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Introduction by the Organisers

This was the most recent in a long series of annual conferences in Oberwolfach
covering all areas of algebraic and geometric topology, and the last such conference
before going over to the new two-year cycle of meetings. According to the records
kept in the library of the institute, the first topology meeting was held in 1963,
and meetings have been held every year since then except for 1968. None of the
participants in the first meeting is still active in research. Of the people present at
this meeting, it was Rainer Vogt who has been attending this series for the longest
period: since 1969.

Every year for the last twelve years, a “keynote speaker” has been chosen to give
some focus to the topology meeting. Thus while we do have talks which cover all
areas of algebraic and geometric topology, we try to focus on one particular area
of current interest. This year, the keynote speaker was Yair Minsky, who talked
about the classification of non-compact hyperbolic 3-manifolds N with finitely
generated fundamental group.

The two main conjectures (now proved) in this area are Marden’s Tameness
Conjecture and Thurston’s Ending Lamination Conjecture. The Tameness Con-
jecture is about the topology of N , and asserts that any end of N is topologically
tame, i.e., is homeomorphic to S×R for some closed surface S. The Ending Lam-
ination Conjecture is about the geometry of N , and concerns the data needed to
determine N up to isometry. The most interesting case is that of a geometrically
infinite (and topologically tame) end ε of N . Thurston showed how to associate
to such an ε a geodesic lamination λ on the surface S, the ending lamination of ε,
and conjectured that ε is determined up to isometry by λ.
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The Ending Lamination Conjecture was recently proved by Minsky, partly in
joint work with Brock and Canary, and making use of the earlier result of Masur
and Minsky that the curve complex of a surface is hyperbolic in the sense of
Gromov. At the meeting, Minsky gave the keynote series of three lectures on the
background to and proof of the Ending Lamination Conjecture.

Within the last year, the Tameness Conjecture has also been proved, by Agol
(an independent proof has also been announced by Calegari and Gabai). In his
talk at the meeting Agol sketched some of the ideas of the proof and outlined
several applications to other problems in 3-dimensional topology.

The Tameness and Ending Lamination Conjectures together give a complete
parametrization of the set AH(M) of (non-compact) hyperbolic 3-manifolds ho-
motopy equivalent to a given compact 3-manifold M with non-empty boundary.
However, if AH(M) is given the natural algebraic topology, i.e., that coming from
its containment in the PSL2(C) character variety of π1(M), then the classifying
data is not continuous. As a consequence, the topological structure of AH(M),
in other words the deformation theory of these hyperbolic structures, is not com-
pletely clear. This was the topic of Canary’s talk. He described how, although (in
the case that ∂M is incompressible) the components of the interior of AH(M) are
open topological cells, their closures can intersect in unexpected and wild ways.
Probably the main problem left in this whole area is to better understand the
topology of this deformation space AH(M). For example, what is the Hausdorff
dimension of its boundary?

In contrast, if M is a closed hyperbolizable 3-manifold, then AH(M) is simply
a pair of points, by Mostow rigidity. However, even in this case the relation
between the geometry of M (i.e., its hyperbolic metric) and its topology is not
well understood. Souto’s talk addressed an interesting question in this context,
namely the relation between the Heegaard genus of M and the lengths of geodesics
in M . Specifically, if S is a genus g Heegaard surface in M , then, although it is
easy to see that there is no lower bound on the lengths of closed geodesics in M
that depends only on g, Souto showed that there exists εg > 0 such that the set
of primitive closed geodesics in M of length ≤ εg is unknotted in the sense that it
can be isotoped to lie on parallel copies of S.

The other talks were chosen to cover as many different areas of topology as
possible, and hence it is difficult to find an overall theme to describe them. On the
more geometric side, Nathalie Wahl described her work on diffeomorphism groups
of 3-manifolds obtained by attaching certain types of handles to S3, and their
connection to groups of self equivalences of certain graphs. Among the applications
of this work are new proofs of homological stability of Aut(Fn) and Out(Fn) (Fn a
free group), the vanishing of H∗(Aut(Fn); Zn) in a range, and the construction of
an infinite loop map from Z×BΓ+

∞ (the limit of mapping class groups of surfaces)
to Z×BAut+∞ (the limit of the Aut(Fn)). Ian Hambleton described his recent proof
that for any pair of finite periodic groups G and G′, the product G×G′ acts freely
and smoothly on Sn×Sn for some n— even in the cases (already well known) when
G and G′ themselves do not act freely on any spheres. Stefan Bauer described his
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recent work on invariants of 4-manifolds, including a refinement of the Seiberg-
Witten invariants due to him and Furuta. Hyam Rubinstein talked about an
interesting generalization of the class of small Seifert fibered 3-manifolds, in which
the three solid tori whose union is the manifold are replaced by handlebodies of
genus 2.

In a more algebraic direction, Jesper Grodal described some of the latest de-
velopments in the field of 2-compact groups — spaces which are complete at the
prime 2, and whose loop space has finite mod 2 cohomology (i.e., looks like the
2-completion of a finite complex). The goal is to classify all simply connected 2-
compact groups (this has already been done at odd primes), and understand how
close they are to being 2-completions of classifying spaces of compact connected
Lie groups. In his talk, Grodal focused on the problem of defining root systems
for 2-compact groups, and some of the problems which arise at the prime 2 and
did not arise for odd primes.

Among the other algebraic talks, Kathryn Hess described new algorithms for
describing the Hopf algebra structure on the homology of the loop space of a
space X , in terms of an appropriate model for chains on X . In the field of geo-
metric group theory, Martin Bridson talked about subgroups of direct products of
hyperbolic groups, and described his counterexample with Grunewald to a conjec-
ture of Grothendieck, where they construct a homomorphism of finitely presented,
residually finite groups which induces an equivalence of representation categories
but is not an isomorphism.
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Abstracts

Ends and the classification of hyperbolic 3-manifolds

Yair Minsky

I gave a series of three talks aimed at discussing the classification and deforma-
tion theory of hyperbolic 3-manifolds.

The first lecture was an overview and “tour” of hyperbolic 3-manifolds. I dis-
cussed a number of examples (knot complements, Fuchsian groups, manifolds
formed by amalgamations) and their basic structure: convex core, limit sets,
boundary at infinity. For finite volume manifolds Mostow-Prasad rigidity [18, 19]
tells us that their hyperbolic structure is unique, but in the infinite volume case
there is typically a high-dimensional parameter space of deformations (Bers [1, 2]).

I also introduced cusps and Margulis tubes, which are standard tubular neigh-
borhoods of short geodesics (see Thurston [23] or Kapovich [10] for general struc-
ture of hyperbolic 3-manifolds).

In the second talk I began with a discussion of how interesting examples are
constructed by perturbing cusps. Thurston’s Dehn-filling theorem (and its various
generalizations by Bonahon-Otal, Comar and Bromberg [7]) allow a manifold with
a cusp to be perturbed slightly in a way that turns the cusp into a Margulis
tube with very short geodesic core. Constructions of Kerckhoff-Thurston [11] and
Bonahon-Otal [4] used this idea to generate Kleinian surface groups with many
(even infinitely many) very short geodesics. More exotic geometric limits are
constructed by Brock [5] and Soma [20].

A Kleinian surface group is a discrete Kleinian group isomorphic to π1(S) for
a closed surface S (the case of surfaces with cusps can also be treated). Classi-
cally these are constructed by Ahlfors and Bers as quasiconformal deformations
of Fuchsian groups, hence called quasifuchsian groups. These are parameterized,
by Bers’ simultaneous uniformization theorem [1], by a product of Teichmüller
spaces. In general there are also invariants called “ending laminations”, intro-
duced by Thurston (see Minsky [15, 14]), which serve to describe ends of the
manifold that are not associated to Teichmüller data. I discussed the definition of
ending laminations and a few more examples of this type.

In the third talk I sketched Thurston’s “Intersection number lemma” which is
responsible for the definition of ending laminations and, in improved form, for
Bonahon’s theorem [3] that surface groups are tame and hence admit ending lami-
nations when they are not geometrically finite. I then discussed Thurston’s Ending
Lamination Conjecture [22] which states that these invariants suffice to determine
the surface group uniquely.

I introduced the notion of pleated surfaces (see Canary-Epstein-Green [8]) and
of the complex of curves (see Harvey [9]), and indicated very briefly how these
tools are used in the proof of the Ending Lamination Conjecture. Fixing a hy-
perbolic 3-manifold N homotopy-equivalent to S (without cusps for simplicity),
we can “realize” any essential simple closed curve in S totally geodesically in an
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intrinsically hyperbolic surface in N , and extracting from this surface its shortest
simple curve, we obtain a coarse self-map of the complex of curves. This map is
shown in [16] to be contracting in a strong sense, and together with hyperbolicity
of the complex of curves (Masur-Minsky [12]) this is the first step in obtaining
geometric control of the set of “short curves” in N based on its ending invariants.
In Minsky [17] this argument is carried out to provide a “Lipschitz model” for
the manifold N and its thick-thin decomposition, based on the work in Masur-
Minsky [13]. In Brock-Canary-Minsky [6] this model is upgraded to a bilipschitz
model, which together with Sullivan’s rigidity theorem [21] gives a proof of the
conjecture.
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Short geodesics in hyperbolic 3-manifolds are not knotted

Juan Souto

Following Otal [3] we say that a simple closed curve in a 3-manifold N is un-
knotted with respect to a closed embedded surface S if γ can be isotoped into S;
equivalently, γ is contained in an embedded surface S ′ isotopic to S. More gener-
ally, a finite collection {γ1, . . . , γn} of disjoint simple closed curves in N is unlinked
with respect to S if there is a collection of disjoint embedded parallel surfaces
S1, . . . , Sn isotopic to S and with γi ⊂ Si for i = 1, . . . , n.

Otal [3] proved that for all g there is some positive εg such that if N is a com-
plete hyperbolic 3-manifold homeomorphic to Σg ×R then the set of all primitive
geodesics in N shorter than εg is unlinked with respect to Σg × {0}. Here Σg is
the closed surface of genus g.

Theorem 1. For all g there is εg > 0 such that for every closed hyperbolic man-
ifold N and for every genus g Heegaard surface S ⊂ N the following holds: The
collection of primitive simple closed geodesics in N which are shorter than εg is
unlinked with respect to S.

If one is interested only in studying closed hyperbolic manifolds with volume
less than some constant C then Theorem 1 follows from a result due to Moriah-
Rubinstein [2]. However, it is an important feature of Theorem 1 that the constant
εg depends only on the genus of the Heegaard surface. As in [2], the proof of
Theorem 1 relies on the relation between Heegaard splittings and minimal surfaces
due to Pitts-Rubinstein [4].

The relation between Heegaard splittings and short geodesics established by
Theorem 1 is one of the crucial arguments needed in Brock-Souto [1], where we
give upper and lower bounds on the volume of a hyperbolic 3-manifold in terms
of the combinatorics of one of its Heegaard splittings.
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Quasi-isometry invariance of the cohomology ring of nilpotent groups

Roman Sauer

We report on some results concerning the invariance of certain group homolog-
ical invariants under quasi-isometry, in particular the quasi-isometry invariance
of the cohomology algebra of nilpotent groups. The focus is on the general in-
duction technique which allows to prove these results. The starting point of the
method described below is Gromov’s alternative description of groups being quasi-
isometric [Gro93, 0.2.C ′

2].

Theorem (Gromov’s Dynamic Criterion). Two finitely generated groups Λ,Γ are
quasi-isometric if and only if there exists a non-empty locally compact space, called
a coupling of Λ and Γ, on which both groups act continuously, proper and cocom-
pactly in such a way that the actions commute.

The first use of the dynamic criterion as a basis for defining an induction map
between the group cohomology of quasi-isometric groups is in Shalom’s funda-
mental paper on the geometry of amenable groups [Sha]. His definition is very
explicit in terms of the standard bar resolutions of the groups. We provide a new,
”homological-algebra”-flavoured description of the induction map thereby gener-
alizing and sharpening some of Shalom’s results. As already in Shalom’s work,
this induction exists also in the more general setting of a uniform embedding of
groups, a notion encompassing subgroup inclusions and quasi-isometric embed-
dings. Furthermore, the existence of a uniform embedding Λ → Γ is equivalent to
the existence of a coupling as in Gromov’s criterion with the exception that the
Λ-action on the coupling is not required to be cocompact.

The essentials of the induction map are being described now. Suppose that there
exists a coupling of the groups Λ and Γ; it may come from a quasi-isometry of Λ,Γ
or from a uniform embedding Λ → Γ. Let R be a commutative ring. Then there is
a compact topological space Y (constructed from the coupling) with a continuous
Λ-action, a functor Ī : {RΛ-modules} → {RΓ-modules} and a homomorphism,
called the induction, in cohomology

(1) In : Hn(Λ,M) −→ Hn(Λ,F(Y ;R) ⊗R M)
∼=
−→ Hn(Γ, Ī(M))

for every RΛ-module M . Here F(Y ;R) is the ring of functions Y → R with the
property that the preimage of any r ∈ R is open and closed; it carries a natural
Λ-action. We consider F(Y ;R)⊗RM as an RΛ-module by the diagonal Λ-action.
The first map in (1) is induced by the inclusionM ↪→ F(Y ;R)⊗RM, m 7→ idY ⊗m.
The second map in (1) is always an isomorphism. A similar discussion applies to
group homology. If we can prove that the first map and hence In are injective
under certain assumptions, then we get the estimate cdR(Λ) ≤ cdR(Γ) for the
cohomological dimensions over R. So we do not need to care so much about the
actual definitions of Ī(M) and the second map in (1) in this case. The following
theorem is obtained by analyzing the first map.
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Theorem. Let R be a commutative ring, and suppose Λ embeds uniformly into Γ
where Λ and Γ are discrete, countable groups. Then the following two statements
hold.

(i) If cdR(Λ) is finite, then we have cdR(Λ) ≤ cdR(Γ).
(ii) If Λ is amenable and Q ⊂ R, then we have cdR(Λ) ≤ cdR(Γ).

Furthermore, (i), (ii) hold true if cdR is replaced by the homological dimension hdR.

Here statement (ii) for the cohomological dimension is already proved in [Sha,
theorem 1.5] and was conjectured for the homological dimension in [Sha, sec-
tion 6.4]. An important point is that we can deal with non-amenable groups by
imposing a finiteness condition. The theorem above also generalizes a result of
Gersten [Ger93]. By a result of Stammbach [Sta70], the rational homological di-
mension of a solvable group equals its Hirsch number. Hence we obtain the follow-
ing corollary which was known before only under additional finiteness conditions
on the groups (see [BG96], [Sha]).

Corollary. Let Γ be a solvable group. Let Λ be a solvable group quasi-isometric
to Λ. Then the Hirsch ranks of Γ and Λ coincide.

Finally, we mention a generalization of Shalom’s result saying that the Betti
numbers of quasi-isometric nilpotent groups are quasi-isometry invariants.

Theorem. If Γ and Λ are quasi-isometric nilpotent groups, then the real coho-
mology rings H∗(Γ,R) and H∗(Λ,R) are isomorphic as graded rings.

We remark that the corresponding statement for rational coefficients does not
hold. By a theorem of Nomizu the cohomology algebra of a nilpotent group and
that of its Malcev Lie algebra are isomorphic. So this theorem sheds some positive
light on a long standing question in geometric group theory: Are the Malcev
completions of quasi-isometric nilpotent groups isomorphic?
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On the stabilization of the mapping class group of 3-manifolds

Nathalie Wahl

Let N be a compact, connected, oriented 3-manifold (whose universal cover
satisfies the Poincaré conjecture and with no summand a copy of RP 3) and consider
the manifold

Ms
n,k := N # (#n S1 × S2) # (#k S

1 ×D2) # (#s D
3)

obtained from N by attaching n handles, removing k tori and removing s balls.
Let As

n,k denote the mapping class group π0Diff(Ms
n,k; ∂), the group of components

of diffeomorphisms fixing the boundary pointwise, with twists along 2-spheres
factored out. In a joint work with A. Hatcher [3], we show that the homology
group Hi(A

s
n,k; Z) is independent of n, k and s when n ≥ 3i + 3. This is proved

by studying complexes of embedded spheres and discs in the manifold M s
n,k.

We describe several applications of this theorem.
When N = S3, the groups As

n,k can be interpreted as “automorphisms of free
groups with boundaries”, otherwise defined as the group of components of the ho-
motopy equivalences of a certain graphGs

n,k fixing k boundary circles and s bound-

ary points in the graph (see [4, 7]). When k = 0, we have A0
n,0

∼= Out(Fn), A1
n,0

∼=
Aut(Fn) and A2

n,0
∼= Fn o Aut(Fn), where Fn denotes the free groups on n gen-

erators and Aut(Fn) and Out(Fn) its automorphism and outer automorphism
groups. So the homological stability of Aut(Fn) and Out(Fn) is a special case of
the above stability theorem (although a better stability range is known [1, 2]).
Another direct consequence of our theorem is that the twisted homology group
Hi(Aut(Fn), H1(Fn)) = 0 when n ≥ 3i + 9. This is obtained by considering the
spectral sequence for the short exact sequence Fn → A2

n,0 → A1
n,0.

Our main application is to the study of the map from the mapping class groups
of surfaces to the automorphism groups of free groups given by the action of
diffeomorphisms on the fundamental group of the surface (which is a free group
if the surface has at least one boundary component). Both the stable mapping
class group of surfaces Γ∞ and the stable automorphism group of free groups
Aut∞ give rise to infinite loop spaces BΓ+

∞ and BAut+∞ when taking the plus-
construction of their classifying spaces. By the work of Madsen and Weiss [5],
BΓ+

∞ is now well understood, whereas BAut+∞ remains rather mysterious. In [7],
we use the stability theorem for the groups A1

n,k to show that the natural map

BΓ+
∞ → BAut+∞ is a map of infinite loop spaces. The infinite loop space structure

on BΓ+
∞, as discovered by Tillmann [6], comes from considering disjoint union

on a cobordism category S with the property that ΩBS ' Z × BΓ+
∞. We use

automorphisms of free groups with boundaries to construct a larger cobordism
category T built with graphs as well as surfaces. The stability theorem is then the
main ingredient in showing that ΩBT ' Z × BAut+∞, and the infinite loop map
is induced by the inclusion of categories S → T .
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Finite domination and nonsingular closed 1-forms

Dirk Schütz

Given a closed connected and smooth manifold M , one can ask the question
which elements of H1(M ; R) can be represented by nonsingular closed 1-forms. In
the case that dimM ≥ 6 Latour [3] gave necessary and sufficient conditions for
the existence of a nonsingular closed 1-form representing ξ. These conditions are:

• M is (±ξ)-contractible;
• a K-theoretic obstruction τL(M, ξ) ∈ Wh(π1(M); ξ) vanishes.

Let us describe these terms. Assume we have a finite connected CW-complex X
and let ξ ∈ H1(X ; R) be nonzero. We can think of ξ as a homomorphism ξ :
π1(X) → R. Let ρ : X → X be the covering space corresponding to ker ξ. Then
ρ∗ξ = 0. Notice that π1(X) acts on X by covering transformations and on R by
g · x = x+ ξ(g). We can find an equivariant map h : X → R, that is, a map with
h(gx) = h(x) + ξ(g).

Now we say that X is ξ-contractible if given ε > 0 and an equivariant h : X →
R there is an equivariant homotopy H : X × [0, 1] → X with H0(x) = x and
hH1(x) − h(x) ≤ −ε for all x ∈ X. This definition does not depend on ε or h.
Also the notion of ξ-contractibility is a homotopy invariant. Furthermore if X is

ξ-contractible, the Novikov complex C∗(X ; Ẑπ1(X)ξ) is acyclic. Here Ẑπ1(X)ξ is a

completion of the group ring Zπ1(X). So if M is (±ξ)-contractible, the obstruction
τL(M, ξ) is simply the Whitehead torsion of the Novikov complex in an appropriate

quotient of K1( ̂Zπ1(M)ξ).

Let us now discuss the special case when a positive multiple of ξ sits inH1(M ; Z).
Such ξ can be represented by a map f : M → S1 and the question whether ξ can
be represented by a nonsingular closed 1-form turns into the question whether
there is a smooth fibre bundle map f : M → S1 representing ξ. For dimM ≥ 6
necessary and sufficient conditions where given by Farrell [2]. They are:

• the covering space M corresponding to ker ξ is finitely dominated;
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• a K-theoretic obstruction τF (M, ξ) ∈ Wh(π1(M)) vanishes.

For ξ ∈ H1(M ; Z) the conditions that M is (±ξ)-contractible and that M is
finitely dominated are equivalent, and in that case i∗τF (M, ξ) = τL(M, ξ). Here
i∗ : Wh(π1(M)) → Wh(π1(M); ξ) is induced by the inclusion of rings Zπ1(M) ⊂

̂Zπ1(M)ξ. This was shown by Ranicki [4].

Easy examples show that in generalM being (±ξ)-contractible is not equivalent
to M being finitely dominated. Instead the relation between these notions is given
by

Theorem 1. Let X be a finite connected CW-complex and N ≤ π1(X) a normal
subgroup such that π1(X)/N ∼= Zk for some k ≥ 1. Denote ρ : X → X the regular
covering space corresponding to N . Then X is finitely dominated if and only if X
is ξ-contractible for all nonzero ξ ∈ H1(X ; R) with ρ∗ξ = 0.

As mentioned above this was proven by Ranicki for k = 1. If X is aspherical
the theorem also follows from work of Bieri and Renz [1].

An unpublished result of Farrell states that if a Z2-covering space ρ : M → M
is finitely dominated, then τF (M, ξ) = τF (M, ξ′) for all ξ, ξ′ ∈ H1(M ; Z) with
ρ∗ξ = 0 = ρ∗ξ′. So all such ξ can be represented by fibre bundle maps or none of
them. Because of Theorem 1 we expect an impact on the obstructions τL(M, ξ) for
all ξ ∈ H1(M ; R) with ρ∗ξ = 0 as well. Indeed it turns out that one obstruction
τF (M, ξ′) determines every such τL(M, ξ) via i∗ : Wh(π1(M)) → Wh(π1(M); ξ).
Combining this with the result of Latour we get

Theorem 2. Let M be a closed connected smooth manifold with dimM ≥ 6,
N ≤ π1(M) a normal subgroup with π1(M)/N ∼= Zk for some k ≥ 1 and such that
the covering space ρ : M →M corresponding to N is finitely dominated. Then the
following are equivalent.

(1) There is a nonzero ξ ∈ H1(M ; R) with ρ∗ξ = 0 which can be represented
by a nonsingular closed 1-form.

(2) Every nonzero ξ ∈ H1(M ; R) with ρ∗ξ = 0 can be represented by a non-
singular closed 1-form.

Proofs of Theorem 1 and 2 can be found in [5].
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A canonical enriched Adams-Hilton model: theory and applications

Kathryn Hess

The canonical enriched Adams-Hilton model for simplicial sets. The goal
of the work described in this section, carried out in collaboration with P.-E. Parent,
J. Scott and A. Tonks [HPST], was to construct a canonical chain Hopf algebra,
free as an algebra, weakly equivalent to the normalized chains on the Kan loop
group on a given 1-reduced simplicial set K. We were motivated to search for such
a model by the need for precise input data for constructing algebraic models for
other spaces built from K, such as its free loop space ([BH]) or double loop space
(see next section) or of homotopy fibers ([H]).

Let C∗ denote the normalized chain functor on simplicial sets, and G the Kan
loop group construction on the category of reduced simplicial sets. Given a simply-
connected chain coalgebra (C, ∂,∆), let ΩC denote its cobar construction, which
is a chain algebra, free on s−1C+, the desuspension of the positive-degree part
of C. Milgram proved in [M] that there is a natural quasi-isomorphism of chain
algebras q : Ω(C⊗C ′) → ΩC⊗ΩC ′ for any pair of chain coalgebras C,C ′. On the
other hand, in [S] Szczarba defined a natural quasi-isomorphism of chain algebras

θK : ΩC∗(K)
'
−→ C∗(GK)

for any 1-reduced simplicial set K.
Given two chain coalgebras (C, ∂,∆) and (C ′, ∂′,∆′), it is extremely important

for our purposes to consider chain maps f : (C, ∂) → (C ′, ∂′) that may not be

coalgebra maps but that nonetheless induce chain algebra maps Ω̃f : ΩC → ΩC ′

with “germ” f , i.e., Ω̃f(s−1c) = s−1
(
f(c)

)
+higher-order terms. Such chain maps

are called strongly homotopy coalgebra (SHC) maps and are coalgebra maps up
to an infinite family of coherent homotopies. There is an analogous definition of
strongly homotopy comodule maps.

Let

C∗(K) ⊗ C∗(L)
∇K,L

// C∗(K × L) 	 ϕK,L
fK,L

oo

denote the usual simplicial (and natural) Eilenberg-Zilber and Alexander-Whitney
equivalences, where K and L are 1-reduced simplicial sets. In [GM] Gugenheim
and Munkholm proved that, since ∇K,L is a coalgebra map, fK,L is a naturally
an SHC map, i.e., it is the “germ” of a chain algebra quasi-isomorphism

Ω̃fK,L : ΩC∗(K × L)
'
−→ Ω

(
C∗(K) ⊗ C∗(L)

)
.

We can now define a canonical coproduct ψK on ΩC(K) to be the composition

ΩC∗(K)
Ω(∆K)]
−−−−−→ ΩC∗(K ×K)

eΩfK,K
−−−−→ Ω

(
C∗(K)⊗2

) q
−→ ΩC∗(K)⊗2

where (∆K)] is the chain coalgebra map induced on the normalized chains by the
simplicial diagonal ∆K : K → K ×K.
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Theorem 1.

(1) ψK is homotopy cocommutative (in fact , E(∞)-cocommutative).
(2) ψK is strictly coassociative.
(3) Szczarba’s equivalence θK is an SHC map with respect to ψK and the usual

coproduct on C∗(GK). If K is a suspension, the θK is a strict coalgebra
map.

Part (1) of this theorem is proved by giving explicit formulas for the neces-
sary homotopies in terms of the maps in the Eilenberg-Zilber equivalences, while
part (2) depends on the naturality of all the maps involved, as well as on the
coassociativity of the natural equivalence f .

An acyclic models argument proves part (3), once we have established the fol-
lowing technically difficult result. If C and C ′ are Hopf algebras such that C
is free as an algebra and f : C → C ′ is a chain algebra map, then to construct

Ω̃f : ΩC → ΩC ′, it suffices to define Ω̃f on the (desuspended) algebra generators
of C.

In [B] Baues defined a natural, strictly coassociative, homotopy cocommutative
coproduct on ΩC∗(K), in a strictly combinatorial manner, but did not show that
there was a weak equivalence linking the Hopf algebra he obtained to the chains
on the loop group. We have shown that Baues’s coproduct agrees with ours.

An application: modelling double loop spaces. In joint work with R. Levi,
I have constructed a canonical chain algebra, the homology of which is isomorphic
to that of the double loop space on a given 2-reduced simplicial set K [HL]. The
construction is based on the canonical Adams-Hilton model of the previous section.

Let C = C∗(K), and let ∂ and ∆ denote its differential and coproduct, re-

spectively. Let C = s−1C. Define a differential d̃ and a coproduct ∆̃ on C ⊕ C
by

d̃c = dc− c̄ d̃c̄ = −dc

∆̃c = ∆c ∆̃c̄ = c̄i ⊗ ci + (−1)cici ⊗ c̄i

where ∆c = ci ⊗ ci.

Theorem 2. The natural projection π : (C⊕C, d̃, ∆̃) → (C, d,∆) is map of chain

coalgebras. Furthermore, ∆̃ is an SHC map.

Consequently, the projection induces a chain algebra map Ωπ : Ω(C⊕C) → ΩC.
We can show that Ωπ is a coalgebra map as well, with respect to the coproduct ψK

defined in the previous section and to a coproduct ψ̃K on Ω(C⊕C) defined as the
composition

Ω(C ⊕ C)
eΩe∆
−−→ Ω

(
(C ⊕ C)⊗2

) q
−→ Ω(C ⊕ C)⊗2.

The next step in the double loop space model construction consists in lifting the
Szczarba equivalence to Ω(C ⊕ C). We observe first that there is a natural chain
algebra and right C∗(GK)-comodule structure on the acyclic cobar construction
ΩC∗(GK) ⊗tΩ C∗(GK).
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Theorem 3. There is a canonical quasi-isomorphism

θ̃K : Ω(C ⊕ C) → ΩC∗(GK) ⊗tΩ C∗(GK)

of chain algebras that is also a strongly homotopy comodule map. Furthermore,
the following diagram commutes exactly.

Ω(C ⊕ C)
eθK

//

Ωπ

��

ΩC∗(GK) ⊗tΩ C∗(GK)

p

��

ΩC
θK

// C∗(GK)

where p is the obvious projection.

We can now define the canonical double loop space model. Let � denote coten-
sor product.

Theorem 4. Let B = Ω(C ⊕ C)�ΩCZ with its natural chain algebra structure.
Then H∗(B) ∼= H∗(G

2K) as graded algebras.

The heart of the proof of this theorem is the following sequence of isomorphisms,
in which one has to be a bit careful about the relevant multiplicative structure.

cotorΩC(Ω(C ⊕ C),Z) ∼= cotorC∗(GK)(ΩC∗(GK) ⊗tΩ C∗(GK),Z) ∼= H∗(G
2K)

We are in the process of developing interesting applications of this model. Ob-
serve that when K is of finite type, then B is also of finite type, i.e., has a finite
number of generators in each degree.
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Waldhausen’s stable parametrized h-cobordism theorem

John Rognes

The theorem in the title provides the fundamental link between high-dimen-
sional geometric topology and the algebraicK-theory of rings or topological spaces.
It asserts that for a compact manifold M the stable h-cobordism space H(M)
of M (which is defined in terms of geometric topology) is homotopy equivalent
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to the looped Whitehead space ΩWh(M) of M (which is defined in terms of
algebraic K-theory). In particular, for connected M of sufficiently high dimen-
sion, π0H(M) equals the set of isomorphism classes of h-cobordisms on M , and
is in bijective correspondence with π0ΩWh(M), which is the Whitehead group
Wh(π) = K1(Z[π])/(±π) of the fundamental group π = π1(M). This recov-
ers S. Smale’s classical h-cobordism theorem (On the structure of manifolds,
Amer. J. Math. 84 (1962), 387–399), including its non-simply connected general-
izations. To be precise, there is one stable h-cobordism space and one Whitehead
space for the topological and piecewise linear category, and one for the differen-
tiable category, and H(M) ' ΩWh(M) in either category. The parametrized the-
orem was first asserted by A.E. Hatcher (Higher simple homotopy theory, Ann. of
Math. (2), 102 (1975), 101–137), but not given adequate proof. Waldhausen devel-
oped a new proof ca. 1982, but publication was delayed. The speaker, B. Jahren
and F. Waldhausen are now jointly preparing a manuscript for publication, seeking
to fill this gap in the literature.

In more detail, an h-cobordism W on M is a compact manifold with boundary
∂W = M

∐
M ′ such that both inclusions M → W and M ′ → W are homotopy

equivalences. The h-cobordism space H(M) is defined as a simplicial set, with
q-simplices the locally trivial bundles of h-cobordisms on M parametrized over
the affine q-simplex |∆q |. The stable h-cobordism space H(M) is the homotopy
colimit of the spaces H(M × Ik) over suitable stabilization maps, which become
more highly connected as dim(M) + k grows by the stability theorem of K. Igusa
(The stability theorem for smooth pseudoisotopies, K-Theory 2 (1988), 1–355).

The Whitehead spaces are defined in terms of Waldhausen’s algebraicK-theory
of spaces functor X 7→ A(X). The latter is a homotopy functor, with an associated
assembly map α that fits into the following fiber sequence:

ΩWhPL(X) → Ω∞(A(∗) ∧X+)
α
−→ A(X) →WhPL(X) .

This defines the PL (and topological) Whitehead space. There is different fiber
sequence

ΩWhDIFF (X) → Ω∞Σ∞(X+)
ι
−→ A(X) →WhDIFF (X)

defining the differentiable Whitehead space. The algebraic K-theory of spaces
also has an interpretation in terms of the algebraic K-theory of structured ring
spectra: writing X ' BG for a topological group G there is a group S-algebra
S[G] = Σ∞(G+) ' Σ∞(ΩX+) and then A(X) = K(S[G]). This makes A(X)
and the Whitehead spaces partially accessible to computation (J. Rognes, Two-
primary algebraic K-theory of pointed spaces, Topology 41 (2002), 873–926, and
J. Rognes, The smooth Whitehead spectrum of a point at odd regular primes,
Geom. Topol. 7 (2003), 155-184).

By triangulation theory the PL and topological stable h-cobordism spaces
are homotopy equivalent, and by smoothing theory the stable parametrized h-
cobordism theorem in the differentiable category is equivalent to the one in the
PL category. It therefore suffices to prove the theorem in the PL case.
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The proof can be divided into three parts. First, for a simplicial set X the
algebraic K-theory A(X) can be defined in terms of the abstract K-theory of a
category with cofibrations and weak equivalences, and the assembly map α and its
homotopy fiber ΩWhPL(X) can be modeled in similar terms. The latter model
admits a simplification, as the nerve of the category sCh(X) with objects the finite
cofibrations y : X → Y that are weak homotopy equivalences, and morphisms
the maps f : Y → Y ′ under X that are simple, i.e., whose geometric realization
|f | : |X | → |Y | has contractible point inverses. This part of the argument has
already been published by Waldhausen (Algebraic K-theory of spaces, Algebraic
and geometric topology, Springer Lecture Notes in Math. 1126 (1985), 318–419).

The second, non-manifold part relates the category sCh(X) defined in terms
of simplicial sets to a corresponding simplicial category sEh

• (|X |) defined in terms
of (Euclidean) polyhedra. The geometric realization of a simplicial set does not
in general have a canonical polyhedral structure, but the subcategory of non-
singular simplicial sets, i.e., those where each non-degenerate simplex x̄ : ∆n → X
is embedded, does admit a polyhedral realization functor. Let sDh(X) be the
full subcategory of sCh(X) with objects such that Y is non-singular. Proposition:
For non-singular X the inclusion sDh(X) → sCh(X) is a homotopy equivalence of
categories.

Let sEh(|X |) be the category with objects compact PL embeddings |X | → P
of polyhedra that are homotopy equivalences, and simple maps P → P ′ under |X |
as morphisms. Then it is not known whether the geometric realization functor
sDh(X) → sEh(|X |) is a homotopy equivalence. Instead we need to introduce an
extra simplicial direction. Let sDh

• (X) be the simplicial category that in degree q
has objects the finite cofibrations of non-singular simplicial sets X × ∆q → Z
over ∆q that are weak homotopy equivalences, such that the projection map
p : Z → ∆q becomes a locally trivial PL bundle after geometric realization. The
morphisms are simple maps Z → Z ′ under X×∆q and over ∆q . Proposition: For
non-singular X the inclusion sDh(X) → sDh

• (X) is a homotopy equivalence.
Let sEh

• (|X |) be the similarly defined simplicial category of polyhedra. Propo-
sition: The polyhedral realization functor sDh

• (X) → sEh
• (|X |) is a homotopy

equivalence.
Taken together, these three propositions prove the non-manifold part of the

theorem: For non-singular X there is a chain of homotopy equivalences sCh(X) '
sEh

• (|X |).
The third, manifold part of the proof, asserts that for a compact combinatorial

manifold X , i.e., a finite non-singular simplicial set X such that M = |X | is a PL
manifold, the functor H(M) → sEh

• (M) that takes an h-cobordism M ⊂W to the
underlying weak equivalence of polyhedra M → W , and likewise in parametrized
families over |∆q |, stabilizes to a homotopy equivalence H(M) → sEh

• (M). This
will then complete the proof of Waldhausen’s stable parametrized h-cobordism
theorem.
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Free actions of finite groups on products of spheres

Ian Hambleton

The study of free finite group actions on products of spheres is a natural contin-
uation of the spherical space form problem [7]. In this work, we show that certain
products of finite groups do act freely and smoothly on a product of spheres, even
though the individual factors can’t act freely and smoothly (or even topologically)
on a single sphere. This verifies a conjecture of Elliott Stein [10]. The method
involves a detailed analysis of the product formulas in surgery theory, and a refine-
ment of Dress induction for surgery obstructions. The following outline is mostly
taken from the introduction to my recent preprint [6].

If a finite group G acts freely on Sn, then (i) every abelian subgroup of G is
cyclic, and (ii) every element of order 2 is central. In [7], Madsen, Thomas and
Wall proved that these conditions are sufficient to imply the existence of a free
topological action on some sphere. Actually, these two conditions have a very
different character. By the work of P. A. Smith and R. Swan [11], condition (i)
is necessary and sufficient for a free simplicial action of G on a finite-dimensional
simplicial complex which is homotopy equivalent to a sphere. The finite groups
G satisfying condition (i) are exactly the groups with periodic Tate cohomology,
or equivalently those for which every subgroup of order p2, p prime, is cyclic (the
p2-conditions). On the other hand, Milnor [8] proved that condition (ii) is neces-
sary for a free G-action by homeomorphisms on any closed, topological manifold
which has the mod 2 homology of a sphere. The groups with periodic cohomol-
ogy satisfying condition (ii) are just those which have no dihedral subgroups, or
equivalently those for which every subgroup of order 2p, p prime, is cyclic (the 2p-
conditions). Milnor’s result shows for example that the periodic dihedral groups do
not act topologically on Sn, although they do act simplicially on a finite complex
homotopy equivalent to Sn.

For free finite group actions on a product of spheres, the analogue of condition (i)
was suggested by P. Conner [5]: if G acts freely on a k-fold product of spheres
(Sn)k := Sn × · · · × Sn, is every abelian subgroup of G generated by at most
k elements? Conner proved this statement for k = 2, and a lot of work [9],
[4], [1], [3] has been done to determine what additional conditions are necessary to
produce free simplicial actions on a finite-dimensional simplicial complex homotopy
equivalent to a product of spheres. The picture is now almost completely clarified,
at least for elementary abelian groups and spheres of equal dimension: Adem and
Browder [1] and Carlsson [4] showed that G = (Z/p)r acts freely on (Sn)k , for p
a prime, implies r ≤ k provided that n 6= 1, 3, 7 in the case p = 2 (the restriction
n 6= 1 for p = 2 was recently removed in [12]). The same result is conjectured to
hold for finite-dimensional G-CW complexes homotopy equivalent to a product of
spheres of possibly unequal dimensions (see [2] for some recent progress). Carlsson
has also proposed an interesting generalization of the Conner conjecture:
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Question (G. Carlsson). Suppose that G = (Z/p)k acts freely on a finite com-
plex X, then is ∑

i≥0

rankpHi(X ; Z/p) ≥ 2k ?

Much less seems to be known at present about the additional conditions needed
to produce free actions by homeomorphisms or diffeomorphisms on the closed
manifolds (Sn)k for k > 1. Let Dq denote the dihedral group of order 2q, with q
an odd prime. Elliott Stein [10] proved that, for every n = 4j + 3 and any k ≥ 2,
there exist free, orientation-preserving piece-wise linear actions of (Dq)

k on (Sn)k .
Many of these actions are smoothable.

These examples show that a direct generalization of Milnor’s condition (ii) is
not necessary for actions on products of spheres. In [6] we verify a conjecture of
Stein’s:

Theorem. If G1 and G2 are finite groups with periodic Tate cohomology, then
G1 ×G2 acts freely and smoothly on some product Sn × Sn.

The techniques used to prove this statement also show that any product of
periodic groups G1 × · · · × Gk, with k > 1, acts freely and smoothly on (Sn)k

for some n. Of course there are groups G satisfying Conner’s condition which are
not the direct product of periodic groups, so these examples are just the simplest
case. The surgery techniques need to be developed further to study more general
groups. I wonder what is known about the following:

Question. If there is a finite free G-CW complex X ' Sn ×Sn, then does G act
freely and smoothly on Sn × Sn?

I would like to thank Alejandro Adem for reminding me about E. Stein’s paper
and this open question.
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[12] E. Yalçin, Group actions and group extensions, Trans. Amer. Math. Soc. 352 (2000), no. 6,

2689–2700.

Tameness of hyperbolic 3-manifolds

Ian Agol

A tame manifold is the interior of a compact manifold with boundary. The
Marden conjecture states that every hyperbolic 3-manifold with finitely generated
fundamental group is tame. We prove this conjecture. An independent proof
has also been announced recently by Calegari and Gabai. The main tools we use
in the proof is an orbifold version of a branched covering trick of Canary, and
results on end-reductions due to Myers, as well as generalizations of known results
on tameness from the hyperbolic category to the category of pinched negatively
curved manifolds. In fact, we prove tameness of manifolds with a complete pinched
negatively curved metric, hyperbolic cusps, and finitely generated fundamental
group.

The tameness result has applications to many open questions in 3-manifold
topology and the structure of Kleinian groups. The main geometric consequence is
Thurston’s geometric tameness conjecture, which implies that the ends of Kleinian
groups are either simply degenerate or geometrically finite. As Thurston showed,
this conjecture implies the Ahlfors measure conjecture. We also get a new, purely
geometric proof of Ahlfors finiteness theorem. Along with the ending lamination
conjecture of Thurston, which has a proof announced last year by Brock, Canary
and Minsky, the Marden conjecture gives a complete classification of Kleinian
groups in terms of topological type, conformal data for the geometrically finite
ends, and topological data (ending laminations) for the simply degenerate ends. In
effect, this is a vast generalization of Mostow rigidity for non-cocompact Kleinian
groups.

The main applications to 3-manifolds are obtained via Canary and Thurston’s
covering theorem. This implies that every finitely generated subgroup of the fun-
damental group of a finite volume 3-manifold is either geometrically finite, or con-
tains the fiber subgroup of a virtual fibration of index at most two. Consequences
are Simon’s conjecture for 3-manifolds satisfying the geometrization conjecture,
which says that covers of compact 3-manifolds with finitely generated group are
tame (or almost compact, in the case that there is boundary). Also, it follows from
work of Agol-Long-Reid and Wise that the fundamental group of the figure 8 knot
complement is LERF, that is, finitely generated subgroups are the intersection of
finite index subgroups containing them.
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Absolute torsion and multiplicativity of signature mod 4

Andrew Ranicki

In 2001 Ian Hambleton formulated the conjecture that the signatures of mani-
folds in a fibre bundle of orientable manifolds are multiplicative mod 4. The first
attempt at a proof was based on the K1-valued round torsion invariant and addi-
tive L-theory of Ranicki [4, 5], and the round L-theory of Hambleton, Ranicki and
Taylor [2]. Unfortunately, the round torsion is not a round L-theory invariant, as
claimed in these papers. This mistake has now been fixed by my student Andrew
Korzeniewski [3], who defined a new torsion invariant of an n-dimensional Poincaré
complex X

τNEW (X) = τNEW ([X ] ∩ − : C(X)n−∗ → C(X)) ∈ K1(Z) = Z2 .

(In general, the new torsion is defined in Ĥn(Z2;K1(Z[π1(X)])), but only the

simply-connected component in Ĥn(Z2;K1(Z)) = K1(Z) is required for the signa-
ture application). Unlike Whitehead torsion, the new torsion can take nontrivial
values on manifolds, e.g. CP2#CP2. For round Poincaré complexes X (i.e., those
with χ(X) = 0) the new torsion is a round Poincaré bordism invariant, and is
nontrivial e.g. for S1.

The mod 4 reduction of the signature σ(X) ∈ Z of a 4k-dimensional Poincaré
complex X is expressed in terms of the new torsion and the Euler characteristic
χ(X) ∈ Z by

σ(X) = 2τNEW (X) + (2k + 1)χ(X) ∈ Z4

with 2 : Z2 → Z4; 1 7→ 2. This expression is a lift of

σ(X) ≡ χ(X) (mod 2)

and is a generalization of the classical congruence

signature ≡ rank + det − 1 (mod 4)

for a nonsingular symmetric form over Z.

The new torsion invariant is used to prove the conjecture:

Theorem (Hambleton, Korzeniewski, Ranicki [1]). The signatures of manifolds
in a fibre bundle F → E → B are multiplicative mod 4

σ(E) = σ(B)σ(F ) ∈ Z4

with σ = 0 for dim 6≡ 0 (mod 4).
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Subdirect products of hyperbolic groups

Martin Bridson

One may reasonably take the view that the most basic of finitely presented
groups are the finite groups and that the next class worthy of mention is formed
by the virtually cyclic groups. What comes next?

One might start taking direct products and pass to consideration of virtually
abelian groups, or one might allow free products and pass to consideration of
virtually free groups; proceeding in the former vein, one might enlarge the class
of groups considered progressively to include virtually nilpotent, solvable, then
amenable groups — “the amenable side of the universe”; proceeding in the latter
vein one maps out the hyperbolic/nonpositively curved side of the universe.

Each of the above-named subclasses of amenable groups is closed under the
formation of subdirect products, but what are the subdirect products of hyperbolic
groups? This is the basic question addressed in this lecture. The first point that I
want to make is that for the most basic hyperbolic groups — virtually free groups
— the classification of subdirect products is non-trivial but remarkably restricted
in the presence of suitable finiteness hypotheses. Next I shall explain that this
restricted behaviour extends to subdirect products in the class of surface groups
and the groups with the same elementary theory as the free groups [13].

In contrast to this controlled behaviour, there is a great diversity of behaviour
among the finitely presented subgroups of subdirect products of more general
hyperbolic groups, even 2-dimensional hyperbolic groups and the fundamental
groups of closed hyperbolic n-manifolds with n ≥ 3.

The tame part of this discussion finds applications in the study of Kähler mani-
folds thanks to beautiful recent work of Delzant and Gromov [8]. As an application
of the wild part of the discussion I shall describe my work with Grunewald [6] in
which we provide counterexamples to a question of Grothendieck concerning rep-
resentations of groups.

If F is a non-abelian free group, then the collection of finitely generated sub-
groups of F × F is rather wild: such subgroups need not be finitely presentable,
one can construct examples that have an unsolvable conjugacy problem, and the
isomorphism problem is unsolvable in the class of all finitely generated subgroups
of F × F . Each of these statements can be proved by encoding facts about arbi-
trary finitely-presented groups into facts about the subgroup structure of F × F
via a fibre product construction [11].

Example 1. Let p : F2 → Q be the map from the free group on the generators
to Q = 〈a, b | R〉. Let P = {(x, y) | p(x) = p(y)} ⊂ F × F .
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P is finitely generated, but if Q is infinite then P is not finitely presented. If Q
has unsolvable word problem, then P has unsolvable conjugacy problem.

There are also non-obvious finitely presented subdirect products of free groups:

Example 2. Let F be a finitely generated free group, let Dn be the direct product
of n copies of F and let πn : Dn → Z be a homomorphism whose restriction to
each direct factor is surjective. Stallings [14] shows that SB3 = kerπ3 is finitely
presented but H3(SB3,Q) is infinite dimensional.

Bieri [3] later proved SB3 is of type Fn−1 but dim Hn(SBn,Q) = ∞.

A discrete group Γ is said to be of type Fn if there is a classifying space K(Γ, 1)
with a compact n-skeleton (e.g., type F2 means finitely presentable).

In contrast to the above examples, Baumslag and Roseblade [2] proved that the
only finitely presented subgroups of F × F are “the obvious ones”. In [4] Howie,
Miller, Short and I proved that the Baumslag-Roseblade result does extend to
general direct products if one adjusts the finiteness assumption appropriately. We
were also able to extend the result to direct products of surface groups. Let us
take here “surface group” to mean the fundamental group of a compact surface
(with boundary allowed, to include free groups).

Theorem 1. Let D be the direct product of n surface groups. If S ⊆ D is a
subgroup with Hi(S,Z) finitely generated for i ≤ n, then S has a subgroup of finite
index that is a direct product of at most n surface groups.

On-going work of myself and C.F. Miller III adds further to the impression that
the finitely presented subdirect products of free groups are tamer than previously
thought. For example, with three factors, Stallings-type examples are the only
non-obvious finitely presented subgroups:

Theorem 2. If D is a product of three free groups and S ⊂ D is a finitely
presented subdirect product1 then either H3(S,Z) is finitely generated, or else has S
a subgroup of finite index that is normal in D with abelian quotient.

Theorem 1 does not extend to the class of hyperbolic small cancellation groups
(cf. Theorem 5), nor to cocompact lattices in SO(n, 1) (see [5]):

Theorem 3. If Γ is the fundamental group of a closed hyperbolic 3-manifold that
fibres over the circle, and Dn is the direct product of n ≥ 2 copies of Γ, then there
is a subgroup S ⊂ Dn that is π1 of a closed aspherical manifold N of dimension
3n− 1, but neither S nor any of its subgroups of finite index can be expressed as
a direct product of hyperbolic groups.

There is an interesting class of groups to which Theorem 1 does extend, as Jim
Howie and I proved recently [7]. We call a finitely generated group Γ is a Sela
Group if it is a subgroup of a group that has the same first order logic as the free
group (see [13]); this includes surface groups.

1a subgroup whose projection to each direct factor is surjective.
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Theorem 4. Let D be the direct product of n Sela groups. If S ⊆ D is a subgroup
with Hi(S,Z) finitely generated for i ≤ n, then S has a subgroup of finite index
that is a direct product of at most n Sela groups.

Turning back to the idea that subdirect products of more general hyperbolic
groups are much more diverse than those described above, I close this lecture
with a brief outline of my construction with Fritz Grunewald of counterexamples
to the following question of Alexander Grothendieck [10]: Let RepA(Γ) denote
the category of finitely generated A-modules with a Γ-action. Suppose that u :
Γ1 → Γ2 is a homomorphism of finitely presented, residually-finite groups such
that restriction of scalars functor u∗A : RepA(Γ2) → RepA(Γ1) is an equivalence of
categories for every commutative ring A. Does it follow that u is an isomorphism?

Our negative solution to this problem belongs in this lecture because a key
ingredient in the proof is the fact that one can combine the 1-2-3 Theorem of [1] and
Wise’s version [15] of the Rips construction [12] to construct somewhat pathological
finitely presented subgroups in the direct product of two small-cancellation groups
(in contrast to Theorem 1).

Theorem 5. There exist 2-dimensional, residually-finite hyperbolic groups H with
finitely presented subgroups u : P ↪→ H × H, such that P is not isomorphic to
H ×H, but u∗A is an equivalence of categories for every commutative ring A.
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Deformation theory of hyperbolic 3-manifolds

Richard Canary

We will discuss recent results on the topology of the deformation space AH(M)
of (marked) hyperbolic 3-manifolds homotopy equivalent to a fixed compact hy-
perbolizable 3-manifold M with non-empty boundary. The recent resolutions
of Thurston’s Ending Lamination Conjecture (by Brock, Canary and Minsky
[23, 8, 9]) for topologically tame hyperbolic 3-manifolds and Marden’s Tameness
Conjecture (by Agol [1] and Calegari-Gabai [13]) give a complete classification of
the hyperbolic 3-manifolds in AH(M) in terms of their (marked) topological type
and their end invariants (which capture the asymptotic geometry of their ends.)
However, the topological types is not locally constant on AH(M) (see [4]) and the
end invariants vary discontinuously on AH(M) (see [6]), so one does not obtain
a parameterization of AH(M) and recent work indicates that the global topology
of AH(M) can be quite complicated.

If N = H3/Γ is a (orientable) hyperbolic 3-manifold, then N is the quotient
of H3 by a discrete subgroup Γ of Isom+(H3) (which may be identified with
PSL2(C).) The “marking” of a hyperbolic 3-manifold is a homotopy equivalence
from M to N (well-defined only up to homotopy), so gives rise to an identification
of π1(M) with Γ (well-defined up to conjugation.) So, one obtains a discrete, faith-
ful representation of π1(M) into PSL2(C) (well-defined up to conjugation). So,
we may identify AH(M) with a subset of the character variety X(M) which is the
Mumford quotient of Hom(π1(M),PSL2(C)) by PSL2(C) acting by conjugation.
AH(M) inherits the resulting quotient topology.

If MP (M) is the interior of AH(M), then Marden [20] and Sullivan [26] showed
that MP (M) consists entirely of geometrically finite hyperbolic 3-manifolds. (Ge-
ometrically finite hyperbolic 3-manifolds are the most easily understood hyper-
bolic 3-manifolds.) Combining work of Ahlfors [2], Bers [3], Kra [18], Marden [20],
Maskit [21], and Thurston [24] one sees that the components of MP (M) are in
one-to-one correspondence with the set A(M) of marked homeomorphism types
of compact hyperbolic 3-manifolds homotopy equivalent to M and that each com-
ponent is parameterized by analytical data. (See [14] for a discussion of this pa-
rameterization in topological language.) Canary and McCullough [14] completely
characterize the situations where A(M) is infinite.

Combining the proofs of Thurston’s Ending Lamination Conjecture and Mar-
den’s Tameness Conjecture with convergence results of Thurston [27, 28], Ohshika
[25], Kleineidam-Souto [17], and Lecuire [19], one obtains a proof of the Bers-
Sullivan-Thurston Density conjecture which asserts that AH(M) is the closure
of its interior MP (M), i.e., that every hyperbolic 3-manifold with finitely gen-
erated fundamental group is an algebraic limit of geometrically finite hyperbolic
3-manifolds. (Brock and Bromberg [10, 7] previously proved important special
cases of this density result using cone-manifold techniques.)
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Anderson and Canary [4] showed that the homeomorphism type of the limit of a
sequence of hyperbolic 3-manifolds in AH(M) can differ from that of the approx-
imates. Their construction showed that two components of MP (M) can “bump,”
i.e., have intersecting closures. Anderson, Canary and McCullough [5] completely
characterized when two components of MP (M) can bump if M has incompressible
boundary. Roughly, two components bump if and only if the associated homeomor-
phism types differ exactly by removing solid torus components of the characteristic
submanifold and regluing them after shuffling the order of the attaching annuli.
Combining the results of [5] with the Bers-Sullivan-Thurston Density conjecture
one gets an enumeration of the components of AH(M) in purely topological terms.
In particular, applying work of Canary-McCullough [14], one sees that if M has in-
compressible boundary, then AH(M) has infinitely many components if and only
if there is a thickened torus component V of the characteristic submanifold of M
which intersects the boundary ∂M in at least two annuli. Holt [15, 16] further
showed that arbitrarily many components of MP (M) can bump at a single point.
Moreover, he shows that if any collection of components has connected closure,
then there is a common point where all the components bump.

McMullen [22] used the construction from [4] to show that quasifuchsian space
QF (S) = MP (S× I) self bumps, i.e., there is a point x in the boundary of QF (S)
such that the intersection of any sufficiently small neighborhood of x with QF (S)
is disconnected. Bromberg and Holt [12] showed that if M contains an essential
annulus (whose core curve is primitive in π1(M)) then every component ofMP (M)
self-bumps. Notice that this implies, in particular, that AH(M) is not a manifold
in any of these cases.

Bromberg [11] has shown that the space of punctured torus groups is not locally
connected. The space of punctured torus groups is the relative deformation space
AH(S × I, ∂S × I) (where S is the punctured torus) consisting of hyperbolic 3-
manifolds which are homotopy equivalent to S×I and have a cusp in the homotopy
class of ∂S. His proof suggests that it is quite often the case that AH(M) is not
locally connected.

Despite all the pathological behavior described in this brief note, we hope that
the techniques developed in the proof of the Ending Lamination Conjecture will
allow us to develop a much better insight into the topology of AH(M).
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Root systems for p-compact groups

Jesper Grodal

A p-compact group is a homotopy version of a compact Lie group, but with
all the structure concentrated at a single prime p. More precisely, a p-compact
group is a triple (X,BX, e) where X is a space such that H∗(X ;Fp) is finite,

BX is a pointed connected p-complete space, and e : X
∼
→ ΩBX is a homotopy

equivalence.
The classification of p-compact groups for p odd by Andersen-Grodal-Møller-

Viruel [2] states that there is a 1-1-correspondence between connected p-compact
groups and finite reflection groups over the p-adic integers Zp. This statement
does not carry over verbatim to p = 2 even conjecturally, and it appears that
Zp-reflection groups have to be replaced with certain “Zp-root data”.

The goal of my talk, which was a report on the paper [1] with K. Andersen, was
to introduce these Zp-root data and explain their relation to the maximal torus
normalizer. I put particular emphasis on explaining the relationship between auto-
morphisms of the root data and automorphisms of the maximal torus normalizer. I
also explained the relationship to earlier work by Tits [4] and Dwyer-Wilkerson [3].
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Monopoles and merges in dimension four

Stefan Bauer

A restricted version of a topological quantum field theory is constructed for
K-oriented rational homology 3-spheres. It takes values in the homotopy category
of equivariant spectra in the sense of algebraic topology. Restriction to closed
4-manifolds, considered as cobordisms between empty 3-manifolds, recovers the
refined Seiberg-Witten invariants. The object N(Y ) associated to a 3-manifold Y
in some sense can be viewed as a topological spectrum which encodes the analytical
flow of the Dirac operator over arbitrary families. Conjecturally, equivariant Borel-
homology of these spectra recovers the Floer-homologies of Ozsvath-Szabo and the
Seiberg-Witten-Floer-homology.
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Triple handlebody decompositions of 3-manifolds

Hyam Rubinstein

This is a report on the PhD thesis of my student James Coffey, who is currently
being completing at the University of Melbourne. James has been studying the
class of 3-manifolds which can be built by gluing three handlebodies together by
homeomorphisms between regions on their boundaries. The idea is to generalise
the class of Seifert fibred spaces with infinite fundamental group, orbit surface S2

and three exceptional fibres of multiplicity (p, q, r). Such Seifert fibred spaces
provide interesting examples of non-Haken 3-manifolds, i.e., 3-manifolds which are
irreducible (every embedded 2-sphere bounds a 3-ball) but do not have embedded
incompressible surfaces (i.e., closed orientable surfaces different from the 2-sphere,
whose fundamental group injects into the fundamental group of the 3-manifold).
Waldhausen observed that these Seifert spaces are non Haken if and only if they
have finite first homology. As is well known, the Seifert fibred spaces have infinite
fundamental group exactly when 1

p
+ 1

q
+ 1

r
≥ 1.

Definitions. We say that a handlebody H with a collection of disjoint essential
simple closed curves Γ in ∂H has a boundary pattern Γ. The boundary pattern
satisfies the n-disk condition, if every meridian disk for H meets Γ at least n times.
A 3-manifold M has a triple handlebody decomposition if there are handlebod-
ies Hi, 1 ≤ i ≤ 3, with boundary patterns Γi so that each Γi separates ∂Hi into
two regions Ui, Vi (not necessarily connected) and after a homeomorphism gluing
U1 to U2, V1 to U3 and V2 to V3 we get M .

Now to summarise the main results of the thesis.

Theorem 1. If the boundary patterns Γi satisfy the ni disk conditions, where
1

n1
+ 1

n2
+ 1

n3
≥ 1

2 , then π1(Hi) injects into π1(M), for 1 ≤ i ≤ 3.

Theorem 2. For a 3-manifold M with triple handlebody decomposition satisfying
the same conditions as in Theorem 1, the universal covering is homeomorphic
to R3.

Theorem 3. For a 3-manifold M with triple handlebody decomposition satisfying
the same conditions as in Theorem 1, the characteristic variety or JSJ decompo-
sition can be explicitly constructed.

Theorem 4. For a 3-manifold M with triple handlebody decomposition satisfying
the same conditions as in Theorem 1, the word problem in the fundamental group
of M is solvable.

Theorem 5. Explicit examples of 3-manifolds with triple handlebody decomposi-
tions satisfying the conditions in Theorem 1 can be constructed by Dehn surgery
on knots with free spanning surfaces with no quadrilateral meridian disks in the
complementary handlebody to the spanning surface, so long as the surgery is of the
form p

q
where p ≥ 3. Other examples can be found by 2-fold branched coverings of

certain families of knots and links in the 3-sphere. Finally a collection of pretzel
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knots are described for which Dehn surgery produces infinitely many non Haken
3-manifolds with triple handlebody decompositions as in Theorem 1.

Nielsen coincidence theory in arbitrary dimensions

Ulrich Koschorke

Let f1, f2 : M −→ N be two (continuous) maps between smooth connected
manifolds M and N without boundary, of strictly positive dimensions m and n,
resp., M being compact. We are interested in making the coincidence locus

C(f1, f2) := {x ∈ M | f1(x) = f2(x)}

as small (or simple in some sense) as possible after possibly deforming f1 and f2
by a homotopy.

Question. How large is the minimum number of coincidence components

MCC(f1, f2) := min{#π0(C(f ′
1, f

′
2)) | f ′

1 ∼ f1, f
′
2 ∼ f2} ?

In particular, when does this number vanish, i.e. when can f1 and f2 be deformed
away from one another?

This is a very natural generalization of one of the central problems of classical
fixed point theory (whereM = N and f2 = identity map): determine the minimum
number of fixed points among all maps in a given homotopy class (see [Br] and
[BGZ, proposition 1.5]). Note, however, that in higher codimensions m − n > 0
the coincidence locus is generically a closed (m − n)-manifold so that it makes
more sense to count pathcomponents rather than points. Also the methods of
(first order, singular) (co)homology will no longer be strong enough to capture the
subtle geometry of coincidence manifolds.

In this lecture I used the language of normal bordism theory (and a nonstabilized
version thereof) to define and study lower bounds N(f1, f2) (and N#(f1, f2)) for
MCC(f1, f2).

After performing an approximation we may assume that the map (f1, f2) : M →
N ×N is smooth and transverse to the diagonal ∆ = {(y, y) ∈ N ×N | y ∈ N}.
Then the coincidence locus

C = C(f1, f2) = (f1, f2)
−1(∆)

is a closed smooth (m− n)-dimensional manifold, equipped with

i) maps

E(f1, f2) :=

{
(x, θ) ∈M ×N I

∣∣∣ θ(0) = f1(x);
θ(1) = f2(x)

}

88
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q
q

q
q

q
q

q
q

q
q
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where g̃ is the natural lifting which adds the constant path at f1(x) = f2(x)
to g(x) = x ∈ C; and

ii) a stable vector bundle isomorphism

g : TC ⊕ g∗(f∗
1 (TN)) ∼= g∗(TM)

deduced from the isomorphism

g# : ν(C,M) ∼= (f1, f2)
∗(ν(∆, N ×N)) ∼= f∗

1 (TN) |C

of (nonstable) normal bundles.

The triple (C, g̃, g) gives rise to a well-defined bordism class

ω̃(f1, f2) := [C, g̃, g] ∈ Ωm−n(E(f1, f2); ϕ̃)

in the normal bordism group of such triples (here the virtual coefficient bundle is
defined by

ϕ̃ := pr∗(f∗
1 (TN)− TM) ;

e.g., if M and N are stably parallelized, then ϕ̃ is trivial and we are dealing with
(stably) framed bordism).

Keeping track also of the fact that C is a smooth submanifold of M with (non-
stabilized) normal bundle described by g#, we obtain a sharper invariant

ω#(f1, f2) ∈ Ω#(f1, f2)

which, however, lies in general only in a suitable bordism set (not group).
A crucial ingredient of both the ω̃- and the ω#-invariant is the map g̃. Indeed,

the path space E(f1, f2) has a very rich topology. Already its set π0(E(f1, f2))
of pathcomponents can be huge — it corresponds bijectively to the so called Rei-
demeister set R(f1, f2), a well-studied set-theoretic quotient of the fundamental
group π1(N). This leads to a natural decomposition

C(f1, f2) =
∐

A∈π0(E(f1,f2))

g̃−1(A) .

Let N(f1, f2), and N#(f1, f2), resp., denote the corresponding number of nontriv-
ial contributions by the various pathcomponents A of E(f1, f2) to ω̃(f1, f2) and
ω#(f1, f2), resp.

Theorem 1.

(i) The integers N(f1, f2) and N#(f1, f2) depend only on the homotopy classes
of f1 and f2;

(ii) N(f1, f2) = N(f2, f1) and N#(f1, f2) = N#(f2, f1);
(iii) 0 ≤ N(f1, f2) ≤ N#(f1, f2) ≤MCC(f1, f2) <∞;
(iv) if m = n then N(f1, f2) = N#(f1, f2) coincides with the classical Nielsen

number (which has a standard definition at least if both M and N are ori-
entable or if f2 is the identity map).
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Recall the decisive progress made by J. Nielsen on the classical minimizing prob-
lem when he decomposed fixed point sets into equivalence classes. In our interpre-
tation this is just the decomposition of a 0-dimensional bordism class according
to the pathcomponents of its target space. In higher (co)dimensions m − n the
map g̃ into E(f1, f2) and the twisted framing g# contain much more information.
E.g., if M = Sm and n ≥ 2, then Ω#(f1, f2) can be identified with the homo-
topy group πm(Sn ∧ Ω(N)+), and ω#(f1, f2) is closely related to a Hopf-Ganea
invariant. This allows us to reduce many aspects of our problem to questions in
standard homotopy theory.

Details of definitions, proofs, and applications will be given elsewhere (compare
e.g. [K 3] and [K 2]). Here we present just one sample result.

Theorem 2. Let N be an odd-dimensional spherical space form (i.e., the quotient
of Sn by a free action of a finite group). Then we have for all f1, f2 : Sm → N :

MCC(f1, f2) = N#(f1, f2) =





0 if f1 ∼ f2 or m < n;
#π1(N) if f1 6∼ f2 and m > 1;
|d0(f1) − d0(f2)| if m = n = 1.

(Here d0(fi) ∈ Z denotes the usual degree).

Finally note that our approach applies also to over- and undercrossings of link
maps into a manifold of the form N ×R. This yields unlinking obstructions which
often settle unlinking questions and which, in addition, turn out to distinguish a
great number of different link homotopy classes. In certain cases they even allow
a complete link homotopy classification. Moreover, our approach leads also to the
notion of Nielsen numbers of link maps (cf. [K 4]).
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schuetz@math.uni-muenster.de

SFB 478
Geom. Strukturen in der Mathematik
Universität Münster
Hittorfstr. 27
48149 Münster

Björn Schuster

schuster@math.uni-wuppertal.de

FB C: Mathematik u. Naturwissensch.
Bergische Universität Wuppertal
42097 Wuppertal

Prof. Dr. Stefan Schwede

schwede@math.uni-bonn.de

Mathematisches Institut der
Universität Bonn
Beringstr. 3
53115 Bonn

Juan Souto

souto@math.uni-bonn.de

Mathematisches Institut
Universität Bonn
Beringstr. 1
53115 Bonn

Prof. Dr. Neil P. Strickland

n.p.strickland@sheffield.ac.uk

Dept. of Pure Mathematics
Hicks Building
University of Sheffield
GB-Sheffield S3 7RH

Dr. Markus Szymik

markus.szymik@ruhr-uni-bochum.de

Fakultät für Mathematik
Ruhr-Universität Bochum
44780 Bochum

Marco Varisco

varisco@uni-muenster.de

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Prof. Dr. Elmar Vogt

vogt@math.fu-berlin.de

Institut für Mathematik II (WE2)
Freie Universität Berlin
Arnimallee 3
14195 Berlin

Prof. Dr. Karen Vogtmann

vogtmann@math.cornell.edu

Department of Mathematics
Cornell University
Malott Hall
Ithaca NY 14853-4201
USA

Prof. Dr. Rainer Vogt

rainer.vogt@mathematik.uni-osnabrueck.de

Fachbereich Mathematik/Informatik
Universität Osnabrück
49069 Osnabrück

Dr. Nathalie Wahl

wahl@imf.au.dk

Department of Mathematical Sciences
University of Aarhus
Building 530
Ny Munkegade
DK-8000 Aarhus C


