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Introduction by the Organisers

Differential equations have been a major branch of pure and applied mathematics
since their inauguration in the mid 17th century. While their history has been
well studied, it remains a vital field of on-going investigation, with the emergence
of new connections with other parts of mathematics, fertile interplay with applied
subjects, interesting reformulation of basic problems and theory in various periods,
new vistas in the 20th century, and so on. In this meeting we considered some of
the principal parts of this story, from the launch with Newton and Leibniz up to
around 1950.

‘Differential equations’ began with Leibniz, the Bernoulli brothers and others
from the 1680s, not long after Newton’s ‘fluxional equations’ in the 1670s. Appli-
cations were made largely to geometry and mechanics; isoperimetrical problems
were exercises in optimisation.

Most 18th-century developments consolidated the Leibnizian tradition, extend-
ing its multi-variate form, thus leading to partial differential equations. General-
isation of isoperimetrical problems led to the calculus of variations. New figures
appeared, especially Euler, Daniel Bernoulli, Lagrange and Laplace. Development
of the general theory of solutions included singular ones, functional solutions and
those by infinite series. Many applications were made to mechanics, especially to
astronomy and continuous media.

In the 19th century: general theory was enriched by development of the un-
derstanding of general and particular solutions, and of existence theorems. More
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types of equation and their solutions appeared; for example, Fourier analysis and
special functions. Among new figures, Cauchy stands out. Applications were now
made not only to classical mechanics but also to heat theory, optics, electricity
and magnetism, especially with the impact of Maxwell. Later Poincaré introduced
recurrence theorems, initially in connection with the three-body problem.

In the 20th century: general theory was influenced by the arrival of set theory in
mathematical analysis; with consequences for theorisation, including further topo-
logical aspects. New applications were made to quantum mathematics, dynamical
systems and relativity theory.
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de d’Alembert à Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2741

Giovanni Ferraro
Functions, Series and Integration of Differential Equations
around 1800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2743

João Caramalho Domingues
A puzzling remark by Euler on constant differentials . . . . . . . . . . . . . . . . . . 2745

Henrik Kragh Sørensen
Habituation and representation of elliptic functions in
Abels mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2748

Hans Niels Jahnke
Lagrange’s Series in Early 19th-Century Analysis . . . . . . . . . . . . . . . . . . . . 2750

Michiyo Nakane
Two Historical Stages of the Hamilton-Jacobi Theory in the
Nineteenth Century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2753

Marco Panza
On some of Newton’s Methods for finitary
quadratures (1664-1666) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2756

Ivor Grattan-Guinness
Differential equations and linearity in the 19th and early
20th centuries: a short review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2758

Jesper Lützen
Non-Holonomic Constraints from Lagrange via Hertz to Boltzmann . . . . . 2761



2732 Oberwolfach Report 51/2004

Curtis Wilson
19th-century Lunar Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2763

Ja Hyon Ku
Rayleigh’s Theory of Sound and the rise of modern acoustics . . . . . . . . . . 2765

Karl-Heinz Schlote
Potential theoretical investigations by Carl Neumann and
the role of mathematical physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2767

Rossana Tazzioli
Green’s functions and integral equations: some Italian
contributions at the beginning of the 20th century . . . . . . . . . . . . . . . . . . . . 2769

Erika Luciano
G. Peano and M. Gramegna on ordinary differential equations . . . . . . . . . 2771

Anne Robadey
A shift in the definition of stability: the Poincaré recurrence theorem . . . 2774
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Abstracts

The role of the concept of construction in the transition from inverse
tangent problems to differential equations.

Henk J. M. Bos

Tangent problems — given a curve, to find its tangents at given points — are as old
as classical Greek mathematics. ‘Inverse tangent problems’ was the name coined
in the seventeenth century for problems of the type: given a property of tangents,
find a curve whose tangents have that property. It seems that the first such
problem was proposed by Florimod De Beaune in 1639 (cf. [5]). Translated into
the formalism of the calculus these problems become differential equations. Much
of the activities in the early infinitesimal calculus (second half of the seventeenth
century) were motivated by inverse tangent problems, many of them suggested by
the new mechanical theory.

The transition to differential equations occurred around 1700. I argue that this
transition was much more than a simple translation from figure to formula, from
geometry to analytical formalism. It involved, indeed it was a major factor in,
the loss of a canon for the solution of problems. In the seventeenth century this
canon had been formulated by René Descartes in a redefinition of what it meant to
solve a problem in geometry cf. [3]. It meant to construct the geometrical entity
— for inverse tangent problems, the curve — which was required in the prob-
lem. Descartes had restricted geometry to algebraic curves, and he had explained
how such curves could be constructed (cf. [3, pp. 342–346, 374–375]). But in-
verse tangent problems often had non-algebraic curves as solution. Consequently
mathematicians went outside the Cartesian demarcation of geometry, but they
kept to the requirement that if problems required to find some curve, this meant
that the curve had to be constructed. There were many methods for constructing
curves. For transcendental curves these constructions necessarily involved a tran-
scendental step, mostly in the form of a quadrature which was simply assumed
to be possible. There was also a lively discussion on the merits of constructing
transcendental curves by instruments (cf. [1] and [2], see also the contribution of
Prof. Tournès to the meeting).

I use Charles René Reyneau’s (1656–1728) Analyse démontrée of 1708 ([4]) to
illustrate the persistence of this canon of construction. Reyneau explains all the
necessary geometrical procedures:

(1) to construct a curve when its (algebraic) equation is given,
(2) to construct the roots of an equation F (x) = 0,
(3) to construct a curve by assuming certain quadratures given ([4, pp. 571,

601, 744–745, respectively]).

The passages on these procedures in Reyneau’s book may be seen as examples
of a mathematical way of thinking in the process of fossilization. Later in the
eighteenth century, one finds its traces mostly in terminology: solving differential
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equations was called, throughout the eighteenth century ‘construction of differen-
tial equations.’

By this loss of a canon of construction, however, mathematicians also lost a clear
and shared conception of what it meant to solve a differential equation; indeed,
the status of differential equations became fuzzy: were they problems? were they
objects? When were their solutions satisfactory?

The change from a field with a more or less commonly accepted view on what
were the status of the object and the requirements of solutions, to a field in which
these issues were fuzzy (and in which at the same time the material for study
expanded enormously) was not an easy one. Many puzzling developments in early
analysis, and especially delays in developments expected with hindsight, can be
explained by the tenacity of the older ideas on problem solving. Indeed adjust-
ment to the new situation meant habituation of mathematicians to changes. And
habituation takes time.
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Gabriele Manfredi’s treatise De constructione aequationum

differentialium primi gradus (1707)

Clara Silvia Roero

Gabriele Manfredi’s book on first-degree differential equations, written between
1701 and 1704 and published in 1707, is the most valuable Italian mathematical
treatise of the first twenty years of the 18th century. The structure of the propo-
sitions and of the geometrical constructions presented in this work is reminiscent
of those used by the Bernoulli brothers and by Leibniz in their own writings. This
was certainly because Manfredi’s formation had been based on the articles of the
Acta Eruditorum and on L’Hôpital’s Analyse, the latter of which was his model
in deciding to supply his readers with a systematic collection of the Leibnizian
methods for the calculation of integrals and the solution of differential equations,
complete with proofs of those points not explicated by their authors.
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The aim of this historical study on Manfredi’s treatise is to show the sources of
inspiration and the genesis of G. Manfredi’s work and the favourable impressions
that it made abroad, as well as the influence it exerted on Italian mathematical
research with respect to the topic of differential equations.

Manfredi’s work is divided into six sections, systematically organised with a
succession of definitions, propositions, corollaries and examples. He shows, in the
first section, how the differential properties of a curve, linked for example to the
tangents, normals, radii of curvature, arc lengths, areas enclosed by the curve or
volumes of solids of revolution, lead to the first-order differential equation verified
by the curve. The second section deals with the problem of the integration of
equations such as A(x) dx = B(y) dy whose integrals are algebraic curves. Differ-
ential equations such as dz = q du, whose solutions are not algebraic curves, are
examined in the third section. The fourth section deals with first-order differential
equations, non-linear in the differentials and such that the sum of the degrees of
the differentials, in each addend, are constant and that only one of the variables
appears. The fifth section deals with the construction of differential equations with
separable variables q(t) dt = p(u) du, which are not algebraically integrable. The
sixth section, certainly the most interesting and original, is devoted to the study
of some classes of differential equations which are not algebraically integrable, in
which both the variables appear but are not separable.

Manfredi first shows how certain devices lead, in both sides, to exact differentials
and then goes on to consider homogeneous differential equations, which he admits
he does not know how to integrate with a general procedure, nor how to separate
the variables. Specifically, regarding the equation nx2 dx−ny2 dx+x2 dy = xy dx,
Manfredi affirms (Manfredi 1707, p. 167): “. . . it is not clear how this equation
can be constructed, nor do we see how it is possible to integrate it, nor how it is
possible to separate the variables from each other.” It is relevant here to recall
that a few years later, he found the general substitution to be used in these cases,
and this method was published in the Giornale de’ letterati d’Italia in 1714. It is

only for the specific example x2 dy = ny dx
√

x2 − y2 that in his treatise Manfredi
devised an artifice which allowed him to reach the solution. The most important
result in this last section is the determination of the general solution of the first-
order linear equation a2 dy = bq dx + py dx, where p, q are functions of x and
a, b are constants. In order to construct the solution of this equation Manfredi
first uses the substitution p dx

a
= a dz

z
. Manfredi then examines some examples

of differential equations which can be reduced to linear equations and at the end
of his treatise he deals with a problem of orthogonal trajectories which leads to
a homogeneous differential equation, whose solution is found by reducing it to a
linear equation.

As this summary shows, Manfredi’s book was naturally intended for a select
readership of Italian scholars already able to understand differential calculus, and
eager to get to grips with integral calculus. Many of the cases examined by Man-
fredi also appeared in the Lectiones on integral calculus which Johann Bernoulli
had prepared for L’Hôpital when he was in Paris in 1691-92, but which he did
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not publish until 1742 [Bernoulli Joh. Opera 3, pp. 385-558]. But it must not
be supposed that Manfredi had seen these manuscripts, because they were not
circulating in Italy at the time Manfredi was writing his treatise. It is also true to
say that the sources of inspiration for both texts are the same articles published
in the Acta Eruditorum. This is also what Manfredi wrote to Leibniz when he
sent his book: (Bologna, 3.10.1707, NLB Hanover MS Lbr. 599, f. 1r): “I think
you will recognise, as soon as you read [this book], that it is almost all taken
from you and your brilliant expositions in the Acta Eruditorum. The fact is that
without you, no one can make progress in advanced geometry, so useful and nu-
merous are your inventions. So this little book I am sending you must in truth be
recognised as yours, and, as it is yours, I should like to recommend it warmly to
your benevolence. It was written precisely to allow beginners, especially Italians,
to understand integral Calculus; the ignorance and lack of interest towards this
subject in Italy is, in fact, abysmal and shameful.”

The review of De constructione published in the Acta Eruditorum in June 1708
was written by Leibniz and Wolff, who had been favourably impressed by the young
Italian. There they praise Manfredi for making a good choice of examples from the
publications of Leibniz and the Bernoullis to illustrate integral calculus and they
stress that his book goes far beyond Carré’s little book of 1700, Méthode pour la
mesure des surfaces . . . par l’application du Calcul intégral. Jacob Hermann, who
taught in Padua at that time, wrote to Leibniz that Manfredi’s treatise had made
a very favourable impression on him, mentioning in particular a problem of or-
thogonal trajectories, which, in his opinion, had been admirably solved (Padua 13.
10. 1707, GM 4, p. 321): “Some time ago the famous Manfredi sent me, through
our honoured Guglielmini who had gone to Bologna from here, his treatise on the
construction of first-order differential equations. The aim of this work is to clarify
and eliminate doubts regarding the principal inventions concerning the inverse tan-
gent method which appeared in the Acta Eruditorum and the Proceedings of the
Paris Academy without proof, and in my opinion he has been successful in many
cases.” In letters to Johann Bernoulli (Padua 19.10.1707, 8.12.1708) Hermann also
expressed his preference for Manfredi’s treatise, which he had skimmed through
rapidly, to the Englishman Cheyne’s Fluxionum methodus inversa (1703) and to
Reyneau’s Analyse démontrée (1708). In contrast however, Johann Bernoulli did
not recognise any degree of originality in Manfredi’s book, nor in the methods
he had adopted; moreover he wrote to Leibniz (Basle 1.9.1708, GM 3, p. 838):
“[Verzaglia] has brought me Manfredi’s book De constructione aequationum dif-
ferentialium primi gradus, published a year ago, and so certainly in your hands by
now. There are some elegant things in it, but in many cases it is far too prolix and
to tell the truth it omits other more necessary and useful things. He has not gone
deeply enough into the study of the integration [of differential equations] and the
relevant construction, which was, however, his principal aim.” Perhaps this work
precedeed his wish to publish his lessons on integral calculus for L’Hôpital. Nev-
ertheless, the book was appreciated by Pierre Rémond de Montmort, who wrote
to Johann Bernoulli on 15 September 1709: “I have recently received Manfredi’s
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book. It is very good, but it does not prevent us from greatly regretting all that
you could have taught us if you had deigned to take the trouble.”

Manfredi’s book is of great significance in the context of mathematics in the
early 18th century, both because of the high level of the investigations in the field
of differential equations, and because of the scarcity of books and articles published
before that time. The reviews published in the Italian journals Galleria di Minerva
and Giornale de’ Letterati d’Italia were very favourable. Yet, despite its validity,
or perhaps precisely because it was so much in the vanguard of mathematical
research, it did not make an immediate impact on Italian mathematics. The
reasons for this are well known: in the first place, the difficulty of the subject for a
public which was still unfamiliar with modern mathematics and little accustomed
to algebra and Cartesian geometry, much less differential and integral calculus.
In the second place, the book was badly printed and full of misprints, as it had
been published cheaply at the author’s own expense. But those who already knew
something of Leibnizian calculus appreciated its usefulness for the direction and
development of mathematical research. For distinguished mathematicians such
as Jacopo Riccati, Bernardino Zendrini and Giovanni Poleni, it was the basic
reference text in their early studies on integral calculus. Especially for Riccati and
Zendrini, Manfredi’s work was in effect a springboard for the development of new
methods and techniques for dealing with differential equations. And Manfredi was
to remain a central figure in future research by Italian mathematicians. Among
his students in Bologna were Ramiro Rampinelli, Laura Bassi, Flaminio Scarselli,
Francesco Maria Zanotti, Giuseppe Antonio Nadi and Sebastiano Canterzani. In
particular Rampinelli and his student Maria Gaetana Agnesi greatly benefited
from the skill and advice of G. Manfredi and J. Riccati, and were able to produce
writings whose importance in the popularisation of the most recent and advanced
mathematics was also recognised abroad (Agnesi, Instituzioni analitiche ad uso
della gioventù italiana, 1748).
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Vincenzo Riccati’s treatise on integration of differential equations by
tractional motion (1752)

Dominique Tournès

In 1752 in Bologna, Vincenzo Riccati published a short treatise in Latin entitled
De usu motus tractorii in constructione aequationum differentialium. This paper is
interesting because it is the only complete theoretical work that was ever dedicated
to the use of tractional motion in geometry. The book contains 72 pages of text and
three plates at the end of the volume comprising sixteen figures. Why did Vincenzo
write this treatise? This is a rather easy question to answer because Riccati himself
tells us the origin of his work and the evolution of his ideas. All comes from the
reading of a short passage of a paper written by Alexis-Claude Clairaut in 1742,
published in 1745 in the Mémoires de l’Académie royale des sciences de Paris. In
this passage, Clairaut summarizes in a few lines, without demonstration, a result
found by Euler in 1736: the integration by tractional motion of a general form
of Riccati’s differential equation. Surprised by this result, Vincenzo sought to
rediscover a demonstration of it. He then developed various generalizations which
led him little by little to an unexpected result: by use of tractional motion, it
is possible to integrate in an exact way, not only Riccati’s equation, but, more
generally, any differential equation.

Before I go over the significance of this result, I must stress that Riccati’s work is
not only theoretical and abstract. Throughout his paper, Vincenzo wonders about
the possibility of making material instruments allowing the actual realization of
the constructions which he imagines. In fact, Riccati’s work occupies a central
place in the history of a certain type of mechanical instruments of integration. A
tractional instrument is an instrument which plots an integral curve of a differential
equation by using tractional motion. On a horizontal plane, one pulls one end of
a tense string, or a rigid rod, along a given curve, and the other end of the string,
the free end, describes during the motion a new curve which remains constantly
tangent to the string. At this free end, one places a pen surmounted by a weight
making pressure, or a sharp edged wheel cutting the paper, so that any lateral
motion is neutralized. By suitably choosing the base curve along which the end of
the string is dragged, and by suitably varying the length of the string according to
a given law, one can integrate various types of differential equations. In this way
of solving an inverse tangent problem, one actually materializes the tangent by
a tense string and moves the string so that the given property of the tangents is
verified at every moment. The length of the tangent is controlled at every moment
by a mechanical system (a pulley or a slide channel) and by a second curve which
is called the directrix of the motion.

Curiously, instruments of this type were considered and made in two differ-
ent periods, and it seems that there was no link between the two. The first
period spans the sixty years from 1692 till 1752. During this time, many math-
ematicians were interested in tractional motion: Huygens, Leibniz, Johann and
Jakob Bernoulli, L’Hôpital, Varignon, Fontenelle, Bomie, Fontaine, Jean-Baptiste
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Clairaut and his son Alexis-Claude Clairaut, Maupertuis, and Euler. In Italy, one
can quote mainly Giovanni Poleni, Giambatista Suardi and, of course, Vincenzo
Riccati. After about 150 years of interruption, during which one finds no trace
of tractional motion, a second group of instruments suddenly appears. This is an
amazing case of extinction and rebirth of an area of knowledge. The engineers
of the end of the nineteenth century and the beginning of the twentieth century
actually rediscovered, in an independent way, the same theoretical principles and
the same technical solutions as those of the eighteenth century. Later, we see
even more complicated tractional instruments, with two cutting wheels connected
between them to be able to integrate differential equations of the second order.
In certain large differential analysers of the years 1930-1950, up to twelve cutting
wheels would be used to integrate large differential systems.

In 1752, Vincenzo Riccati worked out a theory which explains the operation of
all these instruments. The theory rests on various generalizations of the concept
of tractoria starting from the tractrix, the first tractoria described by Huygens
in 1692. Throughout the chapters of the treatise, we find successive generaliza-
tions which allow the integration of more and more extended classes of differential
equations. First of all, there are the tractorias with constant tangent, described
with a string of constant length dragged along a base curve. These tractorias,
the only ones considered by Euler in 1736, allow the integration of one half of
Riccati’s equations. Vincenzo’s first idea consists in a simple but essential remark:
to say that the tangent is constant means saying that the free end of the string
is permanently on a circle of constant radius having for centre the end which one
pulls along the base. By replacing the circle by any curve rigidly related to the
tractor point and moving with it, we obtain the notion of tractoria with constant
directrix. By using these tractorias, Riccati succeeded in integrating the other half
of Riccati’s equations (the half which had escaped Euler), as well as some other
equations. A second idea consists of making the length of the string vary according
to the position of the tractor point. This is the notion of tractoria with variable
tangent, which amounts taking a circular variable directrix whose centre is always
on the tractor point. Finally, the most general notion consists in controlling the
length of the string by a variable directrix whose form varies in any way according
to the position of the tractor point.

By means of these four types of tractorias, Riccati shows that one can integrate
any differential equation exactly by tractional motion, and that there exist an in-
finity of different constructions. One can always integrate any given equation by
using a tractoria with rectilinear base and variable directrix. One can also inte-
grate the same equation with an arbitrary curvilinear base. The problem consists
in choosing the base so that the directrix is the simplest one, and if possible a
constant one. Indeed, the tractorias with constant directrix are suitable for the
manufacture of material instruments. On the other hand, it is more difficult to
conceive instruments for tractorias with variable directrix. Of course it is compli-
cated to manufacture a material curve which can change its shape continuously
during the motion. Instruments corresponding to this last type were conceived
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only very rarely, for rather particular equations. Incidentally, when we say that
Riccati’s method allows the integration of “any differential equation”, we must
be precise about the meaning of these words. “Any differential equation” means
any differential equation conceivable for the time, that is any equation with two
independent variables x and y in which the coefficients of the infinitesimal ele-
ments dx and dy are expressions formed using only a finite number of algebraic
operations and quadratures. Under these conditions, all the auxiliary curves used
by Riccati, the base curves and the directrix curves, are constructible by classical
means. Tractional motion is then an additional process of construction that allows
us to obtain new curves from previously known ones.

From a theoretical point of view, the De usu motus tractorii is the outcome
of the ancient current of geometrical resolution of problems by the construction
of curves. In a certain way, Vincenzo Riccati has put a final point at this cur-
rent by showing that one could construct by a simple continuous motion all the
transcendental curves from the differential equations which define them. From the
practical point of view, the treatise of 1752 proposes a very general theoretical
model to explain in a unified way the operation of a great number of tractional
instruments, those from the past as well as those to come. However, the work of
Vincenzo Riccati was neither celebrated nor influential. It was little read and little
distributed. The book probably arrived too late, at the end of the time of con-
struction of curves, at the moment when geometry was giving way to algebra, and
at the time when series were becoming the principal tool for representing solutions
of differential equations. Thus, in spite of its novelty and brilliance, Riccati’s work
seemed almost immediately old-fashioned.
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ria mathematica, 30 (2003), p. 457-493.

[6] Willers, Friedrich Adolf, Mathematische Maschinen und Instrumente, Berlin: Akademie-
Verlag, 1951.



The History of Differential Equations, 1670–1950 2741

Equations différentielles et systèmes différentiels :
de d’Alembert à Cauchy

Christian Gilain

I. D’Alembert : Elaboration d’une théorie générale des systèmes différentiels li-
néaires, à coefficients constants.
1. Le Traité de dynamique de 1743.
Dans le problème V de ce traité, d’Alembert étudie les petites oscillations du pen-
dule multiple, en utilisant le principe mécanique qui porte désormais son nom [6, 5].
Il parvient ainsi aux équations du mouvement, qui forment un système d’équations
linéaires du second ordre, à coefficients constants, homogènes (en utilisant la ter-
minologie actuelle). Pour l’intégration d’un tel système, il propose une méthode
qui consiste à utiliser des coefficients multiplicateurs constants, choisis de telle
manière que, en additionnant les équations ainsi obtenues, on puisse se ramener à
une seule équation différentielle ordinaire, à deux variables. Cependant, en 1743,
l’intégration de cette dernière équation, linéaire du second ordre, par d’Alembert
reste compliquée et ne permet pas d’aboutir à des expressions analytiques expli-
cites des solutions.
2. Les “Recherches sur le calcul intégral” de 1745, 1747 et 1752.
Dans une série de trois mémoires d’analyse pure, écrits en 1745, 1747 et 1752
(dont le premier est resté inédit), d’Alembert construit une véritable théorie des
systèmes différentiels linéaires, à coefficients constants, homogènes ou non (voir
[2]). Cette théorie repose sur deux éléments essentiels : i) la résolution générale
directe des systèmes d’équations différentielles linéaires, à coefficients constants,
du 1er ordre, à l’aide de la méthode des multiplicateurs ; ii) la réduction de
tout système d’équations différentielles linéaires d’ordre supérieur à un système
équivalent d’équations du 1er ordre, grâce à l’introduction de coefficients différen-
tiels successifs comme nouvelles variables. Dans cette période, d’Alembert applique
sa théorie, ainsi constituée, à divers domaines des mathématiques mixtes, en parti-
culier la mécanique céleste (voir [1]). Dans ses “Additions” de 1752 à ses recherches
de calcul intégral, d’Alembert compare sa méthode à celle d’Euler, pour intégrer
l’équation différentielle linéaire d’ordre n, à coefficients constants, homogène. Tout
en reconnaissant la plus grande simplicité de la méthode d’Euler, il souligne que
la sienne est à la fois plus rigoureuse et plus générale, car s’étendant sans difficulté
au cas non homogène.

Ainsi, la démarche de d’Alembert consiste à la fois à intégrer directement les
systèmes de n équations différentielles linéaires d’ordre un, sans les réduire à une
seule équation différentielle d’ordre n par élimination, et à ramener l’intégration
d’une équation différentielle linéaire d’ordre n à celle d’un système d’équations
différentielles d’ordre un équivalent.
II. Postérité de la théorie de d’Alembert.
Nous nous intéressons à la réception de cette double démarche de d’Alembert, qui
semble avoir été peu partagée par ses contemporains, notamment Euler.
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1. Lacroix et le cours d’analyse de l’Ecole polytechnique.
Il est intéressant de regarder la place occupée par la théorie de d’Alembert chez
Lacroix, bon connaisseur de l’ensemble des travaux du XVIIIe siècle, et professeur
d’analyse de Cauchy à l’Ecole polytechnique en 1805-1807 (voir [7]). Le registre
d’instruction, où figurent les “Objets des leçons”, montre que, dans son cours
d’analyse de 2e année où il expose la théorie des équations différentielles, il suit
la deuxième édition de son Traité élémentaire [8]. Une présentation de la théorie
de d’Alembert y figure, avec ses deux éléments, mais de façon marginale, à la
fin de la section consacrée aux équations différentielles d’ordre deux ou supérieur.
L’ordre du cours de Lacroix, qui correspond à celui du programme officiel de l’Ecole
polytechnique, est ainsi : intégration de l’équation différentielle linéaire d’ordre
quelconque, à coefficients constants ; puis, intégration des équations linéaires “si-
multanées”.
2. Cauchy et le cours d’analyse de l’Ecole polytechnique.
Quelques années plus tard, Cauchy, devenu professeur d’analyse à l’Ecole poly-
technique, non seulement expose la théorie linéaire de d’Alembert, mais il donne
un rôle central à la démarche de l’encyclopédiste, en l’étendant aux équations non
linéaires pour fonder la théorie classique des équations différentielles générales.
Les “Matières des leçons”, figurant dans les registres d’instruction, montrent que,
à partir de 1817-1818, et jusqu’en 1823-1824, il change l’ordre du cours d’analyse
et présente l’étude des équations simultanées du 1er ordre avant celle des équations
différentielles d’ordre quelconque. L’architecture de la théorie des équations dif-
férentielles figurant dans son cours d’analyse de l’Ecole polytechnique est radica-
lement modifiée par rapport à ses prédécesseurs. Elle repose essentiellement sur
l’ordre suivant : i) équations différentielles “quelconques” du 1er ordre ; ii) systèmes
d’ équations différentielles “quelconques” du 1er ordre ; iii) systèmes d’équations
linéaires du 1er ordre à coefficients constants ; iv) équations différentielles “quel-
conques” d’ordre n ; v) équations différentielles linéaires d’ordre n ; vi) équations
différentielles linéaires d’ordre n à coefficients constants.

Le socle de la nouvelle théorie générale est constitué par les points i) et ii) où
sont démontrés les théorèmes d’existence et d’unicité d’une solution du problème
“de Cauchy” (voir [3]). Les équations différentielles d’ordre n se ramènent alors aux
systèmes d’équations du 1er ordre. En particulier, l’équation différentielle linéaire
à coefficients constants est sans doute intégrée, au point vi), en utilisant, notam-
ment, la résolution du système d’équations différentielles linéaires du 1er ordre
équivalent, qui est d’un type étudié avant, au point iii) (cf. [9, leçons 33 à 37]).
L’ordre de présentation dans le domaine des équations différentielles linéaires ap-
parâıt ainsi solidaire de l’ensemble de l’orientation nouvelle donnée par Cauchy
au calcul intégral dans son cours d’analyse de l’Ecole polytechnique. C’est ce qu’il
a lui-même confirmé, en 1842, dans une “Note sur la nature des problèmes que
présente le calcul intégral” [4, p. 267-269].

Cette démarche de d’Alembert et Cauchy de réduction au premier ordre a
été poursuivie, plus tard, par la transformation d’un système de n équations
numériques du premier ordre en une seule équation vectorielle du premier ordre
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dans un espace-produit, confirmant l’importance de cette idée donnant la prio-
rité au 1er ordre pour l’organisation de l’ensemble de la théorie des équations
différentielles ordinaires.
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Functions, Series and Integration
of Differential Equations around 1800

Giovanni Ferraro1

In the 18th century a function was given by one analytical expression constructed
from variables in a finite number of steps using some basic functions (namely al-
gebraic, trigonometric, exponential and logarithm functions), algebraic operations
and composition of functions. Furthermore series were intended as the expansions
of functions and not considered as functions in their own right (see Fraser [1989],
Ferraro [2000a and 2000b]).

This conception poses the historical problem of the nature of series solutions to
differential equations. Mathematicians knew that a series solution to differential
equations was not always the expansion of an elementary function or a composition
of elementary functions. However they thought that series solutions to differential
equations had a different status with respect to solutions in closed forms: series
were viewed as tools that could provide approximate solutions and relationships
between quantities expressed in closed forms.

1I would like to thank Pasquale Crispino, the headmaster of the school for accountants of
Afragola, for having given me permission to attend the Oberwolfach meeting.
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To make this clear, first of all, I highlight two crucial aspects of the 18th-century
notion of a function:

1) Functions were thought of as satisfying two conditions: a) the existence of
a special calculus concerning these functions, b) the values of basic functions had
to be known, e.g. by using tables of values. These conditions allowed the object
‘function’ to be accepted as the solution to a problem.

2) Functions were characterised by the use of a formal methodology, which was
based upon two closely connected analogical principles, the generality of algebra
and the extension of rules and procedures from the finite to the infinite.

I stress that the term ‘function’ underwent various terminological shifts from
its first appearance to the turn of the nineteenth century. In particular, during
the second part of eighteenth century, mathematicians felt the need to investigate
certain quantities that could not be expressed using elementary functions and
sometimes–though not always–termed these quantities ‘functions’. For example,
the term ‘function’ was associated with quantities that were analytically expressed
by integrals or differential equations.

This shift did not affect the substance of the matter because non-elementary
transcendental functions were not considered well enough known to be accepted
as true functions (see, for example, Euler [1768-70, 1:122-128]). This approach
to the problem of non-elementary transcendental functions was connected with
the notion of integration as anti-differentiation. Eighteenth-century mathemati-
cians were aware that many simple functions could not be integrated by means
of elementary functions and that this concept of integration posed the problem of
non-elementary integrable functions. However, they limited themselves to compare
integration with inverse arithmetical operations: they stated that in the same way
as irrational numbers were not true numbers, transcendental quantities were not
functions in the strict sense of the term and differed from elementary functions,
which were the only genuine object of analysis (see Lagrange [1797, 141] and Euler
[1768-1770, 1:13]).

The eighteenth-century notion of a function did not exclude the possibility of
introducing new transcendental functions which had the same status as elemen-
tary functions, provided that they were considered as known objects. In effect
many scholars attempted to introduce new functions (see, for example, Legendre’s
investigation of elliptic integrals and the gamma function (Legendre [1811-17])).
However such investigations remained within the overall structure of eighteenth-
century analysis. Indeed, it is true that mathematicians were convinced that
additions had to be made to the traditional theory of functions and that the set
of basic functions had to be enlarged; nevertheless, they thought that the core of
analysis (the formal methodology connected to elementary functions) could and
needed to remain unaltered. Furthermore, they often resorted to extra-analytical
arguments and, in particular, geometrical interpretations when dealing with tran-
scendental quantities, but this contradicted the declared independence of analysis
from geometry, one of the cornerstones of eighteenth-century mathematics.
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Around the early 1800s this conception became insufficient for the development
of analysis and its applications and in 1812 Gauss changed the traditional ap-
proach. To “promote the theory of higher transcendental functions” [1812, 128],
he defined the hypergeometric function as the limit of the partial sums of the
hypergeometric series. In this way, Gauss viewed the hypergeometric series as a
function in its own right, rather than regarding it as the expansion of a generat-
ing function. He also changed the role of convergence: from being an a posteriori
condition for the application of formally derived results, it became the preliminary
condition for using a series.

In [WA] Gauss gave another definition of hypergeometric functions: he consid-
ered the hypergeometric function as the solution to the hypergeometric differential
equation. This implies a concept of integration which differed from those of Euler
and Lagrange. In effect, in [WW, 10: 366], Gauss expressed the ancient Leib-
nizian notion of the integral in an abstract form and assumed that the relation
x →

∫ x

a
φx dx led to a new function (provided φx 6= ∞ along the path of integra-

tion). Similarly, the hypergeometric differential equation provided a relationship
between certain quantities (except for a few values of the variables where the
coefficients were infinite) and therefore led to a new function.
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A puzzling remark by Euler on constant differentials

João Caramalho Domingues

[3, part I, § 246] contains a puzzling remark: given a function F (x, y), where x, y
are independent variables, we can take either dx or dy as constant (or neither),
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but not both. This seems difficult to explain, if we think of the usual equivalence
dt constant ↔ t independent variable [1].

This remark has consequences: putting

dF = Pdx+Qdy

and
{

dP = pdx+ rdy
dQ = rdx + qdy,

we can have only

ddF = Pddx+ pdx2 + 2rdxdy + qdy2 +Qddy

or

ddF = Pddx+ pdx2 + 2rdxdy + qdy2 (dy const)

or

ddF = pdx2 + 2rdxdy + qdy2 +Qddy (dx const).

The “natural” formula

ddF = pdx2 + 2rdxdy + qdy2

does not occur.
Why is that so? In the same paragraph, Euler explains that, if dx and dy are

both constant, then

y = ax+ b.

This comes probably from dy
dx

= c1

c2

= a.
That is, dx and dy both constant implies that y and x can only have linear

relations: for example, y = x2 is excluded. (This is easy to verify: let F (x, y) =
xy2; then

pdx2 + 2rdxdy + qdy2 = 4ydxdy + 2xdy2 = [if y = x2] 16x3dx2;

but if f(x) = F (x, x2) = x5, then, holding dx constant, d2f = 20x3dx2.) In
modern terms, this is not a problem: we want d2F to be a bilinear map, useful
for local approximations. To calculate d2F along the curve y = x2 we can use the
chain rule.

But for Euler the possibility of substituting any function of x for y (or vice-
versa) was important, and this had to do with the uses of partial differentiation
at the time: partial differentiation did not originate from the study of surfaces,
but rather from the study of families of curves, and particularly from trajectory
problems [Engelsman 1984]. For example, consider a family of curves

y = F (x, a),

a being a parameter (we can think of a and x as the independent variables), and
an orthogonal trajectory to this family through a point P0 = (x0, y0) on the curve
C0 = F (x, a0) [picture]. Take da to be constant (a1 − a0 = a2 − a1). The segment
of the orthogonal trajectory from P0 to P1 = (x1, y1) on the curve C1 = F (x, a1)
is uniquely determined, being orthogonal to the first curve, so that P1 is uniquely
determined. The same for P2. But then dx is uniquely determined: dx0 = x1 −x0
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x0 x1 x2

P0

P1

P2

C0

C1

C2

and dx1 = x2 − x1. There is no reason for dx to be constant (ie, dx1 = dx0).
While x and a are independent variables at the start, the kind of problems studied
implies differentiation along non-linear paths.

It appears that when [3] was written Euler still had in mind only these uses for
partial differentiation. ([3] was published in 1755, but according to Eneström a
couple of letters from Euler to Goldbach suggest that it was already being written
in 1744 and that the manuscript was with the publisher in 1748).

When did Euler start giving different uses to partial differentiation? At this
time, in fact: the second part of [3] includes two chapters on maxima and minima,
one for (uniform) functions of one variable, and the other for multiform functions
and functions of several (in fact, two) variables.

It is interesting that Euler gets this last case wrong. Consider F (x, y), and
dF = Pdx + Qdy. Euler remarks that if (x0, y0) is a maximum or minimum
of F (x, y), then x0 and y0 are also maxima or minima of F (x, y0) and F (x0, y),
respectively (and therefore P = Q = 0); and that they must agree, ie, both be
maxima or both be minima, and therefore

dP

dx
=
ddF

dx2

must have the same sign as
dQ

dy
=
ddF

dy2
.

The problem is that he assumes this to be sufficient conditions. Of course his
mistake is not a consequence of having

ddF = Pddx+ pdx2 + 2rdxdy + qdy2 +Qddy,

since in this case P = Q = 0 implies that (even for him)

ddF = pdx2 + 2rdxdy + qdy2.
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But it looks like a beginner’s mistake: Euler was a “beginner” in uses of partial
differentiation other than studies of families of curves.

This mistake was corrected in [4]. There Lagrange seeks conditions for d2F > 0
(minimum) or < 0 (maximum), whatever dx, dy; manipulating

d2F = pdx2 + 2rdxdy + qdy2

he arrives at the condition that Euler had missed:

p q > r2.

Interestingly, Lagrange does not argue that since for an extreme

P = Q = 0,

he can take

d2F = pdx2 + 2rdxdy + qdy2.

Instead, he just supposes the first differentials dx, dy constant, “ce qui est permis”!
It was allowed, since he was addressing an entirely different kind of problem

from families of curves: the search for maxima and minima is a local problem
where only directions are important, not paths followed. However, it is not at all
clear that Lagrange was thinking along such terms.

It is quite likely (but this requires further investigation) that Lagrange was
responsible for the adoption of pdx2 +2rdxdy+qdy2 as the canonical form of d2F ,
not necessarily or exclusively because of [4], but to a great extent because it is
that form that occurs in Taylor series.
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Habituation and representation of elliptic functions in Abels
mathematics

Henrik Kragh Sørensen

In 1827, N. H. Abel (1802–29) introduced a new class of functions — elliptic
functions — to analysis [1]. Abel defined an elliptic function by means of an
inversion of an elliptic integral, which in Abel’s case took the form

α = α(x) =

∫ x

0

dx
√

(1 − c2x2)(1 + e2x2)
 φ(α) = x.(Inv)
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Here, φ(α) is the elliptic function expressing the upper limit of integration x in
(Inv) as a function of the value of the integral. Abel’s inversion was first done for a
segment of the real axis, then “by inserting xi for x” for a segment of the imaginary
axis. There is no use of complex integration, here, only a formal substitution. By
means of addition formulae, Abel found that φ was a doubly periodic function of
a complex variable.

The inversion of the elliptic integral into a complex function covered some 15%
of Abel’s Recherches sur les fonctions elliptiques. The remaining part of that
paper was devoted to three apparently distinct problems: the division problem
and the division of the lemniscate (35%), obtaining infinite representations for the
elliptic function (30%), and the beginnings of a theory of transformations of elliptic
functions (20%). The division problem and the analogies between the cyclotomic
equation and the division of the lemniscate have rightly been analysed as a key
inspiration for Abel’s work. Similarly, considerable attention has been given to the
transformation theory, in part because this was the corner stone of Abel’s fierce
and productive competition with C. G. J. Jacobi (1804–51). However, much less
attention has been given to the middle part of Abel’s Recherches, in which he
derived various infinite representations for his new functions.

By long sequences of formal manipulations, Abel derived various representations
of his elliptic functions in terms of infinite sums and products. Just focusing
on the infinite sums, certain differences can be noticed. First, Abel deduced a
representation in the form of a doubly infinite series of terms that are rational
in the given quantities. However, he did not stop there but went on to derive
various representations as infinite series of transcendental terms. Later, in a paper
published in 1829, Abel also claimed that the elliptic function could be expressed
as the quotient of two convergent power series [2]. This was also the only occassion
where Abel commented on the convergence of his representations, albeit in a very
short almost laconical way. Thus, a complete hierarchy of infinite representations
presents itself to our historical analysis.

When we try to understand why Abel produced more than one infinite repre-
sentation of elliptic functions, we are faced with a number of suggestions: 1) It
could have to do with numerical convergence; indeed there are drastic differences
in the speed of convergence of the doubly and the singly infinite series. However,
this does not seem to have been a concern for Abel. 2) There could be structural
reasons for listing a hierarchy of series; such a hierarchy was imposed around 1700
to bring order into transcendental curves (see e.g. [3]). However, again, this does
not seem to have been Abel’s purpose. 3) It could be that Abel had to derive
the representations because he could use them in other proofs. Although Abel
died before the theory of elliptic functions was brought to anything like fruition,
he only used these representations once in his rather large mathematical corpus
on elliptic functions. Thus, I suggest that to Abel the “raison d’être” of infinite
representations must be found in the process of habituation — coming to know
the newly introduced objects.
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Abel’s new elliptic functions were part of a wider movement of the late 18th and
early 19th century to deliberately enrich analysis by introducing new functions by
various means. These functions were pursued with the hope of extending analysis
— its domain as well as its methods.

In the second half of the 18th century, analysis had primarily dealt with func-
tions given explicitly by formulae, and analysis progressed through formal ma-
nipulations — often of infinite expressions. I use the term “formula-centred” to
denote this style of mathematics. By the early 19th century, however, the new
functions were being introduced by indirect means: differential equations, func-
tional equations, or — as with Abel’s elliptic functions — formal inversions. These
procedures were not new, but they only gave away little information about the
functions, in particular about the evaluation of the function at arbitrary values of
its argument. But to bridge this difference, the infinite representations provided
the key element. With infinite representations — that were, noticeably, not def-
initions — mathematicians could habituate themselves with these new functions
using the previously prevailing mathematical style. Thus, the process of habitua-
tion provided an anchoring of the new style that I term “concept-centred” within
the previous formula-centred approach.

Abel’s habituation of elliptic functions provides an example of an instance where
the framework of a transition between formula-centred and concept-centred styles
in mathematics can provide explanations for apparent anomalies. At first, the
attention given to infinite representations in Abel’s first paper on elliptic func-
tions seemed strange as it apparently led nowhere. However, when one realises
that the elliptic functions which were introduced indirectly (essentially a concept-
centred step) were not really functions in the formula-centred approach until these
representations had been devised, the section seems to have been better explained.
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Lagrange’s Series in Early 19th-Century Analysis

Hans Niels Jahnke

Today, Lagrange’s series is known only to some specialists. In the 18th and 19th
centuries, however, it was an important and frequently treated tool of analysis
which was extensively used for astronomical calculations. Lagrange published his
result for the first time in 1770 [6]. It runs as follows:
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Theorem 1. Given an equation α − x + n · φ(x) = 0, n a parameter and φ(x)
an ‘arbitrary’ function. Let p be one of the roots of this equation and ψ(p) an
‘arbitrary’ function of p. Then the expansion

ψ(p) = ψ(x) + n · φ(x)ψ′(x) +
n2

2

d
[

φ(x)2ψ′(x)
]

dx
+

n3

2 · 3

d2
[

φ(x)3ψ′(x)
]

dx2
+ L

holds, where one has to substitute α instead of x after the differentiations.

In the style of 18th-century analysis, ‘arbitrary function’ means a function which
can be developed in a power series. If ψ is the identity, the series gives simply a
root of the equation. The series has some similarity with the Taylor series, the
parameter α playing the role of the centre of expansion. The theorem can be seen
in the context of implicit functions, as a means to formally invert formal power
series or as a universal tool for the solution of arbitrary algebraic or transcendental
functions.

Lagrange proved the above relation by purely algebraic (combinatorial) calcu-
lations in which the roots play a symmetrical role. Thus the theorem does not
give any information regarding the question of which root of the related equation
is given by the series.

The series was applied to the solution of transcendental equations of astronomy
(Kepler’s equation), and it (including generalisations to several variables) played
a prominent role in Laplace’s Mécanique céleste.

In 1798, Lagrange gave a specification of his theorem by stating that his series
always represents the numerically smallest root [7].

During the 19th century there appeared quite a few papers on Lagrange’s series
with new proofs and generalisations to several variables. These papers show that
the series has two faces. It can be seen as an interesting combinatorial relation.
As such it was treated for example by Cayley and Sylvester and seems to be
interesting even today. On the other hand, it is an analytical relation and in this
role it belongs to complex function theory.

In fact, Lagrange’s series was the starting point and frequent test case for
Cauchy’s important investigations on the development of complex functions in
power series. Cauchy entered the field in 1827 (see [2]). His paper was motivated
by an appendix to the second edition of Laplace’s Mécanique céleste in which
the latter had derived the radius of convergence of the series giving a solution of
Kepler’s equation. Cauchy was struck by the fact that the radius of convergence
appeared as the solution of a certain transcendental equation and was got without
using the terms of the series. He wanted to understand this phenomenon more
generally and studied Lagrange’s series. Representing the terms of the series by
means of his integral formula he was able to derive an equation whose solution
gave the radius of convergence of the Lagrange series without explicitly referring
to the terms of the series. Laplace’s equation was a special case of this. The
paper was to become a paradigm for Cauchy’s further papers on the development
of complex functions in power series.
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In 1830, in the course of the July revolution in France, Cauchy went into exile
in Turin. He obtained a chair of “higher physics”, and on October, 11, 1831,
read an important paper at the Turin Academy under the title Mémoire sur la
mécanique céleste et sur un nouveau calcul appelé calcul des limites [3]. In this
paper he criticised the mathematical methods for determining the trajectories of
the heavenly bodies as insufficient, stated that Laplace’s Mécanique céleste did not
contain an adequate proof of Lagrange’s theorem though it is basis for Laplace’s
calculations, and lamented that there is no method of estimating the error for
implicit functions. Cauchy promised to solve these problems in his paper. For
some people in his audience this sounded offensive since Turin was a leading centre
of astronomy and they did not like a criticism of Lagrange, who had been born
there.

In our present context the most important part of the paper concerned Cauchy’s
famous theorem about the radius of convergence of the power series expansion for
a complex function.

Theorem 2. The function f(x) can be expanded into a convergent power series if
the modulus of the real or imaginary variable x remains below the value for which
the function f(x) is no longer finite, unique and continuous.

Cauchy said emphatically that he had reduced the law of convergence to the
law of continuity. However, for 15 years he was not sure about the conditions
of the theorem and changed his mind several times as to whether it is sufficient
to require finiteness and continuity only for the function f(x) or also for its first
derivative (see [1]). From this general theorem one can easily derive the radius
of convergence of Lagrange’s series. Cauchy did this only in 1840, whereas in the
present Mémoire he again used his integral formula. He gave the following

Theorem 3. Lagrange’s series represents the unique root y1 of the equation α−
y + x · f(y) = 0 which becomes α for x = 0. This holds for all x for which

modx < mod
z − α

f(z)

where z designates the roots of the equation

f(z) − (z − α) · f ′(z) = 0.

Thus, Cauchy had made a statement concerning which root is represented by
Lagrange’s series for the complex case.

In 1842/43 the young Italian mathematician Felice Chió (1813-1871) read two
papers at the academy of Turin on Lagrange’s series in which he gave a complete
theory for the case of real roots and provided several counter-examples against
Lagrange’s statement that his series always represents the smallest root of the
given equation. The academy refused to publish these papers, so Chió sent them
to Cauchy. On Cauchy’s recommendation they were read at the Paris academy
and finally published ([4]). Chió’s main result was

Theorem 4. If all roots of the equation u−x+t ·f(x) = 0 are real then in the case
of f(u) > 0 Lagrange’s series represents that root a which is the smallest among
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all the roots greater than u, and, in the case of f(u) < 0, the greatest root smaller
than u.

The simplest counter-example, given by Cauchy following the model of Chió,
is provided by the equation a − y + x(y + k)2 = 0. Its expansion according to
Lagrange is

y = a+ x(a+ k)2 +
4

2
x2(a+ k)3 + 5x2(a+ k)4 + L

whereas a direct solution gives

y− =
1 − 2kx−

√

1 − 4(a+ k)x

2x
and y+ =

1 − 2kx+
√

1 − 4(a+ k)x

2x
.

If one expands the square roots in these formulae according to the binomial the-
orem into power series one sees that Lagrange’s series represents y−. But this is
numerically larger than y+ for x = 1 and adequately chosen a and k.

Thus, Lagrange’s series was motivation and frequent test case for Cauchy’s
fundamental papers on the expansion of complex functions in series. The story
shows that at the transition from the 18th to the 19th century, a much more
difficult problem than convergence was the occurrence of multi-valued functions
which led to several mistakes (see [5] for a further example). The related questions
were clarified by Puiseux, Riemann and Weierstrass.
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Two Historical Stages of the Hamilton-Jacobi Theory in the
Nineteenth Century

Michiyo Nakane

Transformation of variables enables one to solve various types of differential equa-
tions. Using ideas of transformation from diverse branches of mathematics, late
nineteenth-century researchers established a general theory of transformations.
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Thus, the notion of transformation of variables in the theory of differential equa-
tions became more general than it had been in the first half of the nineteenth
century. There are many examples that give the solution of differential equations
using the general notion of transformation. This paper focuses on the following
method given in many modern textbooks on analytical mechanics.

Let qi, pi satisfy the canonical equations

dqi
dt

=
∂H

∂pi

,
dpi

dt
= −

∂H

∂qi
, (i = 1, . . . , n)(1)

where H = H(qi, pi, t). Consider the transformation

Pi = −
∂S

∂Qi

, pi =
∂S

∂qi
. (i = 1, . . . , n)(2)

If S is a complete solution of a partial differential equation, the so-called Hamilton-
Jacobi equation,

∂S

∂t
+H

(

qi,
∂S

∂qi
, t

)

= 0,(3)

then S is a generating function for this transformation. From this theorem the
new set of variables satisfies

dQi

dt
=
∂K

∂Pi

,
dPi

dt
= −

∂K

∂Qi

, (i = 1, . . . , n)(4)

where K = ∂S
∂t

+H , but ∂S
∂t

+H = 0 and so we have Q̇i = 0, Ṗi = 0. We can easily
obtain solutions of equation (1) if we find a complete solution of equation (3).

The name “Hamilton-Jacobi equation” reminds us of another theorem that was
presented in Jacobi’s lectures in 1842-43: A complete solution of Hamilton-Jacobi
equation S gives solutions of the canonical equations (1) through relations

∂S

∂qi
= pi,

∂S

∂αi

= βi, (i = 1, . . . , n)(5)

where αi are arbitrary constants involved in the complete solution and βi are new
arbitrary constants. We find this theorem in modern textbooks on differential
equations and calculus of variations.

Although both theorems reduce a system of ordinary differential equations to a
partial differential equation, the two theorems are quite different because the first
one involves the notion of canonical transformation while the second one does not.
This paper calls the former theorem Hamilton-Jacobi theorem II and the latter
Hamilton-Jacobi theorem I. There is a tendency in the literature to confuse these
two theorems. The present paper traces the history of theorem II.

While studying Hamilton’s results and obtaining a preliminary version of theo-
rem I in 1837, Jacobi discussed a transformation that preserves the canonical form
of the canonical equations. The canonical equations

dai

dt
= −

∂H

∂bi
,

dbi
dt

=
∂H

∂ai

, (i = 1, . . . , n)(6)
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where H = H(ai, bi), can be changed to new ones

dαi

dt
= −

∂H

∂βi

,
dβi

dt
=
∂H

∂αi

, (i = 1, . . . , n)(7)

where H = H(αi, βi), if the old variables (ai, bi) are related to new ones (αi, βi)
by a function ψ = ψ(ai, αi) that satisfies

∂ψ

∂αi

= βi,
∂ψ

∂ai

= −bi. (i = 1, . . . , n)(8)

Although his investigation was closely related to the Hamilton-Jacobi equation,
he neither discovered or proved that a complete solution of this equation was a
generating function for a canonical transformation.

In 1843 Jacobi examined a transformation of variables and succeeded in reducing
the number of equations of the three-body problem from 18 to 6. This work
did not employ a canonical transformation; indeed the canonical equations did
not appear in the paper. His contemporaries found that the canonical equations
were very useful for analyzing this problem. Using Jacobi’s idea, they tried to
find an appropriate transformation that made the number of equations smaller or
the transformed equations more easily integrable. Whittaker reported on these
researches in his survey of 1899.

The French mathematician Radau found in 1868 that an orthogonal transfor-
mation, which had the same effect as Jacobi’s transformation, preserved the canon-
ical form of equations. Poincaré noted this fact in 1890 and actually transformed
canonical equations to new ones by using an orthogonal transformation.

A series of discoveries related to Hamiltonian systems in 1890 seemed to have
made Poincaré decide to begin his comprehensive work Methodes Nouvelles de la
Mécanique Céleste by introducing some well known properties of the canonical
equations. In volume 1, published in 1892, he began by demonstrating Hamilton-
Jacobi theorem I, which he named Jacobi’s first theorem, and next introduced
Jacobi’s result on the canonical transformation, which he called Jacobi’s second
theorem. Jacobi had discussed the two theorems separately but Poincaré consid-
ered them together because they were both related to properties of the canonical
equations. Poincaré applied the theory in his investigation of Keplerian motion
and succeeded in obtaining a canonical transformation using a complete solution
of the Hamilton-Jacobi equation.

In 1897, Poincaré arrived at the following new theorem about canonical trans-
formations: If there is a relation between the old variables (xi, yi) and new ones
(x′i, y

′

i) such that Σ(x′idy
′

i−xidyi) is an exact differential, then this transformation
will preserve the canonical form of the original equations. In the third volume
of Methodes Nouvelles, he proved this theorem using a variational principle of
mechanics, known today as Hamilton’s principle.

In his Leçons de la Méchanique Céleste published in 1905, Poincaré presented
a full demonstration of Hamilton-Jacobi theorem II using the above-mentioned
property of 1897. Poincaré referred to this result as Jacobi’s method, although he
himself was the first to formulate and derive it. This is one of the reasons that
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modern textbooks fail to distinguish the two Hamilton-Jacobi theorems. Hamilton-
Jacobi theorem II should really be called the Jacobi-Poincaré theorem. Although
Radau’s orthogonal transformation, Poincaré’s starting point, had originated in
Jacobi’s work, it was Poincaré’s contribution to extend and to refine Radau’s
idea. Jacobi actually demonstrated two theorems that were presented in Poincaré’s
Methodes Nouvelles. But it was Poincaré’s achievement to combine Jacobi’s two
results and show that a complete solution of the Hamilton-Jacobi equation gives
rise to a generating function for a canonical transformation.

The Hamilton-Jacobi equation is a central part of analytical mechanics. The
history of the shift from Hamilton-Jacobi theorem I to II shows how the notion
of canonical transformation came into to analytical mechanics. It is well known
that canonical transformations played an important role in the construction of
quantum mechanics. Poincaré’s formation and proof of the modern Hamilton-
Jacobi theorem was thus a crucial factor in the new analytical mechanics of the
twentieth century.
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On some of Newton’s Methods for finitary quadratures (1664-1666)

Marco Panza

One often argues that for Newton, any function could be easily integrated by series
and the problem of integration could thus be solved generally in such a way. A
study of Newton’s mathematical papers from 1664 to 1666 shows instead that,
from the very beginning, finitary integration was a central problem for him. I
present the reconstruction of some of Newton’s methods.
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Although I have used the word “integration”, this is not accurate; we should
rather say “quadrature” for the period from the summer of 1664 to the fall of 1665,
and “inverse problem of speeds” for a second period, namely the fall of 1666.

Newton’s first method of quadrature stems from his own reinterpretation of the
methods used by Wallis in the first part of the Arithmetica infinitorum. Newton
understood them as concerned with the search for the measure of a surface, rather
than of a ratio between a surface and a polygon, as Wallis had done. This made
him able to draw from them two linear algorithms of quadrature for curves of
equation y = xµ, where µ is an integer other than −1 (one for µ > −1 and the
other for µ < −1).

The second method relies on a theorem proved by Newton by trivially modifying
the prove of another theorem of van Heuraet. It states that if two curves referred
to the same axis are such that their ordinates y and z satisfy the proportion
stgx[y] : y = K : z, provided that K is any constant and stgx[y] is the sub-tangent
of the first curve, and this curve is monotone in the relevant interval, then the

surface
∑ξ

κ [z] delimited by the second curve between the limits x = κ and x = ξ
is equal to the rectangle constructed on K and on the difference |yξ − yκ|. Newton
gives this theorem in a note of summer of 1664 and applies it to square a number
of curves of equation z = K y

stgx[y] (that is, z = K dy
dx

), where y is the ordinate of

a curve expressed by a given polynomial equation F (x, y) = 0.
Newton’s work on the relations between the problems of tangents and quadra-

tures and the corresponding algorithms led him to compose, sometime between
the summer and the fall of 1665, two tables that Whiteside presents as tables
of primitives. Newton’s arguments are however openly geometric and nothing in
his previous notes entitles us to suppose that he had defined, even implicitly, a
mathematical object that one could identify with a primitive. Thus, I prefer to
understand these tables as tables of quadratures.

Another note of the same period marks a turning point in Newton’s mathe-
matical researches, since he introduces there the notions of generative motion of a
geometric magnitude and of punctual speed of this motion: he associates to every
segment x, y, or z a punctual velocity p, q, or r. He also presents an algorithm
of punctual speeds, leading from a polynomial equation F (x, y) = 0 to the corre-
sponding polynomial equation G(x, y, p, q) = 0, of first degree in p and q. This is
of course the same as the algorithm of tangents, but in this note Newton does not
mention it. He rather applies this algorithm to interpret his previous results about
quadratures in a new way so as to prove them without appealing to geometry, as
results purely concerned with the inversion of such an algorithm.

The introduction of the punctual speeds of the generative motion of variables al-
lowed him to elaborate a method of quadrature formally equivalent to our method
of integration by substitution, which he used to compose two new tables of curves
having the same “area”. In the second of these tables, Newton reduced the quad-
rature of a number of geometric curves to the quadrature of curves whose equa-

tion has one of the following forms: y = α
x
, y =

√

α+ βx2, y =
√

α+ βx2,

y =
√

α+ βx+ γx2. He seems thus to consider these equations as elementary
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archetypes of algebraic equations expressing curves that it is not possible to square
with finitary algebraic tools.

Proposition 8 of the October 1666 Tract asks for the determination of an equa-
tion of the form y = f(x), starting from the expression of the corresponding ratio
q
p
. Newton was of course unable to solve this general problem in finitary terms.

He only gave some rules to solve it in certain cases. The extension of these rules,
however, is far larger than before. Moreover, though Newton defines p and q as be-
ing speeds of generation of segments, the problem is as such independent from any
geometric framework. The expression for y can thus be understood as a primitive.

Newton distinguishes three cases: when the expression of q
p

is a sum of mono-

mial with a rational exponent; when this expression is a quotient of polynomials;
and when it is irrational. The first case is trivial. To treat the second, Newton
follows a method equivalent to the method of integration by reduction to partial
fractions. To treat the second he appeals to convenient substitutions, together
with the method of indeterminate coefficients. Once again, he seems to consider
the previous four forms as elementary archetypes of algebraic expressions deprived
of an algebraic primitive and tries to reduce to them a number of other algebraic
expressions.
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Differential equations and linearity in the 19th and early 20th
centuries: a short review

Ivor Grattan-Guinness

I. Since their inception at the birth of the full calculus due to Isaac Newton and
G. W. Leibniz, ‘differential equations’ (Leibniz’s name) have been a major com-
ponent of the theory. Indeed, they grew steadily in importance, especially from
the mid 18th century when partial equations were introduced by Jean d’Alembert
and Leonhard Euler and the range of analysable physical phenomena was greatly
extended, usually in mechanics. By the end of the century a large range of types of
both ordinary and partial equations had been studied, both for their own sake and
especially via inspiration from applications; the calculus had been further enriched
with the emergence of the calculus of variations in a substantial form by the 1770s
thanks to Euler and especially J. L. Lagrange. I consider the place of linearity in
the theory of differential equations during the 19th century alongside the extension
of linear theories in general. Some influential treatises and textbooks of the mid
and late century presented and underlined the importance of linearity.

The work of Joseph Fourier and A.-L. Cauchy inspired much positive reaction
from the 1820s onwards, especially but not only with Fourier analysis, and from
Cauchy also the inauguration of complex-variable analysis; the place of linear dif-
ferential equations was thereby still further enhanced. Another aspect of Fourier’s



The History of Differential Equations, 1670–1950 2759

influence was his pioneering context, namely a breakthrough into mathematical
physics (in his case heat theory): other of its departments, especially electricity
and magnetism and their interactions, and optics, were to prove to be equally
susceptible to linear modelling. Further factors include much study of the special
functions, usually as parts of solutions of linear equations.

Lecture courses on mathematical physics delivered during the century show
the same dominance of linear theories; for example, an important one, Bernhard
Riemann’s, delivered in the 1850 and 1860s and published in posthumous editions
into the 20th century, show a steadily increasing presence of linear theories. By
the 1890s large-scale volumes on linear differential equations, ordinary and partial,
were being produced, and textbooks and treatises on real- and complex-variable
analysis often contained substantial sections upon them.
II. By linear theories in general the defining feature is the central and frequent
place of the form of linear combination (hereafter, ‘LC’):

ax+ by + cz + . . . (= d)(1)

for some interpretation of the letters and of the means of combination; to the
form itself was often associated an equation where the combination “added up”
to d above, another member of the algebra in hand. The series was finite (the
introduction of Lagrange multipliers in the calculus of variations, say) or maybe
infinite (as with Fourier series). Theories in which LC was prominent often also
deployed quadratic forms and equations

Ax2 +Bxy + Cy2 + . . . (= D)(2)

in any number of variables, usually finite; (2) is itself LC relative to its quadratic
and bilinear terms.

Early new such algebras flourishing early in the 19th century included differen-
tial operators (the ‘D’ algebra), linear in form in cases such as Fourier’s wave and
the diffusion equations, where the LC operator

xDx + yDy + . . .(3)

in the independent variable was a key notion involved in handling partial equa-
tions, and also important in the assumption of potentials. Two other important
early topics were functional equations; and substitution theory in connection with
roots of equations, which was later to help create group theory. In the 1840s
onwards new cases included George Boole’s algebra of logic, where his expansion
theorems exhibited LC; Hermann Grassmann’s algebraic study of geometric mag-
nitudes in his Ausdehnungslehre; and W. R. Hamilton’s quaternions, and later
hypercomplex numbers. At that time determinant theory began to be developed,
and gained status in mid-century when Arthur Cayley and J. J. Sylvester intro-
duced the conceptual theory of matrices, in which properties involving LC were
very prominent; for example, in reforming and solving systems of linear equations,
and in defining matrix multiplication. Later cases from the 1870s onwards in-
clude Georg Cantor’s set theory, which in its topological side featured LC-style
decomposition theorems of sets; and Henri Poincaré’s development of algebraic
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topology, where he took a general manifold more or less in Riemann’s sense of the
term and deployed LC to state its decomposition into an integral number (positive
or negative according to a certain definition of orientation) of varieties of lower
dimensions, the right hand side of equation (1) being replaced by an unexplained
‘∼ ε’.

The mathematician who extended LC to the greatest measure was E. H. Moore.
In the mid-1900s he formulated the first version of what he called ‘General analy-
sis’, the name imitating Cantor’s phrase ‘general set theory’ for the general aspect
of that theory. Linearity was central to his concerns: his special cases included
Fourier analysis (where the series themselves exhibit LC) and the extensions to
functional analysis and linear integral equations, and associated theories such as
infinite matrices, all rapidly expanding at that time. In the end Moore published
rather little on his theory, which gained the interest of a few students and other fol-
lowers; but his vision marked the climax of a long tradition of linear algebraisation
of mathematical theories of ever more kinds.
III. Success breeds success, and it is not surprising that the domain of linearity
came to be so vast; over a long period mathematicians became accustomed to
seek some sort of linear theory, especially in connection with differential equations.
The spread of linearity in so many other newer (often algebraic) theories doubtless
reinforced the confidence. We have here a case of habituation (see the abstract by
Dr. Sørensen); Thomas Kuhn’s notion of normal science also fits very nicely. But
with regard to applications, the adhesion to linearity seems surprisingly strong
when everyone knew that the physical world was rarely if ever a linear place. But
the place of non-linear differential equations is surprisingly modest; at times it
arises only in special situations such as cases of singularity of solutions of a linear
equation. The rise of non-linear mathematics, especially concerning differential
equations and their kin, deserves a good study; some of the story lies before 1900,
but I suspect much of it occurred long afterwards.

The following list of references is confined to some major primary sources on
linear differential equations, especially from late in the 19th century; and to several
pertinent historical items.
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Non-Holonomic Constraints from Lagrange via Hertz to Boltzmann

Jesper Lützen

Lagrange showed how one can deal with constraints in mechanics, either by choos-
ing new unconstrained generalized coordinates or by using Lagrange multipliers.
Yet in Newtonian-Laplacian physics all interactions were in principle due to forces,
so constraints were only approximate mathematical tools. In Heinrich Hertz’s
Prinzipien der Mechanik (1894), on the other hand, the role of the concepts of
force and constraint (or rigid connection as he called them) was reversed. Indeed,
Hertz abandoned “force” as a basic concept of mechanics. He had two reasons
for this move: 1. His own famous experiments on electromagnetic waves had con-
vinced him that electromagnetic interactions took place as local actions in a field
(in the ether) as Maxwell had argued, rather than as forces acting at a distance as
Weber had argued and he had hopes that one would be able to explain gravitation
in a similar way as a field action. 2. He had spotted many inconsistencies in the
usual treatises of mechanics, and he believed that the concept of force was mainly
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responsible for these. Therefore he postulated that interactions take place through
rigid connections only, forces being only an epiphenomenon defined a posteriori as
Lagrange multipliers.

Hertz argued that “experience of the most general kind” teaches us that “natura
non facit saltus” a knowledge that he specified in three “continuity” axioms. From
these axioms he deduced that connections must be described by homogeneous
linear first order differential equations of the form

(1)

r
∑

ρ=1

qχρdqρ = 0, χ = 1, 2, 3, ..., k,

where qρ are generalized coordinates of the mechanical system and qχρ are func-
tions of these coordinates. In cases where these differential equations can be
integrated in the form

(2) Fχ(q1, q2, q3, ..., qr) = cχ, χ = 1, 2, 3, ..., k

Hertz called the system Holonomic, in other cases non-holonomic. He argued
that it would be unreasonable to forbid non-holonomic constraints because such
constraints might be active in the ether. As a footnote one can add that a close
inspection of Hertz’s mechanics shows, that non-holonomic constraints are in fact
not allowed in hidden systems as the ether, but Hertz does not seem to have
discovered this problem. As the prime example of a non-holonomic system Hertz
mentioned rolling systems, such as the rolling without slipping of a ball on a plane.

Hertz discovered that the usual integral variational principles such as the princi-
ple of least action or Hamilton’s principle do not hold for non-holonomic systems.
In fact this was one of his main arguments against the so called energeticist pro-
gram of physics which usually took one of these principles as the basic law of
motion.

Hertz’s rejection of the integral variational principles called for an immediate
rescue operation headed by Otto Hölder. In 1896 he published a paper in which
he pointed out that if the variations in the variational principles are chosen in
the right way, the principles remained valid. Instead of assuming, as Hertz had
done, that the varied motion should satisfy the constraints, Hölder assumed that
the variations satisfy the constraints. If the system is non-holonomic the varied
motion will not satisfy the constraints, i.e. it will not be an admissible motion, so
Hölder’s variational principle is not about an ordinary variational problem, but it
gives the correct trajectories.

Hertz was the first to coin the name (non-)holonomic system, but he was not
the first to consider non-holonomic systems or to call attention to the failing of
the variational principles for such systems, nor was Hölder the first to point to a
way out. Indeed there is a whole history of repeated independent mistakes, rejec-
tions and rescues concerning this problem and a connected problem of how to deal
with Lagrange’s equations in connection with non-holonomic constraints: In fact
although one cannot describe a non-holonomic system in terms of freely varying
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generalized coordinates, one could be tempted to use the equations of constraints
to eliminate k of the generalized velocities q̇ρ in Lagrange’s equations. However
it turns out that one does not find the correct trajectory that way. This problem
was noticed by Ferrers (1873) and Routh (1877), and Ferrers set up an alternative
equation that must be used if one eliminates variables in Lagrange’s equations.
Routh also called attention to the problem with the variational principles, as did
Carl Neumann (1888), Hölder (1896) and Vierkandt (1892). Also in France the
problems were discovered by Hadamard (1895), but still an error of this kind com-
mitted by Lindelöff (1895) was repeated by Appell (1896). Korteweg corrected
Appell’s mistake in 1900, without noticing that Appell had himself corrected the
mistake in several places. Finally, when Boltzmann got the wrong result in connec-
tion with a calculation of a rolling system, he published a paper calling attention
to the problems (1902). A somewhat more sophisticated discussion was published
by Hamel two years later.
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19th-century Lunar Theory

Curtis Wilson

The special difficulty of the lunar theory was already evident in the earliest ef-
forts to develop it analytically. Using disparate approaches, Euler, Clairaut, and
d’Alembert all found, as an initial approximation, only about half the motion
of the lunar apse. Newton’s inverse-square law, they concluded, was wrong or
insufficient.

In 1749 Clairaut found that a second-order approximation yielded most of the
remaining apsidal motion. Neither he nor Euler nor d’Alembert, however, despite
enormous labor, could obtain a theory accurate to more than about 3 or 4 arcmin-
utes. Accuracy to 2 arcminutes was needed to give the longitude at sea to within
a degree. Tobias Mayer, using multiple observations to supplement the theoretical
calculation, achieved predictions accurate to 1.25 arcminutes. His results became
the basis of the Nautical Almanac, with later refinements mostly from comparison
with observations

Improvements in the theory by inclusion of further gravitational effects were
made, especially by Laplace, who looked to the day when the pure theory would be
as accurate as the observation-based theory. But he lacked a systematic procedure
for perturbations of second or higher order. In 1825 Plana challenged Laplace’s
calculation of second-order terms in the theory of Saturn. The Berlin Academy
then posed the resolution of this controversy as its prize problem for 1830. P.
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A. Hansen’s prize paper gave the first systematic method for computing higher-
order approximations. Later he applied his new method to the Moon, and his
lunar theory became the basis of the Nautical Almanac from 1862, remaining,
with adjustments, in that role till 1922.

Hansen’s method, based on Lagrangian formulas, was in principle rigorous; but
was its execution strictly correct? From the start Hansen had introduced numerical
values for the elements, to avoid getting bogged down in slowly converging series.
As a result his steps became untraceable. From the 1870s, Newcomb was finding
discrepancies between current observations and the Hansenian tables. How to
introduce corrections to the theory in an honest way? It could only be done by
starting all over again. Preferable would be a literal or algebraic theory, spelling
out each coefficient symbolically.

Such a theory was Delaunay’s, which started from canonical variables giving
the elliptical elements. The procedure was systematic. G.W. Hill, when he en-
countered this theory in the 1870s, was ecstatic. No better set of elements, he
said, could be chosen.

But then he discovered that Delaunay, in 20 years of labor, had not managed
to carry the calculations of the coefficients of his sinusoidal terms far enough to
match current observational precision. The series giving the coefficients converged
too slowly. Delaunay had resorted to estimates of terms not calculated. This was
exact science? Hill threw up his hands. A new beginning was required.

Hill’s new beginning was the numerical calculation of a particular solution of
the three-body problem; the “Variation Orbit,” as Hill called it. All its features
derived from the ratio, m, of the Sun’s mean motion to the Moon’s mean motion.
There, in the algebraic role of m, Hill realized, was the gremlin that had made the
convergence of Delaunay’s series so slow. He obtained the numerical coefficients
specifying the Variation Orbit to 15 decimal places. The ratio m was the most
exactly known parameter of the Moon’s motion; eccentricity, inclination, and par-
allax being much less exactly known. But once the Variation Orbit was known,
the last-named parameters could be introduced in algebraic form, and determined
numerically by a least-squares fit with observations.

In addition to computing the Variation Orbit, Hill asked what apsidal motion
would emerge if an unspecified eccentricity was introduced, small enough that its
square could be neglected. The problem involved an infinite determinant which
Hill managed to resolve by a series of adroit moves. An analogous but simpler
infinite determinant had been solved a little earlier by John Couch Adams in
obtaining the motion of the lunar node. The motions thus calculated proved to
be the principal parts of the motions of the apse and node, close in value to the
observational values.

The completion of Hill’s theory was carried out by Ernest W. Brown during
the years 1891–1907. Brown found that he could obtain the remaining parts of
the motions of the apse and node by the ordinary process of successive approxi-
mations. But starting from Adams’ form for the differential equations, and using
Poincaré’s necessary and sufficient conditions for the convergence of an infinite
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determinant, he also satisfied himself that Hill’s determinant remained convergent
when eccentricity, inclination, and parallax were introduced - an indication that
the theory in its elaborated form was still sound.

Rayleigh’s Theory of Sound and the rise of modern acoustics

Ja Hyon Ku

1. Acoustical research in the first half of the 19th century. ‘Acoustics’ was an ex-
perimental investigative enterprise in the early 19th century. The group of so-called
‘acousticians’ included Chladni, Young, Savart, Colladon, Faraday, Wheatstone,
Lissajous, Tyndall, Koenig, A. Mayer, etc. Their experimental works were sum-
marized in Tyndall’s On Sound (1867). In addition to ‘acousticians’, there were
researchers who did research theoretically on the making and transmitting of sound
in the mathematical manner. This group included D’Alembert, Euler, Lagrange,
Poisson, Sophie Germain, G. Ohm, Kirchhoff, Riemann, Donkin, S. Earnshaw,
etc. For them analysis was the central method of dealing with problems associ-
ated with sound. Their investigations were not closely connected to the empirical
and experimental findings gathered by the ‘acousticians’.
2. Helmholtz’s mathematical dash in ‘acoustics’. In the middle of the century,
Hermann von Helmhlotz transformed the character of ‘acoustics’. With Helmholtz
experiments met mathematics. As a physiologist, Helmholtz had begun to concern
himself with acoustical problems since the 1850s and the essences of his research
results were collected in his book, Tonempfindungen, or Sensations of Tone (1862).
Helmholtz’s reductionist view on the physiological world enabled him to under-
take physiological problems in a physical and mathematical fashion. He explained
sensation of tones on the base of Fourier’s analysis. His resonators helped him
to analyze sounds into simple harmonic tones. Nevertheless, Tonempfindugen rel-
egated mathematical treatments to appendices, for he knew that physiologists,
who were supposed to be its primary readers, were not accustomed to the mathe-
matical approach. Regardless of physiologists, ‘acousticians’ still concentrated on
experimental investigations and presented mainly qualitative explanations of them
without concerning themselves with mathematical description.
3. Characteristics of Rayleigh’s Theory of Sound (TS).. Rayleigh (1842-1919), who
started his acoustical research by examining Helmholtz’s resonators, continued ex-
perimental explorations as well as mathematical analyses on vibration with the
same mathematical competence that had made him senior wrangler in the Mathe-
matical Tripos at Cambridge University. As a result, he published a monumental
treatise in the history of physics, The Theory of Sound, in 1877-1878.

The primary purpose of TS was to gather and arrange mathematics related to
sound. TS was an unprecedented mathematics-oriented acoustical text, includ-
ing plenty of experimental researches on sound so that Rayleigh’s mathematical
analyses were put on firm empirical foundations.

In chapter 4, Rayleigh deduced Lagrange’s equation by generalized coordinates
and introduced the dissipation function F . In chapter 5, he presented a general
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reciprocal theorem of his own. Chapter 14 was remarkably original in involving
Rayleigh’s own experiments on sound transmission and in chapter 15 we find his
own theory on secondary waves. Chapter 16 was distinguished by his own the-
ory of resonators and chapter 17 included his original discussion on sound waves
propagating in the air.

In TS, Rayleigh tried to connect mathematical analyses and experimental find-
ings. Theoretical analyses were supported or justified by the experimental findings.
In the other cases, mathematical results were supposed to be guides or touchstones
for future experiments. In this manner, Rayleigh extensively employed methods
of approximation, especially successive approximation. And TS featured investi-
gations of general theories of vibrations and waves, for example, general theories
of light, electrical vibrations, tides, water waves, perturbations of celestial bodies,
etc. were widely pursued. The differential equations that appeared frequently
throughout (e.g. fundamental wave equation, Laplace’s equation, Bessel’s equa-
tion, etc.) connected corresponding phenomena with each other.
4. Conclusions: The rise of modern acoustics. After the publication of TS, Ray-
leigh’s acoustical research maintained its productivity. In order to maximize the
practicability of his mathematical discussion, Rayleigh helped a committee of the
BAAS to make mathematical tables of various functions. In the last 20 years of the
nineteenth century, Rayleigh’s influence on acoustical research was tremendous,
and TS created and spread the impression that acoustics was a unitary research
area including both experimental and mathematical investigations. How was this
possible?

First of all, the information included in TS was remarkably varied and abun-
dant. Acousticians found the subjects of their research in the book and could
contribute to the development of the area by adding new elements to Rayleigh’s
ideas. They also found invaluable information and mathematical materials which
could not be found in other acoustical writings.

In addition, the mathematical methods introduced in TS became guides for
theoretical research in the late 19th and early 20th centuries. Many acoustical
researchers took TS as the starting point of their investigations. Thus both ex-
perimentalists and mathematicians came to study the book and TS also provided
a gathering place for acoustical researchers. The experimental and mathemati-
cal traditions were thus connected and became complimentary in TS. Afterwards
acoustical researchers followed the style of research manifested in TS, investigating
and writing textbooks in its style. They became interested in both sides, even if
some only did research in one. All acoustical researchers came to recognize that
they were working in one field, which we can call ‘modern acoustics.’
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Potential theoretical investigations by Carl Neumann and the role of
mathematical physics

Karl-Heinz Schlote

Carl Neumann (1832–1925) was a prominent mathematical physicist during the
last third of the nineteenth and the first decades of the twentieth century. He
contributed to this branch by his articles about potential theory, electrodynamics,
analytical mechanics, and hydrodynamics. As a disciple of the famous Königsberg
physical-mathematical seminar Neumann became familar with its innovative ideas
on the interaction of mathematics and physics. Henceforth, problems in mathe-
matical physics became a central thread in his scientific work. He regarded the
application of mathematics to physics, astronomy, and related disciplines as an in-
dispensable part of mathematical research and as a fertile source of new knowledge
in mathematics and physics.

Just like many of his contemporaries Neumann prefered potential theory as an
appropriate method for solving both pure mathematical problems and problems
which were connected to physical applications. He worked hard to improve the
mathematical methods used in potential theory. As early as 1861, he solved the
two-dimensional boundary value problem or the so called Dirichlet problem in the
plane by introducing a logarithmic potential (a term he coined). In the following
years he treated some three-dimensional problems of potential theory. All these
problems could be connected with physical questions, for instance in the theory of
heat or in electrostatics.

Neumann probably had no doubts about the correctness of the Dirichlet prin-
ciple at that time. There are neither any critical remarks in his publication nor
did he avoid the use of this principle, like in an article which was connected with
his important book about abelian integrals. Five years later, in 1870, Neumann
spoke of the Dirichlet principle, which was rightly declared as questionable, and
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presented his method of arithmetical means replacing it. However, this was only
a sketch of the new method and it was not until 1877 that Neumann described
his method in detail in his book “Untersuchungen über das Logarithmische und
Newtonsche Potential” (Investigations about the logarithmic and Newtonian po-
tential). In the meantime Neumann dealt with problems of electrodynamics. He
looked for a solution of the boundary value problem by a double layer potential
and constructed a series of a function by an iteration process. Finally he was able
to prove that this series converged to a function, which solved the problem. But it
has to be remarked that Neumann’s method depended heavily on the geometrical
properties of the boundary and his proof worked only for convex surfaces.

Neumann also applied his method to some problems of electrostatics and elec-
trodynamics. It is worth mentioning this because he gave an exact description and
solution of the second boundary value problem in this context, probably for the
first time.

The theory of logarithmic and Newtonian potential was one of Neumann’s most
important achievements. It contained not only the solution of the first but also
of the second boundary value problem and created a solid base for the treatment
of many physical questions by means of potential theory. Therefore it was a im-
portant contribution to his building of mathematical physics. The existence of a
potential (potential function) had been proven up to now often by physical argu-
ments only, but not mathematically. Beside his investigations in physics Neumann
worked on his method of arithmetical means and related topics over and over again.
He gave a new systematic presentation of the theory and studied especially the
properties of the boundary values. One of the problems tackled by him was the
question of the properties of the first and second derivatives of a potential function
when the function approaches the boundary.

Neumann made important contributions to this topic, but it was not a great
success. A turning point in the development was marked only by Poincaré in
1896. He enlarged the applicability of the method of arithmetical means to simple
connected domains. He also introduced the so-called Neumann’s series, which
never occured in Neumann’s own publications. Poincaré’s results caused a new
impetus for dealing with Neumann’s method and by 1906 Neumann could give
an new condensed and systematic presentation. This was the starting point of a
third phase of Neumann’s studies on potential theory. Most of it can be seen as
a continuation of former investigations. The boundary value problem with mixed
boundary values and the problem for a circular arc are maybe the most interesting
ones. But Neumann stuck to concrete analytical methods. Although he pointed
out the possibilities of generalizing his ideas and methods, there are not any steps
towards abstract investigations like those of Fredholm and Hilbert. At the same
time there is not any hint in Neumann’s work that he took note of Fredholm’s or
Hilbert’s important works at the beginning of the 20th century.

Appreciating Neumann’s contribution to potential theory one can state that he
developed a systematical representation of the theory by using very different ana-
lytical methods and his method of arithmetical means was a very important step
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forward in the analysis of the 1870s and 1880s. Neumann also derived interesting
new results about the development of a periodic function into a Fourier-series and
about the convergence of such series. Above all he had a remarkable impact on the
application of potential theoretical methods to physical problems and the creation
of a mathematically-determined mathematical physics. His strong mathematical-
orientated view on theoretical physics and its application to electrodynamics fos-
tered a clear distiction between both disciplines. Together with his colleagues von
der Mühll and Mayer, Neumann made mathematical physics a major topic of both
research and lectures at Leipzig university in the last decades of the nineteenth
century. They established a tradition which is still alive in Leipzig today.

Green’s functions and integral equations: some Italian contributions
at the beginning of the 20th century

Rossana Tazzioli

Many questions in mathematical physics lead to the so-called Dirichlet problem:
to find a harmonic function U in a closed region D, and with given continuous
values w on its boundary such that:

∆2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0 in D; U = w on ∂D.

The existence of the solution is based on the Dirichlet principle, which was put
in doubt during the second half of the 19th century. Only in 1901, Hilbert proved
the validity of Dirichlet’s principle if D was sufficiently regular and the given
function on the boundary of D was piecewise analytical. Therefore, many 19th-
century mathematicians used direct methods in order to overcome the difficulties
connected with the Dirichlet principle. One of these methods had already been
developed by Green in 1828 by employing the so-called Green function. Green
deduced the following formula valid for a harmonic function U in a closed and
regular region D (with boundary σ):

U(P ) =
1

4π

∫

σ

U(Q)
∂

∂ν

(

1

r
−G(P,Q)

)

dσ

where P is a point inside D, and Q is a point on σ, ν is the normal to σ drawn
outwards, r is the distance between P and Q, and G is a function to be determined,
harmonic in the regionD and equal to 1

r
on the boundary. The function G is called

the Green function. For two dimensions, log 1
r

has to be considered instead of 1
r
.

Helmholtz, Riemann, Lipschitz, Carl and Franz Neumann, and Betti derived
functions similar to Green’s function in order to solve problems in different fields of
mathematical physics. The method of Green’s function (or functions similar to it)
is useful, since it overcomes the difficulties arising from the Dirichlet problem and
finds the solution of the problem directly. However, Green’s method is generally
hard to follow — Green’s function is indeed difficult to find from a mathematical
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point of view. In fact, it was only possible to find the Green function for particular
regions — when D is a semi-plane, a circle, a sphere, or a cube.

Many mathematicians of the 19th century extended the usual Dirichlet problem
to more general cases, by generalizing the definition of harmonic function. A
function U of the variables x1, x2, . . . , xm, which is C2 in a regular region D is
polyharmonic or harmonic of n degree if:

∆2nU =

(

∂2U

∂x2
1

+
∂2U

∂x2
2

+ · · · +
∂2U

∂x2
m

)n

= 0.

If n = 1, U is a usual harmonic function; if n = 2, U is called a harmonic
function of the second degree or biharmonic function, and so on. In the case
where m = 2, biharmonic functions had already been defined by Emile Mathieu in
1869, in order to solve questions related to the theory of elasticity — in particular,
questions about elastic equilibrium and vibrations of elastic plates.

In Italy, the theory of biharmonic and polyharmonic functions was largely stud-
ied in the beginning of the 20th century. For a biharmonic function U in a three-
dimensional region D with boundary σ and external normal ν, the following for-
mula is valid:

8πU(P ) =

∫

σ

(

U
∂∆2(r −G2)

∂ν
− ∆2(r −G2)

∂U

∂ν

)

dσ,

where the function G2 (called Green’s function of the second kind) is biharmonic
in the region D and satisfies the following conditions: G2 = r, ∂G2

∂ν
= ∂r

∂ν
on the

boundary. Thanks to this formula, U can be found in each point P of D, if the
values of U and ∂U

∂ν
are given on the boundary σ. Again, in a two-dimensional

region, log 1
r

has to be considered instead of 1
r
.

The generalized Dirichlet problem for polyharmonic functions is stated in a sim-
ilar way — the function U is polyharmonic in a region D and its values together

with the values of its n−1 derivatives ∂U
∂ν
, ∂2U

∂ν2 , . . . ,
∂n−1U
∂νn−1 are given. By generaliz-

ing Green’s theorems, the n-th Green’s function Gn in a three-dimensional region
D is easily introduced — it is a C2n(D) function such that ∆2nGn = 0 in D, and
satisfying the following boundary conditions on σ with normal ν:

Gn = r2n−3,
∂αGn

∂να
=
∂αr2n−3

∂να
for α = 1, 2, 3, . . . , n− 1.

It is mathematically difficult to deduce the n-th Green function except for
particular cases, when the region D has very simple shapes.

I illustrate some different approaches to the study of polyharmonic functions
developed by Italian mathematicians at the beginning of the 20th century.

My aim is to show that:

(1) Many Italian mathematicians studied the generalized Dirichlet problem
(for biharmonic and polyharmonic functions) in order to solve special ques-
tions in the theory of elasticity;

(2) Most of them used the suitable Green function in order to solve the Dirich-
let problem for polyharmonic functions;
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(3) In the period around 1905 — just after the publication of the papers by
Fredholm, Hilbert, and E. Schmidt on the theory of integral equations —
many Italian mathematicians changed their approach and started studying
the equations of mathematical physics by using Fredholm’s new theory;

(4) Levi-Civita believed that Fredholm’s approach was fruitful and easy to
apply to mathematical physics, and encouraged mathematicians to use
the new theory, as his private correspondence shows.
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G. Peano and M. Gramegna on ordinary differential equations

Erika Luciano

In this preliminary research I will assess the historical and mathematical value
of Peano and Gramegna’s studies on linear differential equations, focusing on the
symbolic and vectorial approach, which I believe make these works interesting.

Giuseppe Peano (1858-1932) taught in the University of Turin for over fifty
years, creating a famous School of mathematicians, teachers and engineers. He
became Professor of Calcolo Infinitesimale in 1890 and he was appointed to the
course of Analisi Superiore in the academic years 1908-1910. His very large produc-
tion includes over three hundred writings, dealing with analysis, geometry, logic,
foundational studies, history of mathematics, actuarial mathematics, glottology
and linguistics.

Maria Paola Gramegna (1887-1915) was a student of Peano in his courses (Cal-
colo Infinitesimale and Analisi Superiore) and, under his supervision, she wrote
the note Serie di equazioni differenziali lineari ed equazioni integro-differenziali,
submitted by Peano at the Academy of Sciences in Turin, in the session of the 13
March 1910. This article would be discussed by Gramegna, with the same title,
as her graduation thesis in mathematics, on the 7 July of the same year. In 1911
Gramegna became a teacher in Avezzano, holding a secondary school appointment
at the Royal Normal School. Four years later, on the 13 January 1915, she died,
a victim of the earthquake which destroyed that town.

The study of the articles by Peano and by Gramegna on systems of ordinary lin-
ear differential equations presents interesting implications. In the winter of 1887,
Peano was able to deal with these systems for the first time in a rigorous way, and
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he submitted an article entitled Integrazione per serie delle equazioni differenziali
lineari to the Academy of Sciences of Turin. A slightly modified version of this
note, in French, would be published the following year in the Mathematische An-
nalen. Here he applied the method of “successive approximations” or “successive
integrations” — as Peano preferred to call it — based on the theory of linear
substitutions.

The purpose of Peano’s article is to prove the following theorem: let there be
n homogeneous linear differential equations in n functions x1, x2, . . . , xn of the
variable t, in which the coefficients αij are functions of t, continuous on a closed
and bounded interval [p, q]:

dx1

dt
= α11x1 + α12x2 + · · · + α1nxn,

dx2

dt
= α21x1 + α22x2 + · · · + α2nxn,

. . .

dxn

dt
= αn1x1 + αn2x2 + · · · + αnnxn.

Substitute in the second members of the equations, n arbitrary constants
a1, a2, . . . , an, in place of x1, x2, . . . , xn, and integrate from t0 to t, where t0, t ∈
(p, q). We obtain n functions of t, which will be denoted by a′1, a

′

2, . . . , a
′

n. Now sub-
stitute in the second members of the proposed differential equations, a′1, a

′

2, . . . , a
′

n

in place of x1, x2, . . . , xn. With the same treatment we obtain n new functions of
t, which will be denoted by a′′1 , a

′′

2 , . . . , a
′′

n. Repeating this process, we obtain

a1 + a′1 + a′′1 + . . . ,

a2 + a′2 + a′′2 + . . . ,

. . .

an + a′n + a′′n + . . . .

The series are convergent throughout the interval (p, q). Their sums, which we shall
denote by x1, x2, . . . , xn are functions of t and satisfy the given system. Moreover,
for t = t0, they assume the arbitrarily chosen values a1, a2, . . . , an.

In order to prove the preceding theorem, Peano introduces vectorial and matrix
notations and some sketches of functional analysis on linear operators.

In 1910, Maria Gramegna again took up the method of successive integra-
tions, in order to generalize the previous theorem to systems of infinite differential
equations and to integro-differential equations. The original results exposed by
Gramegna in the above-mentioned note Serie di equazioni differenziali lineari ed
equazioni integro-differenziali, are an important example of the modern use of
matrix notation, which will be central in the development of functional analysis.
Moreover, the widespread application of Peano’s symbolic language gives her work
a modern slant. Gramegna proves the following extension of Peano’s theorem: we
consider an infinite system of differential linear equations with an infinite number
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of unknowns:
dx1

dt
= u11x1 + u12x2 + · · · + u1nxn + . . .

dx2

dt
= u21x1 + u22x2 + · · · + u2nxn + . . .

. . .

where the uij are constant with respect to time. Let us denote by A the substitu-
tion represented by the matrix of the u’s. Let x be the sequence (x1, x2, . . . ) and
x0 its initial value. We may write the given differential equations as Dx = Ax,
and the integral is given by xt = etAx0, where the substitution etA has this repre-
sentation:

1 + tA+
t2A2

2!
+
t3A3

3!
+ . . . .

In the last section of the article Gramegna applies the new analytic tools she
has introduced (the concept of mole, the exponential of a substitution, etc.) in
order to solve integro-differential equations, already studied by I. Fredholm, V.
Volterra and E. H. Moore.

Unfortunately, the note by Gramegna did not have a large circulation. This was
probably due to the difficulty, for many mathematicians, of understanding research
in advanced analysis presented with Peano’s logic symbolism. Besides, this is the
last work in Analisi Superiore realised under the supervision of Peano, who was
dismissed from the course in 1910, some days after the submission of Gramegna’s
article to the Academy, thereby losing the possibility of training other researchers.

This historical study will continue with the aim of investigating the possible
influences of Gramegna’s article on research in functional analysis in Italy and
abroad.
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A shift in the definition of stability: the Poincaré recurrence theorem

Anne Robadey

In 1888, Poincaré submitted a paper to the competition honoring the 60th birth-
day of King Oscar ii of Sweden and Norway (see [1] and [2]). In that paper,
stability was an important issue. Poincaré thought he had “rigorously proven”
the stability in the restricted three-body problem. By that he meant that he had
proven the existence of many tori, some of them very thin, which contain for all
times trajectories with initial point in them. Unfortunately, that result was soon
discovered to be incorrect.

In 1889, by the time Poincaré became aware of the error, the paper — which
had won the prize — was printed but not yet published [4]. He worked swiftly
to write a corrected paper, which was finally published in Acta mathematica in
1890 [5]. It was soon followed by two summaries in early 1891: one in the Bulletin
astronomique [7], presenting for the astronomers the results contained in the 1890
paper, and the second in the Revue générale des sciences [6], for an even larger
public.

The three stages of that work, 1889, 1890 and 1891, show a very interesting
evolution of the notion of stability Poincaré stressed, from the above mentioned
one to that given by the so-called recurrence theorem (not Poincaré’s word).

The recurrence theorem states that under suitable conditions, verified by the
restricted three-body problem, there exists in each region, however small, trajec-
tories coming back to that region an infinite number of times. In the 1889 paper,
it occupied a second-rank place. Indeed, it was not mentioned at all in the intro-
duction. Moreover, the recurrence property was presented as a “second sense” of
stability, and the recurrence theorem for the restricted three-body problem was
shown to result from the stability “in the first sense”. Thus it was quite overlayed
by the above mentioned result of stability “in the first sense”.

By 1890, in contrast, with Poincaré no longer able to prove stability “in the
first sense”, the recurrence theorem came to the fore. At the same time, it was
reinforced with a corollary, asserting that the non-recurrent trajectories are ex-
ceptional, that is, their probability is zero. The corresponding notion of stability
was now called stability “à la Poisson” instead of stability “in the second sense”.
And the recurrence theorem, shown to hold for the restricted three-body prob-
lem, replaced the foremost “rigourous proof of stability” in the discussion where
Poincaré emphasized the improvement of his memoir in comparison to Hill and
Bohlin’s ones.

That evolution is confirmed by the two summaries of 1891. There, the recur-
rence theorem, previously included in the part concerning invariant integrals as
an application, was now under the title “stability”. Moreover, the corollary added
in 1890 was strengthened even further: Poincaré stated that non-recurrent trajec-
tories are of probability zero not only when computed with a uniform probability
distribution, but also with any continuous probability distribution. In addition,
the evocation of the work of Poisson and Lagrange on stability in the solar system,
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contained in the introduction to the 1889 paper, just before the announcement of
the stability result, and which had disappeared in 1890, reappeared in one of the
summaries as an introduction to the recurrence theorem.

Thus, the recurrence theorem becomes, quite implicitly in 1890, and very openly
in 1891, the result of stability in Poincaré’s work on the three-body problem. Cor-
relatedly, Poincaré improved his presentation of that result in two ways. Firstly by
mathematically strengthening it with the corollary. And secondly by an historical
legitimization, mainly by showing the shared properties of his notion of stability
with characteristics of the stability results proven by Poisson and Lagrange.
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Differential Equations as a Leitmotiv for Sophus Lie

David E. Rowe

After reviewing recent historiography and the highlights of Lie’s unusually dra-
matic career, this talk concentrated on some key stages in Lie’s early work that
underscore the centrality of differential equations for his vision of mathematics.
A great deal more about this topic can be found in the recent studies of Thomas
Hawkins (see bibliography). Lie met Klein in Berlin in the winter semester of 1869
when they attended Kummer’s seminar. There Klein presented some of Lie’s ear-
liest results on so-called tetrahedral line complexes. These are special 3-parameter
families of lines in projective 3-space with the property that they meet the four
coordinate planes in a fixed cross-ratio.

Initially, Lie and Klein studied the PDEs associated with these tetrahedral com-
plexes. Geometrically, this meant studying surfaces tangential to the infinitesimal
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cones determined by a tetrahedral complex, which leads to a first-order PDE of
the form:

f(x, y, z, p, q) = 0, p =
∂z

∂x
, q =

∂z

∂y
.

Lie used a special transformation to map this DEQ to a new one

f = 0 → F (X,Y, Z, P,Q) = 0

which he showed was left invariant by the 3-parameter group of translations in the
space (X,Y, Z). This enabled him to reduce the equation to one of the form:

F (P,Q) = 0

which could be integrated directly.
This result soon led Lie to the following insights:

(1) PDEs of the form f(x, y, z, p, q) = 0 that admit a commutative 3-parameter
group can be reduced to the form F (P,Q) = 0.

(2) PDEs that admit a commutative 2-parameter group can be reduced to
F (Z, P,Q) = 0.

(3) PDEs that admit a 1-parameter group can be reduced to F (X,Y, P,Q) =
0.

Lie noticed that the transformations needed to carry out the above reductions
were in all cases contact transformations. Earlier he had studied these intensively,
in particular in connection with his line-to-sphere transformation, which maps the
principle tangent curves of one surface onto the lines of curvature of a second
surface. Thus, a large part of Lie’s inspiration for his early work on PDEs came
from realizing that contact transformations can be used to link two spaces, thereby
revealing a deep interplay between the differential geometry of various surfaces in
the two spaces under consideration. His uncanny ability to visualize such pos-
sibilities made a profound impression on Klein, who would later often describe
Lie’s audacious thinking in his Göttingen seminars to illustrate what he meant by
anschauliches Denken.

Lie’s work on ODEs began somewhat later, around 1873. According to Friedrich
Engel, however, Lie had already realized in 1869 that an ordinary first-order DEQ

α(x, y) dy −B(x, y) dx = 0

can be reduced to quadratures if one can find a one-parameter group that leaves
the DEQ invariant. By 1872 Lie saw that it was enough to have an infinitesimal
transformation that generated the 1-parameter group. Thus if the DEQ X dy −
Y dx = 0 admits a known infinitesimal transformation T:

ζ
∂f

∂x
= η

∂f

∂y

in which, however, the individual integral curves do not remain invariant, then
the DEQ has an integrating factor. As was typical for Lie, he gave a geometrical
interpretation of these integrating factors in terms of the area of the rectangle
spanned by the pairs of vectors tangent to the integral curves and the normal
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vector linking each integral curve to its image curve under T . This interpretation
enabled him to give a general explanation for what it means for an ODE to admit
an integrating factor as well as giving a criterion for the existence of the same.

In the case of PDEs, Lie had no trouble extending his geometrical notions of
surface elements, contact transformations, etc. to n-dimensional space in order to
deal with PDEs of the form:

f(z, x1, x2, . . . , xn, p1, p2, . . . , pn) = 0, pi =
∂z

∂xi

.

Thus, in 1872 he defined a general contact transformation

T : (z, x, p) → (Z,X, P )

analytically: T is a contact transformation if the condition

dz − (p1 dx1 + p2 dx2 + · · · + pn dxn) = 0

remains invariant under T . He showed further that two first-order PDEs can be
transformed to another by means of a contact transformation.

Geometrical ideas continued to motivate Lie’s whole approach to PDEs when
he took up this topic in earnest in 1873. In his “Nova methodus” Jacobi had
introduced the bracket operator

(φ, ψ) =
∑

[

∂φ

∂pi

∂ψ

∂xi

−
∂φ

∂xi

∂ψ

∂pi

]

within his theory of PDEs. This was a crucial tool for reducing a non-linear PDE
to solving a system of linear PDEs. Lie interpreted the bracket operator geomet-
rically, borrowing from Klein’s notion of line complexes that lie in involution. He
thus defined two functions

φ(x, p), ψ(x, p), x = x1, x2, . . . , xn, p = p1, p2, . . . , pn

to be in involution if (φ, ψ) = 0. Lie then showed that a system of m PDEs

fi(z, x1, x2, . . . , xn, p1, p2, . . . , pn) = 0, i = 1, 2, . . . ,m

satisfying (fi, fj) = 0 remains in involution after the application of a contact
transformation. Such considerations led Lie to investigate the invariant theory of
the group of all contact transformations.

A clear idea of the centrality of differential equations and differential invariants
for Lie’s mature vision can be found in the preface to the third volume of his The-
orie der Transformationsgruppen, which appeared in 1893. Therein he described
a forthcoming work on differential invariants and continuous groups with applica-
tions to differential equations, a study he planned to publish with the assistance
of Engel, but which never appeared. He also noted plans to resurrect his early
work on the geometry of contact transformations with the help of Georg Scheffers,
a partially realized project that led to Geometrie der Berührungstransformations-
gruppen (1896). As Lie’s preface makes clear, both works were partly motivated by
an effort to create a legacy independent of the one that had begun to emerge with
the republication of Klein’s “Erlangen Program” in the early 1890s (see Hawkins’
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article from 1984). In the 1893 preface, Lie dismisses Klein’s notion of group in-
variants as essentially irrelevant to his own research program. There he writes:
“one finds hardly a trace of the all important concept of differential invariant in
Klein’s Program. Klein took no part in creating these concepts, which first make
it possible to found a general theory of invariants, and it was only from me that he
learned that every group defined by differential equations determines differential
invariants that can be found by integration of complete systems.”

At the same time, Lie tried to link his work to that of leading figures within
the French community beginning with Galois. Thus, he highlights the importance
of his relationship with Camille Jordan; he thanks Darboux for promoting his
geometrical work, Picard, for being the first to recognize the importance of Lie’s
theory for analysis, and Jules Tannery for sending a number of talented students

from the École Normale Supérieure to study with him in Leipzig. He also expresses
his gratitude to Poincaré for his interest in numerous applications of group the-
ory. Lie emphasizes that he was “especially grateful that he [Poincaré] and later
Picard stood with me in my fight over the foundations of geometry, whereas my
opponents tried to ignore my works on this topic.” Not surprisingly, Lie’s break
with Klein caused a major scandal within the German mathematical community.
Two differing interpretations of this can be found in the biography by Stubhaug
and in my earlier article in NTM.
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Beyond the Gravitational Field Equations of General Relativity:
Einstein’s Search for World Equations of a Unified Theory and the

Example of Distant Parallelism Geometry

Tilman Sauer

Einstein’s gravitational field equations of general relativity were published in late
November 1915 after eight years of intense research. Historically and systemat-
ically the Einstein equations represent a generalization of the Poisson equation
of Newtonian mechanics, and Einstein published a number of intermediate field
equations of gravitation along his path toward general relativity between 1912 and
1915 (see [1], [2] and references cited therein).

Surprisingly, Einstein soon began to consider and investigate modifications of
the field equations, e.g. by adding the cosmological constant in 1917. While this
modification, of course, embraces the original Einstein equations as a special case,
it was not initially conceived of as a generalization but rather as an abandonment
of the original gravitational field equations. In 1919, Einstein tentatively added
the trace term with a factor of 1/4 instead of 1/2 in an attempt to account for the
structure of matter. Here the idea was that gravitational forces might account for
the stability of the electron. The question therefore arises as to the status of the
Einstein equations in Einstein’s own research program.

A closer look at his later publications then shows that Einstein investigated
and published a considerable number of different field equations combining both
the gravitational and electromagnetic fields in attempts to arrive at a unified
theory. None of them, however, allowed him to satisfy the demands of his unified
field theory program [3]. These demands included: a) the existence of a unified
representation of the gravitational and electromagnetic fields that would be not
only purely formal, i.e. that would imply some kind of mixing of the two fields
but still be compatible with our empirical knowledge, b) the explanation of the
existence of two elementary particles, the electron and the proton, and specifically,
of the existence of a fundamental electric charge and of the mass asymmetry of
the electron and the proton, and c) the possibility of accounting for the features
of quantum theory on a foundational level by means of a classical field theory.

Although Einstein did not use the term himself, we believe that one may char-
acterize his program as a search for “world equations” in the sense that the phrase
was used by Hilbert in a series of lectures delivered in Hamburg in 1923 [4]. “World
equations” would be differential equations for the respective variables represent-
ing the fields and they would, in principle, suffice to deduce the whole edifice of
physics without the necessity of further independent laws or assumptions.

As an example of the dominance of the problem of finding field equations in Ein-
stein’s unified field theory program, we discuss his approach of distant or absolute
parallelism [5, sec. 6.4], [6]. This approach was pursued by Einstein in a number
of papers that were published between summer 1928 and spring 1931. The crucial
new concept, for Einstein, that initiated the approach was the introduction of the
tetrad field, i.e. a field of orthonormal bases of the tangent spaces at each point of



2780 Oberwolfach Report 51/2004

the four-dimensional manifold. The tetrads were introduced to allow the distant
comparison of the direction of tangent vectors at different points of the manifold,
hence the name distant parallelism. From the point of view of a unified theory,
the specification of the four tetrad vectors at each point involves the specification
of sixteen components (in four-dimensional spacetime) instead of only ten for the
symmetric metric tensor. The idea then was to exploit the additional degrees of
freedom to accommodate the electromagnetic field. Mathematically, the tetrad
field easily allows the conceptualization of more general linear affine connections,
in particular, non-symmetric connections of vanishing curvature but non-vanishing
torsion.

The mathematics of generalized Riemannian spaces with non-vanishing torsion
had been developed before in the early 1920’s by mathematicians like Elie Cartan,
Roland Weitzenböck, Luther Pfahler Eisenhart, and others [5] but Einstein was
initially unaware of these works. For him the concept of a tetrad field opened up
new and as yet unexplored ways to represent the gravitational and electromagnetic
fields in terms of the components of the tetrads.

Einstein quickly focused on the problem of finding field equations for the compo-
nents of the tetrads, which he conceived of as the fundamental dynamical variables.
Since the difference between distant parallelism geometry and simple Euclidean
geometry was characterizd by non-vanishing torsion, he first tried to derive field
equations from a variational principle with a generally covariant Lagrangian that
involved the torsion tensor quadratically. Einstein soon learned from Weitzenböck
that there are, in fact, three invariants quadratic in the torsion and found that
his initial approach could not determine field equations without ambiguity. When
he also found that he could not fully establish compatibility with Maxwell’s equa-
tions in linear approximation, he tried to derive field equations along a different
strategy.

Starting from identities for the torsion tensor that would imply validity of the
Maxwell equations from the beginning, he motivated a set of overdetermined field
equations that were suggested from the form of those identities. But when it
was pointed out to him that he had only assumed and not, in fact, shown the
compatibility of the overdetermined set of equations, he returned to the strategy
of deriving field equations from a variational principle. But again he came to
realize that this approach would not produce acceptable field equations and finally
reverted to the strategy of motivating field equations from a set of identities that
would also allow him to establish the compatibility of the field equations.

All in all, Einstein published some half dozen field equations in the first year
of investigating the distant parallelism geometry. In the mature stage of this
approach, when he had settled on a set of field equations that seemed to satisfy
his demands, he tried to find particle-like solutions to those equations and to
improve on the compatibility proof as well as on their derivation. Significantly,
the episode ends with a paper, written jointly with his collaborator Walther Mayer,
in which they investigate systematically the possibilities of imposing compatible
field equations on a distant parallelism spacetime. Frustrated by the impossibility
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of finding uniquely determined “world equations” of a unified theory along this
approach, he eventually gave it up in favour of another approach characterized by
a field of five-dimensional vector spaces defined over four-dimensional spacetime.

This account of the distant parallelism episode as a search for field equations
shows some remarkable historical and systematical similarities to Einstein’s early
search for gravitational field equations in the years 1912–1915 [6] (for an account
of Einstein’s path toward general relativity along these lines, see [7], [2]). In
both cases, it was a mathematical concept that triggered and determined further
investigations. In 1912, it was the insight into the crucial role of the metric tensor,
and in 1928 it was the concept of a tetrad field that opened up new possibilities
of achieving the heuristical goals. In either case, the mathematics associated with
those concepts had already been explored to a great extent in the mathematics
literature, and it was through the mediation of mathematicians that Einstein learnt
about it. In both episodes, Einstein’s heuristics quickly focused on the problem of
finding acceptable field equations, and in both episodes he was unable for a while to
find field equations that would not violate one or more of his heuristic requirements.
As a result, he developed two complementary strategies to generate candidate field
equations, and in either case he eventually found equations that seemed to satisfy
all his demands, at least to the extent that he was initially able to verify this. The
demise came in each case through the realization of more and more problems and
then, finally, by switching to an altogether different conceptual framework. But
while in 1915 the new approach was marked by his final breakthrough to general
relativity and resulted in the still valid Einstein equations, the distant parallelism
episode was only followed by yet another approach along his unified field theory
program. Systematically, the difference between success and failure is to be found
in the different goals that he was trying to achieve.
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The Brouwer fixed point theorem and differential equations:
a nonlinear story

Jean Mawhin

In 1912, Brouwer ended his paper initiating topological degree theory for contin-
uous mappings between manifolds of the same dimension [4] with the following
fixed point theorem.

Theorem 1. An n-dimensional element is any one-to-one and continuous image
of a simplex S of n-dimensional space. Any single-valued and continuous trans-
formation of an n-dimensional element into itself has at least one fixed point.

In 1910, in an appendix to the second edition of Tannery’s book on function
theory, extending Kronecker’s index to continuous functions [7], Hadamard proves
Theorem 1 and calls it Brouwer’s theorem.

About thirty years earlier, in 1883, Poincaré [13] had reduced the problem
of finding some symmetric periodic solutions of the three body problem to the
solution of a nonlinear system of equations in a finite number of unknowns, for
which he states and sketches (using Kronecker’s index) the proof of the following
n-dimensional intermediate value theorem.

Theorem 2. Let X1, X2, . . . , Xn be n continuous functions of n variables x1, x2,
. . . , xn; the variable xi is supposed to vary between the limits +ai and −ai. Suppose
that Xi is constantly positive for xi = ai, and constantly negative for xi = −ai.
There exists at least one system of values of the xi satisfying the inequalities −a1 <
x1 < a1, −a2 < x2 < a2, . . . ,−an < xn < an, and the equations X1 = X2 = . . . =
Xn = 0.

In 1904, in a paper devoted to the discussion of the nature of trajectories of a
mechanical system around an equilibrium [2], Bohl stated and proved the following
result, equivalent to the non-retraction theorem for the cube, rediscovered for a
ball in 1931 by Borsuk.

Theorem 3. Let (G) be the domain −ai ≤ xi ≤ ai (i = 1, 2, . . . , n; ai > 0).
There do not exist functions F1, F2, . . . , Fn defined and continuous in (G) which
do not vanish simultaneously and are such that, on the boundary of (G), one has
Fi(x1, . . . , xn) = xi, (i = 1, 2, . . . , n).

In 1911 in a paper proving the invariance of dimension [3], Brouwer introduced
and used the following result.

Theorem 4. If a continuous mapping in a q-dimensional space transforms a cube
of dimension q in such a way that the maximum displacement is smaller than half
of the side of the cube, then there exists a homothetic and concentric cube which
is entirely contained in the image of the first cube.

In 1922, motivated by existence questions for multipoint boundary-value prob-
lems for ordinary differential equations, Birkhoff and Kellogg gave another proof
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of the Brouwer fixed point theorem, before extending it to the function spaces
C([a, b]) and L2([a, b]) [1]. Between 1927 and 1930, in order to prove the exis-
tence of solutions to some semilinear Dirichlet problems, Schauder extended the
Brouwer fixed point theorem to continuous mappings between compact convex
sets of Banach spaces [14]. In 1930, motivated by existence results for multipoint
boundary-value problems for ordinary differential equations, Caccioppoli indepen-
dently rediscovered Birkhoff-Kellogg’s fixed point theorem in C([a, b]) [5], and
recognized the priority of those authors in 1931.

In 1929, in a proof of a global Cauchy problem for a system of ordinary differ-
ential equations [8], Hammerstein made use of Brouwer’s Theorem 4. In 1931, to
study a two-point boundary value problem for a second order equation [15], Scorza-
Dragoni introduced the shooting method, reducing the problem to the classical
intermediate value problem for real functions of one variable. He also suggested
the possibility of dropping the regularity conditions by using “the method of Cac-
cioppoli and Birkhoff”. In 1940, applying the shooting method to multi-point
boundary value problems for differential equations of order greater than two [6],
Cinquini rediscovered (with wrong or incomplete proofs) Poincaré’s intermediate
value theorem. In 1941, to give a sound basis to Cinquini’s results, Miranda proved
the equivalence of Brouwer’s fixed point theorem and Cinquini’s (i.e. Poincaré’s)
intermediate value theorem [12]. Poincaré’s priority would only be discovered in
1974. Despite this equivalence, a ten-year polemic (1941-1950) took place between
Cinquini and Scorza-Dragoni, about the elementary character of a proof based
upon shooting and the multi-dimensional intermediate-value theorem versus the
topological character of a proof using the Schauder fixed point theorem!

The first explicit application of the Brouwer fixed point theorem to problems of
differential equations was made in 1943 by Lefschetz [10] and by Levinson [11], to
prove the existence of periodic solutions of a periodically forced Liénard equation.
As late as 1966, to study variational inequalities, Hartman and Stampacchia [9]
stated and proved another statement equivalent to Brouwer’s fixed point theorem:

Theorem 5. Let C be a compact convex set in En and B(u) a continuous mapping
of C into En. Then there exists u0 ∈ C such that (B(u0), v−u0) ≥ 0 for all v ∈ C,
where (·, ·) denotes the scalar product in En.
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From Partial Differential Equations to Theory of Control : Dynamics
of Research and Social Demands. The privileged example of

Jacques-Louis Lions (1928–2001)

Amy Dahan

The aim of this lecture was to present synthetically the evolution of the field of
partial differential equations and control theory in France in the second half of the
20th Century. We focused on the privileged example of the mathematical work of
Jacques-Louis Lions, mentioning also his school and the collective character of his
action. We started from the first (theoretical) works in the 1950s, reaching his last
papers in the 1990s on climate systems and questions of algorithms and resolution
on parallel computers.

We emphasized the close interactions between the dynamics of mathematical
research and industrial and social demands, which both contributed to reshape the
field of research. In other words, the evolution of the scientific field is the result of
a process of constant and narrow hybridation between two lines of development:
1) the development of an academic research program which was coherent by the
beginning of the 1950s, used the same privileged methods (variational methods,
interpolation spaces, algorithmic methods of finite elements etc.) and revealed
the idiosyncrasy of the mathematician; 2) the increasing importance of various
industrial and social problems (in mechanics, physics, engineering, economics, cli-
matology, . . . ) which stimulated the birth of specific methods, and contributed to
new directions of investigation. We must also study this process in the context of
the evolution of computing facilities, and a changing institutional picture.
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The lecture was divided into four parts and I give here a brief overview of the
mentioned elements.
1. A mathematician coming from the “Elite Club” of pure French mathematics.

• He graduated from the Ecole normale supérieure (Ulm). The importance
of Bourbaki’s abstract mathematical style.

• His mentor was Laurent Schwartz, one of the leader of the second genera-
tion of Bourbaki’s group.

• He began with linear problems, mixed problems of evolution.
• Then, he oriented his interests towards ill-posed problems, also non-linear

questions (meeting with Jean Leray).
• Importance of the meeting with R. Lattès from the Sema: how to optimize

the shape of machines, of tools, of constructions, etc). This led them to
the method of quasi-reversibility.

2. Some turning points in his early career.

• 1957-58 : numerical resolution and theroretical resolution began to become
closely associated; thesis of his first student Jean Céa (method of finite
elements, Céa’s lemma. . . ) tested on the computer of the SEMA (Société
d’Economie et de Mathématiques Appliquées).

• 1964-65 : the emergence of a second aim : the optimal control of dis-
tributed systems.

• Theory of control was in the Zeitgeist (spatial competition, principle of
maximum of Pontrjagin, works of Rudy Kalman, and of Richard Bellman
in the US.) but these results concerned ordinary differential equations.

• Lions.
• At the end of the 1960s, a team was ready to tackle industrial numerical

problems.

3. 1970’s, College de France, IRIA : consecration of applied mathematics and
dialog with the industrial world.

• Comment on the title of Lions’ chair at the College de France : “Analyse
des Systèmes mathématiques et leur Contrôle”

– the appearance of specific techniques (variational inequalities, . . . )
adapted to different concrete problems.

– the importance of some industrial questions which gave birth to math-
ematical concepts and innovations.

• Lions tried to organize in a systematic manner a cooperation with other
fields (physics, mechanics, fluid mechanics, chemistry, economics, . . . ) and
with industry. In his team, he gathered a whole spectrum of skills: from
very theoretical and abstract people (like H. Brézis) to very applied math-
ematicians.

• Among numerous collaborators, we can mention:
– R. Glowinski, specialist of optimization and fluid problems, tried to

adapt mathematical methods and problems to computers of medium
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power, although they needed much bigger machines. Here the princi-
pal partners are the CEA (Commissariat à l’Energie Atomique) and
the Institut of Novossibirsk.

– Chavent : Specialist in petroleum problems; worked on the inverse
problems of identification theory (contracts with Elf, etc).

– Yvon: optimal control of problems of combustion and temperature
(important for nuclear centrals).

– O. Pironneau, who worked (with Glowinski, Périaux, Lions himself)
on aeronautics. M. Dassault on optimum design of wings, nose, etc
for reducing turbulence. Thanks to these collaborations with Lions’s
team, Dassault constructed the first aircraft, entirely conceived by
numerical methods. This was a big success for French Industry.

4. 1985- 2000 : new spaces, new problems.

• Lions moved in 1985 as chairman of the CNES.
• He was preoccupied by the control and stabilization of flexible structures,

and modeling of optimal design of combustion chambers (because of two
failures in 1985 and 1986).

– theory of controllability (first exact controllability, then approximated
controllability) : famous Hilbert Uniqueness Method, at the “John
von Neumann Lecture” at SIAM Congress in 1986.

• At the end of 1980s, he was acquainted with the Global Change Program:
– theory of sentinels,
– new global models for the atmosphere and for the coupled atmosphere-

ocean system,
– approximate controllability of turbulence or chaotic systems.

• Environmental questions directly connected to energy and economic as-
pects.

• Privilegied partners : CEA, EDF.

Concluding Remarks.

On the Habilitation Lecture of Lipót Fejér

Barnabas M. Garay

The Hungarian mathematician Lipót Fejér (1880–1959) is famous for his work on
Fourier series, approximation and interpolation theory. It is not widely known
that his Habilitation Lecture, “Stability and instability investigations in the me-
chanics of mass point systems” (University of Kolozsvár; 23 June 1905; Kolozsvár
[Cluj/Klausenburg, Transsylvania]) was devoted to certain aspects of the theory
of ordinary differential equations.

This choice was obviously determined by Fejér’s mathematical environment in
Kolozsvár — variational principles of mechanics, formal integrability of first or-
der and second order partial differential equations, shock waves. His colleagues
at the department were Gyula Vályi (the first mathematician to receive a Ph.D.
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in Hungary), Gyula Farkas (note that The Farkas Lemma [an early version of
János Neumann’s Minimax Theorem as well as of the Duality Theorem of Linear
Programming, an existence result on linear inequalities] is rooted in the theory
of one–sided mechanical constraints), and Lajos Schlesinger (the author of the
monumental Handbuch der Theorie der linearen Differentialgleichungen [Teub-
ner, Leipzig, 1895/1898], the son–in–law of the Berlin mathematician Lazarus
Immanuel Fuchs).

Fejér’s Habilitation Lecture was originally printed in Hungarian. Together with
a German translation, it was reprinted as item 14 of the Gesammelte Abhandlun-
gen.

The Habilitation Lecture consists of three parts.
Based on related works by Hill and Poincaré, the first part is a description

of various aspects of the three–body problem in celestial mechanics. The second
part is a discussion of various stability concepts: “The concept of stability carries
highly different contents even within the framework of mass point systems. It is
no use arguing which one of them can be the best since, except for some inherent
features of it, stability as a popular concept is so indefinite and so relative that,
owing to the variety of existing relations, stability definitions highly differing from
one another may be formulated without any contradiction to the popular one.”
Among the definitions of stability listed by him we can find the one accepted in
general nowadays, too, but it is considered too narrow by Fejér, sharing Felix
Klein’s opinion (who seems to have identified instability as something exceptional,
irregular, and turbulent).

The third part is devoted to the Lagrange–Dirichlet theorem with a particular
emphasis on its possible converse. In an accompanying paper (Über Stabilität
und Labilität eines materiellen Punktes im widerstrebenden Mittel, Journal für
die reine und angew. Math. 131(1906), 216–223.), Fejér gives sufficient conditions
for instability. This is more an example than a general result. (Moreover, as a
simple consequence of La Salle’s invariance principle, a great part of his sufficient
conditions can be omitted.)

It is worth mentioning here that the discovery of the famous summation the-
orem is closely related to the Dirichlet problem on the unit disc and goes back
to a question of Hermann Amandus Schwarz on Poisson integral representations.
During his long life, Fejér had always been aware of the relations between his pri-
mary research fields and differential equations, both ordinary and partial. It is also
worth mentioning here that the Kolozsvár tradition of differential equations had
been continued by Alfréd Haar, Fejér’s successor in Kolozsvár/Szeged from 1911
onward, with work on the Fredholm alternative for the biharmonic operator; ex-
istence, uniqueness, & regularity for the minimal surface problem under Hilbert’s
three-point condition; the two–dimensional counterpart of the Du Bois–Reymond
lemma in the calculus of variations; the well–posedness of general first-order partial
differential equations via a Gronwall–type inequality.

The interested reader can find many more details in the differential equations
chapter (written jointly with my late colleague Árpád Elbert) of the forthcoming
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two–volume presentation of the history of the Hungarian mathematics in the first
part of the twentieth century — a truly terrific time.

The End of Differential Equations, or What Can a Mathematician Do
that a Computer Cannot?

David Aubin

In 1971, two outsiders, a physicist specializing in statistical mechanics and a math-
ematician who studied dynamical systems, shocked the fluid dynamics community
when they published a controversial article titled “On the Nature of Turbulence”.
Claiming nothing less than a new “mechanism for the generation of turbulence,”
the authors, going against current practice, never explicitly wrote down the Navier-
Stokes equations (NSE) [10], [1], [2]. For centuries, physicists had aimed at unveil-
ing laws of nature. Following in the footsteps of Newton, they exploited his second
law (F = ma) with great success. In this paper, I will focus most explicitly on the
case of fluid dynamics. Just as Newton had uncovered the dynamical equations
governing the motion of planets in the heavens, physicists and mathematicians in
the first half of the nineteenth century were able to derive from first principles
mathematical relations for fluid flow. Although, except for a few simple cases, it
was impossible to exhibit exact solutions to NSE, this derivation had become an
inescapable part of the classical physics curriculum.

This talk aims at providing an account of the changes in physical modeling which
made it possible that a new model of the onset of turbulence could be proposed
without its authors ever feeling the necessity of mentioning the law found a century
and a half earlier by Claude Louis Navier and Sir George G. Stokes. Inspired
by René Thom’s ideas, conceived and written at the Institut des hautes études
scientifiques in the spring of 1970 by the French physicist David Ruelle and the
Dutch mathematician Floris Takens, the article is remarkable for several reasons
reaching beyond its introduction of the famous notion of strange attractors, which
was to have a very bright future. Above all, Ruelle and Takens’s article supplies
both a symptom and a direct cause for crucial changes that have been widely
affecting the modeling practice of theoretical physics ever since.

Based on first principles coming from either molecular hypotheses or continuum
mechanics, the partial differential equations of physics acquired, in the course of
the nineteenth century, an almost ontological status. A telling and much studied
instance of this process, which can be seen as originating in Fourier’s analysis
of heat flow, is provided by the rise of the notion of fields. For Maxwell and
Boussinesq, the complex diversity of behaviors exhibited by solutions to partial
differential equations reinforced ontological commitments to them [5], [3], [8], [4].

But the question of the relation between microscopic, molecular theories and
macroscopic, continuous differential equations always spurred passionate debates.
As far as macroscopic physics was concerned, the exploitation of fundamental
laws, derived from general principles and expressed by differential equations, only
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partially justified by statistical and quantum mechanical considerations, remained
the physicists’ dominant foundation for their modeling practice.

In this context, the turbulence problem for fluid mechanics was a distressing
one. Whereas, in traditional histories of physics, the discovery of an equation has
often been the culminating point, the history of turbulence started with the equa-
tion. Indeed, only when this equation existed did turbulence become a theoretical
problem. On the one hand, there was every reason to believe that NSE provided
a faithful description of classical fluid flows. On the other hand, it was an ex-
perimental fact that extremely complex flows arose when the fluid was submitted
to intense external stress; this complexity was called turbulence. The turbulence
problem lay in the relation between fundamental equations and their solutions. To
bridge the chasm dividing the Navier-Stokes equations from feasible experiments
or known solutions, was the “turbulence problem.” [7]

For a long time, when unable to solve the equations explicitly, physicists had
few mathematical tools which still could have enabled them to account for natural
phenomena in a satisfactory manner. Historically, Ruelle and Takens’s article
signaled the reencounter of physics with qualitative mathematics. It would help
to initiate a powerful alternative to the endless quest for the final law of nature.
Instead, more and more physicists started to look anew into mundane phenomena,
without relying too heavily on fundamental laws. These laws, they began to think,
might be unreachable with certainty, but they hoped nonetheless to provide deep
theoretical explanations for experimental data.

The article published in 1971 by Ruelle and Takens “investigate[d] the nature
of the solutions of [NSE], making only assumptions of a very general nature on
[the equations]” ([10, p. 168, my emphasis]). It was not so much the detailed
structure of the Navier-Stokes equation that mattered, but the very fact that
fluids could be described, with an amazing degree of precision, by dissipative
differential equations. From this fairly general starting point, and several other
technical assumptions which they did not even care to derive from the fundamental
equation, Ruelle and Takens were able to redefine the nature of turbulence and
“give some insight into its meaning, without knowing [NSE] in detail” [9, p. 7].
Quite decisively, they also made qualitative predictions that could be tested in
vitro or in silico, that is, by numerical simulations of fluid flows.

In 1971, Ruelle and Takens suggested, but did not show rigorously, that when
a fluid was subjected to increasing external stress, it went through a succession
of bifurcations, where different modes of vibration—i.e. different frequencies—
appeared. So far, this was merely a rephrasing of the model proposed by Lev
Landau in 1944 and, independently, by Eberhard Hopf in 1942-1948. But Ruelle
and Takens went on to suggest, albeit once again without providing a rigorous
demonstration, that this bifurcation sequence had to stop after the manifestation
of three different modes, because a “strange attractor” appeared in a “generic”
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manner, and the fluid motion ceased to be quasiperiodic.1 Strictly aperiodic mo-
tion was the new definition they proposed for turbulence. Ruelle’s new alterna-
tive for physicists’ modeling practice displaced the emphasis often put on specific
models or fundamental laws of nature, in order to tackle whole classes of models
directly. Without resolving the conundrum of the nature of the relationship ex-
isting between fundamental laws and observation, this new practice made models
cheap and dispensable, and rather focused on some essential topological features of
observed behaviors which were assimilated to the structural, yet dynamical, char-
acteristics of classes of models. In short, some physicists stopped looking at specific
representations of nature in order to study the consequences of the mode of repre-
sentation itself. This shift is attributed to changes in the status of fundamental
laws tied with the advent of the computer and the development of mathematical
tools such the theory of dynamical systems.
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sciences, Compléments au Tome III. (Paris: Gauthier-Villars, 1922).

[4] I. Hacking. Nineteenth-Century Cracks in the Concept of Determinism. Journal of the His-
tory of Ideas, 44:455–475, 1983.

[5] J. C. Maxwell. Does the Progress of Physical Science Tend to Give any Advantage to the
Opinion of Necessity (or Determinism) over that of the Contingency of Events and the
Freedom of Will? repr. The Scientific Letters and Papers of James Clerk Maxwell, 2, ed.
P. M. Harman (Cambridge: Cambridge University Press, 1995): 814–823.

[6] S. Newhouse, D. Ruelle, and F. Takens. Occurrence of Strange Axiom A Attractors Near
Quasi-Periodic Flows on T m, m ≥ 3. Communications in Mathematical Physics, 64:35–40,
1978; repr. TSAC, 85–90.

[7] F. Noether. Das Turbulenzproblem. Zeitschrift für andgewandte Mathematik und Mechanik,
1:125–138, 1921.
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[9] D. Ruelle. Méthodes d’analyse globale en hydrodynamique. TSAC : 1–56.

[10] D. Ruelle and F. Takens. On the Nature of Turbulence. Communications in Mathematical
Physics, 20:167–192, 23:343–344, 1971.

Reporters: Adrian Rice and Henrik Kragh Sørensen

1In 1978, the Ruelle-Takens scenario was deemed to arise after the appearance of only two
modes. See [6].



The History of Differential Equations, 1670–1950 2791

Participants

Prof. Dr. Thomas Archibald

tom.archibald@acadiau.ca

tarchi@mit.edu

Department of Mathematics and
Statistics
Acadia University
Wolfville NS B4P 2R6
Canada

Prof. Dr. David Aubin

daubin@math.jussieu.fr

Institut Mathematiques de Jussieu
Universite Pierre et Marie Curie
175, Rue du Chevaleret
F-75013 Paris

Prof. Dr. June Elizabeth Barrow-

Green

j.e.barrow-green@open.ac.uk

Faculty of Mathematics
The Open University
Walton Hall
GB-Milton Keynes, MK7 6AA

Dr. Christa Binder

christa.binder@tuwien.ac.at

Institut für Analysis und
Scientific Computing
Technische Universität Wien
Wiedner Hauptstr. 8 - 10
A-1040 Wien

Prof. Dr. Henk J. M. Bos

bos@math.uu.nl

Mathematisch Instituut
Universiteit Utrecht
Budapestlaan 6
P. O. Box 80.010
NL-3508 TA Utrecht

Prof. Dr. Umberto Bottazzini

umberto.bottazzini@mat.unimi.it

Dipartimento di Matematica
Universita di Milano
Via C. Saldini, 50
I-20133 Milano

Joao M. Caramalho Domingues

jcd@math.uminho.pt

Centro de Matematica
Universidade do Minho
P-4710- 057 Braga

Prof. Dr. Karine Chemla

chemla@paris7.jussieu.fr

Directrice de recherche CNRS
3, square Bolivar
F-75019 Paris

Prof. Dr. Amy Dahan

Amy.DAhan-Dalmedico@damesme.cnrs.fr

Dahan-Delmedico@damesme.cnrs.fr

Centre Alexandre Koyre
27, rue Damesme
F-75013 Paris

Prof. Dr. Giovanni Ferraro

gferraro@libero.it

Via Nazionale 38
Afragola
I-80021 Naples

Prof. Dr. Menso Folkerts

M.Folkerts@lrz.uni-muenchen.de

m.folkerts@lrz.uni-muenchen.de

Institut für Geschichte der
Naturwissenschaften
Universität München
Museumsinsel 1
80538 München



2792 Oberwolfach Report 51/2004

Dr. Jaroslav Folta

jaroslav.folta@ntm.cz

Narodni technicke muzeum
Kostelni 42
170 78 Praha /
Czech Republic

Prof. Dr. Craig Fraser

cfraser@chass.utoronto.ca

IHPST
University of Toronto
Victoria College
73 Queen’s Park Cr. E.
Toronto, Ontario M5S 1K7
CANADA

Prof. Dr. Barnabas M. Garay

garay@math.bme.hu

Institute of Mathematics
University of Technology
Muegyetem rakpart 3-9
H-1521 Budapest

Prof. Dr. Christian Gilain

gilain@math.jussieu.fr

Institut Mathematiques de Jussieu
Universite Pierre et Marie Curie
175, Rue du Chevaleret
F-75013 Paris

Prof. Dr. Ivor Grattan-Guinness

eggigg@ghcom.net

43 St. Leonard’s Road
GB-Bengeo, Hertford SG14 3JW

Dr. Hans Niels Jahnke

njahnke@uni-essen.de

Fachbereich Mathematik
Universität Duisburg-Essen
Campus Essen
Universitätsstr. 3
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