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Introduction by the Organisers

The workshop New Inference Concepts for Analysing Complex Data, organised by
Jianqing Fan (Chapel Hill ), Klaus-Robert Müller (Berlin) and Vladimir Spokoiny
(Berlin) was held November 14st–November 20th, 2004. This meeting was well
attended with about 45 participants with broad geographic representation from
all continents. This workshop was a nice blend of researchers with various back-
grounds from the areas of statistics and machine learning.

The main purpose of this workshop was to assemble international leaders from
statistics and machine learning in the Institute: to identify important research
problems, to cross-fertilize between the disciplines, and to ultimately start coordi-
nated research efforts towards better solutions.

The program included more than 25 talks organized in sections on various top-
ics: Support Vector Machines (B. Schölkopf, A.J. Smola, G.Wahba), mathemat-
ical finance (H. Dette, W. Härdle, S.X. Chen), dimension reduction (Y. Xia, A.
Dalalyan, M. Kawanabe, E. Mammen, H. H. Zhang), non-parametric smoothing
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(D. Belomestny, J. Polzehl), Boosting (P. Bühlmann, Y. Ritov), genomics (A. No-
bel, Hepping Zhang), classification (S. van de Geer, G. Blanchard), statistical in-
verse problem (M. Reiss, A. Goldenshluger), Functional regression (H.-G. Müller,
T.Cai), Clustering (J. M. Buhmann, A. Nobel) among others. P. Bühlmann gave
an overview on statistical methods of boosting while D. Yekutieli made an extended
presentation on False Discovery Rate.

There was one organized discussion on Smoothing methods in classification. The
workshop gave an excellent opportunity for exchanging the opinions and expertise
as well as for discussing various topics in different areas of modern mathematical
statistics and machine learning theory. The discussion revealed a lot of common
ideas and principles in these two fields but also differences in the methodology
and approaches. An exchange of ideas can clearly contribute to the both fields.
Already during workshop some new projects were originated that involve both
statisticians and people from machine learning society.

The workshop was attended by a number of young statisticians and gave an
excellent opportunity for training: both by attending the high level presentation,
by presenting their own results and by participating at the numerous informal
discussions.
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Abstracts

Local likelihood modelling via stagewise aggregation

Denis Belomestny

(joint work with V.Spokoiny)

The aim of this talk is to propose a new method of spatially adaptive non-
parametric estimation based on aggregating a family of local likelihood estimates.
Local likelihood approach was intensively discussed last years, see e.g. Tibshirani
and Hastie (1987), Staniswalis (1989), Loader (1996). We refer to Fan, Farmen
and Gijbels (1998) for a nice and detailed overview of local maximum likelihood
approach and related literature. The approach is very general and applies to many
statistical models. An important issues for local likelihood modeling is the choice
of localization (smoothing) parameters. Different types of model selection tech-
niques based on the asymptotic expansion of the local likelihood are mentioned
in Fan, Farmen and Gijbels (1998) which includes global and variable bandwidth
selection. However, the performance of estimators based on bandwidth selection is
often rather unstable, see e.g. Breiman (1996). This suggests that in some cases,
the attempt to identify the true local model is not necessarily the right thing to
do. One approach to reduce variability in model selection is model mixing or ag-
gregation. Yang (2004), Catoni (2001) among other suggested global aggregated
procedures that achieves the best estimation risks over the family of given “weak”
estimates. Nemirovski (2000), Juditsky and Nemirovski (2000) developed the ag-
gregation procedures that achieves up to some log-factor the minimal risk in the
class of all convex combinations of “weak” estimates in regression setup. Tsybakov
(2003) discussed the asymptotic minimax rate for aggregation. Aggregation for
density estimation has been investigated by Li and Barron (1999). A pointwise
aggregation has not been yet considered to the best of our knowledge.

We propose a new approach towards local likelihood modelling which is based
on the idea of the spatial aggregation of a “nested” family of local likelihood
estimates (“weak” estimates) θ̃(k). The main idea is, given the sequence {θ̃(k)} to

construct in a data driven way the “optimal” aggregated estimate θ̂(x) separately
at each point x. “Optimality” means that this estimate satisfies some kind of
oracle inequality, that is, its pointwise risk does not exceed the smallest pointwise
risk among the all “weak” estimates up to a logarithmic multiple.

Our algorithm can be roughly described as follows. Let {θ̃(k)(x)}, k = 1, . . . , k
be an “ordered” sequence of weak local likelihood estimates at a point x. A new
aggregated estimate of θ(x) is constructed sequentially by mixing the previously

constructed aggregated estimate θ̂(k−1) with the current “weak” estimate θ̃(k):

θ̂(k) = γk θ̃
(k) + (1 − γk)θ̂(k−1),

where the mixing parameter γk (which may depend on the point x) is defined using

a measure of statistical difference between θ̂(k−1) and θ̃(k). In particular, γk is equal
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to zero if θ̂(k−1) lies outside the confidence interval of θ̃(k). In view of the sequential
and poinwise nature of the algorithm, the suggested procedure is called Spatial
Stagewise Aggregation (SSA). An important feature of the proposed procedure
is that it is very simple and transparent and applies in a unified manner for a
big family of different models like Gaussian, binary, Poisson regression, density
estimation, classification etc. The procedure does not require any splitting of the
sample as many other aggregation procedures do, cf. Tsybakov (2003). The SSA
procedure can be easily studied theoretically. We establish precise nonasymptotic
“oracle” results which apply under very mild conditions in a uniform manner to
many different statistical models and problems. We also show that the oracle
property automatically implies spatial adaptivity of the proposed estimate.
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Oracle bounds and algorithm for optimal dyadic tree classification

Gilles Blanchard

(joint work with C.Schäfer, Y.Rozenholc, K-R. Müller)

Overview. We present a new algorithm to build a single dyadic classification
tree for multiclass data. Although not as effective in terms of raw generalization
error as recent large margin classifiers or ensemble methods, single classification
trees possess important added values: they are easier to interpret for practitioners,
they are naturally adapted to multi-class situations and they provide additional
and finer information through conditional class probability (hereafter ccp) estima-
tion. We start with the a priori that we accept to lose a little on the performance
side in order to get these advantages as a counterpart. Furthermore, we show on
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experiments that our method outperforms classical single tree methods (Quinlan’s
C4.5).

The fact that we are considering only dyadic tree models allows us to build an
algorithm to find such a tree that globally minimizes some arbitrary (penalized)
loss criterion. This is essential because the greedy way that classical decision
tree methods (C4.5, CART) build up the tree can be shown to yield arbitrary bad
results in some cases. The present ODCT algorithm finds some of its sources in [4],
where a similar method is proposed for regression in 2D problems with equispaced
data, and oracle inequalities are derived for the L2 norm. Our results extend this
setting to higher dimension, other loss functions, and arbitrary distribution of the
observations. We also present an algorithm that is computationally more efficient
for this more general setting.

Dyadic partitions. We assume that observations x lie in [0, 1]d and class
y belongs to a finite set {1, . . . , S}. We oberve an i.i.d. sample (Xi, Yi)i=1...n

following an unknown probability distribution P .
The base model we consider is given by dyadic trees or equivalently dyadic

partitions. A dyadic partition B is defined as a partition of [0, 1]d formed only
of hyperrectangles of the form Πd

i=1

[
ki

2ji

ki+1
2ji

]
. Equivalently, it can be seen as a

dyadic decision tree where [0, 1]d is recursively divided in half into smaller pieces,
each “cut” being allowed only through the center of the piece and perpendicular
to one of the coordinate axes.

For a fixed partition B we define the histogram estimator f̂B of P (Y |X) :

(1) ∀b ∈ B, ∀x ∈ b, f̂B(x, y) =
Nb,y∑
y Nb,y

,

where Nb,y denotes the number of training points of class y falling in bin b.
Penalized minimum empirical loss. The definition of our final estimator

is f̂ bB where a suitable partition B̂ is selected via the following penalized empirical
risk minimization:

(2) B̂ = Arg Min
B

1

n

n∑

i=1

`(f̂B , Xi, Yi) + γ|B|,

where ` denotes a loss function; we consider classification error (when we predict
the majority class according to f), minus log-likelihood (`(f, x, y) = − log f(x, y)),
or square error (`(f, x, y) = ‖f(x, ·) − ỹ‖2, where ỹ denotes the k-dimensional
vector which has 1 as the y-th coordinate and 0 elsewhere).

Oracle bounds. Let f∗ denote either the true conditional probability distri-
bution of the class P (Y |X) (in the case the log-likelihood or square loss is used) or
the Bayes classifier (in the case the misclassification loss function is used). Note
that f∗ is the minimizer of the true average loss.

The theoretical properties that our method enjoys are summed up in the fol-
lowing “theorem template”:

Theorem Template 1. Let f∗(x, y) = P (Y = y|X = x), and Z = (Xi, Yi)i=1...n

an i.i.d. sample of size n drawn according to P . Then for a suitable choice of γ,
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the estimator f̂ defined by (2) satisfies the following oracle-type inequality:

(3) EZE
[
`(f̂) − `(f∗)

]
≤ 2 inf

B
inf

f∈CB

(
E [`(f) − `(f∗)] + 2γ|B|+ C

n

)
,

where CB denotes the set of ccp functions that are piecewise constant on the bins
of B.

This theorem is satisfied by the three mentioned loss functions under additional
technical assumptions depending on the loss function, that we do not detail here;
in all cases the most important assumption is that γ should be greater that a
function of order log(n)/n.

Note that for classification loss, E
[
`(f̂) − `(f∗)

]
is the excess loss with respect

to the Bayes classifier. For square loss, it is the average sum over classes of square
difference between the estimate and the true cpp, while for log-likelihood loss, it is
the average conditional Kullback-Leibler divergence between these same quantities.

Anisotropy adaptivity. The most prominent consequence of these theoret-
ical properties is that our algorithm is adaptive to anisotropy, which means that
if the target function P (Y |X) is more regular in one axis direction than another,
this property will be “caught” by the algorithm – because the target is best ap-
proximated by dyadic trees that have more cuts in the less regular direction (i.e.
“elongated” bins) and the selected tree will be of this type. As an extreme case,
if some directions are in fact pure noise and irrelevant to the classification task,
they will be ignored.

Formally, we are able to prove that in the case of square error loss, this an-
isotropy property can be quantified in terms of attaining the minimax rate of
convergence for certain classes of weak Hölder functions where the Hölder smooth-
ness is not the same in all directions. Donoho [4] considered very closely related
anistropy classes in the case of regression with Gaussian white noise and when P
is the Lebesgue measure. In our case the setting is more general as we are able
to obtain convergence rates for an arbitrary P - albeit under somewhat stronger
assumptions on the function class.

Exact algorithm. In contrast to CART or C4.5 where only an approximate,
greedy solution of the optimization problem is computed, we are able to propose an
algorithm to compute the exact optimum of eq. (2). This method is inspired by an
algorithm initially proposed by Donoho [4] that we further improve to yield better
computing efficiency (in the case of higher-dimensional, non-equispaced data).

We proved that if we assume that kmax, the maximum number of cuts along a
given direction, is of the order of log(n), the complexity of the dictionary-based
algorithm is of order O(n log(n)d+1), as opposed to nd for the naive approach
taking all bins into account. This is a very important improvement but the com-
plexity is unfortunately still exponential in the dimension, which means that the
full algorithm can only be expected to be usable for smaller values of d.

Experiments. Experimental results on real and simulated data showed the
following about the ODCT method:

- it generally yields better results than C4.5
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- it effectively discards non-informative dimensions
- it adapts to anistropy and irregular data distributions as expected from the

theory
- it is robust wrt. to flipping noise.
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Boosting: a Statistical Perspective

Peter Bühlmann

Boosting algorithms have been proposed in the machine learning literature by
Schapire ([13]) and Freund ([8], [9]), see also [14]. These first algorithms have been
developed as ensemble methods. Boosting has been empirically demonstrated to be
very accurate in terms of classification, notably the so-called AdaBoost algorithm
([9]).

We will explain that boosting can be viewed as a nonparametric optimization
algorithm in function space, as first pointed out by Breiman ([1], [2]). This view
turns out to be very fruitful to adapt boosting for other problems than classifica-
tion, including regression and survival analysis.

We will mainly focus on boosting with the squared error loss (L2Boosting; cf.
[10]) and discuss the following: L2Boosting for nonparametric additive and second-
order interaction modeling ([5]); L2Boosting for high-dimensional linear models
and overcomplete dictionaries ([4]) and its relation to Matching Pursuit ([12]),
Lasso and LARS ([7]); conjugate gradient descent L2Boosting as an alternative to
gradient descent type boosting ([11]); L2Boosting with degrees of freedom penalties
([6]) and its relation to Breiman’s nonnegative garrote estimator ([3]).
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[4] Bühlmann, P.: Boosting for high-dimensional linear models. Preprint (2004).
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Data clustering in imaging

Joachim M. Buhmann

(joint work with Tilman Lange, Volker Roth and Mikio L. Braun)

Data clustering describes a set of frequently employed techniques in exploratory
data analysis to extract “natural” group structure in data. Such groupings need
to be validated to separate the signal in the data from spurious structure. In
this context, finding an appropriate number of clusters is a particularly important
model selection question. We introduce a measure of cluster stability to assess the
validity of a cluster model. This stability measure quantifies the reproducibility of
clustering solutions on a second sample and it can be interpreted as a classification
risk w.r.t. class labels produced by a clustering algorithm. The preferred number
of clusters is determined by minimizing this classification risk as a function of the
number of clusters. Convincing results are achieved on simulated as well as gene
expression data sets. Comparisons to other methods demonstrate the competitive
performance of our method and its suitability as a general validation tool for
clustering solutions in real world problems.
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Prediction in Functional Linear Regression

T. Tony Cai

(joint work with Peter Hall)

In the problem of functional linear regression we observe data

{(X1, Y1), . . . , (Xn, Yn)} ,

where the Xi’s are independent and identically distributed as a random function
X , defined on an interval I , and the Yi’s are generated by the regression model,

Yi = a+

∫

I

bXi + εi.

Here, a is a constant, denoting the intercept in the model, and b is a square-
integrable function on I , representing the slope function.

There has been substantial recent work on methods for estimating the slope
function in linear regression for functional data analysis, typically by methods
based on functional principal components. However, as in the case of more con-
ventional, finite-dimensional regression, much of the practical interest in the slope
centers on its application for the purpose of prediction, rather than on its signif-
icance in its own right. Thus, while there is an extensive literature on properties

of b̂, for example on convergence rates of b̂ to b (see e.g. Ferraty and Vieu, 2000;
Cuevas et al., 2002; Cardot and Sarda, 2003; Hall and Horowitz, 2004), there is

arguably a still greater need to understand the manner in which b̂ should be con-
structed in order to optimize the prediction of

∫
I
bx, or of a +

∫
I
bx. This is the

problem addressed in the present paper.
Estimation of b is intrinsically an infinite-dimensional problem. Therefore,

unlike slope estimation in conventional finite-dimensional regression, it involves
smoothing or regularization. The smoothing step is used to reduce dimension,
and the extent to which this should be done depends on the use to which the
estimator of b will be put, as well as on the smoothness of b. It is in this way that
the problem of estimating

∫
I bx is quite different from that of estimating b. The

operation of integration, in computing
∫

I
b̂ x from b̂, confers additional smooth-

ness, with the result that if we smooth b̂ optimally for estimating b then it will
usually be oversmoothed for estimating

∫
I
bx.

We show that the problems of slope-function estimation, and of prediction from
an estimator of the slope function, have very different characteristics. While the
former is intrinsically nonparametric, the latter can be either nonparametric or
semiparametric. In particular, the optimal mean-square convergence rate of pre-
dictors is n−1, where n denotes sample size, if the predictand is a sufficiently
smooth function. In other cases, convergence occurs at a polynomial rate that
is strictly slower than n−1. At the boundary between these two regimes, the
mean-square convergence rate is less than n−1 by only a logarithmic factor. More
generally, the rate of convergence of the predicted value of the mean response in
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the regression model, given a particular value of the explanatory variable, is de-
termined by a subtle interaction among the smoothness of the predictand, of the
slope function in the model, and of the autocovariance function for the distribution
of explanatory variables.
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Nonparametric Estimation of Expected Shortfalls

Song Xi Chen

The paper evaluates the properties of nonparametric estimators of the expected
shortfall, an increasingly popular risk measure in financial risk management. It
is found that the existing kernel estimator based on a single bandwidth does not
offer variance reduction, which is surprising considering that kernel smoothing re-
duces the variance of estimators for the value at risk and the distribution function.
We reformulate the kernel estimator such that two different bandwidths are em-
ployed in the kernel smoothing for the value at risk and the shortfall itself. We
demonstrate by both theoretical analysis and simulation studies that the new ker-
nel estimator achieves a variance reduction. The paper also covers the practical
issues of bandwidth selection and standard error estimation.

Key Words: Kernel estimator; Risk Measures; Smoothing bandwidth; Value at
Risk; Weak dependence.
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Dimension Reduction in the Model of Nonparametric Regression

Arnak Dalalyan

(joint work with A. Iouditski and V. Spokoiny)

We consider the model of nonparametric regression

Yi = f(Xi) + ξi, i = 1, . . . , n

with d-dimensional design {Xi}i ⊂ Rd and additive i.i.d. Gaussian noise ξi. As-
sume that only the projection of x ∈ Rd on a m-dimensional subspace I ⊂ Rd

(with m � d) accounts for the fluctuations of f , that is f(x) = g(RTx) for a
function g : Rm → R and a matrix R ∈ Rd×m such that RTR = Im. Our goal
is to recover the index subspace I = Im(R) = Im(∇f) when both g and R are
unknown.

The method we propose for estimating I is a modification of the one presented
in [1]. The main idea is to proceed in a recursive way: starting from a crude
estimation of ∇f , get a general information about I, then use this information to
improve the estimator of ∇f , and so on. Thus there are two main issues. Firstly,
find the best method to extract the information on I from the estimator of ∇f .
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Secondly, exploit as well as possible the information on I to obtain an improved
estimation of ∇f .

In [1], a PCA on the projections of the estimated gradient on some directions
has been used to solve the first issue. In order to guarantee a good behavior of the
method, the number of directions should be small relative to the sample size n.
In our work, we propose a new method for recovering the index subspace from an
estimator of the gradient which allows to make use a large number (polynomial in
n) of projections. The resulting estimator is shown to be rate-optimal: it converges
with the rate n−1/2.

References

[1] M. Hristache, A. Juditsky, J. Polzehl and V. Spokoiny, Structure adaptive approach for
dimension reduction, Ann. Statist. 29 (2001), 1537–1566.

Estimation of integrated volatility in continuous time financial models
with applications to goodness-of-fit testing

Holger Dette

(joint work with Mark Podolskij and Mathias Vetter)

Properties of a specification test for the parametric form of the variance func-
tion in diffusion processes dXt = b (t,Xt) dt + σ (t,Xt) dWt are discussed. The
test is based on the estimation of certain integrals of the volatility function. If
the volatility function does not depend on the variable x it is known that the
corresponding statistics have an asymptotic normal distribution. However, most
models of mathematical finance use a volatility function which depends on the
state x. In this paper we prove that in the general case, where σ depends also
on x the estimates of integrals of the volatility converge stably in law to random
variables with a non-standard limit distribution. The limit distribution depends
on the diffusion process Xt itself and we use this result to develop a bootstrap
test for the parametric form of the volatility function, which is consistent in the
general diffusion model.
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Adaptive support vector machines

Sara A. van de Geer

(joint work with B. Tarigan)

We examine the problem of labeling a feature X ∈ X of an item. For example,
the item may be a mushroom, the feature its physical characteristics, and the
label Y classifies it as edible or not. We consider the case where Y is binary, say
Y ∈ {−1, 1}. A classifier is a function f : X → R. Associated with f is the
classification rule: given X , predict Y by the sign of f(X). Thus, a prediction
error occurs if Y f(X) < 0.

Suppose (X,Y ) are random variables with distribution P . The risk of a classifier
f is now defined as

R(f) = P (Y f(X) < 0).

Let η(X) = P (Y = 1|X) be the regression of Y on X . The classifier with minimal
risk is Bayes rule

f∗ = 2l{η > 1/2}− 1.

A training set {(Xi, Yi)}n
i=1 is a sample of i.i.d. copies from (X,Y ). Us-

ing this training set, we propose to estimate f ∗ in the following way. Let ψ =
(ψ1, . . . , ψm)T : X → Rm be some feature mapping. For α ∈ Rm, let fα be the
linear combination

fα =
∑

k

αkψk.

Let z+ denote the positive part of z ∈ R, and define the hinge loss function

l(z) = (1 − z)+, z ∈ R.

The support vector machine (SVM) empirical loss in f is now

Ln(f) =
1

n

n∑

i=1

l(Y f(Xi)).

The `1 penalized SVM estimator is defined as

f̂n = arg min
|fα|≤K/2

Ln(fα) + λn

∑

k

|αk|.

Here, λn is a smoothing parameter, and K ≥ 2 is a given constant.

We prove an oracle inequality for the SVM excess risk L(f̂n) − L(f∗) of this
estimator. Here L(f) = E(1 − Y f(X))+ is the SVM theoretical loss. Under
conditions A, B and C below, the excess risk is not much larger than the excess risk
of an oracle, which trades off non-sparseness in the number of non-zero coefficients
(the estimation error) against the approximation error of a sparse representation.

Conditions A, B and C are as follows. Let Q be the distribution of X and ‖ · ‖p

be the Lp(Q) norm (p ≥ 1).

Condition A For some constants κ ≥ 1 and σ > 0, we have for all |f | ≤ K/2

L(f) − L(f∗) ≥ ‖f − f∗‖κ
1/σ

κ.
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Condition B The smallest eigenvalue λ2
min of Σ =

∫
ψψT dQ is non-zero.

Condition C We have

• m ≤ nD, where D ≥ 1,
• Q has density q with respect to some given σ-finite measure µ, and q ≤ cq,

where cq ≥ 1 is given,

•
∫
ψ2

kdµ ≤ 1 and |ψk| ≤
√
n/ logn for all k.

For a vector α ∈ Rm, let its number of αk 6= 0 be denoted by N(α). The
“estimation error” Vn(N) is roughly speaking the error due to the variability in
the sample, of an estimator using only a given set of N nonzero coefficients. It is
defined as

Vn(N) = 2δ
2

2κ−1

[
4σλ2

n/λ
2
minN

] κ
2κ−1 ,

where 0 < δ ≤ 1/2 is fixed, but otherwise arbitrary. The best trade off between
estimation error and approximation error would yield excess risk

εn = inf{Vn(N(α)) + L(fα) − L(f∗) : |fα| ≤ K/2}.

Theorem 1 Assume conditions A, B and C are met. Take

λn = ccqDK
2
√

logn/n,

with c an appropriate universal constant. Then for a universal constant c0,

P(L(f̂n) − L(f∗) > (1 + 4δ)εn) ≤ c0 exp[−K2 logn/2].

Example. Suppose X ⊂ [0, 1]2 and that f∗ is a boundary fragment

f∗(u, v) = 2l{v < g∗(u)} − 1, (u, v) ∈ [0, 1]2.

Let 2L ≤
√
n/ logn and {ψj,l : j = 1, . . . , 2l−1, l = 1, . . . , L} be the Haar system

on [0, 1] up to resolution level L. We use the expansion

fα(u, v) =
∑

i

∑

j

∑

k

∑

l

αi,j,k,lψi,k(u)ψj,l(v).

Suppose now that Q is uniform on the grid

X = {(k2−L, l2−L) : k, l ∈ {1, 2, . . . , 2L}}.
Assume moreover that for some γ ≥ 0,

1/2 ≤ |η(u, v) − η(u, g∗(u))|
|v − g∗(u)|γ ≤ 1, ∀ (u, v) ∈ X.

Finally, assume that for some s > 1/(1 + γ),

2L∑

k=1

|g∗(k2−L) − g∗((k − 1)2−L)|1/s ≤ 1.

Then we have εn = O
(
log3 n/n

)ρ
, where ρ = κs/((2κ− 1)s+ 1), and κ = 1 + γ.
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The result of Theorem 1 can be compared with the kernel SVM’s which are often
used in literature (see for example Schölkopf and Smola (2002)). The eigenvalues
of kernels generally decrease very fast. We therefore briefly sketch a result under
a different set of conditions, more adapted a kernel setup.

Let us define I(α) =
∑

k |αk|. Let

C = {fα : I(α) ≤ 1, |fα| ≤ K/2}.
Let H(·,C, ν) be the entropy of C ⊂ L2(ν), where ν is a probability measure.

Condition DThere exists constants h > 0, and s0 ≥ 1 such that for all probability
measures ν,

H(ε,C, ν) ≤ 1

h
ε−

1
2s0 , ∀ ε > 0.

One may think of s0 as the smoothness of the kernel, and h as the “width”.
We slightly extend our definition of the `1 penalized SVM estimator, incorpo-

rating the possibility of penalty on the smoothing parameter λ. Let

f̂n = arg min
|fα|≤K/2

{
min
λ>0

{
Ln(fα) + λI(α) + b0λ

−
γ0

s0−γ0

}}
.

Here γ0 > s0 and b0 > 0 are given constants.. Under conditions A and D, there
exist a constant λ̃ depending on γ0, s0 and b0, and a constant C depending on γ0

s0 and K, such that for all |fα| ≤ K/2,

E
[
L(f̂n) − L(f∗) + λ̃γ0Iγ0/s0(f̂n)

]

≤ C

[(√
nhλ̃

)−r

+ λ̃γ0Iγ0/s0(fα) + L(fα) − L(f∗)

]
.

Here,

r =
2κs0γ0

2(κ− 1)s0γ0 + γ0 − 2κs0
.

The result can be optimized by taking the parameters γ0, h and λ̃ appropriately.
However, the optimal choice depends on κ which is generally unknown. On the
other hand, the conditions of Theorem 1 allow one to adapt to unknown κ.
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Recovering edges of an image from noisy tomographic data

Alexander Goldenshluger

(joint work with Vladimir Spokoiny)

In this paper we address the problem of recovering edges of an image from noisy
tomographic data. The original image is modeled by function f defined on the
unit disc B2(o, 1) ⊂ R2. Assume that f is smooth apart from a discontinuity jump
along a smooth curve. The problem of edge recovery from tomographic data is to
estimate the discontinuity curve from noisy measurements of line integrals of f .

The problem of edge detection arises in numerious imaging applications. For
example, images with discontinuitites along edges are ubiquitous in medical appli-
cations; here edges bring important information about body regions with different
levels of metabolic activity. Thus edge recovery is an important step in processing
tomographic images.

Although various methods and proposals are widely used in practice, [see, e.g.,
Faridani et. al. (1992), Katsevich, Ramm (1995), Srinivasa et. al (1995)] theo-
retical limitations in the problem of edge detection from the Radon data are yet
to be understood. What is the best attainable accuracy in recovering edges from
noisy observations of projections? Which methods can achieve this optimal per-
formance? The goal of the present paper is to provide a theoretical perspective on
these questions and to develop easily implemented nearly–optimal algorithm for
edge recovery in tomographic images.

In this paper we consider the white noise Radon tranform model, and our focus
is on direct recovery of the edge rather than on estimating the whole image. We
assume that the edge can be represented as the boundary of a convex set, and
propose a method for estimating support function of this set. Then the boundary is
recovered as the envelope of the estimated supporting lines. We analyze theoretical
properties of the proposed estimation scheme and show that it is nearly optimal
in order in the sense of the rates of convergence.
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Primal-Dual Algorithms of Stochastic Approximation

A. Juditsky

(joint work with A. Nemirovski, and Yu. Nesterov)

The problem of convex stochastic optimization consists to find a solution to

min f(x), subject to x ∈ G.

Here G ⊆ R
M is a closed convex set and f is a convex function. To find the mini-

mizer the stochastic optimization method is allowed to use the noisy observations
of the subgradient of f at the search points: f ′(xi) + ei, i = 1, 2, ...

We are specifically interested in the case of large scale, i.e. of high dimension
M of the problem, and of “simple set” G (such as a simples or a hyperoctahedre).
An original version of the subgradient descent – the mirror descent algorithm –
has been proposed for that type of problems in [1]. It has been proved in [1] that,
for instance, in the case when the set G is such that ‖x‖1 ≤ R for any x ∈ G, the
approximate solution x̄n after n steps of mirror descent process satisfies:

(1) Ef(x̄n) − f(x∗) = O

(
RL

√
(lnn+ lnM)

n

)
.

Where L is the “intensity” of the subgradient observation:

L2 = sup
x∈G

‖Ef ′(x) + e‖2
∞,

and E(·) stands for the expectation with respect to the noise distribution. It has
been also shown in [1] that this performance rate cannot be significantly improved.

The subject of the presented work is to study the properties of a family of
primal-dual stochastic approximation algorithms, of which the mirror descent of
[1] and [2] is a particular sample. These methods attain the performance bound [1],
but due to the improved structure they can be better tuned to satisfy particular
requirements of statistical applications.

We present two examples of using the proposed methods in the statistical prob-
lems of functional aggregation and excess risk minimization.
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A Dynamic Semiparametric Factor Model for Implied Volatility String
Dynamics

Wolfgang K. Härdle

(joint work with Matthias R. Fengler, Enno Mammen)

Successful trading, hedging and risk managing of option portfolios crucially de-
pends on the accuracy of the underlying pricing models. Departing from the
pioneering foundations of option theory laid by Black and Scholes (1973), Merton
(1973) and Harrison and Kreps (1979), new valuation approaches are continuously
developed and existing models are refined. However, despite these pervasive de-
velopments, the model of Black and Scholes (1973) remains the pivot in modern
financial theory and the benchmark for sophisticated models, be it from a theo-
retical or practical point of view.

The crucial parameter in option valuation by BS is the market volatility. Since
it is unknown, one studies implied volatility, which is derived by inverting the BS
formula for a cross section of options with different strikes and maturities traded at
the same point in time. Implied volatilities display a remarkable curvature across
the strike dimension, and – albeit to a lesser degree – a term structure across time
to maturity. For a given time to maturity the phenomenon is called smile or smirk.
This dependence given by the mapping σ̂t : (κ, τ) → σ̂t(κ, τ), where κ denotes
the strike dimension scaled in moneyness and τ time to maturity, is called implied
volatility surface (IVS). The index t denotes time-dependence. Apparently, it is
in contrast with the BS framework in which volatility is assumed to be a constant
across strikes, time to maturity and also time.

There is a considerable amount of literature which aims at reconciling this em-
pirical antagonism with financial theory. Generally speaking, this can be achieved
by including another degree of freedom into option pricing models: well-known
examples are stochastic volatility 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Time to maturity
models, (Hull and White; 1987; Stein and Stein; 1991; Heston; 1993), models with
jump diffusions, Bates (1996a,b), or models building on general Lévy processes,
e.g. based on the inverse Gaussian, Barndorff-Nielsen (1997), and generalized hy-
perbolic distribution, Eberlein and Prause (2002). These approaches capture the
smile and term structure phenomena and the complexity of its dynamics to some
extent, Das and Sundaram (1999); Bergomi (2004).

Nevertheless, the BS model and the IVS enjoy much popularity. Partly, this
may be due to the fact that the IVS is derived from instantaneous option prices,
and is thus a widely accepted state variable reflecting current market sentiments,
Bakshi et al. (2000). More importantly, however, the IVS plays a decisive role in
trading: market makers at plain vanilla desks continuously monitor and update
the IVS they trade on; and exotic derivatives trader calibrate their pricing engines
with an estimate of the IVS. This is particularly obvious for the pricing systems
relying on the local volatility models. Initially developed by Dupire (1994) and
Derman and Kani (1994), they are in wide-spread use in form of the highly efficient
implementations by Andersen and Brotherton-Ratcliffe (1997) and Dempster and
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Richards (2000). Thus, refined statistical model building of the IVS determines
vitally the accuracy of applications in trading and risk-management.

In modelling the IVS one faces two main challenges. First, the data design is
degenerated: due to institutional conventions, observations of the IVS occur only
for a small number of maturities such as one, two, three, six, nine, twelve, 18,
and 24 months to expiry on the date of issue. Consequently, implied volatilities
appear in a row like pearls strung on a necklace, or, in short: as ‘strings’. Options
belonging to the same string have a common time to maturity. As time passes,
the strings move through the maturity axis towards expiry while changing levels
and shape in a random fashion. Second, also in the moneyness dimension, the
observation grid does not cover the desired estimation grid at any point in time.
Thus, even when the data sets are huge, for a large number of cases implied
volatility observations are missing for certain sub-regions of the desired estimation
grid. This is particularly virulent when transaction based data are used. However,
despite their appearance as strings, implied volatilities are thought as being the
observed structure of a smooth surface. This is because in practice one needs to
price and hedge OTC options whose expiry dates do not coincide with the expiry
dates of the options that are traded at the futures exchange.

For the semi- or nonparametric approximations to the IVS that recently have
been promoted by Aı̈t-Sahalia and Lo (1998); Rosenberg (2000); Aı̈t-Sahalia et al.
(2001b); Cont and da Fonseca (2002); Fengler et al. (2003); Fengler and Wang
(2003), this design may pose difficulties. The fit appears very rough, and there are
huge holes in the surface, since the bandwidths are too small to bridge the gaps
between the maturity strings. In order to remedy this deficiency one would need to
strongly increase the bandwidths which may induce a large bias. Moreover, since
the design is time-varying, the bandwidths would also need to be adjusted anew
for each trading day, which complicates daily applications. Parametric models,
e.g. as in Shimko (1993), Ané and Geman (1999), and Brockhaus et al. (2000,
Chap. 2) among others, are less affected by these data limitations, but appear to
offer too little functional flexibility to capture the salient features of IVS patterns.
Thus, parametric estimates may as well be biased.

We propose a dynamic semiparametric factor model (DSFM), which approxi-
mates the IVS in a finite dimensional function space. The key feature is that we
only fit in the local neighborhood of the design points. Our approach is a com-
bination of methods from functional principal component analysis and backfitting
techniques for additive models.

Let us denote the (log)-implied volatility by Yi,j , where the index i is the number
of the day (i = 1, ..., I), and j = 1, ..., Ji is an intra-day numbering of the option
traded on day i. The observations Yi,j are regressed on two-dimensional covariables

Xi,j that contain moneyness κi,j and maturity τi,j . Moneyness is defined as κi,j
def
=

Ki,j/Ft,i,j , i.e. strike Ki,j divided by the underlying futures price Ft,i,j at time
ti,j . We also considered the one-dimensional case in which Xi,j = κi,j . However,
since modelling the entire surface is more interesting, we will present results for
this case only. The DSFM is given by:
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(1) m0(Xi,j) +

L∑

l=1

βi,lml(Xi,j) ,

where ml are smooth basis functions (l = 0, . . . , L). The IVS is approximated by a
weighted sum of smooth functions ml with weights βi,l depending on time i. The

factor loading βi
def
= (βi,1, . . . βi,L)> forms an unobserved multivariate time series.

By fitting model (1), to the implied volatility strings we obtain approximations wi.
We argue that the VAR estimation based on wi is asymptotically equivalent to
estimation based on the unobserved βi. A justification for this is given in Fengler
et al. (2004) where the relations to Kalman filtering are discussed.

The model is found to have an approximate 10% better performance than the
typical näıve trader models. Finally, we devise a generalized vega-hedging strategy
for exotic options that are priced in the local volatility framework. The general-
ized vega-hedging extends the usual approaches employed in the local volatility
framework.
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Efficient estimation of additive models with link function

Enno Mammen

(joint work with Joel Horowitz)

In this talk efficient estimation of an additive nonparametric component m1 is
discussed for a generalized additive model

E[Y i|X i] = G[m0 +m1(X
i
1) + ...+mD(X i

D)]

for i.i.d. tuples X i = (X i
1, ..., X

i
D), Y i. We discuss a two-step procedure. In a first

step an orthogonal series estimate m̃0, ..., m̃D is fitted for all components of the
additive model. In a second step a local linear fit is used for m1: define m̄1(x1) as

â where (â, b̂) is the minimizer of
n∑

i=1

{
Y i −G[m̃0 + a+ b(X i

1 − x1) + m̃1(X
i
1) + ...+ m̃D(X i

D)]
}2
Kh(X i

1 − x1).

We propose to use a one-step Newton approximation to m̄1(x1) as estimate of m1.
Let us denote this estimate by m̂1. This estimate can be compared to an estimate
in the above model where the additive functions m2, ...,mD are known (”oracle
model”). A local linear estimate in this model could be defined as m̂oracle

1 where

m̂oracle
1 (x1) is a one-step Newton approximation to â and where now (â, b̂) is the

minimizer of
n∑

i=1

{
Y i −G[m0 + a+ b(X i

1 − x1) +m1(X
i
1) + ...+mD(X i

D)]
}2
Kh(X i

1 − x1).

Our main result is that our estimate m̂1 and the oracle estimate m̂oracle
1 (x1) are

asymptotically equivalent. This can be interpreted as an efficiency result because
our estimate is doing as well as if the other components would be known.

In a second part of the talk a general result is shown for the additive model
without link function:

E[Y i|X i = m0 +m1(X
i
1) + ...+mD(X i

D).

For a general class of smoothing estimates m̂oracle
1 that are available in the oracle

model we show the following result. There exists an estimate m̂1 in the addi-
tive model that is asymptotically equivalent to m̂oracle

1 . The class of smoothing
estimates includes local polynomials, regression splines, smoothing splines and
orthogonal series estimates.

Functional regression for sparse and noisy data

Hans-Georg Müller

(joint work with Jane-Ling Wang, Fang Yao)

Functional linear regression models can be classified according to whether predictor
and responses are functions or vectors. Each of these cases gives rise to different
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procedures and analyses. We consider functional regression models where both
predictor X and response Y is a random function in L2, according to

E[Y (t)|X ] = α(t) +

∫
β(s, t)X(s)ds.

While this model has been well studied in the case where entire trajectories are
observed without noise (compare [1]), we extend its applicability to the case where
the trajectories are sampled on an irregular and sparse time grid and where the
measurements are corrupted with additional noise. The number of measurements
and their location per trajectory are assumed to be random. Under smoothness
assumptions, Gaussian assumptions on processes and errors, and assuming a posi-
tive probability to sample each predictor and response trajectory at more than one
point, we obtain asymptotic consistency with rates of convergence for estimates
of the regression parameter function β and the prediction of individual response
trajectories from sparse and noisy measurements of the predictor trajectories. The
derivations make use of classical perturbation theory for Hilbert-Schmidt operators
and of results in [2]. The method uses algorithms discussed in [3]. The proposed
functional regression method is illustrated with data from biomedical longitudinal
studies.
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Subspace Clustering and Exploratory Analysis of Gene Expression
Data

Andrew Nobel

(joint work with Xing Sun)

Exploratory analysis of gene expression data typically begins by clustering the rows
and columns of the experimental data matrix, yielding a division of the heat map
into non overlapping cells. Cells colored bright red (large values) or bright green
(small values) are viewed as representing significant sample-gene interactions, and
are subject to further analysis. Subspace clustering, also known as bi-clustering,
looks directly for sample variable interactions satisfying a pre-specified criterion.
The resulting clusters can overlap, and need not cover the heat map.



New Inference Concepts for Analysing Complex Data 2819

The talk will begin with an overview of subspace clustering in the context of
gene expression data. The remainder of the talk will be devoted to an overview of
ongoing work on the analysis of subspace clustering, beginning with several results
on significance tests (p-values) for subspace clusters having a given size and aspect
ratio. Implications of these results for the noise sensitivity of algorithms using
hereditary clustering criteria will be discussed. Applications of subspace clustering
to classification, and some efforts to refine our existing significance analysis, will
also be presented.

Spatially Adaptive Smoothing: A Propagation-Separation Approach

Jörg Polzehl

(joint work with Vladimir Spokoiny)

Edges and homogeneous regions are often the most interesting structures in im-
ages. Image enhancement should make such structures more appealing. Polzehl
and Spokoiny (2000) offered a new adaptive method of nonparametric estimation,
Adaptive Weights Smoothing (AWS), in the context of image denoising that ex-
actly focused on this goal. The method employed the structural assumption of a
valid local constant approximation of the image in a local vicinity of each pixel
and tried to adaptively recover this vicinity from the data. We now revise and ex-
tend this method to handle more general situations and to improve on the quality
of the original procedure. Generalizations include exponential family models, e.g.
binary or Poisson regression, and piecewise smooth models.

Let us assume the image to be given as gray values Yi in pixel (voxel) Xi

arranged on a two or three dimensional grid. The problem of image enhancement
can then be formulated in form of a varying coefficient model

(1) Yi ∼ Pf(Xi)

with parameter f(Xi) depending on location Xi. The function f(x) describes the
structure of the image and is the quantity we are interested to estimate.

Traditional approaches to this problem are e.g. nonlinear diffusion, wavelets
and Markov random field methods. Popular nonparametric methods for varying
coefficient models include kernel estimates and local polynomials.The latter meth-
ods focus on a localization of the model using a kernel function K and a bandwidth
h to assign weights wj(x) = K((Xj − x)/h) to each observation (Xj , Yj) when es-
timating f(x). These weights determine the local model at point x. Parameter
estimates are then obtained by weighted (localized) likelihood or least squares
yielding e.g. kernel estimates in the form

(2) f̂(x) =

n∑

j

wj(x)Yj/

n∑

j

wj(x)

The resulting estimates are smooth, with smoothness carried over from the kernel
K. This restricts there use in image enhancement.
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We employ a related but more general approach. Instead of prespecifying the
weights wj(x) defining the local model in x we allow them to depend on the
unknown image structure. We then attempt to recover both the unknown image
structure and the corresponding optimal local models (weights) from the data.

We now describe the basic idea in its simplest case where Yi = f(Xi) + εi with
Eεi = 0 and Dεi = σ2. Let us assume that in each point x there exists a local
neighborhood U(x) such that the function f(x) can be well approximated in U(x)
by a constant. If we knew this neighborhood U(x) by an oracle we would define
local weights as wj(x) = IXj∈U(x) and use these weights to estimate f(x) by (2).

On the other hand, if we have good estimates f̂(x) we can use this information to
infer on the sets U(x) by testing the hypothesis H : f(Xj) = f(x). A weight wj(x)
can be assigned based on the value of a test statistic Tj(x), assigning zero weights

if f̂(Xj) and f̂(x) are significantly different. This provides us with a weight matrix
W (x) = Diag(w1(x), . . . , wn(x)) that determines a local model in x.

We utilize both steps in an iterative procedure. We start with a very local

model in each point Xi given by weights w
(0)
j (Xi) = w

(0)
ij = Kloc(l

(0)
ij ) with l

(0)
ij =

|Xi −Xj |/h(0). The initial bandwidth h(0) is chosen very small. Kloc is a kernel

function supported on [−1, 1], i.e. weights vanish outside a ball U
(0)
i of radius h(0)

centered in Xi. We then iterate two steps, estimation of f(x) and refining the local

models. New weights are generated as w
(k+1)
ij = Kloc(l

(k)
ij )Kst(s

(k)
ij ) with l

(k)
ij =

|Xi −Xj |/h(k) and s
(k)
ij = T

(k)
ij /λ increasing the bandwidth h with each iteration

k. We use T
(k)
ij = N

(k)
i (f̂ (k)(Xi) − f̂ (k)(Xj))

2/(2σ2) with Ni =
∑

j wij as a test

statistic. The penalty s
(k)
ij effectively measures the statistical difference of the

current estimates in Xi and Xj . Due to this term we have propagation of weights
within homogeneous regions and separation of regions, or edge preservation, if the
estimated parameters become significantly different.

For large bandwidths this procedure may introduce an estimation bias in case
of f(x) changing smoothly with parameters, i.e. when our local constant as-
sumption is violated. Therefore we introduce a kind of memory in the proce-
dure, that ensures that the quality of estimation will not be lost with itera-
tions. This basically means that we compare the new estimate f̃ (k) with the

previous estimate f̃ (k−1) to define a memory parameter ηi = Kmem(m
(k)
i ) with

m
(k)
i = (2σ2τ)−1

∑
j Kloc(l

(k)
ij )(f̂ (k)(Xi)− f̂ (k)(Xj))

2. This leads to the definition

f̂ (k)(Xi) = ηf̃ (k)(Xi)+(1−η)f̂ (k−1)(Xi). The resulting algorithm reads as follows

• Initialization: Set h(1) (unit: distance between adjacent pixel), k = 1,

N
(1)
i =

∑
j w

(1)
ij , S

(1)
i =

∑
j w

(1)
ij Yj with w

(1)
ij = Kloc(l

(1)
ij ).

• Adaptation (Computing the weights): For every pair i, j, compute
the penalties

l
(k)
ij = |Xi −Xj |/h(k),

s
(k)
ij = λ−1T

(k)
ij = λ−1N

(k−1)
i (f̂ (k)(Xi) − f̂ (k)(Xj))

2/σ2.
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Now compute the weights w
(k)
ij as w

(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s
(k)
ij

)
. Define

W
(k)
i = diag{w(k)

i1 , . . . , w
(k)
in }.

• Local estimation: compute new local MLE estimates f̂
(k)
Xi

of fXi

f̃
(k)
Xi

= S
(k)
i /Ñ

(k)
i with Ñ

(k)
i =

∑

j

w
(k)
ij , S

(k)
i =

∑

j

w
(k)
ij Yl .

• Adaptive control (memory): compute the memory parameter as ηi =

Kmem(m
(k)
i )). Define

f̂
(k)
Xi

= ηf̃
(k)
Xi

+ (1 − η)f̂
(k−1)
Xi

and N
(k)
i = ηÑ

(k)
i + (1 − η)N

(k−1)
i

• Stopping: Stop if h(k) ≥ hmax, otherwise set hk = ahh
k−1, increase k by

1 and continue with the adaptation step.

This basic procedure can be modified to allow for gray values Yi following a
distribution Pf(Xi) from an exponential family replacing the test statistics Tij

by Tij = NiQ(f̂(Xi), f̂(Xj)) with Q(θ, θ
′

) denoting the Kullback-Leibler distance
between Pθ and Pθ′ .

Local polynomial models can be handled assuming a local model

f(x) = θ(Xi)Ψ(x−Xi)

with functions Ψ(x − Xi) forming a polynomial basis centered in Xi. Here we
assume that in each point x there exists a local neighborhood U(x) such that over
U(x) the vector of parameters θ(x) can be well approximated by a constant, see
Polzehl and Spokoiny (2004).

The proposed procedure involves several parameters. The most important one
is the scale parameter λ in the statistical penalty. The special case λ = ∞ sim-
ply leads to a kernel estimate with bandwidth hmax. We propose to chose λ as
the smallest value satisfying a propagation condition. We require that if the lo-
cal assumption is valid globally then with high probability the final estimate for
hmax = ∞ in every point coincides with the global estimate. The value λ pro-
vided by this condition does not depend on the unknown function f(x) and can
therefore be approximately found by simulations. P or the number of parameters
in a polynomial model.

The second parameter of interest is the maximal bandwidth hmax which controls
both numerical complexity of the algorithm and smoothness within homogeneous
regions. The scale parameter τ in mi can also be chosen to meet the propagation
condition.

We propose a new adaptive smoothing procedure with interesting properties
for applications in image analysis. For a detailed description and theoretical re-
sults including rate optimality we refer to Polzehl and Spokoiny (2002, 2004).
For examples illustrating the performance of the procedures we refer to [2], [3]
and to the material provided on our webside http://www.wias-berlin.de/project-
areas/stat/projects/adaptive-image-processing.html . An implementation of the
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algorithm will be available from http://cran.r-project.org/ with the next version
of the aws-package for R.
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Nonlinear methods for linear inverse problems with error in the
operator

Markus Reiß

(joint work with Marc Hoffmann)

In [3] we consider nonlinear estimation methods for statistical inverse problems
in the case where the operator is not exactly known. For a canonical formulation
a Gaussian operator white noise framework is developed. For some unknown
multivariate function f and compact operator K the observation is given by

gε = Kf + εẆ , Kδ = K + δḂ,

where Ẇ is an L2-white noise and Ḃ is an operator white noise, characterized by
the fact that in an orthonormal basis the infinite matrix representation consists of
i.i.d. standard Gaussian entries.

We study the performance of nonlinear estimation methods for the small noise
asymptotics δ, ε → 0 independently, under spatially inhomgeneous smoothness
assumptions on f and a degree t of ill-posedness of the operatorK. Combining the
inversion (INV) provided by the Galerkin projection method, as proposed in the
linear case by [2], on a large wavelet approximation space and wavelet thresholding
as adaptive regularisation technique (REG), we investigate the two conceptually
different methods

method I: observations gε, Kδ
INV−−−→ f̂prelim

δ,ε
REG−−−→ estimator f̂ I

δ,ε,

method II: observations gε, Kδ
REG−−−→ ĝε, K̂δ

INV−−−→ estimator f̂ II
δ,ε.

Both methods are provably rate optimal over a wide range of smoothness
classes measured in the d-dimensional Besov space Bs

p,p, the optimal rate being

max{δ, ε}2s/(2s+2t+d). Different limitations for the two methods in the case of
δ � ε and a small degree s of smoothness are discussed. The impact of threshold-
ing the wavelet representation of an operator is also of independent interest and
can be combined with iterative solution methods as in [1].
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Some theory for generalized boosting algorithms

Ya’acov Ritov

(joint work with Peter. J. Bickel, Alon Zakai)

The talk was based on Bickel, Ritov and Zakai (2004). We give a review of various
aspects of boosting, clarifying the issues through a few simple results, and relate
our work and that of others to the minimax paradigm of statistics. We consider
the population version of the boosting algorithm and prove its convergence to
the Bayes classifier, as a corollary of a general result about Gauss-Southwell opti-
mization in Hilbert space. We then investigate the algorithmic convergence of the
sample version, and give bounds to the time until perfect separation of the sample.
We conclude by some result on the statistical optimality of the L2 boosting.

We consider a standard classification problem: Let (X,Y ), (X1, Y1), . . . ,
(Xn, Yn) be an independent identically distributed sample, where Yi ∈ {−1, 1}
and Xi ∈ X . The goal is to find a good classification rule, →{−1, 1}.

The AdaBoost algorithm was originally defined, Schapire (1990), Freund (1995),
and Freund and Schapire (1996) as an algorithm to construct a good classifier by
a “weighted majority vote” of simple classifiers. To be more exact, let H be a

set of simple classifiers. The AdaBoost classifier is given by sgn
(∑M

m=1 λmhm(x)
)
,

where λm ∈ R, hm ∈ H, are found sequentially.
Let F∞ be the linear span of H. That is,

F∞ =

∞⋃

k=1

Fk, where Fk = {
k∑

j=1

λjhj : λj ∈ R, hj ∈ H, 1 ≤ j ≤ k} .

A number of workers have noted, Breiman (1998,1999), Friedman, Hastie and
Tibshirani (2000), Mason, Bartlett, Baxter and Frean (2000), and Schapire and
Singer (1999) that the AdaBoost classifier could be viewed as sgn

(
F (X)

)
, where

F is found by a greedy algorithm minimizing n−1
∑n

i=1 exp
(
−YiF (xi)

)
over F∞.

The general boosting algorithm is therefore of the following type. Given a loss
function W : R → R+, we consider a greedy sequential procedure for finding a
function F that minimizes EW

(
Y F (X)

)
. That is, given F0 ∈ H fixed, we define
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for m ≥ 0:

λm(h) = argmin
λ∈R

EW
(
Y
(
Fm(X) + λh(X)

))

hm = argmin
h∈H

EW
(
Y
(
Fm(X) + λm(h)h(X)

))

Fm+1 = Fm + λm(hm)hm.

From this point of view the algorithm appeared to be justifiable, since as was
noted in Breiman (1999) and Friedman, Hastie, and Tibshirani (2000), the corre-
sponding expression E exp

(
−Y F (X)

)
, obtained by replacing the sum by expec-

tation, is minimized by F (x) = 1
2 log

(
P (Y = 1|X)/P (Y = −1|X)

)
, provided the

linear span F∞ is dense in the space Fof all functions in a suitable way. How-
ever, it was also noted that the empirical optimization problem necessarily led to
rules which would classify every training set observation correctly and hence not
approach the Bayes rule whatever be n. Jiang (2003) established that, for observa-
tion centered stumps, the algorithm converged to nearest neighbor classification,
a good but rarely optimal rule.

The standard boosting algorithm is an example of a Gauss-Southwell procedure.
We started with a general statement of a Gauss-Southwell algorithm in vector
space. We then gave conditions that ensures that population version of AdaBoost
or other boosting algorithm converges.

Then we study the Bayes consistency properties of the sample versions of the
boosting algorithms we considered in Section 2. In particular, we shall

(i) Show that under mild additional conditions, there will exist a random

sequencemn → ∞ such that F̂mn

P−→F∞ where F̂m is defined below as the
mth sample iterate and moreover that such a sequence can be determined
using the data.

(ii) Comment on the relationship of this result to optimization for penalized
versions of W . The difference is that the penalty forces m < ∞ to be
optimal while with us, cross-validation (or a test bed sample) determines
the stopping point. We shall see that the same dichotomy applies later
when we “boost” using the method of sieves for nonparametric regression
studied by Barron, Birge and Massart (1999) and Baraud (2001).

We study that through a general argument on the convergence of an algorithm
applied to the sample, when it is known that its population version converges. We
coined this proof as the golden chain argument.

The smoothing of the boosting algorithm is based on an early stopping. We
establish that the results by Györfi et al. (2002) are relevant to early stopping of
boosting algorithm using test bed sub-sample.

We propose a regularization of L2 boosting which we view as being in the spirit
of the original proposal, but, unlike it, can be shown for, suitable H, to achieve
minimax rates for estimation of E(Y |X) under quadratic loss for P for which
E(Y |X) is assumed to belong to a compact set of functions such as a ball in
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Besov space if X ∈ R or to appropriate such subsets of spaces of smooth functions
in X ∈ Rd — see, for example, the classes Fof Györfi et al. (2003). In fact,
they are adaptive in the sense of Donoho et al (1995) for scales of such spaces. We
note that Bühlmann and Yu (2003) have introduced a version of L2 boosting which
achieves minimax rates for Sobolev classes on R adaptively already. However, their
construction is in a different spirit than that of most boosting papers. They start
out with H consisting of one extremely smooth and complex function and show
that boosting reduces bias (roughness the function) while necessarily increasing
variance. Early stopping is still necessary and they show it can achieve minimax
rates. In essence, our argument is based on using a finite sieve of weak classifiers
at each step of the algorithm, moving to the next sieve only after the improvement
in each stage falls below a given threshold.
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Kernel Methods for Implicit Surface Modeling

Bernhard Schölkopf

(joint work with Olivier Chapelle, Joachim Giesen, Simon Spalinger, Florian
Steinke, Christian Walder)

We describe methods for computing an implicit model of a hypersurface that is
given only by a finite sampling. The methods work by mapping the sample points
into a reproducing kernel Hilbert space (RKHS) and estimating hyperplanes in
that space.

Suppose we are given a sampling x1, . . . , xm ∈ X , where the domain X is
some hypersurface in Euclidean space Rd. Today the most popular approach to
approximately recover X from the sampling is to add connectivity information to
the data by transforming them into a triangle mesh. But recently also implicit
models, where the surface is modeled as the zero set of some sufficiently smooth
function, gained some popularity. We use expansions in terms of a positive definite
kernel k to model this function. Note that for every such kernel, there exists a
map Φ into an associated RKHS H such that we have k(x, x′) = 〈Φ(x),Φ(x′)〉 for
all x, x′ ∈ X ; i.e., k computes the inner product in H (see e.g. [2]).

We discuss two methods. The first one computes a hyperplane (or more gener-
ally a slab) in the RKHS, with the property that it contains most of the sampling
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points. To this end, we consider the following quadratic program:1

minimize
w∈H,ξ(∗)

∈Rm,ρ∈R

1

2
‖w‖2 +

1

νm

∑

i

(ξi + ξ∗i ) − ρ(1)

subject to δ − ξi ≤ 〈w,Φ(xi)〉 − ρ ≤ δ∗ + ξ∗i(2)

and ξ
(∗)
i ≥ 0.(3)

Here, ν is a parameter that controls certain geometric properties of the solution,
involving the points which come to lie on the hyperplane(s), and the ones that are
outside of the slab; the parameters δ and δ∗ control the width of the slab (see [1]
for details).

This problem can be expressed in dual form as

minimize
α∈Rm

1

2

∑

ij

(αi − α∗
i )(αj − α∗

j )k(xi, xj) − δ
∑

i

αi + δ∗
∑

i

α∗
i(4)

subject to 0 ≤ α
(∗)
i ≤ 1

νm
and

∑

i

(αi − α∗
i ) = 1.(5)

Once this quadratic program is solved, we can evaluate for each test point x
whether it satisfies δ ≤ 〈w,Φ(x)〉 − ρ ≤ δ∗. In other words, we have an implicit
description of the region in input space that corresponds to the region in between
the two hyperplanes in the RKHS. For δ = δ∗, this is a single hyperplane, corre-
sponding to a hypersurface in input space.2 To evaluate this criterion, we use the
kernel expansion

(6) 〈w,Φ(x)〉 =
∑

i

(αi − α∗
i )k(xi, x).

A close relationship to one-class Support Vector (SV) methods as well as to SV
regression algorithms exists. Moreover, the method can be made more robust by
including points which lie equidistantly on the two sides of the surface, and forcing
the hyperplane to assume corresponding distances to them. In this case, the value
of (6) can be used to give an estimate of the signed distance function to the surface.

In the second method, we use not only points sampled from the surface, but also
“background” points sampled uniformly from a grid covering a hyper-rectangle
enclosing X . As an estimation algorithm, we use oriented PCA performed in
an RKHS. The algorithm attempts to estimate a direction w in the RKHS to
maximize the ratio of two variances, one being the variance of the background
points projected onto w and the other one being the variance of the surface points
projected onto w. A hyperplane orthogonal to w is then used as a model of the
surface.

1Here and below, the superscript (∗) simultaneously denotes the variables with and without

asterisk, e.g., ξ(∗) is a shorthand for ξ and ξ∗.
2subject to suitable conditions on k
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Figure 1. An example of apply-
ing a variant of the first algorithm,
taken from [1].
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Examples of Statistical Learning (in Life Sciences)

Young K. Truong

(joint work with X. Lin, C. Beecher, A. Cutler, S. Young, S. Simmons)

Three examples of learning are presented based on human data from genomics,
metabolomics and functional Magnetic Resonance Imaging (fMRI). The first ex-
ample is about building a gene network that shows regulatory relationships be-
tween genes and a brief survey of Bayesian network involving functional modeling
is given. The second applies support vector machines (SVM), and random for-
est (RF), for outlier detection, variable selection and classification based on a
metabolomic data set. Some new features of RF such as importance of variables
and multidimensional scaling as well as a new window interface (POWERMV)
will be illustrated. The selected predictors may be discussed in the context of
the biochemistry of the disease. The third is about the exploration and analysis
of large fMRI datasets. We briefly describe the practical issues in preprocessing
the data, followed with statistical methods involving time series and independent
component analysis to detect the region of interest.
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The multicategory support vector machine and the multicategory
penalized likelihood estimate

Grace Wahba

(the talk is based on the work of and work with Yoonkyung Lee, Yi Lin,
Stephen A. Ackerman, Hao Helen Zhang,Xiwu Lin)

This talk was about building a model for the classification of objects into one
of two or one of several categories; firstly, via the estimation of the posterior
probability of each category using penalized likelihood methods, and, secondly,
using the recently popular support vector machine (SVM) method.

We briefly reviewed the Neyman Pearson lemma and the Bayes rule for optimal
classification, and went on to review the representer theorem [2], to describe the
penalized likelihood estimate for two categories [12], and to describe the support
vector machine [1] proposed by V. Vapnik and collaborators in the early 90’s. We
noted that [9] showed in the two category case that the SVM is estimating the
sign of the log odds ratio, just exactly what you need to implement the Bayes
rule.

Our main contribution to the theory and practice of SVMs is the development
of the multicategory SVM (MSVM) as discussed in [6] and [7]. We also briefly
described a multicategory penalized likelihood estimate from [8], which is con-
strasted with the MSVM in [13]. Some remarks were made concerning when one
would like to use the penalized likelihood estimate and when, the SVM or MSVM.

We gave theoretical details from [6] and showed pictures from [7], where the
MSVM was used to classify vectors of upwelling radiances at twelve wavelenghts
as observed by the MODIS satellite, into clear sky, water cloud or ice cloud pixels.
Impressive results were obtained. Preprints or reprints of papers with Wahba as
co-author are available via http://www.stat.wisc.edu/~wahba click on TRLIST,
and for earlier papers click on golden oldies.

Other contributions to the SVM literature by the author, coauthors/former
students include [3] [4] [5] [10] [11] [14] [15] [16].
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Estimating Dimension Reduction Directions via Conditional Density
Functions

Xia Yingcun

In this paper, we propose two new approaches to estimate the efficient di-
mension reduction (EDR) directions based on the definition directly. Compared
with the inverse regression methods [1, 2, 3], the new methods require no strong
assumptions on the design of covariates and the link function, and have better
performance than the inverse regression methods for finite samples. Compared
with the direct regression methods [4, 5, 6], which can only estimate the EDR
directions in the regression mean, the new methods can detect the EDR directions
exhaustively. Consistency of the estimators are proved. Especially, the root-n rate
can be achieved when the efficient dimension is less than 4 regardless of the number
of covariates. The corresponding algorithms are also proved to be convergent.
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Controlling the False Discovery Rate in large complex Studies

Daniel Yekutieli

(joint work with Yoav Benjamini)

The False Discovery Rate (FDR) criterion, its variations, and procedures that
control it will be reviewed. Its relevance to very large problems, such as the
analysis of locations on the chromosome associated with complex traits (QTL
analysis), the analysis of gene expression data, and behavioral genetics will be
discussed. We shall explain the complex nature of the large problems encountered
in these areas, and the need for new methodologies. We shall present hierarchical
testing, where the research question is organized in tree structure, and the testing
is organized in a way that will assure control of the FDR. While keeping in sight
the actual genetic problems. Practical issues of implementation will be addressed
as well.
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Variable Selection via COSSO in Nonparametric Regression Models

Hao Helen Zhang

(joint work with Yi Lin)

Consider the regression model yi = f(xi) + εi, i = 1, ..., n, where f is the un-

known regression function to be estimated, xi = (x
(1)
i , ..., x

(d)
i ) ∈ Πd

j=1X (j) is a
d-dimensional vector of covariates, and the ε’s are independent noises with mean
0 and variance σ2. For parametric regression models, traditional variable selec-
tion approaches include best subset selection and stepwise selection. Recently
shrinkage methods, such as the nonnegative garrotte (Breiman 1995), the LASSO
(Tibshirani 1996), and the SCAD (Fan & Li 2001), have been proposed to shrink
regression coefficients towards zero and hence select the optimal subset.

In [1], we developed a new regularization method for model selection and model
fitting in nonparametric regression models. Under the framework of the smoothing
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spline ANOVA (SS-ANOVA), we can decompose any multivariate function f as

f(x) = b+
∑d

j=1 fj(x
(j))+

∑
j<k fjk(x(j), x(k))+ · · · , in terms of a constant, main

effect components, two-way interaction components, and so on. Assume each main
component lies in some reproducing kernel Hilbert space (RKHS) H(j) over X (j).
Then f ∈ F which is a subspace of the tensor product space ⊗d

j=1H(j), since only
low order terms are typically retained in the decomposition for interpretability.
We call our method COmponent Selection and Smoothing Operator (COSSO), in
which the penalty functional is the sum of RKHS norms of function components in
the SS-ANOVA decomposition. When the noise is Gaussian and f is the additive
model, the COSSO solves

min
f∈F

1

n

n∑

i=1

{yi − f(xi)}2 + τJ(f), with J(f) =
d∑

j=1

‖P jf‖,

where P j is the projection operator onto H(j), ‖ · ‖ is the norm defined in the
RKHS F , and τ > 0 is the smoothing parameter. The penalty J(f) is different
from the squared norm employed in the traditional smoothing spline method.

Theoretical properties, such as the existence and the rate of convergence of the
COSSO estimator, are studied in [1]. The COSSO minimizer exists in F and lies in
a finite dimensional space. The solution is further shown to be unique when eval-
uated at the data points. Asymptotically, the COSSO estimator in the additive
model has a rate of convergence n−`/(2`+1), where ` is the order of smoothness of
the components. In the special case of a tensor product design with periodic func-
tions, the COSSO conducts model selection by applying a novel soft thresholding
type operation to the function components, and selects the correct model struc-
ture with probability tending to one. For tuning τ , both GCV and five-fold cross
validation are tried. A generic algorithm is then proposed to find the COSSO min-
imizer by iteratively solving the smoothing spline and the nonnegative garrotte.
Compared with the MARS, the COSSO gives very competitive performances in
both simulations and real examples.

In [2], we further generalized the COSSO as a penalized likelihood method for
nonparametric regression in exponential families. The general framework devel-
oped there allows the treatment of many types of responses such as non-normal
responses, binary and polychotomous responses, and the event counts data. With
some special way of kernel construction, the COSSO fits and selects continuous and
categorical covariates in a unified manner. The existence of the COSSO penalized
likelihood estimator is established under some mild assumptions. An iterative
algorithm is developed using Newton-Raphson method, and to further improve
the computation speed in large sample size problems, we also give a subset basis
algorithm using the parsimonious basis approach.

A related work, likelihood basis pursuit (LBP), was developed in our earlier
paper [3]. In the context of SS-ANOVA models, each functional component is rep-
resented by a large number of basis functions which were chosen to be compatible
with variable selection and model building. Basis pursuit is then applied to obtain
the optimal ANOVA decomposition in terms of having the smallest l1 norm on the
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coefficients. The LBP produces sparse solutions which greatly facilitate the vari-
able selection process. Though both give possible generalizations of the LASSO
to nonparametric regression models, the LBP conducts coefficient shrinkage while
the COSSO applies component shrinkage in some function space.
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Genetic Analysis of Ordinal Traits and Statistical Challenges

Heping Zhang

(joint work with Rui Feng, Hongtu Zhu)

Genetic mechanisms underlying many human diseases and conditions. The ex-
isting genetic analysis methods require, however, that the diseases or conditions
must either be dichotomized or measured by a quantitative trait such as blood
pressure for hypertension. In the latter case, normality is generally assumed for
the trait. On the other hand, many diseases and conditions are rated on ordinal
scales such as cancer and mental and behavioral conditions. Our objective is to
establish a framework to conduct genetic analysis for ordinal traits. We proposed
and exploited a latent variable, proportional odds logistic model that relates in-
heritance patterns to the distribution of the ordinal trait. I will present simulation
studies and real examples to demonstrate that the power of our proposed model to
detect genetic effects was substantially higher than other methods based on binary
traits. I will also present statistical challenges for understanding the asymptotic
distributions of some test statistics and for computing the statistics.
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ETH-Zürich
LEO C 17
CH-8092 Zürich
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