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Introduction by the Organisers

The workshop Finite Fields: Theory and Applications was organized by Joachim
von zur Gathen (Bonn), Igor Shparlinski (Sydney), and Henning Stichtenoth (Es-
sen), and ran from 5 to 11 December 2004. Its forty participants, with a wide
geographical distribution, enjoyed the hospitality of the Mathematical Research
Institute, and its beautiful surroundings. Two previous meetings on the topic had
been held in 1997 and 2001. The schedule consisted of three plenary talks each
morning, and specialized sessions later in the day, with vast time for discussions
and collaborative work. The traditional Wednesday afternoon hike was blessed
with wonderful sunny weather and the compulsory Black Forest cake reward at
the end.

Very broadly, we can distinguish seven subject areas:

• structure of finite fields,
• field towers,
• points on varieties,
• error-correcting codes,



2914 Oberwolfach Report 54/2004

• computation,
• combinatorics,
• cryptography.

Of course, many of the results presented bridge between two or more of these
areas. The abstracts that follow speak for themselves. Avoiding an exhaustive
discussion, we now mention one particular talk from each of the seven areas.

The structure theory includes questions about polynomials. The well-known
Hansen-Mullen conjecture (whose second author was in the audience) was stated
in 1992 and asserts that for any finite field Fq , integers n and m with 0 < m < n
and a ∈ Fq , there exists a monic primitive polynomial in Fq[x] of degree n having
a as the coefficient of xm; there are a few well-known exceptional cases where this
fails to hold. Cohen presented a proof of this conjecture at degrees n ≥ 9, assuring
the audience that smaller values of n are also under consideration.

Towers of function fields are of great interest because they may yield good
algebraic-geometric codes. Beelen introduced a recursive construction of such tow-
ers, using a certain type of Fuchsian differential equations. They can be obtained
from modular curves, and in some cases can be shown to be asymptotically optimal
(in terms of the parameters of the resulting codes).

A conjecture concerning points on varieties was stated by Heath-Brown. Name-
ly, he considers a nonsingular nonlinear hypersurface X in Pn defined over Q,
considers the number N(B) of points on X with rational integral coefficients ab-
solutely bounded by B, and conjectures that this number is O(Bn−1+ε) for any
positive ε. Browning presented his proof of this conjecture in all cases, with the
possible exceptions d = 3, 4 and n = 7, 8.

In the theory of error-correcting codes, finite fields were fundamental from its
beginning in the 1940s. Their importance was heightened by the construction of
codes from algebraic curves over finite fields. Voloch discussed a different connec-
tion: the quadratic residue codes. It is unknown whether subfamilies of them can
yield asymptotically good codes. Voloch showed that there exist subfamilies that
do not yield good codes. This is based on an expression of the minimal distance
by exponential sums, due to Helleseth, and estimates on the smallest prime that
splits completely in a number field.

For computation, a difficult class of objects are bivariate polynomials presented
in a particularly generous format, namely as a sum of terms where the exponents
are written in binary (or decimal). Thus we look at polynomials of humongous
degrees. Kaltofen presented two results which illuminate the wide range of be-
havior for questions about such polynomials. Over the rational numbers, he can
compute the linear and quadratic factors in polynomial time. Over a large finite
field, testing irreducibility is NP-hard (under randomized reductions).

As a question from combinatorics, we give the following illustrative example. A
sum-free set A in an additive group G is such that x+y 6= z for all x, y, z ∈ A. For
instance the additive group G = Zp for a prime p and A = {n, n+ 1, . . . , 2n− 1}
for n = b(p+1)/3c is a sum-free set. We can also multiply each element of A by a
fixed nonzero element of Zp. When p ≡ 2 mod 3, no other sum-free subsets of Zp
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exist. Lev shows that assumption #A ≥ 0.33p implies that A is contained in the
corresponding interval or a dilation of it.

In cryptography, a central question is the conjectured difficulty of computing
the discrete logarithm in certain groups. The method of index calculus provides
a subexponential algorithm in the unit groups of finite fields. Elliptic curves owe
their popularity in cryptography to the absence, so far, of any discrete logarithm
computation of comparable efficiency. Semaev presented an approach, rather spec-
ulative at this point, aimed at finding such a method; it works with the new notion
of summation polynomials which vanish at the x-coordinates of points that sum
to 0 on the curve.
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Abstracts

Plenary lectures

Rédei polynomials and some applications to finite geometry

Simeon Ball

(joint work with Michel Lavrauw)

A polynomial with coefficients from a finite field GF (q) that is the product of
linear polynomials is usually referred to as a Rédei polynomial. This is due to the
appearance of the polynomial

R(T, S) =
∏

(x,y)∈A
(T − xS + y),

where A is some subset of GF (q)2, in the book of Rédei [5] from the early seventies.
In the affine plane AG(2, q) the point (x, y) is incident with the line Y = mX+α

if and only if α = −mx+ y. Hence α is a root of R(T,m) of multiplicity k if and
only if the line Y = mX+α is incident with k points of the set A. This observation
allows one to look at a problem of the following type: Given a subset of points
of the affine plane that has restricted intersection properties with the lines of the
plane, say something about the size of the subset or, clearly better, determine the
possibilities for such a subset.

The problem for which Rédei introduced the polynomial R(T, S) was that of
classifying those functions over a finite field that determine few directions. Given
a set of q points A in AG(2, q) each line of a set of q parallel lines is either incident
with exactly one point of A or there is a line incident with at least two points of
A. In the latter case we say that the direction corresponding to the parallel class
of the line is determined by A. The problem of classifying those functions over a
finite field that determine few directions is equivalent to classifying those subsets
A that determine few directions. It is also equivalent to classifying those functions
f over a finite field such that the map

x 7→ f(x) + cx

is a permutation of GF (q) for a large number of c ∈ GF (q).
Rédei proved the following theorem which is the first example of what is known

as a “mod p” result. Throughout, q = ph and p is prime.

Theorem 1 ([5]). If A is a set of q points of AG(2, q) determining less than
(q + 3)/2 directions then any line that is spanned by two points of A is incident
with 0 mod p points of A.
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In [4] and [1] (for characteristic 2 and 3) it was shown that all functions that
determine less than (q + 3)/2 directions are linear over some subfield of GF (q).

In this talk we concentrate on the analogue of this problem in higher dimen-
sional subspaces. The results in the planar case allow us to classify sets of points
that determine very few directions. However, using Rédei polynomials in many in-
determinates, we can prove a similar theorem to Theorem 1 in higher dimensional
spaces, that applies to sets of points that determine quite a lot of directions.

Theorem 2 ([2]). Let A be a set of qn−1 points of AG(n, q) and let N be the
number of directions not determined by A. If N ≥ peq for some e ∈ {0, 1, . . . , h−1}
then every hyperplane meets A in 0 mod pe+1 points.

There are some immediate corollaries of Theorem 2 that relate to ovoids of the
generalised quadrangles T2(O) or T ∗

2 (O) and some questions which arise in the
case when q is prime. These will be discussed.
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Asymptotically good towers and differential equations

Peter Beelen

(joint work with Irene I. Bouw)

Let p be a prime and Fq a finite field of characteristic p. We are interested in
obtaining a tower of absolutely irreducible algebraic curves defined over Fq, with
many rational points:

X0 ← X1 ← X2 ← · · · .
We are particularly interested in the case that the curves are defined recursively;
i.e.,

(1) Xn = {(x0, x1, . . . , xn) ∈ Xn+1
0 |h(xi) = g(xi−1), 1 ≤ i ≤ n},

where (g, h) : X0 ⇒ X−1 is a correspondence and X−1 an absolutely irreducible
algebraic curve both defined over Fq .

We will now use the theory of Fuchsian differential equations (see e.g. [3, 4]).
Let L be a Fuchsian differential equation of order two on X−1. We say that the
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correspondence (g, h) : X0 ⇒ X−1 is adapted to L if the pullback differential equa-
tions on X0 under g and h are equivalent. Given such a correspondence adapted
to a certain Fuchsian differential equation, we study the tower of curves defined
as in equation (1). We show that under some technical conditions, such a tower is
asymptotically good. Examples of correspondences adapted to a differential equa-
tion can be obtained by using the theory of modular curves. The resulting towers
are towers of modular curves (see [1]).

Now suppose we are given a correspondence (g, h) : X0 ⇒ X−1 of degree one
adapted to a Fuchsian differential equation L on X−1 and a map f : Y−1 → X−1.
We show that there exist an absolutely irreducible algebraic curve Y0, a Fuchsian

differential equation Lf on Y−1 and a correspondence (g̃, h̃) : Y0 ⇒ Y−1 adapted
to Lf . This construction enables one to find new asymptotically good towers.
In particular we study the correspondence (g, h) : P1

⇒ P1 with h(t) = t2 and
g(t) = −t(t−1)/(t+1). We show that this correspondence can be seen as a pullback
from a correspondence mentioned in [2]. In particular we show that the resulting
tower of curves is asymptotically optimal over the field Fp2 if p ≡ ±1 mod 8.
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Rational points on non-singular hypersurfaces

Timothy D. Browning

(joint work with D.R. Heath-Brown)

For any n ≥ 2 let X ⊂ Pn be a non-singular hypersurface of degree d defined
over the field Q of rational numbers. Since the time of Diophantus of Alexandria,
mankind has seeked to better understand the set X(Q) = X ∩Pn(Q) of Q-rational
points on X . One of the most basic questions that can be asked is: how large is
X(Q) whenever it is non-empty?

The purpose of this note is to discuss recent attempts to develop an answer to
this question in the case that X(Q) is infinite. For this one usually defines the
height of a point x = [x0, . . . , xn] ∈ Pn(Q) to be H(x) = max0≤i≤n |xi|, provided
that x0, . . . , xn ∈ Z and h.c.f.(x0, . . . , xn) = 1. The goal is then to study the
asymptotic behaviour of the quantity

NX(B) = #{x ∈ X(Q) : H(x) ≤ B},
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as B →∞, and if possible to relate it somehow to the geometry of X . Whenever
d = 1 or 2 this quantity is well understood, and it is not hard to establish the
estimate

NX(B) = cXB
n+1−d

(
1 + o(1)

)
,

for some constant cX > 0. Whenever d is suitably small compared with n, it is
also possible to prove the same asymptotic formula via the circle method [2]. For
intermediate values of d the problem of describing NX(B) becomes much harder.
For example we know of only a single rational point on the threefold

x5
0 = x5

1 + x5
2 + x5

3 + x5
4,

this being the solution x = (144, 27, 84, 110, 133) found by Lander and Parkin [9].
In fact this provided the first counter-example to a conjecture of Euler that no kth
power can be written as the sum of k − 1 kth powers.

It is now time to discuss the motivation behind much of my recent research.
This is the following conjecture due to Heath-Brown [8, Conjecture 2].

Conjecture 1. Suppose that X ⊂ Pn is a non-singular hypersurface of degree
d ≥ 2 and let ε > 0. Then we have NX(B) = O(Bn−1+ε).

Here, and throughout this note, the implied constant may depend at most upon
d, n and the choice of ε. Although one might also ask about bounds where the
implied constant is allowed to depend arbitrariliy on X , it transpires that uniform
estimates are much more useful in applications and in most cases aren’t much
harder to prove. Conjecture 1 is essentially best possible when d = 2 or n ≤ 3,
but is almost certainly not so otherwise. In this setting Conjecture 1 is a weaker
version of the following conjecture due to Batyrev and Manin [1].

Conjecture 2. Let d ≥ 3, n ≥ 4, and suppose that X ⊂ Pn is a non-singular
hypersurface of degree d. Then there exists δ > 0 such that NX(B) = O(Bn−1−δ).

In this note I shall focus only upon Conjecture 1, and begin by presenting a
table which charts the progress made towards it in recent years. The table presents
values of θ = θd,n ∈ R for which an upper bound of the form

NX(B) = O(Bn−1+θ+ε),

holds for all non-singular hypersurfaces X ⊂ Pn of degree d ≥ 2. Conjecture 1 is
the statement that one can take θ = 0 in every case.

θ Restrictions? Who? How?

= 1
2 none Cohen [11] large sieve

= 2
n+1 none Fujiwara [6] exponential sums

= 1
d none Pila [10] plane sections

= 0 n ≥ 9 Heath-Brown [7] exponential sums
= 0 d = 2 or n ≤ 3 Heath-Brown [8] plane sections
= 0 d ≥ 4, n = 4 Browning [3] plane sections
= 0 d = 3, n = 4 Browning, Heath-Brown [4] lattice methods
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It remains to provide a brief account of the latest developments in this exciting
area. The rest of this note describes ongoing joint work with Heath-Brown. The
following result establishes Conjecture 1 provided that the degree of the hypersur-
face is large enough.

Theorem 1. Conjecture 1 holds if d ≥ 5.

The main idea in the proof of Theorem 1 is a clever induction argument due to
Pila [10]. This renders it sufficient to study the distribution of integer points on
non-singular affine surfaces of degree at least 5, for which the techniques developed
by Heath-Brown [8] are enough. An account of this method can be found in [5],
where it is employed to tackle a version of Conjecture 1 that applies to singular
hypersurfaces. A fundamental component of the technique involves fixing a suit-
able prime p, and then analysing the points x ∈ X(Q) that have height H(x) ≤ B,
and that reduce to a fixed point π ∈ X(Fp). Two further ingredients in the proof
are the geometry of numbers and the well-known estimate #X(Fp) = O(pn−1)
due to Lang and Weil.

Once combined with the results in the table, Theorem 1 therefore implies that in
order to establish Conjecture 1 completely it only remains to handle non-singular
hypersurfaces X ⊂ Pn of degree d for

d ∈ {3, 4}, n ∈ {5, 6, 7, 8}.
To tackle these eight cases we utilise an earlier result due to myself and Heath-
Brown [4, Theorem 4]. This shows that every point counted by NX(B) must lie
on one of a small number of linear subspaces contained in X . Again, the proof of
this result rests upon considering the points in X(Q) that have height at most B
and reduce to a fixed point π ∈ X(Fp) for a suitably large prime p. In order to
handle the remaining cases one is therefore led to study the Fano variety

Fk(X) = {Λ ∈ G(k, n) : Λ ⊂ X}
of k-planes contained in X . The geometry of Fano varieties is a topic that has
enjoyed significant development recently. The reader is no doubt familiar with the
classical example of cubic surfaces: when d = n = 3 it has long been know that
F1(X) has dimension 0 and degree 27. By drawing upon such tools from algebraic
geometry, and combining this with techniques from analytic number theory and
finite fields we have so far succeeded in establishing the following result.

Theorem 2. Conjecture 1 holds possibly unless d ∈ {3, 4} and n ∈ {7, 8}.
As indicated above, this is a topic that is still very much under investigation

and we are optimistic that a final resolution of Conjecture 1 is now within reach.
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Computing Modular Polynomials

Denis Charles

(joint work with Kristin Lauter)

The `th modular polynomial, φ`(x, y), parameterizes pairs of elliptic curves with
an isogeny of degree ` between them. Modular polynomials provide the defining
equations for modular curves, and are useful in many different aspects of computa-
tional number theory and cryptography. For example, computations with modular
polynomials have been used to speed elliptic curve point-counting algorithms ([2]
Chapter VII).

The standard method for computing modular polynomials consists of computing
the Fourier expansion of the modular j-function and solving a linear system of
equations to obtain the integral coefficients of φ`(x, y) ([3]). The computer alge-
bra package MAGMA [4] incorporates a database of modular polynomials for ` up
to 59.

Our idea is to compute the modular polynomial directly modulo a prime p, with-
out first computing the coefficients as integers. Once the modular polynomial has
been computed for enough small primes, our approach can also be combined with
the Chinese Remainder Theorem (CRT) approach as in [1] to obtain the modu-
lar polynomial with integral coefficients or with coefficients modulo a much larger
prime using Explicit CRT. Our algorithm does not involve computing Fourier co-
efficients of modular functions.

The idea of our algorithm is as follows. Mestre’s algorithm, the Méthode des
graphes [5], uses the `th modular polynomial modulo p to navigate around the
connected graph of supersingular elliptic curves over Fp2 in order to compute the
number of edges (isogenies of degree `) between each node. From the graph, Mestre
then obtains the `th Brandt matrix giving the action of the `th Hecke operator on
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modular forms of weight 2. The main idea of our algorithm is to do the reverse:
we compute the `th modular polynomial modulo p by computing all the isogenies
of degree ` between supersingular curves modulo p via Vélu’s formulae (see [6]).
Specifically, for a given j-invariant of a supersingular elliptic curve over Fp2 , Al-
gorithm 1 computes φ`(x, j) modulo p by computing the `+ 1 distinct subgroups
of order ` and computing the j-invariants of the ` + 1 corresponding `-isogenous
elliptic curves. Algorithm 2 then uses the connectedness of the graph of super-
singular elliptic curves over Fp2 to move around the graph, calling Algorithm 1
for different values of j until enough information is obtained to compute φ`(x, y)
modulo p via interpolation.

There are several interesting aspects to Algorithms 1 and 2. Algorithm 1 does
not use the factorization of the `-division polynomials to produce the subgroups
of order `. Instead we generate independent `-torsion points by picking random
points with coordinates in a suitable extension of Fp and taking a scalar multiple
which is the group order divided by `. This turns out to be more efficient than
factoring the `th division polynomial for large `. This approach also gives as a
corollary a very fast way to compute a random `-isogeny of an elliptic curve over
a finite field for large `.

Algorithm 2 computes φ`(x, y) modulo p by doing only computations with super-
singular elliptic curves in characteristic p even though φ`(x, y) is a general object
giving information about isogenies between elliptic curves in characteristic 0 and
ordinary elliptic curves in characteristic p. The advantage that we gain by using
supersingular elliptic curves is that for all the supersingular elliptic curves, we can
show that the full `-torsion is defined over an extension of degree dividing 6(`− 1)
of the base field Fp2 , whereas in general the field of definition can be of degree
`2 − 1.
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The Hansen-Mullen conjecture for primitive polynomials

Stephen D. Cohen

Let Fq be the finite field of order q, a power of its (prime) characteristic p. Its
multiplicative group is cyclic of order q−1: a generator is called a primitive element
of Fq . More generally, a primitive element γ of the unique extension Fqn of Fq of
degree n is the root of a (monic) primitive polynomial f(x) ∈ Fq[x] of degree n
(automatically irreducible). All roots of f (conjugates of γ) are primitive elements
of Fqn . In 1992, T. Hansen and G. L. Mullen [14] stated a natural conjecture
on the existence of a primitive polynomial of degree n over Fq with an arbitrary
coefficient prescribed.

Conjecture 1 (Hansen and Mullen). Let a ∈ Fq and let n ≥ 2 be a positive integer.
Fix an integer m with 0 < m < n. Then there exists a primitive polynomial f(x) =
xn +

∑n
j=1 ajx

n−j of degree n over Fq with am = a with (genuine) exceptions when

(q, n,m, a) = (q, 2, 1, 0), (4, 3, 1, 0), (4, 3, 2, 0) or (2, 4, 2, 1).

Like many plausible hypotheses in number theory, this conjecture is difficult to
establish in full generality. Asymptotically, it has shown it to be true [8] for fixed n
and sufficiently large q: applicability, however, is conditional when m = n

2 or n+1
2 .

At the time of its formulation, the conjecture had been already been established
when m = 1, [1]. For n = m − 1, it follows from [2], [4], [5]. The papers [13]
and [7] cover most cases with m = 2 and n ≥ 5. For m = 3, the conjecture holds
provided n ≥ 7 by [9], [10], [15] and [6]. Further, it follows from [3] whenever
m ≤ n

3 . Finally, for even prime powers q and odd degrees n it has shown by Fan
and Han [11] provided n ≥ 7.

Inspired by this last item, we now prove the conjecture for all q and m whenever
n ≥ 9. Further work is currently in hand to extend it to all values of n.

Theorem 1. Assume that n ≥ 9. Then the Hansen-Mullen conjecture holds.

Take the candidate for a primitive polynomial to be f(x) = xn · · ·+ amx
n−m +

· · · + an ∈ Fq. When m > n
2 , provided that an is also suitably prescribed, one

can replace f(x) by its reciprocal polynomial a−1
n xnf(1/x) and thereby m by

n − m to suppose that m ≤ n
2 . The characteristic difficulty encountered when

p > m is overcome by developing the p-adic method introduced by Fan and Han
in their papers cited above (and also used in [3]). Because character sum estimates
over Fqn of the shape O(qn/2) feature, it is inevitable that values of m close to
n
2 are particularly delicate (as indicated in the papers already quoted). It is a
consequence of the work of Fan and Han (for example in [11]) that the m-th
coefficient am can be prescribed by fewer than m conditions. It is a key step in the
present paper that this can be strengthened to require at most m

2 + 1 conditions.
Because this is generally significantly less than n

2 , one can progress to the proof.
Observe that it is successively smaller values of n that are more difficult. Hence in
this paper we consider values of n ≥ 9 and, to avoid overburdening with numerical
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details, defer smaller values for consideration in later articles. Indeed, most of
the numerical activity is to check that, in almost every instance, some sufficient
arithmetical criterion is satisfied. The verification is completed by the (easy) direct
construction of around 200 primitive polynomials. A sieving method of the author
(used in many previous items) is also prominent.

A similar result (also conjectured in [14]) on the existence of irreducible polyno-
mials of any degree n with an arbitrary prescribed coefficient has been established
by Daqing Wan [16], completed through the computations of [12]. The methods
of this study can be used to provide an alternative proof.
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Some wild towers over finite fields

Arnaldo Garcia

The objective of the talk was to present some towers of function fields over
finite fields, with wild ramification, having a good limit. A tower F over Fq is an
infinite sequence of fields

F = (F1 $ F2 $ F3 $ . . . $ Fn $ . . .)

such that:

• Each field Fn is a Fq-function field; i.e.; the finite field Fq is algebraically
closed in Fn.

• Each extension Fn+1/Fn is finite and separable.
• The genus g(Fn)→∞ as n→∞.

The following limit λ(F) = limn→∞
N(Fn)
g(Fn) exists (see [5]) and it is called the

limit of the tower F , where N(Fn) denotes the number of Fq-rational places of
the function field Fn. It follows from Weil’s theorem that λ(F) ≤ 2

√
q, and Ihara

[7] was the first to realize that the bound above could be improved. The best
upper bound known is λ(F) ≤ √q − 1 and it is due to Drinfeld-Vladut. For

q = `2 a square, Ihara and independently Tsfasman-Vladut-Zink (see [7] and [8])
showed the existence of towers F over Fq attaining the Drinfeld-Vladut bound;
i.e., λ(F) = `−1 =

√
q−1. For applications to Coding Theory and Cryptography

one needs that:

• The function fields Fn, and their Fq-rational places, are explicitly given by
equations, and by their coordinates.

• The genera g(Fn) are explicitly given by formulas, for all n ∈ N.

The tower F is said to be tame if each ramification degree in Fn+1/Fn, for all
values of n ∈ N, is relatively prime to the characteristic. Otherwise the tower F is
said to be wild. If E = (E1 $ E2 $ . . .) and F = (F1 $ F2 $ F3 $ . . .) are towers
over Fq, we say that E is a subtower of F (and we then write E < F) if for every
n ∈ N, there existsm ∈ N such that En ⊆ Fm. If E < F then λ(E) ≥ λ(F) (see [5]).

1. The first explicit tower F0 and two subtowers F1 and F2.

Let q = `2 be a square and let F1 = Fq(x1) be the rational function field over Fq .

1.1 The tower F0.

Let F2 = F1(z2) with z`
2 + z2 = x`+1

1 and set x2 = z2/x1. Let F3 = F2(z3) with

z`
3 + z3 = x`+1

2 and set x3 = z3/x2. Let F4 = F3(z4) with z`
4 + z4 = x`+1

3 and set
x4 = z4/x3 and so on. In this way we get a explicit tower F0 over F`2 satisfying
λ(F0) = `−1 =

√
q−1 (see [4]). Rational places come from (x1−α) with α ∈ F∗

q ;
i.e., those are the completely splitting places in the tower F0.
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Definition. Let ϕ and ψ be two rational functions in one variable. We say that a
tower F = (F1 $ F2 $ F3 $ . . .) is given by the equation ϕ(Y ) = ψ(X) if F1 =
Fq(x1) and for n ≥ 1 we have recursively Fn+1 = Fn(xn+1) with ϕ(xn+1) = ψ(xn).

1.2 The first subtower F1 < F0.

The tower F1 over F`2 is given recursively by the equation

Y ` + Y = X`/1 +X`−1.

For this tower one has also that λ(F1) = `− 1, and the completely splitting places
are (x1 − α) with α` + α 6= 0 (see [5]).

1.3 The second subtower F2 < F1 < F0.

The tower F2 over F`2 is given recursively by the equation

(Y − 1)/Y ` = (X` − 1)/X.

Here again λ(F2) = ` − 1. The completely splitting places are (x1 − α) with
α` + α = 1 (see [1]). For the function fields Fn of the tower F2 we have the
following genus formulas:

(`− 1) · g(Fn) =

{
(`n/2 − 1)2, if n even.

(`
n−1

2 − 1)(`
n+1

2 − 1), if n odd.

The interpretation of F0,F1 and F2 in terms of Drinfeld modules was carried out
by Elkies (see [3]).

2. Towers over cubic finite fields

For q = p3 with p a prime number, Zink showed the existence of towers F over

Fq satisfying λ(F) ≥ 2(p2−1)
p+2 .

2.1 The tower F3 for p = 2.

Over the field with 8 elements, consider the tower F3 given by the equation (see
[6])

Y 2 + Y = (X2 +X + 1)/X.

It satisfies λ(F3) = 3/2 = 2(p2− 1)/(p+ 2) for p = 2. Rational places on F3 come
from (x1 − α) with α ∈ F8 \ F2.

2.2 The tower F3.

The tower F3 here is a generalization of the one above. Let ` be any prime
power and q = `3. Consider the tower F3 over Fq given by (see [2])

1− Y
Y `

=
X` +X − 1

X
.
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Its limit satisfies λ(F3) ≥ 2(`2− 1)/(`+2), and hence it gives another proof and a
generalization of the lower bound from Zink. The completely splitting places are
(x1 − α) with the conditions:

α` + α = β where β`+1 = β − 1.
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Factoring Ore Polynomials over Finite Fields and Congruence

Function Fields

Mark Giesbrecht

The work of Ore [7, 9] in the early 1930’s has had a significant influence on
computing with symbolic linear ordinary difference and differential equations in
the past decade. Ore polynomials give a unified treatment to (linear) differential
and difference equations. Let F be a field, σ : F → F an automorphism of F,
and δ : F → F a σ-derivation, a map such that δ(a + b) = δ(a) + δ(b), and
δ(ab) = σ(a)δ(b) + δ(a)b. Define the ring of Ore polynomials F[D;σ, δ], as the
set of polynomials in F[D] with the usual addition and multiplication defined by
Da = σ(a)D + δ(a).

Prototypical examples of Ore polynomials include the shift (or difference) poly-
nomials F(t)[D;σ], where σ(t) = t + 1 and Dt = (t + 1)D, and the differential
polynomials F(t)[D; δ], where Dt = tD+1. Ore polynomials over F(t) have a natu-
ral interpretation as differential or difference operators. An important third class
of Ore polynomials (from Ore [8, 10]), is the additive or linearized polynomials

over a finite field Fq of characteristic p. These are of the form
∑
aix

pi ∈ Fq[x],
and form a ring under addition and composition. These are isomorphic to Fq[D;σ]
where σ(a) = ap for a ∈ Fq.
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Ore polynomials have many properties analogous to the usual polynomials, and
in particular are left (and right) principal ideal domains, providing unique least
common left multiple (LCLM) and greatest common right divisor (GCRD), which
can be efficiently computed. While factorization is not unique, it is unique up
to permutations of the degree sequence of the factors, as is decomposition as an
LCLM of mutually co-prime factors (an LCLM-decomposition).

In [4], we give efficient algorithms for factoring and LCLM-decomposing Ore
polynomials over Fq . Given f ∈ R = Fq [D;σ], we can find a complete factoriza-
tion and LCLM-decomposition in polynomial time. We proceed by decomposing
a related associative algebra to f . Define the idealizer If as the largest sub-
ring of R in which Rf is a two-sided ideal, and the eigenring as Ef = If/Rf .
This is a finite-dimensional associative algebra over Fp, for which a basis can be
computed efficiently. We prove in [4] that Ef has zero divisors if and only if f
factors, and Ef has orthogonal idempotents v, w with v + w = 1 if and only if
f is LCLM-decomposable. From such zero-divisors and idempotents, f can be
efficiently factored or decomposed.

While algorithms for finding zero divisors in the eigenring are presented in
[4], we give more efficient methods for general associative algebras in [2, 3]. If
an algebra A ⊆ Fm×m

q is given by a basis a1, . . . , a` ∈ Fm×m
q , then a complete

set of primitive pairwise orthogonal idempotents can be found with an expected
O(m3 logm +m2`) operations in Fq. When A is semi-simple, a basis for all the
simple components and an isomorphism between each simple component and a
full matrix algebra is also found.

Giesbrecht & Zhang [5] generalize techniques for factoring and decomposing
Ore polynomials over finite fields to function fields over Fq . This is important
as a first step towards modular algorithms for factoring differential and difference
polynomials over Q(t). All Ore rings Fq(t)[D;σ, δ] can be reduced to the usual
polynomials, the shift polynomials, the differential polynomials, and the dilation
polynomials (where Dt = ξtD, for some ξ ∈ Fq2). In each of these cases the main
observation is that Fq(t) is a finite extension of the field of constants K ⊆ Fq(t) (the
subfield of Fq(t) commuting with D). In particular, for the differential polynomials
K = Fq(t

p), while for shift polynomials over Fp, K = Fp(t
p − t). This allows us to

express the eigenring as a finite dimensional algebra over K. We prove, analogously
to the finite field case, that zero-divisors in the eigenring exist if and only if f
factors, and orthogonal idempotents exist if and only if f can be decomposed as
an LCLM of co-prime polynomials. To decompose the eigenring, we adapt the
algorithm of [6], and note it can be made more efficient by techniques in [2]. The
algorithm for factorization and decomposition of f ∈ Fq(t)[D;σ, δ] requires time
polynomial in degt f , degD f and p (and not log p, as one might hope).

The work in [5] coincides with the different but related approach of Cluzeau
[1] for factoring differential polynomials over Fp(t). Based on earlier works of Van
der Put [11], this algorithm decomposes the p-curvature, a linear map associated
to f .
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On the complexity of factoring bivariate supersparse and straight-line

polynomials

Erich Kaltofen

(joint work with Pascal Koiran)

We present algorithms that compute the linear and quadratic factors of supersparse
(lacunary) bivariate polynomials over the rational numbers in polynomial-time in
the input size. In supersparse polynomials the term degrees can have hundreds
of digits as binary numbers. Our algorithms are Monte Carlo randomized for
quadratic factors and deterministic for linear factors. Our approach relies on the
results by H. W. Lenstra, Jr., [4, 5] on computing factors of univariate supersparse
polynomials over the rational numbers.

Furthermore, we show that the problem of determining the irreducibility of
a supersparse bivariate polynomial over a large finite field of any characteristic
is NP-hard via randomized reductions. The latter theorem sharpens our earlier
NP-hardness result of irreducibility of bivariate polynomials over large finite fields
given by division-free straight-line programs, which I presented in my talk, by
techniques from [1, 3], which were brought to my attention by Joachim von zur
Gathen and Igor Shparlinksi during the conference. With our approach we can
in turn extend the theorem that testing a supersparse univariate polynomial for
squarefreeness is NP-hard via randomized reductions [3] to a sufficiently large finite
coefficient field of any characteristic.
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MDS codes, arcs and algebraic curves

Gábor Korchmáros

A linear (q-ary) code of length n, dimension k and minimum distance d is a
maximum distance separable code, briefly an MDS code, if it attains the Singleton
upper bound, that is, d = n − k. An MDS code corresponds via its generator
matrix to an arc of size n in PG(k− 1, q), the k-dimensional projective space over
the finite field Fq with q = ph, p prime. An arc in PG(k−1, q) is a set of at least k
points no k of which are in a hyperplane. Non–extendable MDS codes correspond
to complete arcs, that is, to arcs not contained in a larger arc. For q ≥ k − 1,
the Fq-rational points of a normal rational curve of PG(k− 1, q) constitute an arc
of size q + 1. It is plausible that such a (q + 1)-arc is complete, apart from the
cases k = 3, q − 1 and q even; but this has been proven so far for q even, k ≥ 4,
q > 2k − 6, and q odd, k ≥ 3, q > 2k − 5, and for large primes q, see [10, 12].

An important objective is to compute m(k − 1, q), the maximum length of an
MDS code of given dimension k. A straightforward computation shows that if
q < k then m(k − 1, q) = k in such cases. The Main Conjecture for MDS codes,
always taking q > k − 1, is

m(k − 1, q) =

{
q + 2 for k = 3 and k = q − 1 both with q even,
q + 1 in all other cases.

Munueara [8] proved this conjecture for algebraic-geometric MDS codes arising
from curves with genus g for g = 0, 1 and, when q > 83, for g = 2, see also [3, 16].
Computational results for small values of q are given in [2].

From results on arcs obtained by Blokhuis, Bruen, Casse, Glynn, Hirschfeld,
Kaneta, Maruta, Segre, Storme, Thas and others between 1955 and 1990, see
Chapter 27 in [3] and [1], the Main conjecture holds in small dimensions k ≤ 5,
and also for q > 2 even, q > (2k − 15

2 )2, and for q odd, q > (4k − 55
4 )2.

The study of the odd q order case can greatly benefit by results on algebraic
curves over Fq with many Fq-rational points. From now on, q is odd, and k ≥ 5.
In PG(2, q), every arc of size m(2, q) = q + 1 consists of all Fq-rational points of
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an irreducible conic in PG(2, q), see [9]. Let m′(2, q) be the size of the second
largest complete arc in PG(2, q). Then every arc of size larger than m′(2, q) is
contained in an irreducible conic in PG(2, q). Induction on dimension together
with a result of Kaneta and Maruta, see Theorem 27.6.1 in [3], show that the
Main conjecture holds for q > m′(2, q) + k − 5. By Segre’s connection between
arcs and curves, there is a projective, absolutely irreducible (possibly singular)
algebraic plane curve Γ defined over Fq of degree 2t with t = q − m′(2, q) + 2
which contains at least t(q− t+ 2) points P ∈ PG(2, q) such that the intersection
multiplicity I(P,Γ∩`) is 2 for some line ` of PG(2, q). From the Hasse-Weil upper
bound, m′(2, q) ≤ q− 1

4

√
q+ 25

16 . The Stöhr-Voloch theorem gives an improvement

to this estimate: if q = p is prime, then m′(2, p) ≤ 44
45p + 89, see [15], and if q

is a non-square, then m′(2, q) ≤ q − 1
4

√
pq + 29

16p + 1, see [14]. The best known

estimate for square q is q−√q+ 1 ≤ m′(2, q) ≤ q− 1
2

√
q+ 5

2 , see [4, 5]. The proof
of the latter upper bound depends essentially on the following result. Let Γ be a
projective, absolutely irreducible (possibly singular) algebraic plane curve of degree
n, defined over Fq for an odd square q > 9. Assume that Γ is classical, but its
Veronese embedding is Frobenius non-classical with Frobenius orders 0, 1, 2, 3,

√
q.

Two types of branch-points P ∈ Γ centred at a point of PG(2, q) are distinguished,
according as j2(P ) equals j1(P ) or does not. Here (j0(P ) = 0, j1(P ), j2(P )) is the
order sequence of Γ at P . Let

Mq =
∑

P

j1(P ), M ′
q =

∑

P

j1(P ),

as P ranges over the branch-points of first and second type, respectively. Assume
that 3 ≤ n ≤ √q − 3, and q > 232 but q 6= 36, 55. The main result in [5] states
that 2Mq + M ′

q ≤ n(q − √q + 1). Equality holds if and only if Γ is the Fermat

curve of equation x(
√

q+1)/2 + y(
√

q+1)/2 + 1 = 0, up to projectivity over Fq , which
is the only Fq-maximal plane curve of genus g = 1

8 (
√
q − 1)(

√
q − 3), see [6].
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[4] J. W. P. Hirschfeld and G. Korchmáros, On the embedding of an arc into a conic in a finite
plane. Finite Fields Appl. 2 (1996), 274-292.
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Sum-free sets in finite fields

Vsevolod F. Lev

A subset A of an (additively written) abelian group is called sum-free if the equa-
tion x+y = z has no solutions in the elements of A; in other words, if a1 +a2 /∈ A
for any a1, a2 ∈ A. Letting 2A := {a1 + a2 : a1, a2 ∈ A} (the sumset of A) and
A − A := {a1 − a2 : a1, a2 ∈ A} (the difference set of A) we can also re-write the
definition of a sum-free set as 2A ∩ A = ∅ or equivalently, as (A − A) ∩ A = ∅.
Thus, sum-free sets are, in a sense, “anti-subgroups”.

To our knowledge, sum-free sets were first introduced in 1916 by Schur whose
celebrated result, considered now one of the origins of the Ramsey theory, states
that the set of positive integers cannot be partitioned into finitely many sum-
free subsets. Further research was, to a large extent, motivated by the famous
conjecture by Cameron and Erdős, asserting that the number of sum-free subsets
of the interval [1, n] is O(2n/2); see [2]. This conjecture was recently settled by
Green [5] and independently by Sapozhenko [14]. In this connection we mention
the papers by Alon [1], Green and Ruzsa [6], and the papers [7, 8, 9, 11, 12],
authored or co-authored by the presenter.

Another research direction is spanned by the following question: how large
can a sum-free subset of a finite abelian group be? For some groups the answer
has been known for over 30 years, see [4, 13, 15, 16]; however, for a number of
particularly “tough” groups this question remained open until recent paper by
Green and Ruzsa [6]. Much effort has been made also to determine the structure
of sum-free subsets of the maximum possible size; for numerous results of this sort
and further references see [17].

The additive group of the finite field GF(2r) has received particular attention
due to relations with finite geometries and coding theory. It is easily seen, for
instance, that sum-free sets in GF(2r) are caps (no-three-points-on-a-line sets) in
the affine geometry AG(r, 2); moreover, maximal sum-free sets are complete caps.
(For convenience, here and below we identify fields GF(pr) with their additive
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groups.) Since |2A| ≥ |A| and |A − A| ≥ |A|, any sum-free subset A ⊂ GF(2r)
satisfies |A| ≤ 2r−1, and this bound is sharp as the non-zero coset of any index-two
subgroup of GF(2r) is a sum-free set. Conversely, it can be shown that for r ≥ 4
any sum-free set A ⊂ GF(2r) with |A| > 5 · 2r−4 is a subset of the non-zero coset
of an index-two subgroup of GF(2r). This result was first established by Davydov
and Tombak in [3] and since then has been rediscovered several times. Indeed,
the main theorem of [3] is much stronger and consists of complete description of
those maximal (by inclusion) sum-free sets A ⊂ GF(2r), satisfying |A| > 2r−2 +1:
specifically, any such set is a union of cosets of a non-zero subgroup of GF(2r).
The ideology behind this result is that large sum-free sets possess a rigid structure
(while small sum-free sets can be sporadic). More precisely, large maximal sum-
free sets can be obtained by the “lifting procedure” from sum-free sets in the
quotient groups.

For the groups GF(pr) with p ≥ 3 no similar results were known until recently,
though the largest possible size of a sum-free subset A ⊂ GF(pr) is known and
sum-free subsets of this largest size are classified in most cases; see, for instance,
[6] or [17]. However, there were virtually no attempts to go one step further and
to determine the structure of sum-free sets of size close to the largest possible. In
our paper [8] we address the case p = 3.

Theorem. Let r ≥ 3 and suppose that A ⊂ GF(3r) is sum-free. If |A| > 5 · 3r−3,
then A is contained in a non-zero coset of an index-three subgroup of GF(3r).

Here the bound 5 · 3r−3 is sharp: we present in [8] a construction of sum-free
sets A ⊂ GF(3r) of size |A| = 5 · 3r−3, not contained in a non-zero coset of an
index-three subgroup. Parallel to the main result by Davydov and Tombak is the
following conjecture, also stated in [8].

Conjecture. Let r ≥ 3 and suppose that A ⊂ GF(3r) is a maximal (by inclusion)
sum-free set. If |A| > (3r−1 + 1)/2, then A is a union of cosets of a non-zero
subgroup of GF(3r).

Again, the bound |A| > (3r−1 + 1)/2 is sharp: we give in [8] a construction of
maximal sum-free subsets A ⊂ GF(3r) with |A| = (3r−1 + 1)/2 such that A is not
a union of cosets of a non-zero subgroup.

Concerning finite fields GF(p) of prime order p, it is well-known that the largest
possible size of a sum-free subset A ⊂ GF(p) is b(p + 1)/3c, and all sum-free
subsets of this size have been classified. Examples of sum-free subsets of size
n = b(p + 1)/3c are the interval [n, 2n − 1] (mod p) and its dilations by non-
zero elements of GF(p), and for p ≡ 2 (mod 3) no other sum-free subsets of size
n exist. For p ≡ 1 (mod p), however, more examples can be obtained by slight
modifications of the interval [n, 2n−1] (mod p) and dilations. Using a combination
of character sums technique (see [10]), tools from additive number theory, and
combinatorial considerations, in [9] we establish the following structure result.

Theorem. Let p be a prime and suppose that A ⊂ GF(p) is sum-free. If n :=
|A| > 0.33p, then A is contained in the dilation of the interval [n, p− n] (mod p)
by a non-zero element of GF(p).
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Observe that the number of elements of the interval [n, p − n] (mod p) is
p − 2n + 1 = n + (p − 3n + 1), which shows that A is, in fact, a very dense
subset of a dilation of this interval. We notice also that the interval [n, p − n]
(mod p) is smallest possible: as it is shown in [9], for any n ∈ (p/4, p/3) there
exist sum-free sets A ⊂ GF(p) with |A| = n, not contained in a dilation of a
proper subinterval of the interval [n, p − n] (mod p). In contrast, the factor 0.33
is certainly not best possible and it would be interesting to replace it by a smaller
value. We have an example of a sum-free subset A ⊂ GF(p) of size n := |A| ≈ 0.2p
which is not contained in a dilation of the interval [n, p−n] (mod p), and bridging
the gap between 0.2p and 0.33p is a challenging open problem.
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Ramanujan graphs and Ramanujan hypergraphs

Wen-Ching Winnie Li

The eigenvalues of a k-regular connected undirected graph X lie between −k and
k. Denote by λ+(X) (resp. λ−(X)) the largest (resp. smallest) eigenvalue which
is smaller than k (resp. larger than −k). The Alon-Boppana theorem [7] asserts
that for any family of k-regular undirected graphs, one has

lim inf
i→∞

λ+(Xi) ≥ 2
√
k − 1

provided that |Xi| → ∞ as i→∞. The counter assertion

lim sup
i→∞

λ−(Xi) ≤ −2
√
k − 1

is shown in [4] to hold under the assumption that the minimal length of an odd cy-
cle inXi approaches infinity as i→∞. Note that the interval [−2

√
k − 1, 2

√
k − 1]

is the spectrum of the universal cover of k-regular graphs. Further, in case
k − 1 = q is a prime power, the infinite (q + 1)-regular tree may be realized
as PGL2(F )/PGL2(OF ) for a nonarchimedean local field with q elements in its
residue field. Here OF denotes the ring of integers of F .

A regular graph is called Ramanujan if its nontrivial eigenvalues fall in the
spectrum of its universal cover. Such a graph has good expanding property and
may be used as a good communication network.

An n-hypergraph consists of vertices and hyperedges; topologically it may be
regarded as an (n− 1)-dimensional simplicial complex. There are n− 1 adjacency
operators A1, ..., An−1 acting on functions on the vertices of a hypergraph. As-
sume that the operators Ai commute with each other. The Bruhat-Tits build-
ing PGLn(F )/PGLn(OF ) =: Bn,F is a typical example of (q + 1)-regular n-
hypergraph. It serves as a universal cover and we consider only finite quotients of
this building.

The first result is the higher dimensional analogue of the Alon-Boppana theorem
proved in [5].

Theorem 1. Let {Xj} be a family of (q + 1)-regular finite n-hypergraphs such
that each Xj contains a geodesic ball of radius dj isomorphic to a ball of the same
radius in Bn,F . Assume that dj → ∞ as j → ∞. Then for 1 ≤ i ≤ n − 1 the
closure of the eigenvalues of Ai on Xj for all j ≥ 1 contains the spectrum of Ai

on Bn,F .

In view of this theorem, we define a (q + 1)-regular n-hypergraph to be Ra-
manujan if the nontrivial eigenvalues of Ai, 1 ≤ i ≤ n− 1, fall in the spectrum of
Ai on Bn,F . The next result is

Theorem 2. Given n ≥ 2 and a prime power q, there exists an infinite family of
(q + 1)-regular finite Ramanujan n-hypergraphs.

The case n = 2 was done by Lubotzky-Phillips-Sarnak [7] and independently
by Margulis [8] over Q, and by Morgenstern [9] over a rational function field.
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Their method may be extended to construct Ramanujan n-hypergraphs by taking
left quotients of Bn,F by suitable congruence subgroups of PGLn(F ) arising from
division algebras H of dimension n2 defined over a global field of which F is a
local completion. The functions on these hypergraphs may be interpreted as auto-
morphic forms on H×, and the nontrivial eigenvalues of Ai are eigenvalues of the
Hecke operators, whose estimates are the content of the Ramanujan conjecture.
For general n and over function fields, Lafforgue [2] establishes the conjecture for
GLn, and Laumon-Rapoport-Stuhler [3] prove it for certain automorphic forms on
H×. To use Lafforgue, one needs the Jacquet-Langlands correspondence from au-
tomorphic forms on H× to those on GLn over function fields, currently established
for prime n. The work in [6] and [10] assumes the validity of the correspondence.
An unconditional result is obtained in [5] for general n by appealing to [3].

In his thesis [10] Sarveniazi describes certain n-hypergraphs as Cayley hyper-
graphs based on PGLn(Fqm) or PSLn(Fqm), following a similar argument as in
[7]. These hypergraphs are Ramanujan whenever the Jacquet-Langlands corre-
spondence holds. On the other hand, one gets a Ramanujan 3-hypergraph based
on three copies of Fq3 , whose nontrivial eigenvalues are generalized Kloosterman
sums over Fq in three variables with estimates furnished by Deligne in [1].
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Explicit constructions of algebraic geometric codes

Hiren Maharaj

Over the past decade there has been substantial research devoted to the explicit
construction of curves over finite fields with many points. Consequently we now
have a super abundance of such constructions with the primary motivation being



2942 Oberwolfach Report 54/2004

the ultimate construction of algebraic geometric codes. However, relatively little
work has been done on the explicit constructions of such codes. Below we exhibit
a new construction of explicit algebraic geometric codes. The construction has the
following advantages: for an explicitly given extension of the rational function field,
one always obtains explicit bases and therefore an exact formula for the dimension
of the code, genus computation is unnecessary for estimating the parameters of
the code, the minimum distance of these codes can be bounded below by the usual
Goppa lower bound for minimum distance and furthermore good upper bounds
on the minimum distance of the codes are given. The codes constructed here are
always subcodes of Goppa codes and in many cases they coincide with Goppa
codes. Furthermore, the ideas used in the code construction are adapted to give
sharp upper bounds for the minimum distance of a large class of Goppa codes.
Let F be an algebraic function field of a single variable and let K denote the
full field of constants of F . For our purposes K is a finite field. Suppose that
F ′ = F (y), [F ′ : F ] = n and that K is the full field of constants of F ′. Let
G0, G1, . . . , Gn−1 be n divisors of F . Consider the K-vector space

L :=

n−1⊕

i=0

L(Gi)y
i.

We wish to find a good approximation of L as a Riemann-Roch space of F ′, that
is, we desire a divisor G with the property that L ⊆ L(G) and such that both
spaces have dimensions as close as possible. Put

(1) G := max
(
ConF ′/F (Gi)− i(y), 0 ≤ i ≤ n− 1

)
.

In [2] it is shown that L(G) contains L and that the above choice of G is optimal
if F is the rational function field. Moreover, in [2], a simple procedure is given on
how to make the best possible choice of the divisors Gi so that the space L(G)
better approximates the space L. Surprisingly, in many examples and for a wide
range of parameters, the spaces L and L(G) coincide! The above ideas are easily
adapted to differential spaces [4, 5].
Next we present the code construction.
Assume that F := K(x) is the rational function field. Put G := (G0, G1, . . . , Gn−1)
and put D = P1+P2+. . .+PN where P1, . . . , PN areN rational places of F ′ which
do not belong to the support of the divisor G. Define the map ev : L(G) → KN

by ev(f) = (f(P1), f(P2), . . . , f(PN )).
Let CL(D,G) := ev(L) and for i = 0, 1, . . . , n − 1 put Ci := ev(L(Gi)y

i) and let
di be the minimum distance of the subcode Ci. If degG < N then CL(D,G) is an
[N, k, d] code where

(a) k =
∑n−1

i=0 max (degGi + 1, 0) ≥ n+
∑n−1

i=0 degGi.
(b) N − degG ≤ d ≤ min(di : 0 ≤ i ≤ n− 1).

Since F is the rational function field, explicit bases are easily constructed for the
spaces L(Gi) (see Proposition II.3.3 of [7]). One obtains a basis for the space L as
follows: let Bi be a basis for L(Gi) for i = 0, 1, . . . , n−1; then ∪n−1

i=0 Biy
i is a basis

for L. One then obtains a basis for the code CL(D,G) by applying the map ev.
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In many instances in practice the numbers d0, d1, . . . , dn−1 are easy to compute:
suppose that R1, R2, . . ., Rt are t rational places of F which do not belong to the
support of the divisors Gi (0 ≤ i ≤ n− 1) and which split completely in F to give
rise to the places P1, . . . , PN so that N = nt. If degG < N then CL(D,G) is an
[N, k, d] code where

(a) N = nt.

(b) k =
∑n−1

i=0 max (degGi + 1, 0) ≥ n+
∑n−1

i=0 degGi.
(c) N − degG ≤ d ≤ N − nmax(degGi : 0 ≤ i ≤ n− 1).

Perhaps surprisingly, the upper bound in (c) turns out to be close to the lower
bound in the many cases. The conditions of the above code constructions are
easily satisfied in practice and examples are given in [2].
In [3], the above construction is adapted to produce explicit codes from towers
of function fields. There are many explicit constructions of recursively defined
asymptotically good towers of function fields. The first few levels of these towers
provide excellent examples of curves with many points for code construction. Since
the code length from towers increase exponentially with the level, only codes from
the first few levels are expected to be of current practical interest. The above
estimates of the parameters of the codes are not strong enough to determine if
they are asymptotically good or bad and this is an open problem.
The presentation of the above codes as direct sums of very simple codes allow for
a more indepth study of their properties. For example, in [6] it is shown how this
presentation can easily be exploited to yield substantially improved lower bounds
on the minimum distance of a large class of Goppa codes.
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Maps over finite fields: integrability and reversibility

Franco Vivaldi

(joint work with John A. G. Roberts)

In the theory of dynamical systems, integrability (existence of invariants of the
motion) and reversibility (existence of conjugacy with inverse map) are important
structural properties. We let two-dimensional algebraic mappings act on finite
fields, and, based on experimental evidence, conjecture the existence of limit dis-
tributions of the length of the orbits for the integrable and reversible cases, as well
as for the case in which both properties are absent. Such distributions feature
considerable rigidity (independence from the mapping). These phenomena are
relevant to the development of criteria for integrability/reversibility for algebraic
mappings.

A mapping L : C2 → C2 is integrable if there exists a function I : C2 → C,
non-constant and defined almost everywhere in C, such that I = I ◦L. We speak
of algebraic integrability if L, L−1 and I are rational functions. The phase space of
an integrable system foliates into level sets of the function I , which are invariant
under the dynamics; moreover, the motion on each level set is regular (indeed,
conjugate to a rotation, for almost all bounded level sets). If L is algebraically
integrable and of infinite order, then the level sets of I are algebraic curves of
genus at most one [8].

A smooth mapping L is R-reversible if there exists an involution G such that

L−1 = G ◦ L ◦G−1 det(dG) < 0

where dG is the Jacobian of G. In the polynomial case there is a well-developed
theory, which, in particular, leads to normal forms for reversible maps [2, 1].

A planar mapping L with coefficients in an algebraic number field can be made
to act on F2

q , for a suitable q. (If L is rational rather than polynomial, we shall

implicitly assume that the reduced map L̄ acts on the projective plane P2(Fq).) We
look for fields Fq for which L̄ exists together with the relevant reduced quantity i.e.,
the integral Ī , or the reversor Ḡ. Letting q = pn, we keep n fixed and let p → ∞
through a suitable set of prime numbers p. These primes have positive density,
from Cebotarev’s theorem, and we are interested in the study of the asymptotic
(large p) behaviour of the length of the orbits of L̄ and their distribution. For
simplicity, in what follows we assume q = p.

Let T (z) be the length of the orbit of L through the point z ∈ F2
p. We define

(1) Dp(x) =
1

p2
#{z : T (z) ≤ px} D(x) = lim

p→∞
Dp(x).

The distribution Dp represents the probability that a point chosen at random in
F2

p belongs to a cycle of length not exceeding px, and D is its limiting value.
Extensive experimental evidence suggest the following [6, 5, 7]

Conjecture 1. The limit (1) exists for any bi-rational map L.
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(i) If L is algebraically integrable, then D(x) is a step function with steps at
1/n, n = 1, 2, . . . .

(ii) If L is R-reversible and possesses a single family of reversing symmetries,
then D(x) = 1− e−x(1 + x).

(iii) If L is neither integrable nor R-reversible, then D(x) = 0.

To obtain a non-trivial limit in case (iii) one must scale orbits differently. We
define

D′
p(x) =

1

p2
#{z : T (z) ≤ p2x} 〈D′〉p(x) =

1

#Lp

∑

m∈Lp

D′
m(x).

The average 〈D′〉p is computed over the set Lp of all primes not exceeding p at
which the map L can be reduced. Averaging is required by the presence of very
long cycles (of order p2), which is a signature of random permutations.

Conjecture 2. For every non-integrable bi-rational map, which is not R-reversible
and has no other symmetry, we have

lim
p→∞

〈D′〉p(x) = x.

A heuristic justification of conjecture 1(i) goes as follows [3]. A bi-rational map
of infinite order, which acts on a curve of genus one, can be shown to be conjugate
to a translation x 7→ x + ω with respect to the group law on the corresponding
Weierstrass curve. Upon reduction to a finite field, all the orbits on that curve
will have the same length, while the normalized (divided by p) number of points
on the curve approaches 1, due to the Hasse-Weil bound. Thus the distribution
D, if it exists, must have steps at the reciprocal of the positive integers, and the
size of the step at 1/n is the probability that ω generates a subgroup of index n
in E/Fp, where E is the given curve. The sample space here is the set of curves
that foliate F2

p. Thus the existence of the distribution D rests on the validity of a
variant of the elliptic analogue of Artin’s conjecture [4].
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Asymptotics of the minimal distance of quadratic residue codes

José Felipe Voloch

The binary quadratic residue codes are defined as follows. Given a prime p ≡ ±1
(mod 8), let ξ be a primitive p-th root of unity in the algebraic closure of F2, the
field of two elements. The hypothesis on p entails that the monic polynomial a(x),
say, whose roots are ξr, with r running over the non-zero quadratic residues modulo
p, is defined over F2 and the cyclic code of length p whose generator polynomial
is a(x) is, by definition, the binary quadratic residue code of length p. Different
choices of ξ lead to different choices of a(x) that give different but equivalent
codes. Their minimal distance dp is, in general, not known although the lower
bound dp ≥

√
p and minor improvements are known, see [1]. It is possible, using

the results of Stark [8] and Helleseth’s formula for the weight (see [2] and lemma
1 below), to improve slightly this lower bound (See [3]). However, the general
behaviour of dp is not known, in particular, whether there is an asymptotically
good subfamily of of quadratic residue codes, i.e., whether lim sup dp/p > 0. We
will show that there are asymptotically bad subfamilies of quadratic residue codes,
i.e., lim inf dp/p = 0. More precisely,

Theorem 1. For infinitely many primes p, the minimal distance dp of the binary
quadratic residue code of length p is O(p/ log log p). If furthermore, the generalised
Riemann hypothesis is true, then the bound can be improved to O(p/ log p).

In the proof of the Theorem we will use the following lemma of Helleseth. For
a proof see [2] or [3].

Lemma 1. If a(x) =
∑r

i=1 x
ji ∈ F2[x]/(x

p−1), define f(t) =
∏r

i=1(t−ji) ∈ Fp[t],
then the weight w(c) of q(x)a(x) is

w(c) =
1

2



p+ (−1)r−1




∑

t∈Fp

χ(f(t))−
r∑

i=1

χ(f ′(ji))









where χ denotes the quadratic character (Legendre symbol) mod p.

Proof of the Theorem: Let ` be an odd prime, ζ a primitive complex `-th root
of unity and K the extension of the rational number field obtained by adjoining

ζ,
√

2 and
√
ζk − 1 for all k = 1, . . . , `−1. Let p be a prime that splits completely

in K, I claim that dp ≤ (p − 1)/2`. Note that `|(p − 1) since p splits in the `-th

cyclotomic field. Let f(t) = t(p−1)/` − 1 ∈ Fp[t], then f(t) has all its roots in
Fp and yields a codeword c of Cp as in the lemma. Again, by the assumption

on p, f(t) is a square for all t ∈ Fp, since t(p−1)/` is an `-th root of unity for
t ∈ F∗

p and −1 is a square in Fp. The roots of f(t) form a subgroup G of index
` in F∗

p, f
′(t) = (p − 1)/`t in G and it follows easily that

∑
t∈G χ(f ′(t)) = 0. So

w(c) = (p− 1)/2` and the claim follows.
To complete the proof of the theorem we vary ` as above and, for each `, we

take p to be the smallest prime that splits completely in K. We will show that
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` � log log p and ` � log p under the generalised Riemann hypothesis and this
will prove the theorem. To bound p in terms of ` we use the following estimates
(see [5] and [4] respectively). Let d be the discriminant of K. Then log p � log d
and, under the generalised Riemann hypothesis, p� (log d)2. To estimate d note
that only p and 2 ramify in K. Now we use Hensel’s bound on the different
(see [7] remark 1 after Proposition III.13), which yields that the contribution of
a ramified prime to the discriminant has exponent at most n(n + 1), where n is
the absolute degree of K. We conclude that d ≤ (2p)n(n+1). Finally, is immediate
that n ≤ (p− 1)2p, which gives the results claimed.

Remark: The quadratic residue codes have been generalized to (no longer cyclic)
binary codes of lenght q for a prime power q when 2 is a square modulo q ([6]).
The above lemma has a generalization to these codes sketched in [3]. For q a
square it was shown in [6] that the square root bound is best possible. From our
perspective, their example consists of noticing that t

√
q +t is a square for all t ∈ Fq .

If q is not a prime or a square then nothing seems to be known.
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Factors of Dickson Polynomials over Finite Fields

Joseph L. Yucas

(joint work with Robert W. Fitzgerald)

We let Fq denote the finite field of characteristic p containing q elements. Let
n be a positive integer and write t = bn/2c. In his 1897 PhD Thesis, Dickson
introduced a family of polynomials

Dn(x) =
t∑

i=0

n

n− i

(
n− i
i

)
xn−2i.

These are the unique polynomials satisfying Waring’s identity

Dn(x+ x−1) = xn + x−n.



2948 Oberwolfach Report 54/2004

In recent years these polynomials have received an extensive examination. They
have become known as the Dickson polynomials (of the first kind).

Chou, and then later simplified by Bhargava and Zieve, gave a factorization of
the Dickson polynomials over Fq. We summarize their results as follows:

Theorem: If q is even, then Dn(x) is the product of irreducible polynomials in
Fq[x] which occur in cliques corresponding to the divisors d of n, d > 1. To each
such d there corresponds φ(d)/(2kd) irreducible factors, each of which has the form

kd−1∏

i=0

(x− (ζqi

+ ζ−qi

))

where ζ is a dth root of unity, φ is Euler’s totient function and kd is the least
positive integer such that qkd ≡ ±1 (mod d).

Theorem If q is odd, then Dn(x) is the product of irreducible polynomials in
Fq[x] which occur in cliques corresponding to the divisors d of n for which n/d
is odd. To each such d there corresponds φ(4d)/(2kd) irreducible factors, each of
which has the form

kd−1∏

i=0

(x− (ζqi

+ ζ−qi

))

where ζ is a 4dth root of unity and kd is the least positive integer such that
qkd ≡ ±1 (mod 4).

Notice that the factors appearing in the above results are in Fq[x], although
their description uses elements from outside of Fq. The purpose of this paper is
to better understand these factors. In this regard, we show that these factors can
be obtained from the factors of certain cyclotomic polynomials. This in turn gives
a relationship between self-reciprocal polynomials and these Dickson factors. We
also obtain a recursion for these factors. In the final section of this paper we record
a few identities that we discovered in this pursuit which appear to be new.
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Special sessions

On the List and Bounded Distance Decodability

of Reed-Solomon Codes

Qi Cheng

(joint work with Daqing Wan)

For an error-correcting code and a distance bound, the list decoding problem
is to compute all the codewords within a given distance to a received message.
The bounded distance decoding problem is to find one codeword if there is at least
one codeword within the given distance, or to output the empty set if there is
not. Obviously the bounded distance decoding problem is not as hard as the list
decoding problem. For a Reed-Solomon code [n, k]q, a simple counting argument
shows that for any integer 0 < g < n, there exists at least one Hamming ball of
radius n− g, which contains at least

(
n
g

)
/qg−k many codewords. Let ĝ(n, k, q) be

the smallest positive integer g such that
(
n
g

)
/qg−k < 1. One knows that

k ≤ ĝ(n, k, q) ≤
√
nk ≤ n.

For the distance bound up to n −
√
nk, it is well known that both the list and

bounded distance decoding can be solved efficiently [1]. For the distance bound

between n−
√
nk and n − ĝ(n, k, q), we do not know whether the Reed-Solomon

code is list, or bounded distance decodable, nor do we know whether there are
polynomially many codewords in all balls of the radius. It is generally believed
that the answers to both questions are no. There are public key cryptosystems
proposed recently, whose security is based on the assumptions.

In this talk, we prove: (1) List decoding can not be done for radius n− ĝ(n, k, q)
or larger, otherwise the discrete logarithm over Fqĝ(n,k,q)−k is easy. (2) Let h and

g be positive integers satisfying q ≥ max(g2, (h− 1)2+ε) and g ≥ ( 4
ε +2)(h+1) for

a constant ε > 0. We show that the discrete logarithm problem over Fqh can be
efficiently reduced by a randomized algorithm to the bounded distance decoding
problem of the Reed-Solomon code [q, g − h]q with radius q − g. These results
show that the decoding problems for the Reed-Solomon code are at least as hard



2950 Oberwolfach Report 54/2004

as the discrete logarithm problem over finite fields. The main tools to obtain
these results are an interesting connection between the problem of list-decoding of
Reed-Solomon code and the problem of discrete logarithm over finite fields, and a
generalization of Katz’s theorem [2] on representations of elements in an extension
finite field by products of distinct linear factors.

References

[1] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

[2] Nicholas M. Katz. Factoring polynomials in finite fields: an application of Lang-Weil to a
problem in graph theory. Mathematische Annalen, 286:625–637, 1990.

On the lattice profile of pseudorandom number sequences

Gerhard Dorfer

(joint work with Wilfried Meidl and Arne Winterhof)

In [1]–[4] we introduced and analyzed a generalized version of Marsaglia’s lattice
test for segments of sequences over an arbitrary field. The lecture provides an
overview on the results achieved there.

Let (ηn)∞n=0 be a sequence of elements in some field K. For given s ≥ 1 and
N ≥ 2 we say that (ηn) passes the s-dimensional N -lattice test if the vectors
{η

n
−η

0
| 1 ≤ n ≤ N−s} span Ks, where η

i
= (ηi, ηi+1, . . . , ηi+s−1). The greatest

s such that (ηn) satisfies the s-dimensionalN -lattice test is called the lattice profile
of (ηn) at N and is denoted by S((ηn), N).

It turns out that there is a close relationship between S((ηn), N) and the Nth
linear complexity L((ηn), N) which is the least order L of a linear recurrence rela-
tion over K

ηn+L = α0ηn + α1ηn+1 + . . .+ αL−1ηn+L−1, 0 ≤ n ≤ N − L− 1,

satisfied by the first N terms of (ηn). More precisely, we proved in [1] that the
knowledge of the linear complexity profile yields a value S such that the largest
dimension for passing the above lattice test is either S or S − 1.

In [2] for periodic sequences over finite fields and sufficiently long parts of the
period we determined the exact value S or S − 1. As an application we deduced
from recently obtained lower bounds on the linear complexity profile of certain
nonlinear pseudorandom number generators new results on their lattice structure.

In [3] it is shown that an explicit formula expressing the lattice profile in terms
of the linear complexity profile (and vice versa) can be provided once the inter-
dependency is known in certain points. Moreover, an intrinsic characterization of
lattice profiles among all functions on the nonnegative integers is established.

In [4] we determined for finite fields the number of sequences of length n with
given lattice profile at n. From this result we derived an exact formula for the
expected value and the standard deviation of the lattice profile at n. For the



Finite Fields: Theory and Applications 2951

binary case we characterized the (infinite) sequences with maximal possible lattice
profile.
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Searching in Encrypted Data

Jeroen Mathias Doumen

(joint work with Richard Brinkman, Wim Jonker)

The amount of data an average person has, is becoming so huge that in the
near future this cannot be stored locally anymore, and an external server will
have to be used. When this server is not (entirely) trusted, the data should be
encrypted. However, the data should still be accessible as a database - it should
be possible to query the data. When using thin clients or low-bandwidth networks
it is best to perform most of the work at the server. In [1] we present a method,
inspired by secure multi-party computation, to efficiently search in encrypted data.
We represent the data as an XML document, and translate XML elements to
polynomials which contain information about themselves and their descendants
in the XML tree. These polynomials are split (using secret sharing) into two
parts: a random polynomial for the client and the difference between the original
polynomial and the client polynomial for the server. The client polynomials are
generated by a pseudorandom sequence generator, and thus only the seed has to
be stored on the client. In a combined effort of both the server and the client a
query can be evaluated without traversing the whole tree and without the server
learning too much about the data or the query.
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An Algorithm for computing Isomorphisms

of Algebraic Function Fields

Florian Hess

Let F(1)/k and F(2)/k be algebraic function fields of transcendence degree one
and genus g over the constant field k. We consider the problem of computing one
or all isomorphisms φ : F(1) → F(2) which are the identity on k. This also yields
Aut(F/k) for F = F(1) = F(2). Except for being a problem of general interest our
hope is that this will prove useful for example for the elimination of isomorphic
entries during the computation of tables of curves over finite fields with many
rational points.

For g = 1 the task is related to finding rational points and for hyperelliptic
function fields the task is related to finding a hyperelliptic model. We restrict
in the following to g ≥ 2 and perfect k. We also assume that k is algebraically
closed in F(1) and F(2). For such a function field F/k we essentially make use
of the following algorithms, which are available in the computer algebra systems
Kash [1] and Magma [2].

• Compute in F as a field, a k- and k(x)-vector space, for x a separating
element.

• Compute with places, divisors and L(D) = {a ∈ F× | (a) +D ≥ 0} ∪ {0}.
• Compute Weierstrass places.

Theorem 1. Let P be a place of degree one of F/k such that the first pole order
m at P is coprime to char(k). There exists an affine curve C with function field
isomorphic to F and depending only on P of the following form

C :

{
titj − λi,j,1(t1)−

∑m
ν=2 λi,j,ν(t1)tν

with λi,j,ν ∈ k[t] and 2 ≤ i, j ≤ m.

Moreover, C can be efficiently computed in such a way that the isomorphism to F
is explicitly given in both directions and such that C is uniquely determined up to
the transformation t1 7→ cmt1 + b and ti 7→ cmiti for explicitly known m,mi ∈ Z,
2 ≤ i ≤ m and c, b ∈ k, independently of the given representation of F .

The algorithm to compute an isomorphism essentially proceeds as follows. We
choose some suitable set S(1) of places of F(1) of degree one, such that S(1) is an
isomorphism invariant, and choose P(1) from this set. We compute the respective
set S(2) for F(2). If φ exists then P(2) = φ(P(1)) will be one of the places in S(2). We
compute C(1) for F(1) and P(1), and C(2) for F(2) and every P(2). Comparing C(1),
C(2) equationwise and solving for c, b ∈ k easily yields all φ with P(2) = φ(P(1)).
Possible choices for S(1) and S(2) are for example the set of places of degree one
or the set of Weierstrass places of degree one.

We close with some remarks. If there are no places of degree 1 one can compute
the isomorphisms for constant field extensions and then check which isomorphisms
are actually defined over k. The number of comparisons of C(1) and C(2) is roughly

between O(g) and O(g3) if Weierstrass places are used, or O(max{q, gq1/2}) if all
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places of degree one are used. If all first pole orders are divisible by char(k) then
there is a version of Theorem 1 which should hold true in many cases when P is
replaced by suitable divisors D. The number of isomorphisms is bounded by O(g)
for char(k) = 0 and roughly O(g4) otherwise. A proof of Theorem 1 can be found
in [3].
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Random Walks on Elliptic Curves

Tanja Lange

(joint work with Igor E. Shparlinski)

In some recent papers, elliptic curve analogues of Pseudo Random Number Gen-
erators (PRNGs) were proposed for elliptic curves over finite fields. Random mul-
tiples of a point P of large order are computed in the generalization of the power
generator [3] and the Naor-Reingold PRNG [4, 5]. These methods are slower than
the use of LFSRs but the problem of constructing the following sequence element
is related to the Diffie-Hellman problem on the elliptic curve which is believed to
be hard under some conditions.

This study also serves a different purpose: if the sequences would turn out to
have a strongly biased distribution then the discrete logarithm problem (the main
building block of elliptic curve cryptography) on the curve should be easier or at
least the bit security should be lower than assumed.

The main emphasis of this talk is on random walks on binary elliptic Koblitz
curves [1, 6]. These curves are defined over F2 and are then considered as E/F2n

such that the Frobenius endomorphism σ can be used to speed up the computation
of scalar multiples. The standard use of σ in the computation of scalar multiples
involves arithmetic in the rationals to compute a Frobenius expansion, which is
impractical for small devices like smart cards.

The approach credited to Lenstra avoids this heavy machinery and starts with
a random Frobenius expansion which has the same distribution properties as a
genuine expansion. Our study in [2] shows that this alternative set-up can be
applied essentially without increasing the probability of collisions, i.e. each point
in 〈P 〉 is the result of a scalar multiplication approximately the same number of
times.

On the one hand this allows to use this fast method to obtain a PRNG on
E but more importantly it supports the belief that the points obtained from the
alternative approach are reasonably well distributed.
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Zeta functions of supersingular curves of genus 2

Enric Nart

(joint work with Daniel Maisner)

Let k be a finite field of characteristic 2. Any supersingular curve of genus 2
defined over k admits a model of the type:

C : y2 + y = ax5 + bx3 + cx+ d, a 6= 0.

Van der Geer and van der Vlugt expressed the number of k-rational points of C
in terms of certain linear invariants. They considered the simplectic bilinear form:

〈
x y

〉
a,b

:= Trk/F2
(axy(x3 + y3) + bxy(x+ y)),

which depends only on a, b. The radical W of this form has dimension w ≤ 4 and
one can consider two linear forms on W : ` (depending on a, b), `c (depending on
a, b, c) such that:

`c 6= ` =⇒ |C(k)| = q + 1, `c = ` =⇒ |C(k)| = q + 1±
√

2wq.

In a joint work with Daniel Maisner, we have obtained an explicit computation of
the invariants w, `, `c in terms of the coefficients a, b, c of the defining equation.
Moreover, we show that the linear form `c determines the number of points of
C over the quadratic extension of k, so that we can express the zeta function
of C in terms of objects defined over k. We apply this result to exhibit curves
with prescribed zeta function, to find formulas for the number of curves, up to k-
isomorphism, having the same zeta function and finally, to determine what isogeny
classes of abelian surfaces over k contain jacobians.
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Additive Polynomials and Elementary Abelian Extensions

Ferruh Özbudak

Let K be a field of characteristic p and h(T ) ∈ K[T ] be a separable and additive
polynomial splitting in K.

We explicitly determine an Fp-linear subspace U of K for which we prove the
following theorem.

Theorem 1. For any f ∈ K, we have that h(T )− f is irreducible over K if and
only if

T p − T − upf ∈ K[T ] is irreducible over K for each u ∈ U \ {0}.

Next we assume that h(T ) splits in a perfect field k of characteristic p > 0 and
K ⊇ k(x) is an algebraic function field with one variable having k as its constant
field. We further assume that h(T )− f is irreducible over K for some f ∈ K. Let
F denote the algebraic function field K(y), where h(y) = f .

Let g(F ) and g(K) be the genera of F and K. Let P ⊆ U be a subset with
1 + p+ . . .+ pn−1 elements forming a projective space of dimension n− 1 over Fp.
For each a ∈ P , let Ea = K(za) be the algebraic function field with zp

a− za = apf .
Since [F : K] = pn, we have that [Ea : K] = p and we denote the genus of Ea

by g(Ea). If k is a finite field, we further denote the L-polynomial of F by LF (t),
the L-polynomial of K by LK(t) and for each a ∈ P the L-polynomial of Ea by
LEa

(t)

Theorem 2. Under the notation and assumptions as above, we have that

g(F ) =
∑

a∈P

g(Ea)− pn − p
p− 1

g(K)

and

LF (t) =
∏

a∈P

LEa
(t)

LK(t)(pn−p)/(p−1)
.

In [1], only partial results for irreducibility (and genera) of this class of poly-
nomials (algebraic function fields) were obtained. The corresponding complete
results for h(T ) = T pn −T were obtained in [2], and our results can be considered
as a generalization of it.
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A Generalized Counting and Factoring Technique for Polynomials

over Finite Fields

Gary L. Mullen

(joint work with R.C. Mullin and J. Yucas)

We discuss a transform defined on the ring of polynomials over a finite field.
This transform provides a single unified method with which to retrieve several
results concerning the number of irreducible polynomials over finite fields with
various properties.

As illustrations of our method, we are able to retrieve the formula of Carlitz [1]
for the number of monic irreducible translation invariant (f(x+ a) = f(x) for all
a ∈ Fp) polynomials of degree m over Fp.

As another special case we retrieve the formula from Carlitz [2] for the number
of monic irreducible self-reciprocal (xkf(1/x) = f(x)) irreducible polynomials of
degree k over Fq .
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Degree distribution of the GCD of several univariate

polynomials over finite fields

Daniel Panario

(joint work with Zhicheng (Jason) Gao)

We study the degree distribution of the greatest common divisor of two or more
random monic univariate polynomials over finite fields. Related results:

• The probability that several polynomials are coprime has been studied by
Corteel, Savage, Wilf and Zeilberger [1].

• Drmota and Panario [2] study pairs of coprime polynomials with the con-
dition of being smooth.

• A survey on random polynomials over finite fields is in [4].

Gao and Panario [3] provide estimates for the following random variables:

• Zr: number of irreducible factors (counting repetitions) in the gcd;
• Zd: number of distinct irreducible factors in the gcd;
• Zt: total degree of the gcd.

We show that the limiting distribution of Zt is geometric, while the distributions
of Zd and Zr are very close to Poisson distributions when q ≥ 64.
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The proofs are based on two steps: the derivation of probability generating func-
tions for the above random variables, and the application of asymptotic enumera-
tion methods to obtain expectation, variance, moments and limiting distributions
of the random variables.
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Hyperelliptic curves, continued fractions, and Somos sequences

Alfred J. van der Poorten

(joint work with Alf van der Poorten)

Let D(X) be a squarefree monic polynomial of degree 2g + 2 defined over a base

field F and set D = A2 + 4R where A is the polynomial part of
√
D and the

remainder R has degree at most g. Set Z = 1
2 (
√
D+A). Then C : Z2−AZ−R = 0

defines a curve of genus g with a double point at ∞ and the definition of Z makes
sense over arbitrary base fields, including those of characteristic 2.

I study the continued fraction expansion of Z0 = (Z+P0)/Q0 where Q0 divides
the norm of its numerator, the polynomial s P0 and Q0 satisfy degP0 < g and
degQ0 ≤ g, and are so chosen that the expansion is ‘normal’ — all the partial
quotients are of degree 1. If F is infinite this situation is generic. The expansion
is then a doubly infinite sequence of lines . . . , −2, −1, h = 0, 1, 2, . . .

(Z + Ph)/Qh = ah − (Z + Ph)/Qh or, in brief, Zh = ah −Rh

where all the Zh and Rh are ‘reduced’. More, the Qh define a sequence Mh+1 =
M + Sh of divisors on Jac(C) where, remarkably, Sh = hS on Jac(C).

Now, for easy example, take g = 1. Then the Ph := eh are constants and mildly
ingenious manipulation of the recursion formulas of the expansion leads to

eh−1e
2
heh+1 = v2

(
eh +A(w)

)
, where R(w) = 0.

In fact, the −eh turn out to be the abscissas of the points M+hS on a nonsingular
cubic model of C obtained by moving S to the origin by a suitable transformation.
One now sees readily that the recursive definition Ah−1Ah+1 = ehA

2 yields

Ah−2Ah+2 = v2Ah−1Ah+1 + v2A(w)A2
h
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and that the ‘Somos 4’ sequence (Ah) consists entirely of integers (at most up to a
finite number of primes building their denominators). In fact, the Ah are divsion
polynomials ‘translated by M ’ and evaluated at the point S.

And, oh! Yes. By reduction at primes this story of course encapsulates the
infinitely many corresponding stories over each respective finite field.
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Abelian varieties over Q with good reduction at all but a single prime

René Schoof

We study abelian varieties over Q that have good reduction at all but a single
prime l. Our results are concerned with abelian varieties that have semi-stable
reduction at l.

Theorem 1. Let l be 2, 3, 5, 7 or 13. Then there do not exist any non-zero
abelian varieties over Q that have good reduction at every prime different from l
and have semi-stable reduction at l.

This result is best possible, because the Jacobian varieties J0(l) of the modular
curves X0(l) have good reduction at all primes different from l and are semi-stable
at l. The genus of X0(l) is zero if and only if l is 2, 3, 5, 7 or 13.

For l = 11, 17 or 19, the genus of X0(l) is 1 and the Jacobian variety J0(l) has
dimension 1. For these primes we can show the following.
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Theorem 2. Let l be 11, 17 or 19. Then any abelian variety over Q that has
good reduction at all primes different from l and has semi-stable reduction at l is
necessarily isogenous over Q to a power of J0(l).

The proofs of Theorems 1 and 2 proceed by studying for a suitable small
prime p 6= l, the pn-torsion points A[pn] of abelian varieties A that have good
reduction at every prime different from l and that have semi-stable reduction at l.
For any pair of distinct primes p and l we introduce a suitable category C of finite
flat group schemes of p-power order over the ring Z[ 1l ]. In terms of this category
we formulate two simple criteria for Theorem 1 to hold for the prime l. The first
involves extensions of the group schemes µp by Z/pZ over the ring Z[ 1l ]. The
second is concerned with simple objects in the categories C. We show that both
conditions are satisfied for l = 2, 3, 5, 7, 13 and p = 3, 2, 2, 3, 2 respectively.

For the primes l = 11, 17 and 19 things are different. In each case we take p = 2
and study the category C . For the primes l = 11 and 19 the first condition of the
criterion mentioned above fails. More precisely, for l = 11 and 19 the group scheme
J0(l)[2] is an ‘exotic’ simple group scheme of order 4 over Z[ 1

l ]. However, the
second condition still holds. For l = 17 it is the other way around. There exists a
non-split extension of µ2 by Z/2Z over the ring Z[ 1

17 ]. The group scheme J0(17)[2]
is an example.

For the primes l = 11, 17, 19 we show that any abelian variety A that has good
reduction at every prime different from l and semi-stable reduction at l, has the
property that the group schemes of 2n-torsion points A[2n] can be filtered with
closed subgroups in such a way that the successive subquotients are isomorphic
to J0(l)[2]. The key points is then the fact that the only non-trivial extension of
J0(l)[2] by itself is the group scheme J0(l)[4].
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Summation polynomials and the discrete logarithm problem

on elliptic curves

Igor Semaev

Let E be the elliptic curve defined over the prime finite field Fp by the equation
Y 2 = X3 + AX + B. The discrete logarithm problem here is: given P , Q ∈
E(Fp), find an integer number n such that Q = nP in E(Fp), if such an n exists.
The elliptic curve discrete logarithm problem, introduced independently by Miller
and Koblitz, is of great significance in cryptology. The aim of this talk is to
present a construction of the index calculus type algorithm for the problem. The
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construction depends on an auxiliary algorithm the existence of which is generally
an open problem.

For any natural n ≥ 2 we introduce the polynomial fn = fn(X1, X2, . . . , Xn)
related to the arithmetic operation on E. We call this polynomial the summation
polynomial and define it by the following property. Let x1, x2, . . . , xn be any
elements from Fp, the algebraic closure of Fp. Then fn(x1, x2, . . . , xn) = 0 if

and only if there exist y1, y2, . . . , yn ∈ Fp such that points (xi, yi) are on E and

(x1, y1) + (x2, y2) + . . . (xn, yn) = P∞ in the group E(Fp).

Theorem 1. The summation polynomial satisfies f2 = X1 −X2,

f3 = (X1 −X2)
2X2

3 − 2 ((X1 +X2)(X1X2 +A) + 2B)X3+
(
(X1X2 −A)2 − 4B(X1 +X2)

)
,

and fn = ResX (fn−k(X1, . . . , Xn−k−1, X), fk+2(Xn−k, . . . , Xn, X))

for any n ≥ 4 and n − 3 ≥ k ≥ 1. It is symmetric and of degree 2n−2 in each
variable for any n ≥ 3. We have

fn(x1, x2, . . . , xn) = f2
n−1(x1, x2, . . . , xn−1)X

2n−2

n + . . . .

Let dn be the total degree of the polynomial fn, then (n− 1)2n−2 ≤ dn ≤ n2n−2.

We fix any natural number n ≥ 2 and a small δ > 0. For a random residue x
modulo p we consider the equation

(1) fn+1(x1, . . . , xn, x) ≡ 0(mod p)

in variables x1, x2, . . . , xn. Very probably (1) has a solution in integer numbers
x0

i bounded by p1/n+δ. Imagine we have an auxiliary algorithm able to find such
a solution. Under this assumption we formulate the algorithm for computing the
discrete logarithm of Q to the base P . If the algorithm, finding a bounded solution
to (1), works in tp,n operations, then the complexity of the discrete logarithm
problem in E(Fp) is essentially

tp,np
1/n+δ + p2/n+2δ

operations. When tp,n is small enough, this amount may be reduced by a trick
due to Harley and Thériault, see [4]. When n ≥ 5, even for some exponential tp,n,

this amount may be less than O(p1/2) provided by Pollard’s methods.
The first variant of the present paper [3] was posted on the Cryptology ePrint

Archive web-site. Later the method got a development by Gaudry [2], who applied
the ideas introduced in [3] to elliptic curves E over finite fields Fqn for small n.
Gaudry showed that to get a useful relation one solves a system of n nonlinear
equations of total degree 2n−1 in n variables over Fq , which comes from the n+1-
th summation polynomial. For fixed n and q →∞ the system may be effectively
solved using the Gröbner basis computation. In so doing he got a method able, at
least asymptotically, to beat Pollard’s bound regardless of the curve. Afterwards
the method got a further development by Diem [1], who gave a variant of the
method with subexponential behavior for some pairs q, n.
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Some Artin-Schreier towers are easy

Henning Stichtenoth

(joint work with Arnaldo Garcia)

An Artin-Schreier tower over the finite field Fq is a sequence of function fields
F = (F0 ⊂ F1 ⊂ F2 ⊂ ...) such that all extensions Fn+1/Fn are Artin-Schreier
extensions of function fields Fn over Fq .

One knows two explicitly given Artin-Schreier towers whose limit λ(F) =
limn→∞N(Fn)/g(Fn) achieves the Drinfeld-Vladut bound

√
q − 1, resp. the Zink

bound 2(p2 − 1)/(p+ 2) for q = p3 with a prime number p. Here N(F ) and g(F )
denote the number of rational places and the genus of the function field F , respec-
tively. These examples, due to Garcia - Stichtenoth [1] and van der Geer - van der
Vlugt [2], are defined recursively by the equations

yl + y =
xl

xl−1 + 1
over the field Fq with q = l2

and

y2 + y = x+ 1 +
1

x
over the field with 8 elements.

The determination of the genus of the fields Fn in [1] and [2] requires long and
technical calculations. We give here a much simpler proof for the asymptotic
behaviour of the genus in these two towers. This proof is based on a simple lemma
about the different exponent in the composite of two cyclic extensions of function
fields of degree p.
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On the Nonlinear Congruential Pseudorandom Number Generators

of Higher Orders

Alev Topuzoğlu

(joint work with Arne Winterhof)

We study nonlinear generators of higher orders defined by recurrence relations of
order m ≥ 2;

(1) un+1 = f(un, un−1, . . . , un−m+1), n = m− 1,m, . . .

Here initial values u0, . . . , um−1 are in Fp with prime p and f ∈ Fp(X1, . . . , Xm).
These generators are of particular interest as the period length of generated se-
quences can go up to pm. Firstly we give a lower bound for the linear complexity
profile of the sequence (1) where we take f ∈ Fp[X1, . . . , Xm], belonging to the
class LI (see [1]).

Theorem 1. Let (un) be defined as in (1) with f ∈ LI. Suppose (un) is purely pe-
riodic with least period t, and the total degree of f is d. Then the linear complexity
profile L((un), N) of (un) satisfies

L((un), N) ≥ min

{⌈
logd

(
N − blogd(N/p

m−1)c −m+ 1

pm−1

)⌉
,

⌈
logd

(
t

pm−1

)⌉}
.

Theorem 1 can be improved under some additional conditions;

Theorem 2. Let f ∈ Fp[X1, . . . , Xm] with total degree d and dominating term

Xd1
1 Xd2

2 · · ·Xdm
m , where d1 ≥ 2. Suppose (un) is defined as in (1) and has least

period pm. Then the linear complexity profile L((un), N) of (un) satisfies

L((un), N) ≥ min
(⌈p
d

⌉
pm−1 + 1, N + 1− pm

)
, N ≥ 1.

We also consider a rational function f ∈ Fp(X1, . . . , Xm) which yields the inversive
congruential pseudorandom number generator of higher orders. We give a lower
bound for the linear complexity profile of the generated sequence in case it has
least period pm (see [1]).

Distribution of inversive congruential pseudorandom numbers of higher orders is
of great interest. We present a bound on the discrepancy in parts of the period
when the sequence has largest possible period pm (see [2]).

Our work generalizes some previous results obtained for the case m = 1.
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On the point orders of elliptic curves

Serge Vlăduţ

The orders of points on elliptic curves over finite fields are interesting both for
applications in crypography and theoretically. In recent papers [2], [3] (cf. also
[1]) this question got a satisfactory answer for orders rather close the the possible
maximum, but not attaining it. It is shown there that a randomly chosen point over
randomly chosen elliptic curve over a finite field, with overwhelming probability
generates a cyclic subgroup of size rather close to the maximum. In our talk we
are interested in the probability that the order attains this maximum, i.e. that
the elliptic curve is cyclic and the point generates its group.

Let E be a (randomly chosen) elliptic curve over a (fixed) finite field Fq , and
let G be a (randomly chosen) point in E(Fq). We note N = N(E) the order of
the group E(Fq), ord(G) being the order of G. Let P (q) be the probability that
G generates E(Fq), i.e. P (q) := Pr(ord(G) = N).

We consider the two (most important in cryptography) cases:

(1) q = 2l with prime l;
(2) q = p is prime.

We get using the methods of [4]:

(1) liml→∞ P (2l) = 1/2;
(2) 1/3 ≤ lim infp→∞ P (p) ≤ lim supp→∞ P (p) ≤ 6/π2.
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Linear complexity of Sidelnikov sequences

Arne Winterhof

(joint work with Moubariz Garaev, Florian Luca, Wilfried Meidl, and Igor
Shparlinski)

Let q be a power of an odd prime p and α a primitive element of the finite field
Fq. Let η denote the quadratic character of Fq . Then the Sidelnikov sequence is
the (q − 1)-periodic binary sequence (sn) defined by

(1) sn =

{
1 if η(αn + 1) = −1,
0 otherwise,

n = 0, 1, . . . .
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The linear complexity L(an) of a sequence (an) over a field F is the smallest
positive integer L such that there are constants c1, . . . , cL ∈ F satisfying

an ≡ c1an−1 + c2an−2 + . . .+ cLan−L for all n ≥ L.
The linear complexity provides information on the predictability and thus unsuit-
ability for cryptography. Hence, a low linear complexity has turned out to be an
undesirable feature of keystreams.

We determine the exact value of the linear complexity over F2 of the sequence
(1) in many cases (see [3, 4]). The proofs are based on number theoretic results:
bounds on character sums and formulas for cyclotomic numbers.

Several results on the linear complexity L over Fp of Sidelnikov sequences have
recently been obtained (see [2] and references therein). More precisely, in [2] it
has been shown that

L = q − 1−M,

where M is the number of solutions to the congruence

2−2n

(
2n

n

)
≡ (−1)(q−1)/2 (mod p), n = 0, . . . ,

q − 3

2
.

We estimate M (see [1]). In particular, these estimates are based on bounds of
character sums of the form

S(χ,N) =

N−1∑

n=0

χ

(
2−2n

(
2n

n

))
, 1 ≤ N ≤ (p+ 1)/2,

where χ is a nontrivial multiplicative character of Fp.
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An algorithm for solving
∑n

i=1 aix
n
i = b over finite fields

Christiaan E. van de Woestijne

(This work is part of my Ph.D. project with Hendrik W. Lenstra, Jr.)

It is a remarkable fact that all known algorithms for solving polynomial equations
over finite fields (such as taking square and higher roots, factorisation of polyno-
mials, and derived algorithms for finding zeros of multivariate polynomials) are
either probabilistic or inefficient. Even if we assume the Generalised Riemann



Finite Fields: Theory and Applications 2965

Hypothesis (GRH), root taking becomes deterministic, but this is not known for
factorisation of polynomials.

In this talk, I present a tower of three new algorithms which are both efficient
(taking polynomial time in terms of their input size) and deterministic. This is
achieved because these algorithms solve problems that are just somewhat easier
than the ones mentioned above (for example, the more variables a polynomial has,
the easier it is to find a zero). The problems solved are the following:

(1) Given F and n, find α ∈ F such that F = Fp(α
n).

(2) Given F and n, and a nonzero b ∈ F, find x1, . . . , xn ∈ F such that b =∑n
i=1 x

n
i (if possible).

(3) Given F and n, and nonzero elements a1, . . . , an and b ∈ F, find elements
x1, . . . , xn ∈ F such that b =

∑n
i=1 aix

n
i (if possible).

Here n is a given positive integer, while F denotes a finite field of characteristic p.
Algorithm 1 is based on (what could be called) a multiplicative version of the

primitive element theorem. Algorithms 2 and 3 employ a generalisation of the
Tonelli-Shanks algorithm, derived (but beyond recognition) from an idea of in [1].
Algorithm 3 is an algorithmic version of an idea of Dem′yanov (see [2] and [3,
Théorème 4.1]) and Kneser [4, Theorem XI.4.4]; this idea provides a constructive
proof of the case of the Chevalley-Warning theorem that corresponds to the title
equation.

Furthermore, Algorithm 2 calls Algorithm 1, and Algorithm 3 calls both pre-
ceding ones.

Details of these results will appear in my Ph.D. thesis (defense mid 2005). A
preliminary version [5] can be obtained from my home page.
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A class of Artin-Schreier towers with finite genus

Siman Yang

(joint work with San Ling and Henning Stichtenoth)

This report is on a joint work [5] with San Ling and Henning Stichtenoth. The
aim of this work is to exhibit a new class of Artin-Schreier towers of function fields
with finite genus, defined over any finite field.
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In recent years several asymptotically good function fields towers of Artin-
Schreier type have been found [2, 4]. Later they were classified in [1] as Type
I Artin-Schreier towers. It is still an open problem if there exist good towers of
Type II or Type III. Here we exhibit the first Artin-Schreier tower of Type III
with finite genus, which is recursively defined by

yq + by =
1

xq + cx
with bc(b− c)2q−2 = 1,

over any finite field K = Fpr , where b, c are constants in K, and q is a power of
prime p. The genus of this tower is proven to be at most q2.

The authors studied the ramification behaviour in a broader class of towers
recursively defined by yp + by = 1/(xp + cx), where b and c are nonzero distinct
constants inK, by performing pole order reduction in order to apply Artin-Schreier
theory to determine the different exponent in every extension of the tower. The
different exponent of any ramified place in any extension step of such tower is
proven to be 2q − 2. This result has been generalized to a general theorem in [3].

We also show the ramification locus of the tower is finite. Let γ be a fixed root
of xq−1 +c = 0 and define δ = (b−c)γ, the ramification locus of the tower is found
to be {P∞} ∪ {Pα |αq + bα = tδ for some t ∈ Fq}.

Finite ramification locus of the tower and small different exponents of the ram-
ified places ensure finite genus of the tower.
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Universitätsstr. 150
D–44780 Bochum

Prof. Dr. Gerhard Dorfer

g.dorfer@tuwien.ac.at

Institut für Diskrete Mathematik
und Geometrie
Technische Universität Wien
Wiedner Hauptstr. 8-10/104
A-1040 Wien



2968 Oberwolfach Report 54/2004

Dr. Jeroen Doumen

doumen@cs.utwente.nl

Department of Computer Science
University of Twente
P. O. Box 217
NL-7500 AE Enschede

Prof. Dr. Arnaldo Garcia

garcia@impa.br

Instituto Nacional de Matematica
Pura e Aplicada; IMPA
Estrada Dona Castorina 110
Rio de Janeiro, RJ - CEP: 22460-320
BRASIL

Prof. Dr. Joachim von zur Gathen

gathen@uni-paderborn.de

gathen@upb.de

Fakultät für Elektrotechnik,
Informatik und Mathematik
Universität Paderborn
D–33095 Paderborn

Prof. Dr. Gerard van der Geer

geer@science.uva.nl

Korteweg-de Vries Instituut
Faculteit WINS
Universiteit van Amsterdam
Plantage Muidergracht 24
NL-1018 TV Amsterdam

Dr. Mark Giesbrecht

mwg@uwaterloo.ca

School of Computer Science
University of Waterloo
Waterloo ONT N2L 3G1 – Canada

Prof. Dr. Wenbao Han

wb.han@netease.com

Department of Applied Mathematics
College of Information Engineering
Information Engineering University
Zhengzhou 450002 – P.R. of China

Prof. Dr. Florian Heß

hess@math.tu-berlin.de

Fakultät II -Institut f. Mathematik
Technische Universität Berlin
Sekr. MA 8-1
Straße des 17. Juni 136
D–10623 Berlin

Prof. Dr. Erich Kaltofen

kaltofen@math.ncsu.edu

Department of Mathematics
North Carolina State University
Campus Box 8205
Raleigh, NC 27695-8205 – USA

Prof. Dr. Gabor Korchmaros

korchmaros@unibas.it

Dipartimento di Matematica
Universita degli Studi
della Basilicata
Contrada Macchia Romana
I-85100 Potenza

Dr. Tanja Lange

lange@exp-math.uni-essen.de

Lange@itsc.ruhr-uni-bochum.de

Institute for Information Security
and Cryptology
Ruhr-Universität Bochum
Universitätsstr. 150
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