each root of the denominator is some root
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of unity. We will describe two general paradigms in which quasi-polynomials arise
in enumeration of orbits of group actions. For the second paradigm we demonstrate
a connection with Ehrhart quasi-polynomials.

Let n := {1, 2, . . . , n}. For f ∈ Nn let cf :=
∑

x∈n
f(x). Let G be a subgroup

of Sn and consider the natural action of G on Nn. For any f ∈ Nn, the orbit of f
under G is called a G-partition of number cf . Thus, for example, Sn-partitions
correspond to unordered partitions into at most n parts, and 1n-partitions (where
1n is the trivial subgroup of Sn) correspond to compositions with n non-negative
parts. For any c ∈ N, the number of G-partitions of c will be denoted by PG(c).
The o.g.f.

∑

c≥0 PG(c)tc is obtained by Pólya-substitution of the formal power

series 1/(1 − t) = 1 + t + t2 + · · · in the cycle index of G’s action on n, that is,
for each 1 ≤ i ≤ n, the variable zi of the cycle index is substituted by 1/(1 − ti).
Because the cycle index is a multivariate polynomial, we get:

Proposition 1. Let n be a positive integer. For each G ≤ Sn, the number of
G-partitions of c is quasi-polynomial in c.

As an illustration let us present a very short proof of the following identity
which holds for each positive integer n:

n
∏

k=1

1

1 − xk
=

∑

a⊢n

∏

k

1

ak!

(

1

k(1 − xk)

)ak

where the sum extends over all a = (a1, a2, ...) such that a1 · 1 + a2 · 2 + . . . = n
and ai ≥ 0 for 1 ≤ i ≤ n. On the left-hand side we have the o.g.f. for the number
of Sn-partitions while on the right-hand side we have the Pólya-substitution of
1/(1− t) in the cycle index of Sn’s natural action on n [2]. This identity is proved
in several classical texts (e.g. MacMahon, Riordan) but the connection with group
actions seems to have been overlooked.

By using appropriate subgroups of Sn, Proposition 1 furnishes many examples
of quasi-polynomial combinatorial enumeration sequences, such as for example
the number of symmetry classes of 0,1-matrices with a fixed number of columns
(where two matrices belong to the same class if they differ only by a row and
column permutation), the number of unlabelled multigraphs on a fixed number of
vertices, and many more.

Another family of quasi-polynomial combinatorial enumeration sequences arises
when instead of considering just one group action, we study a sequence of actions—
one action per each “size” of the objects that we wish to enumerate. In these
situations we can often observe a direct connection with Ehrhart quasi-polynomials.

Let us demonstrate this paradigm on a concrete example. By a polygon dis-
section we mean each subdivision of the interior of a convex s-gon into smaller
polygons by means of non-intersecting, but possibly touching diagonals. If the
s-gon is regular, we can count symmetry classes of dissections under the cyclic or
dihedral symmetry. Thus we have a sequence of actions, one action per each s.
Denote by r the number of cells arising in the dissection, i.e. we use r−1 diagonals
to create the dissection. Let Hr,s denote the number of dissection classes under
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the cyclic symmetry, and let hr,s denote the number of dissection classes under
the dihedral symmetry. Thus, for example, H3,6 = 4 and h3,6 = 3. In [3] we used
Pólya theory to prove:

Proposition 2. For any fixed r, sequences (Hr,s) and (hr,s) are quasi-poly-
nomial in s.

A connection with Ehrhart quasi-polynomials can now be observed as follows.
(We thank to F. Santos for an interesting discussion of this topic during the work-
shop.) Consider the tree structure (in the graph theory sense) that represents the
adjacencies between r cells of the dissection. The tree has r vertices, and edges of
the tree correspond to diagonals of the dissection, and a plane embedding of the
tree is fixed. For each fixed r, there is a finite number of such trees. Now a sym-
metry class of dissections is described by an assignment of a sequence of integers
to each vertex of the tree (the length of the sequence at vertex v equals the degree
of v), subject to certain linear constraints that these integers must satisfy. (These
linear constraints represent the geometry of the s-gon and they also ensure that
each dissection class is counted exactly once in cases when the tree possesses non-
trivial automorphisms.) The integers add up to s. As a consequence, for each tree
the number of symmetry classes of dissections of s-gons characterized by this tree
is equal to the number of lattice points in the projection on 2(r − 1) coordinates
of one or more rational polytope(s) parameterized by the value of s, and as such
this number is quasi-polynomial in s. (The corresponding o.g.f. can be computed
using the algorithm in [1].) The total number of dissections, being a finite sum of
quasi-polynomials, is also quasi-polynomial.

It appears that there are other interesting types of combinatorial structures
(with two parameters and a natural group action depending on the second param-
eter) for which the enumeration sequence of symmetry classes is quasi-polynomial
once the value of the first parameter is fixed, and where the proof strategy outlined
above may be applicable. We are currently pursuing the case of symmetry (isome-
try) classes of non-linear binary codes, where the first parameter is the size of the
code (the number of codewords) and the second parameter is the block length of
the code.
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Computational Complexity and Periods of Ehrhart Quasipolynomials

Kevin Woods

This talk has three primary goals: to examine some results and open problems
about the period of the Ehrhart quasipolynomial of a polytope, to provide a tool-
box of rational generating function algorithms which can be used in a wide variety
of problems, and to apply these tools to the question of computing the period.

If P ⊂ Rd is a rational polytope, let iP (t) =
∣

∣tP ∩ Zd
∣

∣. Ehrhart proved (see
[4]) that if D = D(P ) is the least common denominator of all of the coordinates of
all of the vertices of P , then iP (t) is a quasi-polynomial of period D. Sometimes,
however, iP (t) may have a smaller period, and we provide several examples of
this phenomenon (see a large class of examples in [6], Gelfand-Tsetlin polytopes
in [2], and hive polytopes in [5] and Corolary 3 of [3]). An interesting set of open
problems is to develop necessary and/or sufficient conditions for the period to be
other than D.

Next we present some tools for using rational generating functions of the form

∑

i∈I

xai

(1 − xbi1 ) · · · (1 − xbik)

to solve this and other problems in polynomial time (for fixed dimension d).
Most of these tools are presented in [1]. We also talk about one new tool: if f(x)
is a rational generating function, then we may decide whether f is identically zero
in polynomial time (for fixed d and fixed k).

Finally, we use these tools to prove that, given a polytope P ⊂ Rd and a number
n, we may decide in polynomial time (for fixed d) whether n is a period of iP (t).
In particular, we may decide whether iP (n) is of period 1, that is, whether it is
a polynomial. This yields an algorithm to compute the minimum period of iP (t),
but we must factor D(P ) to do this. We conjecture that we can, in fact, determine
the period of iP (t) in polynomial time.
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Universality of Table Polytopes

Shmuel Onn

(joint work with J. De Loera)

We show that any rational convex polytope P is polynomial time representable
as a polytope T of all nonnegative n×n×3 arrays with fixed line sums, for suitable
n and line sums

ui,j, vi,k, wj,k,

T = {x ∈ R
n×n×3
+ :

∑

k

xi,j,k = ui,j ,
∑

j

xi,j,k = vi,k,
∑

i

xi,j,k = wj,k}.

The representation provides a bijection between P and T and between the set
of integer points in P and the set of integer points (“tables”) in T . In particular,
this implies that any Ehrhart quasipolynomial is the Ehrhart quasipolynomial of
some such table polytope T .

Further, it shows that computational problems over P such as linear program-
ming, integer programming, and counting integer points, can be reduced to the
analogous problems over T .

One interesting remaining open problem is whether any real polytope is also
representable as some table polytope. Another problem concerns the possibility of
the existence of a strongly polynomial time algorithm for linear programming, since
our universality shows that any rational polytope is representable as one described
by a simple (0, 1) system of equations depending on the single parameter n only.

The talk was based on the following two papers, available on my home page
http://ie.technion.ac.il/ onn :

(1) The complexity of three-way statistical tables SIAM Journal on Comput-
ing, 33:819–836, 2004.

(2) All rational polytopes are transportation polytopes and all polytopal in-
teger sets are contingency tables Proceedings of the 10th IPCO (Annual
Mathematical Programming Society Symposium on Integer Programming
and Combinatorial Optimization), Lecture Notes in Computer Science,
3064:338–351, 2004.

Quadratic triangulations

Christian Haase

(joint work with L. Piechnik)

A triangulation of a lattice polytope into lattice simplices is quadratic if

• it is regular,
• it is unimodular, and
• its minimal non-faces have two elements.
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good bad bad bad

Quadratic triangulations are rare. They are cool because they provide a square-
free quadratic Gröbner basis for the ideal defining the projective toric variety
associated with the given polytope. (There is a whole hierarchy of interesting
covering properties; see Francisco Santos’ talk.)

The goal of this talk was to exhibit some examples of polytopes which admit
nice triangulations.
Paco’s Lemma [5, 4] Suppose all lattice points in P are vertices. Then P is
compressed (all pulling triangulations are unimodular) if and only if P has facet
width one.
Corollary. The following polytopes have regular unimodular triangulations.

• kP if P has one [5]
• polytopes with totally unimodular collection of facet normals (e.g., trans-

portation/flow polytopes) [3]
• order polytopes [4]
• stable polytopes of perfect graphs [4]

Examples of polytopes with quadratic triangulation include polygons with ≥ 4
boundary lattice points [1], products of polytopes with quadratic triangulation [3],
smooth polytopes with all lattice points vertices [2], smooth reflexive 4-polytopes
[2], and certain 3 × 3 transportation polytopes [2].

For the last two example classes, one uses a projection lemma that in special
situations allows to lift quadratic triangulations from a d-polytope to a (d + 1)-
polytope.
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A geometric view of Ehrhart coefficients

Achill Schürmann

Due to the work of McMullen [3] on lattice invariant valuations we have a “local
formula”

(1) ei(P ) =
∑

F≤P,dim F=i

µ(N(F, P )) · vol(F )

for the i–th Ehrhart coefficient of a lattice polytope P . Here, µ is a real valued
function on rational cones and N(F, P ) denotes the outer normal cone of F with
respect to P . The existence of a rational valued µ satisfying (1) can be attained
by application of the Hirzebruch–Riemann–Roch theorem to the local formula

Td(XΣ) =
∑

σ∈Σ

µ(σ)[V (σ)]

for the Todd class of a toric variety XΣ with associated lattice fan Σ (see [1], [4]).
The advantage of a local formula is obvious: It is possible to attain information on
the Ehrhart coefficients for large classes of polytopes with the same normal fans,
e.g., all transportation polytopes of a fixed dimension.

So how can we construct such µ? Recently, Pommersheim and Thomas [5] gave
constructions of rational valued µ (see abstract of Pommersheim), answering a
question of Danilov [1]. We give an independent, elementary construction, which
allows to compute values of µ as differences of summed volumes. We hereby give
an elementary “geometric interpretation” of Ehrhart coefficients.

Let Λ denote an arbitrary lattice in Rd with det(Λ) = 1, e.g. Λ = Zd. For
each sublattice L of Λ we have the freedom to choose a lattice tile TL in the
linear hull lin(L) of L, that is, a compact subset with vol(TL) = det(L) and
L + TL = lin(L). A canonical choice is for example the Dirichlet–Voronoi–cell of
L (see [2]). Additionally we choose a lattice tile T of Λ which may differ from TΛ.
The freedom of these choices allows us to construct many different µ. In order to
describe the construction in greater detail, let 〈·, ·〉 denote the usual dot product
on Rd and N∗ = {x ∈ Rd : 〈x, y〉 ≤ 0, ∀y ∈ N} the dual (rational) cone of a
rational cone N .

The idea is that a possible choice for µ(N) is the average volume of (N∗∩Λ)+T
in N + lin(N)⊥, up to a possibly large error term. This error term depends on
µ(N̄), N̄ < N , that is, on all true subfaces N̄ of N . It is computed from volumes
that we derive from “pieces” RN . These pieces allow different dissections of Rd

and in a sense give a “geometric meaning” to µ.
If dim(N) = 0 we set RN = TΛ and µ(N) = 1. Otherwise, we first compute

RN̄ and µ(N̄) for all N̄ < N . Then, for all N̄ < N , we consider lattice points
x ∈ L̄ = Λ ∩ lin(N̄)⊥ with the property that the bounded “parts” PN̄ (x) =
(x+RN̄ )∩N̄∗ arecontained in N∗ and do not overlap other PN̄ ′(x′), with N̄ ′ < N ,
dim(N̄ ′) = dim(N̄) and x′ ∈ L̄′. Let XN̄,N denote the maximal subset of L̄ with
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these properties and set

RN =



R
d \

⋃

N̄<N

(XN̄,N + RN̄ )



 ∩ (TL + lin(N)) .

The part in big parentheses is invariant with respect to lattice invariant transla-
tions of L = Λ ∩ lin(N)⊥. So we have a dissection

R
d = (L + RN ) ∩

⋃

N̄<N

(XN̄,N + RN̄ ).

If we think of larger and larger polytopes with the same outer normal cones, we can
dissect Rd by covering corresponding faces with translates of RN , up to some part
along their boundary. By our construction, this remaining part can be covered by
pieces RN̄ , N̄ > N .

With RN we define µ(N): Let

vN = vol (RN ∩ ((N∗ ∩ Λ) + T ))

and for all N̄ < N let

vN̄,N = vol
(

RN ∩ N∗ ∩ lin(N̄)
)

.

Then

µ(N) =



vN −
∑

N̄<N

vN̄,N · µ(N̄)



 / vol(TL).

Although the computation of µ via volumes is messy, the construction might be
of use for estimations of appropriate µ. Note also that it can be applied directly
to any rational cone and not only to unimodular cones. Simple examples indicate
that there is a choice of lattice tiles giving the same µ as given by the construction
of Pommersheim and Thomas. If at all possible, it is is not clear so far how this
choice might look like in general. By allowing the lattice tiles to be non–convex
and/or non–symmetric with respect to the origin we attain certainly many µ which
are not covered by the construction of Pommersheim and Thomas.
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Crystals, polytopes, and representation theory

Peter Littelmann

The aim of the talk was to present an overview on some recent developments in
the use of polyhedral combinatorial methods in classical representation theory of
semisimple Lie algebras. The main emphasis was put on the connections between
character formulas / tensor product formulas, crystal graphs, integral points in
convex polytopes and flat deformations of flag varieties.

For the general linear group GLn(C), Gelfand and Cetlin [5] associated to a
partition λ = (λ1, . . . , λn) of length at most n (i.e., an irreducible polynomial

representation of GLn(C)) a real polytope in R
1

2
n(n−1), the so called Gelfand–

Tsetlin pattern of shape λ. The number of these patterns is the dimension of
the corresponding representation. It is also easy then to deduce similar kind of
formulas for the dimension of weights spaces. Extensions of this notion to other
classical groups have been given Gelfand and Cetlin [6] and Zhelobenko [12, 13].

A new way to associate convex polytopes to representations came together
with the introduction of the notion of the crystal graph of a representation. Note
that Luzstig [11] showed that the theory of finite dimensional representations of
a semisimple complex Lie algebra g and its quantum group Uq(g) over C(q) (q a
variable) are essentially the same, both are classified by integral dominant weights.
Further, Lusztig introduced integral forms Uint(g), Vint(λ) of the quantum group
and the representations, defined over the ring of Laurent polynomials, and showed
that these specialize (essentially) for q = 1 to the classical enveloping algebra of
g and the corresponding representation. Kashiwara [7] analyzed in a similar way
the situation at q = 0 and found that in this case the representation in the limit
has a very nice canonical basis, the crystal basis. Hence one can associate to a
finite dimensional representation V (λ) of g a crystal graph G(λ) having as vertices
the elements of the crystal basis, and two elements b, b′ are joined by an arrow,
colored with the simple root α, if the Kashiwara operator fα maps b onto b′.

One way to get a combinatorial model for the crystal graph is the path model
[8]. These piecewise linear paths have been encoded into integral points in a union
of polytopes by Dehy [4]. A nice algebraic geometric connection of these polytopes
with toric varieties has been found by Chirivi [3]. He generalized the notion of a
Hodge algebra or Algebra with Straightening Law and, using the description of the
coordinate ring of flag varieties in [10], he showed that they admit a flat defomation
into a union of toric varieties such that the associated polytopes correspond exactly
to those in [4].

Another approach was used in [9]. The idea of the construction is rather simple:
let b be an element of the crystal basis. If b is not the highest weight element,
then there is at least one incoming arrow with color a simple root α1. Denote
by n1 the maximal integer one can move up incoming arrows with this labe. By
repeating the procedure, one can associate to every element a sequence of integers
(n1, . . . , nr). To make the construction uniform for all elements of the crystal base,
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one fixes a reduced decomposition of the longest word in the Weyl group W and
applies the root operators according to the appearance in this decomposition.

It has been shown in [9] that this set of sequences is the set of integral points
in a rational convex polytope Cλ. In fact, there exists a convex rational cone Cg

such that Cλ can be obtained from Cg by cutting out certain halfspaces.
The defining equation for the cone Cg depends on the choice of the reduced

decomposition of the longest word in the Weyl group. Many simple examples for
the defining equations can be found in [9], an algorithm for an arbitrary decom-
position can be found in [1]. In this paper they go a step beyond the problem
of finding character formulas, they solve the problem to find explicit polyhedral
combinatorial expressions for multiplicities in the tensor product of any two simple
modules. Again, Berenstein and Zelevinsky make use of a lot of technics related
to the theory of quantum groups and canonical basis.

A beautiful connection with the geometry of toric varieties is given by Caldero in
[2], he shows that for every reduced decomposition there exists a flat deformation
of the flag variety into a toric variety such that the corresponding graded algebra
corresponds to the semigroup of integral points in the cone Cg.
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Local cycle expressions for the Todd class of a toric variety

James Pommersheim

(joint work with H. Thomas)

This talk is based on a paper which is to appear in the (J. Amer. Math. Soc.,
to appear). We show how to construct cycles which represent the Todd class of a
toric variety. Given a lattice with an inner product, we assign a rational number
µ(σ) to each rational polyhedral cone σ in the lattice in such a way that for any
fan Σ, the Todd class of the corresponding toric variety XΣ is given by

(1) Td XΣ =
∑

σ∈Σ

µ(σ)[V (σ)].

Our Todd class construction yields a construction of a local formula for the
number of lattice points in a lattice polytope. Formulas of this type were first
obtained by P. McMullen in 1983, though non-constructively. In particular, given
a lattice M with an inner product, we may associate a rational number µ(σ)
to each rational polyhedral cone in the dual lattice, in such a way that for any
polytope P in M , we have

(2) #(P ∩ M) =
∑

F⊂P

µ(N(P, F ))Vol(F ),

where the sum is over all faces F of P , and N(P, F ) denotes the outer normal cone
to P at F .

More generally, instead of choosing an inner product on the lattice, we may
choose a complement map, a suitable assignment of linear subspaces to cones. We
show that under certain conditions, each such choice of complement map yields a
Todd class formula, and hence a local lattice point formula.

We also note that the functions µ constructed here are suitably additive under
subdivision, and this implies their polynomial-time computability using Barvinok’s
algorithm for writing any cone as the sum of unimodular cones with coefficients 1
and −1. Indeed, existing software such as LattE or Barvinok could be modified to
compute the function µ efficiently for any choice of complement map. One could
thereby reduce the computation of the Ehrhart polynomial of a lattice polytope
P to the volumes of the faces of P . One can also avoid the computation of these
volumes, by directly intersecting the Todd class of the toric variety with the Chern
character of a certain line bundle associated to the polytope, a standard method
in this theory (see, for example, the survey article of Barvinok and Pommersheim,
1999). This yields an algorithm for computing the Ehrhart polynomial of a lat-
tice polytope. It would be interesting to compare this algorithm with the usual
Barvinok’s algorithm, both in theory and practice, especially on some class of
non-unimodular polytopes.

One question that arises naturally out of this work is to classify all functions µ
which give a local formula for the Todd class, i.e. which satisfy Equation (1) for all
fans Σ. Similarly, one might ask for a classification of all functions µ which satisfy
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the lattice point formula of Equation (2). Our work shows the any complement
map can be used to construct such µ, but leaves open the possibility that there
exist µ that do not come from this construction.

Minkowski’s theorem: counting lattice points and cells

Roman Vershynin

Every convex body K in Rn admits a coordinate projection that contains at least
| 16K| cells of the integer lattice, provided this volume is at least one. This main
result is a cell-counting variant of the classical Minkowski’s theorem, which states
that K contains at least | 12K| points of the integer lattice (provided K is origin
symmetric). The proof of the cell-counting theorem relies on an extension to Zn

the known Sauer-Shelah theorem in the extremal combinatorics.

Bounds on the lattice point enumerator of convex bodies

Martin Henk

For a convex body K ⊂ Rn we denote by G(K) = #(K ∩ Zn) the lattice point
enumerator of K. It is still an unsolved problem to find a good upper bound on
G(K) in terms of other functionals of the convex body. In analogy to the Ehrhart
polynomial for lattice polytopes in would be desirable to have an upper bound of
the type

(1) G(λK) ≤

n
∑

i=0

λiαi(K), λ ∈ R≥0,

for certain functionals αi(). In particular, it should hold αn(K) = vol(K), where
vol(K) denotes the volume of K, and αn−1(K) should be related to the surface
area of K.

In 1973 Wills conjectured that (1) holds with αi(K) = Vi(K), where Vi() de-
notes the i-th intrinsic volume. Note that V0(K) = 1, Vn(K) = vol(K) and
Vn−1(K) is half of the surface area K. Although this conjecture has been verified
for n ≤ 3 and for certain classes of convex bodies, in general it is false. The first
counterexample is due to Hadwiger in dimensions ≥ 441. Later it was shown that
Wills’ conjecture is even false for n ≥ 207 [1]. An open problem in this context
is the question whether at least the first two coefficients in Wills’ conjecture are
correct, i.e., does there exist a constant c(n) depending only on the dimension such
that

G(K) ≤ Vn(K) + Vn−1(K) + c(n)

n−2
∑

i=0

Vi(K) ?

A stronger conjecture of the same type is due to Ehrhart. He proved for dimensions

≤ 3 that G(K) ≤ Vn(K)+Vn−1(K)+
∑n−2

i=0 Vi(Q), where Q is the smallest lattice
box containing K, and conjectured that this is true for all dimensions.
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The oldest general upper bound on G(K) is due to Blichfeldt. To this let
K be a convex body containing n + 1 affinely independent lattice points. Then
G(K) ≤ n! vol(K)+ n, which follows from the fact that such a body must contain
at least G(K) − n distinct lattice simplices. A classical lower bound on G(K) is
due to Bokowski, Hadwiger and Wills which can be expressed as

Vn(K) − Vn−1(K) < G(K).

Here it is an open problem how this bound can be generalised to arbitrary lattices.
Now in the following let K be a 0-symmetric convex body. The most prominent

inequality relating lattice points and volume of a 0-symmetric convex body is due
to Minkowski. He showed that

(2) G(int(K)) = 1 =⇒ vol(K) ≤ 2n.

There are several possibilities to look for generalisations of this result. For
instance, let Cn = [−1, 1]n be the unit cube and let Gi(P ), 0 ≤ i ≤ n, be the
coefficients of the Ehrhart polynomial of a 0-symmetric lattice polytope P . Then
Wills asked

G(int(P )) = 1 =⇒ Gi(P ) ≤ Gi(C
n) = 2i

(

n

i

)

?

Since Gn(P ) = vol(P ) and in view of (2) the answer is certainly yes for i = n.
Furthermore, the case i = n− 1 has been proven by Wills. Of course, one can also
ask for an inequality of type (2) for arbitrary convex bodies. However, in order
to bound the volume in this case additional assumptions are necessary. Let us
assume that the centre of gravity of K is the origin. Ehrhart conjectured that

G(int(K)) = 1 =⇒ vol(K) ≤
(n + 1)n

n!
?

So far this inequality has only been proven in the planar case. The bound would
be best possible as the family of lattice simplices {x ∈ Rn : xi ≥ −1,

∑

xi ≤ 1}
show. Minkowski himself proved a very strong generalisation of (2). To this end
let Λ ⊂ Rn be an arbitrary lattice and for 1 ≤ i ≤ n let λi(K, Λ) = min{λ >
0 : dim(λK ∩ Λ) ≥ i} be the i-th successive minimum of K (with respect to Λ).
With this notation (2) can be reformulated as λ1(K, Λ)n vol(K) ≤ 2n detΛ and
Minkowski also proved the stronger inequality

(3) λ1(K, Λ) · λ2(K, Λ) · . . . · λn(K, Λ) vol(K) ≤ 2n detΛ.

In [2] it is conjectured that a similar relation holds if the volume is replaced by
the lattice point enumerator, namely

(4) GΛ(K) = #(K ∩ Λ) ≤

n
∏

i=1

⌊

2

λi(K, Λ)

⌋

?

It is easy to see that (4) implies (3). Since λi(µK, Λ) = 1
µλi(K, Λ) the upper

bound in (4) may be regarded as a quasi-polynomial. In [2] the conjecture has
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been verified for n = 2 and also the weaker inequality GΛ(K) ≤ ⌊2/λ1(K, Λ)⌋n

was shown. In [5] it was proven that

GΛ(K) < 2n−1
n

∏

i=1

⌊

2

λi(K, Λ)

⌋

.

For more information on bounds on the lattice point enumerator as well as for
references of the presented inequalities we refer to the survey [4] and the book [3].

References

[1] U. Betke and M. Henk. Intrinsic volumes and lattice points of crosspolytopes. Monatsh.
Math., 115(1-2):27–33, 1993.

[2] U. Betke, M. Henk, and J. M. Wills. Successive-minima-type inequalities. Discrete Comput.
Geom., 9(2):165–175, 1993.

[3] P. Erdös, P. M. Gruber, and J. Hammer. Lattice points, Longman Scientific & Technical,

Harlow, Essex/Wiley, New York, 1989.
[4] P. Gritzmann and J. M. Wills. Lattice points. In Handbook of convex geometry, Vol. A, B,

pages 765–797. North-Holland, Amsterdam, 1993.
[5] M. Henk. Successive minima and lattice points. Rend. Circ. Mat. Palermo (2) Suppl., (70,

part I):377–384, 2002.

Basis expansions and roots of Ehrhart polynomials

Julian Pfeifle

(joint work with M. Beck, J. De Loera, M. Develin, and R. P. Stanley)

The Ehrhart polynomial iP of a d-dimensional lattice polytope P ⊂ Rd is
usually written in the power basis of the vector space of polynomials of degree d:

iP (n) =

d
∑

i=0

ci ni .

In this talk, we argued that comparing this representation with the basis expansion

iP (n) =

d
∑

i=0

ai

(

n + d − i

d

)

yields useful information about iP . Note that in the literature sometimes the
notation h∗

i is used instead of ai.

(1) The inequalities ai ≥ 0 (that follow from the fact that iP is the Hilbert
function of a semi-standard graded Cohen-Macaulay algebra) are used to
derive all other known inequalities [1] [2] [3] [6] for the coefficients ci, with
the exception of the inequality cd−1 ≥ 1

2 · (normalized surface area) that
comes from geometry.
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(2) Some of the coefficients in this representation have nice interpretations:

a1 = iP (1) − (d + 1) ,

a2 = iP (2) − (d + 1)iP (1) ,

ad−1 = (−1)d
(

iP (−2) − (d + 1) iP (−1)
)

,

ad = (−1)d iP (−1) = #{inner points} .

(3) Expressing the Ehrhart polynomial in this basis makes it easy to prove
relations such as

(

d

ℓ

)

∆kiP (0) ≤

(

d

k

)

∆ℓiP (0),

where ∆kiP is the k-th difference of iP .

We also present new linear inequalities satisfied by the coefficients of Ehrhart
polynomials and relate them to known inequalities.

Next, we investigated the roots of Ehrhart polynomials:

Theorem.

(a) The complex roots of Ehrhart polynomials of lattice d-polytopes are bounded
in norm for fixed d.

(b) All real roots of Ehrhart polynomials of d-dimensional lattice polytopes lie
in the half-open interval [−d, ⌊d/2⌋). For d = 4, the real roots lie in the
interval [−4, 1).

(c) For any positive real number t, there exists an Ehrhart polynomial of suf-
ficiently large degree with a real root strictly larger than t. In fact, for
every d there is a d-dimensional 0/1-polytope whose Ehrhart polynomial
has a real zero αd such that limd→∞ αd/d = 1/(2πe) = 0.0585 · · · . In
particular, the upper bound in (b) is tight up to a constant.

An experimental investigation of the Ehrhart polynomials of cyclic polytopes
leads to the following conjecture:

Conjecture. Let P = Cd(n) be any cyclic polytope realized with integer vertices on
the standard moment curve t 7→ (t, t2, . . . , td) in Rd. Then the Ehrhart polynomial
of P reads

iP (n) =

d
∑

k=0

volk
(

πk(P )
)

nk,

where vold(·) is the standard d-dimensional volume, volk(·) for k = 0, 1, . . . , d − 1
is the normalized lattice volume, and πk : Rd → Rk is the projection to the first
k coordinates.

Problem. Find an explicit expression for the Todd class of the toric variety
associated to the outer normal fan of P = Cd(n).

This problem has been solved for 0 ≤ d ≤ 3 by using the expressions for the
codimension ≤ 3 parts of the Todd class from [4] and the techniques of [5]. In
particular, the conjecture has been proven for 0 ≤ d ≤ 3.
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On normal polytopes without regular unimodular triangulations

Francisco Santos

A lattice polytope P ⊂ R
d is normal if nP ∩ Z

d = n(P ∩ Z
d) for every n ∈

N. Normal polytopes arise naturally in algebraic geometry and in combinatorial
optimization [8]. Starting with [6], it has been repeatedly observed that normality
of a polytope is closely related to its being covered by unimodular simplices. More
precisely, from [6, 3, 5] one can extract the following sequence of properties, each
of which implies the next one. In all of them, S = P ∩Z. A simplex is unimodular
if its vertices are a basis for the affine lattice Zd. A triangulation is unimodular if
all its simplices are.

(1) All simplices with vertices in S are unimodular. (P is totally unimodular).
(2) P is compressed. (All its pulling triangulations are unimodular).
(3) P has a unimodular regular triangulation.
(4) P has a unimodular triangulation.
(5) P has a unimodular binary cover. This is a property introduced by Firla

and Ziegler [3], whose significance comes from the fact that it is much
easier to check algorithmically than any other of the properties (3) to (8).

(6) P has a unimodular cover. (Every x ∈ P lies in some unimodular simplex).
(7) For every n, every integer point in nP is an integer positive combination

of an affinely independent subset of points of S. (This is called the Free
Hilbert Cover property in [1])

(8) For every n, every integer point in nP is an integer positive combination
of at most d + 1 points of S. (The Integral Carathéodory Property of [3]).

(9) For every n, every integer point in nP is an integer positive combination
of an affinely independent subset of points of S. (P is normal).

It is very easy to find examples that prove 3 6⇒ 2 and 2 6⇒ 1, but not so easy for
any of the other implications. Ohsugi and Hibi [5] found the first normal polytope
without regular unimodular triangulations, which turned out to give 4 6⇒ 3. Then
Bruns and Gubeladze [1] proved 8 ⇔ 7 and found an example for 9 6⇒ 8 [2]. The
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implications from 7 to 4 remain open. (There is an example of a cone, not a
polytope, disproving 5 ⇒ 4 in [3]).

In this talk, after reviewing the above concepts, we intend to give a new look
at the Hibi-Ohsugi and Bruns-Gubeladze examples. On the one hand, using poly-
hedral combinatorics tools we give a new simple proof of the following theorem,
found independently by Hibi-Ohsugi [4] and Simis-Vasconcelos-Villarreal [7]. Our
proof adds the word “binary”, not present in the original statements, to part (c).

We recall that the edge polytope PG of a connected graph G with d vertices and
n edges is the convex hull of the n points {ei + ej : ij ∈ G} ⊂ R

d. It lies in an
affine hyperplane and in a lattice of index 2 (which means all the properties above
need to be modified accordingly). It has dimension d − 1, unless G is bipartite in
which case has dimension d − 2 and is totally unimodular.

Theorem. The following properties are equivalent for a graph G:

(a) Every two vertex-disjoint cycles in G are joined by an edge.
(b) PG is normal.
(c) PG has a unimodular binary cover.

We also provide a simplified proof of the fact that Ohsugi and Hibi’s normal
polytope has no regular unimodular triangulation.

We next observe that by a unimodular change of coordinates the normal poly-
tope of Bruns and Gubeladze becomes a 0/1 5-dimensional lift of the 4-dimensional
polytope ∆2,5 := conv({ei + ej : i, j = 1, . . . , 5}) ⊂ R5. This is known as the sec-
ond 4-dimensional hypersimplex [8] and is the edge polytope of the complete graph
K5. In particular, similar methods to those applied in the first example can be
used here (with some care) to prove the following:

Theorem. Let P be the normal polytope without the integral Carathéodory’s prop-
erty appearing in [1, 2].

(1) P is a projection of the Hibi-Ohsugi polytope in [5]. The projection π is
unimodular and π(P ∩ Z9) = π(P ) ∩ Z4.

(2) For every n, every integer point in nP can be written as an integer positive
combination of at most 7 vertices of P .

Part (2) allows us to conclude that the Carathéodory rank of P is 7 (we prove the
upper bound and the lower bound is the main result in [2]). Part (1) suggests one
should study the intermediate projections between P and π(P ), and probably will
get new examples of normal polytopes without regular unimodular triangulations,
hopefully disproving some of the remaining implications in our initial list. Another
interesting approach is to try to find an extension of Theorem 1 to the class of
“0/1 liftings of edge polytopes”.
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