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Introduction by the Organisers

The k-th polylogarithm function is defined on |z| < 1 by

Lik(z) =
∑

n≥1

zn

nk
.

In the past 25 years or so, polylogarithms have appeared in many different areas of
Mathematics. The following list is taken, for the most part, from [Oe]: volumes of
polytopes in spherical and hyperbolic geometry, volumes of hyperbolic manifolds
of dimension 3, combinatorial description of characteristic classes, special values of
zeta functions, geometry of configurations of points in P1, cohomology of GLn(C),
calculation of Green’s functions associated to perturbation expansions in quantum
field theory, Chen iterated integrals, regulators in algebraic K-theory, differential
equations with nilpotent monodromy, Hilbert’s problem on cutting and pasting,
nilpotent completion of π1(P

1 − {0, 1,∞}), Bethe’s Ansatz in thermodynamics,
and combinatorial problems in quantum field theory.

Of course, these problems are not all unrelated. One common thread is that
values of polylogarithms appear naturally as periods of certain mixed Hodge struc-
tures associated to mixed Tate motives over cyclotomic fields. How these periods
are related to special values of L-functions is a part of the Beilinson conjectures,
which were discussed in a previous Arbeitsgemeinschaft. Since that time, the
general picture has clarified. A number of talks are devoted to aspects of this
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more general philosophy (talk 2-5, 9, 10 13-17). The p-adic aspects of the theory
have been studied and will be explained in the eleventh talk. In addition, a vast
generalization, multiple polylogarithms of the form

Lis1,...,sk
:=

∑

n1>...>nk≥1

zn1
1 · · · z

nk

k

ns1
1 · · ·n

sk

k

,

have come to play a role as presented in the fourth and twelfth talk.

The connection between volumes of hyperbolic manifolds and polylogarithms
is described in the sixth talk. The seventh talk introduces higher torsion and ex-
plains why polylogarithms occur in that setting.

Polylogarithms play a role in physics. The eighth talk explains how zeta values,
polylogarithms, and multiple polylogarithms appear in calculations of perturba-
tive expansions in quantum field theory.

The final talks 13-17 return to the relationship with special values of L-functions.
The thirteenth and fourteenth talk are devoted to the Zagier conjectures for num-
ber fields. The fifteenth talk concerns the elliptic polylogarithm sheaves and Za-
gier’s conjecture for elliptic motives. Finally, talk 16 and 17 describe how poly-
logarithms relate to Euler systems and to the Bloch-Kato conjectures on special
values of L-functions.

The Arbeitsgemeinschaft was organized by Spencer Bloch (University of Chi-
cago), Guido Kings (Universität Regensburg) and Jörg Wildeshaus (Université
Paris 13). It was held October 3rd – October 9th, 2004 with 46 participants.
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Abstracts

Function theory of higher logarithms

Elisenda Feliu

In this first talk we define the higher logarithms Lik and prove some of their
analytic properties. All the results are taken from [Oe].

The functions Lik(z). For every integer k ≥ 1, we consider the following power
series with disc of convergence |z| < 1:

Lik(z) =
∑

n≥1

zn

nk
.

Since for k = 1 and |z| < 1, the series Li1(z) is just the development in a neigh-
bourhood of 0 of the function − log(1− z), Li1(z) admits an analytic continuation
on C \ [1,+∞). We call this function the principal branch of Li1.

Observe that for every k ≥ 2 and |z| < 1, the following derivative relation is
satisfied:

Li′k(z) =
1

z
Lik−1(z).

We deduce by recurrence, and using the fact that C\ [1,+∞) is a simply connected
domain, that all Lik(z) can be analytically continued to a holomorphic function on
C \ [1,+∞). For every k, this holomorphic function is called the principal branch
of the k-logarithm.

Monodromy. These functions are in fact multi-valued functions on C \ {0, 1}:
consider (X, x0) the universal cover of (C \ {0, 1}, 1

2 ). As a set, this is:

X =

{
homotopy classes of paths in C \ {0, 1} starting at

1

2

}
.

There is an action of G := π1(C \ {0, 1},
1
2 ) on X given by g · [c] = [α · c], for

g = [α] ∈ G, [c] ∈ X .
By a multi-valued function on C \ {0, 1} one means a holomorphic function on

X . Since − log(1− z) =
∫

γ
du

1−u for γ any path starting at 0 and with end point z,

Li1(z) is a multi-valued function on C \ {0, 1}. Again by the derivative relation,
for all k, Lik(z) is a multi-valued function on the same domain.

For [c] ∈ X with c a path ending at z, one writes Li
[c]
k (z) := Lik([c]).

To study the action of G on the values Li
[c]
k (z), it suffices to know the action of

the two generators of G, c0(t) := 1
2e

2πit and c1(t) := 1 + 1
2e

2πit.

Theorem 1 (Monodromy relations). Let z ∈ C \ {0, 1} and c any path from 1
2 to

z in C \ {0, 1}. Then, for all k ≥ 1,

(a) Li
[c0c]
k (z) = Li

[c]
k (z), Li

[c1c]
k (z) = Li

[c]
k (z)− 2πi (log

[c](z))k−1

(k−1)! .



2544 Oberwolfach Report 48/2004

(b) log[c0c](z) = log[c](z) + 2πi, log[c1c](z) = log[c](z).

One can express these monodromy relations using some matrices. We introduce,
for every integer n ≥ 0, the (n+ 1)× (n+ 1) matrix (indexed from 0 to n),

Ln =




1 0 0 · · · · · · 0
−Li1 1 0 · · · · · · 0
−Li2 log 1 · · · · · · 0

−Li3
log2

2 log 1 · · · 0
...

...
. . .

. . .
. . .

...

−Lin
logn−1

(n−1)! · · · log2

2 log 1




,

and we define An = Ln·τ(2πi), where τ(λ) = diag(1, λ, . . . , λn).

We write L
[c]
n (z) and A

[c]
n (z) for the value of these matrices at z relatively to a

path c with c(1) = z.
Consider the morphism ρn from G to GLn+1(Q) given by

ρn([c0]) = exp(e0),

ρn([c1]) = exp(e1),

e0 =




0 0 · · · · · · 0
0 0 · · · · · · 0

0 1
.. . 0

.

..
.
..

. . .
. . .

.

..
0 0 · · · 1 0



, e1 =




0 0 · · · · · · 0
1 0 · · · · · · 0

0 0
...

.

..
.
..

.

..
0 0 · · · · · · 0



.

Then, the monodromy relation is expressed by a matrix equality as:

Ag[c]
n (z) = A[c]

n (z)ρn(g), g ∈ G.

The functions Pk. We define some real analytic functions

Pk : C \ {0, 1} → ik−1R,

associated to the multi-valued functions Lik(z). They are introduced here as
entries of some matrices logTn(z).

Consider for any z ∈ C \ {0, 1}, the matrix

Tn(z) = A[c]
n (z)A

[c]
n (z)−1τ(−1),

where c is any path ending at z (since the image of ρ is real, Tn does not depend on
this choice). By the definitions above, Tn(z) is a unipotent lower triangular matrix
and hence, it is the exponential of a nilpotent lower triangular matrix logTn(z).

Moreover, since Tn(z) = τ(−1)Tn(z)−1τ(−1), logTn(z) = −τ(−1) logTn(z)τ(−1)
and therefore the entry (i, j) of the matrix logTn(z) is real if i − j is odd and
purely imaginary if i− j is even.
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After some computations, we obtain that

logTn(z) =




0 0 · · · · · · · · · 0
−2P1(z) 0 · · · · · · · · · 0

−2P2(z) log zz̄
. . .

...

−2P3(z) 0 log zz̄
. . .

..

.
...

...
. . .

. . .
. . .

...
−2Pn(z) 0 · · · 0 log zz̄ 0




with

Pk(z) =

{ ∑
0≤l<k

bl

l! logl(zz̄) Re(Li
[c]
k−l(z)) k odd,∑

0≤l<k
bl

l! logl(zz̄) Im(Li
[c]
k−l(z)) k even,

for c any path from 1
2 to z in C \ {0, 1}.

Observe that P2(z) = iD(z), where D(z) is the Bloch-Wigner dilogarithm.
If we define Pk(0) = Pk(∞) = 0 and Pk(1) = ζ(k), for k odd, and Pk(1) = 0

otherwise, each Pk is a continuous function on P1(C).

Functional equations. Restricting to the case k = 2, for every x, y ∈ P1(C),
(x, y) 6= (0, 0), (1, 1), (∞,∞), the following equation is satisfied:

P2

(
1− y−1

1− x−1

)
− P2

(
1− y

1− x

)
+ P2

(y
x

)
− P2(y) + P2(x) = 0.

If we define, for any four different points a, b, c, d in P1(C),

P̃2(a, b, c, d) := P2(r(a, b, c, d)),

(r(·) being the cross-ratio), the last equation can be rewritten as

5∑

i=1

(−1)iP̃2(a1, . . . , âi, . . . , a5) = 0,

for any a1, . . . , a5 distinct points in P1(C). Moreover this relation characterizes
D(z) (up to a scalar):

Theorem 2 (Bloch). The set of measurable functions f : P1(C)×
4
· · · ×P1(C)→ R

which are invariant under the diagonal action of PGL2(C) and satisfy the cocycle
condition

5∑

i=1

(−1)if(a1, . . . , âi, . . . , a5) = 0,

forms a one dimensional R-vector space generated by D(r(a1, . . . , a4)).

(See [Bl], theorem 7.4.4).
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The Bloch-Wigner Dilogarithm

Stefan Kühnlein

0. History and statement of the desired result
For an imaginary quadratic number field F with ring of integers OF , the group
SL2(OF ) acts on hyperbolic 3-space properly discontinuously, and the covolume
of this action is known to be

cov(SL2(OF )) =
|dF |

3/2

(2π)2
· ζF (2),

where ζF is the Dedekind zeta-function of F .
There are several approaches to this formula (cf. [EGM]):
• compute the covolume after some change of variables by counting binary her-
mitean forms over OF of bounded discriminant and using Dirichlet’s expanding
domains principle.
• use Eisenstein series for SL2(OF ).
• use the theory of Tamagawa numbers.

Hyperbolic volumes are related to higher polylogarithms (cf. talk number 6); in
our case the values of the dilogarithm should play a rôle. We will use the Bloch-
Wigner-dilogarithm D which is a real analytic function on C \ {0, 1}, defined on a
neighbourhood of 1

2 by

D(z) = =(Li2(z)) + log |z| · arg(1− z).

It satisfies the two equations

D(z) = −D(z), D(x) −D(y) +D(
y

x
)−D(

1− y

1− x
) +D(

1− y−1

1− x−1
) = 0.

The second (so-called 5-term-) relation can be motivated geometrically. The first
implies that D vanishes on the real line (where it can be prolonged to be a con-
tinuous function).
Now let F be any number field with ring of integers OF , discriminant dF , r1 real
and r2 complex places. Choose non-real embeddings σ1, . . . , σr2 from F to C (one
from every pair of complex conjugated embeddings).
The following is a special case of a conjecture of Don Zagier, proven by Sasha
Goncharov:
Theorem 0: The value ζF (2) of the Dedekind zeta-function can be expressed as

ζF (2) = π2(r1+r2)|dF |
−1/2 · det(A),

where A is an r2 × r2-matrix with entries

aij =
∑

k

qk,jD(σi(fk,j))

for some rational numbers qk,j and elements fk,j ∈ F.
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1. Preparation: the Borel-regulator
Let ΓN := SLN (OF ) ⊆ GN := SLN (F ⊗Q R) = SLN (R)r1 × SLN (C)r2 .
We define the primitive cohomology PH j(ΓN ,C) to be the quotient of Hj(ΓN ,C)
by the subspace generated by products of elements of lower degree. This is dual
to the primitive homology PHj(ΓN ,C), the orthogonal complement to the space
generated by products of cohomology classes of lower degree. (Similar definition
for other groups and other coefficient rings. . . )
Borel has shown that for fixed j ∈ N and large enough N we have

PHj(ΓN ,R) ∼= PHj(GN ,R),

and this has (by explicit calculation) dimension 0, if j is even, and dimension dm

if j = 2m− 1, where dm is the order of vanishing of ζF (s) at s = 1−m.
Note, that dm = r1 + r2, if m ≥ 3 is odd and dm = r2, if m ≥ 2 is even. This
comes from the functional equation of the Dedekind zeta-function.
PH2m−1(SUN ,Z · (2πi)m) is free of rank one. Choose a generator em of it. Using
the fact that the Cartan decompositions of slN and suN are closely related by

slN = soN ⊕ pN , suN = soN ⊕ ipN ,

we find (using van Est’s theorem) a canonical isomorphism

H2m−1(SUN ,R · (2πi)m) ∼= H2m−1
ct (SLN (C),R · (2πi)m−1).

On the right hand side we use continuous group cohomology; note the different
power of 2πi occuring there. This isomorphism sends em to an element

bm ∈ H
2m−1
ct (SLN (C),R · (2πi)m−1).

Let Σ be the set of all embeddings F −→ C. Then we get a map

Jm : PH2m−1(ΓN ,R) −→ maps(Σ,R · (2πi)m−1)

by sending κ ∈ PH2m−1(ΓN ,R) to the element

Jm(κ) = [Σ 3 σ 7→ 〈bm, σ∗(κ)〉],

where σ∗ is the map which is induced on homology by the embedding of ΓN into
SLN (C) via σ. Jm is injective with image the set of invariants under complex

conjugation which acts on maps(Σ,R · (2πi)m−1) by (f)(σ) := (f(σ)) (this is the
statement proving the dimension of the primitive homology space). Therefore we
view Jm as an isomorphism

Jm : PH2m−1(ΓN ,R) −→ maps(Σ,R · (2πi)m−1)+ ∼= (R · (2πi)m−1)dm .

Both sides have a natural Q-structure, and one considers the regulator of Jm, which
by definition is the determinant of the image of a Q-basis of PH2m−1(ΓN ,Q) in
terms of a Q-basis of (Q · (2πi)m−1)dm .
The following theorem is due to Borel (cf. [Bo1] and [Bo2] – this is worth to be
read anyway). Its proof relies heavily on the theory of Tamagawa numbers.
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Theorem 1: Up to a non-zero rational factor, the regulator of Jm is

d
1/2
F (πi)−(r1+2r2)·mζF (m).

2. Towards Theorem 0
Using Theorem 1 for m = 2, one can deduce Theorem 0.
2a First approach
Hidden in our remarks above there is an isomorphism (for N ≥ 2)

H3
ct(SLN (C),R) ∼= H3

ct(SL2(C),R).

We now use the Bloch-Wigner dilogarithm in order to construct a cocycle in the
class of b2. To that end, let a ∈ P1(Q). For most choices of 4 elements g0, . . . , g3 ∈
SL2(C) the value

κ(g0, . . . , g3) := D(cross ratio(g0a, g1a, g2a, g3a))

is defined. When everything is defined, the (homogeneous) 3-cocycle condition

4∑

j=0

(−1)jκ(g0, . . . , ĝj , . . . , g4) = 0

holds. This comes from the 5-term-relation satisfied by D: use the GL2-invariance
of the cross ratio in order to replace g0a, . . . , g4a by 0, 1,∞, x, y respectively.
κ is measurable and bounded, and therefore (using a result of P. Blanc) defines a
continuous cohomology class in H3

ct(SL2(C),R). One can check that iκ represents
b2, and on inserting it in the definition of J2 and evaluating it on a Q-basis of
PH3(ΓN ,Q) gets Theorem 0 by comparison with Theorem 1.
2b Second approach
For every σ ∈ Σ, the map i · (D ◦ σ) defines a homomorphism on the free abelian
group Z[F \ {0, 1}] with values in R · (2πi). Inside the kernel of this map (due to
the 5-term relation) sits the subgroup R generated by the expressions

[x]− [y] + [
y

x
]− [

1− y

1− x
] + [

1− y−1

1− x−1
], x, y ∈ F \ {0, 1}.

Let B2(F ) be the kernel of the (well defined!) map

Z[F \ {0, 1}]/R −→

2∧
F×, [x] 7→ x ∧ (1− x).

The image of (i · (D ◦ σ))σ∈Σ : B2(F ) −→ maps(Σ,R · (2πi)) sits inside the
invariants under the action of complex conjugation mentioned above (due to
the first relation satisfied by D). Bloch and Suslin construct an isomorphism
B2(F ) ∼= K3(F ). Moreover, following Milnor, Moore and the localisation exact
sequence for K-theory,

K3(F )⊗Q ∼= K3(OF )⊗Q ∼= PH3(ΓN ,Q).

It can be shown that this last isomorphism composed with J2 coincides with the
Bloch-Suslin map composed with (i · (D ◦ σ))σ∈Σ. Therefore the image of J2 is
spanned by elements of the form needed for a proof of Theorem 0.
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Interpretation in terms of mixed variations of Hodge structure

Manuel Breuning

In this talk we first recall the definition and some properties of a (variation of)
mixed Hodge structure. We then define the variation of mixed Hodge structure

pol (N) on P1 \ {0, 1,∞} which encodes the function theory of the functions Li k.
The main reference for this talk is [BD2, §1].

Mixed Hodge structures. Let F = Q or R. Recall that for an integer k
one defines an F-Hodge structure of weight k to be a finite-dimensional F-vector
space with a finite decreasing filtration F • of VC = V ⊗F C (the Hodge filtration)

which satisfies VC = F pVC⊕F k−p+1VC for all p. A mixed Hodge structure defined
over F (abbreviated F-MHS) consists of a finite-dimensional F-vector space V
together with a finite increasing filtration W• of V (the weight filtration) and a
finite decreasing filtration F • of VC (the Hodge filtration), such that for every

k ∈ Z the weight graded quotient GrW
k V is an F-Hodge structure of weight k with

respect to the filtration induced by F •. A morphism of F-MHSs (V,W•, F
•) →

(V ′,W ′
•, F

′•) is an F-linear map V → V ′ which is compatible with weight and
Hodge filtrations. The category of F-MHSs is abelian.

Tate objects. For k ∈ Z one defines the Tate object F(k) to be the F-MHS
given by V = F · (2πi)k ⊂ C = VC with weight filtration WlV = 0 for l < −2k and
WlV = V for l ≥ −2k, and Hodge filtration F pVC = VC for p ≤ −k and F pVC = 0
for p > −k. There exists a natural notion of tensor product of F-MHSs, and if
V is any F-MHS we write V (k) for V ⊗ F(k). We also note that for k ≥ 1 there
exists an isomorphism

C/(2πi)kQ ∼= Ext1(Q(0),Q(k))

where Ext1 denotes the group of equivalence classes of 1-extensions in the category
of Q-MHSs.

Variations of mixed Hodge structure. Let X be a complex manifold.
A variation of MHS defined over F (abbreviated F-VMHS) on X consists of a
local system V of F-vector spaces on X , an increasing filtration W• of V by local
subsystems, and a decreasing filtration F • of VO = V ⊗F OX by holomorphic
subbundles, such that under the natural connection ∇ : VO → Ω1

X ⊗OX
VO one

has ∇F pVO ⊆ Ω1
X ⊗OX

F p−1VO for all p (Griffiths’ transversality), and at each
point x ∈ X the fibre Vx is an F-MHS with respect to the induced filtrations. A
VMHS is called graded-polarizable if for each k ∈ Z there exists a ‘nice’ bilinear
form on GrW

k V , and admissible if it satisfies certain conditions ‘on the boundary
of X ’. See [Ha3, §7] for more details in the case of curves.

Let S be a smooth variety over C. For every integer k we consider Q(k) as a
(constant) Q-VMHS on the complex manifold S(C). There is a canonical map

O∗(S)→ Ext1S(C)(Q(0),Q(1)), f 7→ [f ],

where Ext1S(C) denotes equivalence classes of 1-extensions in the category of Q-

VMHSs on S(C). The Q-VMHS [f ] is graded-polarizable and admissible.
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The variation pol (N). Let N be a positive integer. Recall that (using the
functions Lik) a matrix AN of multi-valued functions on C \ {0, 1} was defined
in the first talk. The rows and columns of this matrix are indexed by the set

[0, N ] = {0, 1, . . . , N}. Using the matrix AN we now define a Q-VMHS pol (N) on
P1 \ {0, 1,∞} as follows. The holomorphic vector bundle is VO = O[0,N ] and the
local system is V = AN (z)Q[0,N ] ⊂ VO (this is well-defined by the monodromy
properties of AN (z)). The weight filtration is given by WlV = 0 for l < −2N ,
W−2lV = W−2l+1V = AN (z)Q[l,N ] for 0 < l ≤ N , and WlV = V for l ≥ 0. The
Hodge filtration is F pVO = VO for p ≤ −N , F−pVO = O[0,p] for 0 ≤ p < N , and
F pVO = 0 for p > 0. It is easy to check that for each x ∈ P1 \ {0, 1,∞} the fibre
Vx is a Q-MHS. From the equation d

dzAN (z) = ( e0

z + e1

z−1 )AN (z) where e0 and
e1 are the matrices from the first talk one deduces that the natural connection
∇ : VO → Ω1⊗VO is given by ∇f = df− ( dz

z e0 + dz
z−1e1)f . This implies ∇F pVO ⊆

Ω1⊗F p−1VO. The Q-VMHS pol (N) is graded-polarizable and admissible (see [Ha3,
Theorem 7.1]).

Properties of pol(N). If N ≤M then the projection O[0,M ] → O[0,N ] induces

a morphism pol (M) → pol (N). The projective system pol = (pol (N))N is called the

‘classical polylogarithm’. We note the following properties of pol (N).

(1) pol (N) = pol (M)/W−2N−2pol
(M) for N ≤M .

(2) GrW
−2kpol

(N) = Q(k) for 0 ≤ k ≤ N .

(3) pol (1) = [1− z] as extension of Q(0) by Q(1).

(4) There is a canonical isomorphism W−2pol
(N) ∼= SymN−1([z])(1). The map

GrWW−2pol
(N) ∼=
−→
⊕N

k=1 Q(k) induced by (2) corresponds to

GrW SymN−1([z])(1) = SymN−1GrW ([z])(1)

= SymN−1
(
Q(0)⊕Q(1)

)
(1) =

N⊕

k=1

Q(k)
(N−k)! on Q(k)
−−−−−−−−−−→

N⊕

k=1

Q(k).

The transition maps of the projective system W−2pol
(N) correspond to the

derivation of degree −1 of Sym∗([z]) which on Sym1([z]) is the projection
Sym1([z]) = [z]→ Q(0) = Sym0([z]).

The functions Pk. The single-valued functions Pk introduced in talk 1 appear
naturally in this context. Denote the diagonal matrix diag(1, λ, . . . , λN ) by τ(λ),
and the Lie algebra generated by the matrices e0 and e1 by 〈e0, e1〉. Passing

from the Q-VMHS pol (N) to an R-VMHS gives the R-local system AN (z)R[0,N ] ⊂
O[0,N ] which clearly depends only on the image of AN (z) in GLN+1(C)/GLN+1(R).
For this image there exists a canonical representative. Indeed, for every z ∈
C \ {0, 1} there exists a unique matrix M(z) ∈ exp(〈e0, e1〉) satisfying M(z) =

τ(−1)M(z)
−1
τ(−1) and AN (z) = M(z)τ(2πi) in GLN+1(C)/GLN+1(R). The

first column of the matrix − log(M(z)) is (0, P1(z), . . . , PN (z)).
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Mixed Hodge structure on π1

Gabriel Herz and Gereon Quick

We report on Hain’s work [Ha1] in which he gives an elementary construction of
a mixed Hodge structure on the completed fundamental group of a smooth quasi-
projective algebraic C-Variety using iterated integrals. A detailed explanation of
iterated integrals and mixed Hodge structure is also given in [SP].
Given a smooth manifold M an iterated integral (of length s) is a linear combi-
nation of integrals of the form

∫
ω1ω2 · · ·ωr (with r ≤ s) viewed as an R-valued

function on the set of piecewise smooth paths on M where each ωj ∈ A
1(M) is

a smooth 1-form on M . We extend the function determined by I by linearity to
1-chains on M and denote the value of an iterated integral I evaluated at a 1-chain
α on M by < I, α >∈ R. The starting point for the construction of the mixed
Hodge structure is a theorem of Chen and the observation that there are obvious
filtrations on the vector space of iterated integrals given by the length of integrals.
Let J be the augmentation ideal of the group ring ZG with G := π1(M,x). In the
proof Hain assumes G to be finitely generated. To relate iterated integrals to the

completed fundamental group-ring ẐG Hain gives an elementary proof of a special
case of a theorem by Chen (the original statement and the proof are in [Ch1, thm.
2.1.1], but also compare to [Ch2, 2.6 cor. 1]). Hain proves the isomorphy

φ : H0(Bs(M), x)→ HomZ(ZG/Js+1,R)

where the left hand side denotes the vector space of iterated integrals of length s
which depend only on the homotopy class of a loop based at x. This theorem holds
more generally if one replaces Bs(M) by Bs(A

′), where A′ is a quasi-isomorphic
differential graded subalgebra of A, and Bs(A

′) denotes the iterated integrals with
differentials in A′.
Hain gives a more elementary proof of this theorem using the relation of iterated
integrals and smooth connections on a trivial bundle V ×M . Such a connection
determines and is determined by a connection-1-form ω ∈ A1(M)⊗ End(V ). Via
the well-known construction of parallel transport on a manifold along a connection
one gets an R-valued transport function T on piecewise smooth paths on M . Via
basic facts on differential equations one can show that T is a converging series of
iterated integrals

T = Id +

∫
ω +

∫
ωω +

∫
ωωω + . . .

If the connection 1-form ω lies in a nilpotent subalgebra of A1(M)⊗End(V ) this
function is in fact an iterated integral, since the series stops. This construction is
the crucial idea for Hain’s proof of the surjectivity assertion in Chen’s theorem.
One constructs the flat vector bundle E := V ×G M̃ , where V := RG/Js+1, M̃
is the universal covering space of M and G acts on V by right multiplication. E
has a canonical flat connection and is trivial as a smooth bundle. The induced
connection form ω on the trivial bundle satisfies ωs+1 = 0. It follows that its
associated transport functional T is an element in V ⊗H0(Bs(M), x) and for an
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element γ ∈ G the endomorphism T (γ) agrees with right multiplication by γ on
the algebra V . So one has the map

V̂
T
−→ H0(Bs(M), x)

φ
−→ V̂

whose dual is the identity. So φ is surjective. The injectivity is clear.
In order to put a mixed Hodge structure on the truncated fundamental group,
Hain uses Chen’s Theorem, puts filtrations on a certain space of iterated integrals
and proves that these give rise to a mixed Hodge structure on the truncated π1.
Given a smooth, quasi-projective algebraic C-variety X , we write G := π1(X, x)
for its fundamental group. Then Hain proves that

(1) ZG/Js+1 has a mixed Hodge structure for all s ≥ 1,
(2) the mixed Hodge structure is natural with respect to pointed morphisms

of varieties and
(3) the pointed map ZG/Js+1 → ZG/J t+1, (t ≤ s) is a morphism of mixed

Hodge structures.

The statement is true without assuming X smooth or quasi-projective (cf. [Ha2,
thm. 6.3.1]). The more elementary proof in [Ha1] proceeds as follows: Because of
X being smooth and quasi-projective it exists a smooth and projective completion
X̄ of X . Let D := X̄ −X . D is a divisor with normal crossings. Let A < D >
be the differential graded algebra of smooth forms with logarithmic singularities
along D. It is quasi-isomorphic to A.
The Hodge and weight filtrations on A < D > are:

F pA < D >= {forms with ≥ p many dz’s},

WlA < D >= {forms with ≤ l many dz
z ’s}.

This gives filtrations on Bs(A < D >) as follows:

F pBs(A < D >) :=

〈∫
ω1 · · ·ωr ∈ Bs(A < D >)

∣∣∣∣
wj ∈ F

pjA < D >,∑s
j=1 pj ≥ p

〉

and

W lBs(A < D >) :=

〈∫
ω1 · · ·ωr ∈ Bs(A < D >)

∣∣∣∣
wj ∈WljA < D >,∑s

j=1 lj + r ≤ l

〉
.

This induces filtrations on H0(Bs(A < D >), x) which we call HBs for short.
Now the aim is to prove that these filtrations define a mixed Hodge structure
on HBs. Hain proceeds by induction on s. For s = 1 exists an isomorphism
C⊕H1(X,C) ∼= HB1. So HB1 carries a mixed Hodge structure. For the induction
step one uses the short exact sequence

0−→HBs−1−→HBs
p
−→ imp−→ 0,

where imp ⊂ H1(X,C)⊗s, and

p : H0(Bs(X), x)−→H1(X,C)⊗s
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maps
∫
ω1 · · ·ωs to the function

⊗s
i=1H1(X,C)→ C, ⊗s

i=1ai 7→

〈∫
ω1 · · ·ωs,

s∏

j=1

(aj − 1)

〉
.

By the aid of Eilenberg-Moore spectral sequence one can prove, that imp is defined
over Q and that it is a sub-mixed Hodge structure on H1(X, x)⊗s (for details see
[Ha2]). Then the middle term HBs carries a mixed Hodge structure by [GS, 1.16].
In the case X projective or W1H

1(X) = 0 (as in the case of P1 − {0, 1,∞}) this
step can also be done elementary. Since in this case the image of p is the kernel
of the map

s−1∑

i=1

ci : H1(X,C)⊗s−→

s−1∑

i=1

H1(X,C)⊗i ⊗H2(X,C)⊗H1(X,C)⊗
s−1−i

where
ci(⊗

s
i=1zi) = ⊗i

j=1zj ⊗ (zi ∧ zi+1)⊗
s
j=i+2 zj .

Mixed structure on the fundamental group of the projective line
minus three points

Mathias Lederer

The talk is divided into two parts. In the first part, we give an explicit descrip-
tion of the machinery developed in the previous talk, for the special case where
X = P1 − {0, 1,∞}. In the second part we give an introduction to the motivic
fundamental group as defined by Deligne in [De], in particular the Hodge and
weight filtration on the de Rham realisation.

For the first part, set X = P1 − {0, 1,∞}, X = P1. Fix some x ∈ X . We want
to study the group ring Cπ1(X, x), more precisely its completion

Cπ1(X, x)̂ = lim
←−

Cπ1(X, x)/J
N ,

where J is the augmentation ideal of Cπ1(X, x). We first define the Hodge filtration
on Cπ1(X, x)̂ following [Ha3] and then see how this fits into the picture of the
previous talk. Set Ω1(X) = H0(X,Ω1

X
(logD)), i.e. Ω1(X) = 〈ω0, ω1〉, where

ω0 = dz
z and ω1 = dz

1−z . Consider the algebra A = ⊕n≥0Ω
1(X)⊗(−n) and its ideal

I = ⊕n≥1Ω
1(X)⊗(−n). Set

Â= lim
←−

A/IN .

We will construct an isomorphism

θx : Cπ1(X, x)̂
∼
−→ A .̂

Let ω ∈ Ω1(X)⊗Ω1(X)∗ be the element corresponding to the identity on Ω1(X).
Then ω is integrable, i.e. dω + ω ∧ ω = 0, thus the iterated integral 1 +

∫
ω +∫

ωω+ . . . depends only on the homotopy class of the closed path involved. Thus
since

∫
αβ
w1 . . . wr =

∑r
j=0

∫
α
w1 . . . wj

∫
β
wj+1 . . . wr, the iterated integral defines
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a homomorphism from π1(X, x) to the group of units in A .̂ This extends to an
algebra homomorphism Cπ1(X, x)→ A ,̂ under which J is mapped to I . Hence this
extends to a continuous algebra homomorphism θx as above. It remains to show
that θx is an isomorphism. Clearly θx induces a homomorphism on the graded
rings of Cπ1(X, x)̂ and A .̂ The 0-th graded parts of these are both C. The 1-st

graded parts are J/J2 on the left and I/I2 on the right. We have J/J2 ∼
−→ H1(X)

(homology is the abelianised fundamental group) and H1(X)
∼
−→ I/I2 (since the

latter is isomorphic to Ω1(X)∗). The composition of these two isomorphisms is
indeed induced by θx. Now the 1-st graded parts of the graded rings generate the
graded rings as C-algebras. Therefrom follows that θx induces a surjection on the
graded rings, hence also θx is surjective. For the injectivity, we use the observation
that the graded ring of Â is a (noncommutative) polynomial ring in 2 variables
Y0, Y1, say. Take X0, X1 in Cπ1(X, x)̂ mapping to Y0, Y1 under θx. Therefrom
one constructs a mapping g : Â→ Cπ1(X, x)̂ (take Y0, Y1 back to X0, X1). Then
θx ◦ g is clearly the identity, hence g is injective. The surjectivity of g is proved as
the surjectivity of θx, thus θx = g−1.
A is graded with A1 = Ω1(X)∗ of Hodge type (−1,−1). Thus it is reasonable to

define the Hodge and weight filtrations F−pA = ⊕n≤pAn and W−m = ⊕n≥m/2An

and transfer them to the truncated parts Cπ1(X, x)/J
N of Cπ1(X, x)̂ via the iso-

morphism θx : Cπ1(X, x)/J
N ∼
−→ A/IN . It follows that Cπ1(X, x)̂ = C〈〈X0, X1〉〉,

the noncommutative power series in 2 variables. The weight graduation on the
truncated parts yields

GrW
m (Cπ1(X, x)/J

N ) =

{
Jr/Jr+1 if m = −2r, 0 ≤ r ≤ N

0 else,

and the Hodge filtration on these is

F−r(Jr/Jr+1) = Jr/Jr+1, F−r+1(Jr/Jr+1) = 0 for 0 ≤ r < N .

Compare this to the filtrations of the previous talk, which were defined on the
space H0(BN−1(X), x), which was defined to be the C-span of all

∫
w1 . . . wr ,

where r ≤ N − 1, every wj is a C∞-form, and the integral is homotopy invari-
ant. By Chen (and is in fact easy to see in our case here), this is isomorphic to
(Cπ1(X, x)/J

N )∗ = ⊕n≤−1Ω
1(X)⊗n.

In the second part of the talk, let us consider a more general setting (as Deligne
did in [De]): Let k be a number field, U in Spec(Ok) open, and étale over Spec(Z),
XU proper and smooth over U , DU a divisor on XU with normal crossings, XU =
XU − DU . Further, let X, D, XU be the general fibres of XU , DU , XU , and
fix some x ∈ XU (U), i.e. x ∈ XU (k) with good reduction in U . We will assume
throughout that H0(X,OX) = k and H1(X,OX) = 0.

We use the following notation: If Γ is a group and ZN+1 the (N+1)-st group in
its descending central series, define Γ(N) = Γ/ZN+1 and Γ[N ] to be Γ(N) modulo
torsion. (We use the same notation also for Lie algebras instead of groups.) The

goal is to construct π1(X, x)
(N)
mot for all N , then the motivic fundamental group is

π1(X, x)mot = lim
←−

π1(X, x)
(N)
mot. This is going to be a prounipotent group scheme
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in the tannakian category of realisations over U . Let us describe the various

realisations (except for the crystalline realisation) of π1(X, x)
(N)
mot.

For the Betti realisation, fix an embedding σ : k ↪→ C. Then the Betti re-

alisation of π1(X, x)
(N)
mot is π1(X, x)

(N)
σ = π1(X(C), x)[N ] alg un. Here we use the

unipotent algebraic hull of a group Γ, which is defined as follows: The functor
“forget the Γ-action” from the category of nilpotent finite dimensional representa-
tions of Γ over C is a fibre functor, and its (tensor) automorphism group is Γalg un.
This is a prounipotent algebraic group.

For the ` adic realisation, let k be an algebraic closure of k. Compute the alge-
braic fundamental group π̂1(Xk, x) (which is isomorphic to the profinite completion

of π1(X(C), x)), consider π̂1(Xk, x)
[N ] (which is isomorphic to the profinite com-

pletion of π1(X(C), x)[N ]), and decompose this group into a product of `-adic Lie

groups, indexed by primes `. The `-adic realisation of π1(X, x)
(N)
mot is π̂1(Xk, x)

[N ]
` .

The group Gal(k|k) acts not only on the whole algebraic fundamental group but

also on each π̂1(Xk, x)
[N ]
` .

For the de Rham realisation, let Vecnil be the category of vector bundles with
nilpotent connection on X , i.e. successive extensions of (O, d). Every such bundle
V has a canonical extension to X , call it Vcan. This process is compatible with ⊗,
and by our hypothesis on H1, Vcan is a trivial bundle. There is an equivalence of
categories between the category of trivial vector bundles over X and the category
V eck, given by W 7→ H0(X,W). Its inverse is W 7→ W ⊗ OX . By composition
with the above, we get a fibre functor

FDR : Vecnil → V eck : V 7→ H0(X,Vcan) .

Let π1(X)DR be its (tensor) automorphism group. The goal is to define filtrations
thereon.

Let V be a k-vector space and ∇ = d + ω a connection on V ⊗ OX . Thus

ω lives in H0(X,Ω1(logD)) ⊗ End(V ), and ∇ is integrable iff dω + 1
2 [ω, ω] = 0,

thus iff [ω, ω] = 0, where [ , ] is defined by [α ⊗ u, β ⊗ v] = α ∧ β ⊗ [u, v]. The

same formula defines [ , ]∼ on
∧2

H0(X,Ω1(logD)) ⊗ End(V ). Let K be the

kernel of
∧2

H0(X,Ω1(logD)) → H0(X,Ω2(logD)). Then ∇ is integrable iff
[ω, ω]∼ ∈ K ⊗ End(V ). Set H = H0(X,Ω1(logD))∗ (the dual), and let φ : H →
End(V) correspond to ω. Define Lib(H) to be the free Lie algebra on the vector

space V . This is graded, with Lib(H)1 = H , Lib(H)2 =
∧2

H etc. Let K⊥ ⊂∧2
H be orthogonal to K with respect to [ , ]∼. φ corresponds to a Lie algebra

homomorphism ρ : Lib(H) → End(V ), and ∇ is integrable iff ρ(K⊥) = 0. Hence
the datum of ∇ is equivalent to the datum of an L(H,K⊥) = Lib(H)/(K⊥)-action
on V . Applying this to V ∈ Vecnil and the corresponding V = H0(X,Vcan), we
conclude that F induces an equivalence of categories between Vecnil the category
of nilpotent representations of L(H,K⊥).
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The algebras Lib(H) and (K⊥) are graded, hence also L(H,K⊥) is graded, and
in the central series, we have ZN+1 = ⊕n≥N+1L(H,K⊥)n. A nilpotent represen-

tation of L(H,K⊥) factors through some L(H,K⊥)(N), which is a nilpotent Lie al-
gebra. By integration, one gets a representation of the corresponding unipotent al-
gebraic group. Therefrom follows: π1(X)DR = lim

←−
G(N), where G(N) is the unique

unipotent algebraic group with Lie(G(N)) = L(H,K⊥)(N). Let us define the Hodge
and weight filtrations on the level of the Lie algebras: F−nL(H,K⊥)(N) is the sum
of all components of degree ≤ n, and W−2nL(H,K⊥)(N) = W−2n+1L(H,K⊥)(N)

is the sum of all components of degree ≥ n. This is the same as the (n + 1)-st
algebra in the central series of L(H,K⊥)(N). One defines the weight filtration in
the same way also in the other realisations: Go over to the Lie algebra and take
the (n+ 1)-st algebra in the central series.

Finally, we compare the connection between the first and the second part of
the talk. Cπ1(X, x)/J

N is a Hopf algebra with comultiplication ∆g = g ⊗ g for
all g ∈ π1(X, x). The Malcev Lie algebra [γ, δ] = γδ − δγ is the subset gN of
Cπ1(X, x)/J

N consisting of all elements such that ∆γ = γ ⊗ 1 + 1 ⊗ γ. The
multiplication on gN is given by [γ, δ] = γδ−δγ; this makes gN indeed a nilpotent
Lie algebra, hence we can integrate it and get a unipotent algebraic group GN . It
turns out that lim

←−
GN = π1(X(C), x)alg un. But mind that GN and G(N) do not

coincide, just the limits do.

Volumes of hyperbolic manifolds

Thilo Kuessner

The aim of this talk was to show that odd-dimensional hyperbolic manifolds M
of finite volume give rise to nontrivial classes in the algebraic K-theory of number
fields, by the following theorem of Goncharov, which is the main result of [Go5].

Theorem 1. : To each compact hyperbolic manifold of odd dimension n, there
exists an element

γ (M) ∈ Kn

(
Q
)
⊗Q

such that the Borel regulator rn : Kn

(
Q
)
⊗Q→ R maps

rn (γ (M)) = vol (M) .

There are two constructions of γ (M), a homological and a Hodge-theoretic one.
We discussed in our talk the homological construction ([Go5], section 2), which

uses the description of Kn

(
Q
)
⊗ Q as the subspace of indecomposable elements

in Hn

(
GL

(
Q
)
; Q
)

(see [Sr], p.29), and of the Borel regulator rn as being defined
by pairing with the Borel class bn ∈ H

n
c (GL (C) ; Q). (H∗

c denotes the continuous
cohomology. It is known that H∗

c (GL (N ; C) ; Q) ∼= H∗ (U (N) ; Q) and b2m−1 is
defined to be the pull-back of the fundamental class

[
S2m−1

]
∈ H2m−1

(
S2m−1

)

under the canonical map U (m)→ S2m−1.)
Each closed hyperbolic manifold M = Γ\Hn gives rise, using an embedding

j : Γ → SO
(
n, 1; Q

)
, to a class j∗ [M ] ∈ Hn

(
SO

(
n, 1; Q

))
. In the case n = 3
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one can use the isomorphism SO (n, 1; R) ∼= PSL (2,C) to make j∗ [M ] a class
in the homology of GL and hence in K-theory. In general, however, the con-
struction is more complicated: one uses the isomorphism Hn

(
SO

(
n, 1; Q

))
∼=

Hn

(
Spin

(
n, 1; Q

))
and constructs the homology class as s+∗j∗ [M ], where s+ :

Spin (n, 1)→ GL (N,C) is the spin representation (for n odd and N = 2
n+1
2 +1).

We now explain the proof of Theorem 1 in some detail.
Recall that a manifold Mn is called hyperbolic if it is diffeomorphic to Γ\Hn,
for Γ < SO (n, 1) discrete and torsionfree. If Γ\Hn has finite volume, then Γ
can be conjugated to be a subgroup of SO

(
n, 1; Q

)
(Weil). There is a canonical

identification H∗ (M) ∼= H∗ (Γ). In particular, if Mn is compact and orientable,
then the fundamental class [M ] ∈ Hn (M) corresponds to a class in Hn (Γ).

One can define a continuous n-cocycle on Isom+ (Hn) = SO (n, 1) by sending
each (g0, . . . , gn) to the volume of the geodesic simplex with vertices g0x, . . . , gnx,
for a fixed x ∈ Hn. (The cocycle property follows from the additivity of volume.)
Its cohomology class is called the Lobachevsky class vn ∈ Hn

c (SO (n, 1)). The
proof of Theorem 1 will follow from Lemma 1 and Lemma 2.

Lemma 1. : If M is a compact, orientable, hyperbolic n-manifold, then
< vn, j∗ [M ] >= vol (M) for the inclusion j : Γ→ SO (n, 1).

Proof: There exists a triangulation of M by geodesic simplices σ1, . . . , σr,
such that all vertices of all σi are in x0 ∈M . We have that [M ] is represented by
σ1 + . . .+σr. Moreover, each σi has n+1 edges which are closed loops and thus can
be considered as an n+1-tuple of elements of Γ = π1 (M,x0). Hence, we get an
element j∗σi in the bar resolutions of Γ resp. SO (n, 1). (According to Eilenberg-
McLane, this map defines the isomorphism Hn (M) → Hn (Γ).) From the defini-
tion of the Lobachevsky class we have < vn, j∗ (σi) >= vol (σi), since the geodesic
simplex with vertices g0x̃0, g1x̃0, . . . , gnx̃0, where g0, . . . , gn ∈ π1 (M,x0) are rep-

resented by the edges of σi, is a lift of σi to M̃ = Hn. Hence < vn, j∗ ([M ]) >=
vol (σ1) + . . .+ vol (σr) = vol (M) . 2

Using the spin representation s+ : Spin (n, 1)→ GL (N ; C), one can relate the
Lobachevsky class to the Borel class.

Lemma 2. : s∗+bn = cnvn ∈ H
n
c (SO (n, 1)) with cn 6= 0.

Now one defines γ (M) := 1
cn
s+∗j∗ [M ] and gets

rn (γ (M)) =
1

cn
< bn, s+∗j∗ [M ] >= vol (M) .

This proves Theorem 1. (For noncompact hyperbolic manifolds of finite volume,
the proof becomes more involved because one has to work with the relative fun-
damental class.) 2
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The second (Hodge-theoretic) construction, which we did not have the time to
discuss, uses a motivic interpretation of the scissors congruence groups. It as-
sociates to each simplex a mixed Hodge-Tate structure such that the volume of
the simplex is the period of a certain framing. The Dehn-invariant, considered
as a coproduct on the scissors congruence group, corresponds to the well-known
coproduct ν̃ on the Hopf algebra of all framed mixed Hodge-Tate structures. A
hyperbolic manifold gives an element in the scissors congruence group, which is in
the kernel of the Dehn-invariant. Hence the corresponding Hodge-Tate structure
is in the kernel of ν̃. But, according to Beilinson, ker (ν̃) ∼= K∗

(
Q
)
⊗ Q and the

period (i.e. the volume) corresponds to the Borel regulator. ([Go5], section 3)

Finally, we explain how Theorem 1 connects hyperbolic volume to polylogarithms.
Zagier’s conjecture states that K2n−1 (F ) ⊗ Q is isomorphic to the Bloch

group Bn (F ) and that, under this isomorphism, the Borel regulator
r2n−1 : K2n−1 (F ) ⊗ Q → R corresponds to the single-valued polylogarithm
Pn : Bn (F )→ R.

In view of Theorem 1, Zagier’s conjecture would imply that volumes of odd-
dimensional hyperbolic manifolds are related to polylogarithms as follows.

Conjecture 1. : Let M2n−1 be a 2n-1-dimensional hyperbolic manifold of finite
volume. Then

vol (M) =
∑

i

Pn (zi)

for some zi ∈ Q with δn (
∑

i zi) = 0 ∈ Bn−1

(
Q
)
⊗Q

∗
.

Conjecture 1 is well-known in the case of 3-manifolds. Indeed, if ∆ is an ideal
geodesic simplex in H3 with vertices v0, v1, v2, v3 ∈ ∂∞H3 = CP 1, then vol (∆) =
P2 (r (v0, v1, v2, v3)), where r denotes the cross ratio. Assuming an ideal geodesic
triangulation on M , this gives the first equality of conjecture 1. The second
equality is true because δ2 (zi) factors over the Dehn invariant D3 of the geodesic
simplex with vertices∞, 0, 1, zi. (Precisely, if we define a map λ : R⊗R/πZ→ Λ2C

by λ (r ⊗ θ) = er ∧ eiθ, then δ2 ∼ λD3.) If we have a geodesic triangulation of
the closed manifold M , then the angles around any edge add up to 2π, hence the
Dehn invariants add up to 0. This implies

∑
i δ2 (zi) = 0.

Conjecture 1 is also known in the case of 5-manifolds, which follows from the
results in [Go3].
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Analytic torsion

Christopher Deninger

The aim of the lecture was to explain the higher analytic torsion forms of Bismut
and Lott [Bi-Lo] and to prove that for S1-bundles these can be expressed in terms
of higher polylogarithms.

1 Consider a smooth fibre bundle π : M → B with compact connected fibres
Zb = π−1(b). For simplicity assume that the vertical tangent bundle TZ is ori-
ented. For a flat vector bundle F onM with a Hermitian metric hF let Hp(Z, F |Z)
be the flat vector bundle on B corresponding to Rpπ∗F . The Riemann–Roch–
Grothendieck theorem for smooth submersions is the following assertion:

Theorem 1 ([Bi-Lo]). For every odd k ≥ 1 we have an equality
∑

p

(−1)pck(Hp(Z, F |Z)) =

∫

Z

e(TZ)ck(F ) in Hk(B,R) .

Here the ck are the characteristic classes of Kamber and Tondeur for flat bun-
dles. They have a “Chern–Weil” type description as cohomology classes of certain
closed forms ck(F, hF ) and ck(Hp(Z, F |Z), hp) where hp is an induced Hermitian
metric on Hp(Z, F |Z).

Now let us fix a connection on M
π
−→ B, i.e. a horizontal complement THM in

TM to TZ and a Riemannian metric gTZ on TZ. They induce a connection O
TZ

on TZ and the metrics hp mentioned above.
Bismut and Lott construct (k − 1)-forms Tk−1 = Tk−1(T

HM, gTZ , hF ) in
Ak−1(B), the higher torsion forms, and prove the following result which implies
theorem 1:

Theorem 2 ([Bi-Lo]). In Ak(B) we have

dTk−1 =

∫

Z

e(TZ,OTZ)ck(F, hF )−
∑

p

(−1)pck(Hp(Z, F |Z), hp) .

For k = 1 they also prove that T0(b) is the Ray–Singer analytic torsion of the
hZb -Laplacian ∆

•

Zb
corresponding to the de Rham complex of Zb twisted by F |Zb

T0(b) =
1

2

∑

p

(−1)pp log det′∆p
Zb
.

This explains the name “higher analytic torsion forms” for the Tk−1.

2 Let W be the infinite dimensional bundle over B whose sheaf of sections is
π∗(ΛT

∗Z ⊗ F ), i.e. Wb = A(Zb, F |Zb
). Using the natural isomorphism

A(M,F ) ∼= A(B,W )

the connection dM on A(M,F ) becomes a superconnection dM on A(B,W ) with
respect to the total Z/2-grading of A(B,W ). It decomposes into three terms

dM = dZ + O
W + iT
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according to the Z-grading of A(B,W ) coming from the one on Λ
•

T ∗Z. Here
d0

M = dZ is the exterior derivative along the fibres, d1
M = O

M , for a vector field U
on B is the Lie derivative with respect to the horizontal lift UH of U and iT (U,U ′)

is interior multiplication by T (U,U ′) = −prTZ [UH , U
′H ].

3 The metrics gTZ and hF give a (L2−)metric hW on W . For t > 0 consider
the rescaled flat superconnection

C ′
t = tN/2dM t−N/2

where N is the number operator, i.e. N = p in degree p. Set

Dt =
1

2
(C
′∗
t − C

′
t) ∈ A

−(B,EndW ) .

Then −D2
t equals the curvature C2

t of the superconnection Ct = 1
2 (C

′∗
t + Ct) on

W . Set f(z) = z exp(z2), so that f ′(z) = g(z2) where g(z) = (1 + 2z) exp z and
introduce the even real form

f∧(C ′
t, h

W ) = Trs

(
N

2
g(D2

t )

)
in A(B) .

Here −D2
t is a fibrewise elliptic operator. Hence g(D2

t ) is a fibrewise trace class
operator and the fibrewise supertrace Trs is defined. Under the simplifying condi-
tions H(Z, F |Z) = 0 and χ(Z) = 0 the higher torsion form T corresponding to g
is defined as the integral

T = −

∫ ∞

0

f∧(C ′
t, h

W )
dt

t
.

Nontrivial asymptotic estimates for t → 0,∞ are required to show that the inte-
gral converges. In general, suitable correction terms have to be subtracted. For
the components Tk−1 of T Bismut and Lott then prove theorem 2.

4 Now let P be a principal U(1)-bundle over B with a connection and curvature
form Ω ∈ A2(P, iR)basic = A2(B, iR). Give S1 the U(1)-action by g · z = grz for
some r with |r| > 1 and set M = P ×U(1),r S

1. Fix 1 6= ζ ∈ µr and let FS1 be the

line bundle on S1 corresponding to π1(S
1) = Z → C∗, ν 7→ ζν . Then FS1 lifts to

a line bundle F on M and using Fourier theory one finds:

Theorem 3 ([Bi-Lo]). In A(B) we have:

T =
1

2

∞∑

j=0

(2j + 1)!

22j(j!)2


∑

m6=0

ζm

mj |m|



(
rΩ

2π

)j

.

Thus for j even, Re Lij+1(ζ) appears and for j odd Im Lij+1(ζ).
A higher version of Reidemeister torsion was introduced by Igusa and Klein,

see e.g. [Ig] which yields the same formula (after passing to cohomology). A
topological proof of a stronger version of theorem 1 was given by Dwyer, Weiss
and Williams.
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Physics

Dirk Kreimer

We introduced one-particle irreducible Feynman graphs as basic combinatorial
objects which allow to define a pre-Lie algebra (L, ?) of graph insertions:

Γ1 ? Γ2 =
∑

Γ

n(Γ1,Γ2,Γ)Γ

where n(Γ1,Γ2,Γ) gives the number of ways of shrinking Γ2 to a point in Γ such
that Γ1 is obtained.

The corresponding graded Lie algebra (L, [, ]) obtained by antisymmetrizing ?
to a bracket [, ] has a universal enveloping algebra U(L). It hence allows to define
dually a Hopf algebra of graph decompositions on one-particle irreducible graphs

∆(Γ) =
∑

γ

γ ⊗ Γ/γ.

The notion of powercounting was then introduced together with the Feynman
rules φ : H → V ,

φ(Γ) =

∫ ∏

edges e

dDke

quadric(ke)

∏

vertices v

δ

( ∑

e incident to v

ke

)
.

It was shown that these Feynman rules suffer from short-distance singularities.
Interpreting them as charactersH → V into a suitable Rota–Baxter algebra (V,R)
then makes renormalization self-evident. Defining the counterterm character

Sφ
R = −R ◦m ◦ [Sφ

R ⊗ (φ ◦ P )]∆

allows to define the algebraic Birkoff decomposition φ− = Sφ
R,

φ+ = m ◦ [φ− ⊗ φ]∆ = [id−R] ◦m ◦ [Sφ
R ⊗ (φ ◦ P )]∆,

using the projection P into the augmentation ideal. These algebraic structures
are very similar to the ones observed in the polylog, see [Kr2].

Emphasis was given then to primitive elements γ in the Hopf algebra,

∆(γ) = γ ⊗ e+ e⊗ γ,

abundantly provided by superficially divergent graphs which have no divergent
subgraph. Those are characterized by having a residue which determines their
contribution to the renormalization group flow.

A summary of the known results [Kr1] was given emphasizing the empirical fact
that these residues map a graph to multiple zeta values

ζ(s1, . . . , sk) =
∑

n1<...<nk

1

ns1
1 . . . nsk

k

,

in a manner which assigns increasing transcendental weight to increasing non-
planarity in the graph γ. One of the few proven facts here is the rationality of the
contributions of the most planar graphs (of rainbow or ladder topology).
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A discussion of the peculiarities of gauge theories in this context ended the
talk, formulating the conjecture that the quenched β-function is a series in the
fine-structure constant with rational coefficients.

Etale realization

Denis Vogel

In our talk we described the construction of Soulé elements, see [So2]. We fix
an odd prime number p and a number field F . We denote its ring of integers by
OF , and let A = OF [1/p]. Define Fn to be F (µpn) and An the integral closure of
A in Fn. We fix a generator (ζpn) of lim

←−
µpn and let

βn : µpn → K2(An,Z/p
nZ)

denote the morphism given by the composition of

µpn ∼= π2(BA
∗
n,Z/p

nZ)

with

π2(BA
∗
n,Z/p

nZ)→ π2(BGL(An)+,Z/pnZ) = K2(An,Z/p
nZ).

Let

Nn : K2r−1(An,Z/p
nZ)→ K2r−1(A,Z/p

nZ)

be the norm map of K-theory. Let (ωn) ∈ lim
←−

A∗
n, where the transition maps are

induced by the usual norm map. The elements

Nn(ωnβn(ζpn)r−1) ∈ K2r−1(A,Z/p
nZ)

are compatible and give rise to an element in K2r−1(A,Zp). Here we have inter-
preted ωn as an element of K1(An) = A∗

n and made use of the product in K-theory
with coefficients. A similar construction may be carried out in etale cohomology.
Here we consider the element

(coresFn/Fωn ⊗ (ζpn)r−1)n in H1(SpecA,Zp(r))

where ωn is considered as an element of H1(SpecAn,Z/p
nZ(1)). Using the chern

class map

K2r−1(A,Zp)→ H1(SpecA,Zp(r))

we may compare the above constructions, and it turns out that they coincide up
to an integral factor. For F = Q(ζm) where m = qpn0 with(p, q) = 1 the above
elements with ωn = 1−ζqpn are called Soulé elements. A variant of these elements
can be obtained by the Deligne torsor, see [De]: It is given by the compatible
system of Z/pnZ(r)-torsors Pm,k,pn over SpecZ[ζm][1/p] given at the fibers by

Pm,k,pn,ζ =
∑

αpn=ζm

(αm)⊗(r−1)Tpn(α)

where Tpn(α) denotes the Z/pnZ(1)-torsor of the pn-th roots of α. By a theorem of
Beilinson, see [Wi1], Thm 4.5, these elements appear as values of torsion sections
of the l-adic polylogarithm.
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Motivic version of the classical Polylogarithms

Ayoub Joseph

We show that the mixed Hodge variation polH and the `-adic sheaf pol` are real-
ization of a same motivic object polM which live in the abelian category MTM(U)
of mixed Tate motives over U = P1 − {0, 1,∞}.

(1) Categories of motives.
(2) Construction of LogM and polM.
(3) Comparison with the realizations.

1. Categories of motives

Given a scheme X one has the Voevodsky’s category DM(X) of triangulated
motives over X (see [Vo]). Recall that objects of DM(X) are Gm-spectra of
complexes (Ak

•)k where Ak
j are smooth X-schemes locally of finite type1 and the

differentials Ak
j+1 → Ak

j as well as the assembly maps Gm∧Ak
j → Ak+1

j are given
by some kind of finite correspondences which behave well under composition. We
put ZX(1)[1] = [idX → GmX ] where GmX is in degree zero. For every n ∈ Z we
define the Tate object ZX (n) by the usual formula and for any A ∈ DM(X) we
put A(n) = A⊗ ZX (n).

The Voevodsky’s categories DM(X) like the Saito’s categories of mixed Hodge
modules ([Sa]) have the full Grothendieck formalism of the six operations. What
we don’t (yet) have in DM(X) is a motivic t-structure. Such a t-structure should
play the role of the canonical t-structures in the classical theories (`-adic sheaves
and mixed Hodge modules...); in particular it’s heart should contain at least the
Tate objects Q(n). The existence of such a t-structure is very related to the
Beilinson-Soulé Vanishing conjecture:

Conjecture: For every smooth scheme X over a field k, the motivic cohomol-
ogy groups Hp(X,Z(q)) vanish for p < 0.

Where Hp(X,Z(q)) is defined to be the group homDM(k)([X ],Z(q)[p]). Unfor-
tunately this conjecture remains wide open... It is only known in some very special
cases: for example X the spectrum of a number field2. In particular if we restrict
ourself to the sub-category DTM(U) ⊂ DM(U) generated (as a triangulated cat-
egory) by the Tate objects ZU (n) for U a subscheme (open or closed) of P1

Q we
got the:

Theorem: The category DTM(U) can be equipped with a motivic t-structure.
The heart of this t-structure is the abelian category of mixed Tate motives
MTM(U) generated by the ZU (n).

Recall that U is P1 − {0, 1,∞}. Our main result will be the construction of a
pro-object polM in MTM(U).

1Infinite disjoint union of smooth varieties are allowed.
2This a consequence of Borel work on the K-theory of number fields.



2564 Oberwolfach Report 48/2004

2. Construction of LogM and polM

We adapt here the construction given in [HW1] to the motivic context. We first
consider the Kummer mixed Tate motive K ∈MTM(Gm). It fits naturally in an
exact sequence in MTM(Gm):

0 // Q(1) // K // Q(0) // 0

Or equivalently in a distinguished triangle in DTM(Gm):

Q(1) // K // Q(0)
e // Q(1)[1]

Thus K is uniquely (up to a unique isomorphism!) determined by the morphism

e which can be constructed using the diagonal morphism Gm // Gm×Gm
considered as a morphism of Gm-schemes.

Definition: LogN
M = SymN (K) and LogM is the projective system

(LogN+1
M → LogN

M)N .

Note that we have exact sequences:

0 // Q(N) // LogN
M

// LogN−1
M

// 0

Let us denote (LogM)|U the pull-back of LogM by the inclusion U ⊂ Gm. The
polylogarithmic mixed Tate motive will be defined as an extension:

0 // (LogM)|U // polM // Q(0) // 0

or equivalently as an element of Ext1(Q(0), (LogM)|U). The main technical result
is the identification of this ext-group with Q which allows us to make the definition:

Definition: polM correspond to 1 by the identification (still to be proven):
Ext1(Q(0), (LogM)|U) = Q.

For the computation of our ext-group we consider the following commutative
diagram:

U
j

//

q
!!B

BB
BB

BB
B Gm

p

��

1
ioo

}}
}}

}}
}}

}}
}}

}}
}}

Q

so we can write:

Ext1(Q(0), (LogM)|U) = homDM(U)(q
∗Q, j∗LogM[+1])

= homDM(Q)(Q, p∗j∗j
∗LogM[+1])

The last equality comes from adjunction. Next we invoke the distinguished trian-
gle:

i∗i
!LogM // LogM // j∗j

∗LogM // i∗i
!LogM[+1]

The computation then splits into two parts:

• p∗LogM = Q(−1)[−1].
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• i!LogM = i∗LogM(−1)[−2] =
∏

k≥0 Q(k − 1)[−2].

Which gives the exact sequence:

hom(Q,Q(−1)[−1])→ Ext1 → hom(Q,
∏

k≥0

Q(k − 1))→ hom(Q,Q(−1))

It is clear that the first and the last groups are zero. Thus we get our identification:

(1) Ext1 = hom(Q(0),
∏

k≥0

Q(k − 1)) = hom(Q(0),Q(0)) = Q

3. Compatibility with the realizations

We concentrate here on the Hodge realization: the `-adic case is relatively easier.
We assume that we have a realization functor from DM(X) to the category of
Saito’s mixed Hodge modules MHM(X) over a C-scheme X3. This realization
functor should be compatible with the six operations. On the other hand the
computation carried out in the previous section can also be done in the context of
mixed Hodge variations. In particular we get an element pol′H in :

Ext1
MHM(U)(Q(0), (Log)|U) = Q

and the realization of polM is exactly pol′H. So in order to prove that the Hodge
realization of polM gives the classical polylogarithmic variation of mixed Hodge
structure, we have to identify the class of the extension polH with the class of 1
(under the identification 1). To do this we recall that polH was associated to the
following pro-matrix (see [BD2]):




1 0 0 . .
−li1 2πi 0 . .
−li2 (2πi)log (2πi)2

: : : . .




Denoting again polH the class of this extension in Ext1
MHV(U)(Q(0), (Log)|U) and

using the injectivity of the map: Ext1U(Q(0), (Log)|U) // Ext1U(Q(0),K|U) , one

sees that it suffices to prove that the image of polH cöıncide with the image of the

Kummer torsor over A1
Q − {1} under: Ext1U(Q(0),Q(1)) // Ext1U(Q(0),K|U) .

This means that we have to show that the 2× 2-sub-matrix:(
1 0
−li1 2πi

)

defines the expected Kummer torsor. This is obvious.

3Such a realisation functor has not been constructed yet!
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p-adic polylogarithms

Frank Herrlich

The defining power series of the polylogarithm
∞∑

n=1

zn

nk

has rational coefficients and thus can also be seen as a series over Cp. As such
it converges for |z| < 1. As in the complex setting, the question of analytic
continuation arises. Therefore we begin with a very brief review of

1. p-adic analytic functions

A function f : U → Cp on an open subset U of Cn
p is called locally analytic if it

can locally be represented by a convergent power series. Since U can be covered
by disjoint open balls, there are “too many” locally analytic functions, and a more
rigid notion is required:

Definition and Properties
a. Tn := Cp�X1, . . . , Xn�= {

∑
ν=(ν1,...,νn) aνX

ν : |aν | → 0} is the Tate algebra

of convergent power series on Dn := {x ∈ Cn
p : |xi| ≤ 1, i = 1, . . . , n}.

b. The set of maximal ideals of Tn is Spm (Tn) = Dn.
c. For f =

∑
aνx

ν ∈ Tn, ||f || := max |aν | is the Gauß norm.
d. Any Cp-algebra A = Tn/I for a closed ideal I of Tn is an affinoid algebra.
e. X := Spm(A) is an affinoid domain, A(X) := A its algebra of analytic functions.
f. A inherits the Gauß norm from Tn, A0 := {f ∈ A : ||f || ≤ 1} is a subalgebra,
A00 := {f ∈ A : ||f || < 1} an ideal therein; finally the reduction X̄ := Spec(Ā)
with Ā := A0/A00 is an affine variety over F̄p.

The last property is the reason for the name “affinoid domain”.
The crucial point now is to define a Grothendieck topology on X , in particular
to carefully single out the admissible coverings: For an affinoid domain X , this
are precisely the finite coverings by affinoid subdomains. Then one can define
the structure sheaf on an affinoid domain, glue affinoid domains to more general
(rigid) analytic spaces, and finally arrives at

Definition
A function f : X → Cp on an analytic space X is analytic if there is an admissible
covering {Xi}i by affinoid domains Xi such that f |Xi

is analytic for all i.

For a systematic introduction to p-adic (rigid) analytic geometry see e.g. [FP].

Example The affinoid subdomains of P1(Cp) are “disks with holes”, i.e. the sets

of the form X = B(a, r) −
⋃n

i=1B(ai, ri). The corresponding affinoid algebra is
Cp�

z−a
r , r1

z−a1
, . . . , rn

z−an
�.

Unfortunately, there is no analytic function on Cp − {1} that agrees on the open

unit disk with the polylogarithm series
∑

zn

nk .
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2. Coleman’s integration theory

To define the p-adic polylogarithm we shall use the differential relation

Li′k(z) =
1

z
Lik−1(z) (k ≥ 1) (with Li0(z) =

z

1− z
).

For Li1, i.e. the logarithm, we can use the functional equation to show that there
is a unique locally analytic function log : C∗

p → Cp which satisfies log(xy) =

log(x) + log(y), log(p) = 0, and − log(1− z) =
∑ zn

n for |z| < 1.

Inductively we find locally analytic functions `k as primitives of `k−1
dz
z ; Cole-

man’s integration (explained in [Br]; see also [Co] for more details) provides a
unique choice of the local constants, guided by “Dwork’s principle” of using the
Frobenius structure. The variant of Coleman’s method that we use for the poly-
logarithms works as follows:

X/Cp is a smooth projective curve with good reduction Y/F̄p, sp : X → Y the
specialisation map, S ⊂ X(Cp) a finite set, U = X − S (as analytic space),
W = sp−1(Y (F̄p) − S̄) the “underlying” affinoid. Then U −W =

⋃
s∈S Cs with

punctured disks Cs
∼= {z ∈ Cp : 0 < |z| < 1}. Coleman shows that a Frobenius on

Y (over some finite field of definition) can be lifted (not uniquely) to a Frobenius
morphism on W , and that for r sufficiently close to 1 it can be extended to a mor-
phism ϕ : Ur → U on a “Frobenius neighborhood” Ur := W ∪

⋃
s∈S Cs,r, where

Cr,s is the subset of Cs corresponding to {z ∈ Cp : r < |z| < 1}.
We apply this to the situation X = P1

Cp
and S = {1,∞}. Then W =

{z ∈ Cp : |z| ≤ 1, |z − 1| ≥ 1}; as Frobenius we can take ϕ(z) = zp; Ur is a

Frobenius neighborhood for r > p−
1

p−1 = |ζp − 1|. A key observation concerning
Frobenius is

Remark On every residue class B of W , a suitable power ϕm of ϕ acts as a con-
traction, i.e. ϕm has a unique fixed point εB s.t. ϕmn(x)→ εB for all x ∈ B.

Since H1
dR(U) ∼= H1

dR(Ur), ϕ induces an endomorphism ϕ∗ of H1
dR(U) (in our

special situation, ϕ∗ is multiplication by p). Let P1 denote the characteristic poly-
nomial of ϕ∗.

Theorem For r sufficiently close to 1 there is for each ω ∈ Ω1
U a locally analytic

function fω, unique up to an additive constant, satisfying:

(1) dfω = ω
(2) P1(ϕ

∗)(fω) is analytic on Ur

(3) fω|Cs
∈ A(Cs)[log f : f ∈ A(Cs)

×] for each s ∈ S.

Note that the P1(ϕ
∗) is zero as an endomorphism of H1

dR(U), but in (2) it is
applied to a locally analytic function. For the proof of the theorem see [Br, 2.2.1].
We can iterate this procedure by defining inductively

Ak(U) := Ak−1(U) +
∑

ω∈Ak−1(U)⊗Ω1
U

fωAk−1(U) (k ≥ 1), A0(U) = A(U)
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and obtain the same statement for ω ∈ Ak(U)⊗A(U) Ω1
U , with (2) replaced by

(2k) Pk+1(ϕ
∗)(fω) ∈ Ak(Ur), where Pk is the characteristic polynomial of ϕ∗

on H1
dR(Ak−1(U)).

Applying this result to the situation described above we obtain

Corollary There are unique locally analytic functions `k ∈ Ak(Cp − {1}), called
p-adic polylogarithms, satisfying `0(z) = z

1−z , `k(0) = 0, `′k(z) = 1
z `k−1(z), and

Pk(ϕ∗)(`k) ∈ Ak−1(Ur) for all r > p−
1

p−1 .

3. Special values of L-functions

Let χ : (Z/dZ)× → C× be a Dirichlet character of conductor d and L(s, χ) the
associated L-function, which for d = 1 is the Riemann zeta function and in all

other cases is an analytic function on C, given by the power series
∑∞

n=1
χ(n)
ns for

Re(s) > 1. Its values at integer arguments are known classically:

(a) L(1− n, χ) = − 1
nBn,χ for n ≥ 1, where Bn,χ ∈ Q(χ) are the generalized

Bernoulli numbers.
(b) L(k, χ) = 1

dg(χ, ζ)
∑d

a=1 χ̄(a)Lik(ζ−a) for k ≥ 1, where ζ is a primitive

d-th root of unity and g(χ, ζ) =
∑d

a=1 χ(a)ζa is the Gauß sum.

Since the Bn,χ are algebraic numbers whose p-adic values behave nicely, (a) can
be used to define a Cp-valued function Lp(s, χ) on Zp interpolating these numbers;
this is the Kubota-Leopoldt L-function. For an approach via p-adic measures see
[Ko].

The proof of (b) is elementary: on both sides the defining power series can be used
to calculate the value, and it is an easy exercise on Gauß sums that the coefficients
for 1

nk are equal. Nothing of this holds for the analogous p-adic functions. Never-
theless, (b) has a p-adic counterpart:

Theorem (Leopoldt for k = 1, Coleman for k ≥ 2)

Lp(k, χω
1−k) = (1−

χ(p)

p
)
1

d
g(χ, ζ)

d∑

a=1

χ̄(a)`k(ζ−a),

where ω : (Z/pZ)× → C×
p is the Teichmüller character.

For the proof see [Ko, 1,2] and [Co, 7]. It relies on Koblitz’s representation of
Lp(s, χ) as an integral w.r.t. a certain p-adic measure dµz and Coleman’s formula

`k(z)− pk`k(zp) =

∫

X∗
x−kdµz.

4. Interpretations

Like in the complex case, the values of the p-adic polylogarithm appear in the
description of extension classes of Qp-vector spaces with Hodge filtration. More
generally, there is an interpretation of the p-adic polylogarithm as an object in the
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p-adic analogue of the category of variations of mixed Hodge structures. For this
and related topics, see e.g. [Ba] and the references therein.

Multiple zeta values and multiple polylogarithms

Francis C.S. Brown

Multiple zeta values are real numbers which generalise the values of the Riemann
zeta function at integers. The standard relations, or double shuffle products, are
conjectured to yield all algebraic relations between these numbers. By introducing
the multiple polylogarithms, one obtains a natural functional model which gen-
eralises the classical polylogarithms, and gives the multiple zeta values on taking
regularised values at 1.

1. Multiple zeta values. Let s1, . . . , sk ∈ N, and suppose that s1 ≥ 2. The
multiple zeta value ζ(s1, . . . , sk) is the real number defined by the convergent sum

ζ(s1, . . . , sk) =
∑

n1>n2>···>nk≥1

1

ns1
1 . . . nsk

k

.

These numbers were first studied by Euler, and have recently resurfaced in the
study of knot invariants, quantum field theory, and in Grothendieck-Teichmüller
theory. One aim is to describe all the algebraic relations between multiple zeta
values (MZVs) over the rational numbers. The first, algebraic, part of the problem
is to write down all possible relations. The so-called standard relations consist of
two quadratic and one linear relation, but there are many other natural relations
[IK]. The other, transcendental, half of the problem is to show that these are the
only relations that are satisfied. The only results that are known in this direc-
tion are essentially that π is transcendental (Lindemann), that ζ(3) is irrational
(Apéry), and that infinitely many of the values ζ(2n+ 1) are linearly independent
over Q (Rivoal [Ri]). It is still not known whether ζ(5) is irrational or not.

The standard relations can be described in terms of two product structures on
a certain algebra. Let X = {x0, x1} denote an alphabet on two letters, and let
Q〈X〉 denote the free non-commutative Q-algebra on the symbols x0 and x1 with
the concatenation product. We introduce two further products on the subalgebra
H1 = Q1⊕Q〈X〉x1 which is generated by all words in x0 and x1 which end in x1.
For each i ≥ 1, we write yi = xi−1

0 x1. Then H1 is also generated by the symbols
yi. The shuffle product, written x : H1 × H1 → H1, and stuffle product, written
? : H1 × H1 → H1 are then defined inductively as follows:

wx 1 = 1xw = w , and w ? 1 = 1 ? w = w ,

xiwxxjw
′ = xi(wxxjw

′) + xj(xiwxw′) ,

ykw ? y`w
′ = yk(w ? y`w

′) + y`(ykw ? w
′) + yk+`(w ? w

′) ,

for all w,w′ ∈ H1, all i, j ∈ {0, 1}, and all k, ` ≥ 1.
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If we set H0 = Q1⊕ x0Q〈X〉x1, then there is a well-defined linear map

ζ : H0 → R ,

ζ(ys1 . . . ysr
) = ζ(s1, . . . , sr) ,

where ζ(1) is defined to be 1. One can prove that H0 is closed under x and ?,
and that ζ is a homomorphism for both products. In other words,

ζ(w1 xw2) = ζ(w1) ζ(w2) ,

ζ(w1 ? w2) = ζ(w1) ζ(w2) for all w1, w2 ∈ H0.

These are the shuffle and stuffle relations respectively. Finally, one proves that
x1 ? w − x1 xw ∈ H1 actually lies in H0 for all w ∈ H0, and that

ζ(x1 ? w − x1 xw) = 0 .

It is conjectured that all algebraic relations over Q satisfied by the multiple zeta
values are generated by the previous three identities [Wa].

If dk denotes the dimension of the Q-vector space spanned by the multiple
zeta values of weight k (i.e. the set of ζ(w), where w ∈ X∗ has k symbols),
then extensive computer calculations confirm this conjecture and suggest that
dk = dk−2 +dk−3. By motivic arguments, it has recently been shown by Terasoma
[Te] and Goncharov [Go6, Go7] (see also [DG]), that the dimensions dk are bounded
above by the expected quantity.

2. Multiple polylogarithms. Let s1, . . . , sk ∈ N. If zi ∈ C such that |zi| < 1,
then the multiple polylogarithm is defined by the power series

Lis1,...,sk
(z1, . . . , zk) =

∑

n1>n2>···>nk≥1

zn1
1 . . . znk

k

ns1
1 . . . nsk

k

.

If s1 ≥ 2, then the sum converges for |zi| = 1, and we have Lis1,...,sk
(1, . . . , 1) =

ζ(s1, . . . , sk). These functions have been studied extensively by Goncharov in
relation to periods of variation of mixed Tate motives [Go6, Go7].

One can show that the multiple polylogarithms appear naturally as iterated
integrals on the moduli space M0,n of Riemann spheres with n ordered marked
points, where n ≥ 4. In fact, by applying Chen’s general theory (c.f. the fourth
talk) to these spaces, one can show that the set of all homotopy-invariant iterated
integrals on M0,n defines a Hopf algebra of multi-valued functions in which the
set of multiple polylogarithms in k = n − 3 variables is strictly contained. In
the case n = 4, we can identify M0,4 with the projective line minus three points
P1\{0, 1,∞}. The shuffle product formula for iterated integrals immediately yields
the shuffle relations for the multiple zeta values on taking a regularised limit at 1.

The multiple polylogarithms also satisfy relations which generalise the stuffle
product, the simplest example of which is the identity

Lis1(z1)Lis2(z2) = Li(s1,s2)(z1, z2) + Li(s2,s1)(z2, z1) + Lis1+s2(z1z2),
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which follows directly from the power series definition above. On taking a regu-
larised limit as the variables zi tend to 1, one retrieves all three standard relations
for the multiple zeta values.

One can also consider the values of multiple polylogarithms at roots of unity.
These numbers will automatically inherit the double shuffle relations, but will
also satisfy distribution relations. The latter relations come from an identity on
the level of the multiple polylogarithm functions which directly generalises the
distribution relations for the classical polylogarithms. The dimensions of the Q-
vector spaces spanned by these numbers are conjecturally related to the K-theory
of cyclotomic fields ([DG, Go4]).

Zagier’s Conjecture: Statement and motivic interpretation

Marco Hien

Let F be an algebraic number field with discriminant dF and let r1, resp. r2,
denote the number of real, resp. pairs of complex embeddings of F . Let Σ− be
the set of real embeddings and Σ+ be the union of Σ− and a complete set of
pairwise non-conjugate complex embeddings. These sets have order n− = r2 and
n+ = r1 + r2 respectively. It is conjectured, that the value of the Dedekind zeta-
function ζF of F at a natural number k ≥ 2 can be expressed by the single-valued
polylogarithm functions Pk (as introduced in the first talk). More precisely:

Conjecture (Zagier). Let k ∈ N, k ≥ 2. If k is even, there exist elements
x1, . . . , xn− ∈ F , such that

ζF (k) ∈ πk·n+ · |dF |
−1/2 · det

(
(Pk(σx1))σ , . . . , (Pk(σxn−))σ

)
·Q× ,

where σ runs through Σ−. A similar statement holds for odd k after interchanging
all occuring signs ± in the indices.

The conjecture is known to be true for k = 2 ([Za2]) and k = 3 ([Go4]). In
general it could be deduced from a conjectural description of the algebraic K-
groups K2k−1(F )⊗Q as follows:

For any k ≥ 1, one conjectures the existence of

• a Q-vector space Lk,
• a map {}k : F× \ {1} → Lk, whose image generates Lk over Q,

• a homomorphism dk : Lk →
∧2

(⊕k−1
l=1 L

l) and
• a monomorphism ϕk : ker(dk) ↪→ K2k−1(F )⊗Q,

such that for any embedding σ : F ↪→ C, the composition with the Borel regulator
map regσ

B : K2k−1(f)⊗Q→ ik−1R is given by polylogarithms as follows:

regσ
B(ϕk(

∑

α

λα{xα}k)) = −
∑

α

λα · Pk(σxα)

for all
∑

α λα{xα}k ∈ ker(dk). This is referred to as the weak Zagier Conjecture.
Under the additional assumption that ϕk is surjective, the above conjecture on the
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special values of ζF follows using Borel’s Theorem on the image of the regulator
map for number fields [Bo1].

Following Beilinson and Deligne, the weak Zagier Conjecture allows a motivic
interpretation. One assumes to have a good category of mixed Tate motives over
the number field F , namely a Tannakian category T (F ) over Q with a fixed invert-
ible object Q(1), such that every object has a weight filtration, where the graded
object consists of a direct sum of tensor powers Q(k) := Q(1)⊗k of Q(1). Addition-
ally, one assumes to have a realisation functor into the category of Q-variations of
mixed Hodge structures on F (C) and an isomorphism

K2k−1(F )⊗Q
∼
→ Ext1(Q,Q(k)) .

The composition of the latter with the regulator into Deligne cohomology, in this
case reg : K2k−1(F )⊗Q→ Ext1F (C)(Q,Q(k)), should coincide with the map given
by the realisation functor. In analogy to the case of mixed Hodge structures, there

should exist a projective system of objects pol(N) in the category of mixed Tate
motives over P1 − {0, 1,∞} with similar properties.

In [BD2], Beilinson and Deligne proof the weak Zagier Conjecture assuming
the existence of such a category including the polylogarithm objects. The main
ingredient is the Lie algebra of the pro-unipotent part U of the Tannaka group
G of T (F ), i.e. the algebraic group scheme G over Q whose finite-dimensional
representations determine T (F ) up to equivalence of categories in the usual sense
of Tannakian theory. The data required in the weak Zagier Conjecture can be

derived from the action of this Lie algebra on the system pol(N).

The value ζF (3) after A. Goncharov

Florin Nicolae

For k = 1, 2, 3 let Lik(z) be the k-th polylogarithm. Define

L3(z) := Re(Li3(z)− log |z| · Li2(z) +
1

3
log2 |z| · Li1(z)).

This is a single-valued, real-analytic function on the complex projective line with-
out three points 0, 1,∞, continuous at 0, 1,∞ with the values

L3(0) = L3(∞) = 0,L3(1) =

∞∑

n=1

1

n3
= ζQ(3).

Let F be an arbitrary algebraic number field; dF the discriminant of F ; r1,
resp. r2, the number of real, resp. complex places, so [F : Q] = r1 +2r2; and {σj}
the set of all possible embeddings of F in C (1 ≤ j ≤ r1 + 2r2) numbered so that
σ̄r1+l = σr1+r2+l.

Let Z[P1
F \{0, 1,∞}] be the free abelian group, generated by symbols {x}, where

x ∈ P1
F \ {0, 1,∞}. The function L3 defines a homomorphism

Z[P1
F \ {0, 1,∞}]→ R
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∑
ni{xi} 7→

∑
niL3(xi).

Denote by R2(F ) the subgroup of Z[P1
F \{0, 1,∞}] generated by the expressions

{x} − {y}+ {
x

y
} − {

1− y−1

1− x−1
}+ {

1− y

1− x
},

where x 6= y. Set

B2(F ) := Z[P1
F \ {0, 1,∞}]/R2(F ).

Consider the homomorphism

δ : Q[P1
F \ {0, 1,∞}]→ B2(F )Q ⊗ F

∗
Q

{x} 7→ {x}2 ⊗ x

({x}2 is the projection of {x} onto B2(F ).)
Theorem. Let ζF (s) be the Dedekind zeta-function of F . There exist

y1, . . . , yr1+r2 ∈ Kerδ

such that

ζF (3) = π3r2 · |dF |
− 1

2 · det(L3(σj(yi))1≤i,j≤r1+r2).

The elliptic polylogarithm I and II

David Blottière and François Brunault

Introduction

The aim of these two talks is to introduce an elliptic analogue of Zagier’s con-
jecture. We follow the article of J. Wildeshaus [Wi3].

In the first one, we define a formalism for an elliptic polylogarithm in a general
setting. Then we prove that such an elliptic polylogarithm exists in the context of
admissible and graded polarizable variations of mixed Hodge structures (VMHS).
After having explained the notion of polylogarithm value at torsion points of a com-
plex elliptic curve, we give an expression for this in terms of Eisenstein-Kronecker
series.

In the second talk, we state an elliptic analogue of Zagier’s conjecture. Broadly
speaking, it gives a recipe for constructing nonzero elements in specific motivic
cohomology groups attached to an elliptic curve, and predicts that their images
under Beilinson’s regulator are polylogarithms. We explain how this is implied by
the existence of a suitable category of smooth motivic sheaves, admitting amongst
other things the formalism of an elliptic polylogarithm.
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1. The elliptic polylogarithm I - Hodge realization

1.1. A formalism for an elliptic polylogarithm. In this section, we define
the notion of a formalism for an elliptic polylogarithm as a system of data which
satisfies seven axioms. We note that there is another but equivalent way to define
the elliptic polylogarithm in the l-adic or Hodge context (e.g. [Ki1, 1.1]). Our
approach is useful for discussing Zagier’s conjecture for elliptic curves.

We fix some data. Let S be a connected base scheme and F a field of characteris-
tic 0. For each quasi projective and smooth scheme B over S, we have a F -linear
abelian category T (B) with an associative, commutative and unitary (we write
F (0) for the neutral element) tensor product, such that B 7→ T (B) is natural in a
contravariant way.

These data satisfy the following seven axioms.

(A) For B connected, T (B) is a neutral abelian F -linear Tannakian category
and for f : B1 → B2, f

∗ : T (B2)→ T (B1) is exact.
(B) T (B) is a tensor category with weights ([Wi3, Def. 2.4]).
(C) There is an object F (1) of rank 1 and weight -2 in T (S). For a scheme

B over S, we still denote by F (1) the pullback of F (1) by the structural
morphism of B. For V ∈ T (B), V (1) := V ⊗ F (1).

(D) For any elliptic curve π : E → B, there exists an object R1π∗F of rank 2

and weight 1 in T (B), and an isomorphism ∪π :
2

Λ R1π∗F
∼
→ F (−1) (the

dual of F (1)) compatible with base change.
(E) For any elliptic curve π : E → B, we have a morphism [ ] : E(B) ⊗Z F →

Ext1T (B)(F (0), R1π∗F (1)).

(F) For any elliptic curve π : E → B, form the base change
pr1 : E ×B E → E , and consider [∆] ∈ Ext1T (E)(F (0), π∗R1π∗F (1)) and

SymN−1[∆]. (SymN−1[∆])N≥1 forms a projective system (the transition
morphisms are induced by [∆]→ F (0)), the logarithmic pro-sheaf Log on
E . Moreover there exists a projective system (the (small) polylogarithmic
extension)

Pol = (PolN)N∈N ∈ lim
←−

N∈N

Ext1
T (eE)

(π∗R1π∗F (1)|eE , SymN−1[∆](1)|eE)

where Ẽ is the complement of the zero section in E , such that

Pol1 ∈ Ext1
T (eE)

(F (0), (π∗R1π∗F (1)|eE)∨(1))

coincides with the pushout of [∆]|eE under the isomorphism induced by ∪π ,

R1π∗F (1)|eE

∼
→ (R1π∗F (1)|eE)∨(1), v 7→ ∪π(v, ).

(G) Let ψ : E1 → E2 be an isogeny between two elliptic curves over B. Then
ψ∗LogE2 = LogE1 .

1.2. An elliptic polylogarithm for VMHS. We consider the following data.
Let S := Spec(C), F = Q or R, T (B) := VMHSF (B). Then f : B1 → B2 induces
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f∗ : VMHSF (B2) → VMHSF (B1) given by the pullback at the level of local sys-
tems. We explain briefly why the axioms (A) - (G) are fulfilled in this setting.

(A) Let b ∈ B(C). To V ∈ VMHSF (B), one associates Vb, where V is the local
system underlying to V. This defines a fibre functor.

(B) V ∈ VMHSF (B) has a weight filtration compatible with ⊗.
(C) F (1) ∈ MHSF is first Tate’s twist.
(D) Consider the (topological) first higher direct image under π of the constant

sheaf F on E(C). Its fibre at b ∈ B(C) is H1(Eb(C), F ). By classical Hodge
theory, H1(Eb(C), F ) is equipped with a pure Hodge structure of weight
1. The collection (H1(Eb(C), F ))b∈B(C) forms an object of VMHSF (B) of

rank 2 and weight 1 which is, by definition, R1π∗F . ∪π is induced by the
fibrewise cup product.

(E) The map [ ] is constructed by using Saito’s theory of mixed Hodge modules
([Wi3, 3.2]).

(F) Let π̃ : Ẽ → B be the restriction of π to Ẽ . A fundamental property ([Ki1,
Prop. 1.1.3 b)]) of the Log pro-sheaf is

Rnπ̃∗ Log =

{ ∏
k>0

Symk(R1π∗F (1)) (−1) if n = 1

0 else.

Now, the Leray spectral sequence for RHom((R1π∗F (1)), ) o Rπ̃∗ and
weight considerations give an isomorphism :
Res : Ext1eE(π̃∗R1π∗F (1), R1π̃∗ Log(1))

∼
→ HomB(R1π∗F (1), R1π∗F (1)).

We define Pol by Res(Pol) = Id. The compatibility between Pol1 and
[∆] is satisfied ([Wi2, Prop. 2.4, Prop. 2.5]).

(G) For the compatibility of Log with respect to isogenies, we refer to [Be-Le,
1.2.10.(vi)].

Remark 1. : The fibre of Log at x ∈ Ẽ(C) can be described in terms of relative
homology groups ([Le, 2.4.4]).

1.3. Values of the polylogarithm at torsion points (real coefficients).
Let (E/C, 0) be an elliptic curve over C, x a nonzero torsion point of E and
F = R. In this context, R1π∗F (1) = H1(E(C),R)(1) =: H1. First, we pre-
cise the notion of value of the polylogarithm at x. It is obvious that 0∗Log =∏
k≥0

SymkH1. Using (G), we prove x∗Log =
∏

k≥0

SymkH1. So x∗Pol lies in

Ext1MHSR
(R(0),

∏
k≥0

SymkH1 ⊗H
∨
1 (1)). The k-th value of Pol at x, [x∗Pol]k, is

the pushout of x∗Pol under the composition of the contraction map∏
k≥0

SymkH1 ⊗H
∨
1 (1)→

∏
k≥0

Symk−1H1(1) with the projection on the (k− 2)-th

factor. So [x∗Pol]k ∈ Ext1MHSR
(R(0), Symk−2H1 (1)).
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Let V ∈MHSR, V of weight ≤ −1. Then we have an isomorphism

V ⊗ R(−1)
∼
→ V C/V

∼
→ Ext1MHSR

(R(0), V )

which associates to h ∈ V ⊗ R(−1) ⊂ V C the following 1-extension : we put the di-
agonal weight and Hodge filtrations on C⊕V C and we take < 1−h, V >R⊂ C⊕V C

as real structure. Applying this result to V = Symk−2H1 (1) one identifies

Symk−2H1 and Ext1MHSR
(R(0), Symk−2H1(1)).

Now, we introduce the Eisenstein-Kronecker series. Fix an isomorphism η :
E(C)→ C/L where L is a lattice in C and let ω(L) := η∗dz. Recall the definition
of the Pontryagin product : (z, γ)L = exp(π.V ol(L)−1.(zγ−zγ)), z ∈ C/L, γ ∈ L.
The Eisenstein-Kronecker series Ka,b,L : C− L→ C, for a, b ≥ 1 is defined by

Ka,b,L(z) :=
∑

γ∈L−{0}

(z, γ)L

γaγb
.

We are now able to give an explicit formula for [x∗Pol]k viewed as an element of

Symk−2H1.

Theorem. [Wi2, Prop. 1.3, Cor. 4.10 (a)]

(1) For k ≥ 2, GE,k(x) :=
∑

a+b=k−2

Ka+1,b+1,L(η(x)) ω(L)aω(L)
b
, which is an

element of Symk−2H1C, lies actually in Symk−2H1 and does not depend
on any choice.

(2) [x∗Pol]k = GE,k(x).

2. The elliptic polylogarithm II - Zagier’s conjecture

We begin by stating the so-called weak version of Zagier’s conjecture for elliptic
curves. It is of inductive nature : there is a statement for each k ≥ 2, and the k-th
step can only be formulated if all previous steps are true.

We will use the following notation for motivic cohomology. For any scheme X
and any integers i, j ∈ Z, we put

H i
M(X,Q(j)) := K

(j)
2j−i(X),

the j-th Adams eigenspace of Quillen’s K-group tensorized with Q.

Let K be a number field and B a smooth, quasi-projective, connected scheme
over K or OK . Let π : E → B be an elliptic curve. For any integer k ≥ 2, we wish
to construct explicit elements in

Hk−1
M (E(k−2),Q(k − 1))sgn,



Arbeitsgemeinschaft mit aktuellem Thema: Polylogarithms 2577

where E(k−2) := ker(
∑

: Ek−1 → E) and the subscript (·)sgn denotes the signature-

eigenspace determined by the action of the symmetric group Sk−1 on E(k−2).

For any k ≥ 1, let L]
k be the Q-vector space with basis elements

({s}]k, s ∈ E(B), s 6= 0). Let

φ1 : L]
1 → E(B) ⊗Z Q

{s}]1 7→ s⊗ 1.

Put L1 := L]
1/ kerφ1

∼= E(B)⊗Z Q and define {s}1 := class of {s}]1 = s⊗ 1.

Conjecture. There exist quotients Lk of L]
k (for all k ≥ 2) with the following

properties. Denoting the class of {s}]k in Lk by {s}k, we define the differential

dk : L]
k → Lk−1 ⊗Q L1

{s}]k 7→ {s}k−1 ⊗ {s}1.

Then there exists a homomorphism

φk : ker dk → Hk−1
M (E(k−2),Q(k − 1))sgn

such that

(1) φk is compatible with base change B′ → B and with isogenies ψ : E1 → E2
satisfying kerψ ⊂ E1(B).

(2) (B = SpecK). Let r∞ be the regulator of Deligne and Beilinson

r∞ : Hk−1
M (E(k−2),Q(k − 1))sgn →

( ⊕

σ:K↪→C

Symk−2H1
B(Eσ(C),R(1))

)+

,

where H1
B indicates Betti cohomology and (·)+ denotes the fixed subspace

for the complex conjugation acting both on the set {σ : K ↪→ C} and on
the coefficients R(1). Then

r∞(φk(S)) =
(
GEσ(C),k(Sσ)

)
σ

for all S ∈ ker dk,

where GEσ(C),k(Sσ) is defined by linearity.
(3) (B = SpecK). This condition, which we do not give explicitely here, is

an integrality criterion. It gives a necessary and sufficient condition on
S ∈ ker dk in order that φk(S) belongs to the integral subspace of motivic
cohomology (this Q-subspace is defined using the Néron model of E).

If the conjecture at step k is true, define Lk := L]
k/ kerφk and go to step k+ 1.

Remark 2. Condition (2) ensures that the homomorphism φk isn’t trivial.
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Remark 3. If s ∈ E(B) is a nonzero torsion point of E, then {s}]k belongs to
ker dk, as it can be seen from the definition of L1. Thus (rational) torsion points
of E always yield elements of the motivic cohomology group of interest.

Remark 4. We have the following chain of inclusions

kerφk ⊂ ker dk ⊂ L
]
k.

The group on the left should come from the functional equations of the elliptic poly-
logarithm. The quotient ker dk/ kerφk can be identified, via φk, with a subspace

of Hk−1
M (E(k−2),Q(k − 1))sgn. This subspace is strict in general (there are elliptic

curves with trivial Mordell-Weil group).

We now briefly indicate how the formalism of an elliptic polylogarithm allows
us to interpret the conjecture in a convenient way.

By Jannsen’s lemma [Ja, Lemma 9.2], the target space of the regulator map r∞
is given by the (·)+ part of the following 1-extension group

Ext1VMHS(B)(R(0), Symk−2V2,R(1))

where V2,R := R1π∗R(1) is pure of weight -1 and rank 2. We hope that the motivic

cohomology groups we are interested in are described by similar Ext1-groups in
a suitable category T (B) of smooth motivic sheaves over B. More precisely, we
require that

(1) T (B) satisfies axioms (A) - (G).
(2) Put V2 := R1π∗Q(1). Then, there is a canonical isomorphism

Ext1T (B)(Q(0), Symk−2V2(1)) ∼= Hk−1
M (E(k−2),Q(k − 1))sgn

which is compatible with base change B′ → B and with isogenies E1 → E2.
(3) There is an (exact) Hodge realization T (B) → VMHS(B ⊗Q C) which is

compatible with axioms (A) - (G) and with r∞.

Since we work in a category with the formalism of an elliptic polylogarithm,

we use the existence of Pol ∈ T (Ẽ) to construct the map φk. For any section
s ∈ E(B), s 6= 0, we consider s∗Pol ∈ T (B). Using the Tannakian formalism,
it turns out that suitable formal linear combinations of s∗Pol (varying s) yield

extensions in Ext1T (B)(Q(0), Symk−2V2(1)). In order to carry out this task, one
considers the graded Q-vector space underlying s∗Pol. It is equipped with a Lie
algebra representation which can be described by a pro-matrix. The coefficients
of the latter give the desired extensions.

Thus the existence of a “good” category of smooth motivic sheaves implies the
elliptic Zagier conjecture. For the details we refer to [Wi3].
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Finally we give the known results on the conjecture. We restrict to the case
where E is an elliptic curve defined over a number field K. In the case k = 2, the
weak version of Zagier’s conjecture is already proved in [Wi3]. In the case k = 3
and K = Q, it has been proved by Goncharov and Levin [GL], together with a
certain surjectivity property of φk. In the case where k = 3 and K is any number
field, the conjecture and the surjectivity property have been proved by Rolshausen
and Schappacher [RS].

Applications to Special Values of L-functions I

Ralf Gerkmann

The Tamagawa number conjecture due to S. Bloch and K. Kato, as stated
in [Bl-Ka] for the first time, relates the integral values of the L-function of a
Chow motive M to cohomological data of M . This generalizes a large number
of prominent conjectures from number theory, for example the Birch-Swinnerton-
Dyer conjecture on abelian varieties or the cohomological Lichtenbaum conjecture.
For a special class of motives related to abelian number fields, this conjecture was
recently proved by A. Huber and G. Kings, and independently by D. Burns and
C. Greither in [BG]. This talk and the subsequent one are based on the paper
[HK] of the first two authors. Their aim is to give a rough overview on the proof
and its relation to polylogarithms.

Remember that a Chow motive M over
�

with coefficients in a number field
E is given by a triple (X, q, r) where X/

�
is a smooth projective variety, q is

an algebraic correspondence inducing an idempotent map on the K-groups of
X , and r is an integer. The realizations of M are E-vector spaces coming from
Betti and de Rham cohomology, and Ep := E ⊗ � � p-modules coming from étale
cohomology. For all primes p, let X(p) denote the reduction mod p of the variety
X . By considering the Frobenius action on étale cohomology of X(p) for all p, and
by forming an Euler product, we obtain the L-function L(M, s) of the motive M .
It is conjectured to enjoy a number of desirable properties, like convergence on
some half-plane, analytic continuation and functional equation. The Bloch-Kato
conjecture has a precise formulation for motives in arbitrary dimension. In this
talk, however, we restrict to the case of Artin motives, i.e. special 0-dimensional
motives. These are quotients of h0(F ) = (Spec(F ), id, 0), where F is a number
field. If F is abelian over

�
, we also call them Dirichlet motives.

The motivic cohomology groups of a motive M , denoted by H i
M( � ,M) with

i = 0, 1, are defined by the Chow groups and the K-groups of the underlying
variety. These groups, together with the de Rham and Betti realization, are used
to construct the so-called fundamental line ∆f (M). The natural map

r∞ : H1
M( � ,M(r))→MB(1− r)+�

relating motivic cohomology and Betti realization, called the Beilinson regulator,
allows to define a canonical isomorphism ι∞ : ∆f (M(r)) ⊗ ��� ∼= E ⊗ ��� =: E∞.
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On the other hand, there is a p-adic regulator map

rp : H1
M( � ,M(r)) → H1( � [1/p],Mp(r))

defined by C. Soulé relating motivic cohomology with p-adic étale cohomology
of Spec( � [1/p]). Based on the theory of p-adic Galois representations due to
Fontaine, Messing and others, this regulator is used to define a canonical isomor-
phism

ιp : ∆f (M(r)) ⊗ �
	 p

∼=
→ detEp

RΓc( � [1/p],Mp(r))

The object on the right hand side in the derived category of Ep-modules is étale
cohomology with compact support. Its determinant has two important proper-
ties: First, every Galois stable OEp

-sublattice of Mp(r) gives rise to a free OEp
-

submodule which is independent of the particular choice of the lattice; here OEp

denotes the ring of integers in Ep. Secondly, there is a canonical duality isomor-
phism with usual étale cohomology

detEp
RΓc( � [1/p],Mp(r)) ⊗Ep

detEp
Mp(r)

+ = detEp
RΓ( � [1/p],M∨

p (1− r))

that maps the integral substructures given by a stable lattice onto each other.

With the maps ι∞ and ιp for all primes p being constructed, the Bloch-Kato
conjecture can now be stated as follows: Let M be an Artin motive, r ∈ � and let

L(M, r)∗ = lim
s→r

L(M, s)

(s− r)g
g := order of L(M, s) at r

Then there is an element δ ∈ ∆f (M(r)) such that ι∞ maps δ⊗L(M, r)∗ onto 1, and
such that ιp maps δ ⊗ 1 onto the canonical OEp

-sublattice of RΓc( � [1/p],Mp(r))
mentioned above. The main result in [HK] asserts that this conjecture holds for
Dirichlet motives up to units in OE [ 12 ]. There is also an equivariant version of
the Bloch-Kato conjecture which considers motives over 	 with coefficients in
E[Gal(K| 	 )] instead of E. This version becomes important when relating the
Bloch-Kato conjecture to Iwasawa theory. Let us now give overview on the proof
of the main theorem in [HK]. The essential steps are the following:

First the Bloch-Kato conjecture is proved directly for r = 0 and M = h0(F )
using the classical analytic class number formula for the field F . Then the com-
patibility of the Bloch-Kato conjecture with the functional equation of L(M, s) is
used in order to derive the result for r = 1 and M = h0(F )∨.

In the next step the Bloch-Kato conjecture in the equal parity case is re-
formulated in terms of Euler systems, i.e. collections of elements cr(ζN )(χ) ∈
H1( � [ζm][1/p], Tp(χ)(r)) in the étale cohomology, with coefficients in Tp(χ)(r)
given by the stable OEp

-lattice associated to the motives of the Dirichlet charac-
ters χ modulo N . (Here ”’equal parity”’ means that the parities of the character
χ and r ∈ � coincide.) The connection to Euler systems is established via the
polylogarithm: On the one hand, the Dirichlet L-series is a linear combination
of Hurwitz zeta functions, and the Taylor coefficients of these zeta functions are
essentially values of the polylogarithm. On the other hand, the cr(ζN )(χ) are sent
by the p-adic exponential map onto elements in the de Rham realization which
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can also be described by values of the polylogarithm. Using these interrelations,
one can show that the Bloch-Kato conjecture holds if and only if the elements
cr(ζN )(χ) generate the OEp

-sublattice in the determinant of étale cohomology.

The Bloch-Kato conjecture in its reformulated version is closely related to the
Iwasawa main conjecture for Iwasawa modules attached to Dirichlet characters.
Starting with the Bloch-Kato conjecture for h0(F ), this relation is used to derive,
step by step, both conjectures in all but finitely many cases. For details, we refer
to the following talk by M. Witte. In the more delicate situations (equal parity
and r < 0), one additionally needs certain explicit elements bk(ζN ) in the motivic
cohomology that are related to the polylogarithm and to the Euler system by the
regulator maps. At each stage, the unequal parity cases are derived from equal
parity via the compatibility with the functional equation. Finally, the Iwasawa
main conjecture in the unequal parity case is used in order to handle the remaining
finite number of cases.

The talk is concluded by giving some details on the first part of the proof,
the class number formula case. Remember that the Betti realization MB of any
motive M has a natural integral substructure, which we denote by TB . Now let
M = h0(F ), where F is a number field. The classical regulator in the Dirichlet
unit theorem is given by the volume

(1) R∞(F ) = vol( (T∨
B ⊗ � )+/(r∞(O×

F /µ(F ))⊕ s∞( � )) )

where r∞ is the Beilinson regulator, s∞ : H0
M( � , h0(F ))→ (M∨

B)+⊗ � is the cycle
class map and µ(F ) is the subgroup of O×

F given by roots of unity. Let δ ∈ ∆f (M)
be an element such that δ ⊗ ζF (0)∗ = 1. By the classical analytic class number
formula, we have

ζF (0)∗ = −
R∞(F )hF

]µ(F )
hF := class number of F

Combining this with (1), we obtain δ � = det Cl(OF ) ⊗ det−1O×
F ⊗ det−1T+

B .
It remains to check that δ ⊗ 1 is a generator of the integral structure in
detEp

RΓc( � [1/p],Mp). The main ingredients to achieve this are a Poitou-Tate

localization sequence which relates the groups Cl(OF ) and O×
F with étale coho-

mology, and the global duality isomorphism from above that connected usual co-
homology and cohomology with compact support.

Application to Special Values of L-Functions II

Malte Witte

The purpose of this talk is to give some insight into the proof of the Bloch-Kato
conjecture for Dirichlet motives given in [HK]. It is a direct continuation of the
previous talk by Ralf Gerkmann, in which the conjecture was formulated. Up to
slight modifications we continue to use the same notation. An excellent survey of
the conjecture and the proof can also be found in [Ki2].
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Let h(χ)(r) be the r-th Tate twist of the Dirichlet motive associated to the
character χ : Gal(Q(ζN )/Q) −→ C∗. In the following we focus on the equal parity
case, i.e. we consider only those characters with χ(−1) = (−1)r, and we exclude
the special case r = 0. The compatibility of the Bloch-Kato conjecture under the
functional equation can then be used to show that the conjecture is also valid for
the unequal parity case (excluding r = 1). The remaining cases have to be treated
separately.

Consider the fundamental line ∆f (χ)(r) for the Dirichlet motive h(χ)(r) with
coefficients in a number field E. The ∞-part of the Bloch-Kato conjecture states
that there is a δr ∈ ∆f (χ)(r) such that δrL(χ, r)∗ is mapped to 1 under the
isomorphism

∆f (χ)(r) ⊗Q R ∼= E ⊗Q R.

The Hurwitz functional equation links the values L(χ, r)∗ with values of the
polylogarithms Li1−r. For r ≥ 1 the functions Li1−r are in fact rational, while
the motivic cohomology groups are trivial. In this case, an explicit description
of δr can be obtained by an elementary calculation from the Hurwitz functional
equation and the comparison isomorphism between Betti and deRham cohomology
(see [HK, proof of Thm. 3.3.2]). For r < 0 the same task can be achieved by the
argument of [Be] (with corrections in [Ne] and [Es]) that proves the Beilinson
conjecture for number fields. Here, the values of the polylogarithms play again a
decisive role.

In both cases one can also describe the image of δr under the isomorphism

∆f (χ)(r) ⊗Q Qp
∼= detEp

RΓc(Spec Z[1/p], j∗(h(χ)(r))p)

(where j : Spec Q −→ Spec Z[1/p] is the natural inclusion, Ep = E ⊗ Qp, and
(h(χ)(r))p denotes the p-adic realization of the motive) for any odd prime p. For
r < 0, this follows from the main result of [BD2], respectively [HW2]; for r ≥ 1
the description is essentially obtained from Kato’s explicit reciprocity law ([Ka,
Thm. 5.12]).

It is more convenient first to rephrase the p-part of the Bloch-Kato conjecture
using global Poitou-Tate duality. With an appropriate choice of a lattice Tp(χ

−1)
the statement then reads as follows:

Theorem ([HK], Thm. 3.3.2 and Thm. 5.2.3). The p-part of the Bloch-Kato con-
jecture for all h(χ)(r) with χ(−1) = (−1)r is true if and only if the cyclotomic
element c1−r(1)(χ−1) is a generator of

det−1
OEp

RΓ(Spec Z[1/p], j∗Tp(χ
−1)(1− r)).

The cyclotomic element c1−r(1)(χ−1) ∈ H1(Spec Z[1/p], j∗Tp(χ
−1)(1−r)) forms

the first layer of the Euler system mentioned in the previous talk. It can be viewed
as an element of the determinant of RΓ(Spec Z[1/p], j∗Tp(χ

−1)(1 − r)) ⊗L
OEp

Ep

over Ep since the first cohomology module of this complex has Ep-rank 1, whereas
all other cohomology modules vanish. For r < 0 the latter result is a deep theorem
by Soulé (cf. [So1]); for r ≥ 1 this can be proved by more elementary arguments
(cf. [HK, Lemma 3.3.1]).
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The above formulation of the Bloch-Kato conjecture can then be reduced to a
version of the Iwasawa main conjecture by climbing up the tower of the cyclotomic
Zp-extension of Q. Let Qn be the unique subfield of Q(ζpn+1) with Gal(Qn/Q) ∼=
Z/pnZ and denote by Zn the ring of integers of Qn. Set

RΓgl(Tp(χ
−1)(1− r)) = lim

←−
RΓ(Spec Zn, j∗Tp(χ

−1)(1− r)).

This is a complex of modules over the Iwasawa algebra

Λ = lim
←−
OEp

[Gal(Qn/Q)].

Note that the only non-vanishing cohomology group of RΓgl(Tp(χ
−1)(1 − r)) ⊗L

Λ

Q(Λ) is the first one, having Q(Λ)-rank 1. On the other hand, the sequence
(c1−r(ζpn)(χ−1))∞n=0 defines an element c1−r(χ

−1) ∈ H1
gl(Tp(χ

−1)(1− r)). Hence,
one can formulate the following main conjecture of Iwasawa theory in complete
analogy to the above Bloch-Kato conjecture for all r ∈ Z.

Theorem ([HK], Thm. 4.4.1). Assume χ(−1) = (−1)r.

Then c1−r(χ
−1) ∈ det−1

Q(Λ) RΓgl(Tp(χ
−1)(1− r)) ⊗L

Λ Q(Λ) is a generator of

det−1
Q(Λ) RΓgl(Tp(χ

−1)(1− r)).

Since

RΓgl(Tp(χ
−1)(1− r)) ⊗L

Λ OEp
= RΓ(Spec Z[1/p], j∗Tp(χ

−1)(1− r))

Λc1−r(χ
−1)⊗L

Λ OEp
= OEp

c1−r(1)(χ−1),

this theorem is seen to imply the Bloch-Kato conjecture. So it remains to prove
the Iwasawa main conjecture. The argument follows closely Rubin’s proof of the
classical main conjecture (see [Ru]). Alternatively, one can also deduce the above
theorem directly from the result of Mazur and Wiles [MW].

One crucial property of the main conjecture is that the statement is invariant
under twists in the following sense. Let

εcycl : Gal(Q/Q) −→ Z∗
p

be the cyclotomic character and write εcycl = ε×ε∞ according to the decomposition
Z∗

p
∼= µp−1 × 1 + pZp. Then there is an isomorphism

RΓgl(Tp(χ
−1)(1− r)) ⊗L

OEp
OEp

(ε∞) ∼= RΓgl(Tp(χ
−1ε−1)(2− r))

which maps c1−r(χ
−1) onto c2−r(χ

−1ε−1).
The twist invariance is used to complete the proof of the main conjecture as

follows. First, one considers the case r = 0 to show that detΛ RΓgl(Tp(χ
−1)(1−r))

is contained in the Λ-sublattice of detQ(Λ) RΓgl(Tp(χ
−1)(1− r))⊗L

Λ Q(Λ) spanned

by c1−r(χ
−1). This is accomplished by the Euler system methods developed by

Kolyvagin, Rubin, Kato, and Perrin-Riou. Then the case r = 1 is used to reduce
the other inclusion to the class-number case of the Bloch-Kato conjecture, which
was treated in the previous talk.
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