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The workshop was organized by V. Bangert (Freiburg), Yu. D. Burago (St. Pe-
tersburg) and U. Pinkall (Berlin). Out of the 47 participants 22 came from Ger-
many, 8 from the United States, 7 from Switzerland, 4 from Russia, 4 from England
and 2 from France.

The official program consisted of 20 lectures and included four lectures by
B. Kleiner (Ann Arbor) on “Perelman’s work on Ricci flow”. The program cov-
ered a wide range of new developments in geometry. To name some of them, we
mention the topics “Metric space geometry in the style of Alexandrov/Gromov”,
“Finsler geometry”, “Constant mean curvature surfaces in Thurston geometries”.
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Abstracts

Proof of projective Lichnerowicz-Obata conjecture

Vladimir S. Matveev

We prove the following classical conjecture: Let a connected Lie group G act on
a complete connected Riemannian manifold (Mn, g) of dimension n ≥ 2 by pro-
jective transformations. Then, it acts by affine transformations, or g has constant
positive sectional curvature.

Definition: Let (Mn, g) be smooth Riemannian manifold. A diffeomorphism
F : Mn → Mn is called a projective transformation, if it takes unparame-
terized geodesic to geodesics. A diffeomorphism F : Mn →Mn is called an affine
transformation, if it preserves the Levi-Civita connection of g.

Theorem 1 (Projective Lichnerowicz Conjecture): Let a connected Lie
group G act on a complete connected Riemannian manifold (Mn, g) of dimen-
sion n ≥ 2 by projective transformations. Then, it acts by affine transformations,
or g has constant positive sectional curvature.

Corollary (Projective Obata Conjecture): Let a connected Lie group G act
on a closed connected Riemannian manifold (Mn, g) of dimension n ≥ 2 by pro-
jective transformations. Then, it acts by isometries, or g has constant positive
sectional curvature.

For dimension 2, projective Obata Conjecture was proved in [12, 14]. All
assumptions in Theorem are important: we can construct counterexamples, if one
of the assumptions is omitted.

Any connected simply-connected Riemannian manifold of constant positive cur-
vature is a round sphere. All projective transformations of the round sphere are
known (essentially, since Beltrami 1865); so that Theorem and Corollary close
the theory of nonisometric infinitesimal projective transformations of complete
manifolds.

Bruce Kleiner suggested the following (alternative) way to formulate the main
result. Denote by Proj(Mn, g) and Aff(Mn, g) the groups of projective and affine
transformations of (Mn, g). Clearly, Aff(Mn, g) is a subgroup of Proj(Mn, g).

Theorem 2 (Alternative way to formulate projective Lichnerowicz Con-
jecture): Let (Mn, g) be a complete connected Riemannian manifold of dimension
n ≥ 2. If the index of Aff(Mn, g) in Proj(Mn, g) is infinite, then g has has constant
positive sectional curvature.

History: First nontrivial examples of projective transformations are due to Bel-
trami [2]. The problem of finding metrics (on surfaces) whose groups of projective
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transformations are bigger than the groups of isometries was stated by Lie [5]. For
complete manifolds, this problem was formulated by Schouten [17].

The local theory of projective transformations was well understood thanks to ef-
forts of several mathematicians, among them Dini, Levi-Civita, Fubini, Eisenhart,
Weyl and Solodovnikov.

Projective transformations were extremely popular objects of investigation in
50th–80th. One of the reasons for it is their possible applications in physics, see
the surveys [1, 16] for details.

Most results on projective transformations require additional geometric assump-
tions written as a tensor equation. For example, Corollary was proved under the
assumption that the metric is Einstein or Kähler (Couty [4]), or that the scalar
curvature is constant negative (Yamauchi [21]).

The only result which does not require additional tensor assumptions is due to
Solodovnikov [18, 19]. He proved the Lichnerowicz conjecture under the assump-
tions that the dimension of the manifold is greater than two and that all objects
(the metric, the manifold, the projective transformations) are real-analytic.

Methods: Our proof of Lichnerowicz-Obata conjecture is quite long (∼40 p.). It
can be found in [15]. Roughly speaking, we use the following methods:

The classical methods came from the local theory of projectively equivalent metrics
(Beltrami, Dini, Levi-Civita, Fubini, Eisenhart, Cartan, Weyl, Solodovnikov (see,
for example, [18]).)

The newer methods came from theory of integrable systems: the main observation
(see any of the papers [6, 7, 8, 9, 10, 11, 3, 13, 20]) is that, for a given Riemannian
metric g, the existence of a projectively equivalent metric allows one to construct
commuting integrals for the geodesic flow of g.

And the general idea came from the singularity theory. The role of singularities
play the points where the eigenvalues of the Lie derivative of the metric bifurcate.
We describe behavior of the metric near the simplest singular points, show that the
simplest singular points always exist, and explain how the structure near singular
points can be extended to the whole manifold.

Acknowledgements: I am grateful to Prof. Kleiner for his comments during
my talk that lead to Theorem 2. I thank DFG-programm 1154 (Global Differen-
tial Geometry) and Ministerium für Wissenschaft, Forschung und Kunst Baden-
Württemberg (Eliteförderprogramm Postdocs 2003) for partial financial support.
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On the structure of hyperbolic space forms

Ruth Kellerhals

A hyperbolic n-space form Q is a quotient of the standard hyperbolic space Hn

by a discrete group Γ of hyperbolic isometries. If Γ acts without fixed points, then
the quotient is a hyperbolic n-manifold denoted by M . In the other case, Q is a
hyperbolic n-orbifold.

In the first part of the talk, we discuss some global geometrical and topological
properties of hyperbolic n-manifolds M for arbitrary n ≥ 2 (cf. [K4]). For
ε > 0, consider the thick and thin decomposition M = M>ε ∪ M≤ε into the part
M>ε where the injectivity radius is everywhere larger than ε and into the closure
of the thin part M<ε . By the Margulis lemma, there is a universal constant
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ε(n) > 0 with the following properties. For all ε ≤ ε(n) , the thick part M>ε

is compact, and the components of the thin part M≤ε are either neighborhoods
of simple closed geodesics of length ≤ ε homeomorphic to ball bundles over the
circle or cusp neighborhoods homeomorphic to products of compact flat manifolds
with a real half line. Explicit estimates for the Margulis constant ε(n) have
immediate limiting consequences for characteristic numbers such as volume. For
low dimensions, there are the estimates ε(2) ≥ arsinh(1) ' 0.8813 due to Buser

[Bu, §4], ε(3) ≥ 0.104 due to Meyerhoff [M], and, for n = 4, 5 , ε(n) ≥
√

3/9π '
0.0612 (cf. [K2], [K3]).

The main result which we discuss is an estimate of the Margulis constant ε(n)
for arbitrary n ≥ 2 . The proof has different ingredients. First, we interpret
hyperbolic isometries by means of Clifford matrices according to Vahlen, Maass
and Ahlfors. Next, define ν =

[
n−1

2

]
, and

cν =
2ν+1

πν
· Γ( ν+2

2 )2

Γ(ν + 2)
=

2

πν

∫ π/2

0

sinν+1 t dt .

In this setting, Cao and Waterman [CW] derived an important n-dimensional
collar theorem. They showed that each simple closed geodesic g in M of length
l(g) ≤ l0 = cν/3

ν+1 admits a tube Tg(r) embedded in M of radius r satisfying

cosh(2r) =
1 − 3κ

κ
, where κ = 2 (l(g)/cν)

2
ν+1 .

Another ingredient is the existence of certain extremal cusp neighborhoods,
called canonical cusps, in non-compact hyperbolic manifolds of finite volume (cf.
[H], [K2], [S]). Moreover, a formula for the displacement rate of a loxodromic
Möbius transformation in n variables as well as results and techniques developped
in [K2], [K3] play an important role. These methods allow to show that, for
ε ≤ cν

3ν+1 , each of the finitely many connected components of the thin part M<ε

of M is either contained in a tube as described above or in a canonical cusp.

We discuss some implications about the coarse geometry of hyperbolic n-man-
ifolds. For example, there is a point p ∈ M with injectivity radius ip(M) >
1/(n + 3)πn−1 implying universal lower bounds for volume. By combining this
result with those of Przeworski [P], it follows that in each manifold M with a
simple closed geodesic of length ≤ l0 , there is a point p ∈ M with injectivity
radius ip(M) > 0.2217 .

These results improve already existing estimates as described in [BK, Propo-
sition 2.5.3], [CW, Theorem 9.8], and they extend our earlier contributions for
cusped hyperbolic manifolds [K1]. We also provide a geometrical inequality re-
lating injectivity radius i(M) and diameter diam(M) of a compact manifold M
by using a result of Heintze and Karcher [HK]. Finally, we consider the count-
ing function ρn(V ) on the set of non-isometric hyperbolic manifolds of dimension
n ≥ 4 with volume bound V and estimate the constant α(n) in ρn(V ) ≤ V α(n)V .
This latter inequality was discovered by Burger, Gelander, Lubotzky and Mozes
[BGLM] by exploiting the thick and thin decomposition for ε ≤ ε(n) .
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In the last part of the talk, we present a brief overview over small volume
hyperbolic orbifolds in low dimensions. In particular, we mention the recent result
of [HiK] where it is shown that the smallest volume hyperbolic 4-orbifold is the
quotient space Q∗ = H4/Γ∗ of H4 by the Coxeter group Γ∗ with diagram

•–——•–——•–——•
•
∣∣ 4

.

As such, the orbifold Q∗ is unique, arithmetic and of volume π2/1440 .
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Skew and totally skew embeddings and immersions

Serge Tabachnikov

(joint work with M. Ghomi)

In 1960s, H. Steinhaus asked whether there existed smooth closed space curves
without parallel tangents (he conjectured that such curves did not exist). Call a
closed space curve without parallel tangents a skew loop. More generally, a skew
brane is a smooth closed manifold immersed into an affine space in codimension 2
and free from pairs of parallel tangent spaces.

B. Segre [3, 4] was the first to answer the Steinhaus question by constructing
examples of skew loop and obtaining many results on their geometry. More recent
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results in this direction is obtained by Ghomi and Solomon [1]. Let M be a
smooth surface in 3-space with positive curvature. If M is quadratic then every
closed immersed curve on M has a pair of tangent lines, parallel in the ambient
space, and if M is not quadratic then there is a skew loop on M . Another version
of this question was considered by White [6] who proved the next theorem: let Mn

be a smooth closed manifold immersed into the unit sphere Sn+1 ⊂ Rn+2; then
M has a pair of points at which the tangent n-spaces are parallel in the ambient
space. In other words, M is not a skew brane. Another recent result [7] is that
every knot type can be realized by a skew loop.

In [5] I extended the results of Ghomi-Solomon and White to quadrics of all
dimensions and signatures. The main result is an analog of White’s theorem in
which the unit sphere is replaced by any quadratic hypersurface S = {Q(x, x) = 1}
where Q is a quadratic form. My approach is as follows. Consider the “squared
distance” function f : S × S → R given by f(x, y) = Q(x, y). If a pair (x, y) is a
critical point of f and y 6= ±x then the tangent spaces TxS a nd TyS are parallel.
Then one uses Morse theory to estimate below the number of critical points of the
function f and to show that the desired critical pairs exist.

An interesting open problem is to extend the “cylinder lemma” from [1] to
higher dimensions. This lemma asserts that if γ is closed non-centrally symmetric
curve in the horizontal plane then there is a section of the vertical cylinder over
γ which is a skew brane. A generalization leads to the following conjecture, of
interest on its own right: let M be a closed manifold with zero Euler characteristic
and α is a differential 1-form on M such that dα 6= 0. Then there exists a function
f on M such that the 1-form α + df has no zeros. In the application to skew
branes, M is an odd-dimensional real projective space.

Another result from [5] is that a ruled developable disc in space cannot support
a closed immersed skew loop; if the requirement to be ruled is relaxed then there
exists examples of skew loops on a developable disc. The proof follows from a
lemma whose proof is elementary but not easy: if γ is a closed immersed curve
in a plane domain foliated by straight lines then there exists points x, y ∈ γ that
belong to the same leave of the foliation and such that Txγ and Tyγ are parallel.
It would be interesting to find a variational proof of this claim (known in the cases
when the lines are parallel or concurrent).

A different class of submanifolds was considered in [2]. A submanifold Mn ⊂
RN is called totally skew if, for all pairs of distinct points x, y ∈ M , the tangent
spaces TxM and TyM do not contain intersecting or parallel lines. The notion of
a totally skew submanifold is the result of extending the notion of a skew manifold
from affine to projective geometry. The general problem is, given M , to find the
least N such that M admits a totally skew embedding to RN . Denote this number
by N(Mn) and shorthand it to N(n) if Mn is a disc.

It is easy to prove that 2n + 1 ≤ N(Mn) ≤ 4n + 1. In [2], we studied the
number N(n). We found a close relation of this problem with some fundamental
and well-studied problems in topology: the generalized vector field problem, non-
singular bilinear maps and the immersion problem for real projective spaces. One
of our results is as follows. Denote by ξp the canonical linear vector bundle over
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RPp; the Whitney sum of r copies of ξp is denoted by rξp. Then if there exists
a totally skew n-dimensional disc in R2n+q then the vector bundle (n + q)ξn−1

admits n+1 linearly independent sections. As a consequence, one has the following
lower bounds on N(n) for small values of n:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N(n) ≥ 3 6 7 12 13 14 15 24 25 27 28 31 36 37 38 48 49

Among many corollaries of this theorem, if N(n) = 2n + 1, the lowest possible
value, then n = 1, 3 or 7. Another corollary: if n is a power of 2 then N(n) ≥ 3n.

An interesting question is whether these lower bounds are sharp. This is so for
n = 1 and n = 2: the map x 7→ (x, x2, x3) over the reals or complex numbers
provides an example. Does there exist a 3-dimensional totally skew disc in 7-
dimensional space?

Another result in [2] provides constructions of totally skew spheres: if there
exists a bilinear symmetric non-singular map g : Rn+1 × Rn+1 → Rn+q then
there exists a totally skew sphere Sn ⊂ R2n+q+1. Multiplication of polynomials,
an example due to Hopf, provides such a bilinear map and, as a consequence,
there exists a totally skew sphere Sn ⊂ R3n+2. Using multiplication of complex
polynomials, one also constructs a totally skew sphere Sn ⊂ R3n+1 for even n. I
do not know of other examples of non-singular symmetric bilinear maps.
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Conformal geometry of gravitational plane waves

Wolfgang Kühnel

(joint work with H.-B. Rademacher)

One basic question in the early days of relativity was the following: Which
Einstein spaces can be mapped conformally into another Einstein space or into
itself? A classical result states the following:
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Theorem A. (Brinkmann, implicitly in [1]) A 4-dimensional Riemannian or Lo-
rentzian Einstein space admitting a non-homothetic conformal vector field is either
locally conformally flat or is locally a vacuum pp-wave (plane–fronted wave).

The class of pp-waves in general is given by all Lorentzian metrics on open parts
of IR4 = {(u, v, x, y)} which are of the form

ds2 = −2H(u, x, y)du2 − 2dudv + dx2 + dy2

with an arbitrary function H , the potential, which does not depend on v. For the
history see [7].

Brinkmann’s theorem was better understood and also independently rediscov-
ered in various papers, see [3, Thm.3]. A specialization to the Ricci-flat case reads
as follows:

Theorem B. A vacuum spacetime admitting a non-homothetic conformal vector
field is either locally flat or is locally a pp-wave (plane–fronted wave).

However, this result does not immediately lead to a classification of those met-
rics and those conformal vector fields which actually can occur. In [6] conformal
vector fields on pp-waves are studied, and a few examples are given. The converse
to Theorem B is not true: Not every vacuum pp-wave admits a non-homothetic
conformal vector field. By [4] the conformal group is at most 7-dimensional. Our
main result is the following [5]:

Theorem C. All vacuum spacetimes admitting a 7-dimensional conformal group
(together with the vector fields themselves) can be explicitly determined in terms
of elementary functions. More precisely H is a linear combination of the real and
imaginary parts of one of the following three cases:

Case 1: 2H(u, x, y) = c(x+ iy)2 exp(2κui) where c and κ are constants,

Case 2: 2H(u, x, y) = c
(x+ iy)2

u2
exp(2κui) where c and κ are constants,

Case 3: 2H(u, x, y) = c · (x+ iy)2

(u2 + αu+ β)2
exp

(
2γi

∫
du

u2 + αu+ β

)

where c, α, β, γ are constants and where a non-homothetic conformal vector
field can be chosen as

V = Z1 + α(u∂u − v∂v) + β∂u + γ(y∂x − x∂y)

where Z1 is the standard conformal field Z1 = u2∂u + 1
2 (x2 + y2)∂v +

ux∂x + uy∂y which we know from flat Minkowski space (the case H = 0).

Conformal geometry of gravitational plane waves

Theorem D. The class of all vacuum spacetimes admitting a 6-dimensional confor-
mal group cannot be described in terms of a finite dimensional space of parameters.
More precisely, there are solutions which are C∞ but not real analytic, depending
on the arbitrary choice of a real C∞-function.
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Corollary. A Lorentzian Einstein manifold is not necessarily real analytic.

This is in sharp contrast with the Riemannian case where Einstein spaces are
always real analytic in appropriate coordinates, see [2].

Example:

H(u, x, y) =

{
exp

(
1

u2−1

)
(x2 − y2) if u2 < 1

0 if u2 ≥ 1.

Here the Ricci tensor vanishes identically. The curvature tensor vanishes for u2 > 1
but does not vanish for u2 < 1. Therefore, the metric is not analytic, independently
of the choice of coordinates. The isometry group is 5-dimensional, together with
the homothetic vector field Y2 = 2v∂v + x∂x + y∂y we obtain a 6-dimensional
conformal group.
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Embedding and nonembedding results in asymptotic geometry

Sergei V. Buyalo

(joint work with Victor Schroeder)

In asymptotic geometry one studies metric spaces from a large scale point of
view, when the local geometry plays a minor role or even does not exists, e.g. the
space might be discrete. The following notion is an important example of such
approach. A map f : X → Y between metric spaces is called quasi-isometric, if
for some a ≥ 1, b ≥ 0 we have

1

a
|xx′| − b ≤ |f(x)f(x′)| ≤ a|xx′| + b

for all x, x′ ∈ X . In my talk the following results obtained jointly with V. Schroeder
(see [BS1], [BS2]) are discussed.

Theorem 1. For any n ≥ 2 there exists a quasi-isometric embedding f : Hn →
T1×· · ·×Tn of the hyperbolic space Hn into n-fold product of metric trees T1, . . . , Tn.
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Theorem 2. For any n ≥ 2 there is no quasi-isometric embedding Hn → T1 ×
· · · × Tn−1 × Rm for any m ≥ 0 and any metric trees T1, . . . , Tn+1.

The stabilizing factor R
m is introduced here to make the situation nontrivial.

Embedding. The embedding from Theorem 1 is given by an explicit construction
in a horospherical coordinates, see [BS1]. Applying a similar construction, my
student A. Egorov has embedded the Hadamard manifold X with metric given in
horospherical coordinates by

ds2 = dt2 + e2t(dx2 + dy2) + e4tdz2

into the product of four trees T 4. It is proved by P. Pansu (see [Pa]) that X is not
quasi-isometric to Hn. However, for the complex hyperbolic plane H2

C the question
is open whether it admits a quasi-isometric embedding in the 4-fold product of
metric trees. Recall that the metric of H2

C is given by

ds2 = dt2 + e2t(dx2 + dy2) + e4t(dz − xdy)2.

It is known that H2
C admits a uniform embedding into the metric product of five

(locally finite) trees (this follows from a result of A. Dranishnikov, [Dr]), and
that there is no quasi-isometric embedding into the metric product of three trees
stabilized by any Euclidean factor, see Theorem 3 below.

Nonembedding. To prove Theorem 2, we introduce a quasi-isometry invariant
called the hyperbolic dimension. Its definition is similar to the definition of Gro-
mov’s asymptotic dimension. Recall that the asymptotic dimension of a metric
space X is defined as asdimX = minn such that for every d > 0 there is a uni-
formly bounded covering U of X with Lebesgue number L(U) ≥ d and multiplicity
≤ n + 1. Recall also that the Lebesgue number L(U) is the maximal radius such
that any (open) ball in X of that radius is contained in some element of the cover-
ing, and that the multiplicity of a covering is the maximal number of its elements
having a common point.

The hyperbolic dimension is defined in the same way with only difference that
we allow unbounded elements of the covering which are however in a sence small.
Roughly speaking, we consider coverings whose elements are asymptotically dou-
bling with some uniformity condition.

The hyperbolic dimension has the following properties
• monotonicity: if X → X ′ q.i, then hypdim(X) ≤ hypdim(X ′);
• product thm: hypdim(X ×X ′) ≤ hypdim(X) + hypdim(X ′);
• hypdim(Rm) = 0 for every m ≥ 0 (this property distinguishes the hyperbolic

dimension from the asymptotic dimension since asdim(Rm) = m;
• hypdim(T ) ≤ 1 for any metric tree T .
Our main result about hypdim is this.

Theorem 3. hypdim Hn ≥ n for every n ≥ 2 (actually, hypdimX ≥ dim ∂∞X+1
for any Gromov hyperbolic space X whose boundary at infinity ∂∞X is doubling
w.r.t. any visual metric).



Geometrie 2505

Using these properties, we have hypdim(T1×· · ·×Tk×R
m) ≤ k. Hence, if there

is a quasi-isometric X → T1×· · ·×Tk×Rm, then by monotonicity, hypdimX ≤ k.
Together with Theorem 3, this shows that Hn 6→ T1 × · · · × Tn−1 × Rm.

Questions. A problem related to obstacles to quasi-isometric embeddings is the
Gromov conjecture that asdimΓ = dim ∂∞Γ+1 for any Gromov hyperbolic group
Γ (see [Gr, 1.E′

1]). The estimate asdimΓ ≥ dim ∂∞Γ + 1 is easy, and the question
is whether asdimΓ ≤ dim ∂∞Γ + 1. The positive answer would imply a number of
new nonembedding results.

• In this respect one can show that asdimΓ ≤ mdim ∂∞Γ+1, where the metric
dimension mdim is defined as follows. Let U be a covering of a metric space Z,
mesh(U) = sup{diamU : U ∈ U}, L(U) be the Lebegues number. We define the
capacity of U by

c(U) =
L(U)

mesh(U)
∈ [0, 1].

For τ > 0, δ ∈ (0, 1) and an integer m ≥ 0 we put cτ (Z,m, δ) = supU c(U), where
the supremum is taken over all open coverings U of Z with multiplicity ≤ m + 1
and δτ ≤ mesh(U) ≤ τ . Now, we put

c(Z,m, δ) = lim inf
τ→0

cτ (Z,m, δ),

c(Z,m) = limδ→0 c(Z,m, δ) and finally

mdim(Z) = inf{m : c(Z,m) > 0}.
One always has dimZ ≤ mdimZ. Therefore, the Gromov conjecture is reduced
to the question whether dim ∂∞Γ = mdim ∂∞Γ (for some visual metric on ∂∞Γ).

• Another open question is what is the hyperbolic dimension of H2 ×H2 ? One
easily sees that it must be 3 or 4. We strongly believe that it is 4. This would
imply an interesting nonembedding result that H2 ×H2 6→ T1 × T2 × T3 × Rm

for any m ≥ 0. More generally, we conjecture that the hyperbolic dimension of
any symmetric space of noncompact type without Euclidean factors is at least the
dimension of the space. This also would imply a number of new nonembedding
results.
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Generalized Hopf differentials

Uwe Abresch

(joint work with Harold Rosenberg)

The basic global results in the theory of constant mean curvature (cmc) surfaces in
space forms are the theorems of A. D. Alexandrov and H. Hopf from the 1950ies [4,
8]. Alexandrov’s theorem states that a closed, embedded cmc surface in S3

+, R3,

or H3 space form is necessarily a standard distance sphere. Its proof is based
on a moving planes argument that is amazingly flexible and has been applied in
many other contexts since. It has even turned out to be fruitful for the theory of
nonlinear elliptic equations [7].

Hopf’s theorem on the other hand states that an immersed cmc sphere in a
space form M3

κ is necessarily a standard distance sphere. The basic idea in Hopf’s
argument is to observe that the (2, 0)–part of the second fundamental form hΣ =
〈 . , A . 〉 of such a cmc surface Σ2 is a holomorphic quadratic differential, a fact
that is also one of the foundations of the theory of cmc tori in space forms [1, 5, 6].

1. New Results for Cmc Surfaces in Product Spaces

It is straightforward to extend Alexandrov’s result and prove that a closed, em-
bedded cmc surface Σ2 in either one of the product spaces S2

+ × R and H2 × R

is an embedded, rotationally-invariant sphere S2
H and is therefore uniquely deter-

mined up to congruence by the value of its mean curvature H . In the first case the
restriction to hemispheres is again crucial and, in fact, much more serious than in
the case of the 3–sphere.

Hopf’s result on the other hand is not that easy to generalize; the (2, 0)–part
π2,0(hΣ) of the second fundamental form is in general not holomorphic, since the
ambient space curvature term in the Codazzi equations does not vanish anymore.
Our basic new result is that for cmc surfaces in the product spaces M 2

κ × R holo-
morphicity can be restored with the help of an explicit, geometrically defined
correction term [3]:

Theorem 1. Let (κ,H) 6= 0, and let L be the symmetric bilinear form correspond-
ing to the field of projectors onto the vertical lines in the product space M 2

κ × R.
Then the expression

Q := 2H · π2,0(hΣ) − κ · π2,0(ι
?L) .

defines a natural holomorphic quadratic differential on any immersed cmc surface
ι : Σ2 # M2

κ × R with mean curvature H.

The remaining two theorems in this section are also established in [3, see]. First
of all, applying ODE techniques to the fundamental equations of surface theory,
we can classify the cmc surfaces with Q ≡ 0.

Theorem 2. Let (κ,H) 6= 0, and let ι : Σ2 # M2
κ ×R be a complete surface with

constant mean curvature H and vanishing holomorphic quadratic differential Q.
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Furthermore, let θ := arcsin(dξ ·ν) denote the angle between the unit normal field ν
and the vertical lines. Then the following holds :

• if κ+4H2 > 0, then Σ2 is congruent to one of the embedded, rotationally-
invariant cmc spheres S2

H .

• if κ + 4H2 ≤ 0, then Σ2 is a complete open surface. Depending on the
sign of the function 4H2 + κ cos2(θ), it is either congruent to a disk-
like surface D2

H or a particular parabolic surface P 2
H or a surface C2

H of
catenoidal type.

Since the space of holomorphic quadratic differentials on the sphere S2 = CP
1 is

trivial, Theorems 1 and 2 yield the following analogue of Hopf’s result:

Theorem 3. Any immersed cmc sphere S2 in a product space M2
κ×R is congruent

to one of the embedded, rotationally-invariant cmc spheres S2
H .

2. Further Generalizations

In this section we investigate the scope where our generalized Hopf differentials
can be defined. In particular, we ask for which (orientable) Riemannian 3–manifold
(M3, g) does there exist a correction field L that induces a holomorphic quadratic
differential on any immersed cmc surface ι : Σ2 # (M3, g). In this generality,
it is of course no longer possible to write down an explicit expression for the
correction L. However, the following holds:

Theorem 4. Fix some constant H ∈ R. Let (M 3, g) be an oriented Riemannian
manifold, and let L0 be a C–valued, traceless, symmetric bilinear form on M 3.
Then the expression

Q := π2,0(hΣ + ι?L0)

defines a holomorphic quadratic differential on any surface ι : Σ2 # (M3, g) with
constant mean curvature H, if and only if L0 solves the differential equation

DX L0 = 1
2 i ·

[
?X,G− 2H L0

]
.(∗)

Here the square brackets denote the commutator, and ?X stands for the skew-
symmetric endomorphism Y 7→ X × Y induced by the cross-product. Restricting
to traceless fields L0 is in fact a mere normalization. The ODE-system (∗) is
strongly overdetermined, and thus one should expect that the corresponding inte-
grability conditions impose serious restrictions on the geometry of the underlying
Riemannian 3–manifold:

Theorem 5. Let (M̃3, g) be a simply-connected, oriented Riemannian manifold,
and let H ∈ R be some real constant. Then equation (∗) is solvable if and only if

(M̃3, g) is a homogeneous space with an at least 4-dimensional isometry group.

Recall that homogeneous Riemannian 3–manifolds (M̃3, g) come with 6–, 4–,
or 3–dimensional isometry groups. Those with 6–dimensional isometry groups
are the space forms, whereas those with 4–dimensional isometry groups admit
natural equivariant Riemannian submersions with 1–dimensional, totally-geodesic
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fibers [10, 11]. Up to isometry they are classified by the curvature κ of the quotient
surface and the bundle curvature τ . In this class of homogeneous 3–manifolds, one
distinguishes six different homogeneous structures :

κ > 0 κ = 0 κ < 0

τ = 0 S2 × R R3 H2 × R

τ 6= 0 S3
Berger

Nil(3) S̃l(2,R)

At this point we have constructed holomorphic quadratic differentials on cmc sur-
faces in homogeneous 3–manifolds corresponding to 7 of the eight maximal ho-
mogeneous structures that appear in Thurston theory; only the geometries corre-
sponding to Solv(3) are missing.

Holomorphic quadratic differentials on cmc surfaces in the target spaces listed
in the second row of the table were not known beforehand. Inspecting the proof of
Theorem 5, one finds that equation (∗) always admits a homogeneous solution L0.
Following the argument leading to Theorem 2, it is possible to classify the cmc
surfaces where the corresponding holomorphic quadratic differential Q vanishes
identically, and thus we can generalize Hopf’s result even further:

Theorem 6. Any immersed cmc sphere S2 in a simply-connected homogeneous
space (M̃3, g) with an at least 4–dimensional isometry group is in fact an embed-
ded, rotationally-invariant cmc sphere.

It seems natural to think of the holomorphic quadratic differentialQ constructed
in Theorems 4 and 5 as a family of first integrals for the cmc equation that is due to
the 1–dimensional isotropy groups of the bundle geometries and the 3–dimensional
isotropy groups of the space forms, respectively. For the proofs of all 3 theorems
presented in this section we refer the reader to the forthcoming paper [2].

3. Conclusions

It is a common feature of the bundle geometries that the isotropy group of
any point p contains the 180o–rotations around all horizontal geodesics through p.
This property makes it feasible to construct global minimal surfaces from Plateau
solutions with suitable boundary polygons, using the Schwarz reflection princi-
ple. Together with the principal results of the preceding section, this observation
provides a lot of evidence for the thesis that homogeneous 3–manifolds with at
least 4–dimensional isometry groups are the proper setting for studying global
properties of minimal surfaces and cmc surfaces.

The talk ended discussing this thesis in the context of the Heisenberg group.
After describing the equivariant minimal surfaces in Nil(3) as classified by Mercuri
and Pedrosa [9], we presented some local and global analogues of the doubly-
periodic Scherk surface. With this background, we discussed the possibility of
half-space theorems and Bernstein theorems for minimal surfaces in Nil(3). These
results will be the subject of a forthcoming joint paper.
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Biquotients, curvature and homotopy type

Wilderich Tuschmann

(joint work with Vitali Kapovitch and Anton Petrunin)

This work is motivated by the finiteness theorems in Riemannian geometry
and a question of S.-T. Yau which asks whether there always exists only a finite
number of diffeomorphism types of closed smooth manifolds of positive sectional
curvature that are homotopy equivalent to a given positively curved manifold
([Yau93], Problem 11).

If one relaxes the condition sec > 0 to sec ≥ 0 then the answer to Yau’s question
is known to be false in all dimensions ≥ 7, even in the category of simply connected
manifolds. This follows from combining a result of Grove and Ziller [GZ00] that
the total space of any linear sphere bundle over S4 admits a Riemannian metric
with nonnegative curvature with the fact that, for each k ≥ 3, the total spaces
of linear Sk-bundles over S4 fall into infinitely many homeomorphism, but only
finitely many homotopy types. However, the examples of Grove and Ziller do not
satisfy a uniform upper curvature bound when rescaled to have uniformly bounded
diameter, and, more generally, it is thus natural to look at the following question.

Question 1. Given fixed n ∈ N, D > 0 and c, C ∈ R, are there at most finitely
many diffeomorphism classes of pairwise homotopy equivalent closed Riemannian
n-dimensional manifolds with sectional curvature c ≤ sec ≤ C and diameter ≤ D?
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The answer is known to be positive in some special situations. For example,
it is true if M is 2-connected by [PT99], if D = D(C, c, n) is sufficiently small by
Gromov’s theorem on almost flat manifolds [BK81] and the rigidity of infranilman-
ifolds [Aus60], or if C ≤ 0 and n ≥ 5 by results of Farrell and Jones [FJ90, FJ93].
Remarkably enough, in the latter case one actually does not even need the lower
curvature and upper diameter bound. In other words, for n ≥ 5 the answer to the
analogue of Yau’s original question for nonpositive curvature (which in this case
is a special case of the Borel conjecture) is yes.

Here we are mostly concerned with the following special case of Question 1:

Question 2. Given fixed n ∈ N and D,C > 0, are there at most finitely many dif-
feomorphism types of pairwise homotopy equivalent closed Riemannian n-manifolds
with sectional curvature 0 ≤ sec ≤ C and diameter ≤ D?

This question is also of interest in the following respects.
First of all, in general dimensions the diffeomorphism finiteness theorems in Rie-

mannian geometry (see, e.g., [AC91, Che70, Pet84, FR00, FR02, KGW91, PT99,
Tus02]) leave it completely open.

On the other hand, sequences of lens spaces Mk = S2m+1/Zk already show
that as soon as one drops the condition that the homotopy type be fixed, this
question must definitely be answered in the negative. Moreover, starting from
dimension n = 6, from [GZ00] one may infer the existence of infinite sequences
of closed simply connected nonnegatively curved n-manifolds of mutually distinct
homotopy type, and in dimensions n > 8, n 6= 10 by [Tot03] (see also [FR01]) there
even exist infinite sequences of closed simply connected nonnegatively pinched
Riemannian n-manifolds with pairwise non-isomorphic rational cohomology rings
that also satisfy uniform upper diameter bounds.

Our first main result shows that if n ≥ 10, the answer to Question 2 is in general
negative, even under the extra assumption of positive Ricci curvature.

Theorem A. In each dimension n ≥ 10 there exist infinite sequences (Mn
k )k∈N

of pairwise homotopy equivalent but mutually non-homeomorphic closed simply
connected Riemannian n-manifolds satisfying

0 ≤ sec(Mn
k ) ≤ 1, Ric(Mn

k ) > 0 and diam(Mn
k ) ≤ D = D(n).

In view of the fact that for closed simply connected manifolds of nonnegative
sectional curvature till now no obstructions to the existence of a Riemannian metric
with positive sectional curvature are known, this result provides a geometric answer
to the bounded curvature case of Yau’s question as close as possible.

It is quite likely that the dimensional restriction n ≥ 10 in Theorem A is not
optimal, and it is an interesting question to find the minimal dimension where
examples satisfying the conclusion of Theorem A can occur. By [FR00, Tus02],
this dimension must be at least 7. If one does not require the sectional curvature to
be nonnegative, we show that the answer to Question 1 is indeed already negative
in all dimensions ≥ 7:
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Theorem B. For any n ≥ 7 there exist infinite sequences of homotopy equivalent
but mutually non-homeomorphic closed Riemannian n-manifolds Mn

k with

| sec(Mn
k )| ≤ 1 and diam(Mn

k ) ≤ D = D(n).

If n 6= 8, all these manifolds can in addition be chosen to be simply-connected.

Notice that for simply connected manifolds, by [Tus02, FR00], n = 7 is indeed
the smallest dimension where such examples can occur.

In [Bel03] Belegradek constructed examples of manifolds admitting infinitely
many nonnegatively curved metrics with mutually non-diffeomorphic souls. We
sharpen this result by constructing such examples which in addition have uniform
bounds on the curvature of the manifolds and the diameters of the souls:

Theorem C. For any k > 10 the manifold S2 × S2 × S3 × S3 × Rk admits an
infinite sequence of complete nonnegatively curved metrics gi with pairwise non-
homeomorphic souls Si such that

0 ≤ sec(M, gi) ≤ 1 and diam(Si) ≤ D

where D is a positive constant independent of k.

The manifolds in Theorems A and souls in Theorem C can be written as biquo-
tient manifolds which, if simply connected, are known to carry metrics of positive
Ricci curvature. The ideas of the proofs of Theorems A,B and C can be described
as follows.

To prove Theorem A we fix a rank 2 bundle ξ over S2 × S2 × S2 and look
at the sphere bundle P of ξ ⊕ εk−1 with k ≥ 3. We then look at various circle
bundles S1 → Mi → P . A topological argument shows that with an appropriate
choice of ξ, infinitely many of such bundles have total spaces homotopy equivalent
to S2 × S2 × S3 × Sk but distinct first Pontrjagin classes and thus are mutually
non-homeomorphic.

We can represent all Mis as S3 × S3 × S3 × Sk/T 2
i where T 2

i ⊂ T 3 which acts
freely and isometrically on S3 × S3 × S3 × Sk. This easily implies that all Mi

satisfy all the geometric constraints in Theorem A.
To prove Theorem C we put k = 3 and fix a rank 2 bundle ζ over P and

look at the pullbacks of ζ ⊕ εl−2 to Mi. By the same reasons as before, the
total spaces of these pullbacks have metrics satisfying the geometric restrictions of
Theorem C with souls isometric to Mi. A topological argument shows that with
an appropriate choice of ζ the total spaces of the pullbacks are diffeomorphic to
S2 × S2 × S3 × S3 × Rl if l > 10.

To prove Theorem B we look at a 6-manifold X6 which is homotopy equivalent
to S2 × S2 × S2 but has nontrivial first Pontrjagin class. By an easy topological
argument, among S1-bundles over X6 there are infinitely many spaces homotopy
equivalent to S2 × S2 × S3 but having distinct Pontrjagin classes. They all admit
metrics of bounded curvature and diameter by the same argument as in the proof
of Theorem A.
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Tame and wild integrability

Iskander A. Taimanov

Let M2n be a symplectic manifold with the Poisson bracket {·, ·} induced by the
symplectic form. Any smooth function H on M 2n generates a Hamiltonian flow
on M2n such that the evolution of an arbitrary smooth function f : M 2n → R

along the trajectories is given by the equation df
dt = {f,H}. A function which

is preserved by the flow is called a first integral or an integral of the motion.
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This is, for instance, the so-called Hamiltonian function H (that follows form the
skew-symmetry of the Poisson brackets).

A Hamiltonian flow is called completely integrable if it admits a family of first
integrals I1 = H, . . . , In such that these integrals are in involution: {Ij , Ik} =
0, 1 ≤ j, k ≤ n, and they are functionally independent almost everywhere, i.e.
outside some nowhere dense set Σ which is called the singular locus.

More generally it is said that the flow is integrable if it admits n + k first
integrals I1 = H, . . . , In+k such that they generate a Lie algebra L with respect
to the Poisson brackets such that L has a commutative subalgebra of dimension
n− k and these first integrals are functionally independent almost everywhere.

The condition that the functions f and g are in involution means that the Hamil-
tonian flows generated by f and g commute. Therefore the integrability means
that a generic level surface Vc = {I1 = c1, . . . , In+k = cn+k} admits an action of
Rn−k by translations along trajectories of commuting flows. We conclude that 1)
this surface is a quotient of Rn−k and such a compact surface is diffeomorphic to
a torus, and 2) the commuting flows are linearized on Vc.

In analogous manner the integrability of the level surface {H = h}, h = const,
is defined.

There is some freedom in the definitions when we say about functional inde-
pendence of first integrals almost everywhere. It could be that

• they are functionally independent on an open dense set;
• given a smooth measure on M 2n such that the measure of M2n is finite,

the first integrals are functionally independent on the full measure subset.
• first integrals I1, . . . , In are analytic (i.e. the flow is analytically inte-

grable).1

• there is a finite smooth (or even analytic) simplicial decomposition of the
phase space M2n such that a singular locus Σ forms a subcomplex of this
decomposition and the complement to it is cutted by another subcomplex
of positive codimension to a union of finitely many sets Uα which are
foliated by invariant tori over their images under the momentum map.2

It appears that there is an important difference between this notions which is
similar to the difference between wild and tame sets in geometric topology.

The analytic integrability implies the geometric simplicity [6] and these cases
has to be treated as a tame integrability since a tame behavior of the flows. More-
over it is possible to apply methods of topology to establishing topological ob-
structions to such an integrability.

The first obstruction was found by Kozlov in 1989 when he proved that if the
geodesic flow on a compact oriented analytic Riemannian two-manifold is analyt-
ically integrable then the manifold is diffeomorphic to a sphere or to a torus [5].

In 1984 the we found obstructions in the high-dimensional situation [6] by prov-
ing the following statement:

1This situation was mostly studied in the classical analytic mechanics of the 19th century
2This is the so-called geometric simplicity introduced in [6].
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If the geodesic flow on a compact analytic manifold Mn is geometrically simple
then there is an invariant torus T n ⊂ SMn such that the natural projection π :
SMn → Mn induced a homomorphism π∗ : π1(T

n) → π1(M
n) those image is a

subgroup of finite index in π1(M
n)

and this implies that
1) π1(M

n) of Mn contains a commutative subgroup of finite index;
2) H∗(M ; R) of Mn contains a subring A which is isomorphic to H∗(T k; R)

where T k is a k-torus and k is the first Betti number of Mn;
3) moreover b1 = dimMn then H∗(Mn; R) = H∗(Tn; R).
In 1999 Butler [2] established an integrability of the geodesic flow on a three-

dimensional nilmanifold in terms of C∞ first integrals and in 2000 in our joint
paper with Bolsinov we proved an analogous result for a three-dimensional solv-
manifold [1]. This flow on the solvmanifold

1) has positive topological entropy although its entropy with respect to any
smooth invariant metric vanishes;

2) contains an Anosov subsystem being analytic and integrable in terms of C∞

functions.
Recently we proved with Knauf that another example of such flow which is

integrable only in terms of C∞ functions is the classical n-centre problem at high
energy levels [4].

All these flows are very complicated being completely integrable. That explains
by the complicated geometry of their singular locii which can be treated as wild
subsets in the phase spaces.

We argue that a good definition of a complete integrability has to include a
condition of tame integrability. In this case the flow can be described in a simple
way. A mathematical background for such a definition can be given by theory
of o-minimal structures [3], i.e. we have to assume that the first integrals are
definable functions in some such a structure.

The topological obstructions results proved by Kozlov and the author are
straightforwardly extended for such a notion of tame integrability.

The following problems are very important for understanding topological ob-
structions to integrability:

• can we generalize the Kozlov theorem for the C∞ case (i.e. drop the
assumption of analyticity)?

• does the analytic (or more generally tame) integrability of the flow implies
that its topological entropy vanishes?

In both cases the expected answers are unclear to us.
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Distortion of Knotted Curves

John M. Sullivan

(joint work with Elizabeth Denne)

Gromov introduced the notion of distortion for curves as the maximum ratio of
arclength to chord length, and showed that any closed curve has distortion at
least π/2, that of a round circle. He then asked [5] whether every knot type can
be built with distortion less than, say, 100.

When studying quadrisecants of knots—lines in space that intersect the knot
four times—Kuperberg [6] introduced a way to say which secants of the knot are
topologically nontrivial or essential. Denne [2] has further developed these ideas
to show that knotted curves have essential alternating quadrisecants, and with
Diao [3], we used such quadrisecants to get a good lower bound on the ropelength
of nontrivial knots. Here, we deduce δ ≥ π for any knotted curve, merely using
the existence of an essential secant along with results from [3] that characterize
how a family of secants can become essential. In [4], we carry these ideas further
to show δ > 3.99 for any knot. For comparison, trefoil knots with distortion less
than 8.2 can be exhibited.

For us, a knot will mean a closed, oriented, rectifiable curve K embedded in R3

with finite length `(K). Such a knot has a Lipschitz parameterization by arclength.
Two points p, q along a knot K separate K into two complementary arcs, γpq

and γqp. (Here γpq is the arc from p to q following the orientation of K.) We let
`pq denote the length of γpq . We are mainly interested in the shorter arclength
distance d(p, q) := min(`pq , `qp) ≤ `(K)/2. We contrast this with the straight-line
(chord) distance |p− q|, the length of the segment pq ⊂ R3.

The arclength parametrization of K has Lipschitz constant 1 by definition. The
distortion of K is a Lipschitz constant for the inverse map:

Definition. The distortion between distinct points p and q on the knot K is

δ(p, q) :=
d(p, q)

|p− q| ≥ 1.

The distortion of K is the supremal distortion between any distinct points.

For any knot K, we have δ ≥ π/2, with equality only for a round circle; a proof
following Gromov can be found in [7, Prop. 2.1]. Our main result in [4] says that
a nontrivial knot (of finite total curvature) must have distortion at least 3.99.

To get this lower bound we use the notion of essential arcs, which we introduced
in [3] as an extension of ideas of Kuperberg [6]. Note that generically a knot K
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p q

K

h

γpq

Figure 1. This arc γpq is essential in the knot K because the
parallel h, whose linking number with K is zero, is homotopically
nontrivial. In this example, γqp is also essential, so pq is essential.

together with a chord pq forms a Θ-graph in space; being essential is a topological
feature of this knotted graph, as shown in Figure 1.

Definition. Suppose K is a knot and p, q ∈ K. Assuming pq has no interior
intersections with K, we define a loop h = h(γpq) in the free homotopy of the knot
complement X := R3 rK. Namely, h is represented by a parallel curve to γpq∪pq,
chosen to have linking number zero with K. (If pq does intersect K, we perturb
it first, as in [3].) Then we say γpq is an essential arc of K if h is a nontrivial
free homotopy class (or equivalently, if γpq ∪ pq bounds no disk whose interior is
disjoint from K). We say the secant pq is essential if both arcs γpq and γqp are
essential.

If K is unknotted then any subarc is inessential. Conversely, Dehn’s lemma
can be used [3, Thm. 5.2] to show that, if for some p, q ∈ K both γpq and γqp

are inessential, then K is unknotted. What will be most important for us is the
following theorem which describes borderline-essential arcs.

Proposition ([3], Thm. 7.1). Suppose γpr is in the boundary of the set of essential
arcs for a knot K. (That is, γpr is essential, but there are inessential arcs of K
with endpoints arbitrarily close to p and r.) Then K must intersect the interior
of segment pr at some point q ∈ γrp for which the secants pq and qr are both
essential. �

The proof follows simply by tracking the change in the homotopy class h(γpr)
as the secant pr passes from one side of q to the other. This change equals the
commutator of the meridian loop of K with any one of the elements h(γpq), h(γqp),
h(γqr), or h(γrq).
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The approximation results of [3] show that any knot K of finite total curvature
has a shortest essential arc. Our main theorem is now based on analysis of this
arc and the two related essential secants guaranteed by the Proposition.

Theorem. Every nontrivial knot of finite total curvature has distortion δ ≥ π.

Proof. Let γpr be a shortest essential arc for the knotK, and let δ be the distortion
of K. For convenience, rescale the knot so that `pr = δ. Then any essential
secant ab has |a − b| ≥ 1, for otherwise the shorter of the essential arcs γab and
γba would have length at most |a− b|δ < δ, contradicting the definition of γpr.

Since some nearby arcs are shorter and thus inessential, the Proposition is
applicable to γpr, giving us q ∈ pr ∩ γrp with pq and qr essential. Now let m be
the midpoint of γpr, so that `pm = δ/2 = `mr. If follows that for any x ∈ γpm

we have d(q, x) ≥ δ + `px, while for y ∈ γmr we have d(q, y) ≥ δ + `yr. By the
definition of distortion, if follows that |q − x| ≥ 1 + `px/δ ≥ 1. In particular, the
whole arc γpr stays outside B1(q). It follows immediately that δ = `pr ≥ π. �

We note that this bound, which is twice the minimum distortion possible for
a closed unknotted curve, is not sharp. In particular, the midpoint m of γpr

must be further away: |q −m| ≥ 3/2. A more detailed analysis in [4] shows that
δ = `pr ≥ 3.9945, where the minimum length involves a logarithmic spiral at
constant distortion from q.
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Perelman’s work on Ricci flow

Bruce Kleiner

G. Perelman posted two preprints [1,2] on the ArXiv, which introduced new
techniques for studying Hamilton’s Ricci flow, and presented an argument for
Thurston’s Geometrization Conjecture. The four lectures discussed these papers.
The first two lectures gave an overview of Perelman’s approach. The third and
fourth discussed his noncollapsing estimate and some of his results on κ-solutions.

[1] G. Perelman, The entropy formula for the Ricci flow and its geometric ap-
plications, http://front.math.ucdavis.edu/math.DG/0211159



2518 Oberwolfach Report 47/2004

[2] G. Perelman, Ricci flow with surgery on three-manifolds,
http://front.math.ucdavis.edu/math.DG/0303109

Volumes on normed and Finsler spaces: Introduction and update

Juan Carlos Álvarez Paiva
1

This note is a short introduction to the theory of volumes on normed and Finsler
spaces. It is also a quick update to the survey of Álvarez and Thompson [3], where
the reader will find proofs, references, and some of the history of the subject.

The theory starts with a seemingly simple question: how to measure volumes

on normed and Finsler spaces? In other words, we would like to assign a volume
density to each finite-dimensional normed and Finsler space in a way that naturally
extends the definition of volume of Euclidean and Riemannian spaces. I follow,
with slight modifications, the axiomatic approach of [6].

1. Basic axioms

After a moment’s reflection, most geometers would agree that a reasonable
notion of volume on finite-dimensional normed spaces should satisfy the following
three properties:

Axiom 1. Compact subsets of a normed space have finite volume and open subsets
of a normed space have positive volume.

Axiom 2. The volume of an open set in a Euclidean space is its Euclidean volume.

Axiom 3. An affine map between normed space of the same dimension that does
not increase distances does not increase volumes.

1This work was partially funded by FAPESP grant No 2004/01509-0.
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As a consequence of Axiom 3, isometries between normed spaces are volume-
preserving. In particular, translations are volume-preserving. This, together
with Axiom 1 and Haar’s theorem, implies that the volume density in a finite-
dimensional normed space X is a constant multiple of the Lebesgue measure on
X . The constant may be determined by prescribing the volume of the unit ball BX

of X . This volume cannot be prescribed arbitrarily: once we have a definition of
volume on normed spaces satisfying Axioms 1–3, the assignment BX 7→ volX(BX)
is a linear invariant of centered convex bodies. Moreover, the value of this invari-
ant on any n-dimensional ellipsoid (the unit ball of some n-dimensional Euclidean
space) must be equal to εn—the volume of the unit ball in Rn.

Still, this restriction on BX 7→ volX(BX) does not uniquely determine a canon-
ical choice of volume on normed spaces. Some possible choices are:

The Busemann definition. Assign to every n-dimensional normed space the
multiple of the Lebesgue measure for which the volume of its unit ball is εn.

The Holmes-Thompson definition. Assign to every n-dimensional normed
space X the multiple of the Lebesgue measure for which the volume of its unit
ball BX is the symplectic volume of BX ×B∗

X
⊂ X ×X∗ divided by εn.

Gromov’s mass* or Benson definition. Assign to every n-dimensional normed
space the multiple of the Lebesgue measure for which the minimal volume of a
parallelotope circumscribing its unit ball is 2n.

Infinitely many other choices are possible. For example, we may assign to every
n-dimensional normed space the multiple of the Lebesgue measure for which the
minimal volume of an ellipsoid circumscribing its unit ball is εn.

This wealth of definitions suggests that we may need to impose yet another
axiom on our notion of volume. Such an axiom readily suggests itself if we notice
that that having defined volumes we have defined areas.

2. Areas in normed spaces

If we have a notion of volume on normed spaces, we can define the k-dimensional
area of a measurable subset S of a k-dimensional affine subspace in a normed space
X : translate the subspace so that it passes through the origin, induce a norm on
the resulting vector subspace Y from its embedding in X , and measure the volume
of S in the k-dimensional normed space Y .

This remark allows us to measure the area of any polyhedron in a normed space
and, more generally, to define the area integrands in all dimensions. The fourth
axiom is a weak ellipticity condition on the area integrands.

Axiom 4. If T is a simplex in a normed space, then the area of any face of T
does not exceed the sum of the areas of the remaining faces.

Some equivalent formulations of this axiom are:

(1) The hypersurface area functional in a normed space is lower semi-contin-
uous.

(2) A domain contained in a hyperplane of a normed space is area-minimizing.
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(3) If X is an n-dimensional normed space, the function whose value at an
(n − 1)-vector v1 ∧ · · · ∧ vn−1 is the area of the parallelotope formed by
v1, . . . , vn−1 is a norm on the space Λn−1X of (n− 1)-vectors of X .

It is known that the Busemann, Holmes-Thompson, and Benson (mass*) defi-
nitions of volume satisfy Axiom 4. Moreover, they and their convex combinations
are the only known definitions that do so. However, even if it could be proved that
these are the only definitions to satisfy Axiom 4, we still have infinitely possible
definitions. Differential geometry may help us to pick the right one(s).

3. Volumes and areas in Finsler spaces

In Finsler geometry, we only deal with Minkowski norms on vector spaces:
norms that are smooth away from the origin and have positive-definite Hessians
at every nonzero point. A Finsler metric on a manifold is simply a continuous
function on its tangent bundle that is smooth away from the zero section and such
that its restriction to each tangent space is a Minkowski norm.

Given a definition of volume on normed spaces, we have a definition of volume
on Finsler manifolds: the volume density on an n-dimensional Finsler manifold
M assigns to each parallelotope formed by tangent vectors v1, . . . , vn ∈ TxM its
volume in the normed space TxM . The condition that the volume density be
smooth is satisfied by both the Busemann and Holmes-Thompson definition, but
not by mass*.

The Busemann and Holmes-Thompson definition are both very natural in the
Finsler context: the Busemann volume of a Finsler manifold is its Hausdorff mea-
sure ([5]) and The Holmes-Thompson volume of an n-dimensional Finsler manifold
equals the symplectic volume of its unit codisc bundle divided by the volume of
the unit ball in n-dimensional Euclidean space ([2]).

If we define the area of a submanifold of a Finsler space as the volume of
the submanifold with its induced Finsler metric, a natural condition to impose
on a definition of volume on normed and Finsler spaces is that totally geodesic
submanifold be extremal for the area functional. This condition is satisfied by the
Holmes-Thompson definition:

Theorem (Berck, [4]). Totally geodesic submanifolds of Finsler spaces are ex-
tremal for the Holmes-Thompson area functional.

However, as the following theorem shows, the Hausdorff measure fails this test
in a very strong way.

Theorem (Álvarez and Berck, [1]). For any real number λ, all geodesics of the
Finsler metric

ϕλ(x,v) =
(1 + λ2‖x‖2

)‖v‖2
+ λ2〈x,v〉2

‖v‖
are straight lines. However, the only value of λ for which all (totally geodesic)
planes are extremals of the Hausdorff area functional of ϕλ is λ = 0.
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Almost hermitian 6-manifolds and a generalization of Kirichenko’s
theorem

Thomas Friedrich

Fix a subgroup G ⊂ SO(n) of the special orthogonal group and decompose the Lie
algebra so(n) = g ⊕ m into the Lie algebra g of G and its orthogonal complement
m. The different geometric types of G-structures on a Riemannian manifold cor-
respond to the irreducible G-components of the representation R

n ⊗ m. Indeed,
consider a Riemannian manifold (Mn, g) and denote its Riemannian frame bundle
by F(Mn). It is a principal SO(n)-bundle over Mn. A G-structure is a reduction
R ⊂ F(Mn) of the frame bundle to the subgroup G. The Levi-Civita connection
is a 1-form Z on F(Mn) with values in the Lie algebra so(n). We restrict the
Levi-Civita connection to R and decompose it with respect to the decomposition
of the Lie algebra so(n),

Z
∣∣
T (R)

:= Z∗ ⊕ Γ .

Then, Z∗ is a connection in the principal G-bundle R and Γ is a 1-form on Mn

with values in the associated bundle R ×G m. If Γ = 0, then the Levi-Civita
connection preserves the G-strucuture (integrable geometries). Some authors call
Γ the intrinsic torsion of the G-structure. There is a second notion, namely the
characteristic connection and the characteristic torsion of a G-structure. It is a
G-connection ∇c with totally skew symmetric torsion tensor. Not any type of
geometric G-structures admits a characteristic connection. In order to formulate
the condition, we embed the space of all 3-forms into Rn ⊗m using the morphism

Θ : Λ3(Rn) −→ R
n ⊗ m , Θ(T) :=

n∑

i=1

ei ⊗ pr
m

(ei T) .

A G-structure admits a characteristic connection ∇c if and only if the intrinsic
torsion Γ belongs to the image of the Θ. In this case, the intrinsic torsion is given
by the equation 2 Γ = −Θ(Tc). For interesting geometric structures Θ is injective,
i. e. the condition that the torsion is totally skew symmetric singles out a unique
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characteristic connection substituting the Levi-Civita connection. This character-
istic torsion form has been computed explicitely in terms of the underlying geomet-
ric data. Formulas of that type are known for almost hermitian structures, almost
metric contact structures, G2-structures in dimension 7 and Spin(7)-structures in
dimension 8. If Mn = G1/G is naturally reductive, the characteristic connection
coincides with the canonical connection of the reductive space. In this sense, we can
understand the characteristic connection of a Riemannian G-structure as a gener-
alization of the canonical connection of a Riemannian naturally reductive space.
The canonical connection of a naturally reductive space has parallel torsion form
and parallel curvature tensor. For arbitrary G-structures and their characteristic
connections, these properties do not hold anymore. Corresponding examples will
be discussed. Non-integrable geometric structures and their characteristic connec-
tions are important in type II string theory. Indeed, their torsion forms serve as
candidates for a NS-3-form involved in the so called Strominger model. This is a
6-tuple (Mn, g,∇,T,Φ,Ψ) consisting of a Riemannian manifold (Mn, g), a metric
connection ∇ with totally skew symmetric torsion form T, a dilation function Φ
and a spinor field Ψ. The string equations can be written in the following way:

Ric∇ +
1

2
δ(T) + 2∇g(dΦ) = 0 , δ(T) = 2 (grad(Φ) T) ,

∇Ψ = 0 , (2 · dΦ − T) · Ψ = 0 .

The first fermionic equation ∇Ψ = 0 means that the spin holonomy of the con-
nection preserves a spinor. We study the holonomy group of metric connections
with totally skew symmetric torsion. For examples, in case of the flat euclidian
space this group is always semisimple and does not preserve any non-degenerate
2-form or any spinor. On compact Riemannian manifolds we prove similar re-
sults using suitable integral formulas. Generalizations involving the torsion form
T of the Schrödinger-Lichnerowicz formula and the Parthasarathy formula for the
square of the Dirac operator will be discussed. In particular, these formulas yield
an operator Ω acting on spinor fields and defined for any triple (Mn, g,∇) with
totally skew symmetric torsion T,

Ω := (D1/3)2 +
1

8
(dT − 2σT) +

1

4
δ(T) − 1

8
Scalg − 1

16
||T||2

= ∆T +
1

8
(3 dT − 2σT + 2 δ(T) + Scal) .

We call Ω the Casimir operator of the triple (Mn, g,∇), since in case of a sym-
metric space it coincides with the group theoretical Casimir operator. Ω has some
remarkable properties. For example, its kernel contains all ∇-parallel spinors,
the 3-form T acts in its kernel etc. We investigate the integrability condition
for parallel spinors as well as the Casimir operator for all the characteristic con-
nections Tc of non integrable structures in dimension n = 5, 6, 7. Moreover, in
these dimensions we will construct explicit solutions of the spinor Killing equa-
tion on naturally reductive spaces, for examples on Aloff-Wallach spaces. On the
other side, any 7-dimensional 3-Sasakian manifold admits a two-parameter family



Geometrie 2523

of metric connections with totally skew symmetric torsion and parallel spinors.
The parallelism ∇cTc = 0 of the torsion form of a characteristic connection is an
important property. The first reason is that ∇cTc = 0 implies the conservation
law δ(Tc) = 0. Moreover, if the torsion is parallel, several formulas for differential
operators acting on spinors simplify and it is possible to investigate the space of
parallel or harmonic spinors in more detail. Sasakian structures or nearly Kähler
structures (a Theorem of Kirichenko) have a parallel characteristic torsion form,
even if they are not reductive. This motivates the investigation of Riemannian
G-structures with a parallel characteristic torsion form in general. In dimension
n = 6 we study the non integrable geometries with this property generalizing, in
this sense, Kirichenko’s result. Any almost hermitian manifold of type G1 admits
a unique characteristic connection. The U(3)-orbit type of the characteristic tor-
sion is constant. It turns out that there exist only two orbits with a non abelian
isotropy (holonomy) group in dimension six. The manifolds under consideration
are torus fibrations over some special 4-manifold, twistor spaces or a non Kählerian
hermitian structure on the Lie group SL(2,C). Finally we classify all naturally
reductive hermitian W3-manifolds with small (abelian) isotropy group of the char-
acteristic torsion.
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Curvature tensors of singular spaces

Andreas Bernig

We refer to [2] for a survey concerning generalizations of curvature notions to
singular spaces and to [1] for the material presented here.
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Using Geometric Measure Theory, we provide the space of compact subman-
ifolds of Euclidean space RN with a natural topology, called tame topology. To
each compact submanifold X , one associates the (Federer-Fleming-) N−1-current

X̃, given by integration over the unit normal bundle of X . This current has the
following properties:

a) ∂X̃ = 0, i.e. X̃ is a cycle.

b) X̃ is integral.

c) X̃xα = 0, where α is the canonical 1-form on SRN , i.e. X̃ is Legendrian.

d) The support of X̃ is compact.

Let LC(SRN ) denote the space of N−1-currents with these properties, endowed
with the weak topology. Besides compact submanifolds, some singular spaces ad-
mit such a normal cycle: piecewise linear spaces, convex bodies, sets with positive
reach, compact subanalytic sets, Lipschitz manifolds with bounded curvature.

To each compact set X ⊂ RN admitting a normal cycle X̃, we introduce a
sequence of tensor-valued Borel measures Λk,d(X,−), 0 ≤ d ≤ k ≤ N such that, B
being a Borel set, the following properties hold.

a) Λk,d(X,B) ∈ Sym2 ΛdRd.
b) Valuation property:

Λk,d(X1, B) + Λk,d(X2, B) = Λk,d(X1 ∩X2, B) + Λk,d(X1 ∪X2, B).

c) Translation invariance: Λk,d(X + t, B + t) = Λk,d(X,B) for all t ∈ RN .
d) Rotation covariance:

Λk,d(ρX, ρB) = ρΛk,d(X,B)

for all ρ ∈ SO(N).
e) Continuity: If Xi → X in the flat topology, then Λk,d(Xi,−) converges

weakly to Λk,d(X,−).
f) Homogeneity: Let λ > 0. Then Λk,d(λX, λB) = λkΛk,d(X,B).
g) Let trd,2d : ⊗2dRN → ⊗2d−2RN , d ≥ 1 denote contraction of the d-th and

the 2d-th coordinate. Then

trd,2d Λk,d(X,B) =
k − d+ 1

d
Λk,d−1(X,B).

Let s, ric, R denote scalar curvature, Ricci tensor and Riemann curvature tensor
of a compact submanifoldX of dimension n < N . We set E := s

2g−ric the Einstein

tensor and R̂ := R − ric ·g + s
4g · g a modification of the Riemann tensor and let

E#, R̂# denote the corresponding (2, 0) and (4, 0)-tensor fields dual to E and R̂.
Then

a) Λn−2,0(X,B) = 1
4π

∫
X∩B sµg if n ≥ 2;

b) Λn−2,1(X,B) = 1
2π

∫
X∩B

E#µg if n ≥ 3;

c) Λn−2,2(X,B) = 1
4π

∫
X∩B R̂

#µg if n ≥ 4.
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Given an arbitraryX ⊂ R
N admitting a normal cycle, we define scalar curvature

measure, Einstein measure and modified Riemann measure to be the correspond-
ing tensor-valued measures 4πΛn−2,0(X,−), 2πΛn−2,1(X,−) and 4πΛn−2,2(X,−).
This extends some of the classical curvature formalism to singular spaces.

The same construction can be applied with the ambient space RN replaced by
any Riemannian manifold (M, g) of dimension N . The Λk,d(X,−) are no longer
tensor-valued measures (which would not make any sense), but tensor-valued dis-
tributions. Given a section T ∈ Γ(⊗2dT ∗M), Λk,d(X,T ) is a real number and the
map T 7→ Λk,d(X,T ) is continuous in an appropriate topology.

One of the main results is that these tensor-valued distributions are intrinsic in
the following sense:

Let τ : (M, g) → (M ′, g′) be an isometric embedding of oriented Riemannian
manifolds. Suppose that X ⊂ M is a compact subset admitting a normal cycle.
Let T ′ ∈ Γ(⊗2dT ∗M ′) and T := τ∗T ′ its restriction toM . Then for 0 ≤ d ≤ k ≤ N

Λk,d(X,T ) = Λk,d(τ(X), T ′).

A surprising fact is that there is no continuous, intrinsic tensor-valued distribu-
tion corresponding to the Ricci tensor. Since scalar curvature and metric tensor
are only defined as measures, there is no way to compute ric from E, s, g as in the
smooth case.

As an application, the above construction permits to find approximations of the
Einstein tensor of a compact smooth submanifold by looking at sufficiently good
piecewise polyhedral approximations. This was already used (in the 3-dimensional
case) in Computational Geometry.
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Nagata dimension, quasisymmetric embeddings, and Lipschitz
extensions

Urs Lang

(joint work with Thilo Schlichenmaier)

The lecture reported on our recent work [7] on a variation of Gromov’s notion of
asymptotic dimension [4], with a view towards applications in analysis on metric
spaces. The invariant considered was introduced and named Nagata dimension by
Assouad [1]; indeed it is closely related to a theorem of Nagata characterizing the
topological dimension of metrizable spaces.

Let X = (X, d) be a metric space, and let B = (Bi)i∈I be a family of subsets
of X . The family B is called D-bounded for some constant D ≥ 0 if diamBi :=
sup{d(x, x′) : x, x′ ∈ Bi} ≤ D for all i ∈ I . For s > 0, the s-multiplicity of B is
the infimum of all integers n ≥ 0 such that every subset of X with diameter ≤ s
meets no more than n members of the family. The asymptotic dimension asdimX
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of X is defined as the infimum of all integers n such that for all s > 0, X possesses
a D-bounded covering with s-multiplicity at most n+ 1 for some D = D(s) <∞.
This imposes no condition on small scales as it is not required that D(s) → 0 for
s → 0. The Nagata dimension (or Assouad–Nagata dimension) dimNX of X is
the infimum of all integers n with the following property: There exists a constant
c > 0 such that for all s > 0, X has a cs-bounded covering with s-multiplicity
at most n + 1. Note that this notion takes into account all scales of the metric
space in an equal manner. Clearly dimNX ≥ asdimX . The number dimNX is
unaffected if the covering sets are required to be open, or closed, or if the ‘test set’
with diameter ≤ s is replaced by an open or closed ball of radius s (the minimal
constant c may change, however).

It is easily seen that dimNX ≤ dimN Y whenever f : X → Y is a map between
metric spaces satisfying, for instance, a d(x, x′)p ≤ d(f(x), f(x′)) ≤ b d(x, x′)p

for all x, x′ ∈ X and for some constants a, b, p > 0. For every metric space X ,
the topological dimension dimX never exceeds dimNX . The product theorem
dimN(X × Y ) ≤ dimNX + dimN Y holds; the inequality may be strict. Each
subset X of R

n containing interior points satisfies dimNX = n. Every dou-
bling metric space has finite Nagata dimension. For X = Y ∪ Z, dimNX =
sup{dimN Y, dimN Z}. Hence, every compact n-dimensional riemannian manifold
X satisfies dimNX = n. Every product of n non-trivial metric trees and every
euclidean building of rank n has Nagata dimension n. By a metric tree we mean a
geodesic metric space all of whose geodesic triangles are degenerate, i.e. isometric
to tripods; no local finiteness or compactness assumption is made. A geodesic
metric space X that is hyperbolic in the sense of Gromov has finite Nagata di-
mension if it satisfies a respective condition on small scales. Every homogeneous
Hadamard manifold has finite Nagata dimension.

A map f from a metric space X into another metric space Y is called quasisym-
metric if it is injective and there exists a homeomorphism η : [0,∞) → [0,∞)
such that d(x, z) ≤ t d(x′, z) implies d(f(x), f(z)) ≤ η(t) d(f(x′), f(z)) for all
x, x′, z ∈ X and t ≥ 0. Then f−1 : f(X) → X is also quasisymmetric, and f is a
homeomorphism onto its image.

Theorem 1. Let X,Y be two metric spaces, and let f : X → Y be a quasisym-
metric homeomorphism. Then dimNX = dimN Y .

Assouad’s theorem [2] asserts that for every doubling metric space (X, d) and
every exponent p ∈ (0, 1), there is an N such that the metric space (X, dp) admits
a bi-Lipschitz embedding into RN . Dranishnikov [3] showed that every geodesic
metric space with bounded geometry and asymptotic dimension at most n admits
a large-scale uniform embedding into the product of n + 1 locally finite metric
trees.

Theorem 2. Let (X, d) be a metric space with dimNX ≤ n < ∞. Then for all
sufficiently small exponents p ∈ (0, 1), there exists a bi-Lipschitz embedding of
(X, dp) into the product of n+ 1 metric trees.
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In particular, (X, d) admits a quasisymmetric embedding into the product of
n+ 1 metric trees. It follows that a metric space X satisfies dimNX < ∞ if and
only if it admits a quasisymmetric embedding into the product of finitely many
metric trees.

We say that a pair of metric spaces (X,Y ) possesses the Lipschitz extension
property if there is a constant C such that for every subset Z ⊂ X and for every
Lipschitz map f : Z → Y , there is a Lipschitz extension f̄ : X → Y of f with
constant Lip(f̄) ≤ C Lip(f). A comprehensive characterization of such pairs is
still missing. However, we obtain complete results if one of the two spaces has
finite Nagata dimension. We call a metric space Y Lipschitz m-connected for some
integer m ≥ 0 if there is a constant cm such that every Lipschitz map f : Sm → Y
has a Lipschitz extension f̄ : Bm+1 → Y with constant Lip(f̄) ≤ cm Lip(f); here
Sm and Bm+1 denote the unit sphere and closed ball in Rm+1 equipped with the
induced metric. This condition is easily verified in the presence of an appropriate
weak convexity property of the metric. In particular, every Banach space and
every geodesic metric space with convex metric is Lipschitz m-connected for all
m ≥ 0.

Theorem 3. Suppose that X,Y are metric spaces, dimNX ≤ n < ∞, and Y is
complete. If Y is Lipschitz m-connected for m = 0, 1, . . . , n − 1, then the pair
(X,Y ) has the Lipschitz extension property.

As a corollary we obtain the known fact that for a complete metric space Y ,
the pair (Rn, Y ) has the Lipschitz extension property if and only if Y is Lipschitz
m-connected for m = 0, . . . , n− 1.

Theorem 4. Suppose that Y is a complete metric space with dimN Y ≤ n <
∞, and Y is Lipschitz m-connected for m = 0, 1, . . . , n. Then Y is an absolute
Lipschitz retract; equivalently, the pair (X,Y ) has the Lipschitz extension property
for every metric space X . In particular, Y is Lipschitz m-connected for all m ≥ 0.

This result is obtained as a corollary of a more general theorem which provides
Lipschitz extensions for maps f : Z → Y defined on a set Z ⊂ X with dimN Z ≤ n.
When combined with the estimates for hyperbolic and nonpositively curved spaces
mentioned earlier, Theorem 4 unifies and generalizes the results obtained in [5, 1.2]
and [6, 4.6 and 6.5].
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On the nondegeneracy of constant mean curvature surfaces
1

(joint work with Nick Korevaar and Jesse Ratzkin2)

We prove that many complete, noncompact, constant mean curvature (CMC) surfaces

f : Σ → R
3 are nondegenerate; that is, the Jacobi operator ∆f+|Af |

2 has no L2 kernel. In

fact, if Σ has genus zero with k ends, and if f(Σ) is embedded (or Alexandrov immersed)

in a half-space, then the dimension of the L2 kernel is at most k − c − l, where c the

number of cylindrical ends of f(Σ), and l = 2 or 3 is the dimension of the subspace of R
3

spanned by the vertices of the spherical classifiying polygon for f(Σ). Our main tool is a

conjugation operation on Jacobi fields which linearizes the conjugate cousin construction.

Consequences include partial regularity for CMC moduli space, a larger class of CMC

surfaces to use in gluing constructions, and a surprising characterization of CMC surfaces

via spinning spheres.

Constant mean curvature surfaces in R3 are equilibria for the area functional,
subject to an enclosed-volume constraint. The mean curvature is nonzero when
the constraint is in effect, so we can scale and orient the surfaces to make their
mean curvature 1, a condition we abbreviate by CMC. Over the past two decades
a great deal of progress has been made on understanding complete CMC surfaces
and their moduli spaces, however many interesting open problems remain. One of
the most important questions concerns the possibility of decaying Jacobi fields on
complete CMC surfaces, that is, the Morse-theoretic degeneracy of these equilibria.
Our main result is to rule out such Jacobi fields on a large class of complete CMC
surfaces.

For a given immersed surface f : Σ → R3, its mean curvature Hf is determined
by the quasilinear elliptic equation

∆ff = 2Hfνf ,

where ν = νf is the (mean curvature, or inner) unit normal to f and ∆f is the
Laplace-Beltrami operator. The surface f(Σ) is CMC if Hf ≡ 1. The oldest
examples of CMC surfaces are the sphere of radius 1 and cylinder of radius 1/2.
Interpolating between these two examples are the Delaunay unduloids, which are
rotationally symmetric and periodic. A Delaunay unduloid is determined (up to
rigid motion) by its necksize n, which is the length of the smallest closed geodesic
on the surface. A necksize of n = π corresponds to a cylinder of radius 1/2, and as

1Partially supported by NSF grants DMS-0076085 at GANG/UMass and DMS-9810361 at
MSRI, and by a FUNCAP gran t in Fortaleza, Brasil.

2Partially supported by an NSF VIGRE grant at Utah.
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n → 0 one obtains the singular limit of a chain of mutually tangent unit spheres.
The ODE determining the Delaunay surfaces still has global solutions when the
necksize parameter is any negative number; in this case the resulting Delaunay
nodoids are not embedded.

Here we will consider the slightly larger class of CMC surfaces in R3 which
are Alexandrov-immersed. A proper immersion f : Σ → R3 is an Alexandrov
immersion if one can write Σ = ∂M , where M is a three-manifold into which the
mean curvature normal ν points, and f extends to a proper immersion of M into
R

3. In the finite topology CMC setting, M is necessarily a handlebody with a
solid cylinder attached for each end. For example, the Delaunay unduloids are
Alexandrov-immersed (in fact, embedded), but the Delaunay nodoids are not.

It is a theorem of Alexandrov [A] that the only compact, connected, Alexandrov-
immersed, CMC surfaces are unit spheres. For noncompact surfaces, Korevaar,
Kusner and Solomon [KKS] proved that each end of a finite-topology CMC sur-
face is exponentially asymptotic to a Delaunay unduloid, that two-ended CMC
surfaces are unduloids, and that three-ended CMC surfaces have a plane of re-
flection symmetry. In fact, all triunduloids (three-ended, genus zero CMC sur-
faces) were constructed and classified by Große-Brauckmann, Kusner and Sullivan
[GKS], as were all coplanar k–unduloids (k–ended, genus zero CMC surfaces whose
asymptotic axes all lie in a plane [GKS2]). These authors define a classifying map
assigning each coplanar k–unduloid an immersed polygonal disc with k geodesic
edges in S2, whose edge-lengths are the asymptotic necksizes of the corresponding
k–unduloid.

The classifying map of [GKS, GKS2] is a homeomorphism, and gives information
about the topological structure of moduli space of coplanar k–unduloids. To obtain
information about the smooth structure of moduli space, one needs to understand
the linearization of the mean curvature operator, which is the Jacobi operator

Lf = ∆f + |Af |2,
where |Af | is the length of the second fundamental form of f . Solutions to the
Jacobi equation Lfu = 0 are called Jacobi fields, and correspond to normal varia-
tions of the CMC surface f(Σ) which preserve the mean curvature to first order.
More precisely, if u is a Jacobi field, then the one-parameter family of immersions
f(t) = f+tuν has mean curvature H(t) = 1+O(t2). Thus one can think of Jacobi
fields as tangent vectors to the moduli space of constant mean curvature surfaces.

Definition. A CMC surface f : Σ → R3 is nondegenerate if the only solution
u ∈ L2 to Lfu = 0 is the zero function.

Near a nondegenerate CMC surface f(Σ), a theorem of Kusner, Mazzeo and
Pollack [KMP] shows that the moduli space of CMC surfaces is a real-analytic
manifold with coordinates derived from the asymptotic data of [KKS] (that is, the
axes, necksizes, and neckphases of the unduloid asymptotes). In general the CMC
moduli space is a real-analytic variety. Indeed, on a degenerate CMC surface, there
would be a nonzero L2 Jacobi field u, which (by [KMP]) decays exponentially on
all ends. The presence of such a Jacobi field means there exists a one-parameter
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family of surfaces f(t) with the same asymptotic data and with mean curvature
1+O(t2), indicating a possible singularity in the CMC moduli space. Thus, proving
nondegeneracy eliminates the potential for such singularities.

Our main theorem bounds the dimension of the space of L2 Jacobi fields on a
large class of CMC surfaces:

Theorem. Let f : Σ → R3 be a coplanar k–unduloid. Then the space of L2

Jacobi fields on f(Σ) is at most (k − 2)–dimensional. Moreover, if the span of
the vertices of the classifying geodesic polygon in S2 is a subspace of R

3 with
dimension l (nesessarily 2 or 3), and if c is the number of cylindrical ends of f(Σ),
then the space of L2 Jacobi fields on f(Σ) is at most (k − c− l)–dimensional.

As a corollary, we deduce that almost all triunduloids are nondegenerate. Re-
call ([GKS] and our earlier discussion) that a triunduloid uniquely determines a
spherical triangle whose edge-lengths are the asymptotic necksizes n1, n2, n3. The
spherical triangle inequalities imply n1 + n2 + n3 ≤ 2π and ni + nj ≥ nk. When
these inequalities are strict, the vertices of the classifying triangle span R

3, and so
our main theorem asserts that the space of L2 Jacobi fields vanishes:

Corollary. Let f : Σ → R3 be a triunduloid. Then f is nondegenerate if its
necksizes satisfy the strict spherical triangle inequalities or if there is a cylindircal
end (with necksize n = π).

The main tool we develop is a conjugate Jacobi field construction, which con-
verts Neumann fields to Dirichlet fields. This conjugate variation field arises from
linearizing the conjugate cousin construction of [GKS]. Our construction is moti-
vated by the analogous nondegeneracy result of Cośın and Ros [CR] for coplanar
minimal surfaces. However, the geometry in the present case, and thus the proof,
is quite different, with interesting consequences. For example, we obtain new in-
sight into the classifying map for triunduloids and, more generally, for coplanar
k–unduloids (see [GKS, GKS2]). The conjugate Jacobi field construction also
yields a simple, synthetic characterization of constant mean curvature in terms of
spinning a sphere at double-speed along the surface.

We conclude by mentioning some naturally related open problems concerning
Jacobi fields on CMC surfaces and the moduli space theory of CMC surfaces:

Our main theorem gives upper bounds for the dimension of the space of L2

Jacobi fields on coplanar k–unduloids. Is this bound sharp? In particular, up to
scaling, there is at most one nonzero L2 Jacobi field on any triunduloid satisfying
n1 + n2 + n3 = 2π or ni + nj = nk. Does this Jacobi field ever exist?

Is it possible to extend our technique to a wider class of CMC surfaces? For
instance, there are many CMC surfaces which are not Alexandrov symmetric but
do have some symmetry (e.g. tetrahedral symmetry). Can one use our methods
to bound either the necksizes or the dimension of the space V of L2 Jacobi fields
on such surfaces?

The question of integrability of a Jacobi field is also open. According to [KMP],
any tempered (sub-exponential growth) Jacobi field on a nondegenerate CMC
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surface is integrable, in the sense that it is the velocity vector field of a one-
parameter family of CMC surfaces. It would be useful to decide whether tempered
Jacobi fields are always integrable in this sense.
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A geometric approach to exotic involutions
in dimensions 5,6,13, and 14

Thomas Püttmann

(joint work with U. Abresch, C. Duran, and A. Rigas)

A differentiable involution σ of the sphere S
n is called exotic if it is fixed point

free and not conjugate by diffeomorphisms to the antipodal map. The quotient
Sn/{id, σ} is homotopy equivalent but not diffeomorphic to the standard real pro-
jective space RP

n.
Starting from a Wiedersehen metric on the Gromoll-Meyer sphere we obtain

simple formulas for exotic involutions of S5, S6, S13, and S14. In order to give the
formula for the involution of S6, for example, let w be a quaternion and p be an
imaginary quaternion such that |w|2 + |p|2 = 1. Moreover, let b : S6 → S3 be the
map b(p, w) = w

|w|e
πp w̄

|w| . Here, ep denotes the exponential map of the unit sphere

in the quaternions.

Theorem. The map S6 → S6,

(p, w) 7→
(
−b(p, w)p b(p, w),−b(p, w)p b(p, w)

)

is an exotic involution.

The exotic involution of S5 is obtained by restricting the involution of S6 to
purely imaginary w. The exotic involutions of S14 and S13 are given by substituting
quaternions by octonions. The exotic involution of S5 can be described in terms
of 3-dimensional Euclidean geometry only (see [2]). It would be very interesting
to see directly from this visualizable construction that the involution is exotic.
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Applications of our geometric approach to these involutions are discussed. These
include a non-cancellation phenomenon in group actions and explicit cohomogene-
ity one actions on the standard S5 that are not conjugate to a linear action.
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[1] U. Abresch, C. E. Duran, T. Püttmann, A. Rigas, Wiedersehen metrics, exotic involutions,
and non-cancellation phenomena, Preprint, October 2004.
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Generalized Cylinders and Applications

Christian Bär

(joint work with P. Gauduchon and A. Moroianu)

I will report on joint work with P. Gauduchon and A. Moroianu that will appear
in [2]. We give various applications of a construction which we call generalized
cylinders. Let M be a manifold and let gt be a smooth 1-parameter family of
semi-Riemannian metrics on M , t ∈ I ⊂ R. Then we call the manifold Z = I×M
with the metric gZ := dt2 + gt a generalized cylinder over M . The generalized
cylinder is an (n + 1)-dimensional semi-Riemannian manifold (with boundary if
I has boundary) of signature (r + 1, s) if the signature of gt is (r, s). The vector
field ν := ∂

∂t is spacelike of unit length and orthogonal to the hypersurfaces Mt :=
{t}×M . The t-lines are geodesics. Let W denote the Weingarten map of Mt with
respect to ν and let H be the mean curvature.

On the one hand, this ansatz is very flexible. Locally, near a semi-Riemannian
hypersurface with spacelike normal bundle every semi-Riemannian manifold is of
this form. The restriction to spacelike normal bundle, i. e. to the positive sign in
front of dt2 in the metric of Z is made for convenience only. Changing the signs
of the metrics on M as well as on Z reduces the case of a timelike normal bundle
to that of a spacelike normal bundle.

On the other hand, this ansatz still allows to closely relate the geometries of
M and Z . The relevant formulas relating the curvatures of (M, gt) and of (Z , gZ)
are the following:
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〈W (X), Y 〉 = −1

2
ġt(X,Y ),(1)

〈
RZ(U, V )X,Y

〉
=

〈
RMt(U, V )X,Y

〉
(2)

+
1

4
(ġt(U,X)ġt(V, Y ) − ġt(U, Y )ġt(V,X)) ,

〈
RZ(X,Y )U, ν

〉
=

1

2

(
(∇Mt

Y ġt)(X,U) − (∇Mt

X ġt)(Y, U)
)
,(3)

〈
RZ(X, ν)ν, Y

〉
= −1

2
(g̈t(X,Y ) + ġt(W (X), Y )) ,(4)

ricZ(ν, ν) = tr(W 2) − 1

2
trgt

(g̈t),(5)

ricZ(X, ν) = dX tr(W ) −
〈
divM (W ), X

〉
,(6)

ricZ(X,Y ) = ricMt(X,Y ) + 2 〈W (X),W (Y )〉(7)

− tr(W ) 〈W (X), Y 〉 − 1

2
g̈t(X,Y ),

ScalZ = ScalMt + 3 tr(W 2) − tr(W )2 − trgt
(g̈t),(8)

where X,Y, U, V ∈ TpM , p ∈ M .
The first application of this construction concerns the fundamental theorem for

hypersurfaces. If M is a hypersurface of a semi-Riemannian model space Mr+1,s
κ

of signature (r + 1, s) and constant sectional curvature K ≡ κ with Weingarten
map A, then the Codazzi-Mainardi and Gauss equations must hold:

(∇M
X A)Y = (∇M

Y A)X,(9)

RM (X,Y )Z = 〈A(Y ), Z〉A(X) − 〈A(X), Z〉A(Y )

+κ(〈Y, Z〉X − 〈X,Z〉Y )(10)

for all X,Y, Z ∈ TpM , p ∈M .
The fundamental theorem asserts that these conditions are also sufficient in the

simply connected case.

THEOREM 1. Let (Mn, g) be a simply connected semi-Riemannian manifold of
signature (r, s), let κ ∈ R and let A be a field of symmetric endomorphisms of TM
satisfying the two equations (9) and (10) above.

Then M can be isometrically immersed as a semi-Riemannian hypersurface into
the model space Mr+1,s

κ with Weingarten map A. Any two such immersions differ
by an isometry of Mr+1,s

κ .

For the proof one defines a family of metrics on M by

gt(X,Y ) := g((cκ(t) id−sκ(t)A)2X,Y ).

Here sκ, cκ : R → R denote the generalized sine and cosine functions satisfying
sκ(0) = 0, cκ(0) = 1, κs2

κ + c
2
κ = 1, s

′
κ = cκ, and c

′
κ = −κsκ. Then one checks
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that M0 ⊂ Z has Weingarten map W = A and that the generalized cylinder Z
has constant curvature κ. Hence Z is locally isometric to Mr+1,s

κ and we have
constructed local embeddings. The global statement follows using a standard
continuation procedure.

The second application concerns the identification of the spinor bundles with
respect to different metrics and the variation formula for the Dirac operator. Let gt

be a smooth 1-parameter family of semi-Riemannian metrics, t ∈ [0, 1]. We want
to relate spinors w. r. t. g0 to those w. r. t. g1. We show that the identification
given in [3] coincides with parallel transport on the generalized cylinders along
the t-lines. The variational formula in [3] then follows directly from a simple
commutator formula.

The third application helps to better understand generalized Killing spinors.

THEOREM 2. Let (Mn, g) be a semi-Riemannian spin manifold and let A be a
field of symmetric endomorphisms of TM satisfying equation (9) on M . Let ψ be
a spinor on (Mn, g) satisfying for all X ∈ TM

(11) ∇ΣM
X ψ =

1

2
A(X) · ψ.

Then the generalized cylinder Z = I×M with the metric dt2+gt, where gt(X,Y ) =
g((id−tA)2X,Y ), and with the spin structure inducing the given one on {0}×M
by restriction has a parallel spinor, whose restriction to the leaf {0}×M is just ψ.

In [1] this was used for A = λ · id to classify the geometries admitting (classical)
Killing spinors. The case that A is parallel was treated in [5]. Generalized Killing
spinors are also closely related to T -Killing spinors studied in [4].
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Dr. Katrin Leschke

leschke@gang.umass.edu

Department of Mathematics and
Statistics
University of Massachusetts
Amherst MA 01003-4515
USA

Dr. Alexander Lytchak

lytchak@math.uni-bonn.de

alex@math.unizh.ch

Institut für Mathematik
Universität Zürich
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