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Introduction by the Organisers

This workshop gathered 44 participants from 19 countries and represented a corre-
spondingly multifaceted program concerning various diseases, public health issues
and methodological innovations.

The presentations and discussions highlighted again the crucial role that math-
ematical models and statistical analyses play in understanding the transmission of
infectious diseases and in the development of strategies for their control. Math-
ematical transmission models and analyses are needed to assess potential control
strategies (including determination of optimal strategies), to develop statistical
analyses that allow for the dependence in data generated by transmission of infec-
tion and to keep track of aspects of the infection dynamics that one cannot observe
in practice.

Modeling approaches, data analyses and parameter inferences were applied to
diseases like malaria, yellow fever, pneumococcal and meningococcal infections,
hepatitis C and smallpox. Due to their current relevance, emerging infectious
diseases and SARS attracted special attention and generated much discussion.
These were complemented by talks on the public health issues of bioterrorism and
interventions like vaccination and contact tracing and general aspects of control
and eradicability of infections.

While the research focus is motivated by real world applications, the need to
accommodate complex population structures makes this area one requiring diverse
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and innovative mathematics and statistics. For example, the models draw on dif-
ferential calculus, graph theory and multi-type stochastic processes with novel
specifications of ’type’. The statistical analyses based on such models often re-
quire modern computer intensive methods with novel features, such as the use
of random graphs for the transmission chains as latent variables. Furthermore,
the methodological spectrum in this workshop comprised Bayesian approaches,
computer simulations and the modelling of spatial structures and households.

An evening discussion session on reproduction numbers focussed on the prob-
lems of its applicability, in particular with respect to infections in which density-
dependent processes operate. The variety of topics made it necessary to organize
a session for short talks and an evening with presentations where speakers pre-
sented current work on their individual laptops. This provided a very stimulating
platform for collaborations and discussions because lecturers could interactively
present the work on his/her specific computer environment to a specifically in-
terested audience. This mode of presentation, which turned out to be a novelty
at the Oberwolfach institute, could represent an appropriate alternative to poster
presentations in future workshops.

The workshop closed with a discussion session about future activities and open
problems.

On Thursday evening after a first class concert with piano recitals of Bach,
Mozart and Chopin and Lieder of Schubert and Schumann an old Oberwolfach
tradition was revived when participants from nearly all represented countries con-
tributed to a most enjoyable variety program of poems and songs.

Niels Becker
Klaus Dietz
Niels Keiding
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Dietz)
Contact tracing and stochastic graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2627

Nico J.D. Nagelkerke (joint with Sake J. de Vlas)
Interactions between infections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2629

Philip D. O’Neill
Bayesian inference for final outcome data using Random Graphs . . . . . . . 2631

Mick Roberts
Invasion of exotic infections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2632

Mick Roberts (joint with Hans Heesterbeek)
Identification of reservoirs of infection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2634

Lisa Sattenspiel (joint with Connie Carpenter)
Using an individual-based model to study the spread of
infectious diseases among Canadian fur-trapping populations . . . . . . . . . . 2636

David J. Scott (joint with Shanthi Ameratunga, Alex Macmillan, Diana
Lennon, Joanna Stewart, Sue Crengle, Kim Mulholland, Mick Roberts)
The Data Analysis Plan for the New Zealand Meningitis B
Vaccination Programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2637

Tom Smith (joint with Wilson Sama )
Estimating the duration of common persistent infections . . . . . . . . . . . . . . 2638



Design and Analysis of Infectious Disease Studies 2595

Claudio J. Struchiner (joint with Margareth G. Kidwell, José M.C. Ribeiro)
Population Dynamics of Transposable Elements: Copy
Number Regulation and Species Invasion Requirements . . . . . . . . . . . . . . . . 2639

Stefan Wagenpfeil (joint with B. Hellriegel)
Dynamic population models and invasive pneumococcal diseases . . . . . . . . 2641

Jacco Wallinga (joint with Peter Teunis)
Real-time tracking of reproduction numbers during epidemic outbreaks . . 2643

Paul S.F. Yip (joint with KF Lam, Eric Lau, Pui-Hing Chau, Kenneth W
Tsang and Anne Chao)
A study of real time fatality rate for an emerging disease: a
case for severe acute respiratory syndrome (SARS) in Hong Kong . . . . . . 2645





Design and Analysis of Infectious Disease Studies 2597

Abstracts

Optimal vaccination strategies for epidemics with two types of
infection

Frank Ball

(joint work with Niels Becker)

This talk is concerned with vaccination strategies for the control of an epidemic
among a community of households (cf. [1] and [3]), in which the severity of disease
depends on the dose ingested at exposure. There are two types of infective, mild
and severe cases, which, in the absence of vaccination, arise from low- and high-
dose exposures, respectively. Individuals mix homogeneously within households
and, at a much lower rate, within the community at large. Two models for vaccine
action are considered. In the first model, the vaccine response of an individual is
described by the realisation of a random vector (A, B), where A describes relative
susceptibility compared to an unvaccinated individual and B describes relative
infectivity should the vaccinee become infected. In the second model, a vaccinated
individual avoids infection when exposed to a low dose and becomes a mild case
when exposed to a high dose.

A reproduction number for the epidemic model is derived. Optimal vaccination
strategies, which reduce the reproduction number to its threshold value of one
with minimum vaccination coverage, are considered for the case when the disease
is highly infectious within households (cf. [2]). For the first model of vaccine
action, this optimisation problem is solved completely. For the second model of
vaccine action, the problem is solved when community mixing is proportionate
(i.e. when the proportion of community contacts that are low-dose exposures is
the same for contacts made by both mild and severe infectives), and also when all
the households in the population have the same size.

Suppose that every household in the population has n members. Then under the
first model for vaccine action, with E(A) < 1 and E(B) < 1, the optimal strategy
has the equalising form, which, for given vaccination coverage v, minimises the
variance of the number of people vaccinated in a randomly chosen household. Thus
the numbers of people vaccinated in the different households are made as equal as
possible. Under the second model for vaccine action, depending on the parameter
values, the form of the optimal strategy is either equalising, or to vaccinate whole
households (which maximises the above variance). Moreover, for some choices
of parameter values, the form of the optimal strategy can also depend on the
household size n.

References

[1] F. G. Ball and O. D. Lyne, Optimal vaccination policies for stochastic epidemics among a
population of households, Mathematical Biosciences 177-178 (2002), 333–354.

[2] N. G. Becker and K. Dietz The effect of household distribution on transmission and control
of highly infectious diseases, Mathematical Biosciences 127 (1995), 207–219.
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On the analysis of randomised malaria trials

Heiko Becher

In this presentation, some aspects in the analysis of randomized malaria trials are
outlined. Data available for analysis vary between trials. Usually, participants
are visited daily or every two days. In case of fever, blood samples are taken
for malaria diagnosis. In addition, cross-sectional surveys are performed at which
blood samples are taken from all individuals. Individual data (anthropometric
measures and clinical parameters etc.) Observation time varies between less than
one year to several years.
Among the difficulties in the analysis are the following:

• How to define the outcome variable.
• how to take the observed parasite count into account
• how to adjust for mortality (malaria as main cause, concomitant cause,

other cause of death)
• how to adjust for standard treatment effect
• how to use cross-sectional and longitudinal data simultaneously?

Possible standard analysis include Poisson regression with number of malaria
episodes as the outcome variable and the logarithm of the risk period as an offset.
In defining the risk period the time under treatment for a given malaria period
must be taken into consideration.

The statistical methods used and their inherent limitations will be outlined us-
ing two examples:
i) an ongoing 2-arm trial on insecticide-treated bednets (Group 1: bednet from
birth; group 2: bednet after 6 months)
ii) a published randomized double-blind placebo-controlled trial on zinc supple-
mentation (Müller et al., 2001)

References

[1] O. Müller, H. Becher, A. Baltussen, Y. Ye, A. Diallo, A. T. Konate, I. Nebie, A. Gban-

gou, B. Kouyaté, M. Garenne, Effect of zinc supplementation on malaria and other causes
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Predicting severe sequelae of injection-related Hepatitis C

Sheila M. Bird

(joint work with Sharon J. Hutchinson, David J. Goldberg)

The work presented, which expands on the data and ideas in [1, 2] is from the
doctoral thesis of Sharon J. Hutchinson, which was co-supervised by David J.
Goldberg and Sheila M. Bird.

Hepatitis C (HCV) is distinguished from Hepatitis B by the absence of vac-
cine, low transmissibility sexually but 80% chronic carriage; from HIV by 10 times
higher transmission risk from needle-stick and by only 5 - 10% 20-year progres-
sion rate to severe disease, and 50 - 60% sustained viral clearance by treatment
(with pegylated interferon plus Ribavirin). Severe HCV sequelae are cirrhosis,
decompensated cirrhosis (DC) and hepatocellular carcinoma (HCC); incubation
period is counted in decades; and prognostic factors are age, gender, heavy alcohol
consumption and co-infection (such as with HIV or hepatitis A or B).

In Scotland (population: 5 millions), HCV prevalence is 0.3 - 0.4% in pregnant
women, but in the mid 1990s was 76% (95% CI: 70 - 81%) for injection drug users
(IDUs), only 30% of whom had been HCV-tested. To the end of December 2001,
Scotland had registered 13,500 HCV diagnoses, 90% of them in individuals with
a history of injection drug use. Diagnoses increase by about 2000 per annum in
Scotland where a national capture-recapture study estimated about 25,000 current
IDUs (of known demography) in 2000, and HCV incidence in mid to late 1990s
was estimated at 20 - 34 per 100 susceptible injector-years.

Against this background, our aim was to project severe sequelae of injection-
related HCV, primarily for Glasgow IDUs about whom there is a wealth of be-
havioural data from HIV/HCV surveys in the 1990s. The work was in three parts:
estimating incidence and cessation of injecting (Modified delphi technique); es-
timating the incidence of HCV among injectors (HCV transmission model); and
estimating progression from HCV infection to severe disease among ever-IDUs
(HCV progression model, which took account of covariate influences (age at in-
fection, gender, heavy alcohol use, and co-infection with HIV) - as determined by
meta-analysis of HCV progression studies). Also critical was a Database Linkage
Outcomes Study because, unlike for HIV/AIDS, there is no national register of
diagnoses of severe liver sequelae of injection-related HCV. Thus, these outcomes
had to be determined by matching of the HCV diagnosis register to hospitali-
sations, cancer registrations, HIV test database, and deaths (by cause) register.
Briefly, key results were the following:

a) experts’ opinion about (B) incidence and (C) cessation of injection drug
use in 1960-2000 in Glasgow were not coherent with their beliefs about (A) IDU
prevalence. By a form of rejection-sampling, coherence distributions for (B) and
(C) were derived which were consistent both with (A) and with capture-recapture
estimates for Glasgow’s prevalent IDUs at the end of the 1980s and in 2000.

b) stochastic modelling was then used to follow HCV infection status - on an
individual basis - of current injectors from IDU onset to death/cessation. The
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above coherence disrtibutions (B) and (C) were used together with behavioural
data (on percent of IDUs who had shared needle-syringe (N/S) in the past year;
conditional geometric distribution for number of N/S partners; and percentage of
injecting episodes (assumed 3 per day for 48 weeks per year) that were with used
N/S - decreasing with decreased number of sharing partners), and viral factors
(transmissibility and persistence of HCV infection). By incorporating a 10-fold
increase in infectiousness in an initial high viraemia phase of 6 - 8 weeks was HCV
prevalence in 1980 - 2000 adequately modelled - otherwise it was systematically
under-estimated compared to survey data whereas HIV prevalence was properly
accounted for by use of same behavioural assumptions.

c) stochastic modelling was used to follow individuals - in annual cycles - from
IDU onset through HCV progression states. Lacking behavioural data on the
percentage of IDUs with heavy alcohol consumption [Relative Risk for progression:
2.3 (1.7 to 3.3)], three scenarios (0%, 20% and 40%) were investigated, noly the
highest of which gave adequate fit to Glasgow’s estimated IDU-related 179 (169
- 193) cases of DC in 1996-2001 - provided also that progression rate to cirrhosis
at 20 years was revised up from 6.5% (3.5 - 9.5%, based on Freeman et al.[3]) to
7.5% (5 - 10%).

Public health implications were as follows: projected doubling of Glasgow IDUs
HCV-related cases of DC between 2000 and 2020; in 2005, Glasgow’s former IDUs
will include about 13,000 aged 30-39 years, one sixth of whom have moderate to
severe (treatable) HCV disease, and 5,100 aged 40-49 years, one third of whom
have moderate or severe HCV disease; modelled disease toll by 2000 (and by 2010
- when around 40 years of age) among 1800 new Glasgow IDUs in 1985 (peak year)
was: HCV related death 1% (3%), former IDU death 3% (8%), current IDU death
10% (11%) - mainly overdose deaths, moderate HCV disease or worse 18% (32%)
with only 29% (29%) having been HCV uninfected/recovered.

Model criticisms include: need to question constant drugs-related death rate
irrespective of gender, age and calendar time; and need for better information
about cause-specific death rate of former IDUs and about (current and former)
IDUs’ heavy alcohol consumption.

References
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Estimating transmission parameters for infectious diseases in small
hospital units

Martin C. J. Bootsma

(joint work with Marc J. M. Bonten, Odo Diekmann)

Resistant pathogens in hospitals form an emerging health care problem and ef-
fective strategies to prevent their spread are required. However, the efficacy of
control measures depends on the nature of the spreading mechanisms. Therefore
the identification of the most important route is important. Recently, two articles
appeared [1, 2] to determine the relative importance of outgrowth of pathogens,
that were already present at an undetectable level, due to antibiotic selection and
cross transmission. Both methods have some disadvantages. Both assume constant
discharge rates and a constant bed occupancy and cannot distinguish between ad-
mission of colonized patients and the outgrowth of already present pathogens.
Moreover, the model in [1] assumes that acquisition took place at the moment of
detection, while [2] only looks at infection data. However infections only represent
the tip of the iceberg as most patients carry pathogens asymptomatically.

We use a Markov chain approach based on likelihood methods, to make optimal
use of the available data (date of admission, date of discharge, dates of the micro-
biological culturing and the results of these cultures) to determine the importance
of different routes. This approach does not require genotyping. We use a discrete
time framework where the up-dating (on a day by day basis) consists of 4 parts:
1) Evolution according to the mechanistic model, 2) Use of the results of the cul-
turing, 3) Removal of the patients from the state space for which the colonization
status is certain, 4) Incorporate new patients in the state space for which the
colonization status becomes uncertain. Within the framework, additional patient
characteristics can be incorporated as well. In this framework, we glue together
state spaces of different size according to the need as exposed by the data.

To determine optimal culture strategies, we simulated a unit of 10 beds. Of
course, the more frequent patients are cultured, the faster the most important
infection route can be determined statistically significantly. However, for typical
values of the parameters, a regime of culturing patients on admission and after-
wards twice per week gives the most information per performed culture.

References

[1] I. Pelupessy, M. J. M. Bonten and O. Diekmann, How to assess the relative importance of
different colonization routes of pathogens within hospital settings, Proc. Natl. Acad. Sci. 99
(2002), 5601-5605.
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Epidemic models with different severities

Tom Britton

(joint work with Frank Ball)

Inspired by discussions at an epidemic meeting in Mariefred, Sweden, 2003, this
talk is concerned with stochastic epidemic models where there are two types of
severity, mild and severe, of infectious individuals. In the first model the type
of severity depends on the amount of infectious exposure an individual receives,
and infectives are always initially mild but may become severe if additionally
exposed. In the second model an infective can only be one type, but the type
typically depends on the type you were infected by. Large population properties
of the models are derived and compared. The first model has the property that the
basic reproduction number only depends on parameters of the mild infectious state
whereas the final size in case of a major outbreak also depends on parameters of
the severe state, and the limiting final size proportions need not even be continuous
in the parameters. The second model resembles a so-called competing epidemic
model having a more complex final outcome behaviour. In the talk we will discuss
pros and cons of the models and look forward to comments (criticism) from the
audience.

References

[1] F. G. Ball and T. Britton, Epidemic models with varying severity, (2004), (In preparation).

Survival analysis of Taiwan SARS data by a semiparametric mixture
model

I-Shou Chang

(joint work with Tsung-Hsi Wang, Yung-Hsiang Huang, Donald Dah-Shyong
Jiang, Jhy-Yuan Yang, Ting-Hsiang Lin, Che-Chi Yang, Yuh-Jenn Wu,

Chi-Chung Wen, Ih-Jen Su, Chao A. Hsiung)

A semiparametric mixture model for competing risks problem is used for the anal-
ysis of SARS(severe acute respiratory syndrome) patient data, where a patient
admitted to a hospital experiences either a death or a discharge from the hospital.
This model includes an explicit modelling on covariate-specific fatality rate, and a
semiparametric modelling on the time to death and the time to discharge. Identi-
fiability of the parameters in the model and the existence and consistency of the
standard nonparametric maximum likelihood estimate (NPMLE) are established.
Self consistency equations derived from the score functions are used to get an it-
erative algorithm for the computation of NPMLE; bootstrape method is used to
provide confidence intervals of the estimates [3].

This model was first proposed by Fine [6], which generalizes the parametric
mixture model of Larson and Dinse [9]. Estimation in this model was also discussed
by Fine and Gray [8], Betensky and Schoenfeld [2], Fine [7], Andersen [1], Donnelly
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et al. [5]. Readers are referred to Lingappa et al. [10] for a general introduction
of SARS epidemic.

Using this method, we report the covariate-specific fatality rate, covariate-
specific time of onset-to-death, and covariate-specific time of onset-to-discharge
of SARS patients, based on Taiwan data in the year of 2003 (cf. [4]). All the
statistical significance results are based on 95% confidence intervals. We find that
age is a significant covariate, especially in the group with positive laboratory test
result. In fact, the estimated age-specific fatality rate is a strictly increasing func-
tion of age, and the hypothesis that fatality rate doesn’t change with age can be
rejected at significance level less than 0.05. For the curable ones, whom we do
not know in advance, both the elderly and the laboratory confirmed cases spend
longer time in hospital before discharge. For the incurable ones, whom we do
not know in advance either, the laboratory confirmed cases spend longer time in
hospital before death. Neither gender nor time from onset to admission play any
statistically significant role in the fatality rate, in the time to death, or in the time
to discharge.
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The impact of density-dependent processes on the eradicability of
parasitic diseases

Hans Peter Duerr

(joint work with Martin Eichner & Klaus Dietz)

The control of parasitic diseases has been subject to past and current WHO
activities. Although some examples of (local) parasite elimination exist (schistoso-
miasis, lymphatic filariasis), the global control campaigns have either not achieved
eradication (e.g. onchocerciasis) or are in progress (e.g. lymphatic filariasis). It
remains unclear if these infections can be (globally) eradicated so that our pre-
dictions of intervention success rely on modeling approaches. The prerequisites
of eradicability are transmission thresholds [1] (a vector density below which the
infection cannot persist) and breakpoints [2] (a parasite density below which the
infection cannot persist). In contrast to transmission thresholds, which are known
since long, the effects of breakpoint-inducing processes are widely unexplored.
Breakpoints can result from particular density-dependence, e.g. facilitated infec-
tion [3] which has been suggested to occur in filarial diseases as a consequence of
parasite-induced immunosuppression.

We investigate numerically how density-dependent processes (i.e. facilitation
and limitation processes) impact on the eradicability of parasitic diseases. It
seems to be a rule that facilitation processes increase transmission thresholds and
induce breakpoints into the transmission of an infection whereas limitation pro-
cesses lower transmission thresholds or potentially existing breakpoints to a value
where these practically can disappear. This can be summarized with respect to
intervention campaigns, because facilitation processes will ’facilitate’ the eradica-
bility of a parasite, whereas limitation processes will ’limit’ the prospects of such a
success. With respect to mathematical models, this means, that predictions of the
success of intervention programs will be over-optimistic if the degree of facilitation
is overestimated or if the degree of limitation is underestimated. Vice versa, model
predictions will be over-pessimistic if the degree of facilitation is underestimated
or if the degree of limitation is overestimated. Both types of density-dependence
may coexist in the transmission cycle and even in the same host, and their sum
decides whether the net effect on eradicability will be positive or negative.

In this context it would be helpful to have measures of density-dependence
available by which the net result of coexisting processes could be quantified. The
design of future control activities and the predictability of intervention success
highly depend on our knowledge about parameters by which the infection dynamics
are driven. Our sensitivity analysis identifies relevant parameters and provides
information where future research should focus on [4].
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Can residual protection conferred by previous smallpox vaccination be
harmful?

Martin Eichner

(joint work with Markus Schwehm)

Recent discussion about the use of smallpox by bioterrorists have rekindled the
interest in the one and only infectious disease defeated by a huge concerted vac-
cination action. About half of the population of most industrial countries have
experienced smallpox vaccination some decades ago. Although previously vacci-
nated individuals retain some degree of protection against disease, most of them
have lost their protection against infection. We assume that a previous vaccination
reduces susceptibility to smallpox by a factor fS . Furthermore previous vaccina-
tion of an infected individual may reduce infectivity to contacts by a factor fI .
But previous vaccination can also have a dark side which may actually lead to
a more devastating outbreak. Previously vaccinated individuals might show less
symptoms and thus be recognized (by a factor fD) later as carriers of the infec-
tion than unvaccinated cases with clearly visible symptoms. Finally, previously
vaccinated cases developing only a mild infection may move around more freely,
contacting (by a factor fM ) more people per unit of time, whereas severe cases
concentrate most of their contacts to few close contacts and caregivers.

We use a deterministic mathematical model and an individual-based stochastic
computer simulation to explore the effect of previous vaccinations on the outcome
of an epidemic for a wide range of parameter constellations. Both models con-
sider case detection, isolation and contact tracing as interventions. The average
outbreak size of a basic stochastic model corresponds well with the outbreak size
predicted by the deterministic model over a wide range of parameter constella-
tions. However, the range of outbreak sizes computed by the stochastic model are
too large to be ignored. This observation becomes amplified when a more realistic
and detailed stochastic model (including scale-free contact network topology, close
and remote contacts, gamma-sampled state transitions and limited intervention
capacities) is used. Finally the computed results are compared with historical
reports of smallpox outbreaks.
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Figure 1. Comparing the “basic outbreak size” (fS*fI*fM*fD=1;
full line) with the expected outbreak size for different products
fS*fI*fM*fD (dashed line) and with outbreak scenarios in an
individual-based stochastic model with exponentially distributed
sojourn times.
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SARS Incubation and Quarantine Times

Vernon T. Farewell

(joint work with A.M. Herzberg, K.W. James, L.M. Ho, G.M. Leung)

Quarantine was one of the key aspects of infection control introduced during the
recent SARS (severe acute respiratory syndrome) epidemic. An important paper
on epidemiological aspects of SARS was that of Donnelly et al [1]. The work
reported here arose from a question related to the confidence a community should
have that an individual who has passed through the SARS quarantine period is
disease-free. The concept of a maximum incubation time could be relevant to these
considerations.

Consider a gamma distribution for incubation times. Thus if T is the random
variable representing an incubation time, with an observed value of T = t, then a
gamma distribution for T is specified by the probability density function

g(t) =
1

saΓ(a)
t(a−1)e−(t/s),

where t > 0, a > 0 and s > 0.
If this distribution is truncated at some time M , so that 0 < T < M , then the

density function for T becomes f(t) = g(t)/G(M), where G(M) =
∫ M

0 g(t)dt.
Estimation of the parameters a, s and M can be based on the likelihood function

denoted L(a, s, M). The profile likelihood for the parameter M is defined by
LP (M) = L(ã(M), s̃(M), M), where ã(M) and s̃(M) are the MLEs of a and s for

a fixed value of M . This function can be standardized as L∗
P (M) = LP (M)

LP (M̂)
, where

M̂ is the MLE of M .
The MLE of M is at the largest ti. However, standard asymptotic distributional

results for MLEs will not be applicable for the parameter M . Here, it is sufficient
to consider the comparative shapes of likelihood functions, regarded simply as
representing the information available from the data for inference concerning the
unknown parameters.

Alternatives to the truncated gamma can be considered and the truncated log-
normal is specifically examined. A more general alternative is the so-called log-
gamma distribution of Farewell and Prentice [5] which represents a reparameteri-
zation and extension of a generalized gamma distribution.

With α, q ∈ R and σ > 0, the log-gamma model can be written as the location
scale model y = log(t) = α + σw, where the density f(w; q) for w is

| q | (q−2)q−2

exp[q−2{qw − exp(qw)}/Γ(q−2)
if q 6= 0 and, when q=0, is the standard normal distribution. The log-gamma
distribution includes the Weibull (q = 1) and exponential (q = σ = 1) distributions
as special cases as well as the gamma (q = 1/σ) and log-normal (q=0).

We consider data from 67 SARS cases in Hong Kong whose interval of possible
exposure times is less than 5 days. The data consist of a maximum and minimum
possible incubation period for each case. For the averaged times, Figure 1 presents
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the profile likelihoods, L∗
P (M), based on the gamma, log-normal and log-gamma

models.
For the truncated gamma model, the profile likelihood never drops below 60%

suggesting that any value of M greater than the maximum time observed, 14, is
plausible. However, the situation is different for the truncated log-normal model.
For this model, any value for M greater than 19.5 days makes the data more than
10 times less plausible than does the MLE of 14 days. For the log-gamma model
that includes both other models as special cases, the profile likelihood for M is
more informative than that based on a gamma model, but it never falls below a
value of 20%. This is true even though the maximum likelhood estimate of q is
-0.13, a value close to the value q = 0 corresponding to the log-normal model.

We also consider likelihood estimation based explicitly on the maximum and
minimum incubation times. The general pattern of the likelihoods is similar to
that in Figure 1, but, with interval-censoring, not even the log-normal likelihood
drops to less than the 10% level.

When there is insufficient evidence to be very confident about a maximum incu-
bation time, an alternative approach is to set a quarantine time on the basis of per-
centile estimation. The estimated 95th percentiles for the untruncated log-gamma
and log-normal distributions are 10.66 and 12.09. Corresponding 95% confidence
intervals are (9.24, 13.68) and (9.95, 15.34). Note that if interval-censored data
are used to fit the log-gamma model, then the estimated 95th percentile is 10.2
with a confidence interval of (8.64, 13.68), an interval 14% longer than that for
the averaged data.

It appears a quarantine time of 10 days for SARS might release one infectious
patient in twenty. The larger the quarantined population, the larger the number
of released infectious individuals. Thus the length of a quarantine period might
well be set in light of the expected number of quarantined indivduals.
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Figure 1. Profile likelihoods based on 67 SARS cases
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Evolution and Epidemiology of Bacterial Pathogens

Christophe Fraser

(joint work with William P. Hanage and Brian G. Spratt)

Transmissible bacteria are a fascinating evolutionary system. They are complex
enough to engage in sophisticated evolutionary strategies, including several mech-
anisms of gene exchange (i.e. bacterial sex). Bacterial populations often exhibit
complex strain structure. However their fate is also intimately tied in with their
host. The basic act of bacterial reproduction is transmission from one host to
another, which means that for human-carried bacteria, human sociology can have
a major impact on bacterial evolution. Furthermore, colonising bacteria must not
only compete against each other, but also against various host immune responses.

Evolutionary Questions
The study of bacterial evolution is often motivated by practical problems. How will
bacterial populations respond to imperfect, strain specific vaccines? For example
for the new pneumococcal conjugate vaccines that targets seven of the most com-
mon serotypes, replacement by non-vaccine strains is of concern. How do bacterial
populations respond to specific selection pressures such as exerted by antibiotics?
Methycillin resistance has become widespread in hospital populations of Staphylo-
coccus aureus (MRSA) but not yet in the community. Will this change? However,
there are also more basic questions that should be asked, such as identifying evo-
lutionary models which best explain observed population structures.

Epidemiology Questions
Genetic typing of bacteria is widely used to identify clusters of transmission. How-
ever doing this without an underlying evolutionary model is problematic, since it
is difficult to identify whether two strains are identical because of recent transmis-
sion or because of common evolutionary descent. If this problem can be resolved,
genetic studies may be invaluable for inferring both local and global patterns of
transmission. Their study may contribute to our understanding of disease trans-
mission networks, which underlie predictions of for example the spread and possible
control of future influenza pandemics.

The studies and methods
Our approach is data-driven. We focus on four studies of three pathogens that
together cause substantial global morbidity and mortality ([2, 3, 4, 5]): Streptococ-
cus pneumoniae, Neisseria meningitidis and Staphylococcus aureus. These three
species share several features. First, they are accidental pathogens. Infection only
very rarely leads to disease. Healthy carriage is the norm. The reason the net bur-
den of disease is large is that infection rates are extremely high. Our four studies
thus focus on the natural populations, i.e. samples of carried bacteria. Second,
they recombine, in that small segments of their genome are transposed (directly,
or via several indirect routes). Third, they exhibit complicated strain structure.
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One sample was collected from each healthy volunteer in each study. Each
sample were characterised by multi-locus sequence typing, a method where seven
housekeeping genes (circa 450 base pairs long) are directly sequenced (see
www.mlst.net for more details). This method has recently become the gold stan-
dard for bacterial strain typing.

A basic model
A basic model of evolution was formulated, analysed and compared to the data.
The model extends the classical Wright-Fisher population genetic model to several
loci (=genes) and to varying levels of recombination. In each discrete time-step
in the model, each infection seeds a number of new infections, dependent on the
fitness of the strain. The total number of infections is kept constant. In each new
infection, any of the genes can mutate with probability m, in which case it is as-
sumed that a new previously unseen allele is generated. There is also a probability
r that a gene is transformed by recombination, in which case a donor for the gene
is chosen at random from the parent population. Eventually, this model reaches
equilibrium (as measured by any metric), and the model is then compared to the
data.

The metric that was chosen for model comparisons was the proportion of pairs
of samples that differed at none, one, two, etc. of the seven sequenced genes. It was
found that the null (neutral) model of evolution, in which each strain is considered
equally fit, described the model quite well, but statistically significant deviations
were observed. We thus searched for the most plausible and parsimonious expla-
nation for the deviation.

Local transmission and the excess of identical strains
All of studies were based on individuals chosen from cities, with an above aver-
age chance of knowing each other. We thus surmised that there was a substantial
chance that the samples collected could have been taken from a single transmission
cluster, all sharing an identical genotype. We thus formulated a model whereby
samples are collected from clusters, and clusters are seeded from a globally neutral
population, as described in the model above. We found that this model provided
a very good fit to all four studies.

Testing the model
To test the model, we used three other metrics:
i) For each sample, how many identical genes it shares with the most similar but
not identical other sample in the population (of the seven studied).
ii) How many ’clonal complexes’ and ’singletons’ were identified by the phyloge-
netic program eBURST (see www.mlst.net).
iii) The inferred recombination rate as compared to that estimated by two other
commonly used (but much less efficient) methods [6, 7].
In each case the model provided a good fit. Furthermore, a number of other alter-
native parsimonious models involving selection were analysed, and did not provide
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a good fit to the data. Frailty was tested by simulating from a multi-factorial model
which included positive selection at a hidden gene, and transmission clusters. The
neutral model was unable to fit to this simulated data.

Conclusions
We describe the evolutionary picture that emerges from our analysis as neutral
micro-epidemic evolution. At the local level, bacteria are transmitted epidem-
ically, with single genotypes sweeping through families, daycare centres, work-
places. However at the global level, the effect of these epidemics is smoothed out.
We found no evidence for strong differences in fitness between circulating strains.
The bacterial population can effectively be considered selectively neutral. The
analysis allowed us to estimate roughly the size and number of transmission clus-
ters in our study, and we are currently investigating what we may infer for the
communities at large, and how this relates to socially ’realistic’ models of pathogen
transmission.

The method allowed us to estimate both mutation and recombination rates
without the substantial computational burden associated with current methods.
We are also gathering more samples, which may allow us to elucidate both local
and global transmission rates. The method will be extended to more bacterial
species, to more genes, and to samples where selection is more likely to be seen in
action.

Our model provides a calibrated and validated framework within which ques-
tions of specific selective pressures associated with vaccine or antibiotic usage can
be addressed. The analysis highlights that for transmitted bacteria, evolutionary
and epidemiological questions are intimately linked and cannot be answered inde-
pendently.
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Inferring the presence of undiagnosed cases during infectious disease
outbreaks

Kathryn Glass

(joint work with Niels G. Becker, Mark S. Clements)

During an outbreak of an infectious disease, data can only be collected on in-
dividuals that are diagnosed. Individuals that experience a mild or asymptomatic
form of the disease are unlikely to seek medical attention, and so will not be di-
agnosed and recorded. If the numbers of undiagnosed individuals are sufficiently
large, it becomes difficult to infer the effect that control measures are having on
disease transmission, and in particular, it is difficult to be sure when the outbreak
is over. This is particularly problematic when there is an outbreak of a newly-
emerged infection (such as SARS) for which limited information is available on
which to estimate the rates of undiagnosed infections.

We use a two-type branching process to model disease transmission in gener-
ations [?]. Individuals in generation t are classified as either diagnosed (Dt), or
undiagnosed (Ut). We assume that a fixed proportion, π of new cases are undiag-
nosed, so that the number of cases in generation t + 1 is given by:

Dt+1 ∼ Poisson(π(µtDt + µUt))

Ut+1 ∼ Poisson((1 − π)(µtDt + µUt)).

We assume that we have data from N generations of cases, and that control
measures were applied from generation M onwards. These control measures are
assumed to affect the diagnosed cases only, so that the decline in cases is driven
by the impact of control on diagnosed cases. We model this by setting µt = µ for
t ≤ M , and µt = µc for t > M . Thus, the model includes three parameters: the
reproduction number before control (µ), the reproduction number of diagnosed
cases after control (µc), and the proportion of cases that are undiagnosed (π).

Here, inferences in the Bayesian framework are proposed. In order to estimate
the posterior distributions of the parameters, we write down the likelihood func-
tion.

L(µ, µc, π) =

M
∏

t=1

[µ(Dt−1 + Ut−1)]
Dt+UtπDt(1 − π)Ute−µ(Dt−1+Ut−1)

Dt!Ut!

×
N
∏

t=M+1

[µcDt−1 + µUt−1]
Dt+UtπDt(1 − π)Ute−(µcDt−1+µUt−1)

Dt!Ut!

Note that although data will exist for the observed number of diagnosed cases in
each generation (Dt), the number of undiagnosed cases in each generation (Ut) will
remain unknown and must be treated as a latent variable. We generate estimates
for the parameters and latent variables in the model using a Metropolis-Hastings
algorithm [2]. The distributions of the parameters provide information on the
type-specific reproduction numbers of the infection, and on the fraction of cases
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that are undiagnosed. The distribution of number of undiagnosed cases in the last
generation can be used to quantify the probability that the epidemic is over.

We first test the algorithm on artificial data generated by the model, both with
and without undiagnosed cases. The algorithm provides a good estimate of µ in
both cases, and distinguishes between the cases with and without undiagnosed
cases in the distribution of π.

Data from the SARS outbreaks is available by date of onset of symptoms [3]. We
use data from Hong Kong, Taiwan, and the first wave of infection in Canada, and
group these into generations, assuming that a generation corresponds to 10 days.
Applying the algorithm to this data, we estimate a basic reproduction number of
between 1.5 and 3.0, and that around 80% of cases are diagnosed.

In order to keep the model relatively simple, a number of assumptions have
been made about the patterns of transmission. We explore the effect of relaxing
some of these assumptions by generating some artificial data sets and looking at
the resulting parameter estimates. We find that the algorithm may overestimate
the basic reproduction number (µ) if control measures were in place earlier than
the model assumes. The model also has trouble distinguishing between ‘undiag-
nosed’ cases and ‘uncontrolled’ cases that are diagnosed, but do not experience
any reduction in the reproduction number after control. However, even allowing
for this, the number of undiagnosed (or uncontrolled) cases remains a valuable
indicator of whether the outbreak has been successfully controlled.

In future work, we intend to perform a systematic appraisal of the algorithm to
determine the type and quantity of data needed for this form of analysis. The cur-
rent algorithm requires outbreak data to be grouped into generations before anal-
ysis is performed. We intend to explore the use of the continuous-time Bellman-
Harris branching model [1] to avoid the need to identify generations.
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Timely Identification of Control Strategies for Emerging Infectious
Diseases: Severe Acute Respiratory Syndrome in Singapore

John Glasser

(joint work with Zhilan Feng)

Background
Within weeks of a traveler from Guangdong Province, China, with Severe Acute
Respiratory Syndrome (SARS) infecting others in their Hong Kong hotel, several
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case-series were published and the responsible pathogen was identified (Gerberd-
ing 2003). Public health responses to the ensuing outbreaks in Hong Kong and
elsewhere were equally swift, but not equally effective.

Objectives
To facilitate intervening effectively in outbreaks of new diseases, we modeled a
generic emerging infectious disease apparently transmitted by close contact, but
about which little else is known. Initial objectives were 1) to elucidate social
phenomena affecting disease transmission, which well-crafted health communiqués
could influence, and 2) to determine if quarantine accelerated control of SARS, or
if timely control of this new disease could have been achieved by influencing those
social phenomena. But results motivated us 3) to derive analytical expressions for
the impact of all possible interventions that could be evaluated quickly in future.

Methods
1) Our model is a system of non-autonomous differential equations (DE) in which
proportions seeking medical care during the prodrome and being diagnosed and
effectively isolated may evolve, and their contacts be quarantined soon after expo-
sure, whereas contacts of those misdiagnosed or who present with acute respira-
tory symptoms may be identified too late. 2) We estimated stage-specific infection
rates, conditional on early clinical observations and these social phenomena, by
minimizing disparities between predicted and observed hospitalizations following
the 2003 importation of SARS to Singapore. 3) We derived an expression for the
average number of infections per infectious person, R ,which must be < 1 for con-
trol, from the autonomous DE underlying our new disease model, and described
its relationship to R0, the reproductive number in a wholly susceptible population
absent intervention. 4) To evaluate various social phenomena that Singapore’s
Ministry of Health orchestrated, as well as its quarantine of possible contacts, we
took partial derivatives with respect to each intervention.

Results
During the outbreak in Singapore, people with compatible symptoms sought med-
ical care earlier (proportion hospitalized within 4 days of onset increased from 0.3
to 0.9) and clinicians became proficient at diagnosing them (proportion isolated on
admission also increased from 0.3 to 0.9). We do not yet know which patients had
been quarantined, but use the proportion isolated within one day of symptom on-
set, which increased from 0.05 to 0.6, as a surrogate. Conditional on other relevant
social phenomena, we estimate that quarantine had only modest impact (five cases
and one death averted). Because 7,863 people were quarantined, only 11 of whom
became ill (Tan 2004), the societal cost of this intervention was enormous. We
show that, for biologically reasonable pathogen, and fixed but otherwise reason-
able host response parameters, 7% more cases seeking care during their prodrome
versus acute illnesses is equivalent to quarantining 87% of contacts (cf. only 5%
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were quarantined in Singapore and Taiwan).

Conclusions
1) SARS was controllable solely by ensuring that people with compatible symptoms
sought medical care during the prodrome, especially ones who might have been
exposed, and effectively isolating those diagnosed (Fraser et al. 2004). 2) Given
biological parameters estimable from early case-series or experience with related
pathogens, our analytical expressions permit identification of the most promising
responses to emerging infectious diseases. 3) By refining initial parameter esti-
mates as information accumulated and monitoring intervention effects, modelers
could ensure timelier and otherwise more advantageous allocation of resources in
future outbreaks of new diseases.
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Causal vaccine effects on binary post-infection outcomes

M. Elizabeth Halloran

(joint work with Michael G. Hudgens)

Evaluation of many effects of prophylactic vaccines on outcomes such as severe
disease, death, or transmission to others, condition on being infected. Préziosi
and Halloran have estimated the beneficial effects of pertussis vaccination on re-
ducing transmission to others [5] and severe disease [4] in breakthrough cases.
On the other hand, concern has been raised that vaccines might have harmful
post-infection effects, increasing interest in testing for such effects ([2] and [3]).
Conditioning on an event that occurs posttreatment, in our case infection subse-
quent to assignment to vaccine or control, could result in selection bias, because
the people who become infected in the vaccinated group might not be comparable
to those who become infected in the unvaccinated group.

In this talk, we consider identifiability and estimation of causal effects of vac-
cination on binary post-infection outcomes such as transmission to others, severe
disease, and death. We use the Frangakis and Rubin [1] approach to define causal
effects within principal strata of individuals who have the same joint potential in-
fection values under vaccine and control. We develop a likelihood model to define
and to estimate the causal estimands. In general, the causal estimand for post-
infection outcomes is not identifiable without unverifiable assumptions. Under the
assumption of no selection bias, our causal estimand equals the usual net post-
infection efficacy measure. We derive closed forms for the maximum likelihood
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estimates of the post-infection causal estimates under the lower and upper bound
extreme selection bias models. The bounds depend on the configuration of the
data. We show the conditions under which the upper bound can be negative and
the lower bound can be positive. We present three methods for sensitivity analysis
based on varying assumptions of the selection bias. We analyze data from field
studies of a rotavirus vaccine candidate and a pertussis vaccine.
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Adverse effects of smallpox vaccination: new analysis of old data

Mirjam Kretzschmar

(joint work with Jacco Wallinga, Peter Teunis, Shuqin Xing, Rafael Mikolajczyk)

With concerns rising that the smallpox virus could be used in a bioterror attack,
many countries have been planning for large scale vaccination programs in case
an outbreak of smallpox occurs. As of yet, there are no new vaccines available
and one has to rely on vaccines that were used during the last century, and espe-
cially those that were used during the WHO eradication campaign. Considering
the large fraction of unvaccinated people in present societies, the question arises
how many people would be expected to suffer from adverse effects and death af-
ter smallpox vaccination. There is a lot of information about adverse effects of
vaccination scattered in the literature up to the 1970’s, the most systematic in-
vestigations being those published by Lane et al. ([2], [3]) and Neff et al. ([4],
[5]). In the recent literature an attempt has been made to compare outcomes of
those studies with techniques of meta-analysis [1], but this paper was only based
on US studies and did not employ sophisticated statistical methods. In our study,
we attempt to give a more complete picture of adverse events after smallpox vac-
cination by including also data from various European countries as published in
the (non-English) literature. We use Bayesian methods to analyze the frequency
of adverse effects depending on vaccine strain and on age of the vaccinees. Here
we report on some preliminary results concerning the occurrence of post-vaccinal
encephalitis (PVE) and death after primary vaccination.

Data sources
We conducted a systematic search of the literature using Medline and Social
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Medicine and Public Health Database (SOMED). For data specifically about Ger-
many we searched the ”Bundesgesundheitsblatt” from 1959 to 1985. We extracted
data about numbers of primo- and revaccinations, age groups, strains, and all ad-
verse effects, where available. Here we report on our analysis of the data about
the occurrence of post-vaccinal encephalitis (PVE) and mortality. Besides the
very complete and systematic studies conducted in the USA by Neff and Lane
and their coworkers, we were able to extract a considerable amount of informa-
tion about vaccinations in Germany, although the studies reported there were less
systematic and the data sometimes hard to interpret.

In all studies in the USA the vaccine strain New York City Board of Health
(NYCBH) was used. In Europe the situation was less clear and many different
strains were used in different countries, regions and time periods. In Germany in
the 1950’s and 1960’s the strain Bern was mostly used, also in Austria. In the
USSR the strain EM-63, which was derived from the NYCBH strain was used
up to 1971. In the UK the strain Lister/Elstree was developed and used. In the
Netherlands, the strain Copenhagen was used up to 1962, after that Lister/Elstree
was used. In 1968 in an effort to standardize vaccines worldwide and ensure vac-
cine quality, the WHO recommended that either NYCBH or Lister be used in the
worldwide eradication campaign.

Methods
We denote by y the number adverse events given N vaccinations with strain s in the
age interval [la, ua]. Assume that we have n observations Yi = (yi, Ni, si, uai, lai),
i = 1, ...n. We want to estimate parameters Θ = (θ1, ...θn) that describe the prob-
ability of occurrence of an adverse event given vaccination at a certain age with
a certain strain. We assume that the observed number of adverse events follows
a Poisson distribution with mean θiNi for all i. The likelihood function for Y is
then given by

(1) L(Y |Θ) =
n

∏

i=1

f(yi|θiNi)

where f is the probability density of the Poisson distribution with mean θiNi. We
assume that the probability θ consists of a base probability ζs that may depend
on the vaccine strain and a function φs(a) that describes per strain the effect of
age on the probability of an adverse event. As a prior for ζs we take a gamma
distribution (restricted to the interval [0, 1]) with strain dependent parameters:

(2) ζs ∼ Gamma(r(s), l(s))

The priors for the parameters r and l are chosen such that log r and the log mean
of the gamma distribution are normally distributed. To describe the age effect we
define the function φs as

(3) φs(a) = exp(−βsa) +
σsa

a + ρs
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with strain dependent parameters βs, σs, and ρs that have gamma distributed
priors. In the estimation procedure, this function is evaluated at the midpoints of
the observed age intervals. We analyzed the model using the Winbugs software
developed by the MRC and Imperial College, UK [6].

The analysis was conducted in several steps. First, an analysis was conducted
to investigate the effect of different vaccine strains on the frequency of PVE or
death. Then the analysis was extended to also include the effects of age. Finally,
we investigated the question, whether information obtained during a first wave of
ring vaccination could be used to judge whether the vaccine strain has increased
its virulence in comparison with historical data.

Frequency of PVE and death
For primovaccinations, we find that there are large differences between vaccine
strains. As we did not know for all data sets which strains were used for the
vaccinations, we considered two different options. One was that the USSR had
used EM-63 in the reported vaccinations, and Sweden had used Copenhagen. In
an alternative estimation, we assumed that the USSR and Sweden had used Lis-
ter/Elstree. In both cases we assumed that EM-63 had been used in GDR, the
former East Germany. Independent of those assumptions we find that Bern is
by far the most virulent vaccine strain, while NYCBH is the most benign. Lis-
ter/Elstree is intermediate. The results for the remaining two strains depend very
much on the assumptions.

Also concerning the age effects, the uncertainty for the strains Copenhagen and
EM-63 is large, reflecting the scarce data underlying the estimates. Interestingly,
we find different age dependent patterns of virulence for NYCBH and Bern. For
NYCBH the frequency of PVE is highest in the youngest age group of 0 − 1 year
olds, then drops to a minimum and rises again for ages > 3. For Bern we see an
monotonous increase with age in the frequency of PVE. Those results are already
reflected in historical or present vaccination schemes. In Germany and Austria
primovaccinations of children were not allowed above the age of 3, while in the
present United States vaccination guidelines primovaccination of children under
the age of 1 is contraindicated.

We show that with the probability of adverse events being as low as they are,
the data collected in a first wave of ring vaccination is not sufficient to revise
our historical knowledge about the virulence of a vaccine strain. For NYCBH
which would be used for ring vaccination in the US, the expectation is that with
vaccination of say 5000 persons in different age groups, no case of PVE or death
will be observed. Observation of one or more cases would fall outside the 95%
credible interval of the estimates for 5000 vaccinations. For NYCBH we extended
the analysis to estimate the mortality after revaccination, so that a total estimate
of the expected number of vaccination related deaths in case of a mass vaccination
campaign can be obtained.
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Issues in Online Surveillance of Infectious Diseases

Andrew B. Lawson

Counter terrorism surveillance of health events is now a major concern of health
surveillance community in the US following 9/11. An example of this is the now
annual conference on Syndromic Surveillance sponsored by the New York Academy
of Medicine. Online surveillance systems have to tackle a large scale data mining
problem: surveying large amounts of health data (in the form of linked time series
and disease maps) to attempt to detect aberrations in the record that may sug-
gest evidence of an attack. This problem is particularly important for infectious
disease as potential for the use of infectious agents in bioterrorism is clear. In this
talk I outline some basic issues in this area, and also hope to highlight the need
for research into the statistical issues relating to data mining of complex disease
data bases. In particular, I will briefly discuss: data capture and ascertainment,
syndromic detection, online process control, spatial imprints (trend, clustering,
discontinuity), change detection (before and during an epidemic) and Bayesian
optimal surveillance models. For further coverage see [1]
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Stochastic Models for Bioterrorist and Naturally Emerging Infectious
Disease Threats

Ira M. Longini

(joint work with M. Elizabeth Halloran, Azhar Nizam, Yang Yang, Shufu Xu)

How would we contain a large bioterrorist smallpox attack or the introduction
of pandemic influenza into a U.S. metropolitan area? In this talk, we present
stochastic microsimulation models for development of control strategies for just
such threats. These models are built for population structures based on U.S. cen-
sus data. We use a graph theoretic approach to construct populations that have
connectivity that is statistically similar to a typical U.S. population. The models
are calibrated to data from past outbreaks. This includes statistical estimation of
key parameters such as household secondary attack rates as well as intervention
efficacy such as vaccine and antimicrobial agent efficacy. We will give the par-
ticular example of containing the first wave of pandemic influenza. In this case,
there would be little or no influenza vaccine available. We will use the model to
determine the best use of antiviral agents and compare the effectiveness of such
strategies to those involving vaccine. We will present an outline of what we could
do to prepare for and contain the next influenza pandemic. We will end the pre-
sentation with a discussion of how these models can be integrated in the national
effort to control infectious disease threats.

Inference issues for stochastic multitype SIR epidemics among a
population of households

Owen D. Lyne

(joint work with Frank G. Ball)

This talk is concerned with a stochastic SIR (susceptible → infective → removed)
epidemic among a closed, finite population partitioned into households that con-
tain several classes of individual. I will discuss inference via pseudo-likelihood
for this model and possible approaches to dealing with an identifiability problem
which arises. The talk will be illustrated with an application to real data.

The households model discussed here was first analysed in [5]. In [5] the exact
distribution of the final outcome of the epidemic is outlined, a threshold theorem
is proven and a central limit theorem for the final outcome of epidemics which
take off is derived.

To conduct inference for this model from final size data the pseudo-likelihood
method uses the independent households model of [1] to generate a likelihood as
if the households were independent. Inference then needs to be corrected for the
true dependence between households in this model.

Since final size data contains a limited amount of information about between-
household infection rate parameters, an identifiability problem arises when there is
more than one class of individual. This can be overcome if multiple data sets exist
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or if assumptions are made about the form of parameters. This latter approach
can be used to analyse the variola minor data of [2].

Vaccination schemes for this model are considered in [3] and [4].
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A Game-Theoretical Model in Yellow Fever Vaccination

Eduardo Massad

(joint work with h F.A.B.Coutinho, M.N. Burattini, L.F.Lopez and
C.J.Struchiner)

Introduction
Yellow fever (YF) can be prevented by a live attenuated vaccine prepared from
the 17D strain of YF virus, that induces seroconversion in more than 95% of
recipients and provides immunity for 30 years or longer. YF vaccine has been
incorporated into routine vaccination programmes in South America, but in Africa,
coverages rates are low. Unfortunately, the vaccine has shown several adverse
effects, including mortality in an average rate of 2.5 cases per million doses.

Vaccination policies has ranged from preemptive mass vaccination to post-
outbreak ring vaccination. Basing on self-interest, individuals may decide whether
to vaccinate during the preemptive mass vaccination campaigns (called vaccina-
tors hereafter), or wait until he/she feel threatened by an outbreak (called delayers
hereafter). Unfortunately, when the proportion of delayers is too high, the level
of herd immunity achieved may differ from what would be best for the population
as a whole.

The Game
Our vaccination game is a population game or nonatomic game, meaning that
the payoff to an individual choosing a particular strategy depends on the aver-
age behavior of the population. The two basic strategies are ”vaccinator” (obtain
preemptive vaccination) and ”delayer” (decline preemptive vaccination but seek
vaccination in the event of an attack). For any strategy, the payoff to an individual
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is measured in terms of a cost function for the risks of death due to vaccination
and/or a yellow fever outbreak.

To solve the game, we seek a Nash equilibrium strategy. In a population where
all individuals play such a strategy, it is impossible for a few individuals to increase
their payoffs by switching to a different strategy. Vaccinator cannot be a Nash
equilibrium for the reason indicated in the introduction (an individual who chooses
the delayer strategy when population coverage is at 100% reaps the benefits of high
population immunity without suffering the risk of vaccine complications).

By comparison, delayer can be a Nash equilibrium under certain conditions,
such as when the attack risk is sufficiently low or the risk of death due to vaccina-
tion is sufficiently high. In other situations, it might be best for some individuals
to be vaccinated preemptively and for others to delay. To allow for this we consider
mixed strategies whereby individuals choose the vaccinator strategy with proba-
bility P ( 0 < P < 1 ) and the delayer strategy otherwise. If all individuals play
the mixed strategy P, then a proportion p = P of the population is preemptively
vaccinated.

The Model

dMs

dt = −caMsHi/Nh + (αM + µM )Ms

dMi

dt = caMs(t − τ)Hi(t − τ)/Nh(t − τ) − (αM + µM )Ms

dH′

s

dt = −baMiH
′
s/Nh − (νh + µh)H ′

s

dH”

s

dt = −(µν + µh)H”
s

dHi

dt = baMiH
′
s/Nh − (γh + µh + αh)Hi

dHv

dt = νhH ′
s − (µh + µν)Hv

dHr

dt = γhHi − µhHr

whose threshold for persistence is given by

The =
Nma2bce−µmτ

Nh(γ + µh + αh)(µm + αm)

We simulated the dynamical system above with the following initial conditions
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H ′
s(0) = (1 − p)Nh

H”
s (0) = pNh

Hi(0) = 10
Hv(0) = 0
Hr(0) = 0
Ms(0) = Nm

Mi(0) = 0

Let us define

I =
∫ ∞

0 baMiH
′
s/Nhdt → φs(p) = I

(1−p)Nh

D =
∫ ∞

0
(µh + αh)Hidt → ds = D

(1−p)Nh

V =
∫ ∞

0
νhH ′

sdt → φv(p) = V
(1−p)Nh

Dv =
∫ ∞

0 µνHvdt → dv = Dv

(1−p)Nh

The payoff to an individual choosing the vaccinator strategy is

Evac = −dv

The payoff to an individual choosing the delayer strategy is

Edel(p) = −r [φs(p)ds + φv(p)dv ]

If

Evac > Edel(0),

there is a unique Nash equilibrium pind (0 < pind < 1) that can be found by
solving for pind in the equation

Evac = Edel(pind)

If

Evac ≤ Edel(0),

then the pure delayer strategy (pind = 0) is the unique Nash equilibrium.
Now, if p is the proportion of the population that is preemptively vaccinated

in campaigns before outbreaks, we can express the expected cost C(p) due to
vaccination and potential yellow fever outbreaks as

C(p) = pdv + r(1 − p) [(ds − dv) φs(p) + dv]

We then minimize C(p) on the unit interval (0 ≤ p ≤ 1) to determine the
group optimum pgr, which is the coverage level that would have to be imposed to
minimize the total expected number of deaths.

Preliminary results show that whenver the risk of outbreak is too low and the
fatality rate due to the vaccine is too high, the threshold proportion to vaccinate
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tends to zero if the threshold condition for the infection establish itself in the
population is lower than 3.0.
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Pair approximations for spatial structures?

Denis Mollison

This work explores the success of pair approximations in capturing local correla-
tions and the spatial structure of population contact networks, especially in respect
of the rate of spread of epidemics.

Networks of interest range from the local extreme where interactions are only
between nearest neighbours in some low dimensional space, and the infinite-di-
mensional ’mean-field’ extreme where all interact equally with all [8, 4, 5, 9].
Intermediate cases of practical interest include ’small-world’ and meta-population
models [2, 13, 11].

One of the obvious distinctions between homogeneous mixing and spatial pop-
ulation structures lies in their local correlations: if ‘AB’ means ‘A is a neighbour
of B’, then P (AC|AB, BC) � P (AC) for the spatial case.

Pair approximation differential equations (PAs), that add second order variables
such as [SI], the mean number of (S,I) pairs of neighbours to a standard SIR
differential equation model [10, 7], have recently been widely used to approximate
spatial ecological and epidemic processes [6, 12]. How well do they do this?

There are theoretical reasons why PAs should be better at approximating mean-
field than spatial networks. Figure 1 shows how PAs provide excellent approxi-
mations to mean-field SIRs for a wide range of the correlation parameter φ. In
particular, the duration of the epidemic is of order log(N), where N is the popu-
lation size.

Now for a spatial SIR with local contacts – Figure 2 shows a nearest-neighbour
SIR on a sphere – the duration is of order

√
N , so the PA cannot be expected to

approximate this well, as is confirmed by the time plot for the spatial SIR (curve
‘S’ in Figure 1), which is very different from the PA with the same value of the
correlation parameter (φ = 0.4).

There may seem to be a paradox here, in that the spatial network is an element
of the set of random graphs G(N, φ) that have the same number of sites and
the same value of the correlation parameter, although members of that set can
generally be assumed to be mean-field in character. The resolution of the paradox
is that, within G(N, φ), such spatial or near-spatial networks are of almost infinite
improbability, what we might call ‘Adams-improbable’ [1].
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Figure 1. Comparison between stochastic SIRs on simple ran-
dom graphs, constrained to have varying correlation parameter φ
(= 0, 0.2, 0.4; 2 simulations each, dashed curves), and PAs of the
same φ (solid curves). Also shown are the standard SIR DE (‘?’)
and a simulation of a spatial stochastic SIR (‘S’) – see Figure 2.

Figure 2. Simulation of a nearest-neighbour SIR on a
hexagonal(?) lattice on a sphere: · susceptible, � infectious, • re-
moved. This outbreak started at the north pole (left), and has
just reached the southern hemisphere (right).
[(?) Note: An exact hexagonal lattice on a sphere is not possible;
here there are 12 sites that each have only 5 neighbours.]
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More broadly, this work in progress tends to support the generalisation that
spatial processes need explicit spatial modelling [3, 9].
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Contact tracing and stochastic graphs

Johannes Müller

(joint work with Martin Möhle, Mirjam Kretzschmar, Klaus Dietz)

Contact tracing is still not completely understood. Especially how to obtain esti-
mates for parameters from data (of the type that is easily to collect) is not clear
at all. There are several attempts made to develop treatable models for contact
tracing [2, 5, 6, 3, 4, 1]. Most of them are deterministic or use pair approximation.
Here, we follow the stochastic model [6] and develop the analysis further.

We first consider a birth-death process (or stochastic branching process) of
independent particles. Particles give birth to children with constant rate β, and
die according to some age dependent rate µ(a). This stochastic process generates
a graph: the nodes are the (living) particles while a directed edge goes from
mother to daughter. If there is no death, the graph is a tree. Death destroys this
connectivity such we are left with a forest. We are interested in the statistics of the
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connected components (size and structure). In order to investigate these aspects,
we condition on the age of the root of the connected component, and consider the
probability measure induced on the set of finite (directed) trees.

Definition 1: The connected components of the branching process, which have
a root with age a, induce a random measure Pb on the set of finite trees.

We introduce another stochastic process, which we call the uniformly growing
tree, that also generates a random measure on the set of finite (directed) trees.

Definition 2: Let q ∈ [0, 1). A uniformly growing tree is generated by the
following algorithm:

Initialize: Start with the tree consisting of one node.
Step 1: Stop the process with probability q.
Step 2: If the process is not stopped, add a node to the tree in drawing a directed

edge from a randomly chosen node that is already there (all nodes have the same
probability to be chosen) to the new node. Proceed with step 1 until the process
stops.

Let Put be the probability measure generated by this process.

We now are able to prove two theorems. These theorems are direct general-
izations of the case that µ does not depend on age, given in [7]. Also the proof
parallels that given there.

Theorem 1: Consider a connected component generated by the birth-death
process and assume that the age of the root is known to be a.

The size Ya of the tree is one plus a geometrically distributed random variable,

Ya − 1 ∼ Geom(q̃), q̃ = exp

(

−β

∫ a

0

κ(τ) dτ

)

,

with κ(a) = exp(−
∫ a

0 µ(τ) dτ).

Proof: (Idea) Let Ya be the random variable that gives the size of a tree with
root of age a, Xa denote the number of living children of a particle of age a and
κa(.) denotes the age distribution of living children of a particle of age a. We
immediately find the compound equation

Ya = 1 +

Xa
∑

i=1

∫ a

0

κa(b)Yb db.

Using this equation, it is possible to work out the proof of the theorem.
�

Theorem 2: Consider the same situation as in Theorem 1. The birth-death
process and uniformly growing trees imply the same random measures on the set
of finite trees, Pb = Put a.s., where q = q̃.

Proof: (Idea) If we go backward in time and ask for the youngest node, we
find in any case (branching process and uniformly growing tree) that any leaf is
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the youngest node with the same probability. This leads to a recursive argument
that shows the statement.

�

We may now introduce contact tracing. Therefore we assume the death rate
to be age independent. In addition to “natural” age we introduce a screening
rate σ. With this rate, individuals are detected (they e.g. feel sick and visit the
doctor) and become an index case. The index case is removed and every (former)
adjoint node has a probability p also to be detected. These secondary detected
cases become new index cases, such that we consider a complete recursive process
(another variant of the model would e.g. trace at most paths of length n). I.e.,
we consider a branching process on a branching process. We have been able to
prove also in this case, that the probability measure induced by the connected
components with a root of given age a coincides with the random measure created
by uniformly growing trees (where we need to choose q in an appropriate way).

A still open question is the statistics of size and structure of connected compo-
nents if we do not condition on the age of the root. In this case, we need to know
the Malthusian parameter of the branching process; due to the dependencies of
the particles, this parameter is difficult to determine. However, since the process
is split into small connected components, there is hope to find asymptotic results
for the desired statistics.
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Interactions between infections

Nico J.D. Nagelkerke

(joint work with Sake J. de Vlas)

Traditionally much of mathematical modelling has been devoted to infectious dis-
eases caused by single pathogens with well-understood aetiology. Problems that
have traditionally received most attention are the implications of complex contact
patterns and the impact of interventions such as vaccination. In addition, the
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statistical methodology of inferring disease parameters (e.g. R0) and contact pat-
terns from observed epidemiological patterns is developing rapidly. However, the
potential of mathematical modelling and statistics in clarifying the aetiology of (in-
fectious) diseases is not yet fully exploited. For example, modelling appears to have
played no role in identifying the infectious aetiology of cervix carcinoma, kaposi
sarcoma, or peptic ulcer. Perhaps because, as yet, there exist no properly devel-
oped study designs to recognize the aetiology of a disease from its epidemiology.
An outstanding, rare, example of how mathematics can help unravel the infectious
aetiology of disease is given by Griffith, who in 1967 predicted the pathogenesis of
Scrapie (and thus also other prion diseases such as Kuru, CJD, and BSE) as an in-
fectious protein. The epidemiology of many other diseases might similarly suggest
an infectious aetiology if approached properly. Notably complex are diseases in
which several (unknown) infectious agents are involved, or if transmission depends
on unrecognised mechanisms, for then disease may seem to be non-infectious or
sporadic. In order to make modelling a more useful tool for this purpose, what
would seem needed is a comprehensive classification of infectious mechanisms and
the development of study designs and methods to recognize such mechanisms from
observations.

One of the least explored areas, both by epidemiologists and more notably by
mathematicians, is that of interactions between infections. Yet, there are both
practical examples of such interactions, and sound biological and immunological
arguments to suspect that such interactions are important. As most humans are
invariably host to a large variety of infectious organisms, co-infections are the
rule rather than the exception. In addition, the immunological memory of one
infection may influence the course of subsequent exposure to another pathogen so
that interaction is not even restricted to simultaneous infection.

Practical examples of interaction are: 1) the cross immunity that may exist
between different competing pathogens; 2) disease enhancement, as in dengue and
RSV infections, after prior infection with a different strain; 3) the well-recognized
role of viral respiratory infections in facilitating subsequent bacterial disease, and
4) the role of conventional sexually transmitted infections (STIs) in spreading HIV
infection, and the role of HIV in facilitating spread of STIs. Many more may exist
but may long remain unrecognised. Recently, we proposed the existence of an as
yet unidentified STI in the progression from M.tuberculosis infection to disease.
Even when interaction between two well-recognized infections is suspected, identi-
fying the exact mechanism from observational data is complicated. For example,
in a recent study on the effect of bacterial STIs on the risk of HIV infection, a
clear correlation between the two was seen, yet prevention of bacterial STIs by
antibiotic prophylaxis did not have any impact on HIV incidence.

The usefulness of modelling interacting infections is that it may yield more
realistic predictions. Also, apparently ”random” events, such as disease caused
by a pathogen after infection, can be explicitly modelled in terms of co-infection
with another pathogen. While formulating equations for specific combinations of
infections poses few problems, the generic properties and conceptual framework of
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interacting infections is not yet well developed. For example, R0 is a more elusive
concept. It depends on whether infection A is introduced into a population where
infection B is already established, or whether the simultaneous introduction in
a susceptible population is considered. Thus, specifying conditions for a pair of
infections of becoming endemic is more complex than for a single infection.
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Bayesian inference for final outcome data using Random Graphs

Philip D. O’Neill

We describe methodology for conducting Bayesian inference given final outcome
data in a structured multitype population model setting. For illustration we focus
on models with two levels of mixing as defined in Ball et al [1]. In such models a
population consisting of individuals is partitioned into groups, such as households,
and mixing is allowed to occur both within groups and between groups.

Given data on the population structure and the final outcome of an epidemic,
the objective is to perform inference for the two mixing rate parameters. However,
the problem is complicated by the fact that the likelihood of the final outcome
of an epidemic is numerically and analytically intractable for all but very small
population sizes. Our approach involves imputing missing information that leads
to a tractable (augmented) likelihood. The choice of imputed variable is not
immediately obvious in this setting, and we choose a certain random graph that
essentially describes the contacts in the underlying population. Such graphs, and
in particular their link with the final outcome of stochastic epidemic models, are
well-known (e.g. [2]), but they have not previously been exploited for inference
purposes.

The approach employs Markov chain Monte Carlo methods, which are natural
for this kind of missing-data problem. The methods have several attractive fea-
tures, including (i) they do not rely on either asymptotics or assumptions about
being above threshold (ii) they yield detailed information about the spread of the
epidemic and the relative contribution of different types of mixing (iii) they are
widely applicable across different models (iv) they naturally allow model choice
questions to be addressed. The approach is illustrated with a number of data sets.
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Invasion of exotic infections

Mick Roberts

The global epidemic of severe acute respiratory syndrome (SARS) in 2003, and
concerns that terrorists may use an infectious agent such as smallpox as a weapon,
demonstrate the need to determine control strategies for exotic infections. The
prior determination of such strategies, and the use of mathematical models to
assist this, are hampered by the obvious lack of data. An integral equation model
of Kermack-McKendrick type has been used to compare strategies based on the
isolation of infectious individuals and targeted vaccination. The model structures
the incidence of infection according to the location of exposure, and requires some
knowledge of the infectivity kernel and the initial rate of exponential increase of
cases. The model has been used to design strategies to minimize the risks of SARS
and smallpox in a previously unexposed community [1,2].

The equation for the incidence of infection is (see [3])

(1) ik(t) = αk(t) + wkS(t)

4
∑

`=1

∫ ∞

0

p(τ)Ck`(τ)i`(t − τ) dτ

with subscripts k = 1, 2, 3, 4 relating to infections taking place in the home, the
workplace (including school), the wider community, and a health-care facility re-
spectively [1]. The function p(τ) is the probability of transmission given contact
at time τ after infection, and C(τ) is the matrix of contact rates per host. The
index cases are represented by the incidence term αk(t), and the weights wk are
used to relate the total number susceptible in the population,

(2) S(t) = S(0) −
∣

∣

∣

∣

∫ t

0

i(τ) dτ

∣

∣

∣

∣

to the effective number susceptible at each location.
For an invading infection we can assume that the entire population is initially

susceptible, and that the prevalence of infection is small. Hence, approximating
S(t) ≡ N (the population size) linearises equation (1) which may then be solved
in the Laplace transform domain to obtain

(3) i(s) =
(

I−K(s)
)−1

α

where

(4)
(

K(s)
)

k`
= wkN

∫ ∞

0

p(t)Ck`(t)e
−st dt

The basic reproduction number for the model defined by equation (1) is R0 =
ρ

(

K(0)
)

(the largest eigenvalue of K(0)). If R0 < 1 the solution is exponentially
bounded, corresponding to a small epidemic. If R0 > 1 a large epidemic occurs:
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the incidence of infection increases approximately exponentially with |i(t)| ∼ ert

where r is the solution of I−K(r) = 0 with largest positive real part.
A convenient approximation to p(τ) is the trapezium function

p(τ) =



















p0
τ − τa
τb − τa

: τ ∈ (τa, τb)

p0 : τ ∈ (τb, τc)

p0
τ − τc
τd − τc

: τ ∈ (τc, τd)

0 : otherwise

which can be specified using a minimum amount of data, and which with the
assumption of constant contact rates leads to an explicit Laplace transform solu-
tion. For SARS we used (τa, τb, τc, τd) = (4, 7, 11, 14) days [1], and for smallpox
(τa, τb, τc, τd) = (14, 16, 25, 27) days [2]. The relative sizes of the weights wk were
fixed using expert opinion, and their overall magnitudes by assuming R0 = 3.3 for
SARS [4] and R0 = 3.2 for smallpox [5].

Upon the introduction of an invading infection R0 > 1, and we obtain the large
epidemic solution which may be determined numerically. The only control mea-
sure available to contain an emerging infection is the isolation of cases. Suppose
that when a time tq has elapsed after the infection of the index case, a policy is
introduced that effectively prevents a fraction qk`(τ) of infecteds of type ` from
contacting susceptibles at location k at time τ after they were exposed. Then, for
times t > tq equation (1) would become

(5) ik(t) = wkS(t)
4

∑

`=1

∫ ∞

0

p(τ)Ck`(τ) {1 − u(t − τ − tq)qk`(τ)} i`(t − τ) dτ

where u(τ) = 1 when τ > 0 and zero otherwise. The basic reproduction number
in the presence of the isolation policy is Rq = ρ (Kq) where

(6) (Kq)k` = wkN

∫ ∞

0

p(τ)Ck`(τ) {1 − qk`(τ)} dτ

For smallpox a vaccine is also available. If a proportion vk(t) of transmission were
prevented by the vaccine, equation (1) would become

(7) ik(t) = αk(t) + (1 − vk(t)) wkS(t)

4
∑

`=1

∫ ∞

0

p(τ)Ck`(τ)i`(t − τ) dτ

If the vk are constant with time, the basic reproduction number in the presence
of vaccination is Rv = ρ (Kv) where

(8) (Kv)k` = (1 − vk) wkN

∫ ∞

0

p(τ)Ck`(τ) dτ

The style of model presented here may be less familiar than, for example, a sto-
chastic simulation model used for SARS [6] or compartmental models used for
smallpox [7], despite their historical pedigree. Their advantage is that they can be
parameterised with a minimal set of data, and can be readily analysed to compare
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proposed control strategies. This makes them ideally suited to studies of invading
exotic infections.
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Identification of reservoirs of infection

Mick Roberts

(joint work with Hans Heesterbeek)

We have formulated a new threshold quantity for the analysis of the epidemiology
of infectious diseases, which we refer to as the type reproduction number (T ) [1,2].
The quantity is similar in concept to the familiar basic reproduction number (R0),
but it singles out particular host types instead of providing a criterion that averages
over all host types. The calculation of T enables us to identify the long-term
effects of control strategies for particular sub-groups of the population, and to
estimate the level of control necessary when targeting a subset of host types. This
identifies those host types that constitute a reservoir for infection, and hence must
be targeted for successful eradication of the infection.

There are many situations where control effort is targeted at particular host
types. Consider for example vector-transmitted infections such as malaria or
dengue. If each infected human infects K21 mosquitoes, and each infected mosquito
infects K12 humans, then the next generation matrix [3] is

(1) K =

(

0 K12

K21 0

)

This has spectral radius R0 =
√

T =
√

K12K21. If a vaccine were available, the
proportion of humans that would need to be protected should exceed 1 − 1/R2

0

which is equal to 1 − 1/T . Both R0 and T are valid threshold quantities, and in
the literature we find both R0 = ρ (K) and R0 = ρ

(

K2
)

.
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The mosquito Aedes albopictus can transmit dengue transovarially. This mod-
ifies the next generation matrix to

(2) K =

(

0 K12

K21 K22

)

with K22 < 1. The value of T is found by summing over all possible paths from
host type 1 (human) to type 1, hence

T = K21K12 + K21K22K12 + K21K
2
22K12 + . . .(3)

=
K21K12

1 − K22
(4)

whereas

(5) R0 = ρ (K) =
1

2

(

K22 +
√

K2
22 + 4K21K12

)

If a proportion v of humans were effectively vaccinated, then K12 would be mul-
tiplied by 1 − v and ρ (K) < 1 iff v > 1 − 1/T . If a proportion w of humans were
prevented from transmitting infection to mosquitoes, then K21 would be multi-
plied by 1−w and ρ (K) < 1 iff w > 1− 1/T . Hence there is a simple relationship
between the control effort required to achieve eradication and T , but no similar
relationship exists with R0.

The concept described above may be generalized to an arbitrary number of
host types with a focus on any subset of them. We start with an n × n next
generation matrix K, and focus our attention on ` host types. Defining an n × n
projection matrix (P`)ii = 1 for i = 1 . . . `, (P`)ij = 0 otherwise, and an n × `

projection matrix (E`)ii = 1 for i = 1 . . . `, (E`)ij = 0 otherwise, we can collapse
the transmission of infection onto the selected ` host types by

(6) M` = E′
`K (I − (I −P`)K)

−1
E`

and define T = ρ (M`). We have proved [1] that R0 = ρ (K) < 1 iff T =
ρ (M`) < 1.

Equation (6) only makes sense if ρ ((I −P`)K) < 1. The matrix M` is the next
generation matrix for the ` host types, with infection pathways that pass through
the other n − ` host types condensed and summed. The matrix (I−P`)K is the
next generation matrix for the other n− ` host types, but with infection pathways
that pass through the first ` host types deleted. Hence if ρ ((I −P`)K) > 1 these
n − ` host types are capable of maintaining the infection without the presence of
the ` targeted host types, and hence they constitute a reservoir of infection. In
biological terms, if one of the first ` host types is infected it will transmit infection
to this group of n − ` host types, where the infection will persist and continue to
be transmitted back into the first ` types indefinitely.

In conclusion, the type reproduction number T has the same threshold property
as R0, but can be used directly to calculate the critical control effort required for
eradication. This result generalises to ` dimensions, and provides threshold crite-
ria for control measures. As a by-product, our methodology identifies particular
groups of host types that constitute a reservoir of infection.
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Using an individual-based model to study the spread of infectious
diseases among Canadian fur-trapping populations

Lisa Sattenspiel

(joint work with Connie Carpenter)

Models that incorporate realistic contact structures are being used increasingly to
study the impact of social interactions on the spread of infectious diseases within
and among populations. The majority of such models have used a differential
equations framework, but because of the small size of many real social groups in
humans and other animals, individual-based models are being used more frequently
to address this question. I compare here results obtained using both modeling
approaches to study the same epidemic scenario. My models focus on the impact
of the 1918-19 influenza epidemic among native Canadian fur trappers in central
Manitoba.

The differential equations model, described in [1], divides the population into

three discrete groups corresponding to three HudsonÕs Bay Company (HBC) trad-
ing posts, and allows individuals to move among these communities in the course of
their daily activities. Ethnohistoric analyses of parish and HBC post records have
been used to estimate the mobility parameters of the model and to provide infor-
mation on the social context within which disease transmission occurred. Results
from simulations of this model clearly point out the importance of social inter-
actions within the communities in determining the overall impact of an epidemic
(see, for example, [2]).

Ethnographic data, however, indicate that at the time of the epidemic during
the winter of 1918, the real populations were not clustered into these three com-
munities; rather, the bulk of the population was dispersed across the landscape
into much smaller camps that averaged around 15 individuals. During the sum-
mer, the family groups were aggregated at the HBC posts, but the largest of the
study communities numbered at most only about 750 individuals. This has made
it essential to move towards the development of an individual-based stochastic
model in order to progress further in understanding how diseases spread in the
study communities. Consequently, recent research has centered on the develop-
ment of such a model, which incorporates a more realistic wintertime structure
with satellite camps linked to a larger cluster representing one of the HBC posts
and a summertime structure with all family groups aggregated at the posts.
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Because the individual-based model considered only one of the three HBC posts
modeled in the ODE system, direct comparisons of the results of simulations of the
individual-based model are relatively limited. One very marked difference relates
to the impact of seasonal changes in social structure and mobility patterns. Results
from the ODE model suggested that seasonal variation in the rates and patterns
of travel had little or no effect on the size of epidemics, even though it could sig-
nificantly affect the timing of epidemic spread. Results from the individual-based
model were quite different. In these simulations, winter and summer epidemics
differed markedly from each other, with summer epidemics earlier, shorter, and
much more intense than winter epidemics. This result is a consequence of the
summer aggregation and winter dispersal of the study population, features of the
real population that could not be adequately captured by the ODE model.

Further analysis of variation in the parameters of the individual-based model
indicated that simulated winter epidemics were sensitive to variation in nearly all
parameters. On the other hand, simulated summer epidemics were not sensitive to
variation in probability of traveling to the post on any given day, distance between
the camps and the fort, distribution of the population between the fort and the
camps, and the age-sex composition of the population. The first three factors
had no effect because the summer model assumed that the entire population was
aggregated at the post; hence, these parameters were not relevant for the summer
population structure. The fourth parameter, age-sex composition, had a significant
impact on winter epidemics because only men traveled from the camps to the post,
but again because of the summer population structure, the impact of differences
in the age-sex composition of the population would be minimal at that time.

Results of this work clearly emphasize the basic insight derived from the ODE
model – that patterns of social interaction at a local scale can have major impacts
on the spread of infectious diseases within and among populations. Results also
point out, however, that previous conclusions about how population mobility af-
fects the spread of infectious disease epidemics must be modified to reflect new
insights derived from more realistic models.
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The Data Analysis Plan for the New Zealand Meningitis B
Vaccination Programme

David J. Scott

(joint work with Shanthi Ameratunga, Alex Macmillan, Diana Lennon, Joanna
Stewart, Sue Crengle, Kim Mulholland, Mick Roberts)
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In this talk I gave an outline of the data analysis plan for the New Zealand Meningi-
tis B Vaccination Programme [1] prepared by the Vaccine Effectiveness Evaluation
Team, of which I was a member. An account of this plan was recently presented
at the Fourth World Conference on Vaccines and Immunisation in Tokyo, Japan
by the lead author, Shanti Ameratunga. The paper is to appear in a special issue
of the journal Vaccine, see [2]. The following is the abstract from that paper.

A nationwide strategy to control a group B meningococcal disease epidemic in
New Zealand using an epidemic strain-specific vaccine (MeNZBTM ) commenced
in 2004. In the absence of randomised controlled trials investigating the efficacy
of this particular vaccine, a complement of observational methods are planned to
evaluate the post-licensure effectiveness of this vaccine strategy. The two main
approaches involve a Poisson regression model investigating the overall impact
of the MeNZBTM programme on disease rates over time capitalising on detailed
population-based disease surveillance data and the staged roll-out of the vaccine
campaign, and a case-control study that aims to estimate vaccine effectiveness
in pre-school children. The studies are designed to minimise the potential biases
inherent in all observational methods and provide critical data on the effectiveness
of a major public health intervention.
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Estimating the duration of common persistent infections

Tom Smith

(joint work with Wilson Sama )

We consider the general problem of estimating the average duration of parasitic
infection when (i) infection is frequent (ii) both infection and clearance processes
may depend on acquired immunity (iii) the means of detection has an unknown
sensitivity less than 100%, which may also depend on acquired immunity. (iv) Re-
peated determinations of parasitological status are available for a panel of exposed
individuals. This problem arises in studies of bacterial carriage in the upper res-
piratory tract, and in Plasmodium falciparum malaria. In both these cases panel
datasets are available where infection status was determined at regular intervals
for a sample of exposed hosts.

We have examined the following approaches:
(i) If the pathogen population is treated as homogeneous, estimates of duration

of infection can be made by fitting hidden Markov models (HMM) where the
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hidden underlying dynamics are described by the ‘catalytic’ model (corresponding
to Ross’ original malaria model):

dp

dt
= λ(1 − p) − µp

where p is the probability of being infected at time (or age) t, λ is the force of
infection, µ is the clearance rate, and infections are detected with some probability
s.

Extensions using alternative survival models, and/or including effects host het-
erogeneity and of age or immunity are all possible but the parameter estimates
are very sensitive to details of the model and are often not in a plausible range.
The same model for the underlying process can give very different results if it is
fitted to data summarised cross-sectionally or longitudinally.

(ii) When serological or molecular typing data are available, an extension is
to explicitly model heterogeneity in the infection process between parasite types,
(the multiple-strain SIS model) by adding random effect terms to the HMM. This
achieves identifiability but leads to highly parameterised models requiring Markov
chain Monte Carlo approaches for fitting [2].

(iii) An alternative is the infinite-strain SI(R/S) model, in which each infection
event is assumed to correspond to a different strain and is hence distinguishable.
The number of concurrent infections in a host (n) can then be described by:

dn

dt
= λ − µn

corresponding to the malaria model intended by Macdonald [1]. We assume an
analogous observation process to that in (i). Extensions of this model are less
highly parameterized than those of the multiple-strain SIS model. We consider
whether this makes it possible to identify the effect of acquired immunity on in-
fection duration, when immunity is also known to affect the detection process.
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Population Dynamics of Transposable Elements: Copy Number
Regulation and Species Invasion Requirements

Claudio J. Struchiner

(joint work with Margareth G. Kidwell, José M.C. Ribeiro)

Transposable elements (TE) are sequences of DNA that invade animal and plant
species genomes over a period of several generations. Class I TE’s are retroviral-
like elements that transpose by means of a reverse transcriptase, while class II TE’s
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transpose by means of a transposase enzyme. In general, class I TE’s have long
(> 100 base pairs terminal repeats), while class II TE’s have relatively short (ca.
30 bp) inverted repeat sequences. Both element types can insert in different places
within a host genome (transposition), changing location and/or increasing copy
number during successive generations. After several generations, copy number may
stabilize to a few (< 10) or to as much as several thousand copies, depending on
the element type and host factors. Stabilization of copy number is associated with
lack of transposition of the TE at the individual level, and with total invasion of
the host species by the TE at the population level (i.e., every member of the species
carries the element). Eventually, mutation of most, or all, element copies leads
to degeneration, and only remnants of previous invasions are detected in the form
of degenerate sequences of reverse transcriptases, transposases or inverted repeats
[2]. Perpetuation of the TE family requires invasion of another host species before
total loss of the potential to transpose occurs within the original host species [4].

While transposing within their host genome, TE’s may disrupt essential gene
functions (e.g. by TE insertion within the coding region of a gene) and thus de-
crease host fitness. Although increase in fitness may follow transposition events,
such instances are considered rare. Transposition of P elements in Drosophila may
cause from 1% to 30% lethality per transposition event. Mean homozygous fitness,
viability and fertility were reduced by, respectively, 55, 28 and 40% in chromosome
lines invaded by P elements. Despite decreasing their hosts’ fitness, such elements
fix in sexual populations because they increase their representation in their hosts’
gametes to a greater extent than they decrease their hosts’ fitness due to transpo-
sition. For example, the F1 generation of a cross between an individual containing
TE’s and one not containing TE’s would be expected to have 50% of the gametes
containing TE’s, but due to transposition of the element, 70% of the gametes could
contain one or more copies of the element, thus having a 20% (70-50%) advantage.
In this example, if a total reduction in fitness of 19% occurred, the element would
still have a 1% advantage and would fix in the host population [4]. Successful
elements thus ”cheat” the meiotic segregation laws more than they harm their
hosts.

The phenomenon of transposition thus creates conflicting results by generally
decreasing host fitness and by increasing the frequency of TE-bearing gametes.
If transposition were to remain unregulated, eventually a majority of the host
genome would consist of TE’s, and indeed some organisms have more than 50% of
their genome constituted by TE’s. This high frequency is not found, however, with
most organisms, indicating the existence of regulatory mechanisms that limit TE
copy number. Several models have attempted to describe the population dynamics
of TE’s and copy number regulation [1], but such models usually ascribe a fixed
and limited maximum number of sites that could be either vacant or occupied
by TE’s, thus limiting the generality of the model. We here present a general
model of the population dynamics of TE’s based on the transposition efficiency of
the TE, the burden it causes on host fitness per transposition event, and on the
modification of the transposition efficiency as a function of copy number. Initial
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conditions for successful species invasion are also simulated. The present model is
deterministic, producing an ”average” interpretation of the phenomena.

A population dynamics model of the spread of transposable elements in sexually
reproducing populations is presented. The population is modeled by a 3 parameter
equation describing host reproductive capacity, population size and the strength
of the density dependence, while transposable element dynamics were modeled
based also on 3 parameters, the maximum ability of the element to copy itself in
the absence of regulation (T0), the regulatory effect of copy number decreasing
transposition (C0.5), and the deleterious effect of each new transposition on host
fitness (d). The model is general because no assumptions about the mechanism of
transposition control are made, except that this is some function of copy number.
Results indicate that non-regulated elements cannot fix in host populations, and
that prediction of stable copy number following successful invasion is mainly a
function of the combination of T0 and C0.5 values. Fitness reduction does not affect
the final copy number after successful invasion of the element. Fitness reduction,
however, will affect the surface of the {T0 × C0.5} parameter space leading to
successful invasion of the transposable element. Invasion of host populations by
eight or more individuals containing elements with appropriate parameters will
lead to successful element fixation at any size of the host population. A small area
of the {T0 × C0.5} parameter space indicates the possibility of host population
extinction due to the invasion of transposable elements. The results are robust
as indicated by their insensitivity to host population dynamics parameters, or the
shape of the functions defining regulation of transposition.
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Dynamic population models and invasive pneumococcal diseases

Stefan Wagenpfeil

(joint work with B. Hellriegel)

In general, children under the age of five and elderly people with a weak immune
system are especially susceptible to pneumococcal infections. For prevention dif-
ferent vaccines exist for children and adults. Since the year 2000 there is a general
vaccination recommendation against streptococcus pneumoniae in the USA for
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young children aged 2 years or less. In Germany there is no general recommen-
dation in favour of vaccinating young children against streptococcus pneumoniae
in contrast to elderly aged 60 years or more. To explore possible consequences
for the most severe invasive pneumococcal disease, pneumococcal meningitis, we
analysed different virtual vaccination strategies using a stochastic and a deter-
ministic age-structured population model. Special attention was paid to possible
effects of herd immunity. A compartment model is used to describe the course
of infection in a target population. We defined eight age classes (0-2, 3-4, 5-12,
13-20, 21-39, 40-64, >65): young children to be vaccinated or not, the age group
of older brothers and sisters, school-aged children, teenagers, parents with small
children or adults, parents with adult children and grandparents. Directed transi-
tions model changes in the numbers of a specific compartment like newborns with
and without maternal antibodies, of susceptible, infected and vaccinated individ-
uals. Failure of immunization by the vaccine is also accounted for. Each person
could undergo at most one transition within a prespecified time period of half a
year. The stochastic model is individual-based and derived from a previous deter-
ministic version [1]. Deterministic population-based approaches are common tools
for analysing infectious diseases like varicella [2], smallpox [3], etc. Halloran et
al. [4] present an alternative modelling approach to smallpox using a stochastic
simulator. Whitaker and Farrington [5] extend classical deterministic approaches
allowing for varying contact rates in the example of varicella.

Initial values for the comparments and transition rates in our model came from
expert knowledge and the literature. Demographic variables came from Statistical
Yearbooks for the respective population. There are 380 cases of invasive pneumo-
coccal diseases in Germany each year, in which 140 occur under the age of two
years, for example.

Data for the situtation in the USA are much better available [6]. After validating
the model with data of invasive pneumococcal diseases like sepsis, bacteraemia or
meningitis in the USA, we used it to simulate the dynamics of pneumococcal
meningitis cases in Germany using German demographic parameter values.

Results indicate that vaccinating children under 2 years of age with a coverage
rate of about 80% could lead to a 75% reduction of disease cases within 30 years.
The accuracy of these results is indicated by 95% confidence intervals from sto-
chastic simulations not to be obtained from deterministic modelling approaches.
Furthermore there seem to be some effects of herd immunity.

The stochastic model leads to a faster initial decrease in the number of infected
people but levelled off much earlier and at higher numbers than the compara-
ble deterministic model. Further time series data are needed in order to refine the
models. An interesting and stimulating discussion on principle differences between
stochastic and deterministic population models is contained in [7].
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Real-time tracking of reproduction numbers during epidemic
outbreaks

Jacco Wallinga

(joint work with Peter Teunis)

The reproduction number R measures the transmission potential of an infectious
disease. We are interested in inferring the temporal pattern of the effective re-
production numbers Rt from the observed time series of symptom onset dates of
reported cases. In an ideal world with perfect information we could assess Rt

by simply counting the number of cases that have been infected by cases who
developed symptoms on day t. Here we show how this simple trick of counting
secondary infections also can be applied when we only have information on the
generation interval.

The generation interval is the duration between symptom onset of a secondary
case and symptom onset of its primary case. We denote the distribution of the
generation interval by g(x|θ), where x refers to the generation interval and θ
to the parameters of the distribution. We denote by y(t) the number of cases
with symptom onset on day t. The expected reproduction number for cases with
symptom onset on day t is

(1) E(Rt) =

∞
∑

u=0

y(u)g(u − t|θ)
∑∞

v=0 y(v)g(u − v|θ) .

In this equation we use several variables that refer to time of onset of first symp-
toms: t refers to the symptom onset date of the cases we are interested in, u to the
symptom onset dates of their possible secondary cases, v to the symptom onset
dates of all plausible parents of these secondary cases. The equation is obtained by
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integrating over the likelihood of all possible transmission trees, given the observed
dates of symptom onset [1].

We have applied this likelihood-based estimation equation to available data for
SARS outbreaks in Hong Kong, Vietnam, Singapore and Canada in 2003. The
effective reproduction numbers reveal that epidemics in the various affected regions
are characterized by a markedly similar transmission potential of the disease and
similar effectiveness of control measures. For controlling SARS outbreaks, the
timely alert has been essential: delaying the institution of control measures by one
week would have nearly tripled the epidemic size and would have increased the
expected epidemic duration by four weeks [1].

The estimating equation for the reproduction number generalizes other esti-
mating equations for the reproduction number that are based on the exponential
growth rate r of an epidemic. To show this, We consider the special case where the
number of cases increases exponentially over time with exponential growth rate r

y(t) = y(0)ert.

We substitute this exponential growth of new cases into the above equation for
the reproduction number, and obtain, after rearranging,

Rt =
1

∑∞
τ=0 e−rτg(τ |θ) =

1

Mg(τ |θ)(−r)
.

where M indicates the moment generating function of the distribution of genera-
tion intervals. This estimating equation coincides, as it should, with the relation
between reproduction number R and exponential growth rate r as known from the
standard renewal equation for incidence of infection i(t) with a serial interval g(τ)
and reproduction number R [2, 3]:

i(t) =

∫ τ=∞

τ=0

i(t − τ)g(τ)R

and substituting exponential growth i(t) = cert yields

1 =

∫ τ=∞

τ=0

e−rτg(τ)R

1 = R

∫ τ=∞

τ=0

e−rτg(τ)

1 = RMτ (−r)

R =
1

Mg(τ)(−r)

if M(−r) exists.
When we have a SEIR model where λ1 is the rate of becoming infectious and

λ2 is the recovery rate, the distritubion of the generation interval is

g(x|θ) =
λ1λ2

λ2 − λ1
(e−λ1x − e−λ2x)
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with mean 1
λ1

+ 1
λ2

, and the moment generating function is

M(z) =
λ1

λ1 − z

λ2

λ2 − z

provided that r > −λ1, λ2, and the resulting relation between reproduction number
and exponential growth rate is

R = (1 +
r

λ1
)(1 +

r

λ2
),

which is exactly the same equation as used by Lipsitch et al [4]. The estimating
equation for E(Rt) mentioned above generalizes this equation by removing the
restrictive assumption of an exponential growing number of cases.

Our methodological contribution toward real-time analysis of incoming noti-
fications is to remove the need for restrictive assumptions such as exponential
growth, and to provide a few simple computational steps for transforming the
time series of cases into a time series of estimated values for the instantaneous
reproduction number on each day. The transformation is from calendar time to
generation time and from number to relative increase in number. Perhaps surpris-
ingly, such a transformation is in many cases computationally trivial. This opens
up perspectives for real-time estimation of reproduction numbers from incoming
case notifications of any emerging infectious disease [5, 6].
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A study of real time fatality rate for an emerging disease: a case for
severe acute respiratory syndrome (SARS) in Hong Kong

Paul S.F. Yip

(joint work with KF Lam, Eric Lau, Pui-Hing Chau, Kenneth W Tsang and
Anne Chao)

Severe acute respiratory syndrome (SARS) is a highly contagious and severe atyp-
ical pneumonia caused by a new coronavirus, and is predominately transmitted
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Figure 1. Kernel estimates of the SARS outbreak. (a) Instan-
taneous death rate γ1(t). (b) Instantaneous recovery rate γ2(t).
(c) Ratio of instantaneous recovery/death rates θ(t). (d) Time-
varying fatality rate π(t) and WHO estimate.

by droplets [3]. SARS has rapidly spread worldwide and there were totally 8098
reported cases with 774 fatalities as at July 31, 2003 (WHO, 2003). An ongoing
controversial topic is on the estimation of the fatality rate of SARS. The usual
definition of the fatality rate adopted by the World Health Organization (WHO,
2003) is the ratio of the cumulative number of deaths to the cumulative number of
infected persons in the course of the epidemic. When the outbreak was not over
and there were patients still in hospitals over the course of the epidemic, the WHO
estimate in the midst of the epidemic assume implicitly that all current SARS in-
patients would eventually recover, it therefore tends to under- or over-estimate
the final case fatality rate which really depend very much on the stage and the
progress of the outbreak and the outcome of the inpatients.

In contrast to the constant case-fatality rate [2], a new fatality rate, termed
the ’real-time’ fatality rate using a competing risk model with counting process,
is proposed in this paper for monitoring the new emerging epidemic on a popu-
lation level. Furthermore, it can provide information on the efficacy of a certain
treatment and management for the disease. A competing risk model via counting
process is used to estimate the real time fatality rate in SARS epidemic [1, 5, 6].
It can capture and reflect the time varying nature of the fatality rate over the
course of the outbreak in a more timely and accurate manner. The method has
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been applied to the SARS data in Hong Kong (see Figures 1). The magnitudes
and patterns of the estimated fatalities are more or less the same except in Bei-
jing which has a lower rate. It is speculated the effect is linked to the different
treatment protocols used. The standard estimate used by the World Health Or-
ganization has been shown to be unable to provide useful information to monitor
the time varying fatalities caused by the epidemic.
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72070 Tübingen

Prof. Dr. Vernon T. Farewell

vern.farewell@mrc-bsu.cam.ac.uk

MRC Biostatistics Unit
Institute of Public Health
Robinson Way
GB-Cambridge CB2 2SR

Dr. Christophe Fraser

c.fraser@imperial.ac.uk

Department of Epidemiology and
Public Health, Imperial College
School of Medicine, Norfolk Place
St Mary’s Campus
GB-London W2 1PG

Dr. Kathryn Glass

kathryn.glass@anu.edu.au

National Centre for Epidemiology
and Population Health
The Austr. National University
Canberra, ACT 0200
AUSTRALIA

Dr. John W. Glasser

jglasser@cdc.gov

Centers for Disease Control
and Prevention
Mail Stop E-61
1600 Clifton Road NE
Atlanta GA 30333
USA

Prof. Dr. M. Elizabeth Halloran

mehallo@sph.emory.edu

Department of Biostatistics
Rollins School of Public Health
Emory University
1518 Clifton Road, N.E.
Atlanta GA 30322
USA

Prof. Dr. Niels Keiding

N.Keiding@biostat.ku.dk

Department of Biostatistics
University of Copenhagen
Blegdamsvej 3
DK-2200 Kobenhavn N

Dr. Jim Koopman

jkoopman@umich.edu

jkoopman@sph.umich.edu

Department of Epidemiology SPH-1
University of Michigan
611 Church Str.
Ann Arbor MI 48104
USA

Dr. Mirjam Kretzschmar

mirjam.kretzschmar@rivm.nl

R. I. V. M.
Dept. of Infectious Dis. Epidem.
Antonie van Leeuwenhoeklaan 9
P.O.Box 1
NL-3720 BA Bilthoven



2650 Oberwolfach Report 49/2004

Dr. Andrew B. Lawson

alawson@gwm.sc.edu

Department of Epidemiology and
Biostatistics
Arnold School of Public Health
University of South Carolina
Columbia SC 29209
USA

Prof. Dr. Ira M. Longini

longini@sph.emory.edu

Department of Biostatistics
Rollins School of Public Health
Emory University
1518 Clifton Road, N.E.
Atlanta GA 30322
USA

Dr. Owen D. Lyne

o.d.lyne@kent.ac.uk

Institute of Mathematics,
Statistics & Actuarial Science
University of Kent
GB-Canterbury Kent CT2 7NF

Prof. Dr. Eduardo Massad

edmassad@usp.br

School of Medicine
The University of Sao Paulo
Av. Dr. Arnaldo 455
Sao Paulo SP 01246-903
Brazil

Prof. Dr. Denis Mollison

denis@ma.hw.ac.uk

Department of Actuarial Mathematics
and Statistics
Heriot-Watt University
Riccarton
GB-Edinburgh EH14 4AS

Prof. Dr. Johannes Müller

johannes.mueller@gsf.de

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München

Dr. Nico J.D. Nagelkerke

Nico.Nagelkerke@rivm.nl

R. I. V. M.
Dept. of Infectious Dis. Epidem.
Antonie van Leeuwenhoeklaan 9
P.O.Box 1
NL-3720 BA Bilthoven

Dr. Philip D. O’Neill

pdo@maths.nott.ac.uk

School of Mathematical Sciences
University of Nottingham
University Park
GB-Nottingham NG7 2RD

Prof. Dr. Mick Roberts

m.g.roberts@massey.ac.nz

Insitute of Information and
Mathematical Sciences
Massey University, Priv. Bag 102904
North Shore Mail Centre
Auckland
New Zealand

Muntaser Safan

muntaser safan@yahoo.com

Institut für Medizinische Biometrie
Universität Tübingen
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