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Introduction by the Organisers

The workshop was well-attended with 46 participants of which 9 gave keynote
lectures and 25 gave short contributions. After most lectures there were lively
discussions to which all attendants contributed.

The overall theme was thermodynamics which, as a universal theory, may be -
and was - applied to different types of phenomena and materials, viz.

• plasticity
• visco-plasticity
• creep
• fracture
• fatigue
• phase transitions in solids
• nucleation
• porous materials
• epitaxy



2972 Oberwolfach Report 55/2004

• ferroelectricity
• shape memory alloys
• melting
• surface tension
• liquid crystals
• liquid crystal polymers
• entropic elasticity
• lattice elasticity
• rarefied gases
• shock propagation
• light scattering
• fluid mixtures.
The participants had a varied background: Some were physicists and engineers,

others applied mathematicians. The former were mostly interested in modelling of
material properties and simulation of observed processes. They generally tended
to make their models as simple as possible. The mathematicians took an interest
in the properties of the model equations, provided that they offered a challenge to
the analyst, or that they permitted the application of their analytical tools.

This dichotomy of the audience was intended by the organizers, of course, and
it led to lively discussions. Thus it was hotly debated whether good mathematics
should be wasted on bad physics. Or whether it is justifiable to construct muti-
lated, or arbitrarily extended physical models such that they be amenable for the
analytical toolbox. The question arose of what value an existence and uniqueness
proof is for non-realistic models.

Another case in point is the regularization of originally hyperbolic equations as
they occur in the kinetic theory of gases and in extended thermodynamics. It was
debated whether it is worthwhile to smooth out solutions artificially, rather than
investigate how nature manages the problem of avoiding jumps.

It could not be expected that such discussions reach an agreeable conclusion
but - perhaps - they served to break up questionable ideas in both groups of
participants; ideas, that have become all too comfortable and well-accommodated
in their minds. The dialogue will be continued in the future between communities
that ordinarily do not overlap; this may in fact be an important outcome of the
meeting.

There was an evening lecture by Prof. W. Bürger on toys - boomerangs, spin-
ning tops and rattlebacks. Everybody seems to have enjoyed that lecture.
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Abstracts

Relaxation of single-slip crystal plasticity

Sergio Conti

Macroscopic plastic deformations of single crystals are typically the result of a
complex structure on a microscopic scale. We aim at understanding pattern-
formation and relaxation in simple models of crystal plasticity, by means of the
tools of nonconvex calculus of variations.

We consider the deformation theory of plasticity, which is appropriate for small
time increments and monotonic loading, and which leads to a variational problem
for the deformation u of the form [9, 12, 10, 2]

(1) minimize

∫

Ω

W (∇u)dx over deformations u : Ω ⊂ Rn → Rn .

Crystalline materials flow plastically only along specific directions, which are
characterized by a finite set of crystallographically-determined slip systems S =
{(s1,m1), ...(sN ,mN )} (each pair being composed by two orthonormal vectors).
In the single-slip approximation, which corresponds to the limit of large latent
hardening, the plastic deformation takes locally the form

Fp = Id + γsi ⊗mi

where γ ∈ R and 1 ≤ i ≤ N . This nonconvex structure induces the formation
of fine-scale oscillations, much as in the elasticity of shape-memory alloys [12, 2].
We exploit this analogy, building upon the mathematical methods which had been
developed for the corresponding elasticity problems [8, 11, 4, 3]. We focus on three
case studies, based on joint work with M. Ortiz [5] and F. Theil [6].

Firstly, we consider relaxation of single-slip plasticity within a geometrically
linear setting. With a quadratic elastic energy and neglecting self-hardening, the
energy density in (1) takes the form

W (F ) = min
γ∈R,i∈{1,..N}

1

2
(C Fe, Fe) + τ |γ| where Fe = (F − γsi ⊗mi)

sym .

Here C are the elastic moduli of the crystal, γ ∈ R the amount of slip, i ∈ {1, ..N}
the locally active slip system, and F sym = (F + F T )/2 denotes the symmetric
part of a matrix. The relaxation of variational problems of the form (1), which
determines the macroscopic material behavior, is characterized by the quasiconvex
envelope of the energy density W , which is defined by (see e.g. [11])

W qc(F ) = inf

{∫

(0,1)3
W (∇u) dx : u ∈ W 1,∞ , u(x) = Fx on ∂(0, 1)3

}
.

This definition corresponds to taking the optimal energy between all those real-
izable by oscillating gradient fields with prescribed boundary values (hence pre-
scribed average). An application in elasticity was discussed in [7].
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We show [5] that if the set of slip systems is sufficiently large (this holds e.g.
for fcc and bcc metals), the quasiconvex hull of W equals its convex hull

W ∗∗(F ) = min
γ∈RN

1

2
(C Fe, Fe) + τ

∑

i

|γi| where Fe = (F −
∑

i

γsi ⊗mi)
sym

Therefore the relaxation of a problem with infinite latent-hardening coincides with
a problem with no latent hardening, hence (under the present assumptions) latent
hardening does not modify the macroscopic material behavior.

We next address the effect of geometric nonlinearity, which for simplicity is
done within rigid elasticity and with only one slip system. Precisely, we consider

WNL(F ) =

{
|γ| if F = Q(Id + γs⊗m) for some Q ∈ SO(n)

∞ else.

We show [6] that in two dimensions the relaxation of WNL is given by

W qc
NL(F ) =

{
|λ2(F ) − λ1(F )| if detF = 1, |Fs| ≤ 1

∞ else.

Here λi are the singular values of F . The optimal microstructure is a simple
laminate, in qualitative agreement with observation of slip bands in tension exper-
iments. In three dimensions instead the rigidity of the model does not permit any
microstructure and leads to the fact that WNL is quasiconvex, i.e. W qc

NL = WNL.
This is interpreted as a sign that for n = 3 this model is oversimplified.

The case of linear self-hardening, i.e.

WNL−SH(F ) =

{
|γ|2 if F = Q(Id + γs⊗m) for some Q ∈ SO(n)

∞ else,

can also be treated with similar methods. The resulting envelope is (again, in two
dimensions)

(2) W qc
NL−SH(F ) =

{
|Fm|2 − 1 if detF = 1 and |Fs| ≤ 1

∞ else.

The relaxation is obtained with simple laminates, and results in good agreement
with the numerical relaxation that was obtained by Bartels, Carstensen, Hackl,
and Hoppe [1].

The third case-study focusses a size-dependent problem, where the plastic po-
tentials have been complemented by a singular perturbation representing the line
energy of the cores of the geometrically necessary dislocations. This permits to
study the behavior of a grain in a polycrystalline material. Precisely we consider,
in a simplified antiplane shear geometry, the functional

E[u, Fp] =

∫

(0,L)3

[
|∇u− Fp|2 + τ |Fp| + σ|∇ × Fp|

]
dx + β ‖u− γx1‖2

H1/2(∂(0,L)3)

subject to the side conditions Fp1 = ±Fp2 and Fp3 = 0 a.e., which correspond
to the restriction to two slip systems. Due to the antiplane shear assumption
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here u is a scalar and Fp a vector. The parameter σ represents the line energy of
dislocations, L the size of the grain, β the shear modulus of the matrix (i.e. the
rest of the polycrystal). We have shown [5] that at varying material parameters
different regimes appear, which are characterized by the scaling relation

cE0 (σ̃, β, τ̃ ) ≤ 1

L3γ2
inf E[u, Fp] ≤ c′E0(σ̃, β, τ̃)

where c and C are universal constants, σ̃ = σ/γL, τ̃ = τ/γ, and

E0(σ̃, β, τ̃ ) = min
(
1, β, τ̃ + β1/2σ̃1/2, τ̃ + σ̃2/3

)
.

These four regimes correspond to (i) purely elastic deformation, (ii) decoupling
of the grain from the matrix, (iii) laminar microstructure, where the two slip sys-
tems are mixed with a one-dimensional pattern, and (iv) branched microstructure,
where the oscillations between the two slip systems refine towards the boundary
of the sample. In simple tests where the shear is progressively increased we expect
a transition from regime (i) to regime (iii), which would give a scaling of the stress
with grain size as L−1/2, in accordance to the Hall-Petch law.

References

[1] S. Bartels, C. Carstensen, K. Hackl, U. Hoppe, Effective relaxation for microstructure sim-
ulations: algorithms and applications, Comp. Meth. Appl. Mech. Eng, to appear.

[2] C. Carstensen, K. Hackl, A. Mielke, Nonconvex potentials and microstructure in finite-strain
plasticity, Proc. Roy. Soc. London, Ser. A 458 (2002), 299–317.

[3] S. Conti, Branched microstructures: scaling and asymptotic self-similarity, Comm. Pure
Appl. Math. 53 (2000), 1448–1474.

[4] S. Conti, A. DeSimone, G. Dolzmann, S. Müller, F . Otto, Multiscale modeling of materials –
the role of analysis, Trends in Nonlinear Analysis (Heidelberg) (M. Kirkilionis, S. Krömker,
R. Rannacher, and F. Tomi, eds.), Springer, 2002.

[5] S. Conti, M. Ortiz, Dislocation microstructures and the effective behavior of single crystals,
Arch. Rat. Mech. Anal., to appear.

[6] S. Conti, F. Theil, Single-slip elastoplastic microstructures, Arch. Rat. Mech. Anal., to
appear.

[7] A. DeSimone, Macroscopic material response arising from microscopic length scales: some
case studies of multiscale modeling, Oberwolfach Reports, this meeting.

[8] R. V. Kohn, S. Müller, Surface energy and microstructure in coherent phase transitions,
Comm. Pure Appl. Math. 47 (1994), 405–435.

[9] J. B. Martin, Plasticity: Fundamentals and general results, MIT Press, Cambridge, USA,
1975.

[10] C. Miehe, J. Schotte, M. Lambrecht, Homogeneization of inelastic solid materials at finite
strains based on incremental minimization principles. application to the texture analysis of
polycrystals, J. Mech. Phys. Solids 50 (2002), 2123–2167.

[11] S. Müller, Variational models for microstructure and phase transitions, in: Calculus of
variations and geometric evolution problems (F. Bethuel et al., eds.), Springer Lecture Notes
in Math. 1713, Springer, Berlin, 1999, pp. 85–210.

[12] M. Ortiz, E. A. Repetto, Nonconvex energy minimization and dislocation structures in
ductile single crystals, J. Mech. Phys. Solids 47 (1999), 397–462.



2980 Oberwolfach Report 55/2004

The Gurson model viewed as a quasivariational inequality

Martin Brokate

(joint work with P. Krejč́ı, H. Schnabel)

The Gurson model [1] represents a constitutive model for elastoplasticity which
takes into account the evolution of voids within a solid body. Based on consider-
ations on the microscopic scale, it models the void evolution in the macroscopic
stress-strain-relation with the aid of a single additional internal variable, namely
the volume fraction f of the void. The yield function of the Gurson model is given
by

(1) Φ(σ, f) =
3

2

|σd|2
σ2

f

+ 2f

[
cosh

(
tr(σ)

2σf

)
− 1

]
− (1 − f)2 .

Here, σd denotes the stress deviator and σf the yield stress. For any given value
of f ∈ [0, 1], the set of admissible stresses Σ(f) and its boundary ∂Σ(f), the yield
surface, are given by

(2) Σ(f) = {τ : Φ(τ, f) ≤ 0} , ∂Σ(f) = {τ : Φ(τ, f) = 0} .
The void volume fraction evolves according to

(3) ḟ = (1 − f)tr(ε̇p) .

The principle of maximal dissipation reads

(4) σ ∈ Σ(f) , 〈ε̇p, σ − τ〉 ≥ 0 , ∀ τ ∈ Σ(f) .

In the small strain case, we have the decomposition

(5) ε = εp + εe , σ = Aεe ,

of the total strain into its elastic and plastic part, A represents the linear elastic
law. Thus, the scalar f and the tensor εp are the internal variables of the stress-
strain-relation (1) – (5). Moreover, suitable initial conditions have to be presribed.

As an important feature, the Gurson model also describes softening behaviour:
When the void volume fraction f increases due to increasing tensile plastic strain,
the set of admissible stresses Σ(f) shrinks, thus forcing the stress σ to become
smaller (in the sense, e.g., of the equivalent v. Mises stress). We also recall that
the Gurson model is rate independent.

We pose the question: Given a time-dependent strain evolution ε = ε(t), does
the model define a unique evolution of the stress σ = σ(t) and of the internal
variables ? We refer to this problem as the strain-controlled problem. The problem
with the roles of σ and ε reversed is termed the stress-controlled problem.

Because of the dependence of Σ on f in (4), the system (1) – (5) represents
an evolution quasivariational inequality. With quasivariational inequalities, the
question of uniqueness often is difficult and subtle. However, the authors have
recently proved uniqueness for a general class of rate independent evolution qua-
sivariational inequalities [2]. This result is based on the contraction principle and
thus requires Lipschitz continuity of the corresponding fixed point mapping, with
an overall Lipschitz constant less than 1.
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It turns out that, for the strain-controlled problem, the result in [2] can be
applied to the Gurson model. We announce some results from [3]. Specifically,
existence and uniqueness is guaranteed as long as the stress remains within some
domain Σ∗. For sufficiently small values of the hydrostatic pressure part tr(σ), Σ∗

includes all deviators admissible for Σ(f). For example, for steel StE 460 with the
parameters E = 210 GPa (Young modulus), ν = 0.3 (Poisson number) and σf =
460 MPa (yield stress at f = 0), unique solvability is guaranteed as long as the
triaxiality satisfies

(6)
|tr(σ)|
|σd|

≤ 9.6 .

For the stress-controlled problem, a simple example shows that uniqueness does
not hold. However, if one introduces kinematic hardening into the model, one also
obtains uniqueness within a suitable stress domain, with considerations analogous
to those in [4].
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Evolution of phase interfaces by configurational forces:

A phase field model

Hans-Dieter Alber

Changes of the morphology of material structure are often caused by configura-
tional forces. In crystalline materials for example, discontinuous changes of the
crystal structure generate configurational forces, which can move the discontinuity
surface. A well known sharp interface model for moving surfaces of strain discon-
tinuity has been formulated in [1]. We derive and study a phase field model from
it.

To state the sharp interface model, let Ω ⊂ R3 be an open set. It represents
the material points of a solid body. The different phases are characterized by the
order parameter S(t, x) ∈ R. A value of S(t, x) equal to zero indicates that the
material is in the matrix phase at the point x ∈ Ω at time t, a value equal to one
indicates that the material is in the second phase. The other unknowns are the
displacement u(t, x) ∈ R3 of the material point x at time t and the Cauchy stress
tensor T (t, x) ∈ S3, where S3 denotes the set of symmetric 3× 3-matrices. b(t, x)
denotes the given volume force, D : S3 → S3 is the elasticity tensor and ε ∈ S3
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the misfit strain. The unknowns must satisfy the quasi-static equations

−divx T (t, x) = b(t, x),(1)

T (t, x) = D
(
ε(∇x u(t, x)) − ε̄S(t, x)

)
(2)

in [0,∞)×Ω, and a condition for the normal speed s of the interface, which must
hold at every point (t, x) of the interface Γ ∈ [0,∞) × Ω:

s(t, x) = c n(t, x) ·
[
C(∇xu(t, x), S(t, x))

]
n(t, x),

with a positive constant c and with the Eshelby tensor

C(∇x u(t, x), S(t, x)) = ψ
(
ε(∇x u(t, x)), S(t, x)

)
I −

(
∇x u(t, x)

)T
T (t, x).

Here (∇x u)
TT denotes the matrix product, I is the unit matrix in S3 and

(3) ψ(ε, S) =
1

2

(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ1(S)

is the free energy. For the function S defined above only the values of ψ1 at S = 0
and S = 1 matter. However, as explained next, we also consider order parameters
which vary smoothly between 0 and 1. For ψ1 ∈ C1(R, [0,∞)) we therefore choose
a double well potential with minima at 0 and 1.

In [2, 3] this sharp interface model has been transformed into a phase field
model. This transformation runs along the following lines: In [2] it has been ob-
served that the equation for the normal speed of the interface in the sharp interface
model can be reformulated as a partial differential equation allowing smooth and
distributional solutions. In particular, if x 7→ S(t, x) : Ω → {0, 1} is the charac-
teristic function of the region in Ω, which at time t forms the second phase, and if
(u, T, S) solves the equations (1), (2), then (u, T, S) is a distributional solution of
this partial differential equation. On the other hand, if (u, T, S) is a smooth solu-
tion of the equations (1), (2) and of the distributional partial differential equation,
then this partial differential equation simplifies and becomes the Hamilton-Jacobi
transport equation

(4) St = −cψS (ε(∇xu), S) |∇xS|.
The idea suggests itself to approximate the solution of the sharp interface model by
smooth solutions (u, T, S) of the system (1), (2), (4). Yet, examples show that in
general the function S in such a smooth solution develops a jump after finite time.
From that time on the equation (4) can no longer be used to govern the evolution
of S. To avoid this problem and to force solutions to stay smooth equation (4)
has been replaced by

(5) St(t, x) = −c
(
ψS (ε(∇xu(t, x)), S(t, x)) − ν∆xS(t, x)

)
|∇xS(t, x)|

with a small positive parameter ν. This yields the model (1), (2), (5) first stated
in [3].

To regularize (4) one could also try the equation

(6) St(t, x) = −cψS(ε(∇xu), S) |∇xS| + ν∆S.
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However, in contrast to (1), (2), (6), the system (1), (2), (5) satisfies the second
law of thermodynamics with the free energy (3) replaced by

(7) ψ∗(ε, S) =
1

2

(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ1(S) +

ν

2
|∇xS|2,

cf. [3]. One expects that this is an advantage, which is confirmed by our math-
ematical investigations. They indicate that the system (1) (2), (5) has better
mathematical properties than the system (1), (2), (6), though (5) is seemingly
more singular than (6).

To verify that (1), (2), (5) is indeed a phase field model regularizing the sharp
interface model in [1], it must be shown that an initial-boundary value problem
to the equations (1), (2), (5) with positive ν has solutions which exist globally in
time, and that these solutions tend to solutions of the sharp interface model for
ν → 0. This program has been carried out only to a small extend; namely in [4]
it has been shown that in one space dimension the initial-boundary value problem
has solutions. Whether solutions in three space dimensions exist and whether
these solutions converge to a solution of the sharp interface model when ν tends
to 0 is an open problem.

However, in [3] we also investigated the initial-boundary value problem to the
system, which consists of the (1), (2) and of the distributional partial differen-
tial equation mentioned above. This is a problem more general than the sharp
interface model: Solutions of the sharp interface model are also solutions to this
initial-boundary value problem. We showed that in one space dimension this
problem with hyperbolic character has distributional solutions. The proof uses
new mathematical techniques related to methods used in the theory of hyperbolic
conservation laws.

The dynamics determined by the evolution equation (5) for the order parame-
ter is non-conserving. Comparison of this equation to the Cahn-Allen and Cahn-
Hilliard models suggests to formulate an analogous evolution equation with con-
serving dynamics. This leads to a hierarchy of models:

St = −c (ψS − µ∆x S), Cahn-Allen equation, S is not conserved,

St = c divx∇x(ψS − µ∆x S), Cahn-Hilliard equation, S is conserved,

St = −c (ψS − µ∆x S)|∇x S|, configurational forces, S is not conserved,

St = c divx

(
∇x(ψS − µ∆x S) |∇x S|

)
, configurational forces, S is conserved.

The first two equations model processes, for which the evolution of the interface
is predominantly driven by diffusion, the third equation models a process, where
the evolution is driven by configurational forces. We surmise that the fourth equa-
tion also models a process with evolution predominantly driven by configurational
forces. This, however, is an open problem which remains to be investigated.
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Macroscopic material response arising from microscopic length scales:

some case studies of multiscale modelling

Antonio DeSimone

(joint work with G. Alberti, S. Conti, G. Dolzmann)

The theme of this lecture is the study of macroscopic physical properties aris-
ing from microscopic phenomena, and the derivation of coarse-grained models as
macroscopic limits of those holding at the microscopic scale.

Whenever the property of interest can be described through the global mini-
mization of a free-energy functional, the derivation of a coarse-grained model con-
sists, essentially, in evaluating the minimal energy in the class of all microscopic
realizations of the state variables compatible with a given macroscopic average.
Two case studies are chosen for the illustration of this procedure: soft elasticity
in nematic elastomers, and super-hydrophobic properties of rough water-repellent
surfaces. These two systems challenge our intuitive perception of the boundaries
between solid and liquid response (sheets of an ideally soft nematic elastomer can
be stretched by infinitesimal forces, as if they were freely flowing; liquid drops roll
and bounce on a superhydrophobic surface as if they were solid beads). On the
other hand, they put into a proper perspective some of the recent progress we
want to report. Many interesting properties exhibited by these two systems can-
not be captured by only coarse-graining the energetics, but rather require careful
consideration of dissipation, kinetics and dynamics.

The analysis of nematic elastomers [1] is based on joint work with S. Conti
(Duisburg–Essen) and G. Dolzmann (Maryland) [2]–[6]. We model the soft elastic
response of these materials through minimization of a non–convex stored energy
density W , obtained as a small perturbation of the neo–hookean expression of rub-
ber elasticity. The coarse–grained model is obtained from the explicit computation
of the quasi–convex hull W qc of W

W qc(F) = inf
y∈W 1,∞

{
1

|Ω|

∫

Ω

W (∇y(x))dx : y(x) = Fx on ∂Ω, det∇y(x) = 1

}
,

where Ω is a representative volume element. The calculation of W qc provides
a phase diagram for the mesoscopic response of the system, and answers to the
following questions:

• What is the smallest energy cost of imposing the affine deformation y(x) =
Fx at the boundary ∂Ω of a representative volume element?
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• Which are the energetically optimal microstructures which develop in the
interior of a representative volume element, when this is energetically ad-
vantageous?

This information can be used to set up numerical simulations of the elastic re-
sponse of stretched sheets of nematic elastomers which resolve, at the same time,
the macroscopic length scales (e.g., the deformed shape of the sample) and the
microscopic ones (i.e., the microscopic domain patterns and their evolution which
is the microscopic origin of the soft elastic response of these materials.) The sim-
ulations help us to understand many qualitative features of the experimentally
observed behavior.

The analysis of wetting properties of rough surfaces [7] is based on joint work
with G. Alberti (Pisa) [8]. The equilibrium shape of a drop of water L, of pre-
scribed volume, on a substrate S, and in the presence of a vapor phase V can be
obtained by minimizing the total interfacial energy

σSL|ΣSL| + σSV |ΣSV | + σLV |ΣLV | ,
where ΣAB is the interface between phases A and B, |ΣAB | is its area, and σAB is
the corresponding surface energy density. Equivalently, we can minimize

E = | cos θ||ΣSL| + |ΣLV | , cos θ =
σSV − σSL

σLV
.

We consider the case of a solid with periodic asperities, obtained by ε–rescaling of
a one–periodic surface. By taking the limit ε→ 0, we show that the limit problem
is that of minimizing

Ehom = | cos θhom||ΣSL| + |ΣLV | ,
where | cos θhom| is the minimal energy of a transition layer from phase S to phase
L in the periodicity cell, allowing for the presence of phase V in between. It turns
out that |cosθhom| > |cosθhom| if θ > π/2, so that the macroscopic contact angle
θhom of a drop of water on a rough hydrophobic surface is amplified with respect
to the flat case.
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Solution-precipitation creep – continuum mechanical formulation and

micromechanical modelling

Klaus Hackl

(joint work with Sandra Ilić)

Solution-precipitation creep is considered to be one of the major deformation
mechanisms of polycrystalline solid-liquid aggregates. Normal pressure on the
crystallite-interfaces was first identified as driving force in [1] and models built
on that observation have been treated extensively in the literature [2, 8, 7]. Still
there are some continuum-mechanical problems associated with those models, for
example an unrealistic continuity of normal stresses at the intersection of inter-
faces. We are going to present a micromechanical model which might be able to
resolve some of those issues.

Let a representative volume element consist of disjoint crystallites Ωi. The
deformation of every crystallite is decomposed into an elastic and an inelastic
part:

(1) φi = φE
i ◦ φI

i

leading to a corresponding multiplicative decomposition of the deformation gradi-
ents

(2) Fi = FE
i FI

i.

Note that inelastic deformation is compatible within crystallites but incompatible
at crystallite-interfaces.

The material formulation is now based on a common assumption in continuum
mechanics, namely minimization of energy locally in time. To be more specific
let us suppose, that the entire elastic energy which can be released by elastic
deformation, i.e. by change of φE

i , will be invested into inelastic deformation. The
latter on the other hand will be restricted by dissipation of energy, hence ther
will be a thermodynamical force opposed to elastic stress as driving force. Or
otherwise stated, the inelastic deformation will be as fast as possible while still
in agreement with the first and second law of thermodynamics. In mathematical
terms this concept can be expressed as minimization the sum of total elastic power
and dissipation, i.e. we consider a Lagrangian

(3) L = Ė + ∆,

where the total stored elastic energy is given by

(4) E =
∑

i

∫

Ωi

ψ(F(FI
i)

−1) J I
i dV,

and the dissipation by

(5) ∆ =
∑

i

∫

∂Ωi

[γ
2

Q2
i +

κ

2
(vn

i )2
]
J I

i |(FI
i)

T−1N| dS.
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Here ψ(FE) denotes the Helmholtz free-energy,

(6) J I
i = detFI

i

the Jacobian, N the unit-normal to the crystallite surface in the undeformed con-
figuration, Qi the velocity of material transport within the crystallite-interfaces
and

(7) vn
i =

d

dt
φI

i · n̄

the normal velocity of precipitation, where n̄ is the unit-normal to the crystallite
surface in the inelastically deformed configuration. We have material constants
γ and κ related to specific dissipation. We assume that κ/γ << d2, where d
corresponds to a characteristic dimension of a crystallite, i.e. the main cause of
dissipation is material transport.

Taking into account the relation

(8) vn
i = ∇ · Qi

using Lagrange-parameters αi variation with respect to the variables φI
i,Qi yields

the following set of equations:

κvn
i + αi = βi,(9)

γQi = −∇αi.(10)

where βi denotes the normal component of the Eshelby-tensor, [3, 6],

(11) βi = − 1

J I
i

n̄ · ∂

∂FI
i

(J I
iψ)(FI

i)
Tn̄.

Substitution of (8) and (10) in (9) now gives

(12) −κ
γ

∆αi + αi = βi.

The material model obtained in this way allows some interesting insights. Equa-
tion (11) identifies the normal component of the Eshelby-tensor as the driving
thermodynamical force for solution-precipitation creep. This is consistent with
the observation made in continuum mechanics, that the Eshelby-tensor is gener-
ally responsible for configurational changes in materials, [3, 6].

Equation (9) now introduces a modification of the point of view stated above.
Not βi is the actual driving force but βi − αi. Whereas βi is discontinuous at
corners and bifurcation-points of the crystallite-interfaces, equation (12) defines
αi as a smooth approximation of βi. Moreover we obtain

(13) vn
i = − 1

γ
∆αi.

This explains some observations made in [5]. Especially one finds that constant
stress applied to one single crystal does not induce creep, since ∆αi = 0 in this
case, with the exception of a boundary layer at the outer edge of the loaded surface
as observed in [5] and predicted by equation (12).
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Furthermore one should notice that in the case of negligible elastic strains and
steady deformation processes, the model presented here reduces to that one devel-
oped in [4].

We will give precise arguments for all the statements made above. Moreover we
will report on a micromechanical model of Taylor-type, which can be generated
from the model introduced above and allows to perform numerical simulations of
texture-evolution in the polycrystal.
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Nonlinear homogenization and applications to hyperelastic composites

P. Ponte Castañeda

This work presents the application of a recently proposed “second-order” homog-
enization methods [4, 5] to generate estimates for effective behavior and loss of
ellipticity in hyperelastic porous and fiber-reinforced elastomers with random mi-
crostructures that are subjected to finite deformations. The main concept behind
the method is the introduction of an optimally selected “linear thermoelastic com-
parison composite,” which can then be used to convert available linear homog-
enization estimates into new estimates for the nonlinear hyperelastic composite
[6, 2, 3]. In these works, explicit results are provided for the case where the ma-
trix is taken to be isotropic and strongly elliptic. In spite of the strong ellipticity
of the matrix phase, the homogenized “second-order” estimates for the overall
behavior are found to lose ellipticity at sufficiently large compressive deforma-
tions corresponding to the possible development of shear band-type instabilities
[1]. The reasons for this result have been linked to the evolution of the microstruc-
ture, which, under appropriate loading conditions, can induce geometric softening
leading to overall loss of ellipticity. Furthermore, the improved “second-order” ho-
mogenization method [5] has the merit that it recovers the exact incompressibility
constraint for the rigidly reinforced elastomers, as well as the exact evolution of
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the porosity for the porous elastomers, in the limit of incompressible behavior for
the matrix.
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Non-crystallographic motion of a dislocation as a fine mixture of

rectilinear paths

Paolo Cermelli

(joint work with T. Armano)

In this work we discuss the convergence of an approximation scheme for the solu-
tion, near an attractor, of a discontinuous dynamical system arising in the theory
of dislocations in crystalline solids. It is well known that dislocations can only
move along a finite number of crystallographic directions: in two dimensions, the
resulting trajectories are piecewise rectilinear paths. However, in special situations
such as near an attractor, dislocations are forced to move along curved paths: we
characterize this class of motions as fine mixtures of crystallographic motions, us-
ing the notion of generalized curves due to L. C. Young, and explicitly compute
the parametrized measure associated to a sequence of polygonals. The result is
then used to motivate a simple numerical scheme, and show that it is physically
consistent. Numerical simulations based on this scheme are also presented and
discussed.
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Energy density and oscillations in the wave equation: the bulk case

and the thin film case

Gilles A. Francfort

Since the 1970’s, there has been a tremendous push towards the computation of
the overall behavior of mixtures under the label of ”homogenization”. Most of the
attention has however focussed on the macroscopic constitutive laws that can be
derived from the knowledge of the microstructural characteristics of the mixture.
This is fine as long as statics are investigated, but it gives no clue as to the proper
thermodynamic limit. In other words, the knowledge of the macroscopic (overall)
constitutive law does not say anything about the allocation of the energy, part of
which may have dissipated through the homogenization process.

The goal of this talk is to quantify such a mechanism in a very simple setting,
that of the wave equation with smooth, but non-constant coefficients, which in the
film case depend only on the in-plane variables denoted by xα. Fast oscillations
are created by rapidly oscillating initial conditions, as well as, in the case of thin
films, the vanishing thickness of the film, which we will assume to be of the or-
der of the wavelength of the oscillations. The computation of the limit behavior
(the macroscopic acoustics) is straightforward, in both bulk and film settings. In
the bulk setting, it is simply the wave equation with, as initial conditions, the
average of the oscillations in the initial conditions; in the film setting, it is the
two-dimensional wave equation with, as initial conditions, the average in the film
thickness of the average of the oscillations in the initial conditions.

In both cases, we propose to compute the limit of the energy density as the
wavelength ε of the oscillations goes to 0. By linearity, we are at liberty to factor
out the effect of averaging (the macroscopic limit constitutive behavior), and thus
to consider that all oscillations average to 0. Then, whatever energy remains at
the macroscopic level is the part that is dissipated through the homogenization
process. It is that energy that we propose to compute.

Specifically, we consider

(1)





ρ(x)
∂2uε

∂t2
= div(k(x)∇uε) in RN

uε(0) = uε
0,
∂uε

∂t
= vε

0,

with

(2)





uε
0

H1(RN )
⇀ 0

vε
0

L2(RN )
⇀ 0.

We further assume the initial conditions to be uniformly compactly supported. In
the film case, after a dilation of the transverse direction that permits to formulate
the problem on a fixed domain, the x3-derivatives are rescaled by a factor 1/ε, so
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that (1) becomes

(3)





ρ(xα)
∂2uε

∂t2
= divα(k(xα)∇αu

ε) + 1/ε2
∂

∂x3
(k(x)

∂uε

∂x3
) in RN

uε(0) = uε
0,
∂uε

∂t
= vε

0,

while (2) becomes

(4)





uε
0

H1(RN )
⇀ 0 with 1/ε

∂uε
0

∂x3
bounded in L2(RN )

vε
0

L2(RN )
⇀ v0

0 with

∫ 1

0

v0
0 dx3 = 0.

The quantity we wish to investigate is the (measure) limit e0b of

eε
b(t) := 1/2

{
ρ(x)(

∂uε

∂t
)2 + k(x)|∇uε|2

}
,

or, in the film case, the (measure) limit e0f of

eε
f (t) := 1/2

{
ρ(xα)(

∂uε

∂t
)2 + k(xα)|∇αu

ε|2 + 1/ε2k(xα)(
∂uε

∂x3
)2
}
.

The computation of the (measure) limits of these quantities is not obvious; the
adequate tools are microlocal measures (in phase space) that compute limits of
quadratic products of weakly converging quantities: in the bulk case, those are H-
measures introduced by L. Tartar [5], also introduced by P. Gérard [3], and,
in the film case, those are both H-measures and semi-classical measures introduced
by P. Gérard [4].

The results are as follows, upon denoting the acoustic wave speed

√
k(x)

ρ(x)
by

c(x). In the bulk case [2],

e0b(t, x) =

∫

{η∈R3:c(x)|η|=1}

{ν+(t, x, dη) + ν−(t, x, dη)},

where ν± are the push-forward in time of some measures ν±0 (solely determined by
the initial conditions) along the geodesic flow associated to the metrics dx2/c2(x).

In the film case [1],

e0f (t, x) =

∞∑

n=0

e0,n
f ,

with e0,0
f computed as for the bulk case (but in a two-dimensional setting) and

e0,n
f , n 6= 0, given as

e0,n
f (t, x) =

∫

η∈R2

(1 +
|η|2

|η|2 + n2π2
cos 2nπx3){µ+(t, xα, dη) + µ−(t, xα, dη)}.
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There, µ±
n are the push-forward in time of of some measures µ±

n,0 (solely determined

by the initial conditions) along the nπ-homothetics of the R2 × R2-projection of
the (three-dimensional) geodesic flow associated to the metrics dx2/c2(xα).

Let me illustrate the result in the bulk case. Say the initial conditions on uε

both oscillate at the speed ε in one direction η0 and concentrate at speed
√
ε

around x0 (with the appropriate scalings). Then, the initial H-measures are Dirac
masses in both space and frequency, and the limit energy density e0b(0, x) at time
0 is a Dirac mass at x0. The result is that, at time t, the dissipated energy
e0b(t, x) is still concentrated at x(t), where x(t) is the image at t of x0 by the
geodesic flow with initial speed c(x0)η0. If however the initial condition on uε

merely concentrates around x0, then the initial H-measures are Dirac masses at
x0 in x but they are equi-distributed in frequency. Then, each frequency direction
generates its own geodesic and, thus, for each positive time, the support of e0b(t, x)
has a non denumerable set of points. In effect it looks very much like a diffusion
process, although it is not clear how to macroscopically quantify that diffusion.
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Continuum Models for Molecular Beam Epitaxy

Alexandre Danescu

The molecular beam epitaxy is a recent technique for crystal growth of coherent
thin films. The temperatures of various evaporation sources is responsible for the
concentration of different components of the film and the growth process takes
place in ultra-vacuum conditions, i.e. at ∼ 10−10 torrs. Experimental evidence
shows that after a coherent 2D growth, at a critical thickness hcr. a transition
between a layer-by-layer mode to a roughening of the free surface takes place.
This is commonly called the Asaro-Tiller-Grinfeld instability and a straightforward
computation based on available numerical data shows that at the scale of the
problem the bulk energy induced by the misfit between the film and the substrate
and the surface energy are of the same order of magnitude.

A direct variational argument shows that both in the framework of linear elastic-
ity and in finite strains elasticity a flat free-boundary of a homogeneous deformed
material is unstable with respect to variations of the free-boundary at constant
volume. In order to obtain a quantitative estimate a first order elastic problem in
the bulk and an approximation of the surface energy provide together an estimate
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for the critical thickness as hcr. = µψ/σ2
0 , where σ0 is the misfit stress, µ si the

shear modulus and ψ is the surface energy [1].
Form a variational point of view, a model problem was analysed in [2] in a

1D situation and we discuss several open problems related to the this setting.
In a time-dependent setting, the problem can be regarded as a free-boundary
problem where the sharp interface (the free-surface of the thin film) is driven by
the temperature gradient, bulk stress and surface energy. In the frmaework of
thermoelasticity the simplest theory for evolution of an immaterial interface that
includes bulk elasticity effects as sources of instability is the theory of structured
interfaces proposed in [3]. We discuss some specific features of this formulation.
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Wave propagation in planarly-stratified media and first integrals

Angelo Morro

The subject of this talk is existence and uniqueness of the time-harmonic solution
to the reflection-transmission (RT) problem originated by an unbounded layer.
The layer is planarly stratified in that the material properties vary only in one
direction, say z, and occupies the region z ∈ (0, L). The dependence of the func-
tions involved on the time t is through the common factor exp(iωt), ω ∈ IR. Two
models are considered and a research in progress is outlined.

• The unknown function u(x, y, z, t) satisfies the Helmholtz equation

(∆ + k2n2(z))u = 0,

which is the case for linear acoustics (u = p/
√
ρ), isotropic dielectrics (u = Ey ,E ·

∇ε = 0), isotropic elasticity (u = U
√
µ). For oblique incidence, the solution is

sought in the form

u(x, y, z, t) = exp[i(kxx+ ωt)]f(z), kx ∈ IR,

and hence f satisfies the differential equation

f ′′ + h(z)f = 0

where h is real valued and related to n2 while a prime ′ means differentiation with
respect to z. The solution f is subject to the first integral

F := =(f∗f ′) = constant.



2994 Oberwolfach Report 55/2004

Letting h−(h+) be the constant value of h as z < 0 (z > L), we assume h− > 0
and represent the solution f as

f(z) =





f i exp(−iσ−z) + fr exp(iσ−z), z < 0,

f̃(z), z ∈ (0, L),
f t exp[−iσ+(z − L)], z > L,

where σ =
√
k2n2 − k2

x; if h+ < 0 then iσ+ is replaced with
√
|h+|, as z > L. The

RT problem reads: given f i find fr, f t and f̃ . Preliminarily we show that f = 0,
as z < 0, if and only if f i, fr = 0. Hence, by means of the first integral F and the
jump conditions at possible discontinuity planes, we can show that ([1, 2])
h+ > 0 : f = 0 in IR ⇐⇒ f t = 0,
h+ ≤ 0 : |fr| = f i|.
Irrespective of the value of h+,

f i 6= 0 =⇒ f 6= 0 in IR.

In addition, if F is continuous (and hence constant) across discontinuities, and
h+ > 0, we obtain the energy conservation law

σ−(|f i|2 − |fr|2) = σ+|f t|2.
As a comment, however is h in the layer (possibly h < 0), wave propagation is

not precluded in any zone (interval) of IR.

• An abstract scheme for wave propagation is given as follows.
The pertinent variables are taken as w(z, ω) exp(iωt), w ∈ C2m, and the gov-

erning equations are written as a first-order system

w′ = A(z, ω)w, A ∈ C2m×2m,

where ω is a real-valued parameter. There is a function

F = w†Iw,

where I is Hermitian, I† = I, and m eigenvalues of I are positive, m are negative.
The function F is the energy flux and, as such, characterizes the direction of a
wave; if F > 0 the wave propagates in the positive z-direction. Also F satisfies
the condition

F ′ ≤ 0.

The eigenvectors p1, ...,p2m of A are linearly independent. Let

P = [p1, ...,p2m], Φ = P†IP.

The diagonal m × m blocks Φf and Φb of Φ are positive and negative definite.
If these conditions hold then the solution to the RT problem exists and is unique
([3, 4]).

The scheme is shown to hold for oblique incidence in anisotropic elasticity and
normal incidence in isotropic viscoelasticity.
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• The application of the scheme to linear thermoelasticity is given as follows. With
a view to materials with memory, the governing equations are taken in the form

T = Σ∇u − βϑ, ε̇ = γ · ∇u̇ + cϑ̇, q = −κ∇ϑ

where ϑ = θ− θ0 is the difference temperature relative to a uniform configuration,
T is the Cauchy stress tensor, ε is the internal energy, q is the heat flux and a
superposed dot means time differentiation. Of course, Σ,β,γ, c,κ are complex val-
ued. The first-order form w′ = Aw is found to hold. In classical thermoelasticity,
β and γ are related by ργ = θ0β, ρ being the mass density. The thermodynamic
analysis shows that the constraint

ργ = θ0β∗

has to be considered, where ∗ means complex conjugate; along with others, this
constraint is sufficient for the validity of the second law. Hence we find that

F = −ω=(t · u∗) +
1

θ0
<(ϑq∗z)

where t is the traction at the planes z = constant. In addition,

F ′ = −ω=(∇u∗ ·Σ∇u) − ρ

θ0
ω=c∗|ϑ|2 +

1

θ0
<(∇ϑ · q∗)

and the right-hand side proves to be non-positive because of the thermodynamic
restrictions. The analysis of Φ is decisively more involved and is now under inves-
tigation.
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Uniqueness in nonlinear continuum mechanics

Robin John Knops

1. Notation and other Preliminaries

We report on work in progress. Let a nonlinear homogeneous compressible elastic
material in its reference configuration occupy the bounded region Ω ⊂ IR3 and let
it be set in motion by specified initial deformation and velocity, and subject to
given displacement of the smooth surface ∂Ω. Zero body-force is assumed. For
a given Cartesian coordinate system, let the point in Ω whose vector position
is X be deformed into a point whose vector position is x = x(X, t) at time t.
Here, and subsequently, a direct notation is employed in which, for example, the
tensor gradient operator with respect to the variable X is denoted by Grad so
that the components of the deformation gradient F are given by (Grad x)ij =
∂xi/∂Xj where Xi, xi, i = 1, 2, 3 are the cartesian components of the vectors X, x
respectively. The corresponding divergence operator is given by Div, while the
tensor product of vectors a, b is indicated by a ⊗ b, transposition by superscript
T , and the unit tensor by I . The set of deformation gradients having positive
determinant is denoted by M+.

The elastic material possesses a strain energy functionW ∈ C1(M+, IR) per unit
volume of Ω, in terms of which the Piola-Kirchhoff stress tensor is represented by
T = ∂W/∂F .

The initial displacement boundary value problem considered here assumes that
sufficiently smooth deformations exist locally on some finite time interval which
by an appropriate rescaled time variable may be taken as [0, 1]. The governing
equations of motion are:

(1) DivT = ρẍ, (X, t) ∈ Ω × [0, 1],

where ρ(> 0) is the uniform material density in the reference configuration, and a
superposed dot indicates time differentiation. The initial and boundary conditions
are

(2) x(X, 0) = u(X), ẋ(X, 0) = v(X), X ∈ Ω,

and

(3) x(X, t) = g(X, t), (X, t) ∈ ∂Ω × [0, 1],

where u, v, g are specified functions.
Equations (1)–(3) lead to balance of energy in the form:

(4)∫

Ω(t)

[W (F )+
1

2
ρẋẋ] dX =

∫ t

0

∮

∂Ω(η)

trTN⊗ẋ dX dη+

∫

Ω(0)

[W (Gradu)+
1

2
ρvv] dX,

where Ω(t) denotes that the integrand is evaluated at time t. The equations also
show that the energy-momemtum (Eshelby) tensor, given by

(5) B = (F )TT − (W − 1

2
ρẋẋ)I,
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satisfies the relation

(6) DivB = ρ
d

dt
[(F )T ẋ], (X, t) ∈ Ω × [0, 1].

Multiplication of the last equation by X and slight rearrangement yields

(7) Div(XB) − trB = ρX
d

dt
[(F )T ẋ], (X, t) ∈ Ω × [0, 1].

A weak formulation of the problem is possible using, for example, the variational
calculus.

We seek sufficient conditions for uniqueness of locally smooth solutions to (1)–
(3), complementary to those derived in [1],[2], and [3].

2. Uniqueness of smooth solutions

The affine initial displacement boundary value is considered first and then a
generalisation is briefly discussed.

Proposition 1. Let Ω be star-shaped with respect to an interior point, and let the
initial and boundary data (2) and (3) be given by

u(X) = AX + a, X ∈ Ω,(8)

v(X) = BX + b, X ∈ Ω,(9)

g(X, t) = (AX + a) + t(BX + b), (X, t) ∈ Ω × [0, 1],(10)

where A,B ∈ M+, a, b ∈ IR3 are constants. Let W be quasi-convex at A+ tB, t ∈
[0, 1] and rank-one convex. Then the affine solution

(11) y(X, t) = (AX + a) + t(BX + b), (X, t) ∈ Ω × [0, 1],

is the unique solution to (1)–(3) in the class of functions f satisfying the con-
straints:

(12) sup
[0,1]

∫

Ω(t)

(
trGTG+ tr(Ġ)T Ġ

)
dX ≤ N2,

and

(13) sup
[0,1]

∫

Ω(t)

trT T (G)T (G) dX ≤M2,

for prescribed constants N,M,and where G = Grad f.

We sketch the proof. The expression (11) obviously is a solution to the stated
initial boundary value problem. Suppose a second smooth solution x(X, t) exists
such that the common interval of existence contains [0, 1] after suitable scaling.
Set w = x− y(6≡ 0) and define the function H(t) to be

(14) H(t) =

∫ t

0

∫

Ω(η)

ρww dX dη + β(t+ t0)
2, t ∈ [0, 1],
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where β and t0 are positive constants to be chosen. Equations (1),(4), (7), the
conditions of the Proposition, and standard inequalities may then be combined to
show that for constant α > 1 the function H(t) satisfies the differential inequality:
(15)

H(t)Ḧ(t) + (α− 1)Ḣ2(t) ≤ H(t)
[
2β(2α− 1) + 2Ḣ(t)

1

2Q1 +Q2

]
, t ∈ [0, 1],

where Q1(N,R, λ) and Q2(M,a, b, B, α) are computable positive constants, λ is
the least eigenvalue for the corresponding fixed membrane problem, and R2 =
supΩXX . Appropriate choice of β and t0 and of subsequently introduced similar
disposable constants leads after reduction and integration of (15) to a contradiction
on a sufficiently small time interval, and consequently to uniqueness of the affine
solution (11). Iteration extends the result to [0, 1].

The assumptions of star-shapedness and generalised convexity of the strain
energy function are not essential and uniqueness may be established provided
the smooth solutions belong to the class of functions that besides (12) and (13)
additionally satisfy certain boundedness conditions, including ones on second and
third order derivatives. This form of the uniqueness result not only aligns with
that for linear elastodynamics, but is similar to theorems for the stabilisation of
ill-posed problems. Moreover, the proof appears applicable, in particular, to the
moving elastic dielectric.
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On modelling loss of mass and connectivity in bone

R. Kienzler

(joint work with G. Herrmann, I. Ott)

Osteoporosis is defined as a systemic skeletal disease characterized by loss of mass
and deterioration of the microarchitecture (i.e., connectivity). Patients affected by
osteoporosis often suffer fracture with the additional difficulty of fracture fixation
in osteoporotic bone. In order to assist physicians in the diagnosis, therapy and
in the prediction of the development of the disease it seems to be worthwhile to
establish a mechanical/numerical model for osteoporotical bone.

In this paper, and as a start, a very simple model is proposed. A long bone is
represented as a one–dimensional bar. From the elementary theory of strength–
of–materials we know that the elongation of such a bar due to a longitudinal force
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is given by

∆l =
F l

EA
.

The length of the bar is l, E is the material–dependent modulus of elasticity
and A is the cross–sectional area. Loss of mass is modelled by the reduction of
the cross–sectional area A = A0(1 − ω) and loss of connectivity, i.e., decrease in
strength, by E = E0(1 − η). The constant initial values are A0 and E0 and the
internal, time–dependent variables which describe the deterioration of the material
are thus ω and η. Due to the progression of damage in the bone the total energy
Π of the bar (bone) is changed; it is reduced to

Π = Π(
∼
ε , ω, η) =

1

2
A0E0l

∼
ε
2
(1 − ω)(1 − η) ,

with the effective stress
∼
σ and the effective strain

∼
ε given, respectively, by

∼
σ=

F

A
=

F

A0(1 − ω)
=

σ0

1 − ω
,

∼
ε=

∼
σ

E
=

σ0

E0(1 − ω)(1 − η)
=

ε0
(1 − ω)(1 − η)

.

Differentiation of the specific Helmholtz free energy f , i.e., the total energy
divided by the bar volume A0l, with respect to the internal variables ω and η leads
to the affinities Aω and Aη , respectively, which can be understood as material or
driving forces of the damage process

Aω := −∂f
∂ω

=
1

2
E0

∼
ε
2
(1 − η) ,

Aη := −∂f
∂η

=
1

2
E0

∼
ε
2
(1 − ω) .

In the local–state approximation of thermodynamics, a first guess for the time–

rate of change of the internal variables
·
ω and

·
η is that they are proportional to

the affinities Aω and Aη :

·
ω = kωωAω + kωηAη ,

·
η = kηωAω + kηηAη .

Based on the implications of the first and second laws of thermodynamics,
the evolution equations for ω and η are integrated, from which time–dependent
stress, strain and stiffness of osteoporotic bone are calculated. The model involves
three parameters that have to be determined experimentally. In [1] the change
of mass, structure and mechanical properties of trabecular bone are reported for
ovariectomized sheep during and after glucocorticoid treatment. Subject to an
adjustment of the model parameters the qualitative agreement between measured
and calculated results appears to be quite satisfactory. Details of the analysis and
the results are discussed in a forthcoming paper [2].
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A variational approach of fatigue

Jean-Jacques Marigo

Francfort and Marigo [1] propose a variational approach of brittle fracture in which
the cracks appear and grow in an elastic brittle body in such a manner that the
total energy of the body is minimal at each step of the loading history. In that
work, the authors conserve GriffithÕs hypothesis by assuming that the surface
energy is proportional to the surface area of the crack independently of the value
of the displacement jump discontinuity. But, with this choice, it is impossible to
render account for fatigue phenomenon. We propose in the present work to extend
this approach in order to model the propagation of cracks in bodies submitted to
cyclic loadings. The idea is to conserve the principle of least energy, but to replace
the Griffith-type surface energy by an energy depending on the displacement jump
through the crack (as in [2]) and to introduce an irreversibility condition. The
ingredients and the method are developed in the case of the fatigue debonding of
a thin layer.

Specifically, in this particular context, the energy functional at step i, Ei, is
defined on the set of admissible displacement fields Vi,

(1) Vi =
{
v ∈W 1,2(0, L) : v(0) = 0, v ≥ 0, v(L) = Vi

}
,

by

(2) Ei(v) =
N

2

∫ L

0

v′(s)2 ds+

∫ L

0

φ
(
δi−1(s) + 〈v(s) − vi−1(s)〉

)
ds.

In (1)–(2), L denotes the length of the film, Vi is the prescribed opening at the end
L, v is the opening displacement field, N is the prescribed tension of the film, δ is
the accumulated opening displacement field and the brackets 〈·〉 denote the positive
part. The field δ is then the memory variable introduced to take into account the
irreversibilty of the debonding. The function φ is the surface energy density. It
can be chosen either as Griffith surface energy density (φ(0) = 0, φ(δ) = Gc when
δ > 0), or as a Barenblatt surface energy density, that is a continuous increasing
function starting from 0, for δ = 0, and tending to Gc when δ goes to infinity.

The minimization incremental problem reads as For i ∈ N, find vi and δi such
that

(3) Ei(vi) = min
v∈Vi

Ei(v), δi = δi−1 + 〈δi−1 − vi−1〉 .

with the initial condition v0 = δ0 = 0.
The main results are the following:
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(i) We first prove that this incremental problem admits a unique solution and
that the solution is independent of the discretization. Consequently, when the film
is submitted to a cyclic loading t 7→ V (t) such that Vmax = Vm and Vmin = 0 each
loading or unloading part of a cycle can be treated in one step. That allows us
to consider from now that the index i refers to the ends of a half-cycle. Moreover
the debonding does not evolve during the unloading loading steps and the layer
returns to its initial displacement configuration at the end of an unloading step,
v2i = 0 and δ2i = δ2i−1.

(ii) When φ is the Griffith surface energy density, then the debonding only
evolves during the first half-cycle : δ2i+1 = δ1. There is no fatigue effect.

(iii) When φ is a Barenblatt surface energy density, then the debonding evolves
at each cycle and the film tends asymptotically to be completely debonded,
limi→∞ δ2i+1(s) = +∞, for s ∈ (0, L). There is fatigue effects.

Moreover, for Barenblatt surface energy density, the evolution of the debonding
depends on the ratio ε between the characteristic length appearing in φ and the
overall length L of the film. An asymptotic study is made when ε goes to 0. We
obtain that

(iv) The evolution of the debonding during the first cycle is approximately given
by Griffith law.

(v) The fatigue phenomenon is a second order effect, that is the growth of the
debonding length is of the order of ε at each cycle after the first one.

(vi) After rescaling the number of cycles, that is by considering number of cycles
N of the order of 1/ε, then the evolution of the debonding follows approximately
a Paris law

(4)
d`

dN
= f(G)

where `(N) denotes the effective debonding length after N cycles, G is the energy
release rate as it is usually defined in Griffith theory and f is the effective fatigue
function which depends in particular on the surface energy density φ. For small
values of G, f(G) is approximately given by k G3/2 where only the constant k
depends on φ.
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Microcrack nucleation in brittle solids

Khanh Chau Le

(joint work with Victor Berdichevsky)

The microcrack nucleation in brittle solids is studied within the probabilistic ap-
proach, according to which the crack radius is regarded as a random continuous
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Markovian process. Its probability density function obeys the Fokker-Planck equa-
tion. It is natural to assume that, at large time, the probability density function
approaches the Gibbsian distribution asymptotically. This assumption, together
with the reflecting boundary condition, determines the drift uniquely. Thus, the
model has two entries, the energy and the diffusion coefficient.

In this talk I present some arguments in favor of a specific choice of the energy
and of the diffusion coefficient. Our model contains two material characteristics
additional to the Griffith’s toughness [1]. One of them, the ultimate strain, can
easily be extracted from the tensile test of crack-free fibres at the liquid helium tem-
perature (see [2]). The other parameter which determines the diffusion coefficient
is identified by the maximum speed of crack propagation at room temperature.
We apply the model to predict the nucleation of internal and edge microcracks in
defect free silica glass fibres. It provides a reasonably good coincidence with the
experimental data in the interval of temperatures (0,600◦K).
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Homogenization in micro-plasticity

Victor Berdichevsky

Homogenized description of plasticity on micro-scale and macro-scale are princi-
pally different. A key distinction is that the energy of micron-size specimens, in
contrast to that of macro-specimens, is not a functional of integral characteris-
tics of the dislocation nets. Thus, energy must be considered as an independent
characteristic of the body which is additional to all other characteristics. In this
talk, a homogenized description of dislocation motion on micro-scale is proposed.
The theory is considered for the case of anti-plane constrained shear where all the
propositions can be evaluated analytically.

On Nonlocal Phase-Field Models

Jürgen Sprekels

(joint work with Pavel Krejč́ı (WIAS Berlin), Elisabetta Rocca (Pavia), Songmu
Zheng (Shanghai))

We consider nonlocal phase-field systems that model non-isothermal phase transi-
tions characterized by a nonconserved order parameter χ . Typically, χ denotes
the fraction of the high temperature phase (say, the liquid fraction in a solid–liquid
transition) and thus has to attain values in [0, 1] .
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The total free energy F that governs the evolution of χ and θ typically has
the form

F [θ, χ] =

∫

Ω

[
cV θ(x) (1 − ln(θ(x))) + θ(x)σ(χ(x)) + λ(χ(x))(1)

+ (β + θ(x))ϕ(χ(x)) +

∫

Ω

K(θ(x) + θ(y), x, y)G(χ(x) − χ(y)) dy

]
dx ,

where cV > 0 is the specific heat, σ, λ are smooth functions, ϕ is a proper, convex
and l.s.c. function forcing χ to attain values in [0, 1] (typically, the indicator
function of [0, 1] or the configurational entropy χ ln(χ) + (1− χ) ln(1− χ)) . The
symmetric kernel K accounts for long-range interactions (which may depend on
θ ), and G is smooth and even.

Assuming that the evolution runs in the direction where total entropy is max-
imized under constant total internal energy, one obtains the thermodynamically
consistent phase-field system

cV θt(x) − κ∆θ(x) − 2θ(x)

∫

Ω

Kττ(τ, x, y)|τ=θ(x)+θ(y)(θt(x) + θt(y))(2)

×G(χ(x) − χ(y)) dy

= −(λ(χ(x)) + β ϕ(χ(x)))t − 2χt(x)

∫

Ω

K(θ(x) + θ(y), x, y)

×G′(χ(x) − χ(y)) dy

+2θ(x)

∫

Ω

Kτ (τ, x, y)|τ=θ(x)+θ(y)G
′(χ(x) − χ(y))(χt(x) − χt(y)) dy ,

µ(θ(x))χt(x) + θ(x)σ′(χ(x)) + λ′(χ(x))(3)

+ 2

∫

Ω

K(θ(x) + θ(y), x, y)G′(χ(x) − χ(y)) dy ∈ −(β + θ(x)) ∂ϕ(χ(x)) ,

where we always have suppressed the argument t . The system (2), (3) is comple-
mented by appropriate initial and boundary conditions.

For the resulting system (2), (3) of integro-differential equations/inclusions, an
existence result has been established (cf. [1]). This result extends earlier existence,
uniqueness and regularity results established in [2], [3] for special cases for the
system (2), (3).
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Objective relative accelerations in theories of porous materials

Krzysztof Wilmanski

1. Introduction

It is known from the theory of suspensions (e.g. [1]) that relative inertia influence
the dynamics of multicomponent systems. A linear theory of poroelastic materials
with such an influence was constructed by M. Biot [2]. Since this work, a lot of at-
tention is given to this contribution both form theoretical and experimental points
of view. It is claimed (e.g. [3]) that the relative inertia arise due to the tortuosity
of porous materials and that this contribution is essential for an explanation of
experimental results.

From the formal point of view of continuum mechanics, such a contribution is
non-objective (see [4]). Simultaneously, its influence on the behavior of acoustic
waves does not seem to correspond with a physical expectation. Namely, it leads
to a reduced attenuation of waves by growing tortuosity ([5]).

In this lecture we present a construction of an objective relative acceleration
for two-component poroelastic materials. It is shown that an objective form is
necessarily nonlinear and that there exist infinitely many objective relative accel-
erations. In this sense Biot’s model may be considered as a linear (nonobjective)
approximation of a full objective nonlinear model.

2. Material objectivity

In continuum mechanics and thermodynamics it is required that constitutive
relations are invariant with respect to Euclidean transformation in the space of
motion. This transformation follows from the assumption on isometry of the space
of motion and it has the form

(1) x∗ = O (t)x + c (t) , OT (t) = O−1 (t) ,

i.e. it consists of a time dependent rotation described by the orthogonal matrix
O (t), and a time dependent translation c (t).

If we use a Lagrangian description of motion of the two-component porous
material (e.g. [6]) that the motion of skeleton is described by the following diffeo-
morphism

(2) x = fS (X, t) , X ∈B0, t ∈ T,

where B0 is the reference configuration of the body, and T is the time interval.
Then the velocity of the skeleton, its acceleration and the deformation gradient
are given by the relations

(3) x́S =
∂fS

∂t
, x̋S =

∂x́S

∂t
, FS = Grad fS .

Simultaneously, the velocity of the fluid which is usually introduced in the Eulerian
description can be transformed to the reference configuration of the skeleton. After
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easy calculations, we obtain also the relation for the acceleration of the fluid

(4) x́F = x́F (X, t) , x̋F =
∂x́F

∂t
+
(
Grad x́F

)
X́F , X́F = FS−T

(
x́F − x́S

)
,

where X́F is the so-called Lagrangian relative velocity.
The above quantities behave in the following way under Euclidean transforma-

tion

x́S∗ = Ox́S + Ȯx + ċ, x́F∗ = Ox́F + Ȯx + ċ, FS∗ = OFS , X́F∗ = X́F ,

(5) x̋S∗ = Ox̋S + 2Ȯx́
S

+ Öx + c̈, x̋F∗ = Ox̋F + 2Ȯx́
F

+ Öx + c̈,

Grad x́S∗ = OGrad x́S + ȮF
S
, Grad x́F∗ = OGrad x́F + ȮF

S
.

These relations indicate rules of transformation for balance equations provided
we assume the following transformation rules for the partial Piola-Kirchhoff stress
tensors, PS ,PF , and for the momentum source, p̂, (a diffusive force).

(6) PS∗ = OPS , PF∗ = OPF , p̂∗ = Op̂.

Material objectivity for poroelastic materials means that the following rela-
tions must hold

(7) PS∗ = PS
(
ρF ,FS∗, X́F , n, Gradn

)
, p̂∗ = p̂

(
ρF ,FS∗, X́F , n, Gradn

)
,

where ρF = ρF
t J

S , ρF
t is the current mass density of the fluid, JS = det FS , n –

porosity. The essential part of this assumption is that constitutive functions on
the right-hand side of these relations are the same for the initial and transformed
frames of reference.

Biot’s model contains a linear contribution to p̂ of the relative accelerations
with a material coefficient ρ12 – the so-called added mass coefficient. Inspection
of the above relations shows easily that such a contribution violates the rule (7).

3. Objective relative accelerations

Making use of the last two relations (5), the transformation rule for relative
accelerations can be easily written in the following form

(8) x̋F∗ − x̋S∗ = O
(
x̋F − x̋S

)
+ 2Ȯ

(
x́F − x́S

)
=

= O
(
x̋F − x̋S

)
+ (2 − z) Grad

(
x́F∗ −Ox́F

)
X́F + z Grad

(
x́S∗ −Ox́S

)
X́F ,

where z is an arbitrary scalar. Consequently, we can introduce the quantity

(9) ar =
∂

∂t

(
x́F − x́S

)
− (1 − z) X́F · Grad x́F − zX́F · Grad x́S ,

which is objective

(10) a∗
r = Oar.

Hence it can be used as an additional constitutive variable in (7) and, in the linear
case, the model reduces to this proposed by Biot.
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This extension of the model can be made thermodynamically admissible [5].
Among other properties, it can be shown that partial stresses must be ad least
quadratic functions of relative velocities. Consequently free energies contain as
well quadratic contributions of relative velocities, i.e. a sort of kinetic energy of
diffusion. Such a contribution was expected to arise from fluctuations of micro-
scopic kinetic energies of components.

4. Eulerian description

In the case of Eulerian description of motion the above derived relative accel-
eration has the form

ar =
∂

∂t

(
vF − vS

)
+
(
LF − LS

)
vS −

− (2− z)LF
(
vF − vS

)
− zLS

(
vF − vS

)
,(11)

LS = gradvS , LF = gradvF .

It is clear that one can use as well a relative acceleration with an additional contri-
bution αSDS

(
vF − vS

)
+ αF DF

(
vF − vS

)
, where αS , αF are arbitrary scalars

and DS ,DF are symmetric parts of the velocity gradients, LS ,LF . Situation
is similar to this appearing in the definition of objective time derivatives of the
classical continuum mechanics.
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Hysteresis in ferroelctric materials

Harsimar Sahota

Ferroelectric materials exhibit a complex behaviour upon electric and mechanical
loading. Their change of polarization and length is accompanied by hysteresis. Re-
markable is the so-called butterfly loop characterizing the strain due to an applied
electric field. As these materials are technically used as sensors and actuators, it
seems important to be able to simulate these hysteretic phenomena. Here a one-
dimensional model is proposed, capable of describing the qualitative behaviour of
widely used perovskite-type ferroelectric materials.
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Microscopically Motivated Constitutive Model of Ferroelectric

Piezoceramics

Marc Kamlah

(joint work with Zhenggui Wang, Dayu Zhou, Jörg Büttner)

In most cases, piezoelectric coupling is utilized by means of ferroelectric ceram-
ics. Besides linear electromechanical coupling, these materials exhibit a variety
of strong non-linear electromechanical coupling phenomena and hysteresis effects.
The microscopic origin for this behavior lies in the specific symmetry properties of
the unit cell and the capability to switch the orientation of domains of unit cells
under strong electromechanical loads.

In literature, a commonly accepted framework for the macroscopic constitu-
tive modeling of piezoceramic materials has been astablished, which relies on the
additive decomposition of strains and polarization into reversible and irreversible
parts. In the current model, the orientation state of domains is represented by
stepwise approximated orientation distribution functions (ODF). Assuming a po-
lar tetragonal unit cell, the macroscopic strain and polarization states are derived
from these ODF by integration. In this way, the parameters representing the ap-
proximate ODF become physically moitvated internal variables of the constitutive
model [1].

The ordinary differential equations (ODE) of the rate dependent formulation of
the model turn out to be stiff. In an investigation of the numerical integration of
the system of ODE, the performance of the explicit Dormand-Prince scheme and
the implicit Radau IIa scheme were compared, both with an convergence order
of 5. An automatic step size control based on an local error was employed. The
avarage step size of the implicit code turned to be almost 50 times larger than
that of the explicit code [2].

The von Mises-type switching criterion used in the present and other models
fails to describe that the critical compressive stress for the onset of switching is
almost identical for poled and unpoled specimens. In a recent investigation, the
onset of switching was investigated for proportional loading paths in the plane of
electric field and coaxial compressive stress. By means of an offset method the
starting of switching was detected from the strain mesurements. A preliminary
analysis revealed that the resulting switching points are represented rather by a
Tresca/Drucker-Prager-type yield condition than by the von Mises criterion [3].
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Incompressible ionized fluid mixtures

Tomáš Roub́ıček

A model of a fluid mixture of L incompressible chemically reacting charged con-
stituents in Prigogine’s description (i.e. balancing barycentric impulse but not im-
pulses of particular constituents) was presented. Under the volume-additivity hy-
pothesis and some other simplifying assumptions, the model combines the Navier-
Stokes equation (1a) for the barycentric velocity v and the pressure p with the
Nernst-Planck equation with advection (1b) for the concentrations c` of the par-
ticular mutually reacting constituents, the Poisson equation (1d) for self-induced
quasistatic electric field φ, and the heat equation (1c) for temperature θ:

(1a) %
∂v

∂t
+ %(v ·∇)v − ν∆ v + ∇p =

L∑

`=1

c`f` , div v = 0 ,

(1b)
∂c`
∂t

+ div
(
j`+c`v

)
= r`(c1, ..., cL, θ) , ` = 1, ..., L ,

(1c) ε∆φ = −q, q =

L∑

`=1

e`c` ,

(1d) cv
∂θ

∂t
− div

(
κ∇θ + cvvθ

)
= ν|∇v|2 +

L∑

`=1

(
f` · j` − h`(θ)r`(c1, ..., cL, θ)

)

where the Lorenz force and the phenomenological diffusive fluxes are considered
as

(2) f` = −e`∇φ, j` = −d∇c` −mc`(e`−q)∇φ,
and where % > 0 is the mass density both of the mixture and of the particular
constituents, ν > 0 is viscosity, e` valence (i.e. electric charge) of the `-constituent,
ε > 0 permitivity, r`(c1, ..., cL, θ) production rate of the `-constituent by chemical
reactions, h`(θ) the enthalpy contained in the `th constituent, d > 0 a diffusion
coefficient, m > 0 a mobility coefficients, cv > 0 a specific heat, and κ > 0 a heat
conductivity coefficient.

Thermodynamics of this model is based on the energy balance, which sounds
essentially as

(3)
d

dt

(∫

Ω

( %

2
|v|2
︸ ︷︷ ︸
kinetic
energy

+
ε

2
|∇φ|2
︸ ︷︷ ︸

electrostatic
energy

+ cvθ
︸︷︷︸

internal
energy

)
dx

)
−
∫

Ω

∑L
`=1h`(θ)r`(c, θ)

︸ ︷︷ ︸
heat production via
chemical reactions

dx = 0

in an isolated system on a fixed domain Ω, i.e. no contribution from (here nonspec-
ified) boundary conditions on ∂Ω is counted. The heat sources on the right-hand
side of (1d), i.e.

(4) ν|∇v|2 + d∇q ·∇φ+

L∑

`=1

mc`e
2
` |∇φ|2 −mq2|∇φ|2 −

L∑

`=1

h`r`,



Thermodynamische Materialtheorien 3009

includes respectively the heat production due to viscosity, the power of the electric
current arising by due to the diffusion flux which may have a local Peltier-type
cooling effects alhough globally it cannot cool because of

(5)

∫

Ω

d∇q · ∇φ dx = ε

∫

Ω

−d∇(∆φ) · ∇φ dxε

∫

Ω

d|∆φ|2 dx ≥ 0,

the further term in (4) is Joule’s heat produced by the electric currents which
always dominates the 4th term (i.e. the rate of cooling by a “reaction force” which

balances the volume-additivity constraint
∑L

`=1 c` = 1), while the 5th term is the
heat produced or consumed by chemical reactions. The entropy balance based on
Helmholtz’ free energy ε

2 |∇φ|2−cvθln(θ) can formally be established for spatially
isothermal processes or electroneutral processes; the violation of Claussius-Duhem
inequality for such an entropy may be due to incompressible simplification or due
to certain inconsistency of Prigoggine concept with electrostatics.

Existence of a weak solution to an initial-boundary-value problem for (1)–(2)
can be shown in two special cases: the Stokes’ one (i.e. the convective term
%(v · ∇) v in (1a) neglected) or the isothermal one (i.e. the heat equation (1d)
neglected). A Kakutani fixed-point argument can be used for both cases [1].
The Galerkin approach has been used for the latter case in [2]. In both cases,
fine design of the scheme is necessary, using a certain correcting retract of con-

centrations from the linear manifold
∑L

`=1 c` = 1 to its subset of non-negative
c`’s, which eventually may be forgotten in the fixed point or in the limit, respec-
tively. The a-priori L∞-bound of retracted concentrations facilitates the whole
proceedure. In the isothermal case, a (very) weak solution has then the quality:
c` ∈ L∞((0, T ) × Ω) ∩ L2([0, T ];W 1,2(Ω)) with ∂

∂tc` ∈ L4/3([0, T ];W 1,2(Ω)∗), and

v ∈ L2([0, T ];W 1,2(Ω; R3)) ∩ L∞([0, T ];L2(Ω; R3)) with the acceleration ∂
∂tv ∈

L4/3([0, T ];W 1,2
0,DIV

(Ω; R3)∗) where the notation W 1,2
0,DIV

indicates divergence-free

functions, and eventually φ ∈ L∞([0, T ];W 1,2(Ω)). In case the Stokes the convec-
tive term in (1a) is neglected, a regularity for the Poisson and the Stokes equations
yields additionally φ ∈ L∞([0, T ];W 2,2(Ω)) and v ∈ L6([0, T ];W 2,6(Ω; R3)), and
then θ ∈ L2([0, T ];W 1,2(Ω)) ∩ L∞([0, T ];L2(Ω)) with ∂

∂tθ ∈ L2([0, T ];W 1,2(Ω)∗).
The application of the model is limitted to situations where the magnetic field

can be neglected and where all constituents are incompressible and have equal
mechanical response (i.e. have the same mobility d and diffusivity m as well as
the “reaction force” q∇φ in (2) which balances the volume-additivity contraint∑L

`=1 c` = 1 influence them equally). Acknowledgement: The work was supported also by

the grant 201/03/0934 (GA ČR).
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A kinematic model for defective crystals

Cesare Davini

The interest for the theory of crystalline defects in mechanics moves from the
common believe that defects and their evolution under loads play a central role in
the inelastic behaviour of materials, so that a good model of defects can be the
basis for a satisfactory macroscopic theory of plasticity.

The subject started being studied in the 50’s and had most relevant contributors
such as Kondo, Bilby, Eshelby and Köner, who were the founders of the so called
continuum theory of defects in solids. The continuum theory of defects became
then very popular in the 60 and 70’s, especially under the effect of an influencial
paper by Noll [6], which had the merit of reformulating the problem in terms of
modern concepts of Continuum Mechanics and the defect, on the other end, of
strengthening a trend towards abstraction that proved to be rather sterile.

The object of this seminar is a continuum model for defective crystals I proposed
in [1] and successively elaborated together with G. P. Parry in a series of articles
[2, 3, 4]. We introduced on a systematic basis old and new tensor densities of
defects and provided a finite list of them which was shown to be exhaustive in
a well precise sense. A distinctive feature of the approach is that the changes
of states which preserve these densities, when they are kinematically possible,
turn out to be slips in certain surfaces associated with crystal geometry. So the
basic mechanism of plasticity emerges naturally from abstract ideas which neither
anticipate, nor involve the kinematics of particular types of crystal defects. In
spite of these encouraging results, a mechanical theory of the model has not been
fully elaborated yet. Hereafter my purpose is to present the main ideas underneath
and to sketch some of the difficulties that obstruct the construction of a mechanics
for the model.

A crystal body is described by means of three lattice vectors da and mass density
ρ, regarded as the primitive quantities of the model. Its state Σ is then specified
by the assignment of these quantities throughout the region B macroscopically
occupied by the body at the present time: Σ = {da(·), ρ(·),B}.

The lattice vectors are imagined to characterize the behaviour of the crystal at
macroscopic scale and are envisaged as averages, on a mesoscale, of vectors repre-
senting interatomic positions. They are supposed to vary smoothly on macroscopic
scale, as is also the density function. So, even if defects occur at the atomistic
scale and there is no recognizable lattice of atoms, it is assumed that these av-
erages are observable at a coarser (mesoscopic) level. The evolution of defects is
then supposed to account for the observed discrepancy between the macroscopic
deformation and the behavior of the da.

A central premise of the model is that the material particles which comprise
the crystal are indistinguishable, and that the knowledge of the lattice vector and
density fields is all we need in order to determined the mechanical response of
the material. Accordingly, a Eulerian point of view is adopted and no special
role is attached to the notion of a reference configuration and to the macroscopic
deformation gradient. A stand point that is unusual in solid mechanics, but that
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seems to me quite natural in describing the mechanics of a system of identical
particles interacting with one another.

This view carries over a major difficulty in the analysis because, since all fields
are assumed to be smooth, there is no natural notion of defectiveness in the model.
In fact, there is a way to introduce such a notion rather neatly on the basis of the
following requirements: a) that it be compatible with “ Taylor’s conjecture” that
the evolution of defects reflects into discrepancy of mesoscopic and macroscopic
behavior; b) that it mimic the atomistic notion that defects can be counted and
add up over the union of regions in physical space.

Let Σ → Σ∗, with

χ : x → x∗ and Σ∗ = {d∗
a(·), ρ∗(·),B∗ = χ(B)},

be a change of state. A priori there is no reason for assuming a connection between
the new fields and the old ones under the macroscopic transplacement χ(·), because
lattice vectors and transplacements reflect observations at different scales. On
the other hand, we may adopt Taylor’s view and assume that defectiveness stay
unchanged under the class of state changes defined by

d∗
a(x∗) = F(x)da(x) with F(x) =

∂x∗

∂x
.

These state changes are called elastic deformations.
It is natural to look for features of the fields da and ρ that are left unchanged

under elastic deformations and to regard them as descriptive of defectiveness.
Furthermore, accepting the prejudice that defectiveness is to be additive over
subregions of B, we are lead to search for integral forms, defined over the parts of
B, which are left invariant under the elastic deformations. That is, we search for
integrals of the form

(1)

∮

c

g · dx,
∫

S

g · n dS,
∫

V

g dV,

with c, S, V circuits, surfaces and volumes in B respectively, such that
∮

c∗

g∗ · dx∗ =

∮

c

g · dx ∀ c ⊂ B, with c∗ = χ(c),

etc..

These integrals are called elastic invariants.
With an eye towards a constitutive theory of local type, here the integrands are

assumed of the form

g = g(da(x),∇da(x),∇2da(x), ..., ρ(x),∇ρ(x),∇2ρ(x), ...),

and we intend that

g∗ = g(d∗
a(x∗),∇∗d∗

a(x∗),∇∗2d∗
a(x∗), ..., ρ∗(x∗),∇∗ρ∗(x∗),∇∗2ρ∗(x∗), ...).

It is possible to characterize the invariants in a rather systematic way. In fact
to construct an infinite list of them. Disregarding the density field, for simplicity,
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and proceeding towards invariants involving gradients of increasing order, among
the first few invariants we find∮

c

da · dx,
∫

S

da × db · n dS,
∫

V

d1 · d2 × d3 dV,

and ∫

V

ßab dV, with ßab = ∇× da · db,

where the da are the dual lattice vectors defined by

da · db = δa
b (δa

b Kronecker symbol).

The interpretation of these invariants is suggestive: the first two respectively
measure the unbalance of lattice step and lattice faces of type a and a b, respec-
tively, when going around c and S; the third one counts the total number of lattice
cells contained in V . The invariants

∮
c
da ·dx are the well known Burgers integrals

of the continuum theory of dislocations; the other two, on the contrary, are new.
The ßab are the lattice components of Nie’s dislocation density tensor.

Applying Stokes or Gauss theorem, one finds defect densities associated with
these integrals. For instance, some of them are: ba = ∇×da, n = d1 ·d2 ×d3 and
ßab, with ßab naturally distinguished into symmetric and skew symmetric parts.
One of the most important results of the analysis is that, although an infinite list
of integral invariants and related defect densities can be constructed, the following
(finite) list

(2) ba, ßab, n,∇(ßab/n) × dc, ∇(∇(ßab/n) · dc) × dd

is a functional basis for the elastic invariants of the class described by (1). This
means that for two states (defined over the same B, for brevity) that share the
previous defect density fields all the invariants of the form (1) match.

It is reasonable to ask whether the invariants really capture the essence of
defectiveness as we perceive that notion on a more intuitive basis. To answer
that question one has to understand whether there are non elastic deformations
that also leave the integral invariant unchanged and how they look like. Such
deformations were called neutral. We showed that neutral deformations may occur,
but only for very special states, where a certain uniformity along planes or lines
in B takes place. In those cases, neutral deformations correspond to slips and
rearrangements within those subsets, so evoking familiar mechanisms of crystal
plasticity. More specifically, it turns out that

Theorem 1. Let Σ and Σ′ be two neutrally related states defined over the same B
(for brevity). Then, at each x ∈ B, there are neighborhoods N (x) and N ′(x) and
an elastic deformation χel that maps Σ|N onto Σ′

|N′
.

Since the character of locality is a rather primitive requisite of defectiveness, it
would be difficult to think that defectiveness around any point x in the two states
be different, according to any more intuitive notion of defectiveness. It also follows
from the previous theorem that
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Theorem 2 (Completeness of the densities). If the densities of list (2) match in
two states Σ and Σ′ over the same B (for brevity), then all invariants of the form
(1) match.

The previous results follow from a detailed analysis of the uniqueness of solution
of a (overdetermined) system of partial differential equations, see [2, 3, 4]. With
different words, the studied problem is analogous to one considered by Cartan in
his work on the “ moving frames”, and it would be possible to derive the main
results above from a theorem of Fröbenius, see [7].

In spite of a kinematic framework that seems fairly well settled, a satisfactory
mechanical theory has not been developed so far. The most severe obstruction
comes from the renounce to using the Cauchy-Born hypothesis in order to connect
micro and macro deformations. This, which is a founding assumption of the model
and that is in my opinion the natural way to describe, though at macroscopic level,
the behavior of a discrete system of particles, is a quite unusual point of view in
solid mechanics. And the way how to manage the consequences of this assumption
in mechanics has not been clarified. Some attempts to study mechanical problems
in simple instances have been done by Fonseca and Parry [5], who considered the
equilibrium under loading of a crystal body without defects, but able to undergo
rearrangements. They studied it in a variational context and imagined to penalize
rearrangements in order to prevent their occurrence. Unfortunately, their analysis
shows that no penalization avoids that the crystal can stand only hydrostatic
stresses at equilibrium. A disappointing result that is not new to researchers
in the field, but that indicates that more understanding of the model is to be
provided.
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Macroscopic models for rarefied gas flows

Henning Struchtrup

This talk presents an overview on classical and recent methods to derive macro-
scopic transport equations to model rarefied gas flows, and a critical examination
of the resulting models.

It is well known that the Navier-Stokes-Fourier equations cannot describe rar-
efaction effects in gases, which appear in processes with Knudsen numbers Kn >
0.05 (say). A variety of extended models can be derived from the Boltzmann
equation—the basic equation to accurately describe rarefied gases—which aim at
describing rarefied gas flows at least approximately. The best known among these
are the Burnett and super-Burnett equations, derived by means of the Chapman-
Enskog method [1], and Grad’s 13 moment equations, which follow from Grad’s
moment method [2, 3].

Burnett and super-Burnett equations suffer from instabilities in transient pro-
cesses [4], and several modifications have been suggested to stabilize the equations,
including the augmented Burnett equations [5], and the regularized Burnett equa-
tions [6]. Both sets of equations improve the Burnett equations only partly, and
are difficult to justify from the Boltzmann equation.

Grad’s moment equations [2, 3] exhibit unphysical sub-shocks in shock struc-
tures at large Mach numbers [7, 8], and so far could not be related to the rarefaction
of the gas, i.e. to the Knudsen number. Since the equations can be derived for an
arbitrary number of variables, a criterion that relates the number of moments to
the Knudsen number was missing.

A technique for the regularization of Grad’s 13 moment equations was presented
recently, producing the regularized 13 moment equations (R13) which guarantee
smooth shock structures [9, 10]. However, this method can be used for any num-
ber of moments, and thus leaves the question of how many moments need to be
considered unanswered.

A recent approach within the framework of extended thermodynamics, termed
as ”consistently ordered extended thermodynamics” (COET), gave a first answer
to this question [11]. However, COET yields certain sets of Grad-type equa-
tions, and thus does not remove the problem of discontinuous shocks. Moreover,
the method was only applied to simple molecular interaction models—Maxwell
molecules or the BGK model—and it is not clear how the method should be gen-
eralized to more realistic interaction models.

Elements of the COET method were blended with some new ideas to design
a method for deriving transport equations for rarefied gases from the Boltzmann
equation within higher orders of the Knudsen number [12, 13]. The method focuses
on the order of magnitude of the moments of the phase density, and the order of
accuracy of the transport equations, both measured in powers of the Knudsen
number. This ”order of magnitude method” was developed up to the third order
for the special case of Maxwell molecules [12], and it yields the Euler equations
at zeroth order, the Navier-Stokes-Fourier equations at second order, Grad’s 13
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moment equations (with omission of a non-linear term) at second order, and the
regularization of these (R13) at third order.

The order of magnitude method was also used to derive a set of 13 moment
equations for arbitrary molecular interaction potentials [13]. It was shown that
the new set of equations is accurate to second order, while Grad’s original 13
moment equations are of second order accuracy only for Maxwell molecules and
BGK models.

An important feature of the order of magnitude method is that the equations
of any order are stable, other than in the Chapman-Enskog method, where the
second and third order approximations—Burnett and super-Burnett equations—
are unstable. The latter can be extracted from the derived equations by means of
the Chapman-Enskog method. It follows that the new method includes Burnett
type and Grad type equations and the regularization of the latter, and thus forms
a common umbrella for all known theories for macroscopic transport equations in
rarefied gases.

A difficult issue in the theory of macroscopic transport equations is the problem
to ascribe boundary conditions for higher moments, which are not controlled in
experiments [14]. For better understanding of this issue, the Couette flow prob-
lem was split into two sub-problems, which concern the solution in the bulk and
Knudsen boundary layers.

The bulk solution requires only jump and slip boundary conditions for tem-
perature and velocity, which are well-known, and thus the bulk solution can be
obtained readily.

The ability of macroscopic equations to provide Knudsen layer solutions was
discussed in Refs. [9, 15], where it was also shown that additional boundary con-
ditions are required. Alternatively, one can fit the amplitudes of the Knudsen
layer solutions to accurate numerical solutions of the Boltzmann equation. Su-
perpositions of the bulk solutions with fitted Knudsen layer solutions can then be
compared to the Boltzmann solutions. The results presented here indicate that
only the R13 equations can quantitatively describe Knudsen boundary layers, while
the Burnett and super-Burnett equations fail.

Acknowledgment: This research was supported by the Natural Sciences and
Engineering Research Council (NSERC).
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Riemann problem in Extended Thermodynamics

Tommaso Ruggeri

The Riemann problem for a system of balance laws is still an often question.
We study the problem with particular attention to the asymptotic behaviour.
Moreover we study also the solutions when the initial data are a ”perturbation”
of the Riemann data proving results similar to the one of T. P. Liu obtained in
the case of conservation laws. Applications are presented in the core of Extended
Thermodynamics for rarefied gases and in the case of a binary mixture of Euler
fluids.

Thermodynamics of Elastic Solids up to the Melting Point

Masaru Sugiyama

Thermodynamic quantities of linear isotropic elastic solids, that is, elastic con-
stants, specific heats, coefficients of thermal expansion and Grüneisen parameters
are estimated and discussed on the basis of the linearized macroscopic basic equa-
tions proposed recently by the author’s group [1-4]. The equations were derived
from a nonequilibrium statistical-mechanical model for crystalline lattices with a
continuum approximation. The equations take microscopic thermal vibration of
constituent atoms into account explicitly, and they are valid in a wide temperature
range including the melting point as a limiting case. Some new coefficients relat-
ing thermal vibrations of constituent atoms to temperature variation and strain
are also studied in detail in both isothermal and adiabatic processes. Peculiar
temperature dependences of these quantities near the melting point are found.
With these analytical results, Helmholtz free energy for elastic solids is formulated
explicitly up to the melting point. The present model can be applied to many
nonequilibrium phenomena in solids near the melting point, for an example, wave
propagation phenomena [3,5].
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The present analysis also reveals that we can analyze mechanical phenomena
in solids separately from the thermal effect within the linear theory. This fact
has, of course, long been taken granted implicitly in the usual theory of elasticity.
However this is, in general, no longer true in a nonlinear model such as the one
proposed by the author’s group.
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Kinetics of lattice phase transitions

Anna Vainchtein

(joint work with Lev Truskinovsky)

A characteristic feature of martensitic phase transitions in active materials is the
energy dissipation leading to experimentally observed hysteresis. The dissipation
is due to propagating phase boundaries which can be represented at the continuum
level as surfaces of discontinuity. Classical elastodynamics admits nonzero dissi-
pation on moving discontinuities but provides no information about its origin and
kinetics. The arbitrariness of the rate of dissipation is known to be the cause of
nonuniqueness in problems involving subsonic phase boundaries. The ambiguity at
the macroscale reflects the failure of the continuum theory to describe phenomena
inside the narrow transition fronts where the dissipation actually takes place.

To illustrate this fundamental problem, it suffices to consider longitudinal de-
formation of a homogeneous elastic bar with a unit cross-section and initial density
ρ. Let u(x, t) be the displacement of a reference point x at time t, and let φ(ux)
denote the elastic energy density of the bar. The balances of linear momentum is

(1) ρutt = (σ(ux))x,

where σ(ux) ≡ φ′(ux) is the stress-strain relation. Although in classical elasto-
dynamics equation (1) is hyperbolic, the hyperbolicity condition σ′(ux) > 0 is
violated for martensitic materials with non-monotone stress-strain curve σ(ux)
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[3]. This makes the initial-value problem associated with the mixed-type equa-
tion (1) ill-posed. In particular, it leads to the appearance of non-evolutionary or
undercompressed discontinuities (kinks, or subsonic phase boundaries). The pa-
rameters of these discontinuities satisfy both the classical Rankine-Hugoniot jump
conditions and the entropy inequality R = GV ≥ 0, where V is the velocity of the
discontinuity and G = [[φ]] − {σ}[[ux]] is the configurational (driving) force. Here
[[ · ]] denotes the jump across the kink and {σ} ≡ (σ+ +σ−)/2. However, the kinks
fail to satisfy the Lax condition c+ < V < c−, where c± are the sound velocities
in front of and behind the moving kink. One way to remedy the resulting instabil-
ity is to supplement the Rankine-Hugoniot jump conditions by a kinetic relation
G = G(V ) specifying the dependence of the configurational force on the velocity
of the phase boundary [1, 5].

We obtain the closing kinetic relation by replacing the continuum model with
its natural discrete prototype. The procedure can be viewed as either regulariza-
tion by discretization or as a physically motivated account of underlying discrete
(atomic or mesoscopic) microstructure. We consider fully inertial dynamics of
a one-dimensional lattice with bi-stable nearest-neighbor interactions. Our work
complements previous analyses of the local discrete problem by including an arbi-
trary number of harmonic long-range interactions. Following some previous work
in plasticity [2] and fracture [4], we assume piecewise linear interactions between
nearest neighbors (NN), which allows us to construct an explicit traveling wave
solution describing an isolated phase boundary.

Although the model is Hamiltonian at the microscale, it generates a nontriv-
ial macroscopic kinetic relation. The dissipation at the macrolevel is due to the
nonlinearity-induced radiation of lattice waves carrying energy away from the prop-
agating front. We demonstrate the degeneracy of the local NN model and analyze
in detail the nonlocal model accounting for next-to-nearest neighbor (NNN) in-
teractions. We show that nonlocality affects the size of lattice trapping: as NNN
bonds become stronger, the trapping region reduces in size in terms of stresses.
However, it increases in terms of driving forces, which emphasizes an important
difference between the real and configurational forces. In addition to enlarging the
domain of existence of steady state regimes with high-frequency radiation in both
directions, sufficiently strong coupling significantly alters the mobility curves near
the sonic speeds. Contrary to the simplest local theory, strongly nonlocal model
produces multivalued kinetic relations with several admissible branches and rich
variety of configurations of emitted lattice waves. Although we have not studied
stability of the constructed traveling waves, the fact that the dissipation potential
associated with these dynamic regimes is locally convex suggests that they may
be infinitesimally stable. The details of this analysis are described in [6, 7].
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Energy Transport in Periodic Lattices

Alexander Mielke

This work concerns the problem of deriving macroscopic, continuum models from
microscopic, discrete systems. More precisely, we start from the atomistic model
of a crystal which consists of periodically spaced mass points whose motion is
governed by linear interaction forces. The aim is to provide exact mathematical
links between this microscopic system and its macroscopic limits arising when the
atomic distance ε tends to 0. In fact, we will obtain one equation which describes
the evolution of the macroscopic displacement and another equation which allows
to calculate the transport of energy in the crystal.

The analysis of discrete systems attracted a lot of attention over the last
decades. However, most work is restricted to the one-dimensional oscillator chain

(1) ẍγ =

M∑

α=1

(
V ′

α(xγ+α−xγ) − V ′
α(xγ−xγ−α)

)
−W ′(xγ), γ ∈ Z,

where Vα is the interaction potential with the neighbors at distance α and W the
on–site potential which couples the atoms to a background. Rigorous justifica-
tions of macroscopic PDEs for the oscillator chain are provided in [3, 10] where
the Korteweg–de Vries equation is obtained as the macroscopic model for describ-
ing the evolution of long–wave interactions. In [4, 2] the nonlinear Schrödinger
equation or the quasilinear Whitham equation is derived to describe macroscopic
evolution of pulses which modulate a periodic pattern on the microscopic scale.

The purpose of this work aims in a similar direction, however it is different in
the methodology. We restrict ourselves completely to the linear setting and thus
are free to generalize in many other directions. First we are able to study very
general lattices in any dimension. Second we are able to investigate the dynamics
of solutions for much more general initial data. Finally our results will be more
detailed. In a certain sense our work is closer to the statistical approaches for
harmonic lattices, see e.g. [9]. In particular, the latter work also derives a energy
transport equation. However, we stay fully in the deterministic setting.

To be more specific, consider a d–dimensional Bravais lattice Γ ⊂ Rd and the
infinite set of coupled ODEs

(2) Mẍγ = −
∑

β∈Γ

Aβxγ+β for γ ∈ Γ,
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which will be our basic microscopic system. Here the vector xγ ∈ Rm may contain
the displacement of several atoms in the cell associated with the lattice point γ.
The mass matrixM ∈ Rm×m is symmetric and positive definite and the interaction
matrices satisfy Aβ = AT

−β and ‖Aβ‖ ≤ Ce−b|β|.
An essential feature of such harmonic lattices is the presence of many traveling

wave solutions in the form

(3) xγ(t) = ei(θ·γ+ωt)Φ where θ ∈ Rd
∗ and (A(θ) − ω2M)Φ = 0,

where the symbol matrix A(θ) reads A(θ) =
∑

β∈Γ eiθ·βAβ ∈ Cm×m. We always

impose the basic assumption of stability in the form A(θ) ≥ 0 for all θ ∈ Rd
∗.

First we derive a continuum–limit equation for the displacements in the case
of the atomic distance ε tending to 0. Denoting by V ⊂ Rm the kernel of A(0)
we construct the polynomial Q : V → R which is homogeneous of degree 2 and
satisfies

〈Q(η)v, v〉 = inf{ lim inf
ε→0

1

ε2
〈A(εη)wε, wε〉 | lim

ε→0
wε = v }.

Then, Q defines the second order differential operator A0 = Q(i∇y). We obtain
the partial differential equation

(4) MV
∂2

∂τ2
v + A0v = 0 for (τ, y) ∈ R × Rd,

where MV is the restriction of M to V . Eqn. (4) includes the equations of linear
elastodynamics and is a macroscopic limit equation for (2) is an exact mathemat-
ical sense: the limit ε → 0 commutes with the time evolution, i.e., the following
abstract diagram commutes.

microscopic
S

ε

−−−−−→ macroscopic

initial data t = 0 (xε

0, εx
ε

1)
ε → 0

−−−−−−−−→ (v0, v1)

time evolution

?

?

?

?

y

t > 0 τ > 0

?

?

?

?

y

(xε(τ/ε), εẋε(τ/ε))
ε → 0

−−−−−−−−→ (v(τ ), ∂τv(τ ))

discrete, atomistic coarse graining continuum

Second, we study the transport of energy which does along the group veloc-
ity of the microscopic wave pattern. The classical WKB method (cf. [1]) shows
that macroscopically modulated pulses of the harmonic traveling waves (3) prop-
agate with the group velocity cgroup = ∇θω(θ). For studying macroscopic energy
transport we have to know how much energy is located at which point, in which
wave length and in which energy band, i.e., in which of the m eigenpairs (ω,Φ)
associated with θ.

For this purpose it is convenient to reformulate the Fourier transformed version
of (2) as a first order system in diagonal form:

(5)
∂

∂τ
Û(τ, η) =

i

ε
Ω̂(εη)Û(τ, η), with Ω̂(θ) = diag(ω1(θ), . . . , ω2m(θ)),
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where ωj+m = −ωj for j = 1, . . . ,m. The relevant tools for studying the macro-
scopic spatial distribution of microscopic oscillations is the Wigner transform W ε

and its limit, the matrix–valued Wigner measure µ, see [8, 5, 6]. We derive the
energy transport equation for the diagonal entries µjj , j = 1, . . . , 2m of the Wigner
measure:

(6) ∂τµjj(τ, y, θ) = ∇̃θωj(θ)∂yµ(τ, y, θ) for (τ, y, θ) ∈ R × Rd × T̃.

The energy density e(τ, y) at a macroscopic point y at time τ is then recovered via

e(τ, y) =

∫

eT

2m∑

j=1

µjj(τ, y, dθ).

The tilde ˜ indicates that a certain continuous continuation of ∇θωj(θ) has to
be chosen, since in general the functions are only Lipschitz continuous but not
differentiable. In fact, in the point θ = 0 on always has such a singularity, since
ω1(θ) behaves like |θ|. Thus, we are able to maintain certain features of the H-
measure, see [11].

Discrete energy distribution in the linear oscillator chain and its continuum limit

Acknowledgment. The work was partially supported by the DFG Priority Pro-
gram 1095: Analysis, Modeling and Simulation of Multiscale Problems (Mi 459/4).

References

[1] L. Brillouin, Wave propagation and group velocity, Academic Press, New York, 1960.
[2] W. Dreyer, M. Herrmann, A. Mielke, Micro–macro transition for the atomic chain via

Whitham’s modulation equation, Preprint March 2004.
[3] G. Friesecke, R. L. Pego, Solitary waves on FPU lattices: I. Qualitative properties, renor-

malization and continuum limit, Nonlinearity 12 (1999), 1601–1627.
[4] J. Giannoulis, A. Mielke, The nonlinear Schrödinger equation as a macroscopic limit for

an oscillator chain with cubic nonlinearities, Nonlinearity 17 (2004), 551–565.
[5] P. Gérard, P. A. Markowich, N. J. Mauser, F. Poupaud, Homogenization limits and Wigner

transforms, Comm. Pure Appl. Math. 50 (1997), 323–379. Erratum: Comm. Pure Appl.
Math. 53 (2000), 280–281.
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Boundary conditions in Extended Thermodynamics and Applications

Elvira Barbera

The problem of the boundary conditions has been discussed in the context of
Extended Thermodynamics [1]. In all the versions of Extended Thermodynamics
and in particular in Consistently Ordered Extended Thermodynamics [2] one needs
more boundary values than one can assign and control.

In the talk a new proposal [3] for the determination of the remaining boundary
values has been presented. It is based on the idea that the gas is subject to thermal
fluctuations and so are the fields including their boundary values. The fluctuations
are very rapid, so that the gas may not adjust to their fluctuating boundary values.
Therefore one may assume that the gas adjusts the not controllable boundary
values to the mean values of the fluctuating boundary data.

The mean values may be calculated by employing the Boltzmann formula S =
k lnW . This proposal has been applied to a simple problem of stationary heat
conduction in a gas at rest [3], to the study of the stationary plane Couette flow
[4] and to a problem of heat conduction in cylindrical symmetry [5].
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Light scattering in Extended Thermodynamics

Daniel Reitebuch

Ordinary thermodynamics works very well for most engineering problems. Only
in some extreme cases it fails, especially if steep gradients or rapidly changing
fields play a role. In such a case, a better theory is needed, for instance extended
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thermodynamics. In the consistently ordered version of extended thermodynam-
ics (COET), the moments are ordered in terms of the steepness of gradients. The
light scattering experiment is a very good test for the theories of extended thermo-
dynamics. This test is applied to the COET as well as to the previously existing
extended thermodynamics. Both theories converge in the sense that they describe
the light scattering spectrum perfectly if the number of variables considered is
high enough. But in order to obtain a result with a given accuracy, the COET
needs less variables than the theories of the previously existing extended thermo-
dynamics. Therefore we may say that the new theory is more efficient, albeit only
slightly.

The entropy principle for fluid interfaces

Hans Wilhelm Alt

We present a systematic theory for interfaces of fluids based on the entropy princi-
ple of rational thermodynamics. It differs substantially from existing presentations
of interface problems and provides several new aspects. We focus on viscous fluids,
whereas [4, 5, 7, 9] deal with solids, and [6] concentrates on gases.

First of all, balance laws including interfaces are formulated as distributional
equations. In this version they attain the simplest and also their natural form.
Moreover, the covariant structure of these basic laws always is present. The tradi-
tional presentation (for example, in the books [3, 4, 5, 6, 7, 8]) uses the formulation
with test volumes instead of test functions. For our distributional formulation only
one additional notation is needed:

If Γ is an evolving d-dimensional surface (that is Γt := {x ; (t, x) ∈ Γ} has
dimension d, 0 ≤ d ≤ n, n = 3 the physical space dimension), let µΓ be the
measure L1 ⊗ Hd restricted on Γ, as distribution

< ζ, µΓ >:=

∫

R

∫

Γt

ζ(t, x) dHd(x) dL1(t).

Let Ω1 and Ω2 be two time-space domains Ω1 and Ω2 occupied by two fluids (or
bulk materials) separated by an evolving interface Γ. We consider the following
distributional balance laws for mass, momentum, and (total) energy:

∂t(ρ
mµΩm) + div (ρmvmµΩm) = τmµΓ for m = 1, 2,

∂t(
∑

m ρmvmµΩm)

+div (
∑

m(ρmvm ⊗ vm + Πm)µΩm + ΠsµΓ)

=
∑

m fmµΩm + fsµΓ,

∂t(
∑

m emµΩm + esµΓ)

+div (
∑

m(emvm + ΠmT vm + qm)µΩm + ΦsµΓ)

=
∑

m vm
•fmµΩm + gsµΓ,
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with τ1 + τ2 = 0. Here Πm are the fluid pressure tensors and Πs is the surface
pressure tensor.

Secondly, we apply the entropy principle in the strict sense of rational thermo-
dynamics (as in [6]). This means, that the entropy production is not prescribed,
its structure is a result of the exploitation of the principle. For interface problems
the entropy principle has to be understood in distributional sense. It postulates,
that for a given class of physical processes there exists a (distributional) entropy
H and a (distributional) entropy flux Ψ satisfying

∂tH + div Ψ ≥ 0

in distributional sense. Moreover, as a postulate, this equation transforms between
observers as a scalar equation. This implies (in classical continuum physics), that
H is a distributional objective scalar. In isothermal descriptions, the entropy
inequality reduces to a free energy inequality. In either case such an inequality is
the basic ingredient for mathematical theories. For the above system the entropy
identity is of the form

∂t(
∑

m ηmµΩm + ηsµΓ)

+div (
∑

m(ηmvm + 1
θm q

m)µΩm + ΨsµΓ)

=
∑

m hmµΩm + hsµΓ,

and the entropy principle is equivalent to hm ≥ 0 in Ωm and hs ≥ 0 on Γ.
Thirdly, the principle of objectivity (principle of frame indifference) is used sys-

tematically. It is used not only for constitutive functions, but also for balance laws.
We give a formulation of this principle for distributional balance laws, therefore
it applies to interface systems of the above form. This distributional formulation
implies important structural properties of interfacial terms. For the momentum
equation the conclusion simply is, that Πs is an objective tensor and f

s an objective
vector.

We apply the entropy principle, under constitutive assumptions, for interface
systems and study its consequences. We are mainly interested in constitutive
restrictions for surface tension. For the exploitation of the entropy principle the
local version of the balance laws are used, which consists of differential equations
in Ωm and Γ, as well as constraints for the surface flux terms. For the momentum
equation this constraint is Πsν = 0. The standard constitutive relation for Πs is
Πs = Π̂s(a, ν), where a consists of objective scalars not depending on ν. If Πs is
symmetric, objectivity implies

Πs = −σ(Id − ν ⊗ ν), σ = σ̂(a),

where σ is surface tension.
Consequences of the entropy principle depend on the particular physical situa-

tion. We treat several well known classes of processes like slip boundary conditions,
mean curvature flow, liquid drops, Marangoni convection, and diffusion on a fluid
interface. In the talk we explained the following cases (vΓ and κΓ denote the
velocity and the curvature vector of Γ):
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Mean curvature flow. Ω1 and Ω2 are two phases of an isothermal rigid body
with a phase transition rate τ 1 depending on ν1 and κΓ. Then the free energy
inequality leads to

vΓ•ν1 = τ̂1(κΓ•ν1) with στ̂1(s) · s ≥ 0.

Within a concept for fluids the unisotropic case is not treated.
Surfactant on a fluid interface. Ω1 is an isothermal fluid, Ω2 treated as va-
cuum, and γ the density of a diffusive surfactant on Γ with mass conservation

∂t(γµΓ) + div ((γv1 + qs)µΓ) = 0.

Let the constitutive relations be qs = q̂s(γ, ρ1, v1,∇Γγ), Πs = Π̂s(γ, ρ1, v1,vΓ, ν1),

and fs = f̂s(γ, ρ1, v1) for the surface free energy. Objectivity reduces this to

qs = −a∇Γγ, a = â(γ, ρ1, |∇Γγ|),
σ = σ̂(γ, ρ), f s = f̂s(γ, ρ).

Then the free energy inequality implies, that f s and σ are independent of ρ1.
Moreover, a “surface Gibbs relation”

σ = fs − γfs
′γ

has to be satisfied and (for a > 0) the inequality f s
′γγ ≥ 0. This implies, that σ is

decreasing in γ.
Marangoni convection. Ω1 and Ω2 are two fluids We consider the above system
with τ1 = 0 and fs = 0, assuming that absolute temperature and velocity are
continuous at Γ. We allow additional constitutive dependence on θ and compute
the surface entropy production hs. For fluxes Φs = esv + ΠsT v, Ψs = ηsv, and
vanishing surface energy production gs this is

hs = (∂t + v•∇)ηs − 1
θ (∂t + v•∇)es

+
(
ηs − 1

θe
s + 1

θσ)div Γv,

where σ, es, ηs depend on (ρ1, ρ2, θ). Then the entropy principle implies indepen-
dence on ρ1,ρ2, and

σ = es − θηs, σ ′θ = −ηs.

As a result, surface tension may depend on intrinsic quantities on the interface.
Moreover, generically it always depends on temperature, but it is independent of
other fluid quantities.
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Modelling and simulation of phase transformation processes

Britta Nestler

A general class of non-isothermal phase-field models for crystal growth and so-
lidification in complex alloy systems is presented. The new model is capable to
simultaneously describe the diffusion processes of multiple components, the phase
transitions between multiple phases and the development of the temperature field.
Both, surface energy and kinetic anisotropy is incorporated in the new phase-field
model. We introduce our 3D parallel simulator that is based on a finite differ-
ence discretization including effective adaptive strategies and multigrid methods
to reduce computation time and memory usage. In particular, the three types
of partial differential equations for the concentrations, the phase fields and the
temperature are solved on three different numerical meshes with a different grid
fineness and with different time discretizations. Taking advantage of the multi-
obstacle potential, the phase-field equations are only solved in regions of the phase
boundaries. The parallelization is realized for distributed as well as shared mem-
ory computer architectures using MPI libraries and OpenMP concepts. Applying
the new computer model, we show a variety of simulated crystal structures in 3D
for different types of crystalline and smooth anisotropies. Simulation results are
presented showing the motion of multiple interfaces (phase and grain boundaries)
in complex alloy systems. In particular, phenomena such as anisotropic curvature
flow, grain growth and coarsening are described. Another special emphasis of the
computations is modelling of phase transformations and solidification processes
in multi-component alloys. The specific phase diagrams of the alloys are incor-
porated in the diffuse interface model via the free energies. Within this context,
complex ternary eutectic structures are simulated in 2D and 3D. The effect of
anisotropy on eutectic structures, such as the growth of tilted eutectic lamellae,
and the formation of eutectic grains at different length scales: the grain structure
on a larger scale and the eutectic substructure on a smaller scale are investigated.
The stability of ternary eutectic growth fronts for different recombination of the
three solid phases and the characteristic spacings depending on process conditions
are analyzed by iterative computations. The numerical results are supported by
a generalized Jackson-Hunt theory for ternary eutectics. Finally, we apply the
phase-field simulations to model complex multiscale growth of eutectic colonies
resulting from small amounts of ternary impurities.
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Structural forces in liquid crystals

Epifanio G. Virga

Nematic liquid crystals are complex anisotropic fluids with variable molecular or-
dering. When rigid particles are submerged in these fluids, the molecular ordering
is affected by the interactions of the molecules with the particles boundaries. In
turn, the change in ordering can result in an elastic distortion that induces a dis-
placement or a rotation of the particle to relax the excess of energy associated
with the distorting interactions. This essentially explains the ability of nematic
liquid crystals to exert forces and torques on submerged particles. Actually, when
the submerged particles prescribe the nematic molecules to be aligned in the di-
rection orthogonal to their boundaries (homeotropic anchoring), the intervening
liquid crystal mediates an interaction between the particles that prompts them
to acquire regular equilibrium patterns. Despite the significance of these interac-
tions, only few direct measurements have so far become available. Theoretically,
when the particles size becomes comparable to the length scale over which the
molecular ordering is organized, typically between a few and ten nanometers, the
conventional description of the molecular organization in terms of the nematic di-
rector n becomes insufficient, and both forces and torques exerted on a submerged
particle must be evaluated within the Landau-de Gennes theory, which employs
a full second-rank tensor Q to describe the local molecular ordering. This lecture
concerns forces and torques exerted on bodies submerged in a nematic liquid crys-
tal and forces and torques transmitted through the liquid crystal from one body
to another. Particular emphasis will be laid on the effect of structural ordering
changes onto the behaviour of these elementary mechanical actions.

Modeling the light-induced deformation in liquid crystal elastomers

Yongzhong Huo

Liquid crystal elastomers (LCE) are polymeric materials with mesogenic liquid
crystalline moieties. The cross-linked polymer network exhibits an entropy-induced
elastic behavior. The liquid crystalline moieties show an order-disorder phase tran-
sition upon cooling-heating processes. At a higher temperature, the moieties are
randomly oriented so the elastomer is in the disordered phase, called the isotropic
phase. Upon cooling to a critical temperature, the liquid crystalline moieties align
themselves to certain prefered orietations so to transform to the liquid crystal
(LC) phase. The most commonly observed liquid crystal phase is the nematic
phase with the moieties aligned to a direction n. Then, the critical tempear-
ture is called the nematic-isotropic (NI) transition temperature TNI . The phase
transition is reversible upon heating.

As a typical soft matter, the orientations of the liquid crystalline molecules of
LCEs can be changed rather easily by samll external and internal disturbances such
as temperatures, stresses, electric fields and impurities. Experiments have shown
that even a very small amount of the molecules in a LCE sample are photochromic,
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the orientations of the whole liquid crystallline molecules can be modulated by
light[1]. In particularly, if the photochromic molecules can change their shape
from a LC phase stabilizing rod-like to a destabilizing bended shape upon light
irradiation, the nematic-isotropic transition temperature Tni can be raised by light.

For cross-linked LC polymers, the orientation change of the LC molecules can
induce a macroscopic shape change at the NI transition through the interaction of
the LC molecules with the backbone. Thus, they can be used as an active materi-
als in various application fields such as artificial muscle technology [2]. Especially,
large deformations up to 20% can be induced by light for LCEs with photochromic
molecules as first discovered in [3]. The mechanism of such a light-induced defor-
mation consists of the following steps,

(1) UV-induced trans-cis isomerization of azo(N=N) bonds such that the pho-
tosensitive mesogenic molecules change from a rod-like shape to a bended
shape. This process can be modeled by a rate equation as

dNcis

dt
= pt→c(T )Ntrans − pc→t(T )Ncis + αNtransI(t)

(2) The kinked mesogenic molecules act as impurities so to reduce the NI
transition temperature through

Tni = T ◦
ni(1 −Ncis/N

◦
meso)

ε

(3) The lowered Tni will result in a reduction of the order parameter Q of the
nematic phase since

Q = A(Tni − T )ξ

(4) The stress free length of a LCE sample is a decrease fucntion of the order
parameter Q as

λ◦ =

(
l◦⊥(Q◦)

l◦‖(Q◦)

l‖(Q)

l⊥(Q)

)1/3

From a thermodynamical point of view, it is desired to know how the above light
irradiation changes the internal energy, the entropy and the stress-strain relations
of LCEs. The total Helmholtz free energy should consist of the following terms

Ftotal = F◦(T ) + Fnl(Q,T ) + Fel(λ,Q◦, Q, T ) + Fis(Ncis, T )

where F◦ is the free energy of the undistorted stress-free isoropic phase. Fnl is
the nematic free energy that can be taken as the Landau-de Gennes expansion of
the order parameter Q. Fel is the entropic-induced elastic free energy and Fis is
the free energy change due to the trans-cis isomerization. The internal energy, the
entropy and the stress-strain relations of LCEs can be then calculated from above
free energy function. The temperature equation can be deduced from th energy
balance by considering the radiation energy flux due to light as

Cp
dT

dt
= −c(T − Te) + σij

∂vi

∂xj
+ ∆Hni

dQ

dt
+

[
−dNcis

dt
+ αNtransI(t)

]
∆Utc



Thermodynamische Materialtheorien 3029

Consider a LCE sample with photochromic molecules under constant UV light
for an extensive time, all the rate terms approach zero. Thus, we would have the
final temperature at the end state as

T∞ = Te + αN∞
transI◦∆Utc/c ≈= Te + pc→t(T∞)N∞

cis∆Utc/c

and the total fraction of the cis isomers

x∞cis =
N∞

cis

Nazo
=

pt→c(T∞) + αI◦
pc→t(T∞) + pt→c(T∞) + αI◦

Therefore, the sample should be hotter than its enviroment due to the energy
of light irradiation even there is little directly heating of the UV light. Rather
the sample is heated by the relaxation of the higher energy cis isomer back to the
trans form. Such a self-heating effect has been indeeded observed in experiment
[4].

The above thermodynamical considerations can serve as the basis for a more
systematical thermodynamical model of the light active behavior in certain LCEs.
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On the superposition of generalized plane strain on anti-plane shear

deformations in elastomeric devices

Giuseppe Saccomandi

In this talk we investigate the basic issues that arise when generalized plane strain
deformations are superimposed on anti-plane shear deformations in isotropic in-
compressible hyperelastic materials. This problem arise from the observation of
what happens in some technical devices made of elastomeric materials like bush
mounting or bump stoppers. First of all attention is devoted to a subclass of such
materials for which the strain-energy density depends only on the first invariant
of the strain tensor. The governing equations of equilibrium are a coupled system
of three nonlinear partial differential equations for three displacement fields. It
is shown that, for general plane domains, this system decouples the plane and
anti-plane displacements only for the case of a neo-Hookean material. Even in
this case, the stress field involves coupling of both deformations. For generalized
neo-Hookean materials, universal relations may be used in some situations to un-
couple the governing equations. Then we discuss why some of the results are also
valid for inhomogeneous materials, in dynamical setting and more general consti-
tutive settings as quasistatic viscoelasticity. These results explains why in many
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elastomeric devices failure is more complex that we use to idealize using idealized
pictures of the deformations where, for example, axial shear it is assumed uncou-
pled form rotational shear. For this reason qualitative estimates of the magnitude
of in-plane deformations is an important aspect for a careful mechanical design of
such devices.
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Atomistic simulation of an elastic-plastic body with shape memory

Oliver Kastner

In a previous work a two-dimensional, molecular dynamic model was presented,
which is capable to represent the characteristics of austenite ↔ martensite lattice
transitions in metallic solids, see [1], [2]. These transitions appear under the
influence of load/strain and/or temperature control, as it was explained by use of
numerical experiments concerning small crystallites: Quadratic latices are stable at
high temperature and in absence of a load, while sheared, rhombic-shaped lattices
are stable at low temperature, or upon loading. Due to the obviuos similarities to
shape memory alloys, the quadratic phase is called the austenite, and the sheared
phases are called variants of martensite. By use of thermodynamic arguments, the
phase stability of such small crystallites was investigated. It turned out, that even
41-atomic crystallites exhibit temperature-dependent, non-monotonic stress-strain
relations and thus non-convex free energy functions.

The work presented on the meeting in 2004 uses this numerical model in order to
simulate phase transitions in larger bodies upon loading at different temperatures.
Therefore I refer to an idea used by I. Mueller & P. Villagio [3] for modelling elastic-
plastic bodies. The authors made use of bistable snapsprings, which exhibit two
distiguished states, representing — in a way — two generic phases of the material
points in an solid body. Mueller & Villagio then derived the stress-strain relation
of an elastic-plastic body by the superposition of the stress-strain curves of many
snapsprings, which are exerted to the same load P. In detail this procedure is
explained for 11 snapsprings.

In the present work the snapsprings are replaced by 2-dimensional crystallites
consisting of 41 particles. 11 of these crystallites are placed in a chain, where two
neighboured bodies are connected via corner atoms, shared by both respective
bodies. Each individual crystallite may belong to three phases possible, austenite
and two martensitic variants. Their phase stability is dependent on load AND
temperature, and thus — in contrast to a body created by snapsprings — the
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stress-strain relation of the entire chain is temperature-dependent too. In my
talk I have presented numerical tensile tests on the crytallite chain at different
temperature. Upon loading, phase transitions of the individual ctrystallites occur
giving rise to the state of the overall chain: At low temperature the chain exerts
quasiplastic stress-strain behaviour, while at high temperature the stress-strain
behaviour is pseudoelastic.

The work presented is still in progress. It is aimed on the theoretical under-
standing of solid-solid phase transitions in atomic clusters and crystallites.
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