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Introduction by the Organisers

Nonlinear dispersive equations are models for nonlinear waves in a wide range
of situations. Mathematically they display an interplay between linear dispersion
and nonlinear focusing or defocusing effects. They are linked to diverse areas of
mathematics and physics, ranging from nonlinear optics over oscillatory integrals
and integrable systems to algebraic geometry. The conference did focus on the
analytic (PDE) aspects with a view towards applications.

Major results and areas are:

(1) The introduction of Bourgain-type spaces, which are a tool to describe
the L2 information of the linear equation and link it to geometry of the
characteristic set and bilinear/multilinear estimates.

(2) The study of problems with rough initial data. This includes the work
on semilinear problems as well as substantial progress in understanding
the interaction of nonlinear waves. Also one should add the recent ill-
posedness results above the scaling exponents.

(3) There has been considerable improvement in our understanding of the
blow up of solutions to critical dispersive equations.

(4) The long time and global behavior of solutions to dispersive equations.
There are two aspects of this; for small data the dispersive efffects are
dominant, while for large data a (largely missing) understanding of the
nonlinear focusing/defocusing effects becomes essential.
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(5) Dispersive equations occur in some formal expansion. Typically the first
terms of the expansion lead to some universal problems like third order
nonlinear Schrödinger or Korteweg-de-Vries equations. There has been
progress in the understanding of ’better’ approximations and higher di-
mensional waves.

(6) There has been important work in bridging the gap between the asymp-
totic dispersive equations and the full problem.

Motivated by recent developments there has been a series of lectures by T.
Kappeler and P. Topalov on their application of the inverse scattering transform
to rough initial data for the Korteweg-de-Vries equation.

This meeting was attended by 45 participants. The organizers made an effort
to include young mathematicians and to give them the opportunity of a shorter
talk.
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Abstracts

Some Dispersive Estimates for Schrödinger Equations with Repulsive

Potentials

Luis Vega

(joint work with Juan A. Barceló and Alberto Ruiz)

We consider for V a real potential the Schrödinger equation

(1)

{
i∂tu + ∆xu + V (x)u = 0 (x, t) ∈ Rn × R n ≥ 3,

u(x, 0) = u0(x).

We suppose that W (r) is a radial majorant of the negative part of the radial
derivative of V (x), that is

(2) (∂rV )−(r) := sup
x∈Rn : |x|=r

(∂rV )−(x) ≤ W (r).

Our interest is to revisit the work of M. Arai [1] with a double purpose. Firstly
to obtain exact decay conditions on W , which turn out to be different either
one considers dimension three or higher. And secondly to prove the so-called local
smoothing effect of 1/2 gain derivative -see [3], [5], and [6]. We use pure integration
by parts techniques which allows us to give precise constants on the assumptions
of the potential -see (8) and (12). These constants are sharp at least for n > 3.
Also we obtain an estimate for the full gradient what allows us to give non-radial
perturbations using weighted Sobolev inequalities -see Theorem 3. We assume
that V satisfies the following conditions:

• Hypothesis 1: Problem (1) has a unique solution u(x, t) for u0 ∈ H
1
2 (Rn)

which satisfies the a priori estimate

(3) ||u(., t)||
H

1
2 (Rn)

≤ C(V )||u0||
H

1
2 (Rn)

.

• Hypothesis 2: There exists a class of data u0, which is dense in H
1
2 (Rn),

such that the solution of (1) is in C(R; (Hs(Rn)) for some s ≥ 3/2 and∫
Rn |u|2|V | < ∞.

For example we can consider real potentials V such that

‖V f‖L2 ≤ a‖∆f‖L2 + b‖f‖L2

holds with some a < 1.
Let us assume that the function

(4) H(r) = r

∫ ∞

r

tW (t)dt < ∞,



2658 Oberwolfach Report 50/2004

and we suppose that

(5) H(0) = lim inf
r−→0

r

∫ ∞

r

tW (t)dt < ∞,

(6) H(∞) = lim sup
r−→∞

r

∫ ∞

r

tW (t)dt < ∞.

We prove for n > 3

Theorem 1. Let V (x) be a potential in Rn, n > 3 satisfying Hypothesis 1 and 2.
Let W (r) be such that satisfies (2), (5), (6) and

n − 3

2(n − 2)rn−2

∫ r

0

tn−1W (t)dt ≤(7)

≤ n − 1

2nrn

∫ r

0

tn+1W (t)dt +
1

n(n − 2)

∫ ∞

r

tW (t)dt.

Let ε > 0 be such that

(8) ε + H(∞) <
(n − 1)(n − 3)

2
,

then the unique solution of (1) satisfies

ε sup
R>0

1

R

∫

B(0,R)

∫ ∞

0

|∇u(x, t)|2dtdx + ε sup
R>0

1

R3

∫

B(0,R)

∫ ∞

0

|u(x, t)|2dtdx+

(9) H(0)

(∫

Rn

∫ ∞

0

|∂τu(x, t)|2
|x| dtdx +

∫

Rn

∫ ∞

0

|u(x, t)|2(∂rV )+(x)dtdx

)

≤ C(n, V, W )||u0||2
H

1
2 (Rn)

,

where ∂τ denotes the spherical tangential component of the gradient.

Remarks

• The condition that naturally appears in the integration by parts is the
usual radiation term

=
(∫

Rn

ū(x, T )∇u(x, T )∇ΦR(x)dx

)
,

for a family of test functions ΦR. If we know a priori that this term is
bounded, then the left hand side of (9) is also bounded. As a consequence
we rule out the existence of 0-resonances.

• The standard function, see the corollary, satisfying (7) and (8) is

(10) W (r) =
c

|x|3
when

(11) c <
(n − 1)(n − 3)

2
.

-see [2].



Nonlinear Waves and Dispersive Equations 2659

Theorem 2. Let V (x) be a potential in R3 satisfying Hypothesis 1 and 2. Let
W (r) satisfy (2) and

(12) η +

∫ ∞

0

t2W (t)dt < 1

for η > 0.
Then the unique solution of (1) satisfies

(13)

∫

R3

∫ ∞

0

|∂τu(x, t)|2
|x| dtdx +

∫

R3

∫ ∞

0

|u(x, t)|2(partialrV )+(x)dtdx

+ sup
R>0

1

R

∫

B(0,R)

∫ ∞

0

|∇u(x, t)|2dtdx

+ sup
R>0

1

R3

∫

B(0,R)

∫ ∞

0

|u(x, t)|2dtdx ≤ C(V, W )

η
||u0||2

H
1
2 (R3)

.

The following theorem relaxes the radiality in the assumptions on the potential.

Theorem 3. Let V (x) be a potential in Rn n ≥ 3 satisfying Hypothesis 1 and 2.
Let W (x) be such that satisfies

(14) (∂rV )−(x) ≤ W (x)

for some nonnegative function W (x) which can be written as

(15) W (x) =

∞∑

j=0

wj(x)

with

supp wj ⊂ {x ∈ Rn : 2j−2 < |x| ≤ 2j−1} = Ωj , j ≥ 1;

supp w0 ⊂ {x ∈ Rn : |x| ≤ 2−1} = Ω0.

Assume that the a priori estimate

(16)

∫

Rn

wj(x)|u(x)|2dx ≤ c(wj)

∫

Rn

|∇u|2dx

holds and that for 0 < γ < 1

(17)

∞∑

j=0

2jc(wj) <
(n − 1)(n − 3)

4
(1 − γ) n > 3,

(18)
∞∑

j=0

2jc(wj) <
3

7
(1 − γ) n = 3.
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Then the unique solution of (1) satisfies

(19) γ sup
R>0

1

R

∫

B(0,R)

∫ ∞

0

|∇u(x, t)|2dtdx

+ γ(n − 3)

∫

Rn

∫ ∞

0

|u(x, t)|2
|x|3 dtdx

+ γ sup
R>0

1

R3

∫

B(0,R)

∫ ∞

0

|u(x, t)|2dtdx

+

∫

Rn

∫ ∞

0

|∂τu(x, t)|2
|x| dtdx

+

∫

Rn

∫ ∞

0

|u(x, t)|2(∂rV )+(x)dtdx

≤ C(n, V, W )||u0||2
H

1
2 (Rn)

.

Remark

• We could allow a slightly more general situation. Namely to write W =
W1 + δW2 with W1 as in either in Theorem 1 or Theorem 2, and W2 as in
Theorem 3, choosing δ small enough depending either on (8) or on (12).
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Well-posedness of the Cauchy problem for the modified KdV equation

Yoshio Tsutsumi

(joint work with Hideo Takaoka)

We consider the time local well-posedness of the Cauchy problem for the modified
Korteweg-de Vries equation on the one-dimensional torus T = R/(2πZ).

∂tu + ∂3
xu + u2∂xu = 0, t ∈ [−T, T ], x ∈ T,(1)

u(0, x) = u0(x), x ∈ T,(2)
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where T is a positive constant and unknown function u is real-valued. If u is a
“nice” solution of (1)-(2), then we have the conservation law of L2 norm, that is,
‖u(t)‖L2 = ‖u0‖L2 . Therefore, when we change the spatial variable x to x + ct
with c = ‖u0‖2

L2 , equation (1) can be rewritten as follows.

∂tu + ∂3
xu +

(
u2 − 1

2π

∫

T

u2(t, x) dx
)
∂xu = 0, t ∈ [−T, T ], x ∈ T.(3)

Hereafter, we consider equation (3) instead of (1), since equation (3) is equivalent
to (1) under suitable assumptions.

In [1], Bourgain proved that (2)-(3) is locally well-posed in Hs, s ≥ 1/2. His
proof is based on the trilinear estimate in terms of the Fourier restriction norms
relevant to the linear KdV equation. Bourgain’s trilinear estimate is sharp, because
it fails for s < 1/2 (see Kenig, Ponce and Vega [7]). In [4], Christ, Colliander and
Tao showed that if 1/2 > s > −1, then (2)-(3) is ill-posed in Hs in such a sense that
the uniformly continuous dependence of solution on initial data breaks down. The
uniformly continuous dependence means the modulus of continuity for the solution
map depends only on the size of initial data (see, e.g., [2] and [8] for related results
on the ill-posedness). However, it is known that while the uniformly continuous
dependence fails, the continuous dependence holds for some nonlinear evolution
equations. In this respect, the requirement of uniformly continuous dependence
for the well-posedness conception seems slightly too strong. In fact, the authors
[9] have proved that when 1/2 > s > 3/8, (2)-(3) is time locally well-posed in H s,
though the dependence of solutions on initial data is not uniformly continuous. In
this talk, we describe an improvement on the result in [9].

Before we state our theorem, we define the function spaces, which we work with.
For b, s ∈ R, we put

‖v‖Zb,s
=
( +∞∑

k=−∞

∫ +∞

−∞

〈k〉2s〈τ − k3 − k|û0(k)|2〉2b|ṽ(τ, k)|2 dτ
)1/2

,

Zb,s = {v ∈ S ′(R×R); v(t, x + 2π) = v(t, x), ‖v‖Zb,s
< +∞},

where u0 is the initial data given in (2), 〈a〉 = (1 + |a|2)1/2, and û and ũ denote
the Fourier transforms of u with respect to x only and with respect to both t and
x, respectively.

We have the following theorem.
Theorem. Let 1/2 > s > 1/3. For any u0 ∈ Hs, there exists T = T (‖u0‖Hs) > 0
such that (2)-(3) has a unique solution on [−T, T ] satisfying

u ∈ C([−T, T ]; Hs), ϕu ∈ ZT
1/2,s,(4)

where ϕ is a C∞ function on R with its support included in [−T, T ]. Moreover, let
{u0n} be a sequence in Hs such that u0n → u0 in Hs and let un be solutions of (3)
with un(0) = u0n. Then, un → u in C([−T ′, T ′]; Hs) for any T ′ with 0 < T ′ < T
as n → ∞.
Remark. In [6], by the inverse scattering method, Kappeler and Topalov have
proved the global well-posedness in Hs, s ≥ −1 for the KdV equation on T. In [5],
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they have also showed the global well-posedness in Hs, s ≥ 0 for the modified KdV
equation on T by converting the results of the KdV to the case of the modified
KdV with the Miura transformation. Their results are better than our theorem in
such two respects that they can cover weaker spaces and that they can show the
global existence. On the other hand, the uniqueness in [5] and [6] means that a
solution constructed through a limiting procedure of smooth solutions is unique,
but our theorem gives function spaces, where a solution is unique. Actually, our
theorem implies that all solutions constructed through a limiting procedure of
smooth solutions belong to class (4) as well as solutions in class (4) constructed
by other methods, for example, by the Galerkin method, are unique.

In order to prove Theorem, we use the Zb,s norm, which is a variant of the
Fourier restriction norm. Furthermore, we take advantage of the cancellation
satisfied by the solution for the estimate of low-high frequency interaction.
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Well-posedness of KdV on H−1(T)

Thomas Kappeler and Peter Topalov

Let us consider the Initial Value Problem (IVP) for the Korteweg-deVries equa-
tion on the circle

vt = −vxxx + 6vvx t ∈ R, x ∈ T = R/Z

v


t=0
= q ∈ Hα(T).

This problem has been studied extensively. In particular it is known that for q ∈
C∞(T), the (IVP) admits a unique solution S(t, q) which exists for all times (see
[1]). Our aim is to solve the (IVP) for very rough initial data such as distributions
in the Sobolev space H−1(T).
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We say that a continuous curve γ : [T1, T2] → Hα(T) with T1 < 0 < T2, γ(0) = q
and α ∈ R is a solution of (IVP) if for any T1 < t < T2 and for any sequence
(qk)k≥1 ⊆ C∞(T) with q = limk→∞ qk in Hα(T), the solutions S(·, qk) have the
property that γ(t) = limk→∞ S(t, qk) in Hα(T). It then follows from the definition
of a solution of (IVP) that it is unique whenever it exists. If the solution of (IVP)
exists, we denote it by S(t, q).

The above (IVP) is said to be globally [uniformly] C0-wellposed on Hα(T)
if for any q ∈ Hα(T) the solution S(t, q) exists globally in time and the so-
lution map S is continuous [uniformly continuous on bounded sets] as a map
S : Hα(T) → C0(R, Hα(T)).

Theorem 1. ([7]) KdV is globally C0-wellposed on Hα(T) for any −1 ≤ α ≤ 0.

Remarks: (1) Theorem 1 improves in particular on earlier results of [2], [3],
[12], [5]. Using earlier results, it is proved in [5] that KdV is globally uniformly
C0-wellposed on Hα

0 (T) for any α ≥ −1/2.
(2) In [4] it is shown that KdV is not uniformly C0-wellposed on Hα

0 (T) for
−2 < α < −1/2 where Hα

0 (T) = {q ∈ Hα(T)
 ∫

T
q = 0}. See also [3].

The following theorem states that well known features [15] of solutions of (IVP)
for smooth initial data continue to hold for rough initial data.

Theorem 2. ([7]) For any q ∈ Hα(T) with −1 ≤ α ≤ 0, the solution of (IVP)
has the following properties:

(i) the orbit t 7→ S(t, q) is relatively compact.
(ii) t 7→ S(t, q) is almost periodic.

Theorem 1 and Theorem 2 can be applied to obtain corresponding results for
the IVP of the modified KdV (mKdV)

ut = −uxxx + 6u2ux t ∈ R, x ∈ T

u


t=0
= r ∈ Hα(T).

Theorem 3. ([8]) mKdV is globally C0-wellposed on Hα(T) for 0 ≤ α ≤ 1.

Remarks: (1) Theorem 3 improves on earlier results of [2], [12], [5]. Using
earlier results it is proved in [5] that mKdV is globally uniformly C0-wellposed on
Hα(T) for any α ≥ 1/2.

(2) In [4] it is shown that mKdV is not uniformly C0-wellposed on Hα
0 (T) for

−1 < α < 1/2. See also [3].
Besides Theorem 1, the main ingredient of the proof of Theorem 3 is the follow-

ing result on the Miura map, B : L2(T) → H−1(T), r 7→ rx + r2, first introduced
by Miura [16] and proved to be a Bäcklund transformation, mapping solutions of
mKdV to solutions of KdV.

Theorem 4. ( [10])

(i) For any α ≥ 0, the Miura map B : Hα(T) → Hα−1(T) is a global fold.
(ii) Restricted to Hα

0 (T), B is a real analytic isomorphism onto the real an-
alytic submanifold Hα−1

0 (T) := {q ∈ Hα−1(T)
λ0(q) = 0} where λ0(q)
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denotes the lowest eigenvalue in the periodic spectrum of the operator
−d2/dx2 + q.

Remark: Theorem 4 is based on earlier results on the Riccati map [9] which
used as one of the ingredients estimates on the gaps of the periodic spectrum
of impedance operators of [13]. Some of the results in [9] have been obtained
independently by [14].

The main ingredient in the proof of Theorem 1 is a result on the normal form
of the Korteweg-deVries equation considered as an integrable Hamiltonian system.
To formulate it, introduce the following model spaces (α ∈ R)

hα := {(xk, yk)k≥1

xk, yk ∈ R;
∑

k≥1

k2α(x2
k + y2

k) < ∞}

with the standard Poisson bracket where {xk, yk} = 1 = −{yk, xk} and all other
brackets between the coordinate functions vanish.

On the space Hα
0 (T) := {q =

∑
k 6=0 q̂ke2πikx

q ∈ Hα(T)} we consider the Pois-
son bracket introduced by Gardner and, independently, by Faddeev and Zakharov

{F, G} =

∫

T

∂F

∂q(x)

d

dx

∂G

∂q(x)
dx.

Theorem 5. ([11], [6]) There exists a real analytic diffeomorphism
Ω : H−1

0 (T) → h−1/2 so that

(i) Ω preserves the Poisson bracket;
(ii) for any −1 ≤ α ≤ 0, the restriction Ωα of Ω to Hα

0 (T) is a real analytic
isomorphism, Ωα : Hα

0 (T) → hα+1/2;
(iii) on H1

0 (T), the KdV Hamiltonian H(q) =
∫

T
( 1
2q2

x + q3)dx, when expressed
in the new coordinates (xk , yk)k≥1, is a real analytic function of the actions
Ik := (x2

k + y2
k)/2 (k ≥ 1) alone.

Remark: In [11] it is shown that Ω0 : L2
0 → h1/2 is a real analytic isomorphism

with properties (i) and (iii). Moreover it is proved that for any α ∈ N, the
restriction Ωα of Ω to Hα

0 (T) is a real analytic isomorphism, Ωα : Hα
0 (T) → hα+1/2.

This result has been extended in [6] as formulated in Theorem 5.
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Global Regularity for the Yang–Mills Equations on High Dimensional

Minkowski Space

Joachim Krieger and Jacob Sterbenz

Let G be a compact semisimple Lie group, and denote M = Rn+1, the (n + 1)-
dimensional Minkowski space, equipped with the Lorentzian metric

mαβ = diag(−1, 1, . . . , 1)

Throughout n ≥ 6. We consider connections (Aα), α = 0, . . . , n, on the bundle
V = M × g, and their associated curvature components

Fαβ = ∂αAβ − ∂βAα + [Aα, Aβ ]

The Yang-Mills(YM) equations describe those connections which are extrema with
respect to the functional

L(F ) = −1

4

∫

M

< Fαβ , F αβ > dVM

where

< A, B >= tr(AB∗), F αβ = mαγmβδFγδ

Thus they satisfy the corresponding Euler-Lagrange equations, which read

(1) DβF αβ = 0, Dα = ∂α + Aα
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Writing these out in terms of the Aα, one deduces a system of nonlinear wave
equations describing the evolution of the connection components. Specifically, we
get

�Aα = ∂α(∂βAβ) + ∂β [Aα, Aβ] + [Aβ , Fαβ ]

Correspondingly, it is natural to pose the Cauchy problem, which we formulate as
follows:
given initial data (Fαβ(0), Aα(0)) satisfying the natural compatibility relations,
construct at least locally a solution pair (Fαβ(t), Aα(t)). In particular, we are in-
terested in the question of global-in-time solutions, and more specifically the reg-
ularity properties of the solutions. Numerical evidence suggests that large smooth
data may result in singular solutions, so it is necessary to impose a smallness con-
dition on the initial data to prevent singularities. To motivate this condition, note
that the equations (1) are invariant under the scaling transformation

Fαβ(t, x) → λ2Fαβ(λt, λx)

At the level of the connection form, this corresponds to the transformation

Aα(t, x) → λAα(λt, λx)

Thus the following norm of the initial data is left invariant under this scaling:

||F ||
Ḣ

n−4
2

:=
∑

|I|= n−4
2

||DIF ||2L2
x
, DI = Di1Di2 . . .Din

In particular, local well-posedness with respect to this norm implies global well-
posedness. While we cannot show well-posedness, we can prove the following
result:

Theorem 1. There exists a number ε > 0 such that for all smooth initial data
(Fαβ(0), Aα(0)), satisfying

||F ||
Ḣ

n−4
2

< ε,

there exists a unique smooth solution (Fαβ(t), Aα(t)) for (1).

This result is similar to earlier results on the Wave Maps(WM) equation [5], [2],
as well as the Maxwell-Klein-Gordon(MKG) equation [4]. It shares with these the
crucial property of an intrinsic Gauge invariance of the equations. Specifically, the
equations (1) are carried into themselves upon performing a change of connection
form as follows

Ãα = g∂α(g−1) + gAαg−1

where g is a section of the bundle M × G. However, while judicious choice
of a Gauge renders the nonlinearity of WM amenable to estimation by means
of Strichartz type norms (for spatial dimensions ≥ 4) and use of the standard
Duhamel parametrix, this is not possible for either the MKG or the YM equa-
tions. The reason for this is the fact that the curvature of the connection Aα is
not a priori small in a suitable norm, whence formulating everything in terms of
the Coulomb Gauge won’t eliminate the bad terms in the nonlinearity. Never-
theless, working in the Coulomb Gauge

∑n
i=1 ∂iAi = 0 is still useful, and we do
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so (using a version of Uhlenbeck’s fundamental result on the existence of these
Gauges). One can then work with the wave equations satisfied by the curvature
components, which have roughly the following form:

�Fαβ = 2[∂νFαβ , Aν ] + error

We then use a strategy inspired by earlier work of Rodnianski-Tao on the MKG
equation. What complicates our situation is that we are in a non-abelian context.
More precisely, our strategy consists in building the bad terms in the nonlinear-
ity(which are the bilinear terms depicted above)1 into the wave operator, thus
introducing a covariant wave operator2 of the form

�Au = �u + [Aα, ∂αu]

for g-valued functions on M . We then construct an approximate parametrix for
the equation �Au = 0, of the form

u(t, x) =

∫

Rn

ei(t|ξ|+x·ξ)g+(ξ, t, x)−1f̂(ξ)g+(ξ, t, x)dξ

+

∫

Rn

ei(t|ξ|−x·ξ)g−(ξ, t, x)−1f̂(ξ)g−(ξ, t, x)dξ,

where g±(ξ, t, x) are suitable G-valued phase functions. These phase functions
have the property of transforming the connection into an approximate Cronstrom-
Gauge in direction (±1, ω), where ω = ξ

|ξ| ∈ Sn−1. More precisely, they satisfy

the property

g±(ξ, t, x)L±
ω (g−1

± )(ξ, t, x) + g±(ξ, t, x)A · (±1, ω)g±(ξ, t, x)−1 ≈ 0,

where we employ the notation

L±
ω = ∂t ±∇x · ω

The gist of the work then consists in identifying the right function spaces to work
with (they are refinements of the Strichartz type spaces customarily used; observe
that for MKG the standard function spaces suffice, since the Gauge potential there
is of a better nature than for YM.) and show that the parametrix is compatible
with these function spaces, i. e. satisfies appropriate estimates when f(x) is a
frequency localized L2 function. The method for establishing these estimates is
a variant of the TT ∗ method used to prove ordinary Strichartz estimates for the
(flat) Duhamel parametrix, although the details are much more involved due to the
rough dependence of the phase functions g± on ξ. The reason for the restriction
n ≥ 6 is the fact that in lower dimensions the available Strichartz type estimates
are no longer enough to bound the error terms.

1We call those terms ’bad’ which cannot be estimated with respect to the Duhamel space

L1
t Ḣ

n−6
2 by means of Strichartz type estimates on Aα.

2More precisely, we will not use Aα but a suitably microlocalized version thereof
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On almost parallel vortex filaments

Gustavo Ponce

(joint work with C. E. Kenig and L. Vega)

In a 2-D incompressible, homogeneous, ideal fluid the vorticity is an scalar
function w : R2 × R → R, whose time evolution is modeled by the transport
equation

∂tw + uj∂xj w = 0,

where u = (u1, u2) is the velocity. From this equation , and the Biot-Savart law,
one has that an initial N -point vortices with strength Γk, k = 1, .., N , and initial
position (Xk(0))N

k=1, evolves in time to (Xk(t))N
k=1 portrayed by the dynamical

system (in complex notation)

(1)
d

dt
Xk = i

∑

j 6=k

Γj
Xk − Xj

|Xk − Xj |2
= −∇⊥(−∆)−1w(Xk(t), t), k = 1, .., N,

with Xk(t) = (xk(t)+ iyk(t)) , and ∇⊥ = (−∂x2 , ∂x1). This system can be rewrit-
ten in the Hamiltonian form

Γk
dxk

dt
= ∂yk

H, Γk
dyk

dt
= −∂xk

H, k = 1, .., N,

where H =
∑

j 6=k 2Γj Γk log |Xk − Xj|.
In addition to the Hamiltonian function solutions of (1) also preserve :

I =
N∑

j=1

Γj((xj(t))
2 + (yj(t))

2), x0 =
N∑

j=1

Γjxj(t), y0 =
N∑

j=1

Γjyj(t).

When Γ∗ =
∑N

j=1 Γj 6= 0 the point (x0, y0) = (x0, y0)/Γ∗, is called “the

center of vorticity”. We recall some special solution of the system (1), see [4].
Case N = 2: All solutions are relative equilibrium ones since d = |X1(t)−X2(t)|

is a constant of their motion. If Γ∗ 6= 0 the pair of points rotates about the center
of vorticity with angular velocity ω = Γ∗/(2πd2). If Γ∗ = 0 they translate with
speed ((Γ2

1 + Γ2
2)/2)1/2/2πd.
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Case N = 3: If (X1(0), X2(0), X3(0)) is an equilateral triangle of side d one
has a relative equilibrium solution. For Γ∗ 6= 0 it rotates about the center of
vorticity with angular velocity ω = Γ∗/(2πd2). If Γ∗ = 0 it translates with speed
((Γ2

1 + Γ2
2 + Γ2

3)/2)1/2/2πd. This equilateral triangle is unstable if Γ3 < 0 and
Γ−1

1 + Γ−1
2 + Γ−1

3 > 0. Otherwise it is neutrally stable.
Case N > 3: N point vortices of identical strength Γ placed at the vertex of

a regular N -polygon of radius R form a relative equilibrium, rotating about the
center of vorticity with angular frequency ω = Γ(N −1)/4πR2. This configuration
is stable if and only if N ≤ 7.

Also, Xj(t) = xj(t) + iyj(t) describes the time evolution of N -perfect parallel
vortex filaments perpendicular to the plane containing the points Xj(t)’s.

The equation modeling the motion of a self-induced vortex filament Z = Z(σ, t)
(da Rios, Hama, and Arms, see[1]) is

(2) ∂tZ = ct̂ × ∂2
σZ,

where t̂ is the unit tangent vector, × represents the cross product of vectors,
and c is a constant depending on the circulation and the reference time chosen.
For an almost parallel filament to the z-axis of the form Z(σ, t) = (0, 0, σ) +
ε (x(σ, t), y(σ, t), 0), ε � 1, the leading order in ε of the equation (2) is ∂tZ =
i Γ∂2

σZ.
In [3], Klein, Majda, and Damodaran proposed the following model to describe

the time evolution of N -vortex filaments nearly parallel to the z-axis

(3)





∂tΨj = i Γj∂
2
σΨj + i

∑

k 6=j

Γk
Ψj − Ψk

|Ψj − Ψk|2
, j = 1, .., N,

Ψj(σ, 0) = Ψ0,j(σ),

Ψj(σ, t) = xj(σ, t) + iyj(σ, t), with σ, t ∈ R, Ψj is the position of the j-th
filament, σ parametrizes the z-axis, t is the time, and Γj the circulation of the
j-th vortex filament.

Observe that the solutions of the ode system (1) (Xk(t))N
k=1 are also solutions

of the pde system (3).
In [2] we proved the following results.
We define the perturbation uk(σ, t) as Ψk(σ, t) = Xk(t)−uk(σ, t), k = 1, 2, 3.

Theorem (Global Existence)
Assume N = 3 (or N = 2), Γj = Γ, j = 1, .., N . If (X1, X2, X3)(0) forms an

equilateral triangle of side d > 0, then there exists δ = δ(d; Γ) > 0 such that for
any (u01 , u02 , u03) ∈ (H1(R))3 with

µ =

3∑

j=1

‖u0j‖1,2 ≤ δ,

the IVP (3) has a unique global solution

Ψk(σ, t) = Xk(t) − uk(σ, t), uk ∈ C([0, T ] : H1(R)), k = 1, .., 3,
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and

d/4 ≤ inf
t∈[0,∞)

inf
k 6=j

‖(Xj − Xk)(t) − (uj − uk)(·, t))‖∞ ≤ 4d.

Special solution for the system (3) for arbitrary N
For Γj = Γ, j = 1, .., N , system (3) is Galilean invariant, i.e. if (Ψk(σ, t))N

K=1

is a solution of the system (5), then

Ψ̃k,ν(σ, t) = e−iΓν2teiνσΨk(σ − 2Γνt, t), k = 1, .., N,

is also a solution of the system (3) with data

Ψ̃k,ν(σ, 0) = eiνσΨk(σ, 0), k = 1, .., N, ν ∈ R.

Consider the solution of the system (1) (and (3)) getting by placing at each
vortex of a regular N -polygon of radius R of strength Γ

Xj(t) = R e2πi(j−1)/Ne2πiωt, j = 1, .., N,

where ω = Γ(N − 1)/4πR2 is the angular velocity. So

Ψ̃k,ν(σ, t) = R eiνσe2πi(j−1)/Nei(2πω−Γν2)t, j = 1, .., N,

is a solution of (3) for any ν ∈ R. Taking ν = ν∗ with

ν∗ =

(
Γ(N − 1)

2ΓR2

)2

= ν∗(N, R, Γ),

we obtain an stationary solution of (3) in the form of a N -helix

Ψ̃k,ν∗(σ, t) = R eiνσe2πi(j−1)/N .

For N = 2, 3 these stationary 3-D solutions are globally stable under small
perturbation.
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Smoothing and dispersive estimates for 1D Schrödinger equations

with BV coefficients and applications

Nicolas Burq

(joint work with Fabrice Planchon)

Let us consider

(1) i∂tu + ∂x(a(x)∂xu) = 0, u(x, t = 0) = u0(x).



Nonlinear Waves and Dispersive Equations 2671

We take a ∈ BV, the space of bounded functions whose derivatives are Radon
measures. Moreover, we assume a to be real-valued and bounded from below:
0 < m ≤ a(x)(≤ M). We are interested in proving smoothing and dispersive
estimates for the function u. This type of equations has been recently studied
by Banica [3] who considered the case where the metric a is piecewise constant
(with a finite number of discontinuities). In [3], Banica proved that the solutions
of the Schrödinger equation associated to such a metric enjoy the same dispersion
estimates (implying Strichartz) as in the case of the constant metric, and conjec-
tured it would hold true for general a ∈ BV as well. Unfortunately, her method of
proof (which consists in writing a complete description for the evolution problem)
leads to constants depending upon the number of discontinuities rather than on
the norm in BV of the metric and consequently does not extend to more general
settings. On the other hand, Castro and Zuazua [5] show that the space BV is
more or less optimal: they construct metrics a ∈ C0,β for all β ∈ [0, 1[ (but not in
BV) and solutions of the corresponding Schrödinger equation for which any local
dispersive estimate of the type

‖u(t, x)‖L1
loc,t(L

q
loc,x) ≤ C‖u0‖Hs

fail if 1/p < 1/2 − s (otherwise, the estimate is a trivial consequence of Sobolev
embeddings). We can prove that the BV regularity threshold is optimal in a
different direction from [5]: there exist a metric a(x) which is in L∞ ∩ W s,1 for
any 0 ≤ s < 1, bounded from below by c > 0, and such that no smoothing effect
nor (non trivial) Strichartz estimates are true (even with derivatives loss).

10

1

1/p

s

All Strichartz
-smoothing

No Strichartz
(Castro-Zuazua)

No Strichartz
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Figure 1. Range of regularity a ∈ W s,p

In this talk, we present the natural conjecture, namely that for BV metrics, the
Schrödinger equation enjoys the same smoothing, Strichartz and maximal func-
tion estimates as for the constant coefficient case, globally in time. In the context
of variable coefficients, this appears to be the first case where such a low regu-
larity (including discontinuous functions) is allowed, together with a translation
invariant formulation of the decay at infinity (no pointwise decay). Previous works
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on dispersive estimates, while applying equally to any dimension, dealt with C2

compact pertubations of the Laplacian ([14]) or short range pertubations with
symbol-like decay at infinity ([11]). The idea to use local smoothing to derive
Strichartz, however, goes back to Staffilani-Tataru ([14]) in the context of variable
coefficients, and was used earlier to obtain full dispersion in [10] where a potential
pertubation was treated. All recent works on this topic make definitive use of
resolvent estimates for the elliptic operator, see e.g. [12]. Finally, it has to be
noticed that Salort [13] recently obtained dispersion (hence, Strichartz) (locally
in time) for 1D Schrödinger equations with C2 coefficients through a completely
different approach involving commuting vector fields.

We now say a word on the relevance of non-trapping conditions. In higher
dimension, it has been known since the works of Döı [8, 9] and the first author [4]
that the non trapping assumption is necessary for the optimal smoothing effect
to hold and the study of eigenfunctions on compact manifolds somewhat shows
that a non trapping condition is also necessary for Strichartz estimates. In the one
dimensional case, a smooth metric is always non trapping as can be easily seen by
a simple change of variables. However, some trapping-related behaviours (namely
the existence of waves localized at a point) appear for metric with regularity below
BV (see the work by Castro-Zuazua [5]). In fact the assumption a ∈ BV ensures
some kind of non trappingness and this fact has been known for a while in the
different context of control theory [7]. Let us picture this on the model case of
piecewise constant metrics : consider a wave coming from minus infinity. Then the
wave propagates freely (at a constant speed) until it reaches the first discontinuity.
At this point some part of the wave is reflected whereas some part is transmitted.
It is easy to see that a fixed amount of the energy (depending on the size of
the jump of the velocities) is transmitted. Then the transmitted wave propagate
freely until it reaches the second discontinuity, and so on and so forth... Finally,
we get that a fixed part of the energy of the incoming wave is transmitted at
the other end and propagates freely to plus infinity. Whereas some part of the
energy can remained trapped by multiple reflections, this shows that some part is
not trapped. As a consequence, our geometry is (at least weakly) non trapping.
This phenomenon is clearly specific to the one dimensional case as can be easily
seen (using Snell law of refraction) with simple models involving only two speeds.
Finally let us say a word about the method of proof:

• We first prove a smoothing estimate which is the key to all subsequent
results, by an elementary integration by parts argument

• We deduce Strichartz and maximal function estimates by combining our
smoothing estimate with known estimates for the flat case (and a suitably
modified version, with reversed norms, of Christ-Kiselev Lemma [6]).

• To perform spectral localizations, we use some results of Auscher-
Tchamitchian [2] and Auscher-MacIntosh-Tchamitchian [1] which imply
that the spectral localization with respect to the operators ∂xa(x)∂x and
∂2

x are reasonably equivalent.
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On the singularity formation for the L2 critical non linear Schrödinger

equation

Pierre Raphael

(joint work with Frank Merle)

We present a series of results obtained in collaboration with Frank Merle con-
cerning the singularity formation for the L2 critical non linear Schrödinger equation

(1) (NLS)

{
iut = −∆u − |u| 4

N u, (t, x) ∈ [0, T )× RN

u(0, x) = u0(x), u0 : RN → C

with u0 ∈ H1 = H1(RN ) in dimension N ≥ 1. Local well posedness in the en-
ergy space is a standard result from Ginibre, Velo, [3], and from energy type of
arguments, it is well known that the power non linearity is the smallest one for
which blow up may occur. Our aim in this work is to provide some insight into
the singularity formation.
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All symmetries of the linear Schrödinger equation are symmetries of (1) and
are L2 isometries. These invariances imply in particular the conservation of
the L2 norm and the energy of the solution which is E(u(t)) = 1

2

∫
|∇u(t)|2 −

1
2+ 4

N

∫
|u(t)|2+ 4

N = E(u0). The variational structure of the ground state Q which

is the unique positive solution going to zero at infinity of ∆Q − Q1+ 4
N = Q, see

[1] and [4], and the Hamiltonian structure of (1) yield a sharp criterion for global
wellposedness, see [14]: for |u0|L2 < |Q|L2 , the solution is global in H1. In ad-
dition, this condition is sharp: the solitary wave u(t, x) = Q(x)eit is a global
solution to (1) while the pseudo-conformal symmetry applied to it yields an ex-

plicit blow up solution S(t, x) = 1

|t|
N
2

Q(x
t )e−i |x|2

4t + i
t which blows up at T = 0 with

|S(t)|L2 = |Q|L2 . From [6], S(t) is the unique minimal mass blow up solution up
to the symmetries.

We now focus onto the perturbative situation when

u0 ∈ Bα∗ = {u0 ∈ H1 with

∫
Q2 ≤

∫
|u0|2 <

∫
Q2 + α∗}

for some small constant α∗ > 0. At least two different blow up behaviors are known
to possibly occur. There exist in dimension N = 1, 2 a family of solutions of type
S(t) by a result of Bourgain, Wang, [2], that is solutions with |∇u(t)|L2 ∼ 1

T−t near
blow up time. On the other hand, numerical simulations and formal arguments,

[5], suggest the existence of solutions blowing up like |∇u(t)|L2 ∼
(

log | log(T−t)|
T−t

) 1
2

in dimension N = 2. This behavior should be interpreted as a slow correction to
a self similar type of blow up. Perelman proves in [12] in dimension N = 1 the
existence of a solution of this type.

The situation has been clarified in a sequel of papers [7], [8], [9], [10], [11], [13].
All the results assume a positivity property of some explicit quadratic form based
on the ground state Q which has been proved in dimension N = 1 where Q is
explicit, and checked numerically in dimension N = 2, 3, 4.

We first have the following theorem which proves the existence of a universal
singular structure in space.

Theorem 1 (Existence of a L2 profile at blow up time, [11]). Let N = 1, 2, 3, 4.
There exists a universal constant α∗ > 0 such that the following holds true. Let
u0 ∈ Bα∗ and assume that the corresponding solution to (1) blows up in finite time
0 < T < +∞, then there exist parameters (λ(t), x(t), γ(t)) ∈ R∗

+ ×RN ×R and an
asymptotic profile u∗ ∈ L2 such that

u(t) − 1

λ(t)
N
2

Q

(
x − x(t)

λ(t)

)
eiγ(t) → u∗ in L2 as t → T.
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Moreover, blow up point is finite in the sense that

x(t) → x(T ) ∈ RN as t → T.

This results implies in particular that the mass that is brought into the singu-
larity is universal and quantized. A different type of results allows one to separate
within the different blow up regimes.

Theorem 2 (Dynamics of (1), [7], [8], [9], [10], [13]). Let N = 1, 2, 3, 4. There
exists a universal constant α∗ > 0 such that the following holds true. For u0 ∈ H1,
let u(t) the corresponding solution to (1) with [0, T ) its maximum time interval
existence on the right in H1. Let the set

O = {u0 ∈ Bα∗ with T < +∞ and lim
t→T

|∇u(t)|L2

|∇Q|L2

(
T − t

log | log(T − t)|

) 1
2

=
1√
2π

},

then:

(1) Dynamic of non positive energy solutions:
{u0 ∈ Bα∗ with E0 ≤ 0 and

∫
|u0|2 >

∫
Q2} ⊂ O.

(2) Stability of the log-log regime: O is open in H1. Moreover, for u0 ∈ O, let
u∗ given by Theorem 1, then u∗ /∈ H1.

(3) If 0 < T < +∞ and u0 ∈ Bα∗ does not belong to O, then E0 > 0.

Moreover, we have |∇u(t)|L2 ≥ C(u0)
(T−t) for t close to T and u∗ ∈ H1.
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Sobolev regularity for scalar conservation laws

Benôıt Perthame

We present a proof of Sobolev regularity for scalar conservation laws in the frame-
work of entropic or quasi-entropic solutions. It also applies to variant problems as
systems like isentropic gas dynamics with γ = 3, or to some variational problems
arising in thin micromagnetic films. The steps for the derivation are firstly the
kinetic formulation which allows to linearize the PDE to the expense of a new vari-
able and a nonlinear unknown. The second ingredient is to use velocity regularity
for the solution to the transport equation under consideration.

1. Kinetic formulation

Kinetic formulations allow to consider nonlinear problems (balance laws or vari-
ational problems) and, using a nonlinear function f of the unknown, to transform
these problems in a singular linear transport equation on f . The simplest example
is that of the entropy solution u ∈ C(R+; L1(Rd)) to a multidimensional scalar
conservation law

(1)
∂tu(t, x) + divA(u) = 0, t > 0, x ∈ Rd,
∂tS(u(t, x)) + div ηS(u) ≤ 0,

for all convex function S(·) with S(0) = 0 and using the notations ηS(u) =∫ u

0 S′(·)a(·), a = A′ : R → Rd. Then, we define, for v ∈ R, the ‘equilibrium’
function f(t, x, v) thanks to

(2) f(t, x, v) =





+1, for 0 < v < u(t, x),
−1, for u(t, x) < v < 0,
0, otherwise.

The theory of kinetic formulations ([7, 8]) states that (1) is equivalent to write the
kinetic equation on f

(3) ∂tf + a(v) · ∇xf = ∂vm(t, x, v),

for some unknown nonnegative bounded measure m such that
∫ ∞

0

∫

R×Rd

m(t, x, v) dt dv dx ≤ 1

2
‖u0‖2

L2(Rd).

The case of dispersive/diffusive limits for scalar conservation laws leads to the
same kinetic formulation except that m(t, x, v) is a bounded measure without
sign (see [5]). This is also the case of thin micromagnetic films (see [2], [6] and
the references therein). We refer to the case where m is a (unsigned) bounded
measure as the quasi-entropic case.
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Theorem 1. Let u(t, x) ∈ C(R+; L1(Rd)) an entropy solution to a nondegenerate
(in the sense of (9)) multidimensional scalar conservation law (1), with u(t = 0) ∈
L1 ∩ L∞(Rd), then locally we have

u ∈ W s,r
t,x for all s <

1

3
, r <

3

2
.

This regularity was obtained in [7] with a more complicate argument which
involves a bootstrap of averaging lemmas combined with the L1 contraction prop-
erty. Notice that for the entropy solution in 1D, the optimal regularizing effect,
from u0 ∈ L∞ to u(t) ∈ BV is a classical result of Oleinik and multidimensional
cases are not known. For quasi-entropic solutions, the exponents in theorem 1 are
sharp as proved in [1].

2. The averaging lemmas

We consider the following equation

(4) v · ∇xf = ∆α/2
x g, x ∈ Rd, v ∈ Rd.

Notice that the steady case contains the evolution case up to changing (t, x) in x
and (1, v) in v. Now we choose any φ ∈ C∞

c (Rd) and define

(5) ρ(x) =

∫

Rd

f(x, v)φ(v)dv.

Assume that

g ∈ Lp(Rd, W β,p
v (Rd)), 1 < p ≤ 2, β ≤ 1

2
,

f ∈ Lq(Rd, W γ,q
v (Rd)), 1 < q ≤ 2, 1 − 1

q
< γ ≤ 1

2
.

(6)

We also point out that the results extend to exponents p or q larger than 2. Then,
we have to replace p and q by min(p, p̄) and min(q, q̄) in formula (7) below (p̄
denotes here the conjugate exponent to p).

As usual for averaging lemmas ([4, 3, 8]), we state that the average ρ is in fact
more regular than f itself. This can be quantified as follows (see [6])

Theorem 2. (Case 0 ≤ α < 1) Let f , g satisfy (4) and (6), then we have for
s′ < s = θ(1 − α) and r′ < r with 1

r = θ
p + 1−θ

q ,

‖ρ‖
W s′,r′

loc

≤ C
(
‖g‖Lp

xW β,p
v

+ ‖f‖Lq
xW γ,q

v

)
,

(7) with θ =
1 + γ − 1/q

1 + γ − β + 1/p− 1/q
.
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For γ = 0, β ≤ 0, we are in a case included in standard averaging lemmas (see
in particular [3]). However our result is a bit weaker since it is known in this case
that ρ ∈ W s,r with s and r given by the formulas of Theorem 2.

To conclude let us state that these results are also true for the evolution equation

(8) ∂tf + a(v) · ∇xf = ∆α/2
x g,

when the field v → a(v) satisfies the strongest non degeneracy condition, namely:
for all R > 0, there is a constant C(R) such that for ξ ∈ Rd, τ ∈ R with |ξ|+|τ | ≤ 1,
then

(9) meas{v s. th. |v| ≤ R, and |a(v).ξ − τ | ≤ ε} ≤ Cε.

The regularity on the average ρ is then a regularity in time and space but all the
formulas given above for the exponents are exactly the same.
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On Multilinear Oscillatory Integrals

Michael Christ

(joint work with Xiaochun Li, Terence Tao, Christoph Thiele)

Consider multilinear integral operators of the form

Tλ(f1, · · · , fn) =

∫

Rd

eiλP (y)
n∏

j=1

fj ◦ `j(y) η(y) dy

where P is a real-valued polynomial, λ ∈ R is a large parameter, η is a smooth
compactly supported cutoff function, and `j : Rd 7→ Rdj are surjective linear
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transformations. Is

|Tλ({fj})| ≤ C|λ|−δ
∏

j

‖fj‖L∞

uniformly for all functions fj as |λ| → ∞?
The most fundamental example is the inequality

∣∣
∫∫

Rd×Rd

e−iλx·yf(x)g(y)η(x, y) dx dy
∣∣ ≤ C|λ|−d/2‖f‖2‖g‖2,

which implies the L2 boundedness of the Fourier transform. Here every point
x ∈ Rd interacts with every point y ∈ Rd. This talk, in contrast, is concerned with
generalizations where the integral is taken over a d-dimensional linear subspace of∏

j Rdj ; most n-tuples of points (x1, · · · , xn) ∈∏j Rdj do not interact.

In the linear/bilinear case n = 2 this problem has been studied intensively,
in particular by Stein and by Phong-Stein but also by many others. For bilinear
expressions

∫∫
Rd+d eiλP (x,y)f(x)g(y)η(x, y) dx dy with P polynomial, a power decay

bound holds if and only if P is not of the form p(x)+q(y). In the truly multilinear
case quite little is known. The focus here is on the basic question of whether there
is any decay at all.

From linear experience we expect the case of polynomial phases P to be funda-
mental. We’re putting the strongest norm on the functions fj not involving any
smoothness, and aren’t trying to quantify δ.

There is an obvious necessary condition: If P =
∑

j qj ◦`j for some functions qj

then there’s no decay (take fj = e−iλqj to cancel out all the apparent oscillation).
Definition. P is nondegenerate relative to {`j} if P can not be represented as∑

j qj ◦ `j for any functions qj .
Question. Does power decay always hold for nondegenerate polynomial phase
functions P ? This remains open, even for quadratic polynomials in three variables.
Lemma. (Suppose P homogeneous, to simplify statements.) The following are
equivalent:

(1) P 6=∑j qj ◦ `j for polynomials qj of degrees ≤ degree(P ).

(2) P 6=∑j hj ◦ `j for any distributions hj .

(3) There exists a constant-coefficient homogeneous linear partial differential
operator L satisfying L(fj ◦ `j) ≡ 0 for all functions fj , for all j and
L(P ) 6= 0.

Warning: Nondegeneracy of P relative to {`j : 1 ≤ j ≤ n} imposes no bound
whatsoever on n in terms of the degree of P and the ambient dimension d.
Definition. P is simply nondegenerate if there exists L of the form L =

∏
j(vj ·∇)

which kills all functions fj ◦ `j , yet L(P ) does not vanish identically.
Theorem. If P is simply nondegenerate then it satisfies a power decay bound.
Proposition. When each dj = d−1, simple nondegeneracy is equivalent to nonde-
generacy. Consequently nondegeneracy is equivalent to the power decay property
in the codimension one case dj = d − 1.
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Theorem. If each dj = 1 and if the number of functions n satisfies n < 2d then
any nondegenerate polynomial P satisfies a power decay bound (under an auxiliary
general position hypothesis on {`j}).

A more elementary question arises in several different ways in the discussion:
For what exponents pj ∈ [1,∞] does the multilinear expression make sense for all
fj ∈ Lpj ? Bennett, Carbery, and Tao analyzed the global version (for different
reasons) and obtained a nice characterization:
Theorem. Let `j : Rd 7→ Rdj be surjective linear transformations. Then

∫

Rd

∏

j

|fj ◦ `j | dy ≤ C
∏

j

‖fj‖Lpj

if and only if
∑

j p−1
j dj = d and

∑
j p−1

j dim(`j(V )) ≥ dim(V ) for every subspace

V ⊂ Rd.
I’ve given an alternative proof which also establishes the following generaliza-

tion:
Theorem. ∫

Rd∩{y:|`0(y)|≤1}

n∏

j=1

|fj ◦ `j(y)| dy ≤ C

n∏

j=1

‖fj‖Lpj

for all measurable fj if and only if every subspace V ⊂ Rd satisfies d − dim(V ) ≥∑
j p−1

j

(
dj − dim(`j(V ))

)
and furthermore

∑
j p−1

j dim(`j(V )) ≥ dim(V ) if V ⊂
kernel(`0).

The results stated above for multilinear oscillatory integrals fail to cover a well-
known example, and the techniques don’t yield optimal decay exponents δ. The
twisted convolution inequality is

∣∣ ∫∫
Cn×Cn eiλ=(z·w̄)f1(z)f2(w)f3(z − w) dz dw

∣∣ ≤
C|λ|−n/2

∏
j ‖fj‖2. This inequality is self-dual in sense that when it is rewritten

as a trilinear expression in the three Fourier transforms f̂j , precisely the same
expression is obtained, except for changes in various constants.

The last part of the talk is a preliminary report on joint work with Justin
Holmer. We’ve analyzed the inequality

∣∣
∫

Rd

eiλQ(y)
n∏

j=1

fj ◦ `j(y)η(y) dy
∣∣ ≤ C|λ|−δ0

∏

j

‖fj‖L2

where Q is a homogeneous quadratic polynomial, all dj = D, all norms on the

right-hand side are L2 norms, and δ0 = d
2 − nD

4 is the largest exponent for which
such an estimate isn’t ruled out by scaling considerations. Thus we’re trying
to characterize the maximally nondegenerate quadratic phase functions. We’ve
established a sufficient condition which we believe is also necessary. Unfortunately,
we don’t yet have a palatable formulation of our sufficient condition, so I discuss
only the method of proof without formulating the result.

Our analysis uses an FBI transform. Define F(f)(x, ξ) = 〈f, ϕ(x,ξ)〉 where

ϕ(x,ξ)(y) = eiy·ξe−|x−y|2/2. There are a Plancherel identity and inversion formula

analogous to those for the Fourier transform. Proving the desired multilinear L2
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bound is equivalent to proving a global inequality without any large parameter, of
the form

∣∣ ∫
Rd eiQ

∏
j fj ◦ `j

∣∣ ≤ C
∏

j ‖fj‖L2 . Here there is a preferred unit scale.
With respect to the FBI transform there is no longer any self-duality.

Expressing each fj in terms of F(fj) yields
∫

⊕jT∗(RD)

a(x, ξ)
∏

j

F(fj)(xj , ξj) dx dξ

where (x, ξ) = (x1, ξ1, · · · , xn, ξn) ∈ (R2D)n and |a(x, ξ)| ≤ Ce−c distance((x,ξ),Σ)2

where the linear subspace Σ equals the set of all (x, ξ) for which there exists y ∈ Rd,
necessarily unique, such that `j(y) = xj for all j and ∇Q(y) +

∑
j `∗j (ξj) = 0.

Moreover a exhibits no useful cancellation or decay on Σ. Thus a good model for
this expression is

∫
Σ

∏
j F(fj)(xj , ξj) dσ where σ is Lebesgue measure on Σ. This

is a nonoscillatory multilinear integral operator of precisely the type discussed in
the middle portion of this talk.

Under certain hypotheses of general position on {`j}, the dimension of Σ is al-
ways half of the dimension of the ambient space ⊕jT

∗(Rdj ). Thus scaling consid-
erations are consistent with a bound

∣∣ ∫
Σ

∏
j Fj(xj , ξj) dσ

∣∣ ≤ C
∏

j ‖Fj‖L2(T∗(Rdj ),

and we have Fj = F(fj) ∈ L2 if fj ∈ L2 by the Plancherel identity for the FBI
transform.

Our preliminary theorem says that the original multilinear oscillatory integral
operator satisfies the strongest possible L2 decay estimate provided that Σ (that is,
Σ together with the collection of mappings πj |Σ where πj : ⊕iT

∗(Rdi) 7→ T ∗(Rdj )
is the canonical projection) satisfies the hypothesis of the theorem of Bennett,
Carbery, and Tao with all exponents pj = 2. Special cases include the inequality
for twisted convolution, and Plancherel’s inequality itself.
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Mass Concentration Properties of Rough Blowup Solutions of Cubic

NLS on R2

James Colliander

This talk described two new results concerning blowup solutions of the ini-
tial value problem for the two-dimensional, cubic, focusing nonlinear Schrödinger
(NLS) equation:

(1)

{
iut + ∆u + |u|2u = 0,

u(0, x) = u0(x), x ∈ R2.

This problem is L2-critical in the sense that the rescaling u(t, x) → ρ[u](t, x) =
ρ−1u(ρ−2t, ρ−1x) maps solutions to solutions and is an isometry in L2

x. If global
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well-posedness fails to hold then there is a finite T ∗ such that for all δ > 0

(2) ‖u‖L4
t∈[0,T∗−δ],x∈R2

< +∞,

but diverges to infinity for δ = 0.
In the setting of merely L2

x initial data, if global well-posedness fails to hold for
(1) then a nontrivial parabolic concentration of L2-mass occurs [1] as t ↑ T ∗:

(3) lim sup
t↑T∗

sup
cubes I ⊂ R2

side(I) < (T ∗ − t)
1
2

(∫

I

|u(t, x)|2dx

) 1
2

& ‖u0‖−M
L2 .

Finite time blowup solutions of (1) with initial data in H1 are known [9], [7],
[8] to satisfy

(4) lim inf
t↑T∗

sup
cubes I ⊂ R2

side(I) < (T ∗ − t)
1
2−

(∫

I

|u(t, x)|2dx

) 1
2

≥ η(‖u0‖L2) ≥ ‖Q‖L2

where 1
2− denotes 1

2 − ε for any fixed ε > 0 and where Q is the ground state: the
unique positive (up to translations) solution of

(5) ∆w − w + |w|2w = 0.

A natural question, stated in [6], is to determine whether small L2-mass con-
centrations take place when u0 ∈ L2. The conjectured answer is no: Solutions of
(1) with L2 initial data and with a finite maximal (forward) existence interval are
conjectured to concentrate at least the L2-mass of the ground state, as is known
to hold for blowup solutions with H1 initial data. Two recent results corroborate
this expectation.

The following theorem was proved in joint work with S. Raynor, C. Sulem and
J. D. Wright.

Theorem 1. [3] There exists sQ ≤ 1
5 + 1

5

√
11 such that the following is true for

any s > sQ. Suppose Hs ∩ {radial}1 3 u0 7−→ u(t) solves (1) on the maximal
(forward) time interval [0, T ∗), with T ∗ < ∞. Then

(6) lim sup
t↑T∗

‖u‖L2

{|x|<(T∗−t)s/2−}

≥ ‖Q‖L2 .

The next result2, obtained in joint work with W. Staubach, establishes a differ-
ent intermediate result.

1The non-radial case is amenable to treatment by employing the methods of compensated
compactness as used in [10], [8].

2S. Keraani [5] has proved a similar result and the corresponding result in one space dimension.
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Theorem 2. [4] Let L2(R2) 3 u0 7−→ u solve (1) on a maximal (forward) time
interval [0, T ∗), T ∗ < ∞. Then there exits a fixed constant µ0 > 0 such that

(7) lim sup
t↑T∗

sup
cubes I ⊂ R2

side(I) < (T ∗ − t)
1
2

(∫

I

|u(t, x)|2dx

) 1
2

≥ µ0.

Remark 3. The value of µ0 may be taken to be the “scattering threshold mass”
defined by the property: If ‖v0‖L2 < µ0 then the (1) evolution v0 7−→ v is global-
in-time and satisfies ‖v‖L4

xt
< ∞. There exists a nonzero lower bound on the

scattering threshold mass in terms of constants in the Strichartz inequalities. It
is conjectured that all L2 solutions of (1) with initial mass less than ‖Q‖L2 are
global-in-time and bounded in L4

xt.

The proof of Theorem 1 revisits the proof of the corresponding H1 result from
[7]. The role played by the conserved energy in the H1 setting is played instead
by an Hs-based almost conserved quantity introduced in [2].

The proof of Theorem 2 uses an asymptotic representation formula with asymp-
totic orthogonality properties proven in [6]. The proof proceeds by contradiction.
If the bump functions which eventually concentrate in the [6] formula have mass
smaller than µ0, it is shown by a perturbation argument that the solution is
bounded in L4

t∈[0,T∗],x and thus [0, T ∗) is not the maximal interval of existence,

which is a contradiction.
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Mathematical Analysis of Vortex Sheet

Sijue Wu

We investigate questions related to the vortex sheet problem. This problem serves
as a prototype for the evolution of vorticity in fluid flows. One can think for
example of the wake of an airfoil as a typical problem of this type. The problem
can be described by equations

vt + v · ∇v + ∇p = 0

div v = 0, (x, y) ∈ R2, t ≥ 0

v(x, y, 0) = v0(x, y)

Here v is the fluid velocity, p is the pressure and v0(x, y) is the initial data. The
basic assumption is that the initial vorticity w0 = curlv0 is ideally only a finite
Radon measure. The vortex sheet problem assumes that the vorticity is a measure
supported on a curve. The issue is to determine the evolution of this curve.

The evolution of the vortex sheet curve is described by the equivalent Birkhoff-
Rott equation. If z(α, t) denotes the vortex sheet curve in complex variables at
time t, then the evolution equation can be written in the following manner:

∂tz̄(α, t) =
1

2πi
p.v.

∫
1

z(α, t) − z(β, t)
dβ.

Here γ := 1/|zα| is the vortex strength and α is the circulation variable. I consider
the question of the weakest possible assumptions such that an equation of the above
type makes sense. This led me to introduce Chord-Arc curves to this problem. A
chord-arc curve is a curve in which its arc-length between any two points is always
no larger than a fixed multiple of the chord length between the same points. I
proved three main results concerning this problem. The first can be stated as the
following: Assume that the Birkhoff-Rott equation has a solution in a weak sense
and the vortex strength is bounded away from zero and infinity. Moreover assume
that the solution gives rise to a vortex sheet curve that is Chord-Arc. Then the
curve is automatically smooth, in fact analytic for fixed time. The second and
third results demonstrates that the Birkhoff-Rott equation is in fact not well-
posed. That is one can solve the equation if and only if only half the initial data
is given.
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On the limit from the Klein-Gordon-Zakharov system to the nonlinear

Schrödinger equation

Kenji Nakanishi

This is a report on recent joint work with Nader Masmoudi (Courant Institute).
The nonlinear Schrödinger equation is known to arise in various physics phenomena
as an approximating equation. The approximation is usually carried out by taking
several formal limits on the level of equations. Its mathematical justification,
namely proving convergence on the level of actual solutions, often turns out to be
highly non-trivial, even if we have satisfactory knowledge for both equations before
and after the limits. Such an example is in the context of the plasma physics, for
which I will describe the main difficulties and our idea to resolve them.

In the plasma physics, the nonlinear Schrödinger equation

(NLS) 2iu̇− ∆u = |u|2u,

is used as a model for describing the so-called Langmuir turbulence. It is derived
from the Maxwell equation coupled with the fluid equations of the electrons and
ions, via the Klein-Gordon-Zakharov system:

(KGZ)

{
c−2Ë − ∆E + c2E = nE,

α−2n̈ − ∆n = −∆|E|2,
and the Zakharov system:

(Z)

{
2iu̇− ∆u = nu,

α−2n̈ − ∆n = −∆|u|2,

where E : R1+3 → R3 and n : R1+3 → R approximately describes the electric field
and the ion density respectively, c2 is called the plasma frequency and α is the
ion sound speed. Physically we have c � α � 1 and formally, (Z) is obtained by

putting E = eic2tu in (KGZ) and letting c → ∞, and then (NLS) is derived by
α → ∞. We are interested in convergence of solutions in these limits in terms of
the Cauchy problem. In other words, we want to show convergence of solutions
assuming that of initial data.

As for the solution class, the energy space is the most natural and important,
from both physical and mathematical view points. It is defined by

(E(t), Ė(t), n(t), ṅ(t)) ∈ H1 × L2 × L2 × Ḣ−1, for (KGZ),

(u(t), n(t), ṅ(t)) ∈ H1 × L2 × Ḣ−1, for (Z),

u(t) ∈ H1 for (NLS),
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where the following energy is well-defined and conserved for each equation respec-
tively:

∫

R3

|c−1Ė|2 + |∇E|2 + |cE|2 +
|α−1|∇|−1ṅ|2 + |n|2

2
− n|E|2dx, (KGZ)

∫

R3

|∇u|2 +
|α−1|∇|−1ṅ|2 + |n|2

2
− n|u|2dx, (Z)

∫

R3

|∇u|2 − |u|4
2

dx, (NLS)

Hs and Ḣs respectively denote the inhomogeneous and the homogeneous Sobolev
spaces on L2, and f(∇) = F−1f(iξ)F denotes the Fourier multiplier for any
function f .

Local wellposedness in the energy space for each equation is well known. Indeed,
u ∈ H1/2 is sufficient for (Z) and (NLS). See [9, 4, 3]. Blow-up solutions are known
to exist for (KGZ) and (NLS) [8, 5] and also expected for (Z) [7].

On the other hand, convergence of solutions are known only in function spaces
with much more regularity. [11] proved the convergence from (Z) to (NLS) in H5×
H4 × H3 assuming n = |E|2 at the initial time, while [1] proved the convergence
in H6 × W 1,6 × H3 without assuming n = |E|2 but for E small in H1. In [10,
6], convergence is given together with optimal convergence rate, assuming initial
convergence in function spaces with even more regularity and decay at spatial
infinity. The convergence from (KGZ) to (Z) was proved in [2] in Hs × Hs−1 ×
Hs−1 × Hs−2 for s > 7/2.

The essential reason for this regularity gap between local wellposedness and
convergence is that the usual iteration scheme for solving the Cauchy problem
does not work uniformly for the limit α → ∞ in any Sobolev space Hs. In fact,
we can prove that for any s ∈ R, there exists ϕ ∈ Hs such that the second iteration
for 




2iu̇k − ∆uk = nk−1uk−1,

α−2n̈k − ∆nk = −∆|uk−1|2,
uk(0) = ϕ, nk(0) = ṅk(0) = 0

is not bounded, i.e.,
lim sup

α→∞
‖u2(t)‖Hs−1+ε = ∞

for any 0 < t � 1 and ε > 0. (The uniform iteration is still possible in some
weighted spaces [6].)

The above blow-up phenomenon can be easily observed in the space-time Fourier
space. Free solutions for the Schrödinger and the wave equations are respectively
supported on a paraboloid and light cones, and at their intersecting frequency
M = 2α, those free solutions oscillate in the same way. The contribution of the
quadratic nonlinearities can be estimated in oscillatory integrals outside of this
frequency M , since the difference of oscillation brings a lot of cancellation by
integration. But around the frequency M , linear analysis implies resonance of n
and u, and so no gain can be expected. We have the same problem for the limit
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from (KGZ) to (NLS). However, this frequency becomes a trouble only in the
limit M → ∞, since otherwise it is a bounded frequency portion, which may be
estimated with arbitrary regularity.

Because of the above difficulty, the previous results on the convergence from
(Z) to (NLS) are based essentially on the energy conservation, except for [6].
As for the limit from (KGZ) to (NLS), there is also a difficulty in this type of
argument, namely the energy is diverging in the order O(c2). Although the energy

for u = e−ic2tE might appear to be bounded, it is actually the same quantity as
the energy of E, provided that E is real-valued.

Our idea to resolve these difficulty is quite simple: we decompose the solu-
tion into the frequency around the resonance M and outside of it. For the non-
resonant part, we apply bilinear estimates which derives regularity gain from the
non-resonant property, and for the resonant part, we use a frequency-localized,
modified nonlinear energy. Combining those estimates, we obtain

Theorem 1. Let s > 3/2 and 0 < γ < 1. Let (E, n) be the time-local solution of
(KGZ) with the maximal existence time T . Consider the limit (c, α) → ∞ under
the restriction α < γc. Assume the following initial convergence:

(E(0), c−2IcĖ(0)) → (E0, E1) in Hs,

(n(0), α−1|∇|−1ṅ(0)) → (n0, n1) in Hs−1,

where Ic = (1 + |∇/c|2)−1/2. Let u = (u+, u−) be the time-local solution of the
nonlinear Schrödinger equation

2iu̇− ∆u = |u|2u, u(0) =
1

2
(E0 − iE1, E0 − iE1).

with the maximal existence time T∞. Then we have lim inf T ≥ T∞, and

E(t) − (eic2tu+ + e−ic2tu−) → 0, in C([0, T∞); Hs),

ic−2IcĖ(t) + (eic2tu+ − e−ic2tu−) → 0, in C([0, T∞); Hs),

n(t) − |u(t)|2 − nf (t) → 0 in C([0, T∞); Hs−1),

α−1|∇|−1(ṅ(t) − ṅf (t)) → 0 in C([0, T∞); Hs−1),

where nf is the free wave solution defined by

α−2n̈f − ∆nf = 0, nf (0) = n(0) − |u(0)|2, ṅf (0) = ṅ(0).

We have a similar result for the limit from (Z) to (NLS). The main reason
for the lower bound 3/2 for the regularity is coming from the error estimate for
the modified energy at M , where we are forced to bound n in L∞

x by using the
Strichartz estimate.

References

[1] H. Added and S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger
equation: smoothness and approximation. J. Funct. Anal. 79 (1988), no.1, 183–210.

[2] L. Bergé, B. Bidégaray and T. Colin, A perturbative analysis of the time-envelope approxi-
mation in strong Langmuir turbulence. Phys. D 95 (1996), no.3-4, 351–379.



Nonlinear Waves and Dispersive Equations 2689

[3] T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger
equation in Hs. Nonlinear Anal. 14 (1990), no.10, 807–836.

[4] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J.
Funct. Anal. 151 (1997), no.2, 384–436.

[5] R. Glassey, Blow-up theorems for nonlinear wave equations. Math. Z. 132 (1973), 183–203.
[6] C. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Schulman systems. J.

Funct. Anal. 127 (1995), no. 1, 204–234.
[7] F. Merle, Blow-up results of virial type for Zakharov equations. Comm. Math. Phys. 175

(1996), no. 2, 433–455.
[8] M. Ohta and G. Todorova, in preparation.
[9] T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy

problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three
space dimensions. Math. Ann. 313 (1999), no. 1, 127–140.

[10] T. Ozawa and Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the
Zakharov equations. Differential Integral Equations 5 (1992), no. 4, 721–745.

[11] S. Schochet and M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations
governing Langmuir turbulence. Comm. Math. Phys. 106 (1986), no. 4, 569–580.

An improved local well-posedness result for the derivative nonlinear

Schrödinger equation

Axel Grünrock

The Cauchy problem for the derivative nonlinear Schrödinger equation (DNLS)
in one space dimension

(1) iut + uxx = i(|u|2u)x, u(0) = u0

has been shown to be locally well posed for Hs-data, s ≥ 1
2 , by Takaoka in 1999

[5], where he improved earlier results of Hayashi and Ozawa [4]. On the Hs-

scale, the H
1
2 - result is optimal; in fact, ill-posedness in the C0-uniform sense

has been demonstrated by Biagioni and Linares in 2001 [1] using an appropriate
counterexample. On the other hand the scaling argument suggests local well-
posedness for s ≥ 0 or at least s > 0, which is the critical scaling exponent in this
case.

Inspired by works of Vargas and Vega [6] and of Cazenave, Vega and Vilela [2]

we extend the H
1
2 -result to a larger class of data in the two parameter scale of

spaces Ĥr
s (R), defined by the norm

‖u0‖
Ĥr

s

= ‖Ĵsu0‖Lr′ ,

here Js is the Bessel potential operator of order −s. (Furthermore we use L̂r
x

instead of Ĥr
0 ). The main result is:

Theorem 1. The Cauchy problem (1) is locally well posed for data u0 ∈ Ĥr
s (R),

provided 2 ≥ r > 1 and s ≥ 1
2 .
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This theorem contains Takaoka’s result in the special case r = 2. Since Ĥr
s

scales like Hσ, if s − 1
r = σ − 1

2 , we can compare the results from a scaling point
of view: By pushing down r from 2 to 1+, we can almost reach the scaling line
s − 1

r = − 1
2 ; the case s = 1

2 and r = 1 becomes critical in this setting and must
be left as an open question. On the other hand the result is sharp, since, for given
r ∈ (1, 2) and s < 1

2 , we have local ill-posedness in the C0-uniform sense, which
can be seen by using the counterexample of Biagioni and Linares.

In order to prove the theorem we rely on a variant of Bourgain’s Fourier re-
striction norm method, especially we use the function spaces Xr

s,b, defined by the
norms

‖f‖Xr
s,b

:=

(∫
dξdτ〈ξ〉sr′ 〈τ + ξ2〉br′ |f̂(ξ, τ)|r′

) 1
r′

,

and the corresponding restriction spaces

Xr
s,b(δ) := {f = f̃ |[−δ,δ]×R : f̃ ∈ Xr

s,b},
endowed with the restriction norm. These are our solution spaces. This variant

of Bourgain’s method has been described in detail by the author in section 2 of [3],
where a general theorem is shown, that reduces the question of local well-posedness
completely to nonlinear estimates in the Xr

s,b-norms.
Other key tools in the proof of Theorem 1 are a gauge transform, which has

already been used before by Takaoka and Hayashi/Ozawa, and certain bi- and
trilinear estimates for solutions of the free Schrödinger equation, which imply
corresponding Xr

s,b-estimates:

Theorem 2. Let u = eit∂2

u0, v = eit∂2

v0 and w = e−it∂2

w0. Then, with ‖f‖dLr
xt

=

‖f̂‖Lr′

ξτ
, we have

‖I 1
r (vw)‖dLr

xt
= c‖v0‖cLr

x
‖w0‖cLr

x
,

‖uvw‖dLr
xt

≤ c‖u0‖cLr
x
‖v0‖cLr

x
‖w0‖cLr

x
,

provided 1 < r < ∞. The corresponding Xr
s,b-estimates are

‖I 1
r (u1u2)‖dLr

xt
≤ c‖u1‖Xr

0,b
‖u2‖Xr

0,b
,

‖u1u2u3‖dLr
xt

≤ c

3∏

i=1

‖ui‖Xr
0,b

,

whenever 1 < r < ∞, b > 1
r .

Here I denotes the Riesz potential operator of order −1. Observe that the first
bilinear estimate is in fact an equality. Moreover, the Xr

s,b-version of the trilinear
estimate leads directly to local well-posedness for

(2) iut + uxx = |u|2u, u(0) = u0 ∈ L̂r
x,
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provided 2 ≥ r > 1.
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Bilinear restriction Theorems: The Hyperbolic Case

Ana Vargas

The solutions of the Schrödinger equation 2πi∂tu−∆u(x, t) = 0, (x, t) ∈ R2×R,
can be written in terms of its initial value u0(x) = u(x, 0) as

(1) u(x, t) =

∫

R2

û0(ξ)e
2πi(xξ+t|ξ|2) dξ =

(
û0 dσ

)
(̌x, t),

where dσ is the measure on S = {(ξ, |ξ|2) : ξ ∈ R2} given as dσ(ξ, |ξ|2) = dξ.

Given S a surface in R3 and a measure dσ on S, we define the operator

f defined on S −→ f̂ dσ(x, t) defined on R3.

Formally, this is the adjoint of the operator

g defined on R3 −→ ĝ|S defined on S.

The estimates of the type

(2) ‖f̂dσ‖Lq(R3) ≤ C‖f‖Lp(S)

receive the name of (linear) restriction estimates.

The classical results consider the case p = 2. For S a relatively compact surface
with non-vanishing Gaussian curvature (2) holds for p = 2 and q ≥ 4 (see P. Tomas
[20], P. Sjölin [6], R. S. Strichartz [14] and E. M. Stein [13]).

The case p > 2 and q < 4 is still open. There are partial results by J. Bourgain
[2], [3], [5], T. Wolff [23],[24], for non vanishing curvature and by A. Moyua, L.
Vega, A. Vargas [9],[10], T. Tao, L. Vega, A. Vargas [17], T. Tao, A. Vargas [18]
and T. Tao [16] for surfaces of positive curvature.
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This is related to the pointwise convergence (a.e.) of the solutions (1) of the
Schrödinger equation to the initial value, under regularity assumptions. The prob-
lem was posed by L. Carleson [7]. Dahlberg and Kenig [8] proved the convergence
for u0 ∈ H1/2(R2). J. Bourgain [5] showed that there is some s0 < 1/2, such that,
for any s > s0 and any u0 ∈ Hs, the convergence holds. The regularity, s0, was
improved by A. Moyua, T. Tao, L. Vega, A. Vargas [9],[17],[19], [16]. The best
result known is s0 = 2/5. In higher dimensions, s0 = 1/2, is due to P. Sjölin [12]
and L. Vega [22].

The most recent improvements on these problems involve a bilinear version of
the restriction estimates. Given two surfaces S1, S2, and measures dσ1, and dσ2,
a bilinear restriction estimate has the form

(3) ‖f̂1 dσ1f̂2 dσ2‖Lr(R3) ≤ C‖f1‖Lp(S1)‖f2‖Lp(S2)

Note that if (2) is true and S1, S2 ⊂ S, Cauchy–Schwarz inequality shows that
we have (3) for all q = r/2. But in general, inequalities as (3) have a wider range
under appropriate assumptions on S1 and S2. For the elliptic (positive curvature)
case, the natural assumption is that S1 and S2 are separated compact subsets of
S. There are some results on this direction by A. Moyua, T. Tao, L. Vega and A.
Vargas. The best result so far is

Theorem 1. (T. Tao [16]). If S1 and S2 are separated compact subsets of S, a
surface with positive Gaussian curvature, then (3) holds for

(4) r >
5

3
, p = 2.

From this, linear restriction estimates can be obtained, by using

Theorem 2. (T. Tao, A. Vargas, L. Vega [17]) Assume that (3) holds for any S
with positive curvature, any S1 and S2 separated subsets of S and for all (p, r) in
a neighborhood of some (p0, r0) with p′0 ≥ r0. Then (2) holds for (p̂0, 2r0), where
p̂′0 = r0.

There are higher dimensional versions of these theorems ([16], [17]). There is
an application to the problem of pointwise convergence

Theorem 3. (T. Tao, A. Vargas [19]) Assume that (3) holds for all separated
subsets of the paraboloid, p = 2 and some r < 2. Then, for all s > 1 − 1

r , all

u0 ∈ Hs(R2), and u as in (1),

‖ sup
t

|u(·, t)|‖L2r(R2) ≤ Cs‖u0‖Hs(R2).

Therefore, u(x, t) → u0(x) a.e. as t → 0.

For the case of cones, some theorems were proven by B. Barceló [1], Bourgain [4],
T. Tao and A. Vargas [18]. The problem was completely solved (in all dimensions)
by T. Wolff [25] and T. Tao [15].
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We consider here the case of negative Gaussian curvature. The model surface is
the saddle, τ = ξη, in R3. The hypothesis on S1 and S2 have to be different from
the ones that we had in the elliptic case. This is shown by the following

Remark 4. ([21]) Consider the hyperbolic paraboloid S = {(ξ, η, τ) / τ = ξη} ⊂
R3. Define the subsets of S, S1 = S ∩ {(ξ, η, τ) / 1/2 < ξ < 1, −1 < η < 1} and
S2 = S ∩ {(ξ, η, τ) / − 1 < ξ < −1/2, −1 < η < 1}. Then, (3) is false for any
r < 2 when p = 2.

Our result is the following,

Theorem 5. ([21]) Consider the surface

S = {(ξ, η, τ) / τ = ξη, |ξ|, |η| ≤ 1} ⊂ R3.

Consider compact subsets of S, S1 and S2 satisfying: for all (ξ1, η1, ξ1η1) ∈ S1 and
(ξ2, η2, ξ2η2) ∈ S2 we have |ξ1 − ξ2| ≥ 1 and |η1 − η2| ≥ 1.

Then, (3) holds for any r > 5/3, p = 2.

A refinement of the proof of Theorem 2 gives us the following.

Theorem 6. ([21]) For the saddle, (2) holds for any q > 10/3, p′ < q/2.

These theorems (with a general version of Theorem 5 in higher dimensions) and
the example were independently obtained by Sanghyuk Lee [11].
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Construction of asymptotic N–soliton–like solutions of the generalized

Korteweg–de Vries equations

Yvan Martel

We consider the generalized Korteweg–de Vries equations

(1) ut + (uxx + up)x = 0, t, x ∈ R,

in the subcritical cases p = 2, 3, 4. The following quantities are formally conserved
for solutions of (1):

(2)

∫
u2(t) =

∫
u2(0) (L2 mass)

(3)

E(u(t)) =
1

2

∫
u2

x(t)− 1

p + 1

∫
up+1(t) =

1

2

∫
u2

x(0)− 1

p + 1

∫
up+1(0) (energy).

The Cauchy problem for (1) is globally well posed in the energy space H1 by
results of Kenig, Ponce and Vega [3]. Moreover, all solutions in H1 are global and
uniformly bounded.
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A fundamental property of equations (1) is the existence of a family of explicit
traveling wave solutions. Let Q be the only solution (up to translation) of
(4)

Q > 0, Q ∈ H1(R), Qxx + Qp = Q, i.e. Q(x) =

(
p + 1

2 cosh2
(

p−1
2 x

)
) 1

p−1

.

Then, for all c0 > 0 and x0 ∈ R,

Rc0,x0(t, x) = Qc0(x−x0−c0t) is solution of (1), where Qc0(x) = c
1

p−1

0 Q(
√

c0x).

We call solitons these solutions.
One of the most striking feature of the original KdV equation (p = 2) is the

inverse scattering method which, among other things, leads to the construction of
explicit solutions called N–soliton solutions, which generalize the soliton solutions
(see e.g. [9], Section 6). These solutions are remarkable in two ways. First, they
describe the interaction between several solitons with different speeds. One can
observe from the expression of an N–soliton solution the stability of one soliton
under interaction by other solitons. Second, as t → +∞, these N–soliton solutions
decompose exactly as sum of N solitons: for any given 0 < c1 < . . . < cN ,
x1, . . . , xN , there exists an explicit N -soliton solution U(t) such that

∥∥∥U(t) −
N∑

j=1

Qcj (. − xj − cjt)
∥∥∥

H1(R)
−→ 0 as t → +∞.

Moreover, there exist y1, . . . , yN such that

∥∥∥U(t) −
N∑

j=1

Qcj (. − yj − cjt)
∥∥∥

H1(R)
−→ 0 as t → −∞.

In general, yj is different from xj , but observe that the speeds of the solitons as
t → +∞ or t → −∞ are the same.

Results on the qualitative behavior of smooth and decaying solutions of the
KdV equation are known by the integrability theory, whereas known results for
the nonintegrable cases concern solutions that are initially close to solitons:

It is well-known that for p = 2, 3, 4, the solitons are H1 stable, in the following
sense:
Stability of the 1–soliton. For all ε > 0, there exists δ > 0, such that if
‖u(0) − Q‖H1 ≤ δ, then ∀t ∈ R, there exists x(t) ∈ R, such that

‖u(t, . + x(t)) − Q‖H1 ≤ ε.

See Benjamin [1], Bona [2] and Weinstein [10]. This result follows from the
conservation of energy and mass, and the variational characterization of Q.

Next, Martel and Merle [6] proved the asymptotic completeness of the family
of solitons in the H1 setting.
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Asymptotic completeness. There exists δ0 > 0 such that if ‖u(0)−Q‖H1 = δ ≤ δ0

then there exist c+∞ > 0 and x(t) ∈ R, such that

u(t, . + x(t)) ⇀ Qc+∞ in H1(R) weak as t → +∞.

Moreover, |c+∞ − 1| + |x′(t) − 1| ≤ f(δ), where f(δ) → 0 as δ → 0.
We now turn to general results involving multi–solitons. Let us recall the main

result obtained for p = 2, 3 and 4 by Martel, Merle and Tai-Peng Tsai [7].
Stability of the sum of N solitons. Let 0 < c1 < . . . < cN . There exist γ0, A, L0,
α0 > 0 such that the following is true. Assume that there exist L > L0, α < α0,
and x0

1 < . . . < x0
N , such that

∥∥∥u(0) −
N∑

j=1

Qcj (. − x0
j )
∥∥∥

H1
≤ α, with x0

j > x0
j−1 + L, for all j = 2, . . . , N.

Then, there exist x1(t), . . . , xN (t) ∈ R such that

∀t ≥ 0,
∥∥∥u(t) −

N∑

j=1

Qcj (x − xj(t))
∥∥∥

H1
≤ A

(
α + e−γ0L

)
.

Moreover, the asymptotic completeness of the sum of N solitons is also true,
see [7].

Using refinements of tools developed for the proof of the previous results and an
idea of Merle [8] for the critical nonlinear Schrödinger equation (see remark below
the next theorem), we could answer two natural questions related to N–soliton
solutions, see [5].

Theorem 1. Let p = 2, 3, 4. Let N ∈ N, 0 < c1 < c2 < . . . < cN , and
x1, . . . , xN ∈ R. There exists one and only one function ϕ ∈ C(R, H1(R)), which
is an H1 solution of (1) in the sense of [3] and such that

(5) lim
t→+∞

∥∥∥ϕ(t) −
N∑

j=1

Qcj (. − xj − cjt)
∥∥∥

H1(R)
= 0.

Moreover, ϕ ∈ C(R, Hs(R)) for all s ≥ 0, and there exist constants As > 0 such
that for all s ≥ 0, for all t ≥ 0,

(6)
∥∥∥ϕ(t) −

N∑

j=1

Qcj (. − xj − cjt)
∥∥∥

Hs(R)
≤ Ase

−γt,

where γ > 0.

Remark 2. For the critical nonlinear Schrödinger equation

(7) i ut = −∆u− |u| 4d u, (t, x) ∈ R×Rd,

Merle [8] proved a result similar to the existence part of Theorem 1, see [8], Corol-
lary 2. The main objective in [8] was to prove the existence of a solution of (7)
that blows up in finite time at exactly k given points x1, . . . , xk. Recall that the
critical Schrödinger equation has explicit minimal mass solutions that blow up in
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finite time at one point (they are built using Q and the conformal invariance). In
[8], a solution that blows up at k given points is found close in H1 to the sum of k
explicit blow up solutions, by proving uniform estimates on the interaction of the
different solutions.

The proof of existence in the present paper follows the same key starting idea.
However, the proof of the uniform estimates is different, see complete proofs in [5].

Remark 3. The methods of this paper apply equally well to some other general-
izations of the KdV equation:

ut + (uxx + f(u))x = 0,

for suitable subcritical f (see [10] for suitable conditions on f).
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Well-posedness of the KdV equations with low regularity forcing terms

Kotaro Tsugawa

We consider the initial value problem of the forced KdV equations as follows:

∂tu + ∂3
xu + u∂xu = f, (x, t) ∈ R× [0, T ],(1)

u(x, 0) = u0(x) ∈ Hs(R),(2)

where u(x, t) and f(x) are real valued functions. The KdV equation (without
forcing term) has been studied by many people. However, in many real situations,
one can not neglect external excitation mechanism. For example, the case f =
pδ′(x) appears in the study of the excitation of long nonlinear water waves by a
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moving pressure distribution, where δ′(x) is the first derivative of the Dirac delta
function and p is a constant (see [1]).

Bona and Zhang proved that (1)–(2) is time locally well-posed with σ + 3/2 >
s > −5/8, χ(t)f(x, t) ∈ H1/2(R : Hσ(R)) and the unique solution u is in
C([0, t0] : Hs(R)) (see [2]), where χ(t) is a smooth cut-off function. In the same
manner as the L2 conservation law for the KdV equation (without forcing term),
by calculating

∫ T

0

∫
(1) × u dxdt,

we have

‖u(T )‖2
L2 − ‖u(0)‖2

L2 =

∫ T

0

∫
fu dxdt.

By Schwartz’ inequality, we obtain the following L2 a priori estimate:

sup
0≤t≤T

‖u(t)‖L2 ≤ C
(
‖u(0)‖L2 +

∫ T

0

‖f‖L2 dt
)
.

Therefore, combining this estimate and Bona and Zhang’s results, we obtain the
time global well-posedness of (1)–(2) with f ∈ L2, s = 0. However, we can not
apply this estimate to (1)–(2) with f ∈ Hσ, σ < 0.

To overcome this difficulty, we divide the forcing term into the low frequency
part and the high frequency part as follows:

f = f1 + f2, where f̂1 = f̂
∣∣
|ξ|<λ

, f̂2 = f̂
∣∣
|ξ|>λ

.

Put v̂ = f̂2/(iξ)3 and w = u − v, Then, (1)–(2) is rewritten into

∂tw + ∂3
xw + w∂xw = f1 − ∂x(vw) − v∂xv,(3)

w(x, 0) = w0(x) = u0 − v.(4)

We note that the right-hand side of (3) is sufficiently smooth and that the last
two terms go to 0 when λ → ∞. Applying the Fourier restriction norm method
(See [3]) to (3)–(4), we obtain the following results.

Theorem 1 Let −3/4 < s ≤ σ + 3, −3 < σ, f ∈ Hσ(R). Then, (1)–(2) is time
locally well-posed and the solution u is in C([0, t0] : Hs(R)).

The condition s ≤ σ + 3 is optimal. However, we have more smoothing effect
as follows.

Corollary Let σ + 3 < s < σ + 7/2, σ > −5/2, f ∈ Hσ(R). Assume that
u(x, 0) − v is in Hs. Then, (1) is time locally well-posed in Hσ+3 and u − v is in
C([0, t0] : Hs(R)).
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Applying the I-method (See [4]) to (3)–(4), we obtain the following a priori
estimates.

Proposition Let 0 > s > −3/4, −3 > β > −15/4, θ = (6s − β(2s + 3)) > 0
and u satisfy (1)–(2). Then, for f ∈ Hσ, 0 ≥ σ > −3/2, T ≥ 1, we have

(5) sup
0≤t≤T

‖u(t)‖Hs ≤ C
{(

T−s(‖u0‖−β
Hs + 1)

)3/θ
+
(
T‖f‖Hσ

)3/(2σ+3)
}
.

We also have a priori estimates for f ∈ Hσ, σ = −3/2 or f = δ′(x), which grow
up exponentially. From these a priori estimates and Theorem 1, we obtain the
following theorem.

Theorem 2 Assume that (Case 1) f ∈ Hσ(R), −3/4 < s ≤ σ + 3, σ ≥ −3/2
or (Case 2) f = pδ′(x), −3/4 < s < 3/2. Then, (1)–(2) is time globally well-posed
and the solution u is in C([0,∞] : Hs(R)).

We finally mention a related problem. The existence of global attractor of the
weakly damped, forced KdV equations has been studied by many people (See e.g.
[6]). By the L2 a priori estimate, Goubet and Rosa proved the existence of global
attractor on the real line with u0(x), f(x) ∈ L2(R) in [5]. We can apply our
technique to this equations and we have time global well-posedness for weakly
damped, forced KdV equations with f ∈ Hσ(R), 0 > σ ≥ −3/2. However, the
existence of global attractor for that is still open.
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Uniform estimates for the Zakharov system

Justin Holmer

Consider the Cauchy problem for the (scalar) Zakharov system

ZSε =





i∂tu + ∆u = nu

ε2∂2
t n − ∆n = ∆|u|2

u
∣∣
t=0

= u0

n
∣∣
t=0

= n0

∂tn
∣∣
t=0

= n1

where u : Rd × [0, T ] → C, n : Rd × [0, T ] → R. The initial data are assumed
to belong to Sobolev spaces u0 ∈ Hk(Rd), n0 ∈ H l(Rd), n1 ∈ H l−1(Rd). ZSε is
a (simplified version of) a model for Langmuir turbulence in a plasma, and was
introduced by Zakharov (1970’s).

Formally, as ε ↓ 0, if we assume u → v, then we expect (from the second
equation) that n → −|v|2 and (from the first equation) that v solves

NLS3 =

{
i∂tv + ∆v = −v|v|2

v|t=0 = u0

Our goal is to obtain rigorous results on the convergence u → v as ε → 0 for
generalized systems at high regularity (k, l large).

Now I give a brief overview of earlier work in this direction for ZSε. Let T ∗ > 0
be the maximal time of existence of the solution to NLS3, and let T < T ∗. Added-
Added [1] obtain convergence at rate ε1/2 in Hk on [0, T ], i.e. ‖u − v‖L∞

[0,T ]
Hk ≤

cε1/2, with no weights on the initial data, for dimensions d = 1, 2, 3. Ozawa-
Tsutsumi [6] obtain convergence at rate ε on [0, T ] if n0+ |u0|2 6= 0 (noncompatible

case) and rate ε2 on [0, T ] if n0 + |u0|2 = 0 (compatible case) and n1 ∈ Ḣ−1, but
require weights on the initial data, in dimensions d = 1, 2, 3. The limitation of
these results (from our perspective) is that the method of proof uses energy-type
identities that are too sensitive to the form of the nonlinearity. For example, it
does not work when nu is changed to −nu because this changes a sum of squares
to a difference of squares in these identities.

Another method that applies to more general nonlinearities is that of Kenig-
Ponce-Vega [4] who address ZSε with techniques previously developed for the de-
rivative NLS equation

DNLS =

{
i∂tu + ∆u = p(u, ū,∇u,∇ū)

u|t=0 = u0

where deg p ≥ 2. They prove estimates that enable one to view the composition
�−1

ε ∆ as behaving like one spatial derivative and obtain, with the additional help
of local smoothing estimates for the Schrödinger operator, the uniform in ε bound

‖u‖L∞
[0,T]

Hk
x

+ sup
α

‖Dk+ 1
2 u‖L2(Qα)L2

[0,T ]
≤ c
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where Qα is the unit cube in Rd at the lattice point α ∈ Zd, provided the initial
data is small in a weighted sense: ‖〈x〉mu0‖Hk0 < δ, where k0 << k. Their method
is modeled on that used to obtain local well-posedness of DNLS for small initial
data in [3]. Chihara [2] removed the smallness assumption in [3] for DNLS by using
a pseudo-differential operator change of variable, and this technique was further
developed by Kenig-Ponce-Vega [5]. By similarly introducing a pseudo-differential
operator change of variable to ZSε, we obtain (thus far only in d = 1)

Theorem 1. Let k ≥ 4. Let

M = ‖u0‖Hk + ‖〈x〉2u0‖H1 + ‖n0‖
Hk− 1

2
+ ‖n1‖

Hk− 3
2

Then ∀ T > 0, ∃ ε0 = ε0(T, M) > 0 and ∃ c = c(M) > 0 such that we have

‖u‖L∞
[0,T]

Hk
x

+ ‖〈x〉−1D1/2
x ∂k

xu‖L2
xL2

[0,T ]
≤ c 0 < ε ≤ ε0

and

lim
ε↓0

(
‖u − v‖L∞

[0,T ]
Hk

x
+ ‖〈x〉−1D1/2

x ∂k
x(u − v)‖L2

xL2
[0,T ]

)
= 0

and

‖u − v‖L∞
[0,T ]

Hk−1
x

+ ‖〈x〉−1D1/2
x ∂k−1

x (u − v)‖L2
xL2

[0,T ]
≤ cε 0 < ε ≤ ε0

and if we further require n0 + u0ū0 = 0 and assume that ∃ ν ∈ L1 such that
∂xν = n, then

‖u− v‖L∞
[0,T ]

Hk−2
x

+ ‖〈x〉−1D1/2
x ∂k−2

x (u − v)‖L2
xL2

[0,T ]
≤ cε2 0 < ε ≤ ε0

The primary difficulty in treating ZSε, as opposed to DNLS, by this method
is that the pseudo-differential operator does not commute with the inverse wave-
operator.

Remark 1. Because we have restricted to one dimension (d = 1), the result is
global (T can be taken arbitrarily large).

Remark 2. The local smoothing estimate (on ‖〈x〉−1D
1/2
x ∂k

xu‖L2
xL2

[0,T ]
) is needed

to obtain the convergence at rate ε with only one derivative of separation between
the space in which convergence is obtained and the space in which the initial data
is assumed to belong. A gap of this order cannot, it appears, be achieved with
energy identities alone.

Remark 3. The method is flexible with regard to the nonlinearity, and there is
no smallness assumption. The same proof written in full generality should enable
us to treat dimension-one systems like





i∂tu + ∂2
xu = p(u, ū, ∂xu, ∂xū, n+, n−)

ε∂tn+ + ∂xn+ = p+(u, ū, ∂xu, ∂xū)

ε∂tn− − ∂xn− = p−(u, ū, ∂xu, ∂xū)

u
∣∣
t=0

= u0

n+

∣∣
t=0

= n+0

n−

∣∣
t=0

= n−0
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with (u0, n+0, n−0) ∈ Hk∩H1(〈x〉2dx)×Hk− 1
2 ×Hk− 1

2 , k ≥ 4, with deg p, p+, p− ≥
2 and every monomial in p contains at least one factor of u, ū. One should also
be able to provide a convergence result, where the limiting form of the equation is
obtained by replacing n+ in the first equation by

−
∫ +∞

s=0

p+(u, ū, ∂xu, ∂xū)(x − s, t) ds

and n−(x, t) by

+

∫ +∞

s=0

p−(u, ū, ∂xu, ∂xū)(x + s, t)

ZSε for dimension d = 1 is a special case of this with p+ = − 1
2∂x|u|2, p− =

1
2∂x|u|2
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Global Solutions for a Semi-Linear 2D Klein-Gordon Equation with

Exponential Type Nonlinearity

Slim Ibrahim

(joint work with M. Majdoub and N. Masmoudi)

1. Introduction

Let d ≥ 3 and consider the d-dimensional defocusing semi-linear wave equation
of the type:

(1) �u + |u|p−1u = 0,

where p is a real number p > 1, � = ∂2
t − ∆ and u = u(t, x) is a real-valued

function of (t, x) ∈ R × Rd.
The Cauchy problem associated to (1) has been widely investigated and there

is a large literature dealing with the local and global solvability in the scale of
the Sobolev spaces Hs, the uniqueness in suitable subspaces of the energy space
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and the asymptotic of the solutions as t goes to infinity (scattering theory). For a
beautiful survey of the results, see [8].

For the global solvability in the energy space H1 × L2 there are mainly three
cases namely; p < p∗−1 where the critical exponent is given by p∗ = 2d

d−2 , p = p∗−1
and p > p∗ − 1.
Global solutions exist when p ≤ p∗ − 1 and are unique in the class of finite energy
solutions only if p < p∗ − 1. This is an open question when p = p∗ − 1. In the
case p > p∗−1, the well-posedness is still an open problem except for some partial
results (see for example [4]).
Note that the difference of the conditions for the solvability in the above three
cases basically comes from the Sobolev embedding H1 ↪→ Lp for all 2 ≤ p ≤ p∗.

In dimension d = 2, we have H1 ↪→ Lp for any 2 ≤ p < ∞. So heuristically,
every power nonlinearity is “sub-critical” and an exponential term seems to be a
natural critical nonlinearity. So in this work, we consider the following equation:

(∂2
t − ∆ + 1)u + u

(
exp(4πu2) − 1

)
= 0.(2)

The initial data u(0, x) = f(x) and ∂tu(0, x) = g(x) are in the energy space
H1(R2) × L2(R2). Define the total energy

E0 :=

∫

R2

|∇f |2(x) + g2(x) +
exp(4πf2(x)) − 1

4π
dx.

In particular, note that the nonlinear term of the energy is finite because of
Trudinger-Moser inequality and that the exponent 4π is sharp (see [5]).
The Cauchy problem is said to be sub-critical, when E0 < 1. It is called critical
when E0 = 1 and finally super-critical if E0 > 1.

2. Results and Ideas of the Proofs

Every local well-posedness result is based on an estimation L1
t (L

2
x) of the non-

linear term. But the problem when taking ‖u
(
exp(4πu2)− 1

)
‖L2

x
is to double the

exponent 4π and therefore we loose any control of that term using only Moser-
Trudinger inequality.
Our first result is the following local ( in time ) existence theorem.

Theorem 1. Assume that ‖∇f‖L2(R2) < 1. Then,
a unique time T ∗ > 0 and a unique function u solution of the equation (2) exist
such that

u ∈ C([0, T ∗); H1(R2)) ∩ C1([0, T ∗); L2(R2)) ∩ L4([0, T ∗); C1/4(R2)).

Moreover, if E0 ≤ 1 then one of the following two alternatives occurs:

• T ∗ = +∞ or
• T ∗ < ∞ and,

(3) lim
t→T∗

‖∇u(t, ·)‖L2(R2) = 1.
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The proof of this Theorem is based on the combination of the Strichartz esti-
mates for the linear Klein-Gordon equation (see [2]), the Moser-Trudinger inequal-
ity and the following logarithmic inequality.

Lemma 2. For any real λ > 2
π there exists a constant Cλ such that for any

function u ∈ C 1
4 (R2) ∩ H1(R2), one has

(4) ‖u‖2
L∞(R2) ≤

λ
(
‖∇u‖2

L2(R2) + 1/4‖u‖2
L2(R2)

)
·

log
(
e + Cλ

‖u‖C1/4(R2)√
‖∇u‖2

L2(R2) + 1/4‖u‖2
L2(R2)

)
,

where, for any α ∈]0, 1[, Cα(R2) denotes the space of α-Hölder continuous func-
tions. The local wellposedness is then derived via a classical fixed point argument.

Remark 3. The constant λ = 2
π in (4) is “almost” sharp. The proof of Lemma 2

and further related inequalities are discussed with details in [3].

The assumption E0 ≤ 1 in particular implies that ‖∇f‖L2(R2) < 1 and conse-
quently we have short time existence of solutions in both sub-critical and critical
cases. So it makes sense to deal with global existence in these situations.
Let u be the solution given by Theorem 1, with T ∗ < ∞ is the largest time of
existence. Then in the sub-critical case, the conservation of the total energy shows
us that ‖∇u(t, ·)‖L2(R2) is uniformly below 1, so (3) is not satisfied and therefore
the solution can be continued in time. Precisely we have the following corollary

Corollary 4 (Sub-critical case).
Assume that E0 < 1, then the problem (2) has a unique global solution u satisfying
the energy identity and

u ∈ C(R, H1(R2)) ∩ C1(R, L2(R2)).

Moreover, u ∈ L4
loc(R, C1/4(R2)).

Note that the uniqueness is obtained in the class of finite energy solutions. This
result is based on a classical boot-strap argument.

In the critical case, we loose this uniform control and therefore the total mass of
the energy can be concentrated in the ‖∇u(t, ·)‖L2(R2) part. However, establishing
some localized (in space-time) identities in the spirit of Shatah-Struwe’s result [7],
we show that such concentration cannot hold in the critical case and therefore we
have the following result.

Theorem 5 (Critical case).
Assume that E0 = 1, then the problem (2) has a unique global solution u satisfying
the energy identity and

u ∈ C(R, H1(R2)) ∩ L4
loc(R, C1/4(R2)) ; ∂tu ∈ C(R, L2(R2)).
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Remark 6. To the best of the author’s knowledge, Corollary 4 and Theorem 5
are the only results for global solutions of such 2D problems with exponential
growth nonlinearity. In [6], Nakamura and Ozawa proved, under an assumption
of smallness of the initial data, the existence of global solutions.
More recently, A. Attallah [1] proved a local existence result for solution of (2)
assuming that the first initial data f = 0, and the second one is radially symmetric
and with compact support.
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Unique continuation for the wave equation

with time independent Lp potential

David Dos Santos Ferreira

(joint work with Alberto Ruiz)

The aim of this joint work with Alberto Ruiz is to investigate the unique continua-
tion of a solution of the wave equation ∂2

t u−∆xu+V (x)u = 0 (where (t, x) ∈ Rd+1
t,x )

with time independent potential V ∈ L
d
2 (Rd

x) across a non-characteristic hyper-
surface. More generally, we consider the following unique continuation problem:
we suppose that there is a splitting x = (x′, x′′) ∈ Rn−d × Rd of the coordinates
and we consider a solution of the partial differential equation

(1) P (x′, Dx′ , Dx′′)u + V (x′)u = 0

where the second order differential operator P has real C∞ coefficients indepen-
dent of x′′ and is partially elliptic in the sense that if p denotes the principal

symbol of P then p(x′, ξ′, 0) is elliptic. The potential V (x′) belongs to L
d
2 (Rd

x).
The question of unique continuation is to see whether if u vanishes below a non-
characteristic hypersurface in the neighbourhood of a point x0 then it vanishes on
a full neighbourhood of x0.
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When the potential depends on all the variables and P is an elliptic operator,
unique continuation is known to hold for potentials in L

n
2 and to fail when V ∈ Lp

with p < n/2. This result was obtained by Jerison and Kenig [7] (see also [13]
chapter 5) in the case of the Laplace operator and by Sogge [14] in the case of ellip-
tic operators with variable coefficients. Further improvements on the smoothness
of the coefficients were obtained by Wolff [21] and on the addition of a gradient
term by Koch and Tataru [8]. These results rely on Carleman estimates based on
Lp spaces. In this work, the goal is to go below the critical index n/2 provided
the potential (and the coefficients of the differential operator) does not depend on
one part of the variables.

In the case of partially elliptic operator, the case where V belongs to, say, L∞

is fully understood. There is a series of papers dealing with cases increasing in
generality beginning with Robbiano [11] followed by Tataru [17], [19], Hörmander
[5], [6] and by Robbiano-Zuily [12] which rely strongly on the use of L2 Carleman
estimates. An idea of Tataru has proved to be particularly efficient to tackle
the problem of partially elliptic operators: in [17] he remarked that a modified

Carleman estimate involving a Gaussian transform of the form e−|D′′|2/2λ (where
λ is the large parameter of the usual Carleman estimates) still implied unique
continuation.

The virtue of this transform is to microlocalise the Carleman inequality near
ξ′′ = 0 where the partially elliptic operator behaves like an elliptic operator. The
modified Carleman estimates are then obtained by a modification of the arguments
used to prove standard Carleman estimates in the case of elliptic operators. We
wish here to use the same idea but in the setting of Lp Carleman estimates. More

accurately, we develop Carleman estimates involving the transform e−|D′′|2/2λ and
set in mixed Lp

x′L2
x′′ norms.

The theorem that we obtain is as follows:

Theorem 1. Let P (x′, Dx′ , Dx′′) be a second order differential operator with real
symbol defined on a neighbourhood Ω ⊂ Rn of x0 with C∞ coefficients independent
of x′′ ∈ Rn−d. Assume furthermore that p(x′, ξ′, 0) is elliptic (where p denotes
the principal symbol of P ). Let S be a C2 non-characteristic hypersurface in the

neighbourhood Ω of x0. If u ∈ H1 satisfies the equation (1) with V (x′) ∈ L
d
2

loc(R
d)

and u vanishes below S then x0 /∈ supp u.

In particular, this gives unique continuation for the wave operator with time

independent potential V (x) in L
d
2 (Rd).
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Lp estimates for eigenfunctions in planar domains

Christopher D. Sogge

(joint work with Hart Smith)

Let M be an n-dimensional C∞ open manifold with compact closure and bound-
ary ∂M . Consider a Riemannian metric g = gjkdxjdxk on M and the associated
Dirichlet-Laplacian ∆ = ∆g,D. We shall then be concerned with estimates for the
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eigenfunctions, {
−∆φλ(x) = λ2φλ(x), x ∈ M

φλ(x) = 0, x ∈ ∂M.

The eigenvalues are discrete and tend to +∞. We count them with respect to
multiplicity and order them as 0 < λ2

1 ≤ λ2
2 ≤ λ2

3 ≤ · · · . Also, as before, we wish
to study the behavior of the Lp norms as the eigenvalue goes to infinity. We are
also interested in stronger estimates for the spectral projection operator,

χλf =
∑

λj∈[λ,λ+1]

ej(f),

where ej(f) is the projection of f onto the eigenspace with eigenvalue λj .
In the case of compact manifolds without boundary, the author [9] established

the following bounds

(1) ‖χλf‖q ≤ Cλσ(q)‖f‖2, λ > 1,

where

(2) σ(q) =

{
n(1/2− 1/q) − 1/2, q ≥ 2(n+1)

n−1
n−1

2 (1/2− 1/q), 2 ≤ q ≤ 2(n+1)
n−1

These estimates were proved using the Hadamard parametrix.
Thus, a goal would be try to extend (1)-(2) to the setting of compact Riemann-

ian manifolds with boundary. We immediately encounter two difficulties:

• It is much harder to use the Hadamard parametrix and the wave equation
in manifolds with boundary.

• Less is true: Rayleigh whispering gallery modes say that the above bounds
cannot hold for all values of 2 ≤ p ≤ ∞. Specifically in every dimension
n ≥ 2 the favorable bounds with exponent σ(q) = n(1/2− 1/q)− 1/2 can
only hold for a smaller range of exponents.

Let us give a brief explanation of these two facts. We start with the first one.
In order to explain the complicated nature of parametrices for wave operators in
manifolds with boundary, we start by reviewing what happens for the very simple
case of the Dirichlet-wave equation for the half-plane (t, x) ∈ R × (Rn−1 × R+),
i.e., 




�u = 0

u(t, x′, 0) = 0

u(0, x) = f(x), ∂tu(0, x) = 0.

Here we are writing x = (x′, xn), with x′ = (x1, . . . , xn−1). The kernel for the
solution operator is given by the formula

(3) UD(t; x, y) = (2π)−n

∫

Rn

ei(x−y)·ξ cos t|ξ| dξ

− (2π)−n

∫

Rn

ei(xr−y)·ξ cos t|ξ| dξ,



Nonlinear Waves and Dispersive Equations 2709

where xr is the reflection of x across the boundary.
In a manifold with boundary it is difficult to construct the second term in the

parametrix for the solution kernel. Here, we work in geodesic normal coordinates
about y and then think of (xr − y) as the reflected geodesic normal coordinates
of x about y. Simple examples where M is either the interior or exterior of a
euclidean ball show that these coordinates become degenerate as x approaches the
boundary in a tangential direction from y. Indeed, these two examples tell us that
if y is a geodesic distance d = d(y) << 1 from the boundary ∂M , then we cannot
hope to construct the phase functions corresponding to the second term in (3) for
all x if the time variable satisfies t > cd1/2 for some fixed constant c.

Let us address the other difficulty that arises in trying to extend (1)-(2). This
is an observation of D. Grieser [2]. We shall focus on the case where n = 2, but
similar considerations show that the above bounds cannot hold for all 2 ≤ q ≤ ∞
for higher dimensions as well. Grieser observed that if (M, g) is the interior of
the unit disk with the euclidean metric and if φλ is a so-called whispering gallery
mode with eigenvalue λ2 then, for q ≤ 8, fλ has most of its Lq mass in a λ−2/3

neighborhood of the boundary. Hence

‖fλ‖2

‖fλ‖q
≥ cλ

2
3 (

1
2−

1
q )

, q ≤ 8.

Since fλ is an eigenvalue, we conclude that, for such exponents, we can have the
favorable 2-dimensional estimates

‖χλf‖q ≤ Cλ2(1/2−1/q)−1/2‖f‖2,

only when

2(1/2− 1/q) − 1/2 ≥ 2
3 (1/2 − 1/q),

which means that the best possible analog of (1)-(2) for manifolds with boundary
when n = 2 would be

(4) ‖χλf‖q ≤ Cλ2(1/2−1/q)−1/2‖f‖2, q ≥ 8,

instead of q ≥ 6 as in the boundaryless case when n = 2. For the other range, by
interpolation, we have

(5) ‖χλf‖q ≤ Cλ
2
3 (1/2−1/q)‖f‖2, 2 ≤ q ≤ 8.

Let us turn to positive results now. We shall first indicate how one can obtain
sharp pointwise estimates for eigenfunctions and then discuss recent joint work
with H. Smith [7] that shows that when n = 2 the optimal estimates, i.e., (4)-(5),
are valid.

The pointwise estimate says that for compact Riemannian manifolds with bound-
ary we have

(6) ‖χλf‖∞ ≤ C(1 + λ)
n−1

2 ‖f‖2.

It is well known and straightforward to see that this estimate is valid if and only if
the kernels of the spectral projections have the following bounds when evaluated



2710 Oberwolfach Report 50/2004

along the diagonal

(7) χλ(x, x) = O(λn−1).

Next, Tauberian arguments show that this holds if

(8) χ̃λ(x, x) = O(λn−1),

where

χ̃λ(x, x) =

∫
ρ(t) cos tλ UD(t; x, x) dt,

with ρ ∈ C∞
0 (R) being a fixed function supported in a small neighborhood of the

origin.
It turns out that the parametrix for the wave kernel at the diagonal, UD(t; x, x)

only allows one to show (8) when d(x) ≥ cλ−1 for some fixed constant c > 0, where
d(x) is the geodesic distance of x from the boundary. Thus, by using wave equation
techniques that are more technical but similar to the ones for the boundaryless
case, one can show the following special case of (6)

(9) χλ(x, x) ≤ Cλn−1, if d(x) ≥ cλ−1,

where c and C are uniform constants which are independent of λ.
To prove the bounds for the missing case, a O(λ−1) neighborhood of ∂M , it

turns out that one can use a maximum principle argument. This observation goes
back to Grieser [3] for the case of eigenfunctions, and Grieser’s argument can be
modified to handle the case of functions whose spectrum lies in unit bands [λ, λ+1].
In the latter case, one can use a variant of the maximum principle to see that if c
is fixed then

sup
{x: d(x)≤cλ−1}

χλ(x, x) ≤ C sup
{x: d(x)=cλ−1}

χλ(x, x),

which, by (9) means that (7) must hold and thus completes the proof of (6).
The pointwise bounds (6) can be used to show that the operators Sδ

λ are uni-
formly bounded on L1(M) and L∞(M) when δ > (n− 1)/2. Recently, X. Xu [17]
has proved more refined pointwise estimates that include sharp pointwise bounds
for the gradient of eigenfunctions on compact Riemannian manifolds with bound-
ary. Using these estimates, he was able to show that the Hörmander multiplier
theorem extends to this setting.

Let us turn to the other estimate, (4). In a work in progress, Smith and Sogge
[7] have shown that the estimate (4) holds for general two-dimensional Riemannian
manifolds with boundary on the range q ≥ 8 . Interpolation with the trivial bound-
edness of χλ on L2(M) then yields Lq estimates on spectral clusters which are the
best possible, as shown by Grieser’s observation. The proof depends on the fact
that, for functions with microlocal support disjoint from a thin set in phase space
consisting of geodesics tangent to the boundary, the full spectral estimates hold.
This is because the wave group for transverse reflections has the same essential
properties as the free wave group.

To handle the contribution of directions in phase space that are nearly tangent
to the boundary, Smith and Sogge exploited ideas of Smith [6] and Tataru [16]
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developed to handle wave speed metrics of low regularity. The latter work involved
a combination of paradifferential and frequency dependent scaling arguments to
show that functions similar to the Rayleigh whispering gallery modes are the worst
case. Interpolating between the tangent and transverse reflection cases yields the
desired L8 estimates for all functions.

One can obtain estimates for eigenfunctions on manifolds with boundary from
appropriate estimates for Lipschitz metrics since one can reflect the eigenfunctions
and metric normally across the boundary to obtain equivalent Lp estimates for
the resulting Lipschitz metrics. Fortunately, the problems are tractable, at least
in two-dimensions, since the metrics one obtains by doubling are piecewise smooth
with special types of Lipschitz singularities contained in the image of the boundary.

To motivate this proof, let us see what happens for the analogous result in
R2, which of course is much simpler. We note that the euclidean analog of the
dual form of the L2(M) → L8(M) estimates for the χλ operators would be the
L8/7(R2) → L2(S1) restriction theorem for the Fourier transform,

(10) ‖f̂‖L2(S1) ≤ C‖f‖L8/7(R2), f ∈ S(R2).

Let us see how one can give a simple proof of this estimate. If we square the
left side, and use Hölder’s inequality, we get

‖f̂‖2
L2(S1) =

∫

S1

f̂ f̂dθ =

∫
f(x) (f ∗ d̂θ)(x) dx

≤ ‖f‖L8/7(R2)‖ f ∗ d̂θ‖L8(R2).

Thus, (10) would hold if

‖ f ∗ d̂θ‖L8(R2) ≤ C‖f‖L8/7(R2).

But, d̂θ ≈ cos |x|/|x|1/2, and so this estimate would be a consequence of

(11) ‖f ∗ |x|−1/2 ‖L8(R2) ≤ C‖f‖L8/7(R2),

which follows from the classical Hardy-Littlewood-Sobolev theorem for fractional
integrals.

Estimate (10) and the above proof is due to Stein (unpublished), and this
was the first restriction theorem for the Fourier transform. Earlier Schwartz had
noticed that the restriction to the circle of the Fourier transform of an Lp(R2), p <
4/3, makes sense as a distribution, and K. DeLeeuw raised the question of whether
this distribution was actually a function. Stein’s result of course answered this in
the affirmative when n = 2 for exponents 1 ≤ p ≤ 8/7. Stein’s L8/7(R2) theorem
was followed by much activity, including the optimal L2 restriction theorems of
C. Fefferman, P. Tomas, and Strichartz, and the flurry of activity in the 1990’s on
trying to sharpen these results and prove the higher dimensional versions of the
sharp two-dimensional restriction theorem, which is due to Zygmund [18] and says
that, for p < 4/3, f ∈ Lp(R2) has Fourier transform which restricts as a function
to Lq(S1), q = p′/3.
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The situation for compact manifolds with boundary studied by Smith and the
author [7] is much more technical. However, the fact that the estimate (10) follows
from estimate (11) which does not involve oscillation implicitly carries over to this
setting. Indeed a key fact in the proof of (4) is that after microlocally breaking up
the operators that arise according to the angle from tangency to the boundary one
can add up the contributions of the various pieces and still get (4). Heuristically,
this works for the same reason that in two-dimensions it is a special property of
L8/7 that the estimate (10), which seems to be an estimate involving oscillatory
integrals, actually follows from estimate (11) which of course does not.
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Long range scattering for the Maxwell-Schrödinger system

Jean Ginibre

(joint work with Giorgio Velo)

We study the theory of scattering for the Maxwell-Schrödinger system (MS)3
in space dimension 3 in the Coulomb gauge, namely,





i∂tu = −(1/2)∆Au + g(|u|2)u ,

�A = P Im u∇Au , ∇ · A = 0 .
(MS)3

Here u is a complex valued function defined in space time R3+1, A (the magnetic
vector potential) is an R3 vector valued divergence free function defined in R3+1,
∇A = ∇ − iA is the covariant gradient and ∆A = (∇ − iA)2 is the covariant
Laplacian, � = ∂2

t − ∆ is the d’Alembertian in R3+1, P = 1l − ∇∆−1∇ is the
projector on divergence free vector fields, and g(|u|2) = (4π|x|)−1 ∗ |u|2.

We regard scattering theory as a method to study the asymptotic behaviour in
time of the solutions of that system and hopefully to classify those solutions by
their asymptotic behaviour. The first step is the construction of the wave operators
and for that purpose one has to solve the local Cauchy problem at infinity in
time, namely to construct solutions with prescribed asymptotic behaviour (ua, Aa)

parametrized by asymptotic data (u+, A+, Ȧ+). We concentrate on that problem.
In the theory of scattering for such systems as (MS)3, one has to distinguish the
short range case, where (ua, Aa) can be taken as a solution of the underlying
linear system (here the free Schrödinger and the free wave equations) from the
long range case, where that choice is inadequate and has to be modified, thereby
leading to so called modified wave operators. In that respect, the (MS)3 system
is in the limiting long range case. The previous problem in the long range case
has been treated by two methods, of which we consider only the first one. That
method has been applied to various equations and systems in space dimension
n for suitable n, namely to the nonlinear Schrödinger equation (NLS)n, to the
Hartree equation (R3)n and to the Klein-Gordon-Schrödinger (KGS)2, the Wave-
Schrödinger (WS)3 and the Zakharov (Z)n systems (see the references). It is
intrinsically restricted to the case of small Schrödinger data and to the limiting
long range case (to which (MS)3 belongs). We have applied that method to the
(MS)3 system and improved previous results on that problem by (i) eliminating an
additional smallness condition on the magnetic potential A and (ii) using larger
function spaces and refined estimates resulting in a significant weakening of the
assumptions on the asymptotic state (u+, A+, Ȧ+).

The method proceeds in two steps.

Step 1. One looks for the solution (u, A) of (MS)3 with prescribed asymptotics
(ua, Aa) in the form (u, A) = (ua + v, Aa + B) and one solves the system for the
difference variables (v, B) under suitable assumptions of regularity and of decay
at infinity of (ua, Aa). The method proceeds by a partial linearization followed by
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a contraction argument in a suitable function space X(I) where I = [T,∞) for
suitably large T . The choice of X(I) is dictated by the available estimates, namely
L2 (or energy) estimates, and Strichartz inequalities for the wave and Schrödinger
equation. We take

X(I) =
{
(v, B) : v ∈ C(I, H2) ∩ C1(I, L2), ‖ (v, B); X(I) ‖

≡ Sup
t∈I

h(t)−1
(
‖ v(t); H2 ‖ + ‖ ∂tv(t) ‖2 + ‖ v; L8/3([t,∞), W 1

4 ) ‖

+ ‖ B; L4([t,∞), W 1
4 ) ‖ + ‖ ∂tB; L4([t,∞), L4) ‖

)
< ∞

}
.

where h ∈ C([1,∞), R+) is such that t3/8h(t) is non increasing and tends to zero
at infinity. That choice allows to complete step (1).

Step 2 consists in constructing asymptotic (ua, Aa) satisfying the assumptions
needed for step 1. Using the decomposition

U(t) = exp (i(t/2)∆) = M D F M ,

M = exp(ix2/2t) , D ≡ D(t) = (it)−3/2D0(t) , (D0(t)f)(x) = f(x/t) ,

where F is the Fourier transform, we choose

ua = M D exp(−iϕ)Fu+ , Aa = A0 + A1 ,

A0 = cosωt A+ + ω−1 sin ωt Ȧ+ ,

A1(t) = t−1D0(t)Ã1 ,

Ã1 =

∫ ∞

1

dν ν−3 ω−1 sin(ω(ν − 1))D0(ν)P x|Fu+|2 ,

ϕ = (`n t)
(
g(|Fu+|2) − x · Ã1

)
,

where ω = (−∆)1/2, thereby ensuring that �Aa = �A1 = P (x/t)|ua|2. We define
the spaces

Hk,s =
{
u :‖ u; Hk,s ‖ = ‖ (1 + x2)s/2(1 − ∆)k/2u ‖2 < ∞

}
.

The final result can then be stated as follows.

Proposition. Let h(t) = t−1(2 + `n t)2. Let (ua, Aa) be defined as above. Let
u+ ∈ H3,1 ∩ H1,3 with ‖ xFu+ ‖4 and ‖ Fu+ ‖3 sufficiently small. Let ∇2A+,

∇Ȧ+, ∇2(x ·A+) and ∇(x ·Ȧ+) ∈ W 1
1 with A+, x ·A+ ∈ L3 and Ȧ+, x ·Ȧ+ ∈ L3/2

and let ∇ · A+ = ∇ · Ȧ+ = 0.
Then there exists T , 1 ≤ T < ∞ and there exists a unique solution (u, A) of

the system (MS)3 such that (v, B) = (u − ua, A − Aa) ∈ X([T,∞)). Furthermore
∇B, ∂tB ∈ C([T,∞), L2) and B satisfies the estimate

‖ ∇B(t) ‖2 ∨ ‖ ∂tB(t) ‖2 ≤ C t−3/2(2 + `n t)2

for some constant C depending on (u+, A+, Ȧ+) and for all t ≥ T .



Nonlinear Waves and Dispersive Equations 2715

Remark. The only smallness conditions bear on ‖ xFu+ ‖4 and on ‖ Fu+ ‖3 and
are required by the magnetic interaction and the Hartree interaction respectively.
In particular there is no smallness condition on (A+, Ȧ+).
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Blow up for the semilinear Wave Equation in Schwarzschild metric

Vladimir Georgiev

(joint work with Davide Catania)

Consider the manifold

M = R×Ω, Ω = {(r, ω) : r > 2M, ω ∈ S2} = (2M,∞) × S2,

equipped with the Schwarzschild metric having the form (see chapter V in [1] or
chapter 31 in [7]):

(1) g = F (r) dt2 − F (r)−1 dr2 − r2 dω2.

Here

F (r) = 1 − 2M

r
,

the constant M > 0 has the interpretation of mass and dω2 is the standard metric
on the unit sphere S2. The D’Alembert operator associated with the metric g is

�g =
1

F

(
∂2

t − F

r2
∂r(r

2F )∂r −
F

r2
∆S2

)
,

where ∆S2 denotes the standard Laplace–Beltrami operator on S2.
Our goal is to study the existence of global solution to the corresponding Cauchy

problem for the semilinear wave equation

(2) �gu = |u|p in [0,∞[×Ω.

It is well–known (see [5], [6], [3], [9], [10], [11], [2], [4] for a more complete list
of references on the subject) that for any space dimension n ≥ 2, there exists a
critical value p0 = p0(n) > 1 such that the Cauchy problem for the semilinear wave
equation in flat metric admits a global small data solution provided p > p0(n).
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For subcritical values of p ≤ p0(n), a blow–up phenomenon is manifested. In

the case of space dimension n = 3, the critical exponent is p0(3) = 1 +
√

2, while
in the general case of space dimension n ≥ 2, the critical exponent is defined as
the positive solution to

(n − 1)p2 − (n + 1)p − 2 = 0.

The blow up results in [5], [6], [3], [9], [10] require a suitable comparison principle
for the free wave equation. One further remark is connected with the fact that
the critical exponent p0(n) is the same for the smaller class of radially symmetric
solutions.

Our main goal in this work is to study the semilinear wave equation in the
presence of Schwarzschild metric and to show a blow - up result for 1 < p < 1+

√
2.

Introducing the Regge–Wheeler coordinate

(3) s(r) = r + 2M log(r − 2M),

we can rewrite equation (2) as

(4) ∂2
t u − ∂2

su − 2F

r(s)
∂su − F

r(s)2
∆S2u = F |u|p,

where

F = F (s) = 1 − 2M

r(s)

and r(s) is the function inverse to (3).
For simplicity (and with no loss of generality), we shall restrict our considera-

tions to the case of solutions of the form u = u(t, s). Then (4) is simplified to the
following equation:

(5) ∂2
t u − ∂2

su − 2F

r(s)
∂su = F |u|p.

Making further the substitution u(t, s) = v(t,s)
r(s) , we obtain the semilinear prob-

lem

(6) ∂2
t v + Gv = Fr1−p|v|p,

where

(7) G = −∂2
s +

2MF

r3
.

Our goal is to treat the subcritical case 1 < p < 1 +
√

2 and to show that some
solutions with arbitrarily small initial data blow up in finite time.

To study the maximal time interval of existence of solutions to the wave equation
in Schwarzschild metric

(8)

{
�gu = |u|p in [0,∞[×Ω,

u(0) = u0, ut(0) = u1 in Ω,

we suppose that our initial data are radial

u0 = u0(r), u1 = u1(r), (u0, u1) ∈ H2((2M,∞)) ×H1((2M,∞))
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and that there exists a compact interval B
.
= B(r0, R)

.
= {|r−r0| ≤ R} ⊂ (2M,∞),

so that

(9)





u0(r), u1(r) ≥ 0 almost everywhere,

u0(r) = u1(r) = 0 for |r − r0| ≥ R,∫∞

2M
uj(r) dr ≥ ε j = 0, 1

for a positive constant ε, R > 0 and r0 = r0(ε, p) ∈ Ω. We also assume that r0 is

near 2M for p ∈]2, 1+
√

2[, far from it for p ∈]1, 2[ (we make no assumption in the
case p = 2).

Now we can state the main result.
Theorem. For any p, 1 < p < 1 +

√
2 there exists a positive number ε0 so

that for any ε ∈ (0, ε0) there exists r0 = r0(p, ε) and R = R(p, ε) so that for any
initial data

u0 = u0(r), u1 = u1(r), (u0, u1) ∈ H2((2M,∞)) ×H1((2M,∞))

satisfying (9) in B
.
= B(r0, R), there exists a positive number T = T (ε) < ∞ and

a solution

u ∈ ∩2
k=0Ck([0, T [;H2−k((2M,∞))

of (8) such that

lim
t↗T

||u(t)||L2((2M,∞)) = ∞.
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The hyperbolic-elliptic Ishimori system

Andrea R. Nahmod

(joint work with Carlos E. Kenig)

The hyperbolic-elliptic Ishimori system,

∂ts = s × �xys + κ(ζxsy + ζysx)

∆ζ = 2s · (sx × sy)
(1)

with s : R×R2 → S2 ↪→ R3, lim|x|,|y|→∞ s(x, y, t) = (0, 0,−1) and κ a real constant
was proposed in 1984 by Y. Ishimori [1]. In his paper, Ishimori -seeking to show
that the dynamics of topological vortices need not generally be non-integrable-
introduced the system (1) in analogy with the 2d CCIHS chain [15], as a model
having the same topological properties as the latter yet permitting topological
vortices whose dynamics are integrable; the system (1) is completely integrable
when κ = 1. The linearized equation of (1) in this case is the same as that of
the hyperbolic-elliptic Davey-Stewartson system and has been tackled by inverse
scattering methods. On the other hand, system (1) with ∆xy in lieu of �xy and
κ = 0 reduces to the 2d CCIHS or Schrödinger map system. The Ishimori system
(1) describes the time evolution of a system of static spin vortices in the plane.
The right hand side of the equation for the scalar potential function ζ(x, y, t) is
the topological charge density of the system. The integer values of the topological
charge Q := 1

4π

∫
R2 s·(sx×sy) dxdy, classify the static spin vortices. Geometrically

ζ(x, y, t) is a multiple of the curvature tensor and the second equation can be
viewed as describing the pull back of a piece of the volume in the target S2.

In our talk we described recent joint work with C. Kenig [5] proving that both
the 2d Schrödinger map equation into S2 and the Ishimori system (1) admit a local
in time solution for the Cauchy initial value problem with large data in Hγ(R2),
γ > 3/2 suitably avoiding the north pole.1 Uniqueness holds in H2(R2). We also
described the main difficulties that need to be addressed to extend our results to
data at or close to the energy critical level.

In the context of Schrödinger maps it was shown in [10] that one can find
an appropriate frame on s−1T (S2) so that the derivatives of the solution satisfy
a certain nonlinear Schrödinger system, referred to as the ’modified Schrödinger
map’ system (MSM). The same ideas transform very similarly the Ishimori system
into a nonlinear hyperbolic Schrödinger equation. In analogy with Schrödinger
maps, we will refer to it as the ’modified Ishimori system’ (MIS).

1Because the solution of the Schrödinger equation depends on the initial data at every point
and since no chart on the sphere can cover the entire complex plane, we ask the data to vanish
in a small neighborhood of the north pole. This is a stronger than needed technicality that
simplifies the translation back and forth between the Ishimori or Schrödinger map system and
the Modified Ishimori or Schrödinger map equation. The weaker assumption of the map having
degree zero should suffice; but it alone makes the translation back to the map more involved.
For nearly parallel spins -i.e. sufficiently small data – initially close to the south pole; none of
these requirements are needed since for a short time the map will stay close to the south pole.
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To prove our main result we rely on the latter transformation in combination
with energy estimates as in [11], Strichartz estimates and a formulation devised by
Kenig [3], [4] of the ideas in Koch-Tzvetkov’s work [8], to obtain a priori estimates
for classical smooth solutions to the MIS. Standard approximation methods then
give local in time existence in Hs(R2), s > 1/2 for the MIS. Uniqueness for these
solutions are shown in H1(R2). Local existence in Hγ(R2), γ > 3/2 and uniqueness
in H2(R2) for the original Ishimori map can then be established [11] [5].

The hyperbolic-elliptic Ishimori system was studied by A. Soyeur [14]. He
proved local and global existence for sufficiently small data in H3; and uniqueness
of large data solutions in H4(R2).

It should be noted that local existence for large smooth data does not follow
from the results in [7] because ∇ζ is not necessarily in L1. Thus in [5] we also
need to do a parabolic regularization in the covariant derivative equation and prove
energy estimates in Hk, k large.

Consider (1) with κ 6= 0 any real constant. The precise value of κ does not
enter but in the constants bounding the estimates. We write

∂ts = s × �xys + (φxsy + φysx)

∆φ = 2κs · (sx × sy)
(2)

Relabel (t, x, y) as (t, x1, x2). Following [11] we start with a description in terms
of the stereographic projection of S2 r {N} → C where N is the north pole and
rewrite system (2) using covariant derivatives. Assuming finite energy of the map
s, one can apply the ’good gauge’ theorem of Uhlenbeck -existence of a global
Coulomb gauge- (Theorem 1 in [11]; [16]) to obtain a system of the form

∂u1

∂t
= i�u1 + γ1(a1

∂u1

∂x2
− a2

∂u1

∂x1
) + γ2α1u1 + γ3α2u2 + γ4(a

2
1 − a2

2)u1 + γ5a0u1

∂u2

∂t
= i�u2 + γ1(a1

∂u2

∂x2
− a2

∂u2

∂x1
) + γ2α1u2 + γ3α2u1 + γ4(a

2
1 − a2

2)u2 + γ5a0u2

(3)

with γm, m = 1, . . . 5 some constants that may depend on κ but γ1 ∈ R. We
have denoted by α1, α2 quadratic terms in u1, u2 of the form α1 = R( Im (u1u2)),
α2 = Im (u1u2) where by R we generically represent an appropriate linear com-
bination of Riesz transforms. This is the system we call the Modified Ishimori
system [5]. Just as above

(4) a = (a1, a2) = (− ∂β

∂x2
,

∂β

∂x1
) ∆β = ±4Im(u1u2) and a0 ∼ R(ukuj)

Note that (3) can be viewed as a linear system with a priori given time de-
pendent coefficients, the coupling of the systems occurs through one of the cubic
nonlinearities. Schematically we write the Cauchy problem for either system as

(5) ut − i�u + γ δ(a u) = F (u, u)
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where, u is either u1 or u2, a is as above, γ is a real nonzero constant and (i)

δw represents d̃iv w = ∂w
∂x1

− ∂w
∂x2

(ii) ∇̃ = ( ∂
∂x1

,− ∂
∂x2

). Finally, F (u, u) are

all the cubic-type and ’quintic’ terms appearing in (3)-(4).

Remark. The derivative term in the MIS (3) has the form a · ∇̃u. Thus at the
expense of adding an extra cubic term of the form ( ∂a1

∂x1
− ∂a2

∂x2
)u we can view the

derivative term as d̃iv (au). Unlike the case for the MSM, the derivative term in
MIS does not have a null form structure.
Main Theorem [5]. The Cauchy initial value problem associated to (5) admits
a local in time solution in Hs, s > 1/2. More precisely, given data u0 ∈ Hs(R2),
s > 1/2 there exists a time 0 < T = T(‖u0‖Hs

x
) and a solution to (5) such that

u ∈ C([0,T]; Hs) and u ∈ L2
t ([0,T]; L∞

x ).

Furthermore, for data in H1, the L∞
T

H1
x-solution can be shown to be unique and

the mapping u0 → u ∈ C([0,T]; H1) is continuous.
The key to prove the theorem is the control of an L2

T L∞ norm of a smooth

solution to the MIS in terms of the H1/2+ norm of the initial data. Uniqueness in
H1(R2) follows as in [2].

In general, it is not a simple issue to go from solutions of the MIS and MSM
systems to the full Ishimori and Schrödinger map systems directly. The trans-
formation formulas between a solution u and the map s are quite complex. The
well-posedness result on the modified system MIS apply to a larger class of formal
solutions to the equation than those which come from the Ishimori map system.
Our method of using the results on the modified map equations to show existence
of the Ishimori maps is the same idea used in [10], and in [12] and [13] for wave
maps. The main purpose behind the idea of fixing a particular gauge and passing
to the modified systems is that of obtaining a priori estimates for smooth solutions
and -when possible their differences- in ’rougher’ norms and using them to pass
to a weak limit in the full original map system in an appropriate lower regularity
space. Smooth solutions transform over to solutions of the complete (overdeter-
mined) system. Our results show that the time of existence depends only on
‖u0‖H1/2+ . So given an initial data H3/2+, we approximate it by smooth data in
Hm, whose solutions satisfy the full set of equations and consistency conditions
and the a priori estimates satisfied by the solution to the MIS system. These a pri-
ori estimates are now used to pass to a weak limit. The solution produced by the
well-posedness result in our Main Theorem will be a weak limit of a subsequence of
the smooth solutions in C([0, T ); H1/2+)∩L2([0, T ); L∞

x ) and thus will also satisfy
the entire set of consistency conditions as desired. A key step in the argument is
to derive a bound on the extrinsic Hα(R2), α > 1/2 norm of ds. Details on how
carry such an argument out appear in [5].
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Global well-posedness and scattering for the energy-critical nonlinear

Schroedinger equation in R3

Markus Keel

(joint work with James Colliander, Gigliola Staffilani, Hideo Takaoka, Terence
Tao)

We consider the Cauchy problem for the quintic defocusing Schrödinger equa-
tion in R1+3,

(1)

{
iut + ∆u = |u|4u
u(0, x) = u0(x)

where u(t, x) is a complex-valued field in spacetime Rt × R3
x. This equation has

an energy,

(2) E(u(t)) :=

∫
1

2
|∇u(t, x)|2 +

1

6
|u(t, x)|6 dx

which is preserved by the flow.
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Semilinear Schrödinger equations - with and without potentials, and with vari-
ous nonlinearities - arise as models for diverse physical phenomena. Our interest
here in the defocusing quintic equation (1) is motivated mainly though by the fact
that the problem is critical with respect to the energy norm: we map a solution to
another solution through the scaling u 7→ uλ defined by uλ(t, x) := 1

λ1/2 u( t
λ2 , x

λ ),
and this scaling leaves the energy invariant. Our main result is global well-
posedness for (1) in the energy class.

Theorem 1. For any u0 with finite energy, E(u0) < ∞, there exists a unique1

global solution u ∈ C0
t (Ḣ1

x) ∩ L10
t,x to (1) such that

(3)

∫ ∞

−∞

∫

R3

|u(t, x)|10 dxdt ≤ C(E(u0)).

for some constant C(E(u0)) that depends only on the energy. In addition, there ex-
ists finite energy solutions u±(t, x) to the free Schrödinger equation (i∂t+∆)u± = 0
such that

‖u±(t) − u(t)‖Ḣ1 → 0 as t → ±∞.

Finally, if u0 ∈ Hs for some s > 1, then u(t) ∈ Hs for all time t, and one has the
uniform bounds

sup
t∈R

‖u(t)‖Hs ≤ C(E(u0), s)‖u0‖Hs .

For powers less than five in the nonlinearity on the right side of (1), large data
global well-posedness and scattering was shown in [6]. For large finite energy data
which is assumed to be in addition radially symmetric, Bourgain [1] proved global

existence and scattering for the quintic problem (1) in Ḣ1(R3). Subsequently
Grillakis [7] gave a different argument which recovered part of [1] - namely, global
existence from smooth, radial, finite energy data. Our goal in this work was then to
remove the radial assumption on the data. (Results previous to [1], [7] established
global well-posedness from small data, and local well posedness from large data
(see [3, 2]).)

We now sketch very briefly two of the ideas involved in the proof of the above
Theorem: a suitable modification of the Morawetz inequality for (1), along with the
frequency localized L2 almost-conservation law that we ultimately use to prohibit
energy concentration.

Building on work of Lin-Strauss [9] (who cite [10] as their motivation), we
obtained in [4], [5] the following interaction Morawetz estimate for solutions of (1)
2

(4)

∫

I

∫

R3

|u(t, x)|4 dxdt . ‖u(0)‖2
L2(sup

t∈I
‖u(t)‖Ḣ1/2)

2.

1In fact, uniqueness actually holds in the larger space C0
t (Ḣ1

x) (thus eliminating the constraint

that u ∈ L10
t,x), as one can show by adapting the arguments of e.g. [8].

2Strictly speaking, in [4], [5] this estimate was obtained for the cubic defocusing nonlinear
Schrödinger equation instead of the quintic, but the argument in fact works for all nonlinear
Schrödinger equations with a pure power defocusing nonlinearity.
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However this estimate is not suitable for the critical problem because the right-
hand side is not controlled by the energy E(u): it increases without bound when
we simply scale given finite energy initial data as above with λ large.

Our way around this is to localize the estimate in frequency space. We work in
the context of an induction-on-energy argument as in [1]: assume for contradiction
that Theorem 1 is false, and consider a solution of minimal energy among all
those solutions with L10

x,t norm above some threshhold. We first show that such
a minimal energy blowup solution would have to be localized in both frequency
and in space at all times. Second, we prove that this localized blowup solution
satisfies a frequency localized Morawetz inequality which states that after throwing
away some low frequency portions of the blow-up solution, the remainder obeys
good L4

t,x estimates. In principle, this estimate should follow simply by repeating
the proof of (4) with u replaced by the high frequency portion of the solution,
and then controlling error terms. Some of the error terms can only be controlled
by using the fact that the solution under consideration is frequency and spatially
localized. Hence the frequency-localized Morawetz inequality is not an a priori
estimate valid for all solutions of (1), but instead is proven valid only for minimal
energy blowup solutions.

The strategy is then to try to use Sobolev embedding to boost this L4
t,x control

to L10
t,x control which would contradict the existence of the blow-up solution. The

remaining worry is that the solution may shift its energy from low frequencies to
high, possibly causing the L10

t,x norm to blow up while the L4
t,x norm stays bounded.

To prevent this we look at what such a frequency evacuation would imply for the
location -in frequency space - of the blow-up solution’s L2 mass. Specifically,
we prove a frequency localized L2 mass estimate that gives us information for
longer time intervals than seems to be available from the spatially localized mass
conservation laws used in the previous radial work ([1, 7]). By combining this
frequency localized mass estimate with the L4

t,x bound and plenty of Strichartz
estimate analysis, we can control the movement of energy and mass from one
frequency range to another, and prevent the low-to-high cascade from occurring.
The argument here is motivated by our previous low-regularity work involving
almost conservation laws (e.g. [5]).
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