
Mathematisches Forschungsinstitut Oberwolfach

Report No. 45/2004

Nichtkommutative Geometrie

Organised by
Alain Connes (Paris)

Joachim Cuntz (Münster)

Marc A. Rieffel (Berkeley)

September 12th – September 18th, 2004

Abstract. These notes contain the extended abstracts of talks given at the
meeting on ’noncommutative geometry’ in September 2004. The range of
topics includes index theory, algebraic and topological K-theory, cyclic ho-
mology, quantum groups, spectral triples, the Baum-Connes conjecture as
well as number theory, dynamical systems and mathematical physics.

Mathematics Subject Classification (2000): 11F, 19D, 19K, 22D, 46L, 59B2X, 81T.

Introduction by the Organisers

Noncommutative geometry applies ideas from geometry to mathematical struc-
tures determined by noncommuting variables. Within mathematics, it is a highly
interdisciplinary subject drawing ideas and methods from many areas of mathe-
matics and physics. Natural questions involving noncommuting variables arise in
abundance in many parts of mathematics and quantum mathematical physics.

On the basis of ideas and methods from algebraic topology and Riemannian
geometry, as well as from the theory of operator algebras and from homological
algebra, an extensive machinery has been developed which permits the formula-
tion and investigation of the geometric properties of noncommutative structures.
Areas of intense research in recent years are related to topics such as index theory,
K-theory, cyclic homology, quantum groups and Hopf algebras, the Novikov- and
Baum-Connes conjectures as well as to the study of specific questions in other fields
such as number theory, modular forms, topological dynamical systems, renormal-
ization theory, theoretical high-energy physics and string theory.
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The meeting was attended by 45 participants, including a fair number of young
mathematicians but also many of the leading experts in the field. The exchange of
ideas was very lively and quite a few significant new results were presented in the
talks, which covered many of the aspects of noncommutatve geometry mentioned
above.
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Abstracts

Spectral Flow and resolvent cocycles

Alan L. Carey

(joint work with John Phillips, Adam Rennie, Fyodor A. Sukochev)

The odd local index theorem of Connes and Moscovici [CoM] may be thought
of as a far reaching generalisation of the classical index theorem for Toeplitz oper-
ators. It is thus a natural question to ask whether the index theorem of Coburn,
Douglas, Schaeffer and Singer [CDSS, CMX] proved in the setting of semifinite von
Neumann algebras and giving a topological formula for the Breuer-Fredholm index
of Weiner-Hopf operators with almost periodic symbol is the prototype for a von
Neumann algebra version of the local index theorem. This question was answered
in the affirmative by our noncommutative geometry calculation of the index of
Toeplitz operators with noncommutative symbol [CPS2, L]. In both cases there
is a clear interpretation of the index as computing spectral flow along a certain
path of unbounded self-adjoint Breuer-Fredholm operators. (This follows from
recent work of some of us in [CP1, CP2] interpreting the Breuer-Fredholm index
of the [CDSS] Weiner-Hopf operators as ‘type II’ spectral flow.) This motivated
the present general study of the local index formula of Connes and Moscovici in
the setting of semifinite von Neumann algebras via a computation of spectral flow
along a path of self-adjoint unbounded Breuer-Fredholm operators.

This line of reasoning touches on a more general program outlined by [BeF]
and applied there to foliations. Other examples include differential operators with
almost periodic symbol [Sh], the L2-index theorem (see [M] and references therein).

The starting point is a Hilbert space H on which there is an unbounded densely
defined self adjoint Breuer-Fredholm operator D affiliated to a semifinite von Neu-
mann algebra N . In this setting Carey-Phillips introduced an integral formula for
the spectral flow along the linear path joining D to a unitarily equivalent operator
uDu∗, [CP1, CP2], where u ∈ N is such that [D, u] extends to a bounded opera-
tor on H . The natural framework for this formula is that of odd spectral triples
(generalised to the von Neumann setting as in [CP1, BeF, CPS1, CPS2]).

We exploit the fact the spectral flow formula is an integral of an exact one-form
(this idea was inspired by [G, Si]) hence the path of integration may be changed to
obtain a new formula which is amenable to perturbation theory methods. We em-
ploy the perturbation technique of the resolvent expansion to write spectral flow
in terms of a ‘function-valued cochain’ in the (b, B) bicomplex of cyclic cohomol-
ogy. Our function-valued cochain is reminiscent of, though distinct from, Higson’s
‘improper cocycle’ [H]. Our cochain is a finite (b, B) cocycle modulo functions
holomorphic in a half-plane. We refer to this cochain as the resolvent cocycle and
it should be thought of as a substitute for the JLO cocycle (which is the starting
point for the argument of Connes-Moscovici).
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The resolvent cocycle can be further expanded employing the quantised pseudo-
differential calculus of Connes-Moscovici, [CoM]. The end result is an expression
for the spectral flow in terms of a sum of generalised zeta functions of the form

ζb(z) = τ(b(1 + D2)−z), b ∈ N .

This sum of zeta functions is meromorphic in a half-plane, with (at worst) only a
single simple pole at the ‘critical point’in this half-plane. The residue at this pole
is precisely the spectral flow.

Under the assumption that the individual zeta functions in this sum analytically
continue to a deleted neighbourhood of the critical point, we may take residues of
the individual terms at the critical point. The resulting formula, when N = B(H),
is essentially that which is obtained by pairing the (odd, renormalised) resolvent
cyclic cocycle obtained by Connes and Moscovici, [CoM], with the Chern character
of the unitary u∗. The only difference between the two formulae is that we cannot
assume D is invertible (it may have zero in the continuous spectrum) and hence
use inverse powers of (1 + D2)1/2, whereas Connes-Moscovici assume that D is
invertible and use inverse powers of |D|.

The novel aspects of our approach are:
• Our result calculates spectral flow in semifinite spectral triples generalising

part of the type I theory of [CoM]. Specifically, our formula for spectral flow is
given in terms of a cyclic cocycle, which is the generalisation to semi-finite von
Neumann algebras of the residue cocycle of [CoM].

• Only the final step of our proof requires the analytic continuation property
of the generalised zeta functions. Indeed, we express spectral flow as the residue
of a sum of zeta functions without invoking any analytic continuation hypothesis.

• Assuming the individual zeta functions in the above sum have analytic contin-
uations to a deleted neighbourhood of the critical point allows us to write spectral
flow as a sum of residues of zeta functions. This gives a si,ple proof that the
residues of these zeta functions then assemble to form a finite (b, B) cocycle for
the algebra A of the spectral triple.

• We make no assumptions on the decay of our zeta functions along vertical lines
in the complex plane thus reducing the side conditions that need to be checked
when applying the local index formula of [CoM].

• Our proof that the residue cocycle [CoM] is indeed a (b, B)-cocycle is quite
simple even in the general semifinite case by virtue of using our resolvent cocycle.

• Except for the need to verify a number of estimates, the strategy of our proof
is straightforward, and is identical in both the type I and type II cases

• We remark that there is an unrenormalised version of the residue cocycle in
[CoM] containing an infinite number of terms in the case that one of the terms
in the expansion has an essential singularity, whereas their renormalised version
always has a bounded number of terms. The unrenormalised version presents an
issue of convergence which is difficult to address. Since we do not pass through
an intermediate step where the cocycle contains a potentially infinite number of
terms, we are free to allow essential singularities from the outset.
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Equivariant Spectral Triples for SUq(n), n > 2: nonexistence results

Partha Sarathi Chakraborty

A natural question in the context of Noncommutative Geometry is what should
be candidates of Lie groups in the noncommutative framework. It was believed
that the C* algabraic theory of quantum groups do not go hand in hand with the
theory laid up by Alain Connes. Earlier we proved that this believe is ill founded.
A proper formulation of left invariant geometry was given and it was shown that
the prime example of quantum SU(2) fits well in the framework of NCG ([1]).
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Examples of Noncommutative spaces were created and was further analyzed by
Alain Connes ([2]). In the present work we describe a general technique to study
Dirac operators on noncommutative spaces under the additional assumptions of
equivariance governed by a quantum group. The Dirac operator D comes with
two restrictions on it, namely, it has to have compact resolvent, and must have
bounded commutators with algebra elements. Various analytic consequences of the
compact resolvent condition (growth properties of the commutators of the algebra
elements with the sign of D) have been used in the past by various authors. Here
we will take a new approach that will help us exploit it from a combinatorial
point of view. The idea is very simple. Given a selfadjoint operator with compact
resolvent, one can associate with it a certain graph in a natural way. This makes
it possible to do a detailed combinatorial analysis of the growth restrictions (on
the eigenvalues of D) that come from the boundedness of the commutators, and to
characterize the sign of the operator D completely. Using this, we then prove that
for SUq(n), n > 2 the L2-space does not admit any equivariant Dirac operator
with nontrivial sign acting on it. This is joint work with Arupkumar Pal of
Indian Statistical Institute, Delhi.
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Renormalization and motivic Galois theory

Alain Connes

(joint work with Matilde Marcolli)

We describe our joint work [7] on the interpretation of renormalization as a
Riemann-Hilbert correspondence thus clarifying the role of the Birkhoff decompo-
sition appearing in the joint work with Kreimer [5], [6] which provided a conceptual
understanding of perturbative renormalization in terms of the Birkhoff decompo-
sition of loops in a pro-unipotent Lie group G determined by the physical theory,
through the Hopf algebra of Feynman graphs [14], [5]. It however left open the
interpretation of renormalization in the context of the Riemann–Hilbert correspon-
dence, a broad term encompassing, in various forms and levels of generalization,
equivalences between geometric problems associated to differential systems with
singularities and representation theoretic data associated to the monodromy. It
will be used here in a local irregular singular context, similar to [16].

In our joint work [7] we find the missing Riemann–Hilbert correspondence
and describe the corresponding geometric differential systems and “monodromy
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group”. We construct the Riemann–Hilbert correspondence associated to pertur-
bative renormalization, in the form of a classification of flat equisingular bundles
in terms of representations of a “ motivic Galois group” U ∗.

The geometric problem is the classification of equisingular flat connections on
a two dimensional complex space B∗ which is the total space of a Gm-principal
bundle over an infinitesimal punctured disk ∆∗. This classification problem stems
directly from the divergences of the physical theory at the dimension D where one
would like to do physics. The base ∆∗ is the space of complexified dimensions
around D. The fibers of the principal Gm-bundle B describe the arbitrariness
in the normalization of integration in complexified dimension z ∈ ∆∗, in the
commonly used regularization procedure known as Dim-Reg (dimensional regu-
larization). The Gm-action corresponds to the rescaling ~ ∂/∂~. The group G is
the pro-unipotent Lie group whose Hopf algebra is the Hopf algebra of Feynman
graphs of [14], [5].

The equisingularity condition is a geometric formulation of the fact that in
quantum field theory, in the minimal substraction scheme, the counterterms are
independent of the choice of a unit of mass. An equisingular connection is a
Gm-invariant G-valued connection, singular on the fiber over the origin of ∆, and
satisfying the following property: the equivalence class of the singularity of the
pullback of the connection by a section of the principal Gm-bundle only depends
on the value of the section at the origin.

The group playing the role of the monodromy group is in fact a “ motivic
Galois group” U∗ which is uniquely defined through the Riemann–Hilbert corre-
spondence. Its representations classify equisingular flat vector bundles. As an
algebraic group scheme, U∗ is a semi-direct product by the multiplicative group
Gm of a pro-unipotent group scheme U whose Lie algebra is the free graded Lie
algebra

F(1, 2, 3, · · · )•

generated by elements e−n of degree n, n > 0.

Thus, there are three different levels at which Hopf algebra structures enter the
theory of perturbative renormalization. First, there is Kreimer’s Hopf algebra of
rooted trees [14], which is adapted to the specific physical theory by decorations
of the rooted trees. There is then the Connes–Kreimer Hopf algebra of Feynman
graphs, which is dependent on the physical theory by construction, but which
does not require decorations. There is then the algebra associated to the group
U∗, which is universal with respect to the set of physical theories.

We show that the divergences of quantum field theory provide the data allow-
ing one to define an action of the group U on the set of dimensionless coupling
constants of physical theories, through the map of the corresponding group G to
formal diffeomorphisms constructed in [6]. In particular, this exhibits the renor-
malization group as the action of a one parameter subgroup Ga ⊂ U of the above
Galois group.
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We then construct a specific universal singular frame on principal U -bundles
overB. When using in this frame the dimensional regularization technique of QFT,
all divergences disappear and one obtains a finite theory, which only depends upon
the choice of a local trivialization for the principal Gm-bundle B. When computed
as iterated integrals, its coefficients are certain rational numbers that appear in
the local index formula of [9].

This means that we can view equisingular flat connections on finite dimensional
vector bundles as endowed with arithmetic structure. We show that they can be
organized into a Tannakian category with a natural fiber functor to the category
of vector spaces, over any field of characteristic zero. The Tannakian category
obtained this way is equivalent to the category of finite dimensional representations
of the affine group scheme U∗, which is uniquely determined by this property.

Closely related group schemes appear in motivic Galois theory and U ∗ is for
instance abstractly (but non-canonically) isomorphic to the motivic Galois group
GMT

(O) ([10], [11]) of the scheme S4 = Spec(O) of 4-cyclotomic integers, O =
Z[i][ 12 ].

The natural appearance of the “motivic Galois group” U ∗ in the context of
renormalization confirms a suggestion made by Cartier in [1], that in the Connes–
Kreimer theory of perturbative renormalization one should find a hidden “cosmic
Galois group” closely related in structure to the Grothendieck–Teichmüller group.
The question of relations between my work with Kreimer, motivic Galois theory,
and deformation quantization was further emphasized by Kontsevich in [13]. At
the level of the Hopf algebra of rooted trees, relations between renormalization
and motivic Galois theory were also investigated by Goncharov in [12].

This also realizes the hope formulated in [3] of relating concretely the renor-
malization group to a Galois group. Here we are dealing with the Galois group
dictated by renormalization and the renormalization group appears as a canonical
one parameter subgroup Ga ⊂ U .

The appearance of multiple polylogarithms in the coefficients of divergences in
QFT, discovered by Broadhurst and Kreimer, as well as recent considerations of
Kreimer on analogies between residues of quantum fields and variations of mixed
Hodge–Tate structures associated to polylogarithms (cf. [15]), suggest the exis-
tence for the above category of equisingular flat bundles of suitable Hodge-Tate
realizations given by a specific choice of Quantum Field Theory.

These facts altogether indicate that the divergences of Quantum Field Theory,
far from just being an unwanted nuisance, are a clear sign of the presence of totally
unexpected symmetries of geometric origin. This shows, in particular, that one
should understand how the universal singular frame “renormalizes” the geometry
of space-time using the Dim-Reg minimal substraction scheme and the universal
counterterms.
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Algebraic and topological K-theory of locally convex algebras

Guillermo Cortiñas

We consider complete locally convex algebras over the field C of complex num-
bers. We wish to compare various topological and algebraic K-theories of such
algebras. If A and B are two such algebras and p ∈ [1,∞], there is defined a

Bott-periodic bivariant K-theory kk
(p)
∗ (A,B) [2]; we write

Ktop,p
∗ (A) := kkp

∗(C, A) (∗ ∈ Z).

It is shown in [2] that

kk(p)(A,B) = kk(1)(A,B) (p ∈ [1,∞))
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Thus there are essentially two distinct kk(p)-theories, kk(1) and kk(∞). It is further
shown in [2] that

(1.1) Ktop,p
0 (A) = K0(A⊗π Lp) (p ∈ (1,∞])

Here K0 is the algebraic K-group, ⊗π is the projective tensor product, and Lp is
the p-Schatten ideal if p < ∞, and the ideal of all compact operators if p = ∞.
On the algebraic side we have the (Quillen-Gersten-Karoubi-Wagoner) K-theory
groups

(1.2) Kn(A) = πnK(A) (n ∈ Z).

Here K(A) is the nonconnective K-theory spectrum of [3], [5] and [7]. We shall
also consider Weibel’s algebraic homotopy K-groups ([8])

(1.3) KH∗(A) := πn(hocolim
∆op

([n] 7→ K(A⊗C[t0, . . . , tn]/ < 1− (t0 + · · ·+ tn) >))

It is shown in [8] that KH is invariant under polynomial homotopy and excisive.
One can also consider a version of this which is invariant under C∞-homotopy,
namely

(1.4) K∆(A) := πn(hocolim
∆op

([n] 7→ K(A⊗π C
∞(∆n)))

Our main result compares, for p ∈ (1,∞], the groups K top,p
∗ (A) with KH∗(A ⊗π

Lp), K∆
∗ (A ⊗π Lp) and K∗(A ⊗π Lp). To state the theorem we need one more

piece of notation. We write

HC∗(A) := HCalg
∗ (A/Q).

for the algebraic cyclic homology groups of A as a Q-algebra.

Theorem 1.1. Let A be a locally convex algebra, and p ∈ (1,∞]. Then

i) There are isomorphisms

KH∗(A⊗π Lp) ∼= Ktop,p
∗ (A) ∼= K∆

∗ (A⊗π Lp).

ii) There is a natural long exact sequence (n ∈ Z)

Ktop,p
n+1 (A) → HCn−1(A⊗π Lp) →

Kn(A⊗π Lp) → Ktop,p
n (A) → HCn−2(A⊗π Lp).

The two main ingredients of the proof are the excision theorem for infinitesimal
K-theory ([1]), the identity (1.1), and the variant of Kasparov’s homotopy invari-
ance theorem ([4]) for locally convex algebras proved in [2]. Apart from this, the
method of proof follows some standard arguments such as those discussed in the
survey paper [6].
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Algebraic K-theory and the coefficient ring in bivariant K-theory

for locally convex algebras

Joachim Cuntz

(joint work with Andreas Thom)

In this note we report on joint work with A.Thom. In [2] and [3] the author had
developed a bivariant K-theory for different categories of locally convex algebras.
An important problem that remained open for the variant kkalg of the theory,
that applies to arbitrary locally convex algebras, was the determination of the
coefficient ring R = kkalg(C,C). It was shown in [3] that the unital commutative
ring R admits a unital homomorphism into C and is therefore in particular non-
trivial. Also, in [3] a modified theory was discussed for which the coefficient ring
reduces to Z. However, this theory seemed hard to manage in general.
We can now prove that the coefficient ring can be reduced to Z simply by stabilizing
the algebra in the second variable by a Schatten ideal Cp. This stabilization gives a

very natural theory kk(p) that still admits a bivariant Chern character into periodic
cyclic theory. The present note contains an outline of the construction and of the
ideas involved in the computation of the coefficient ring for the stabilized theory.
More generally, for any locally convex algebra A, kk(p)(C, A) can be determined
in terms of algebraic K-theory.
A key ingredient in our proof is an old result by Higson (based on previous work by
Kasparov and Cuntz) showing that every stable split exact functor on the category
of C∗-algebras is homotopy invariant, [4]. The proof of this result can be adapted
to a setting with differentiable homotopies (“diffotopies”) and to locally convex
algebras.

1. The stabilized bivariant theory

In [3], a bivariant K-theory kkalg had been defined on the category of locally
convex algebras using noncommutative stable homotopy in a way analogous to [2].
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The theory has the usual properties of a bivariant topological K-theory (in partic-
ular it defines an additive category where the objects are locally convex algebras,
the morphism set for two objects A and B is the abelian group kkalg(A,B) and
this category is triangulated).
Given p ∈ [1,∞], let Cp denote the Schatten ideal of compact operators with p-
summable singular values in a separable Hilbert space. We include the case p = ∞,
where by definition C∞ is the ideal of all compact operators. Given a locally convex
algebra A, we denote by Cp ⊗̂A the completed projective tensor product.

Definition 1.1. Let A and B be locally convex algebras, p ∈ [1,∞] and n ∈ Z.
We define

kk(p)
n (A, B ) = kkalg

n (A, Cp ⊗̂B )

where kkalg
n is defined as in [3].

Proposition 1.2. For 1 ≤ p < ∞, the natural map kk
(1)
n (A, B ) → kk

(p)
n (A, B )

defines an isomorphism for all A,B and n.

Proof. By an argument from [2], the Schatten ideal Cp is isomorphic to C1 for all
1 ≤ p <∞ in the category kkalg. �

As a consequence we see that, in the definition of kk
(p)
n , we can restrict to the

cases p = 1 and p = ∞.

2. Diffotopy invariance of split-exact functors on the category of

locally convex algebras

Definition 2.1. Let E be a (covariant) functor from the category of locally convex
algebras to the category of abelian groups. We say that

• E is diffotopy invariant, if the maps E(C∞([0, 1], A)) → E(A) induced by
the different evaluation maps for t ∈ [0, 1] are all the same (it is easy to
see that this is the case if and only if the map induced by evaluation at
t = 0 is an isomorphism).

• E is split-exact, if, for every extension 0 → I → A → B → 0 of locally
convex algebras with a homomorphism splitting B → A, the induced se-
quence 0 → E(I) → E(A) → E(B) → 0 is exact (and then automatically
also split).

• E is M2-stable if the map E(A) → E(M2(A)) induced by the natural
inclusion j : A → M2(A) into 2 × 2-matrices is an isomorphism for each
locally convex algebra A.

• E is weakly Cp-stable, if there is a map E(Cp ⊗̂ A) → E(A), such that
the composition E(A) → E(Cp ⊗̂A) → E(A) with the map induced by the
natural inclusion A → Cp ⊗̂A is the identity for each locally convex algebra
A.

Definition 2.2. Let A and I be locally convex algebras. An abstract Kasparov
(A, I)-module is a triple (ϕ,U, P ) where
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• ϕ is a continuous homomorphism from A into a unital locally convex al-
gebra D containing I as an ideal.

• U is an invertible element and P is an idempotent element in D such that
the following commutators are in I for all x ∈ A:

[U,ϕ(x)], [P, ϕ(x)], [U, P ]

Let E be a functor on the category of locally convex algebras that is split
exact and M2-stable. Then every abstract Kasparov module (ϕ,U, P ) induces a
quasihomomorphism, in the sense of [1], from A to M2(I) and therefore a map
E(ϕ,U, P ) : E(A) → E(I)).

Theorem 2.3. Every functor from the category of locally convex algebras to the
category of abelian groups which is split exact and weakly Cp-stable for some p > 1,
is diffotopy invariant.

Sketch of proof. Let ev0, ev1 be the two evaluation maps C∞([0, 1], A) → A. As
in the argument by Kasparov-Higson one constructs two abstract (C∞([0, 1], A), A)-
Kasparov modules (ϕ,U0, P ) and (ϕ,U1, P ) such that E(evt) = E(ϕ,Ut, P ), t =
0, 1 and such that U1 = eihU0 for a selfadjoint element h in a suitable smooth
subalgebra of a C∗-algebra. The assumptions on E then imply (using a technical
lemma from [5]) that E(ϕ,U0, P ) = E(ϕ,U1, P ) as in [4]. 2

3. K0 of a stable algebra and kk(p)(C, A).

In this section we consider the functor E, defined on the category of locally
convex algebras by

E(A) = K0(Cp ⊗̂A)

where 0 is the usual algebraic K0-group. E is M2-stable in the sense of 2.1 and
thus also invariant under inner automorphisms. E is also split exact and weakly
Cp-stable. Thus by 2.3, E is diffotopy invariant. This is the key to proving the
following

Theorem 3.1. For every locally convex algebra A and for 1 < p ≤ ∞ one has

kk
(p)
0 (C, A) = K0(Cp ⊗̂A). In particular, kk

(p)
0 (C,C) = Z.

Sketch of proof. It follows from the definition of kkalg in that it is the universal
diffotopy functor into an additive category which is stable under tensoring with
the algebra K of smooth compact operators in both variables and has long exact
sequences in both variables, see [3]. The functor E satisfies these properties and
by what has been said above it also is diffotopy invariant. Therefore there exist
maps

kkalg(A,B) → Hom (E(C), E(Cp ⊗̂A)) → E(A)

The fact that the composition of these maps is an isomorphism can be proved
following the lines of the corresponding argument in [2], 7.2 and 7.4. 2
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Spectral Triples on Quantum Spheres

Ludwik Dabrowski

Spectral triple (A,H, D) is the key notion of the most recent ‘layer’ of non-
commutative differential geometry a la Connes, apt to encode the concept of a
noncommutative Riemannian spinc manifold. It consists of a (unital) ∗-algebra A
of bounded operators on a Hilbert space H and a self-adjoint operator D = D† on
H with
• compact resolvent (D − λ)−1, ∀λ ∈ C \ specD
• bounded commutators [D,α], ∀α ∈ A.
In the classical (commutative) situation the spectral triple (A,H, D) canonically
associated with a Riemannian spinc manifold consists of the algebra A of smooth
functions on M represented (by pointwise multiplication) on the Hilbert H space
of (L2) Dirac spinors, and of the Dirac operator D, constructed from the Levi-
Civita‘ connection (metric preserving and torsion-free) plus a U(1)-connection.
These data are of great importance both in Mathematics and Physics. Together
with the real structure and gradation operators J and γ (known also as charge con-
jugation and parity) they satisfy certain further seven properties which guarantee
that the underlying differential, metric and spin structure can be reconstructed
back from them.
A (noncommutative) spectral geometry (a la Connes), a generalization of these
concepts to noncommutative algebras A, has already found a plentiful of applica-
tions. But the whole zoo of q-deformed spaces coming from the quantum group
theory, was commonly believed not to match well the Connes’ approach. This
was supported by some apparent “no-go” hints such as that exponentially growing
spectrum of the quantum Casimir operator would prevent bounded commutators
with the algebra, some known differential calculi seemed not to come as bouned
commutators with any D, an early classification of equivariant representations of
A missed the spinorial ones and also on some deformation theory grounds.

However, the intense recent activity indicated a possibility to reconcile these two
lines of mathematical research. In the talk I review some of the simplest studied
examples of quantum spheres of lowest dimension (2 and 3). More precisely, I shall
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be concerned mainly with (the algebra of) the underlying space of the quantum
group SUq(2) and its two homogeneous spaces known as the standard and the
equatorial Podleś sphere.
Essential requirement will be the equivariance with respect to some Hopf ∗-algebra
U acting on A and the first order condition.

Existence of γ-elements

Heath Emerson

(joint work with Ralf Meyer)

Let G be a discrete group with a G-finite model for its classifying space EG for
proper actions of G. The Dirac dual Dirac method, invented by Mischenko and
Kasparov, and utilized since in numerous instances (e.g. [6], [7], [8]), is a powerful
means of proving, in specific cases, the Strong Novikov Conjecture (SNC), i.e.
injectivity of the analytic assembly map

Ktop
∗ (G) = KKG

∗ (C0(EG),C) → K∗

(
C∗

r (G)
)
.

It presents as sufficient conditions for SNC the existence of a proper G-C∗-algebra
P, and elements D ∈ KKG(P,C) called the Dirac class and η ∈ KKG(C,P) called
the dual Dirac class, such that D ⊗C η = 1P. If the Dirac dual Dirac method
applies to G, i.e. if P, D and η as above exist, then we say that G has a γ-element
(the latter referring to the class η ⊗P D ∈ KKG(C,C).) As SNC is not known in
general, it is not known whether every group G has a γ-element.

Another method of attaching SNC which has had some considerable success,
proceeds via coarse geometry. In this approach, one utilizes the Descent Principle,
(see e.g. [5]) which asserts that, at least if G is torsion-free, then isomorphism of
the coarse Baum-Connes assembly map

KX∗(|G|) → K∗

(
C∗(|G|)

)

implies injectity of the analytic assembly map, and thus SNC. The coarse Baum-
Connes assembly map for |G| (by the symbol |G| we mean the metric, or coarse
space, underlying G) only depends on G up to coarse equivalence of metric spaces.

We show that, actually, the Dirac-dual-Dirac method is related to the coarse
geometric method, and in fact, that if G is torsion-free, then the existence or
nonexistence of a γ-element for a group G is geometric, i.e. depends only on the
large-scale geometry of G.

To do this, we utilize a variant on a construction of Higson and Roe (see [10].)
For every metric space X we construct a C∗-algebra c(X) which we term the stable
Higson corona of X . The latter is by definition the quotient of the C∗-algebra of
continuous, bounded, vanishing variation functions on X with values in the C∗-
algebra of compact operators on an infinite dimensional separable Hilbert space,
by the ideal of those such functions vanishing at infinity. An obvious extension
gives a map

(1.1) µ∗
X : K̃∗+1

(
c(X)

)
→ KX∗(X),
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where KX∗(X) is a K-theoretic analog of the coarse K-homology KX∗(X) of X .
We call this map the ‘coarse co-assembly map for X .’ Its domain, co-domain, and
the map itself, all depend only on the large-scale geometry of X . See [4] for details.

Our first theorem is then:

Theorem 1.1. Let G be a discrete, torsion-free group with a G-finite model for
EG (equivalently, G has a finite model for BG.) Then the Dirac dual Dirac method
applies to G if and only if the coarse co-assembly map

(1.2) µ∗
|G| : K̃∗

(
c(|G|)

)
→ KX∗(|G|)

for |G| is an isomorphism. In particular, the existence or non-existence of a γ-
element for such a group G depends only on the large-scale geometry of G.

Similar results are available for groups with torsion, and for groups without
G-finite models for EG, but they are more complicated to state. In the case where
G has torsion, the finite subgroups of G must be taken into account in (1.2); if no
G-finite model for EG is available, we work with the system of G-compact subsets
of EG and take inverse limits. See [2] for the statements and proofs.

To extend the analysis further, we require a slightly modified version of the
stable Higson corona. If X is a metric (or more generally, a coarse) space, let
cred(X) be the quotient of the C∗-algebra of bounded continuous functions of
vanishing variation from X to the C∗-algebra of bounded operators on a Hilbert
space which are constant modulo compacts, by the ideal of those such functions
which are zero modulo the compacts, and which vanish at infinity. It is easy to
check that K̃∗

(
c(X)

)
∼= K̃∗

(
cred(X)

)
. Again cred(X) depends only on the large-

scale geometry of X .
Any group which acts isometrically on X also acts by automorphisms of c(X)

and of cred(X). For example, if we set X = |G|, with G a group satisfying the
hypotheses stated at the beginning, then, since G acts isometrically on |G| (in the
coarse sense), cred(|G|) becomes in a natural way a G-C∗-algebra. There is an
evident G-equivariant extension yielding a canonical map

(1.3) µ∗
|G|,G : Ktop

∗−1

(
G, cred(|G|)

)
→ RKKG

∗ (EG; C,C).

The codomain of the map (1.3) is directly related to the classical Novikov con-
jecture; elements of it correspond bijectively (rationally) to higher signatures for
G. The classical Novikov conjecture asserts that all such higher signatures are
homotopy invariant, in a slightly technical sense which we do not explain here.

Our results above can be refined by the following theorem.

Theorem 1.2. Let G be a discrete group with G-finite EG.

(1) Any element of RKKG
∗ (EG; C,C) in the range of the map (1.3) corresponds

to a homotopy invariant higher signature.
(2) The unit class 1EG ∈ RKKG

∗ (EG; C,C) lies in the range of map (1.3) if
and only if G has a γ-element.

Next, using a theorem of [9] we can analyze in geometric terms the dual Dirac
class itself, and not merely the question of its existence. According to loc.cit.,
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that part of the Dirac dual Dirac method (see first paragraph) which involves the

G-C∗-algebra P and the Dirac class D ∈ KKG(C,P) always applies ; that is, for
every group G there is a P and a D such that the Dirac dual Dirac method applies
to G if and only if there exists η ∈ KKG(C,P) such that D ⊗C η = 1P. Moreover,

D and P are unique up to KKG-equivalence, and for every G-C∗-algebra A, the
left hand side of the Baum-Connes conjecture with coefficients in A is isomorphic
to K∗(P⊗A oG), while the Baum-Connes map itself can be reformulated as the
map K∗(P ⊗A oG) → K∗(Aor G) induced by Kasparov product with D.

Attempts to write down sufficient conditions for a an individual class to lie
in the range of the map (1.3) led us to the rather surprising conclusion that the

group KKG(C,P) discussed in the previous paragraph can actually be calculated in
terms of the K-theory of the stable Higson corona (by means of spectral sequences
computing topological K-theory groups):

Theorem 1.3. Let G be a discrete group with G-finite model for EG. Then there
is a natural isomorphism

(1.4) Ktop
∗

(
G, cred(|G|)

)
∼= KKG

∗ (C,P).

Under this isomorphism, a dual Dirac class corresponds to any element of the
domain of (1.4) mapping to 1EG under the map (1.3).

Theorem 1.3, from which all previously stated theorems can be rapidly deduced,
has various other applications. For instance it can be used to show that proper
Lipschitz classes in the sense of [1] lie in the range of the map (1.3), and that a
dual Dirac class for a hyperbolic group must come (in a precise sense) from its
Gromov boundary.
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Duality and Index Theory

Jerome Kaminker

In commutative topology there are two standard types of duality—Poincaré
duality and Spanier-Whitehead duality. If M is a closed Spinc manifold then
there are K-theoretic versions which are related to each other and to the Thom
isomorphism by the following diagram.

KN+i−n(νM)
Spanier−Whitehead
−−−−−−−−−−−−−−→ Kn−i(M)

Φ

x
y∩[M ]K

Ki(M) = Ki(M)

Here, νM is the normal bundle of an embedding of M in a a high dimensional
sphere and it is known that this can be taken as a Spanier-Whitehead dual of M .

There are natural extensions of this to the noncommutative setting which have
been considered by several people, [2, 6, 5, 4]. Given a C∗-algebra, A, a Spanier-
Whitehead dual is an algebra DA such that there are classes ∆ ∈ K i(A⊗DA) and
δ ∈ Ki(A ⊗DA) satisfying that the respective Kasparov products induce inverse
isomorphisms

(1.1) ∆ : Kj(A) � Kj+i(DA) : δ.

If one can take DA to be A itself, then this is the definition of Poincaré duality
which Connes has introduced in his definition of a noncommutative manifold. The
notion of noncommutative Spanier-Whitehead duality arises in several settings.

1) If Γ is a cocompact lattice in a semi-simple Lie group G, then the Baum-
Connes conjecture for Γ is equivalent to C(BΓ) being a Spanier-Whitehead dual
for C∗

r (Γ). The classes ∆ and δ are given by the Mishchenko line bundle and the
dual Dirac class respectively.

2) The Cuntz-Krieger algebras OA and OAt are Spanier-Whitehead dual, [4].
3) If Γ is a torsion free hyperbolic group, then C(∂Γ) o Γ is its own Spanier-

Whitehead dual. Thus, it satisfies Poincaré duality, [3]. This duality is closely
related to the Baum-Connes isomorphism for hyperbolic groups. Indeed, there is
a commutative square relating them.

4) The Baum-Connes map for the group Γ = Zn is related to the Fourier-Mukai
transform by the following diagram.

(1.2)

K∗(BZn)
Baum-Connes
−−−−−−−−−→ K∗(C

∗
r (Γ))

Poincaré duality

y
yFourier transform

K∗(BZn)
Mukai transform
−−−−−−−−−−→ K∗(BZn).

Note that BZn = Tn and we are taking n even. The genuine Fourier-Mukai
transform is an isomorphism between the derived category of coherent sheaves on
an abelian variety with that of its dual variety. However, the explicit definition
of the transform can be used to induce a map on K-theory and that is what
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is intended in the diagram. One may observe that the proof that the actual
Mukai transform is an isomorphism can be based on application of the Stone-von
Neumann theorem, [7], and with some care, that result can be used to deduce that
the Baum-Connes map is an isomorphism for Zn. It would be interesting to obtain
a direct proof of Baum-Connes for Zn or for nilpotent groups based on Stone-von
Neumann.

These examples suggest a relation between noncommutative Spanier-Whitehead
duality and noncommutative transversality. By the latter we mean that two alge-
bras, represented on the same Hilbert space, are transverse if products of elements
from the two algebras are compact. This is more apparent in the next example.

5) Let A ∈ SL(2n,Z) have no eigenvalues of absolute value 1. The matrix A
induces an expansive automorphism of the torus, T 2n, and its stable and unstable
foliations are transverse. Assume that they are actually orthogonal in an appropri-
ate sense. Then one can show that the C∗-algebras of the foliations are transverse
in the above sense and, moreover, are Morita equivalent, hence isomorphic since
they are stable. It would be interesting to know when two noncommutative torii
which are Morita equivalent, have this property because they can be obtained
as the stable and unstable algebras for a toral automorphism for which they are
orthogonal.

These algebras themselves are not the ones exhibiting Spanier-Whitehead dual-
ity, but the matrix A induces automorphism of the two algebras and the resulting
crossed-products do satisfy Spanier-Whitehead duality.

6) There are several cases of T-duality in string theory, as studied by V. Mathai
and his collaborators, which are instances of fiberwise Spanier-Whitehead duality,
e.g. [1].

While the notion of noncommutative Spanier-Whitehead duality is a natural
and simple one, and much more common than Poincaré duality, it arises in some
complicated and interesting settings and is related to generalized transforms.
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Cup products in Hopf-Cyclic Cohomology and

Connes-Moscovici Characteristic Map

Masoud Khalkhali

1. Hopf-cyclic cohomology with coefficients

One of the most interesting developments in cyclic cohomology theory in the
last few years was the introduction of a cyclic cohomology theory for Hopf algebras
by Connes and Moscovici [6, 7, 8]. This theory reduces to Lie algebra homology
and group homology for Hopf algebras associated to Lie algebras and groups,
respectively and together with Connes-Moscovici’s Hopf algebra H1, enormously
simplifies index theory computations in the context of transverse index theory for
foliations. An interesting feature here was the introduction of the so called modular
pairs in involution (δ, σ), consisting of a character δ and a grouplike element σ on a
given Hopf algebra that satisfy certain compatibility conditions. For commutative
or cocommutative Hopf algebras one can choose δ = ε and σ = 1. Soon after a dual
theory was proposed by Khalkhali and Rangipour in [11] with many computations.

To understand the algebraic underpinnings of these cohomology theories, we
found it convenient to go beyond Hopf algebras and develop theories for an algebra
or coalgebra endowed with action or coaction of a Hopf algebra, and also to allow
general coefficients in the theory [12]. The two theories alluded above, where found
to be special cases where one considers a Hopf algebras acting or coacting on itself
via multiplication or comultiplication, respectively. It was also understood that a
guiding principle here is that Hopf-cyclic cohomology theories can be understood
as generalizations of equivariant de Rham cohomology theory. In [12] modular
pairs in involution were shown to be one dimensional coefficients that one can
introduce in the theory. The question of identifying the most general coefficient
systems was left open and was later completely solved in [9, 10]. In my talk in
Oberwolfach I sketched a proof of existence of cup products, in fact of two rather
different types, for Hopf-cyclic cohomology [13]

An stable anti Yetter-Drinfeld (SAYD) module over a Hopf algebra H , intro-
duced by Hajac-Khalkhali-Rangipour-Sommerhaeuser [9] is a left H-module and a
left H-comodule M where the module and comodule actions satisfy certain com-
patibility conditions. Given an H-module coalgebra C and an SAYD H-module
M , the Hopf-cyclic cohomology of C with coefficients in M defined in [10] is de-
noted byHCp

H (C,M). For C = H andM = k a one dimensional SAYD module we
recover the Connes-Moscovici Hopf-cyclic cohomology HCp

(δ,σ)(H) [6, 7, 8]. Given

an H-comodule algebra B and an SAYD module H we denote the Hopf-cyclic
cohomology of B with coefficients in M by HCp,H(B,M). It is shown in [10] that
for B = H and M = k a one-dimensional SAYD H-module we have a natural
isomorphism with the dual theory of Khalkhali-Rangipour [11] for Hopf algebras:

HCp,H(B,M) = H̃C
p

(δ,σ)(H). Finally if A is an H-module algebra and M is an
SAYD H-module we denote the Hopf-cyclic cohomology of A with coefficients in
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M by HCp
H(A,M). For M = H with conjugation action one obtains the Hopf al-

gebra equivariant cyclic cohomology of Akbarpour-Khalkhali [1, 2], while for H =
the Hopf algebra of Laurent polynomials and M a one dimensional module we
obtain the twisted cyclic cohomology.

2. Cup products of the first kind

Let B be an H-comodule algebra, M be an SAY D H-module, and A an H-
module algebra. In [13] we construct a pairing

HCp,H(B,M) ⊗HCq
H(A,M) −→ HCp+q(B oH A),

where on the right hand side we have the ordinary cyclic cohomology of the H-
twisted tensor product algebra B oH A. For H = k the ground field we obtain
Connes’ cup product [4]. For H = B = kG the group algebra of a discrete group,
and M = k it is shown in [11] that the cohomology groups HCp,H(B,M) are
isomorphic to the direct sum of group cohomology of G with trivial coefficients
and we recover the map

Hp(G) ⊗HCq
G(A) −→ HCp+q(A)

first defined by Connes in [5]. Here HCq
G(A) denotes the G-invariant part of the

cyclic cohomology of A.
Our method is an extension of the method used by Connes in [4] in the un-

twisted case. First we realize all cyclic cocycles as (M,H)-twisted closed graded
traces on differential graded (DG) H-algebras. We derive a necessary and sufficient
condition for these coycles to be trivial in the cyclic complex. The required pairing
is induced from naturally defined traces over the twisted tensor product of two DG
H-algebras.

3. Cup products of the second kind

Let C be an H-module coalgebra, A an H-module algebra, and M an SAY D
H-module. We say that C acts on A if there is a linear map C⊗A→ A such that
for all c ∈ C, a, b ∈ A and h ∈ H we have c(ab) = c(1)(a)c(2)(b), c(1) = ε(c)1, and
h(ca) = (hc)a. In [13] we construct a pairing

HCp
H(C,M) ⊗HCq

H(A,M) −→ HCp+q(A),

for all p and q. For p = 0 or q = 0 this pairing was already defined in [10] and
shown to coincide with the Connes-Moscovici characteristic map when C = H .
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Principal fibrations from θ-deformations

Giovanni Landi

(joint work with Walter van Suijlekom)

The ADHM construction [1, 2] of instantons in Yang-Mills theory has at its
heart the theory of connections on principal and associated bundles. A central
example is the basic SU(2)-instanton on S4 which is described by the well-known
Hopf SU(2)-principal bundle S7 → S4 and connections thereon.

We consider a noncommutative version of this Hopf fibration, in the framework
of the isospectral deformations introduced in [5], while trying to understand the
structure behind the noncommutative instanton bundle found there.

We first review the construction of θ-deformed spheres where θ is an anti-
symmetric real-valued matrix. Apart from the noncommutative spheres Sm

θ , we
also introduce differential calculi Ω(Sm

θ ) as quotients of the universal differential
calculi. On the sphere Sm

θ one constructs a noncommutative Riemannian spin
geometry (C∞(Sm

θ ), D,H) in which the Dirac operator D is the classical one and
H = L2(Sm,S) is the usual Hilbert space of spinors. Then the deformations are
isospectral, as mentioned. Furthermore, one also constructs a Hodge star operator
∗θ acting on the differential calculus Ω(Sm

θ ) and which is most easily defined using
the so-called splitting homomorphism [4].

Then we focus on two noncommutative spheres S4
θ and S7

θ′ starting from the
algebras A(S4

θ ) and A(S7
θ′) of polynomial functions on them. The latter algebra

carries an action of the (classical) group SU(2) by automorphisms in such a way
that its invariant elements are exactly the polynomials on S4

θ . The anti-symmetric
2 × 2 matrix θ is given by a single real number also denoted by θ. On the other
hand, the requirements that SU(2) act by automorphisms and that S4

θ makes the
algebra of invariant functions, give the matrix θ′ in terms of θ. This yields a
one-parameter family of noncommutative Hopf fibrations.
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For each irreducible representation V (n) := Symn(C2) of SU(2) we construct
the noncommutative vector bundles E(n) associated to the fibration S7

θ′ → S4
θ .

By dualizing the classical construction, these bundles are described by the mod-
ule of coequivariant maps from C2 to A(S7

θ′). As expected, these modules are
finitely generated projective and we construct explicitly the projections p(n) ∈
M4n(A(S4

θ )) such that these modules are isomorphic to the image of p(n) in

A(S4
θ )4

n

. Then, one defines connections ∇(n) = p(n)d as maps from Γ(S4
θ , E

(n))

to Γ(S4
θ , E

(n))⊗A(S4
θ
) Ω1(S4

θ ), where Ω∗(S4
θ ) is the quotient of the universal differ-

ential calculus mentioned above. The corresponding connection one-form A turns
out to be valued in a representation of the Lie algebra su(2).

By using the projection p(n), the Dirac operator with coefficients in the noncom-

mutative vector bundles E(n) is given by Dp(n)
:= p(n)Dp(n). In order to compute

its index, we first show that the local index theorem of Connes and Moscovici [6]
takes a very simple form in the case of isospectral deformations. When applied to
the projections p(n) on S4

θ , we obtain exactly as in the classical case,

(1.1) IndDp(n)
=

1

6
n(n+ 1)(n+ 2).

Finally, we show that the fibration S7
θ′ → S4

θ is a ‘not-trivial principal bundle
with structure group SU(2)’. This means that the inclusion A(S4

θ ) ↪→ A(S7
θ′)

is a not-cleft Hopf-Galois extension; in fact, it is a principal extension [3]. On
this extension, we find an explicit form of the (strong) connection which in-
duces connections on the associated bundles E(n) as maps from Γ(S4

θ , E
(n)) to

Γ(S4
θ , E

(n)) ⊗A(S4
θ
) Ω1(A(S4

θ )), where Ω∗(A(S4
θ )) is the universal differential cal-

culus on A(S4
θ ). We show that these connections coincide with the Grassmannian

connections ∇ = p(n)d on the quotient Ω(S4
θ ) of the universal differential calculus

alluded to before.
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Compact quantum metric spaces from ergodic actions of

compact quantum groups

Hanfeng Li

We introduce a notion of length function for compact quantum groups. Every sep-
arable compact quantum group admits a length function. Given a length function
on a co-amenable compact quantum group G, we show how to induce a quantum
metric on any ergodic action of G. This generalizes Rieffel’s work for compact
group case.

Equivariant Chern characters in K and L-theory

Wolfgang Lück

We construct for G-equivariant K-homology an equivariant Chern character as
follows. Let C be a finite cyclic group. The Artin defect is the cokernel of the map

⊕

D⊂C,D 6=C

indC
D :

⊕

D⊂C,D 6=C

RC(D) → RC(C).

For an appropriate idempotent

θC ∈ RQ(C) ⊗Z Z

[
1

|C|

]

the Artin defect becomes after inverting the order of |C| canonically isomorphic
to

θC ·RC(C) ⊗Z Z

[
1

|C|

]
.

Theorem: Let X be a proper G-CW -complex. For a finite cyclic subgroup
C ⊂ G let (C) be its conjugacy class, NGC its normalizer, CGC its centralizer
and WGC = NGC/CGC. Then there is a natural isomorphism called equivariant
Chern character

chG :
⊕

(C)

Kp(CGC\X
C) ⊗Z[WGC] θC · RC(C) ⊗Z ΛG ∼=

−→ KG
p (X) ⊗Z ΛG.

We show that the Baum-Connes Conjecture implies a modification of the Trace
Conjecture due to Baum and Connes, which says that the image of the standard
trace K0(C

∗
r (G)) → R takes values in ΛG.

The Chern character mentioned above is a special case of an equivariant Chern
character which can be applied to any equivariant (co-)homology theory, for in-
stance also to those appearing as sources of the assembly maps in the Farrell-Jones
Isomorphism Conjecture whose target are K-and L-groups of group rings. They
also enter in the extension of the proof of the K-theoretic Novikov Conjecture due
to Bökstedt-Hsiang-Madsen from the family of the trivial subgroup to the family
of finite subgroups thus detecting a much larger portion in the algebraic K-theory



Nichtkommutative Geometrie 2375

of an integral group ring. It yields also a good understanding of the passage from
the algebraic K-theory of the complex group ring to the topological K-theory of
the reduced C∗-algebra of a group.

Theorem: Let T be the set of conjugacy classes (g) of elements g ∈ G of finite
order. There is a commutative diagram

⊕
p+q=n

⊕
(g)∈T Hp(CG〈g〉; C) ⊗Z Kq(C) −−−−→ C ⊗Z Kn(CG)

y
y

⊕
p+q=n

⊕
(g)∈T Hp(CG〈g〉; C) ⊗Z K

top
q (C) −−−−→ C ⊗Z K

top
n (C∗

r (G))

where CG〈g〉 is the centralizer of the cyclic group generated by g in G and the
vertical arrows come from the obvious change of ring and of K-theory maps The
horizontal arrows can be identified with the assembly maps occurring in the Farrell-
Jones Conjecture and in the Baum-Connes Conjecture. If these conjectures are
true for G, then the horizontal arrows are isomorphisms.

There are also cohomological versions which will appear in the proof of the
following result about the topological K-theory of the classifying space BG of a
discrete group G.

Theorem: Suppose that there is a cocompact G-CW -model for the classifying
space EG for proper G-actions. Then there is a Q-isomorphism

Kn(BG) ⊗Z Q
∼=
−→

(
∏

i∈Z

H2i+n(BG; Q)

)
×

∏

p prime

∏

(g)∈conp(G)

(
∏

i∈Z

H2i+n(BCG〈g〉; Qp̂)

)
,

where conp(G) is the set of conjugacy classes (g) of elements g ∈ G of order pd

for some integer d ≥ 1 and CG〈g〉 is the centralizer of the cyclic subgroup 〈g〉
generated by g.
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2376 Oberwolfach Report 45/2004

Quantum Statistical Mechanics of Q-lattices

Matilde Marcolli

(joint work with Alain Connes)

In [4], [5], we constructed noncommutative spaces with a rich arithmetic struc-
ture, associated to commensurability classes of Q-lattices. We studied extensively
the quantum statistical mechanical system associated to 2-dimensional Q-lattices
and its relation to the Galois theory of the field of modular functions.

A Q-lattice in Rn consists of a pair (Λ, φ) of a lattice Λ ⊂ Rn (a cocompact free
abelian subgroup of Rn of rank n) together with a system of labels of its torsion
points given by a homomorphism of abelian groups φ : Qn/Zn −→ QΛ/Λ.

Two Q-lattices are commensurable, (Λ1, φ1) ∼ (Λ2, φ2), iff QΛ1 = QΛ2 and
φ1 = φ2 mod Λ1 + Λ2.

A Q-lattice is invertible iff φ is an isomorphism. Notice that most Q-lattices
are not commensurable to an invertible one. The space resulting from the quo-
tient of the space of Q-lattices by the equivalence relation of commensurability
has the typical properties that make it best described through the language of
noncommutative geometry.

Any 2-dimensional Q-lattice can be written in the form (Λ, φ) = (λ(Z+Zτ), λρ),

for some λ ∈ C∗, some τ ∈ H, and some ρ ∈ M2(Ẑ) = Hom(Q2/Z2,Q2/Z2).
Thus, the space of 2-dimensional Q-lattices up to the scale factor λ ∈ C∗ and
up to isomorphisms, is given by M2(Ẑ) × H mod Γ = SL2(Z). The commensu-
rability relation is implemented by the partially defined action of GL+

2 (Q). The
corresponding noncommutative algebra of coordinates is given by the convolution
algebra of continuous compactly supported functions on the quotient of the space

U := {(g, ρ, z) ∈ GL+
2 (Q) ×M2(Ẑ) × H|gρ ∈ M2(Ẑ)} by the action of Γ × Γ.

This has a natural time evolution σt(f)(g, ρ, z) = det(g)it f(g, ρ, z) and repre-
sentations πL, for L = (Λ, φ) = (ρ, z) a 2-dimensional Q-lattice, on the Hilbert

space `2(Γ\Gρ) for Gρ := {g ∈ GL+
2 (Q) : gρ ∈ M2(Ẑ)}. The convolution algebra

has a C∗-algebra completion A2, where the norm is the sup over all representations
πL.

Invertible Q-lattices correspond to finite energy representations, with Hamil-
tonian H εm = log det(m) εm. The Hilbert space is, in this case, identified with
`2(Γ\M+

2 (Z)). The partition function is of the form Z(β) = ζ(β)ζ(β−1), where ζ
is the Riemann zeta function. This suggests that the resulting quantum statistical
mechanical system will have phase transitions at β = 1 and β = 2.

The equilibrium states of a quantum statistical mechanical system at inverse
temperature β are described by the KMS condition [2]. At zero temperature we
assume as notion of KMS∞ the weak limit of KMSβ states as β → ∞. Symmetries
of the system act on extremal KMS states. We need to consider both symmetries
given by automorphisms and by endomorphisms, whenever the latter act on KMS
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states. In particular the action on KMS∞ states is defined as a limit – via warming
up and cooling down of the system.

Our main result on the structure of KMS states is the following.

• In the range β ≤ 1 there are no KMS states.
• In the range β > 2 the set of extremal KMS states is given by the classical

Shimura variety Eβ
∼= GL2(Q)\GL2(A)/C∗.

• At zero temperature, a state ϕ∞,L ∈ E∞ with L = (ρ, τ) generic, when
evaluated on an arithmetic algebra A2,Q, takes values in an embedding Fτ

of the modular field in C. There is an isomorphism θϕ : Gal(Fτ/Q)
'
−→

Q∗\GL2(Af ) that intertwines the Galois action on the values of the state
with the action of symmetries,

γ−1 ϕ(f) = ϕ(θϕ(γ)f), ∀f ∈ A2,Q, ∀γ ∈ Gal(Fτ/Q).

In fact, here the symmetry group of the system is the quotient Q∗\GL2(Af ),

where in GL2(Af ) = GL+
2 (Q)GL2(Ẑ), the subgroup GL2(Ẑ) acts by automor-

phisms while GL+
2 (Q) acts by endomorphisms.

The arithmetic algebra A2,Q is an algebra of unbounded multipliers of A2, which
naturally contains the modular functions. It is acted upon by the symmetries of
the system since the quotient Q∗\GL2(Af ) is isomorphic to the automorphism
group of the modular field Aut(F ), by a result of Shimura [10].

The noncommutative geometry of the space of Q-lattices modulo the equiva-
lence relation of commensurability provides a setting that unifies several phenom-
ena involving the interaction of noncommutative geometry and number theory.
These include, in the 1-dimensional case, the Bost–Connes (BC) system [1] with
arithmetic spontaneous symmetry breaking and its dual space under the duality
given by taking the crossed product with the time evolution. The latter is the
noncommutative space underlying the construction of the spectral realization of
the zeros of the Riemann zeta function in [3]. The corresponding space in the 2-
dimensional case contains in its algebra of coordinates the modular Hecke algebras
of [7]. The noncommutative compactifications of modular curves of [9] also appear
here as a stratum in the compactification of the space of commensurability classes
of 2-dimensional Q-lattices.

Moreover, an interesting and difficult problem is the generalization of the re-
sults of [1] to other number fields. The space of commensurability classes of 2-
dimensional Q-lattices provides a new approach to the problem, for the case of
imaginary quadratic fields, since it is closely related to the Galois theory of the
modular field. A quantum statistical mechanical system that recovers the explicit
class field theory construction for an imaginary quadratic field K, starting from the
noncommutative algebra of coordinates of the space of commensurability classes
of 1-dimensional K-lattices, is being investigated in our joint work with N. Ra-
machandran [6]. The fact that the noncommutative modular curves of [9] appear
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in the compactification suggests the possible existence of a path towards the case
of real quadratic fields, along the lines of Manin’s real multiplication program [8].
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Polynomial growth cohomology for combable groups

Ralf Meyer

This research was supported by the EU – Network Quantum Spaces and Non-
commutative Geometry (Contract HPRN-CT-2002-00280) and the Deutsche
Forschungsgemeinschaft (SFB 478).

Group cohomology of polynomial growth is defined for any finitely gen-
erated, discrete group, using cochains that have polynomial growth with
respect to the word length function. We give a geometric condition that
guarantees that the group cohomology of polynomial growth agrees with
the usual group cohomology and verify it for a class of combable groups.
Our sufficient condition involves a chain complex that is closely related
to exotic cohomology theories studied by Allcock and Gersten and by
Mineyev. It can be formulated for arbitrary discrete metric spaces and
is a quasi-isometry invariant.

Let G be a finitely generated, discrete group and let ` be a word length function
on G. We may use the length function to define variants of the usual group
cohomology Hn(G) with complex coefficients. Roughly speaking, we take one
of the standard chain complexes that compute group cohomology and restrict
attention to cochains that have, say, polynomial growth. This yields the group
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cohomology of polynomial growth of G, which we denote by Hn
pol(G). Similarly,

we can study group cohomology of subexponential or exponential growth. In this
introduction, we only consider the case of polynomial growth. The question we
study is whether the canonical maps Hn

pol(G) → Hn(G) are isomorphisms for all
n ∈ N for a given group G. This question came up in the work of Alain Connes
and Henri Moscovici on the Novikov conjecture for hyperbolic groups in [2] and
has also been studied by Ronghui Ji in [6].

Our main contribution to this problem is that we introduce a certain chain
complex S1C̃•(G) of bornological vector spaces relevant to it. We prove two main
theorems. First, this chain complex has a bounded contracting homotopy if G is
a combable group in the notation of [4] or, possibly more generally, if G has a
synchronous combing of polynomial growth in the notation of [5]. Secondly, if the

chain complex S1C̃•(G) has a bounded contracting homotopy, then Hn
pol(G) ∼=

Hn(G). An important feature of our construction is that the homotopy type of

the chain complex S1C̃•(G) is a quasi-isometry invariant of G. In contrast, the
original problem of whether Hn

pol(G) ∼= Hn(G) does not appear to be invariant
under quasi-isometry.

The chain complex S1C̃•(G) is related to the convolution algebra

S1(G) :=
{
f : G→ R

∣∣∣
∑

g∈G

|f(g)|(`(g) + 1)k <∞ ∀k ∈ N

}
.

If we use the Banach algebra `1(G) instead, we obtain a complex that is homo-
topy equivalent to one constructed by Daniel J. Allcock and Stephen M. Gersten
in [1] (for groups for which the classifying space BG has finite type). However,

already the chain complex `1C̃•(Z) has non-trivial homology and hence cannot
be contractible. The best one can say is that the range of the differential in this
complex is dense in the kernel, that is, the “reduced homology” vanishes. Igor
Mineyev shows in [8] that this happens for groups with a sufficiently nice comb-
ing. However, this seems too weak to compare the bounded cohomology and the
usual group cohomology.

The complex S1C̃•(G) only depends on the large scale geometry of G. More

precisely, we construct a complex S1C̃•(X) for any metric space X , which is
functorial for quasi-Lipschitz maps and has the property that the chain maps
induced by close quasi-Lipschitz maps are chain homotopic. Thus S1C̃•(X) is a
quasi-isometry invariant of X up to chain homtopy equivalence. We now explain
the construction of S1C̃•(X).

To any set X , we associate a simplicial set S(X) whose n-simplices are all
n+ 1-tuples (x0, . . . , xn) ∈ Xn+1. The jth face and degeneracy maps leave out
or double xj , respectively. We let C•(X) be the reduced simplicial chain complex
associated to S(X). Thus Cn(X) can be identified with the space of compactly
supported functions Xn+1 → R that vanish on (x0, . . . , xn) if xj = xj+1 for some

j ∈ {0, . . . , n− 1}. We define the reduced subcomplex C̃•(X) by C̃n(X) = Cn(X)

for n ≥ 1 and C̃0(X) = ker(α : C0(X) → R), where α is the augmentation map
defined on basis vectors by x 7→ 1. Any map f : X → Y induces a chain map
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C̃•(X) → C̃•(Y ). There is also an evident formula for a chain homotopy between

the maps C̃•(X) → C̃•(Y ) induced by two maps X → Y . Hence C̃•(X) is always

contractible because it is homotopy equivalent to C̃•(?) = 0.
Now we let X be a discrete, proper metric space. Let S1Cn(X) be the space

of functions f : Xn+1 → R with the following properties: there is R > 0 such that
f(x0, . . . , xn) = 0 if d(xi, xj) ≥ R for some i, j ∈ {0, . . . , n}, or if xj = xj+1 for
some j ∈ {0, . . . , n− 1};

∑

x0,...,xn∈X

|f(x0, . . . , xn)| · (d(x0, ?) + · · · + d(xn, ?) + 1)k <∞

for all k ∈ N, for some fixed point ? ∈ X . A subset S ⊆ S1Cn(X) is considered
bounded if we can choose the parameter R above uniformly for all f ∈ S and
if the sums above are uniformly bounded for f ∈ S. Thus S1Cn(X) becomes a
bornological vector space that contains Cn(X) as a dense subspace. The differ-
ential of C•(X) extends and turns S1C•(X) into a chain complex of bornological

vector spaces. Let S1C̃•(X) be the kernel of the augmentation map S1C•(X) → R.
A combing on a metric space (X, d) with a chosen base point ? is a sequence of

maps fn : X → X with the following properties; f0(x) = ? for all x ∈ X , and for
any x ∈ X there exists n ∈ N such that fN(x) = x for all N ≥ n; the maps fn are
uniformly quasi-Lipschitz; and the pairs of maps (fn, fn+1) are uniformly close
in the sense that the set of d(fn(x), fn+1(x)) for x ∈ X , n ∈ N is bounded.
We say that the combing has polynomial growth if the number of n ∈ N with
fn(x) 6= fn+1(x) is controlled by a polynomial in d(x, ?). Such combings exist for
all hyperbolic groups, for automatic groups, and for groups that are combable in
the sense of [4]. However, it seems that such combings do not exist for non-Abelian
nilpotent groups.

Our first main result is that S1C̃•(X) has a bounded contracting homotopy if X
has a combing of polynomial growth. The proof is actually quite simple. Since
the maps fn, fn+1 are close for each n ∈ N, there is an explicit chain homotopy

H(fn, fn+1) : S1C̃•(X) → S1C̃•(X) between the maps induced by fn and fn+1.
The sum H =

∑
n∈N H(fn, fn+1) is the desired contracting homotopy. The hy-

potheses on (fn) guarantee that H is a bounded linear operator on S1C̃•(X).

Our second main result is that Hn
pol(G) ∼= Hn(G) if S1C̃•(G) is contractible.

This requires some homological algebra with bornological modules over the con-
volution algebras R[G] and S1(G). These two are bornological algebras, and the
embedding i : R[G] → S1(G) is a bounded algebra homomorphism. We work with
bornologies instead of topologies because this gives better results for spaces that
are built out of R[G] and S1(G). The right category of modules over a bornological
algebra A (like R[G] or S1(G)) is the category Mod(A) of bornological left A-mod-
ules. Such a module is defined by a bounded homomorphism A → End(M) or,
equivalently, a bounded bilinear map A×M →M satisfying the usual properties.
The morphisms are the bounded A-linear maps.

Homological algebra in Mod(A) works as usual if we only admit extensions with
a bounded linear section. That is, we only allow resolutions of a module that have
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a bounded linear contracting homotopy. Let ⊗̂ be the completed bornological
tensor product. A bornological left A-module of the form A ⊗̂X with the obvious
module structure is called free. One checks easily that free modules are projective
with respect to extensions with a bounded linear section. Therefore, the usual
argument in homological algebra that shows that two free resolutions of the same
module are homotopy equivalent still works in our setting.

The group cohomology of G can be defined as Hn(G) ∼= Extn
R[G](R,R), where R

is equipped with the trivial representation of G and the resulting module structure
over R[G]. That is, it is the cohomology of the chain complex HomR[G](P•,R),
where P• → R is some free R[G]-module resolution of R. If we let G act di-
agonally on Cn(G), then the chain complex C•(G) constructed above becomes
such a free R[G]-module resolution. Similarly, the group cohomology of polyno-
mial growth is isomorphic to the cohomology Extn

S1(G)(R,R) of the chain complex

HomS1(G)(P
′
•,R), where P ′

• → R is some free S1(G)-module resolution of R.

Let i∗ : Mod(S1(G)) → Mod(R[G]) be the functor induced by the embedding
i : R[G] → S1(G). There exists a functor i! : Mod(S1(G)) → Mod(R[G]) that is
left adjoint to i∗, that is,

(0.1) HomS1(G)(i!(M), N) ∼= HomR[G](M, i∗(N))

for allM ∈ ObMod(R[G]), N ∈ ObMod(S1(G)). More explicitly, we have i!(M) ∼=
S1(G) ⊗̂R[G]M . It is easy to see that i!(C•(G)) ∼= S1C•(G). This is always a chain

complex of free S1(G)-modules. If S1C̃•(G) has a bounded contracting homotopy,
then i!(C•(G)) is a free S1(G)-module resolution of R. Hence we may use it to
compute Extn

S1(G)(R,R). The adjointness relation (0.1) yields

Extn
S1(G)(R,R) ∼= Hn(HomS1(G)(i!(C•(G)),R))

∼= Hn(HomR[G](C•(G),R)) ∼= Extn
R[G](R,R)

because i∗(R) = R. Thus Hn
pol(G) ∼= Hn(G) if S1C̃•(G) is contractible.

Actually, contractibility of S1C̃•(G) has much stronger consequences: it implies
that Extn

S1(G)(M,N) ∼= Extn
R[G](M,N) for all S1(G)-modulesM , N , and all n ∈ N.

Even more, the functor on the derived categories i∗ : Der(S1(G)) → Der(R[G]) in-
duced by the embedding i : R[G] → S1(G) is fully faithful. Following the notation
of [7], this means that S1(G) is an isocohomological convolution algebra on G.
I introduced this concept in [7] to facilitate the computation of a rather subtle
coinvariant space.

The concept of an isocohomological embedding seems to apply frequently in the
following situation. Let A be a C∗-algebra defined by generators and relations,
or just a Banach algebra like `1(G). These generators and relations also define
a polynomial subalgebra P(A) ⊆ A. In nice cases, we get a smooth subalgebra
S(A) ⊆ A by taking polynomials in the generators with sufficiently rapidly de-
creasing entries. Here smooth means, say, that S(A) is closed under holomorphic
functional calculus in A, so that it has the same K-theory as A. In such situations,
one may hope that the embedding S(A) → P(A) induces a fully faithful functor
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between the derived categories of P(A) and S(A). There probably are no general
theorems that guarantee this, one has to verify the condition on a case by case
basis.

For instance, for non-commutative tori this is equivalent to a known assertion:
it simply means that we can compute derived functors for modules over P(A) and
S(A) by the same Koszul type complex. This is the crucial step in the computation
of the cyclic homology groups for S(A) by Alain Connes. However, this example
already shows that we do not get particularly strong ties between the Hochschild
and cyclic homology of P(A) and S(A): whereas the result for P(A) is always
simple, the result for S(A) depends in a subtle way on diophantine approximation
properties of the parameter θ. In the case of groups, knowing that R[G] → S1(G) is
isocohomological implies that the homogeneous parts of the Hochschild homology
of S1(G) and R[G] agree. However, it is not clear in general what happens at
conjugacy classes with infinitely many elements because there the passage from
S1(G) to R[G] changes also the module, not just the algebra that acts.
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On the assembly map via localization of categories

Ryszard Nest

(joint work with Ralf Meyer)

Let G be a second countable locally compact group. Let us introduce some
notation. The G-equivariant Kasparov category is the additive category whose ob-
jects are the G-C∗-algebras and whose group of morphisms A → B is KKG

0 (A,B).

The composition in KKG is the Kasparov product.
In order to apply the standard methods of homological algebra we need some extra
structure. For our purposes, the following is sufficient.
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Let A → A[1] denote the desuspension functor, i.e. A[−1] = C0(R)⊗A and, given

an element φ ∈ KKG(A,B), let

A
φ
→ B

↖ ↙ [1]
Cφ

be the exact triangle associated to the cone of φ - here we use the fact that
every element of KKG can be represented by an equivariant *-homomorphism of
appropriate C*-algebras KKG-equivalent to A (resp. B).

Theorem 1.1. The above structure gives KKG a structure of triangulated cate-
gory.

Let A be a G-C∗-algebra. We call A weakly contractible if A is KKH -equivalent
to 0 for all compact subgroups H ⊆ G. We let CC ⊆ KKG be the full subcategory
of weakly contractible objects. This is a localizing subcategory of KKG, that is,
it is triangulated and closed under direct sums. We call f ∈ KKG(A,B) a weak

equivalence if it is invertible in KKH(A,B) for all compact subgroups H ⊆ G.
The weakly contractible objects and the weak equivalences determine each other:
a morphism is a weak equivalence if and only if its “mapping cone” is weakly
contractible and an object is weakly contractible if and only if the zero map 0 → A
is a weak equivalence.

A good model for the “quotient” KKG/CC is given as follows. We call A ∈ KKG

compactly induced if it is KKG-equivalent to IndG
H A′ for some compact subgroup

H ⊆ G and some H-C∗-algebra A′. We let CI ⊆ KKG be the full subcategory
of compactly induced objects and 〈CI〉 the localizing subcategory generated by

it. We show that B ∈ CC if and only if KKG(A,B) ∼= 0 for all A ∈ 〈CI〉.
Hence f ∈ KKG(B,B′) is a weak equivalence if and only if the induced map

KKG(A,B) → KKG(A,B′) is an isomorphism for all A ∈ 〈CI〉.
In particular, we will call a CI-simplicial approximation for A ∈ KKG a weak

equivalence f ∈ KKG(Ã, A) with Ã ∈ 〈CI〉.

Theorem 1.2. For every A ∈ KKG there exists a weak equivalence Ã → A with
Ã ∈ 〈CI〉.

The construction of CI-simplicial approximations is functorial and also has good
exactness properties. Therefore, if F : KKG → C is any homological functor into
an Abelian category, then its localization LF (A) := F (Ã) is again a homological

functor KKG/CC → C. It comes with a natural transformation LF (A) → F (A).
This map for the functor F (A) := K(GnrA) is naturally isomorphic to the Baum-
Connes assembly map. In particular,

Proposition 1.3. Ktop(G,A) ∼= LF (A).

Let ? ∈ KKG be the trivial G-module given by complex numbers. The ten-
sor product operation in KKG is compatible with the subcategories CC and CI.
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Therefore, if D ∈ KKG(P, ?) is a CI-simplicial approximation for ?, then D⊗ idA ∈
KKG(P ⊗ A,A) is a CI-simplicial approximation for A ∈ KKG. Thus we can de-
scribe the localization of a functor more explicitly as LF (A) := F (P ⊗A).

We call D a Dirac morphism for G. The existence of the Dirac morphism
is equivalent to the representability of a certain functor, proved by applying a
suitable version of Brown’s Representability Theorem.

A dual Dirac morphism is an element η ∈ KKG(?,P) that is a one-sided inverse
to the Dirac morphism. Suppose that it exists. Then γ = Dη is an idempotent in
KKG(?, ?). By exterior product, it acts on any A ∈ KKG. We have A ∈ CC if and

only if γA = 0 and A ∈ 〈CI〉 if and only if γA = 1. The category KKG splits as a
direct product

KKG ∼= CC × 〈CI〉.

Therefore, the assembly map is split injective for any covariant functor. If also
γ = 1, then CC ∼= 0, that is, any weakly contractible object is already isomorphic
to 0. Hence LF = F for any functor F . The latter actually happens for groups
with the Haagerup property and, in particular, for amenable groups.

Another useful idea of the approach above allows the following. Instead of
deriving the functor A 7→ K(G nr A), one can derive the crossed product functor

A 7→ Gnr A itself. Its localization GnL
r A is a triangulated functor from KKG to

KK. It can be described explicitly as G nL
r A = G nr (A ⊗ P) if D ∈ KKG(P, ?)

is a Dirac morphism. The usual Baum-Connes conjecture asks D∗ ∈ KK(GnL
r A,

G nr A) to be an isomorphism on K-theory. Instead, we can ask it to be a KK-
equivalence. The latter condition insures that the Baum-Connes conjecture holds
for F (G nr A) for any split exact, stable homotopy functor F on C∗-algebras
because such functors descend to the category KK. Examples are given by local
cyclic (co)homology and K-homology.

Suppose that G is a locally compact quantum group. Under certain natural
conditions KKG as a triangulated category and both induction and restriction
functors make perfect sense. As the result, one can ask for the analogue of locali-
sation in an appropriate triangulated subcategory. The easiest example is the case
of coactions of a compact connected group G. This turns out to be fairly tractable.
In fact, the obvious “analogue” of CI is the triangulated subcategory generated by
a single element C∗(G) with its canonical coaction of G. The appropriate notion
of proper coaction is given by

{A is a proper G-coalgebra } ⇔

{
KKĜ(A,B) = 0

for any KK-contractible G-comodule B

}
.

Similarly to the group case there exists a best “simplicial approximation” to any
G-coation, the assembly map makes perfect sense and, in fact, its being an iso-
morphism is equivalent to the implication

∀G−algebraA K∗(Anr G) = 0 ⇒ K∗(A) = 0

As it turns out, the KKĜ-category of coactions of a sufficiently regular locally
compact quantum group G admits an analogue of tensor product. In fact, by
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using KKĜ-equivalence of A with A nr Ĝ nr G one can assume that all objects
admit an inner action of Ĝ and this allowes one to define a twisted tensor product
of two G-comodules which is again a G-comodule. As a direct consequence the
existence and universal properties of the “Dirac” element in the general theory go
through.

Bordism, rho-invariants and the Baum-Connes conjecture

Paolo Piazza

(joint work with Thomas Schick)

Statement of results. Let Γ be a finitely generated discrete group. In this talk
I have explained how to prove vanishing results for rho-invariants associated to

(i) the spin-Dirac operator of a spin manifold with positive scalar curvature and
fundamental group Γ

(ii) the signature operator of the disjoint union of a pair of homotopy equivalent
oriented manifolds with fundamental group Γ.

The invariants we consider are more precisely

• the Atiyah-Patodi-Singer (≡ APS) rho-invariant associated to a pair of
finite dimensional unitary representations λ1, λ2 : Γ → U(d) [1]

• the L2-rho invariant of Cheeger-Gromov [3]
• the delocalized eta invariant of Lott for a non-trivial conjugacy class of Γ

which is finite [10].

We prove that all these rho-invariants vanish if the group Γ is torsion-free and
the Baum-Connes map for the maximal group C∗-algebra is bijective [4]. This
condition is satisfied, for example, by torsion-free amenable groups or by torsion-
free discrete subgroups of SO(n, 1) and SU(n, 1). For the delocalized invariant
we only assume the validity of the Baum-Connes conjecture for the reduced C∗-
algebra. In addition to the examples above, this condition is satisfied e.g. by
Gromov hyperbolic groups or by cocompact discrete subgroups of SL(3,C).

Let us now consider the signature operator; then we observe that the vanishing
of these rho invariants for the disjoint union X q−X ′, with X and X ′ homotopy
equivalent, is equivalent to their homotopy invariance on the single manifolds, since
each of these rho invariants is certainly additive under disjoint union. Thus what
we have proved is that the three rho-invariants associated to the signature operator
are, for such groups, homotopy invariant. For the APS and the Cheeger-Gromov
rho-invariants the latter result had been established by Navin Keswani in [5] [6].
Our proof re-establishes this result and also extends it to the delocalized eta-
invariant of Lott. The proof exploits in a fundamental way results from bordism
theory [2] [8] as well as various generalizations of the APS-index theorem [9]; it
also embeds these results in general vanishing phenomena for degree zero higher

rho invariants (taking values in A/[A,A] for suitable C∗-algebras A).
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We shall now give more details about the proofs.

General principle of the proofs. In order to simplify the exposition we shall
concentrate on the case where Γ is the fundamental group of our manifold and the
Γ-covering is the universal covering. We shall be only concerned with vanishing re-
sults. To establish these results , we apply the following general principle. To avoid
undo repetitions, let ρ stand for any of the ρ-invariants we want to investigate.

(1) We first define a stable variant ρs of ρ. This will be defined as the invariant
of a perturbation of our generalized Dirac operator. Such perturbations do
not always exist, we need the vanishing of the index class of the generalized
Dirac operator. This very strong assumption is satisfied for geometric
reasons if one looks at the Dirac operator of a spin manifold with positive
scalar curvature, as well as for the signature operator on the disjoint union
X q−X ′ of two homotopy equivalent manifolds.

We study the main properties of ρs. Most important is that it appears
as the correction term in an index theorem for manifolds with boundary
for suitably perturbed Dirac operators. We use this fact and the assumed
surjectivity of the Baum-Connes map in order to show that the stable rho-
invariant is well defined, independent of the chosen perturbation (we are
always under the assumption that the index class of our operator is zero).

(2) Then we use our injectivity assumption on the Baum-Connes map and
fundamental results in bordism theory in order to show that the stable
invariant ρs, whenever it is defined, is equal to the stable invariant of a
particularly nice manifold. Once again, suitable index theorems on mani-
folds with boundary play a crucial role for this step. For this nice manifold
we compute the stable invariant and show that it vanishes.

To this point, we have therefore shown that in certain special situations
one can define an invariant ρs which turns out to be zero.

(3) As a last step we show that in the two geometric situations we are studying,
the stable invariant ρs coincides with the unstable invariant ρ. This will
be done by constructing very special perturbations (used in the definition
of the stable invariant) which make the direct comparison of the stable
and unstable invariant possible. For the signature operator on X q −X ′

we use perturbations that are inspired by the work of Hilsum-Skandalis
[7].

In fact, in the case of a spin manifold with positive scalar curvature, we
don’t have to perturb at all, so the last step is trivial.
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Holomorphic bundles on noncommutative toric orbifolds

Alexander Polishchuk

Let Aθ be the algebra of smooth functions on the noncommutative 2-torus Tθ

associated with an irrational number θ. Recall that its elements are expressions of
the form

∑
m,n am,nU

m
1 U

n
2 , where the coefficients (am,n)(m,n)∈Z2 rapidly decrease

at infinity, and the generators satisfy the commutation relation

U1U2 = exp(2πiθ)U2U1

. Consider the crossed product algebra Bθ = Aθ ∗ Z/2Z, where the nontrivial
element of Z/2Z acts on Aθ by the flip automorphism :

φ :
∑

m,n

am,nU
m
1 U

n
2 7→ am,nU

−m
1 U−n

2 .

Abusing the notation we denote the nontrivial element in Z/2Z (sitting inside
Bθ) also by φ. The algebra Bθ was studied in the papers [1], [2], [3] and [6].
In particular, it is known that it is simple, has a unique tracial state, and is an
AF-algebra. Also its K-theory has been computed: one has K0(Bθ) = Z6 and
K1(Bθ) = 0. Furthermore, in [6] it is shown that the positive cone in K0(Bθ)
coincides with the preimage of the positive cone in K0(Aθ) under the natural
homomorphism K0(Bθ) → K0(Aθ) (in other words, it consists of all elements
x ∈ K0(Bθ) such that tr∗(x) > 0, where tr∗ : K0(Bθ) → R is the homomorphism
induced by the trace).

By a vector bundle on the noncommutative toric orbifold Tθ/(Z/2Z) we mean
a finitely generated projective right Bθ-module. We want to define what is a
holomorphic structure on such a vector bundle. As in [5], [4], let us consider a
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complex structure on Tθ associated with a complex number τ ∈ C \ R. It is given
by a derivation

δ : Aθ → Aθ :
∑

m,n

am,nU
m
1 U

n
2 7→ 2πi

∑

m,n

(mτ + n)Um
1 U

n
2

of Aθ that we view as an analogue of the ∂-operator. Recall that in [5], [4] we
studied the category Hol(Tθ,τ) of holomorphic bundles on Tθ. By definition, these

are pairs (P,∇) consisting of a finitely generated projective right Aθ-module P
and an operator ∇ : P → P satisfying the Leibnitz identity

∇(f · a) = f · δ(a) + ∇(f) · a,

where f ∈ P , a ∈ Aθ. Now we extend δ to a twisted derivation δ̃ of Bθ by setting

δ̃(a0 + a1φ) = δ(a0) − δ(a1)φ,

where a0, a1 ∈ Aθ. This extended map satisfies the twisted Leibnitz identity

δ̃(b1b2) = b1δ̃(b2) + δ̃(b1)κ(b2),

where κ is the automorphism of Bθ given by κ(a0 + a1φ) = a0 − a1φ, where
a0, a1 ∈ Aθ. We define a holomorphic structure on a vector bundle P on Tθ/(Z/2Z)
as an operator ∇ : P → P satisfying the similar twisted Leibnitz identity

∇(f · b) = f · δ̃(b) + ∇(f) · κ(b),

where f ∈ P , b ∈ Bθ. By definition, a holomorphic bundle is a pair (P,∇)
consisting of a vector bundle P equipped with a holomorphic structure ∇. One
can define morphisms between holomorphic bundles in a natural way, so we obtain
the category Hol(Tθ,τ/(Z/2Z)) of holomorphic bundles.

Recall that the combined results of [5] and [4] give the following theorem.
Theorem. The category Hol(Tθ,τ ) is abelian and one has an equivalence of
bounded derived categories

Db(Hol(Tθ,τ)) ' Db(Coh(E)),

where Coh(E) is the category of coherent sheaves on the elliptic curve E =
C/(Z + Zτ).

Furthermore, the image of the abelian category Hol(Tθ,τ) in the derived category
Db(Coh(E)) can be described as the heart of the tilted t-structure associated with
a certain torsion pair in Coh(E) (depending on θ).

Our main result is a similar explicit description of the category of holomorphic
bundles on Tθ/(Z/2Z).
Theorem. The category Hol(Tθ,τ/(Z/2Z)) is abelian and one has an equivalence
of bounded derived categories

Db(Hol(Tθ,τ/(Z/2Z))) ' Db(Rep−Q),

where Rep−Q is the category of finite-dimensional representations of the quiver
with relations Q defined as follows:
(i) Q has 6 vertices named u1, u2, u3, u4, v and w;



Nichtkommutative Geometrie 2389

(ii) Q has 6 arrows: 2 arrows v
x0,x1
→ w and 4 arrows ui

ei→ v, i = 1, . . . , 4;
(iii) Q has 4 quadratic relations: x0e0 = 0 and (x1 − λix0)ei = 0, i = 1, 2, 3 with

{λ1, λ2, λ3} = {℘(
1

2
), ℘(

τ

2
), ℘(

1 + τ

2
)},

where ℘ is the Weierstrass ℘-function associated with the lattice Z + Zθ ⊂ C.

Furthermore, the image of Hol(Tθ,τ/(Z/2Z)) in Db(Rep−Q) again corresponds
to the tilted t-structure for a certain explicit torsion pair in Rep−Q depending
on θ. An additional feature of the above equivalence is that the natural forgetful
map

K0(Hol(Tθ,τ/(Z/2Z))) → K0(Bθ)

is, in fact, an isomorphism and the positive cones are the same.
These results can also be generalized to crossed products of Aθ with finite cyclic

subgroups in SL2(Z). In particular, we can calculate K0(Aθ ∗Z/4) for all irrational
θ, where the action of Z/4 is induced by the Fourier automorphism of Aθ. This
solves the problem raised in [7]
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Characters of K-cycles and a problem of Connes

Michael Puschnigg

In a well known series of papers A. Connes introduced various explicit char-
acter formulas for (sufficiently regular) K-cycles. These characters take values in
suitable cyclic cohomology theories. The most general of them is the character of
Θ-summable (infinite dimensional) K-cycles with values in entire cyclic cohomol-
ogy. It provides explicit index formulas for index problems in K-homology.

More recently an abstract bivariant Chern-Connes character on Kasparov’s bi-
variant K-theory with values in bivariant local cyclic cohomology has been con-
structed (P.). In particular it yields an abstract Chern character on K-homology.
This character cannot be given by explicit formulas but has pleasant naturality
properties.
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Theorem 1.1. The local cyclic cohomology class of Connes’ character of a Θ-
summable K-cycle coincides with the abstract character of the corresponding K-
homology class.

An important example of a Θ-summable K-cycle is discussed in Connes’ book
”Géométrie Noncommutative” (pp 81-83). For a lattice Γ in a semisimple Lie
group G, this K-cycle represents Kasparov’s canonical element γ ∈ KKΓ( lC, lC).
The K-cycle is given by an elliptic differential operator on the symmetric space
associated to G. In his book A. Connes poses the problem of showing that the
character of this K-cycle over C∗

r (Γ) is cohomologous to the canonical trace on
C∗

r (Γ). As a consequence of Theorem 0.1 and some known calculations of the
abstract character one obtains

Theorem 1.2. Connes’ problem has an affirmative answer for cocompact lattices
in simple Lie groups of real rank one.

This result yields another proof of the Kadison-Kaplansky conjecture for such
groups.

K-theory for boundary actions on euclidean buildings

Guyan Robertson

Let k be a non-archimedean local field with finite residue field k of order q.
Let G be the group of k-rational points of an absolutely almost simple, simply
connected linear algebraic k-group. Then G acts on its Bruhat-Tits building ∆,
and on its Furstenberg boundary Ω. Here Ω = G/B, where B is a Borel subgroup.

Theorem 1. A(Γ) depends only on the group Γ and is a pisun C∗-algebra. In
fact A(Γ) is a higher rank Cuntz-Krieger algebra in the sense of Robertson-Steger
and the class [1] of the identity in K0(A(Γ)) has finite order, with explicit bounds
on the order.

If G is not one of the exceptional types Ẽ8, F̃4 or G̃2, then the order of [1] is less
than covol(Γ), where the Haar measure µ on G is normalized so that an Iwahori
subgroup of G has measure 1.

A rank 1 example : G = SL2(k). A(Γ) is a Cuntz-Krieger algebra and

K0(A(Γ)) = Zn+1 ⊕ Z/nZ

where n = −χ(Γ) = (q−1)
gcd(2,q−1) · #{vertices of Γ\∆} is the order of [1].

The rank 2 cases. Here the order of [1] is strictly less than χ(Γ).
Example. G = SL3(k) : A(Γ) is a higher rank Cuntz-Krieger algebra and the
order of [1] is bounded by

1

3
gcd(3, q − 1) · (q2 − 1) · #{vertices of Γ\∆}.
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Strong numerical evidence suggests that the order of [1] is actually :

(q − 1)

gcd(3, q − 1)
· #{vertices of Γ\∆}.

This number is a lower bound for the order of [1].

Since C∗
r (Γ) embeds in AΓ, there is a natural homomorphism

K∗(C
∗
r (Γ)) → K∗(AΓ).

This homomorphism is not injective, since [1] does have finite order in K0(AΓ). It
is therefore worth comparing the K-theories of these two algebras. If the building

is type Ã2, everything can be calculated explicitly.
Theorem 2. Let Γ be a torsion free cocompact lattice in G = SL3(k). Then

(0.1) K0(C
∗
r (Γ)) = Zχ(Γ) and K1(C

∗
r (Γ)) = Γab.

This result is an immediate consequence of the Baum-Connes Theorem of V. Laf-
forgue.

In [CMSZ] a detailed study was undertaken of groups of type rotating automor-

phisms of Ã2 buildings, subject to the condition that the group action is free and

transitive on the vertex set of the building. For Ã2 buildings of orders q = 2, 3,
the authors of that article give a complete enumeration of the possible groups

with this property. These groups are called Ã2 groups. Some, but not all, of the

Ã2 groups are cocompact lattices in PGL3(k) for some local field k with residue
field of order q. For those that are, it is an empirical fact that either k = Qp or
k = Fq((X)) in all the examples constructed so far.

For each Ã2 group Γ̃ < PGL3(k), consider the unique type preserving subgroup

Γ < Γ̃ of index 3. Then

χ(Γ) = (q − 1)(q2 − 1)

Remark There are eight such groups Γ if q = 2, and twenty-four if q = 3.
One checks that in all these examples,

rankK0(AΓ) = 2 · rankH2(Γ,Z) =

{
4 if q = 2,

30 if q = 3.

Furthermore, the class of [1] in the K0(AΓ) has order q − 1. Note that for q = 2
this means that [1] = 0.

These values also appear to be true for higher values of q. In particular, they
have been verified for a number of groups with q = 4, 5, 7. Here is an example
with q = 4.

Example Consider the Regular Ã2 group Γr, with q = 4. This is a torsion free
cocompact subgroup of PGL3(K), where K is the Laurent series field F4((X)) with
coefficients in the field F4 with four elements. Its embedding in PGL3(F4((X)))
is essentially unique, by the Strong Rigidity Theorem of Margulis. The group Γr
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is torsion free and has 21 generators xi, 0 ≤ i ≤ 20, and relations (written modulo
21): {

xjxj+7xj+14 = xjxj+14xj+7 = 1 0 ≤ j ≤ 6,

xjxj+3xj−6 = 1 0 ≤ j ≤ 20.

Let Γ < PSL3(K) be the type preserving index three subgroup of Γr. The group
Γ has generators xjx

−1
0 , 1 ≤ j ≤ 20. Using the results of [RS] one obtains

K0(AΓ) = Z88 ⊕ (Z/2Z)12 ⊕ (Z/3Z)4 ⊕ (Z/7Z)4 ⊕ (Z/9Z),

and the class of [1] in K0(AΓ) is 3 + Z/9Z, which has order q − 1 = 3. It also
follows from [RS] that K0(AΓ) = K1(AΓ). Now

K0(C
∗
r (Γ)) = Z45 = Z44 ⊕ 〈[1]〉 and K1(C

∗
r (Γ)) = (Z/2Z)6 ⊕ (Z/3Z).

This, and similar, examples suggest that the only reason for failure of injectivity
of the natural homomorphism

K0(C
∗
r (Γ)) → K0(AΓ)

is the fact that [1] has finite order in K0(AΓ).
Example For completeness, here are the results of the computations for one of
the groups with q = 3. The Regular group 1.1 of [CMSZ], with q = 3, has 13
generators xi, 0 ≤ i ≤ 12, and relations (written modulo 13):

{
x3

j = 1 0 ≤ j ≤ 13,

xjxj+8xj+6 = 1 0 ≤ j ≤ 13.

Let Γ be the type preserving index three subgroup. The group Γ has generators
xjx

−1
0 , 1 ≤ j ≤ 12. Note that the group 1.1 has torsion, but its type preserving

subgroup Γ is torsion free. One obtains

K0(AΓ) = Z30 ⊕ (Z/2Z) ⊕ (Z/3Z)6 ⊕ (Z/13Z)4,

and the class of [1] in K0(AΓ) is 1 + Z/2Z, which has order q − 1 = 2. It also
follows that

K0(C
∗
r (Γ)) = Z16 and K1(C

∗
r (Γ)) = (Z/3Z)3 ⊕ (Z/13Z).
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From surgery to analysis

John Roe

(joint work with Nigel Higson)

This talk describes joint work with Nigel Higson, also of Penn State. The papers
“Mapping surgery to analysis I–III” are available on my web site at

http://www.math.psu.edu/roe/writings/roepapers.html

1. The analytic signature

Let M be a compact (smooth) oriented manifold. Recall that there is defined
an (analytic) higher signature

(1.1) Sign(M) ∈ Kn(C∗
r (Γ))

where Γ = π1M and n = dimM .
One can define it to be the ‘higher index’ of the signature operator on M , i.e.

the equivariant index of the signature operator on the universal cover.

Theorem 1.2. Let f : M ′ → M be an orientation-preserving homotopy equiva-
lence. Then Sign(M ′) = Sign(M) as elements of Kn(C∗

r (Γ)), i.e., the analytic
higher signature is homotopy invariant.

Objective: gain the ‘best possible’ understanding of this result.

2. The assembly map

For a compact M as above there is an analytic assembly map

(2.1) Ki(M) → Ki(C
∗
r (Γ))

which sends the homology class of an elliptic operator to its higher index. Thus
we can reformulate Theorem 1.2 as follows: given f : M ′ → M an orientation-
preserving homotopy equivalence, the homology class

(2.2) f∗[DM ′ ] − [DM ]

lies in the kernel of the assembly map. (DM is the signature operator on M .)
Need an explicit understanding of the kernel (and cokernel) of assembly.
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3. Surgery theory

Definition 3.1. The manifold structure set S(X) is the collection of eqiuvalence
classes (modulo diffeomorphism) of homotopy equivalences M → X, where M is
a smooth manifold.

For instance, S(Sn) is the Milnor-Kervaire group Θn of exotic spheres. Surgery
theory computes the structure set by embedding it in a long exact sequence

(3.2) . . .→ Ln+1(ZΓ) → S(X) → [X,G/O] → Ln(ZΓ)

The rightmost map here is the assembly map of surgery theory. It takes an
element of [X,G/O], represented by a (degree one normal) map M → X , into the
difference of the L-theory higher signatures of M and X .

Note that the homotopy invariance of these higher signatures is now a formal
consequence of exactness.

4. The analytic surgery sequence

Project now is: fit the analytic assembly map into a long exact sequence anal-
ogous to the surgery exact sequence, and then produce a natural transformation
from one to the other.

It will be the K-theory long exact sequence associated to a certain C∗-algebra
extension.

Need to consider spaces which are non-compact in various ways:

• noncompact (proper) metric spaces, e.g. complete manifolds;
• Γ-presented spaces, i.e. a cover of X is given and we work equivariantly

on the cover.

Choose a Hilbert space H which is an (ample) X-module, i.e. a module over
C0(X) (or the cover in the Γ-presented case).

One can use C
∗-categories to handle matters more functorially here.

Define C∗(X) to be the C∗-algebra generated by the locally compact, finite
propagation, (equivariant) operators on H .

Define D∗(X) to be the C∗-algebra generated by the pseudolocal, finite propa-
gation, (equivariant) operators on H .

Then there is an exact sequence

(4.1) 0 → C∗(X) → D∗(X) → D∗(X)/C∗(X) → 0

Definition 4.2. The analytic surgery sequence is the long exact sequence in K-
theory associated to this short exact sequence of C∗-algebras.

Lemma 4.1. The K-theory group Kn+1(D
∗(X)/C∗(X) is isomorphic to the K-

homology group Kn(X). (Paschke duality)

Lemma 4.2. If X is compact (and Γ-presented) then C∗(X) is Morita equivalent
to C∗

r (Γ), and in particular they have the same K-theory.
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(Consider the example of a one-point space.)
Thus the boundary map in the long exact sequence becomes a homomor-

phism Kn(X) → Kn(C∗
r (Γ)), and this is one definition of the assembly map.

Kn+1(D
∗(X)) is therefore an analytic counterpart to the structure set.

Example: when Γ is trivial, this is reduced K-homology.

5. Rigidity and D∗(X)

By ‘rigidity’ we mean an invariance or vanishing theorem for an index (e.g. ho-
motopy invariance for the signature, positive scalar curvature vanishing for Dirac).
A ‘stable reason’ for rigidity should correspond to an element of Kn+1(D

∗(X)).

Example 5.1. If M is a compact spin manifold of positive scalar curvature, then
there is defined a class in Kn+1(D

∗(M)) which maps to the homology class of the
Dirac operator (and thus gives a ‘reason’ for the vanishing of the index). Proof —
the Dirac operator is invertible!

In fact the construction gives a map from the space of concordance classes of
positive scalar curvature metrics (Hajduk, Stolz) to Kn+1(D

∗(X)).
Warning: there are also ‘unstable reasons’ for rigidity. For instance, it is a

theorem that the (ordinary) index of the Dirac operator on a spin manifold of
nonnegative sectional curvature is zero. (Exercise!) This does not translate to our
context, as one can see e.g. by noting that the the higher index of Dirac on a torus
is not zero.

6. Detecting manifold structures

How can we detect the structure set analytically — i.e. detect that a homotopy
equivalence is not homotopic to a diffeomorphism?

Use the difference between signature and signature operator. One can define a
signature (global notion) for any (suitable) space with Poincaré duality — it does
not have to be a manifold. (Such nonmanifold Poincaré spaces arise by patching
manifolds together by homotopy equivalences.) However the signature operator
(local notion) exists only for manifolds.

Local Global

Diffeomorphism Homotopy equivalence
Manifold Poincaré space

Signature operator Signature

7. Defining analytic signatures

Papers I and II set up technology to associate signatures in K∗(C
∗(X)) to

various kinds of analytic and geometric Poincaré complexes controlled over X .
No algebraic surgery is involved.
These signatures are invariant under suitable notions of homotopy and bordism,

and in the case of a complete manifold the signature constructed by this process
agrees with the higher index of the signature operator.
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Paper III uses these constructions to map the surgery exact sequence to the
analytic surgery sequence.

8. The structure invariant

Let f : M ′ → M be a homotopy equivalence. We want to measure ‘how far’ f
is from a diffeomorphism.

Build a non-compact Poincaré space W by joining together the open metric
cones on M and M ′ using f . Take the signature Sign(W ) ∈ Kn+1(C

∗(W )).
Its image in Kn+1(D

∗(W )) is an analytic obstruction to f being a diffeomor-
phism.

Problem: We want an invariant in Kn+1(D
∗(M)).

9. Cones and boundaries

Let X be a space with a conelike end based on Y . Let XY be obtained by
compactifying the end (gluing on a copy of Y at infinity.) Every X-module is
canonically also a XY -module.

Proposition 9.1. If we regard H as a XY -module in this way, then every oper-
ator in D∗(X) is also in D∗(XY ). Moreover, this ‘compression’ process induces a
natural transformation from the analytic surgery sequence of X to the long exact
K-homology sequence of the pair (XY , Y ).

(The point is that XY -pseudolocality is a priori a stronger condition than X-
pseudolocality. The proof uses Kasparov’s Lemma.)

Apply this as follows: the Poincaré space W of the previous slide comes with
a natural map to the open double cone bM on M . The compactification of both
ends of bM gives M × [0, 1], which projects to M .

Apply the following series of maps to Sign(W ) (W was formed from the homo-
topy equivalence f) to get an invariant σ(f) in Kn+1(D

∗(M)):

K(C∗(W ))

��
K(C∗(bM)) // K(D∗(bM))

��
K(D∗(M × [0, 1]))

��
K(D∗(M))

This defines a map σ : S(M) → Kn+1(D
∗(M)).
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10. The main theorem

Theorem 10.1. The map σ defined above fits into a diagram relating the clas-
sical surgery exact sequence to the analytic surgery exact sequence. This diagram
commutes, except for a multiplicative factor of 2 in every sixth square.

The factors of 2 comes from the fact that the boundary of the K-homology class of the

signature operator on a manifold M is the K-homology class of the signature operator

on the boundary ∂M times a constant which is either 1 or 2 depending on the parity of

the dimension.

11. An example: multisignatures

See Wall, Surgery on compact manifolds, Chapter 13B

Finite-dimensional representations of Γ give homomorphisms C∗
r (Γ) → Mm(C)

(at least if Γ is amenable — actually, consider finite groups). Let {ρ1, . . . , ρk}
be a finite set of such representations, of dimensions m1, . . . ,mk. Each induces a
K-theory homomorphism

(11.1) τj : K0(C
∗
r (Γ)) → K0(Mmj

(C)) = Z

Define τ : K0(C
∗
r (Γ)) → Qk by

(11.2) a 7→
(

1
m1
τ1(a), . . . ,

1
mk
τk(a)

)
.

Proposition 11.3. If a belongs to the image of the assembly map, then τ(a) is a
multiple of (1, . . . , 1).

Proof — see Atiyah’s L2 index theorem.
Thus the multisignature τ gives a well defined map from the cokernel of assembly

(in K0(D
∗(X)) to Qk/Q. This then gives a map on part of the structure set of

(odd-dimensional) manifolds, corresponding to Wall’s multisignature.

Pseudo-multiplicative unitaries on C∗-modules associated to

locally compact groupoids

Thomas Timmermann

In this talk, we prove a duality theorem for actions of groupoids on C∗-algebras. As
a tool, we develop techniques for pseudo-multiplicative unitaries on C∗-modules,
borrowing on the theory of (pseudo-)multiplicative unitaries on Hilbert spaces
developed by S. Baaj, G. Skandalis, M. Enock and J.-M. Vallin [1, 10]. These
results form part of my on-going PhD work.

Let G be a locally compact groupoid with a left Haar system λ. Denote by
G0 its space of units. Our starting point is the C∗-module L2(G, λ) over C0(G

0),
obtained by completing Cc(G) with respect to the inner product 〈f |g〉 :=

∫
fg dλ.

The range and source map of G induce representations πr and πs of C0(G
0) on

L2(G, λ), respectively. Denote by L2(G, λ)πs
<L2(G, λ) and L2(G, λ)=πr

L2(G, λ)
the internal tensor products taken with respect to the action on the first and
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second factor, respectively. Our main actor is the pseudo-multiplicative uni-
tary W : L2(G, λ)πs

< L2(G, λ) → L2(G, λ) =πr
L2(G, λ) defined by the formula

(Wf)(x, y) := f(x, x−1y).

The definition of the left leg Ŝ ⊂ LC0(G0)(L
2(G, λ)) of W , of its coproduct

and of its coactions carries over from [1] without problems. One recovers the C∗-
algebra C0(G) with the coproduct transpose to the multiplication map of G and
the notion of actions of G on C0(G

0)-algebras.
In contrast, generally, the right leg of W can not be defined as a C∗-subalgebra

of LC0(G0)(L
2(G, λ)) because it corresponds to the left regular representation which

does not even commute with the module structure on L2(G, λ). However, if G is
r-discrete, it is spanned by α-twisting operators – maps T on L2(G, λ) possessing
an α-adjoint T ∗ satisfying 〈η|Tξ〉 = α(〈T ∗η|ξ〉) for all η, ξ ∈ L2(G, λ), where α is
a partial automorphism of C0(G

0). The right leg S of W can then be defined as
a C∗-family (Sα)α of twisting operators on L2(G, λ). Introducing the notion of a
twisted tensor product of such C∗-families, we can follow the development in [1]
and define a coproduct on S as well as the notion of coactions of S on C∗-algebras.

Theorem 1.1. There exists a bijection between injective coactions of S and Fell
bundles on G.

Once the nature of the right leg S has been clarified, we can define reduced
crossed products and carry over the Baaj-Skandalis duality theorem.

Theorem 1.2. Let C be a C0(G
0)-algebra with a coaction of Ŝ. Then the reduced

crossed product C or S carries a coaction of S, and the iterated crossed product
C or S or Ŝ is Ŝ-equivariantly isomorphic to C ⊗B KC0(G0)(L

2(G, λ)). A similar
result holds for coactions of S.

There are interesting examples of r-discrete groupoids which are not globally
but only locally Hausdorff, see [3]. For such groupoids, M. Khoshkam and G.
Skandalis constructed the left regular representation on a canonical Hilbert module
L2(G, λ)KS , see [4]. Following their approach, we define a related Hilbert module
L2(G, λ) and exhibit a pseudo-multiplicative unitary W : L2(G, λ)πs

<L2(G, λ) →
L2(G, λ)=πr

L2(G, λ), using the same formula (Wf)(x, y) := f(x, x−1y) as before.

Theorem 1.3. Let G be a locally Hausdorff r-discrete groupoid. Then the set
HG of limit sets of primitive nets in G carries a natural structure of a Hausdorff
r-discrete groupoid. The Hilbert module L2(G, λ) is isomorphic to the Hilbert
module associated to HG. Under this isomorphism, W corresponds to the pseudo-
multiplicative unitary associated to HG.

Let us end with comments on on-going work and open questions. A generalisa-
tion of the theory of multiplicative unitaries to pseudo-multiplicative unitaries on
C∗-modules and a proof of the duality theorem for a C∗-module analog of weak
Kac systems is going to appear in my PhD thesis. This generalisation entails
a duality theorem for coactions of general locally compact Hausdorff groupoids
which are not necessarily r-discrete. Second, in the von Neumann-algebraic set-
ting, pseudo-multiplicative unitaries have received much interest in connection
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with inclusions of factors. It would be interesting to test the techniques developed
so far in the C∗-algebraic setting on the unitaries associated by O’uchi Moto to
certain inclusions of C∗-algebras.
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moyennabilité. J. Operator Theory, 44(2):347–368, 2000.

On C∗-Algebras and K-theory for Fredholm Manifolds

Jody Trout

(joint work with Dorin Dumitrasçu)

This project [3] is concerned with constructing C∗-algebras and computing the
K-theory for a particular class of infinite-dimensional Hilbert manifolds, namely
Fredholm manifolds [4, 5]. This is part of a research program to introduce concepts
and techniques from Alain Connes’ noncommutative geometry into the study of
infinite-dimensional Fredholm manifolds.

Recall that if M is a smooth finite-dimensional Riemannian manifold, then
there are two C∗-algebras naturally associated to M . One is the commutative
C∗-algebra C0(M) of all continuous complex-valued functions which vanish at
infinity on M . By the Serre-Swan theorem, we have the well-known fact that
Kj(M) ∼= Kj(C0(M)), where Kj(M) is the (reduced) topological K-theory of
M . Furthermore, if M has a spin (or spinc) structure, there is a Poincaré duality
isomorphism Kn−j(M) ∼= Kc

j (M), where Kc
j (M) denotes the dual (compactly

supported) K-homology of M and n is the dimension of M . The other C∗-algebra
is C(M) = C0(M,Cliff(TM)) of continuous sections of the Clifford algebra bundle
Cliff(TM) → M vanishing at infinity. This C∗-algebra was used by Kasparov in
studying the Novikov Conjecture [8] . If M is even-dimensional and has a spin
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structure then this C∗-algebra is Morita equivalent to C0(M). (In general, C(M)
is Morita equivalent to C0(TM).)

IfM is an infinite-dimensional Hilbert manifold, modeled on a separable infinite-
dimensional Euclidean (i.e., real Hilbert) space E , then these two constructions do
not work. For example, C0(E) = {0} since there are no compactly supported
continuous functions on E which are non-zero. However, the Clifford C∗-algebra
has been generalized by Higson-Kasparov-Trout [7] to the case M = E , by a di-
rect limit construction. The component C∗-algebras in the direct limit are given
by A(Ea) = C0(R)⊗̂C(Ea) ∼= C0(R)⊗̂C0(E

a,Cliff(Ea)) where ⊗̂ denote the Z2-
graded tensor product and C0(R) is graded by even and odd functions. Since the
map Ea 7→ A(Ea) is functorial with respect to inclusions of finite-dimensional
subspaces, they can construct a non-commutative direct limit C∗-algebra (in the
better notation of [6]):

A(E) = lim
−→

A(Ea)

where the direct limit is taken over all finite-dimensional subspaces Ea ⊂ E . This
C∗-algebra was used to prove an equivariant Bott periodicity theorem for infinite-
dimensional Euclidean spaces [7] and has had applications to proving cases of the
Novikov Conjecture and, more generally, the Baum-Connes Conjecture [6, 11].

Now, suppose the Hilbert manifold M is fibered as the total space of a smooth
infinite rank Euclidean vector bundle p : F → X , with fiber E and compatible affine
connection ∇, over a finite-dimensional Riemannian manifold X . Let pa : F a → X
be a finite rank subbundle of F . Using the connection ∇ and the metrics on F and
X , one can give the total space Fa a canonical structure of a Riemannian manifold
and define the component C∗-algebra

A(F a) = C0(R)⊗̂C(F a) ∼= C0(R)⊗̂C0(F
a,Cliff(TF a)).

Since the map F a 7→ A(F a) is functorial with respect to inclusions of finite-
dimensional subbundles [10], one can then construct a direct limit C∗-algebra:

A(F,∇) = lim
−→

A(F a)

where the direct limit is taken over all finite rank subbundles pa : F a → X of F .
Trout [10] used this C∗-algebra to prove an equivariant Thom isomorphism the-
orem for infinite rank Euclidean bundles, which reduces to the Higson-Kasparov-
Trout Bott periodicity theorem when the base manifold X is a point.

For a more general curved Hilbert manifold M , with Riemannian metric g, there
does not seem to be a natural generalization of the previous constructions. Based
on the above, one would be tempted to construct a direct limit C∗-algebra

“A(M) = lim
−→

Ma⊂M

A(Ma)”

where the component C∗-algebras should be given by

A(Ma) = C0(R)⊗̂C(Ma) = C0(R)⊗̂C0(Ma,Cliff(TMa))

and the direct limit is taken over all finite-dimensional submanifolds Ma ⊂M . The
problem is that, even though the component C∗-algebras have many functoriality
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properties, if we have smooth (isometric) inclusions

Ma ⊂Mb ⊂Mc

of finite-dimensional submanifolds of M , there is no obvious way to define a com-
muting diagram needed to construct the corresponding direct limit:

A(Mb)

$$JJJJJJJJJ

A(Ma)

::ttttttttt

// A(Mc)

However, if the Hilbert manifold M has a Fredholm structure, then we can
construct a direct limit C∗-algebra by choosing an appropriate countable sequence
{Mn}∞n=k of expanding, topologically closed, finite-dimensional submanifolds of
dim(Mn) = n. The sequence {Mn}∞n=k is called a Fredholm filtration of M . The
countability of this sequence of submanifolds clearly simplifies the direct limit
construction since we only needs to define each “Gysin” map A(Mn) → A(Mn+1),
which require connections and normal bundles to construct.

Equip the Riemannian Fredholm manifold (M, g) with an augmented Fredholm
filtration F = (Mn, Un)∞n=k where Un is a total open tubular neighborhood of
Mn ↪→ Mn+1. We define the C∗-algebra for the triple (M, g,F) as the direct
limit:

A(M, g,F) = lim
−→

A(Mn)

which is a separable, Z2-graded, nuclear C∗-algebra.
Using Mukherjea [9], we define the topological K-theory groups of (M,F) as:

K∞−j(M,F) = lim
−→

Kn−j(Mn), j = 0, 1,

where the connecting map Kn−j(Mn) → K(n+1)−j(Mn+1) is the Gysin (or shriek)
map of the embedding Mn ↪→ Mn+1, and the inspiration for our connecting map
A(Mn) → A(Mn+1). Note that this definition does, in general, depend on the
choice of Fredholm filtration.

However, using appropriate notions of Spinq-structures for Riemannian Fred-
holm manifolds, originally investigated by Anastasiei [1] and de la Harpe [2], we
obtain the following Serre-Swan and Poincaré duality isomorphism theorem:

Theorem 0.1. Let (M, g) be a smooth Fredholm manifold with oriented Riemann-
ian q-structure (1 ≤ q ≤ ∞). If M has a Spinq-structure then there are isomor-
phisms

K∞−j(M,F) ∼= Kj+1(A(M, g,F)) ∼= Kc
j (M), j = 0, 1,

where F = (Mn, Un)∞n=k is any augmented Fredholm filtration of M .

Thus, these K-theory groups do not depend on the choice of the Riemannian
metric g or the (augmented) Fredholm filtration F . The dimension shift and the
relation with Poincaré duality for finite-dimensional spin manifolds then justifies
our interpretation of A(M, g,F) as an appropriate non-commutative (suspension
of the) “algebra of functions vanishing at infinity” on M . As an example, we
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show that certain based loop groups ΩG, where G is a compact Lie group, have
Fredholm Spinq-structures.
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Induction of C∗-algebra coactions

Stefaan Vaes

We provide an overview of induction and imprimitivity results in the setting of
locally compact quantum groups. In particular, we discuss induction of coactions
on C∗-algebras. To obtain these C∗-algebraic results, we essentially use von Neu-
mann algebraic techniques. Our results unify and extend the existing results for
actions and coactions of locally compact groups [4, 5, 7, 8, 14, 15, 17]. Details on
this subject will appear in [18].

1. Preliminaries and notations

Based on several theories (see e.g. [1, 6]), the theory of locally compact (l.c.)
quantum groups was developed in [11, 12].

Definition 1.1. A pair (M,∆) is called a (von Neumann algebraic) l.c. quantum
group when

• M is a von Neumann algebra and ∆ : M → M ⊗ M is a normal and
unital ∗-homomorphism satisfying the coassociativity relation : (∆⊗ι)∆ =
(ι⊗ ∆)∆;
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• there exist normal semi-finite faithful weights ϕ and ψ on M such that
– ϕ is left invariant: ϕ

(
(ω ⊗ ι)∆(x)

)
= ϕ(x)ω(1) when ϕ(x) < +∞,

– ψ is right invariant: ψ
(
(ι⊗ ω)∆(x)

)
= ψ(x)ω(1) when ψ(x) < +∞.

Ordinary l.c. groups appear in this theory as M = L∞(G) with ∆ : L∞(G) →
L∞(G) ⊗ L∞(G) defined by ∆(F )(p, q) = F (pq).

Fix a l.c. quantum group in the sense of definition 1.1. Using the Haar weight,
one can construct the left regular representation. It is a multiplicative unitary
in the sense of [1]. This allows to define a C∗-subalgebra A ⊂ M of ‘continuous
functions vanishing at infinity’. It also allows to define a dual object, on three
different levels: a von Neumann algebraic dual M̂ , a reduced C∗-algebraic dual

Â and a full C∗-algebraic dual Âu (see the table below). Finally, it is possible to
define a co-inverse and co-unit and to prove the uniqueness of the Haar weights.
Summarizing, we get the following operator algebras associated with a l.c. quantum
group. For the reader’s convenience, we also indicated there classical counterparts.

Quantum Classical Quantum Classical

M L∞(G) M̂ L(G)

A C0(G) Â C∗
r (G)

Au C0(G) Âu C∗
f (G)

Here we used the following notations: L(G) denotes the group von Neumann
algebra of G generated by the left regular representation, C∗

r (G) is the reduced
group C∗-algebra, while C∗

f (G) is the full group C∗-algebra. We finally remark
that, in the classical picture, there is no difference between A and Au. This is due
to the commutativity of the algebra A (which implies an amenability property).

2. Closed quantum subgroups, coactions, crossed products

Before discussing induction and imprimitivity, we introduce the following ba-
sic ingredients: closed quantum subgroups, unitary corepresentations, coactions
and crossed products. A morphism between the l.c. quantum groups (M,∆)
and (M1,∆1) is a non-degenerate ∗-homomorphism π : Au → M(Au

1) satisfy-
ing (π ⊗ π)∆ = ∆1π. We say that (M1,∆1) is a closed quantum subgroup of
(M,∆) if there is given such a morphism π such that there exists a faithful, nor-

mal ∗-homomorphism M̂1 → M̂ making the following diagram commutative. Here
π̂ denotes the dual morphism from (M̂1, ∆̂1) to (M̂, ∆̂).

Âu
1

π̂
−−−−→ M(Âu)

y
y

M̂1 −−−−→ M̂

This definition comes down to an operator algebraic characterization of closed
subgroups. Indeed, given a continuous morphism π : G1 → G, we know that
G1 is a closed subgroup of G if and only if there exists a faithful, normal ∗-
homomorphism L(G1) → L(G) mapping λp to λπ(p).
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A unitary corepresentation of a l.c. quantum group (M,∆) on a Hilbert space
K is a unitary operator U ∈ M ⊗ B(K) satisfying (∆ ⊗ ι)(U) = U13U23. Observe
that, automatically, U ∈ M(A ⊗ K(K)). A continuous coaction of (M,∆) on a
C∗-algebra B is a non-degenerate ∗-homomorphism α : B → M(A⊗B) such that
(∆⊗ ι)α = (ι⊗α)α and such that the closed linear span of α(B)(A⊗ 1) is A⊗B.
It is possible to define analogously coactions on von Neumann algebras. Given a
continuous coaction, we can define the full and reduced crossed products denoted
by Â rnB and Âu

fnB respectively.
In particular, one considers the coaction of (A,∆) on itself by left translation. If

Â rn A ∼= K(H), the l.c. quantum group is said to be regular. If Âu
fnA ∼= K(H),

the l.c. quantum group is said to be strongly regular. Examples of strongly regular
l.c. quantum groups include all l.c. groups and their duals, Kac algebras, compact
and discrete quantum groups, certain bicrossed products as well as algebraic quan-
tum groups in the sense of Van Daele. It is not known whether there exist regular
but non strongly regular l.c. quantum groups. On the other hand, there are non-
regular quantum groups: for instance the quantum E(2) group, the quantum ax+b
group or certain bicrossed products. The latter can even be non-semi-regular, see
[2].

3. Quantum homogeneous spaces and Mackey imprimitivity

We fix a l.c. quantum group (M,∆) with closed quantum subgroup (M1,∆1).
Associated with this data, we get a right coaction of (M1,∆1) on M by right
translation denoted by α : M → M⊗M1. It is then obvious to define the quantum
counterpart of L∞(G/G1). We write

Q := {x ∈ M | α(x) = x⊗ 1}

and we consider Q as the measured homogeneous space. We then want to find
inside Q the l.c. homogeneous space as a dense C∗-subalgebra. Observe that
∆ : Q→M ⊗Q defines a coaction of (M,∆) on Q by left translation.

Theorem 3.1. Suppose that (A,∆) is a regular l.c. quantum group. There exists
a unique C∗-subalgebra D ⊂ Q satisfying

• D is strongly dense in Q,
• ∆ : D → M(A⊗D) is a continuous coaction of (A,∆) on D,
• ∆(Q) ⊂ M(K(H) ⊗D) and the map ∆ : Q→ M(K(H) ⊗D) is strict.

We call D the quantum homogeneous space.

We remark that the strictness of ∆ : Q → M(K(H) ⊗ D) means that ∆ is
continuous on bounded subsets of Q when we equip Q with the strong∗ topology
and M(K(H) ⊗D) with the strict topology.

The relevance of the quantum homogeneous space comes from the following
Mackey type imprimitivity theorem.
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Theorem 3.2. Suppose that (A,∆) is a strongly regular l.c. quantum group. There
exist canonical covariant Morita equivalences

Â rnD ∼
Morita

Â1 and Âu
fnD ∼

Morita
Âu

1 .

The covariance of these Morita equivalences is with respect to the dual coac-
tions on the crossed products. Of course, the Morita equivalence Âu

fn D ∼ Âu
1

implements the induction of corepresentations from (M1,∆1) to (M,∆). Observe
that the strong regularity assumption is necessary: if (M1,∆1) is the one-point

subgroup, a covariant Morita equivalence Âu
fn A ∼ C comes down to strong

regularity.

Idea of the proof. Observe that a ‘Morita equivalence’ of von Neumann alge-
bras is given by an imprimitivity correspondence, i.e. a bimodule on which both
algebras are each other’s commutant. It is an easy exercise to check that the von
Neumann algebra M̂ nQ is the commutant of M̂1, when both are represented in
a natural way on the L2-space of (M,∆). The key point in the proof of theorems
3.1 and 3.2 is to use this easy observation. In order to do so, we have to treat
unitary corepresentation theory in a von Neumann algebraic language. This is
done through the use of correspondences. We just illustrate this approach for l.c.
groups, due to Connes [3]. Indeed, a unitary representation u : G → B(H) gives
rise to an L(G)-L(G) correspondence on the Hilbert space L2(G) ⊗ H , where g
acts on the left by λg ⊗ ug and on the right by ρg ⊗ 1. One can characterize these
L(G)-L(G) correspondences as those for which there exists a bicovariant represen-
tation of L∞(G), i.e. a representation which is covariant with respect to both the
left and the right action of G.

In this setting, induction of unitary corepresentations comes down to taking the
internal tensor product with the imprimitivity correspondence between M̂1 and
M̂ n Q. Finally, in order to go up to the stated C∗-algebraic results, one has to
replace Hilbert spaces by C∗-modules and treat correspondences on C∗-modules.
One performs as such an induction procedure for unitary corepresentations on
Hilbert C∗-modules. In particular, one can induce the regular corepresentation on
the Hilbert Â1-module Â1. This yields an induced Hilbert Â1-module E together
with a unitary corepresentation of (M,∆). Using a quantum version of Landstad’s

theorem [13], we deduce that K(E) ∼= Â rnD to prove the existence of D.

4. Induction of C∗-algebra coactions

Suppose that (M,∆) is a strongly regular l.c. quantum group with closed
quantum subgroup (M1,∆1) given by the morphism π. Suppose that η : C →
M(A1 ⊗ C) is a continuous coaction of (A1,∆1) on the C∗-algebra C. We define
an induced C∗-algebra IndC together with an induced coaction Ind η of (A,∆).

Exactly as it was easy to define the measured homogeneous space as a fixed
point algebra, it is easy to define an algebra containing IndC, but which is too
big. Recall that we denoted by α the right coaction of (M1,∆1) onM by restricting
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the comultiplication.

C̃ = {X ∈ M(K(H) ⊗ C) | X ∈ (M ′ ⊗ 1)′ and (α⊗ ι)(X) = (ι⊗ η)(X)} .

Observe that in the case where C = C, we get C̃ = Q.

Theorem 4.1. There exists a unique C∗-subalgebra IndC of C̃ satisfying

• ∆ ⊗ ι : IndC → M(A⊗ IndC) is a continuous coaction of (A,∆),

• ∆ ⊗ ι : C̃ → M(K(H) ⊗ IndC) is strictly continuous on unit ball of C̃,

• IndC ⊂ C̃ is non-degenerate: span(IndC)(H ⊗ C) is dense in H ⊗ C.

There exist canonical covariant Morita equivalences

Âu
fn IndC ∼

Morita
Âu

1 fn C and Â rn IndC ∼
Morita

Â1 rn C .

5. Final remarks

Induction of unitary corepresentations was first considered by Kustermans in [9],
but his concrete approach – defining the underlying Hilbert space for the induced
corepresentation in the spirit of Mackey – does not allow to prove imprimitivity
theorems. We want to remark that, of course, our induction is unitarily equivalent
to his. A proof of this fact uses unavoidably modular theory, since this theory is
an essential part of Kustermans’ approach.

If G1 is a closed subgroup of a l.c. group G, one can characterize the G-C∗-
algebras that are induced from a G1-action as those that admit a G-equivariant
inclusion of C0(G/G1) into the center. Of course, we cannot hope for the same
result in the quantum setting, since it requires the commutativity of the quantum
homogeneous space D. It is nevertheless possible to characterize induced C∗-
algebras in a similar way, see [18] for a precise formulation.

It is possible as well to describe what happens if we first restrict a coaction to
a closed quantum subgroup and then induce it up again. In the classical case, this
comes down to tensoring with C0(G/G1) and taking the diagonal action. Again we
cannot hope for the same result, since the notion of a diagonal coaction does not
make sense in the non-commutative world. After restriction and induction, we find
instead of a tensor product a kind of twisted product of the quantum homogeneous
space and the original C∗-algebra, together with a ‘diagonal’ coaction. These
twisted products resemble the purely algebraic Yetter-Drinfeld modules. Again,
see [18] for details.
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T -duality in string theory via noncommutative geometry

Mathai Varghese

(joint work with Jonathan Rosenberg)

The T-dual of a type II string theory compactified on a circle, in the presence
of a topologically nontrivial NS 3-form H-flux, was analyzed in special cases in
the literature, where it was observed that T-duality changes not only the H-flux,
but also the spacetime topology. A general formalism for dealing with T-duality
for compactifications arising from a free circle action was developed in [BEM].
This formalism was shown to be compatible with two physical constraints: (1) it
respects the local Buscher rules, and (2) it yields an isomorphism on twisted K-
theory, in which the Ramond-Ramond charges and fields take their values. It was
shown in [BEM] that T-duality exchanges the first Chern class with the fiberwise
integral of the H-flux, thus giving a formula for the T-dual spacetime topology.

In this talk, we will present an account of the results in [MR], consisting of a
formula for the T-dual of a toroidal compactification, that is a theory compacti-
fied via a free torus action, with H-flux. One striking new feature that occurs in
the higher rank case is that not every toroidal compactification with H-flux has
a T-dual; moreover, even if it has a T-dual, then the T-dual need not be another
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toroidal compactification with H-flux. A big puzzle has been to explain these
mysterious “missing T-duals”, and our work presents a solution to this problem
using noncommutative geometry. We also show that the generalized T-duality
group GO(n, n; Z), n being the rank of the torus, acts to generate the complete
list of T-dual pairs related to a given toroidal compactification with H-flux. We
will explain these results by providing examples and applications.

[BEM] P. Bouwknegt, J. Evslin and V. Mathai,
Comm. Math. Phys. 249, 383 (2004), [hep-th/0306062];
Phys. Rev. Lett. 92, 181601 (2004) [hep-th/0312052].

[MR] V. Mathai and J. Rosenberg,
Comm. Math. Phys., DOI:10.1007/s00220-004-1159-7 [hep-th/0401168];
[hep-th/0409073].

Chern character for totally disconnected groups

Christian Voigt

Let G be a (second countable, locally compact) totally disconnected group.
Using equivariant sheaf theory, P. Baum and P. Schneider introduced a bivariant
equivariant cohomology theory H∗

G(X,Y ) for pairs of locally compact G-spaces X
and Y [2]. One virtue of this bivariant theory is that it generalizes and unifies
several constructions which appeared earlier in the literature. In particular, it
contains as a special case the cosheaf homology groups considered by P. Baum, A.
Connes and N. Higson in connection with the Baum-Connes conjecture for p-adic
groups [1]. Alternatively, for proper actions on simplicial complexes, one can view
cosheaf homology as equivariant Bredon homology [3], [4] for a certain coefficient
system.
In their paper Baum and Schneider conjectured that there exists a Chern char-
acter for equivariant KK-theory with values in bivariant equivariant cohomology
which becomes an isomorphism after tensoring the equivariant KK-groups with
C. However, they could prove this conjecture only in the case of profinite groups.
In our talk we outline the proof of the following theorem which in some sense
completes the work of Baum and Schneider.

Theorem 1.1. Let G be a totally disconnected group and let X and Y be finite
dimensional locally finite G-simplicial complexes. If the action of G on X is proper
and X is G-finite there exists an equivariant Chern character

chG
∗ : KKG

∗ (C0(X), C0(Y )) →
⊕

j∈Z

H∗+2j
G (X,Y )

which becomes an isomorphism after tensoring the left hand side with C.

To clarify our terminology, we point out that a G-simplicial complex is a sim-
plicial complex with a smooth and type-preserving simplicial action of the group
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G. This is a natural simplical analogue of the notion of a G-CW -complex.
We remark that W. Lück has obtained the corresponding result, actually in a much
more general setting, in the case of discrete groups [4]. However, the method of
proof in [4] is completely different from ours. Moreover, it seems to be unclear if
the approach of Lück can be extended to arbitrary totally disconnected groups.
Our proof of theorem 1.1 is based on equivariant cyclic homology. Equivariant
cyclic homology is a noncommutative generalization of equivariant de Rham co-
homology [10]. A crucial feature is that the basic ingredient in the theory is not
a complex in the usual sense of homological algebra. For the proof of theorem
1.1 we use equivariant periodic cyclic theory HPG

∗ (A,B) as well as equivariant
local cyclic homology HLG

∗ (A,B). The definition of the latter theory is due to M.
Puschnigg [7] in the non-equivariant case.
The Chern character is obtained by a sequence of maps and isomorphisms

KKG
∗ (C0(X), C0(Y ) → HLG

∗ (Smooth(C0(X)),Smooth(C0(Y )))

∼= HLG
∗ (C∞

c (X), C∞
c (Y )) ∼= HPG

∗ (C∞
c (X), C∞

c (Y )) ∼=
⊕

j∈Z

H∗+2j
G (X,Y ).

Here Smooth denotes the smoothing functor for representations of the totally
disconnected group G [5]. In particular, this functor does not show up if G is
discrete.
The first arrow is a consequence of the universal property of equivariant KK-
theory [9]. The functor KKG is the universal functor on the category of separable
G-C∗-algebras which is homotopy invariant, stable and split exact. Equivariant
local cyclic homology shares these properties. The first isomorphism is due to the
fact that the canonical homomorphism C∞

c (X) → Smooth(C0(X)) is an isoradial
subalgebra [6]. Such homomorphisms induce invertible elements in the local theory.
To construct the second isomorphism we need the assumption on X being proper,
in fact there is no bivariant transformation between equivariant local and periodic
cyclic homology in general. The proof of the last isomorphism is based on an
equivariant version of the classical Hochschild-Kostant-Rosenberg theorem.
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Automorphic representations of real and p-adic Lie groups

Antony Wassermann

If M is a factor, usually the hyperfinite type II1 factor, and G is a polish group, an
automorphic representation is a homomorphismG→ Out(M) = Aut(M)/ Inn(M)
which lifts to a Borel map g 7→ αg into Aut(M). Thus αgαh = Adu(g, h)αgh for a
Borel map u : G×G→ U(M). So αxu(y, z)u(x, yz) = w(x, y, z)u(x, y)u(xy, z) for
w : G×G×G → T Borel. The class [w] ∈ H3

Borel(G,T) is called the Connes-Jones
invariant.
We conjectured that is G is locally compact then any 3-cocycle can be realized
in the hyperfinite type II1 factor. We described few constructions of automor-
phic representations. The first for discrete groups, due to Connes and Jones. The
second using loop groups for compact Lie groups. The third, implicit in Connes’
work on periodic automorphisms, giving a canonical construction for compact met-
ric groups leaving a Cartan subalgebra invariant. The last extended this method
to real and p-adic Lie groups with arithmetic discrete subgroups of finite covol-
ume.
Finally we discussed the computation of H3

Borel(G,T) for G = SLn(k) where
Qp ⊂ k is a finite extension. Generalising Moores’ computation of 2-cohomology,
we explained how the spectral sequence of Prasad and Raganuthan could be used
to reduce the computation to that of compact subgroups, in particular the unipo-
tent radical U of the Iwahori subgroup. For n ≥ 6, work of Suslin, Markujew,
Levine and Quillen shows that H3(SLn(k),T) = K3(k)torsion = roots of unity in
Kcycl fixed by all σ2 for σ ∈ Gal(kcycl/k). When k = Qp, H

3(U,Z/p) can also be
computed as the Lie algebra cohomology of a graded finite-dimensional nilpotent
Lie algebra over Fp.

Quantum ax+ b group

Stanislaw L. Woronowicz

Let a, b be selfadjoint operators, a > 0 and ~ ∈]0, π
2 [. We say that a

~
o b if

aitba−it = e~tb for all t ∈ R.
~

o is called Zakrzewski relation, It is an analytical
counterpart of the algebraic relation ab = q2ba, where q2 = e−~.

Definition: A read number ~ is called admissible if there exists a locally compact
quantum group (A,∆) (in the sense of Kustermans and Vaes) with selfadjoint
elements a, b affiliated with A such that

1. a > 0, a
~

o b
2. ∆(b) ⊃ a⊗ b+ b⊗ I
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3. ∆(b) strongly commutes with I ⊗ |b|
4. A is of minimal size.

Remark:

1. For classical ax + b group we have the equality ∆(b) = a⊗ b+ b ⊗ I and
consequently ∆(b) commutes with I ⊗ b. However, in the quantum case
a⊗ b+ b⊗ I is symmetric, but not selfadjoint and the most one can have
is the inclusion ∆(b) ⊃ a⊗ b+ b⊗ I . For the same reason ∆(b) no longer
commutes with I ⊗ b. It does not commute with I ⊗ sign b.

2. If π is a representation of A such that kerπ(b) = {0} then the commutant
of (π(a), π(b)) is a factor of type IN (N = 2, 3, 4, . . . ,∞). N is called the
multiplicity of π. We say that A is of minimal size if there exists a faithful
representation of A of multiplicity 2.

Theorem: Let ~ ∈]0, π
2 ]. Then

(
~ is admissible

)
⇐⇒

(
~ =

π

2k + 3
, k = 0, 1, 2, . . .

)

Renormalisation of noncommutative φ4-theory to all orders

Raimar Wulkenhaar

(joint work with Harald Grosse)

In recent years there has been considerable interest in quantum field theories on
the Moyal plane characterised by the ?-product (in D dimensions)

(a ? b)(x) :=

∫
dDy

dDk

(2π)D
a(x+

1

2
θ·k)b(x+y) eiky , θµν = −θνµ ∈ R .(1.1)

The interest was to a large extent motivated by the observation that this kind of
field theories arise in the zero-slope limit of open string theory in presence of a
magnetic background field [1]. A few months later it was discovered [2] (first for
scalar models) that these noncommutative field theories are not renormalisable
beyond a certain loop order. The argument is that non-planar graphs are finite
but their amplitude grows beyond any bound when the external momenta become
exceptional. When inserted as subgraphs into bigger graphs, these exceptional
momenta are attained in the loop integration and result in divergences for any
number of external legs. This problem is called UV/IR-mixing.

The UV/IR-mixing contains a clear message: If we make the world noncom-
mutative at very short distances, we must at the same time modify the physics
at large distances. The required modification is, to the best of our knowledge,
unique: It is given by an harmonic oscillator potential for the free field action. In
fact, we can prove the following
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Theorem 1.1. The quantum field theory associated with the action

S =

∫
d4x
(1

2
∂µφ ? ∂

µφ+
Ω2

2
(x̃µφ) ? (x̃µφ) +

µ2
0

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
(x) ,

(1.2)

for x̃µ := 2(θ−1)µν x
ν , φ-real, Euclidean metric, is perturbatively renormalisable

to all orders in λ.

The proof is given in [3] and [4]. A summary of the main ideas and techniques
can be found in [5].

Compared with the commutative φ4-model, the bare action of relevant and
marginal couplings contains necessarily an additional term: an harmonic oscillator
potential for the free scalar field action. This is a result of the renormalisation
proof. It entails a discrete spectrum of the corresponding differential operator:
Renormalisation induces a compactification of the underlying noncommutative
geometry.

Our proof rests on two concepts:

(1) The representation of the φ4-action in the harmonic oscillator base of the
Moyal plane. Then, the action describes a matrix model the kinetic term of
which is neither constant nor diagonal. We have derived a closed formula
for the resulting propagator, using Meixner polynomials in an essential
way.

(2) The renormalisation group approach for dynamical matrix models, the core
of which is a flow equation for the effective action. The renormalisation
proof is now reduced to the verification that the flow equation—a non-
linear first-order differential equation—admits a regular solution which
depends on finitely many initial data. In the perturbative regime, the flow
equation is solved by ribbon graphs drawn on Riemann surfaces.

We have proven a power-counting theorem which relates the power-counting
behaviour of ribbon graphs to their topology and to the asymptotic scaling di-
mensions of the cut-off propagator. As a result, only planar graphs with two or
four external legs can be relevant or marginal. These graphs are labelled by an
infinite number of matrix indices. There exists a discrete Taylor expansion which
decomposes the (infinite number of) planar two- and four-leg graphs into a linear
combination of four relevant or marginal base functions and an irrelevant remain-
der. These four universal base functions have the same index dependence as the
original action in matrix formulation, which implies the renormalisability of the
model.

We have also computed in [6] the one-loop β-functions of the model which
describe the dependence of the bare coupling constant and the bare oscillator
frequency on the cut-off matrix size. It turned out that λ

Ω2 remains constant under
the renormalisation flow. Starting from given small values for ΩR, λR at an initial

matrix size NR, the frequency Ω grows in a small region around ln N
NR

= 48π2

λR
to
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Ω ≈ 1. The coupling constant approaches λ∞ = λR

Ω2
R

, which can be made small for

sufficiently small λR.
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Group actions on Banach spaces and K-theory of

operator algebras associated to groups

Guoliang Yu

(joint work with Gennadi Kasparov)

In this first part of this talk, I discussed when a group admits a proper affine
isometric action on a uniformly convex Banach space. In particular, I showed
that every hyperbolic group admits a proper affine isometric action on lp-space for
some p ≥ 2. It remains an open question whether SL(n,Z) admits a proper affine
isometric action on some uniformly convex Banach space if n ≥ 3.

In the second part of my talk, I explained how proper affine isometric actions
on uniformly convex Banach spaces can be used to compute K-theory of operator
algebras associated to groups. In particular, I explained the construction of an
infinite dimesional Bott element associated to a uniformly convex Banach space.
This is joint work with Gennadi Kasparov.
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