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Introduction by the Organisers

The goal of the workshop was to bring together specialists working in various
branches of spectral theory with applications to solid state physics, supercon-
ductivity, quantum mechanics etc. The meeting was attended by more than 45
participants from Europe, Japan, Russia, South America and US. During the five
days 26 talks were delivered. A special care was taken that apart from the rec-
ognized experts in the field, young participants also had an opportunity to speak
about their results. The Wednesday morning session, preceding the traditional
afternoon hike, consisted of talks of survey nature, which was appreciated by all.

There were several major themes in the workshop. One was the study of discrete
spectra, including Lieb-Thirring estimates, properties of resonances. A substantial
number of talks was concerned with the connection between the continuous and
discrete spectra. These include, in particular, the study of the so-called trace for-
mulas. The investigation of various characteristics of the continuous spectra (e.g.
density of states, spectral shift function) was featured in a number of talks in the
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context of random or magnetic operators. A variety of new results were also re-
ported on the theory of periodic operators. They concerned the Liouville Theorem,
the problem of absolute continuity, and the classical problem of homogenization.

A relatively low number of talks gave the participants an opportunity for dis-
cussions in small groups outside the scheduled lecture time. It is hoped that these
contacts will result in further collaboration.

It is our pleasure to thank the administration and staff of the Mathematisches

Forschungsinstitut Oberwolfach for creating comfortable and genuinely inspiring
atmosphere, which facilitated the work of the organisers and contributed to the
success of the workshop.
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Abstracts

A Fermi Golden Rule at thresholds

Arne Jensen

(joint work with Gheorghe Nenciu)

We describe our main results in the form of an example. Consider a Schrödinger
operator

H = −∆ + V on L2(R3),

where we assume that V ∈ C∞
0 (R3). The essential spectrum is [0,∞), and is purely

absolutely continuous. There may be a finite number of negative eigenvalues, and
an eigenvalue at zero. We assume here that 0 is a non-degenerate eigenvalue, with
normalized eigenfunction Ψ0. We study what happens to this eigenvalue under
small perturbations. Let W ∈ C∞

0 (R3). To avoid the case that 0 becomes a
negative discrete eigenvalue, we introduce

Assumption (A1). b = 〈Ψ0,WΨ0〉 > 0.

The we consider

H(ε) = H + εW, ε > 0.

We show that the zero eigenvalue becomes a resonance, in the time-dependent
sense introduced by A. Orth [5]. In order to formulate the main result we need
some further results and assumptions.

In the resolventR(z) = (H−z)−1 we change the variable to κ = −i√z, Im z > 0,
Reκ ≥ 0. It is well-known (see [2]) that we have an asymptotic expansion as κ→ 0

R(−κ2) =
1

κ2
P0 +

N∑

j=−1

κjGj + O(κN+1),

valid in the topology of the weighted spaces, B(Ls(R3), L−s(R3)), for s sufficiently
large, depending on N .

We can now formulate the next essential assumption.

Assumption (A2). There exists an odd integer ν ≥ −1, such that

gν = 〈Ψ0,WGνWΨ0〉 6= 0, Gj = 0, j = −1, 1, 3, . . . , ν − 2.

Our main result can then be formulated as follows.

Theorem. There exists ε0 > 0 such that

〈Ψ0, e
−itH(ε)Ψ0〉 = e−itλ(ε) + δ(ε, t), t > 0, 0 < ε < ε0.

Here

|δ(ε, t)| ≤ Cεp(ν)|ln ε|ι,
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where ι = 1 for ν = −1, 1, and zero otherwise. We write p(ν) = min{2, (2+ν)/2}.
We have λ(ε) = x0(ε) − iΓ(ε), with the expansions

x0(ε) = bε(1 + O(ε)),

Γ(ε) = −iν−1gνb
ν/2ε2+(ν/2)(1 + O(ε)),

as ε→ 0.

We note that −iν−1gν > 0. Our main result holds in an abstract setting, where
we assume the existence of an asymptotic expansion of the type above for the
resolvent of H .

The result shows how the Fermi Golden Rule has to be modified, to get the
lifetime of the resonance. Notice that in the usual case of perturbation of an
eigenvalue embedded in the continuum proper, the coupling constant dependence
for the imaginary part is ε2, whereas we have ε2+(ν/2), ν ≥ −1 and odd. All
possible values of ν can be shown to occur in explicit examples.

It is possible to compute gν explicitly. In the example under consideration we
have the following result. Take Ψ0 real-valued, and let

Xj =

∫

R3

Ψ0(x)V (x)xjdx, j = 1, 2, 3.

Assume that at least one Xj 6= 0. Then ν = −1, and we have

g−1 =
b2

12π
(X2

1 +X2
2 +X2

3 ).

Resonances can also be defined as poles of a meromorphic continuation of the
resolvent R(z) is a suitable sense. The problem of perturbation of a threshold
eigenvalue was studied by B. Baumgartner [1] in a two channel setting, using
meromorphic continuation. He also gave heuristics for the modification of the
Fermi Golden Rule, which agrees with our main theorem.

In [4] we give complete results, and, based on the resolvent expansions in [3], we
give a large number of examples of both one channel and two channel Schrödinger
operators satisfying our assumptions.
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Homogenization of periodic differential operators in Rd as a spectral
threshold effect

M. Sh. Birman

(joint work with T. A. Suslina)

In [1], the spectral approach to homogenization problems for one class of selfad-
joint elliptic matrix second order differential operators is systematically developed.
On the basis of the Floquet-Bloch decomposition, it is shown that homogenization
is a threshold effect near the bottom of the spectrum. In what follows, we explain
this point of view and discuss the typical results. The results presented in Section
4 are new.

1. Let Γ ⊂ R
d be a lattice, and let Ω be the cell of Γ. We use the notation

G = L2(R
d; Cn), G∗ = L2(R

d; Cm), D = −i∇. It is assumed that m ≥ n. Let h be
an (m×m)-matrix-valued Γ-periodic function in Rd such that h, h−1 ∈ L∞(Rd).
We put g = h∗h. Let b(ξ), ξ ∈ Rd, be an (m×n)-matrix-valued linear homogeneous
function such that rank b(ξ) = n for ξ 6= 0. Then

α01n ≤ b(θ)∗b(θ) ≤ α11n, |θ| = 1, 0 < α0 ≤ α1 <∞.

We consider the first order differential operator hb(D) = X : G → G∗; DomX =
H1(Rd; Cn). Here H1 is the Sobolev space. Then the operator A(g) = X ∗X =
b(D)∗g(x)b(D) is selfadjoint in G.

Our main object is the operator family Aε(g) = A(gε), where gε(x) = g(ε−1x),
ε > 0. We study the behavior of solutions of the equation

Aε(g)uε + uε = F, F ∈ G, (1)

as ε→ 0.

2. The following definition of the constant effective matrix g0 is standard for the
homogenization theory. Let C ∈ Cm, and let w be a weak Γ-periodic solution of
the equation

b(D)∗g(x)(b(D)w + C) = 0. (2)

Then g0 is defined by the relation

g0C = |Ω|−1

∫

Ω

g(x)(b(D)w + C) dx.

The effective matrix satisfies the estimates

|Ω|
(∫

Ω

(g(x))−1 dx

)−1

= g ≤ g0 ≤ g = |Ω|−1

∫

Ω

g(x) dx.

Theorem 1. We have

‖(A(g) + ε2I)−1 − (A(g0) + ε2I)−1‖G→G ≤ Cε−1, 0 < ε ≤ 1, (3)

where the constant C depends only on Γ, α0, α1, ‖h‖L∞, ‖h−1‖L∞.
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The estimate (3) is of threshold nature, since we consider the resolvent in point
(−ε2), i. e., near the bottom of the spectrum. (We have inf specA(g) = 0.)

3. Along with equation (1), we consider the homogenized eqution A(g0)u0+u0 =
F. By traditional means of homogenization theory, it is easily proved that uε tends
to u0 weakly in H1(Rd; Cn). Using the spectral approach, we prove the following
result, which complements this statement essentially.
Theorem 2. Let C be the constant from inequality (3). Then

‖(Aε(g) + I)−1 − (A(g0) + I)−1‖G→G ≤ Cε, 0 < ε ≤ 1. (4)

Apparently, estimates of the form (4) are new for homogenization theory. In
fact, estimates (3) and (4) are equivalent. Indeed, let Tε be the unitary scale
transformation in G: (Tεu)(x) = εd/2u(εx). Then

(Aε(g) + I)−1 = ε2T ∗
ε (A(g) + ε2I)−1Tε.

The operator A(g0) satisfies similar identity, but (g0)ε = g0.
Note that using the scale transformation is possible only for the estimates in

the operator norm. For the study of convergence of different types, this method
does not work.

4. In homogenization theory, adding appropriate correction term of order ε to u0,
one obtains more accurate approximation for uε. This correction term contains
some rapidly oscillating factors. This way is also possible in L2-theory. Here we
present the corresponding result for the simplest case, namely, for the operator
A(g) = D∗g(x)D = −div g(x)∇ (now n = 1, m = d, b(ξ) = ξ). Let vj(x),
j = 1, . . . , d, be the Γ-periodic solution of the equation D∗g(x)(Dvj(x) + ej) = 0
such that

∫
Ω
vj(x) dx = 0. Here {ej}, j = 1, . . . , d, is the standard basis in Rd. By

Λ(x) we denote the matrix-row {v1(x), v2(x), . . . , vd(x)}. Then Λ(x) is Γ-periodic.
We put Λε(x) = Λ(ε−1x), and consider the operator Zε : G → G,

Zε = ΛεD(A(g0) + I)−1.

Theorem 3. For the operator A(g) = D∗g(x)D under the above assumptions we
have

‖(Aε(g) + I)−1 − (A(g0) + I)−1 − ε(Zε + Z∗
ε )‖G→G ≤ C∗ε

2, 0 < ε ≤ 1, (5)

where C∗ depends only on Γ, ‖g‖L∞, ‖g−1‖L∞.

Remarks. 1) In homogenization theory, the traditional correction term is Zε.
However, in L2-theory, in order to obtain the precise estimate (5), we have to take
the symmetric expression (Zε + Z∗

ε ). In the case where the columns of g(x) are
divergence free, we have Zε = 0 and then

‖(Aε(g) + I)−1 − (A(g0) + I)−1‖G→G ≤ C∗ε
2, 0 < ε ≤ 1.

2) The estimate similar to (5) is true for the matrix operators A(g) defined in
Section 1, if m = n. Apparently, in the general case one more additional summand
should be added in the correction term.
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Finite Casimir energy for the electromagnetic field in a cavity

G.M. Graf

(joint work with F. Bernasconi, D. Hasler)

We present a Hilbert space formulation [3] of the classical Maxwell equations
in a cavity Ω ⊂ R3. In a preliminary Hilbert space L2(Ω,C3) of (complex-valued)
vector fields on Ω we define the dense subspaces

R = {V ∈ L2(Ω,C3) | rotV ∈ L2(Ω,R3)} ,
R0 = {V ∈ R | 〈U, rotV〉 = 〈rotU,V〉, ∀U ∈ R}

and the (closed) operator R = rot with domain D(R) = R0. Its adjoint is R∗ =
rot with D(R∗) = R. We remark that R, resp. R∗, is also the closure of rot
defined on smooth vector fields V with boundary condition V‖ = 0 on the smooth

boundary ∂Ω, resp. without boundary conditions. Similarly, gradients ∇, ∇̃ :
L2(Ω) → L2(Ω,C3) can be defined with domains D(∇) = {ϕ ∈ L2(Ω) | ∇ϕ ∈
L2(Ω), ϕ = 0 on ∂Ω}, resp. D(∇̃) without the last boundary condition. Clearly,

Ran∇ ⊂ KerR, Ran ∇̃ ⊂ KerR∗, so that

(1)
RanR∗ ⊂ (KerR)⊥ ⊂ (Ran∇)⊥ =: H ,

RanR ⊂ (KerR∗)⊥ ⊂ (Ran ∇̃)⊥ =: H′ .

Therefore the Maxwell operator

M =

(
0 iR∗

−iR 0

)
= M∗

on L2(Ω,C3)⊕L2(Ω,C3) restricts to the invariant subspace H⊕H′, which is the
physical Hilbert space for electromagnetic fields (E,B). Indeed, the spaces

(2)
H = {E ∈ L2(Ω,C3) | div E = 0} ,

H′ = {B ∈ L2(Ω,C3) | div B = 0, B⊥ = 0 on ∂Ω}
consist of divergence free fields and the Maxwell equations can be written as

(3) i
∂

∂t

( E
B

)
= M

( E
B

)
.

The usual boundary conditions E‖ = 0, B⊥ = 0 on the ideally conducting shell
∂Ω are accounted for through D(R), resp. H′.

Remark. In [2] we defined M as an operator on H⊕H. The difference consists
of fields (E,B) = (0,∇ψ) with ψ harmonic, and hence of (infinitely many) zero
modes of M , which are irrelevant to the Casimir energy, see below.
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We discuss the heat kernel traces for M 2 = diag(R∗R,RR∗),

(4) TrH(e−tM2

) =
∑

k

e−tω2
k ∼=

∞∑

n=0

ant
n−3

2 , (t ↓ 0) ,

(and similarly for H′ with coefficients a′n), where ω2
k are the eigenvalues of R∗R on

H, resp. RR∗ on H′. They come in pairs, except for zero modes, and correspond
to a single oscillator mode ωk > 0 for (3). The coefficients an are known, see e.g.
[6, 4], for general operators of Laplace type. The direct application of such results
is prevented by the divergence constraint in H and H′, see (2).

Let Lab = (∇eaeb,n), (a, b = 1, 2), be the second fundamental form on the
boundary ∂Ω with inward normal n and local orthonormal frame {e1, e2,n}. We
denote by |Ω| the volume of Ω and set f [∂Ω] =

∫
∂Ω f(y)dy, where dy is the

(induced) Euclidean surface element on ∂Ω. The corresponding Laplacian on ∂Ω
is denoted by ∇2.

Theorem. [2] Let Ω ⊂ R
3 be an open, connected domain with compact closure

and smooth boundary ∂Ω. Then

a0 = 2(4π)−
3
2 |Ω| , a1 = 0 , a2 = −4

3
(4π)−

3
2 (trL)[∂Ω] ,

a3 =
1

64
(4π)−1

(
3(trL)2 + 28 detL

)
[∂Ω] ,

a4 =
16

315
(4π)−

3
2

(
2(trL)3 − 9trL · detL

)
[∂Ω] ,

a5 =
1

122880
(4π)−1

(
2295(trL)4 − 12440(trL)2 detL+

+ 13424(detL)2 + 1200trL · ∇2trL
)
[∂Ω] .

The coefficients a′n are the same, except for n = 3, where

a′3 =
1

64
(4π)−1

(
3(trL)2 − 36 detL

)
[∂Ω] + 1 .

By the Gauss-Bonnet theorem we have a3 − a′3 = (4π)−1(detL)[∂Ω] − 1 =∑n
i=1(1 − gi) − 1 = (n − 1) −∑n

i=1 gi, where g1, g2, . . . , gn are the genera of the
n connected components of ∂Ω. This equals the difference in the numbers of
electrostatic, n− 1, and magnetostatic,

∑n
i=1 gi, modes.

Sketch of proof. The transversal modes of the electromagnetic field, together
with their unphysical, longitudinal counterparts in Ran∇ and Ran ∇̃, see (1),
are the eigenfunctions of the Laplacian acting on unconstrained vector fields, to
which existing heat kernel expansions may be applied. The spurious contribution
so introduced is essentially that of the Laplacian on scalar fields. Alternatively,
consider the Laplacian of the de Rham complex of a 3-manifold with boundary.
The electric and magnetic fields are then associated to forms of degree p = 1 and
p = 2 respectively. In this correspondence transverse modes are associated with
coexact, resp. exact forms, which permit to map longitudinal modes to forms of
degree p = 0 and p = 3.
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We apply the Theorem to the Casimir effect of the quantum field. To this end
we retain: (i) The Weyl term a0 is proportional to the volume of the cavity; (ii)
a1 = 0; (iii) a2, a4 are odd in the second fundamental form of the boundary;
(iv) the asymptotic series (4) may be differentiated w.r.t. t. For the purpose
of this discussion we simply define the Casimir energy by the mode summation
method, see e.g. [1]. We shall observe that it is finite – a conclusion drawn in
[1], but questioned in [9]. We do not however address the issue [7] of whether this
definition is the most appropriate physically, nor do we compare it with others,
based e.g. on the local energy density.

We enclose the cavity Ω ⊂ R3 in a large ball Ω0 and compare the vacuum
energy of the electromagnetic field in the domains Ω ∪ (Ω0 \ Ω) with that of the
reference domain Ω0. Each eigenmode of either configuration contributes a zero-

point energy ωk/2, resp. ω0
k/2. As a regulator for the eigenfrequencies ωk = λ

1/2
k ,

we choose e−γλk , (γ > 0). The corresponding definition of the Casimir energy is

EC =
1

2
lim

Ω0↑R3
lim
γ↓0

(∑

k

λ
1
2

k e−γλk −
∑

k

(λ0
k)

1
2 e−γλ0

k

)
.

We now show that the limit γ ↓ 0 is finite. (The subsequent limit Ω0 ↑ R3 also

exists.) Using λ
1/2
k = −π−1/2

∫∞

0 dt t−1/2d(e−tλk )/dt we obtain

∑

k

λ
1
2

k e−γλk ≈ −
4∑

n=0

n− 3

2
√
π
an

∫ δ

0

dt t−
1
2 (t+ γ)

n−5
2

≈ 2√
π
a0γ

−2 +

√
π

2
a1γ

− 3
2 +

1√
π
a2γ

−1 + 0 · a3γ
− 1

2 +
1

2
√
π
a4 log γ ,

where δ > 0 is arbitrary, but fixed, and “≈” means up to bounded terms as γ ↓ 0.
Hence a finite EC requires that a0, a1, a2, a4 (but not necessarily a3!) agree for
Ω∪ (Ω0 \Ω) and for the reference domain Ω0 [8], [5]. By the Theorem this is so for
a0 and a1, but also for a2, a4 as the contribution from the two sides of ∂Ω cancel.

Acknowledgments. We thank M. Birman for suggesting the change in for-
mulation mentioned in the remark, and him and K. Milton for pointing out to us
refs. [3, 5], respectively.
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The band-edge behavior of the density of surface states

Frédéric Klopp

(joint work with Werner Kirsch)

This talk is devoted to the integrated density of surface states for a simple discrete
model of surface random operators (see e.g. [3, 1, 2, 7]). We study the asymptotic
behavior of this quantity near the edges of the spectrum of the random model.
The results are taken from [5, 6].
On Zd (d = d1 + d2, d1 > 0, d2 ≥ 3), we consider random Hamiltonians of the
form

(1) Hω = −∆ + Vω

where

(H0): Let H be a translational invariant Jacobi matrix with exponential
off-diagonal decay that is H = ((hγ−γ′))γ,γ′∈Zd such that,

• h−γ = hγ for γ ∈ Zd and for some γ 6= 0, hγ 6= 0.
• there exists c > 0 such that, for γ ∈ Z

d,

(2) |hγ | ≤
1

c
e−c|γ|.

(H1): Vω is a random potential concentrated on the sub-lattice Zd1 ×{0} ⊂
Zd of the form

(3) V (γ1, γ2) =

{
ωγ1 if γ2 = 0,

0 if γ2 6= 0.
, γ = (γ1, γ2) ∈ Z

d1 × Z
d2 = Z

d.

and (ωγ1)γ1∈Zd1 is a family of non trivial i.i.d. bounded random variables.

The operator Hω is bounded for almost every ω. It is ergodic. So we know there
exists Σ the almost sure spectrum of Hω (see e.g. [4, 8]). Note that the Σ0 contains
the spectrum of H .

Remark 1. An interesting case which can be brought back to a Hamiltonian of
the form (1) with H and Vω as above is the following.
Consider Γ, a sub-lattice of Zd obtained in the following way Γ = G({0} × Zd2)
where G is a matrix in GSLd(Z), the d-dimensional special linear group over Z,
i.e. the multiplicative group of invertible matrices with coefficients in Z and unit
determinant. One easily shows that the random operator

Hω(Γ) = −1

2
∆ +

∑

γ∈Γ

ωγΠγ
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(where Πγ is the projector onto the vector δγ ∈ `2(Zd)) is unitarily equivalent to
H + Vω where Vω is defined in (3) for h chosen appropriately (see [5]).

ForHω as in (1) and satisfying (H0) and (H1), one defines the integrated density
of surface states (the IDSS in the sequel), say Ns , in the following way (see
e.g. [3, 1, 2, 7]): for ϕ ∈ C∞

0 (R), we set

(4) (ϕ′′, Ns) = E(tr(Π1[ϕ(Hω) − ϕ(−∆)]Π1))

where Π1 is the orthogonal projector on the subspace Cδ0 ⊗ `2(Zd2) ⊂ `2(Zd).
Here δ0 denotes the vector with components (δ0j)j∈Zd1 .
We normalize Ns so that it vanishes below Σ. In [5], we prove that the function
Ns is continuous.
We now present our results on the behavior of Ns near the lower edge of Σ (the
study near the upper edge is the same). To fix ideas, assume that 0 = inf Σ.

Definition 2. We say that E, an edge (or boundary) of the spectrum of Hω, is
stable if it is an edge of the spectrum of H + tVω for all t ∈ [0, 1]. If an edge is not
stable, we call it a fluctuation edge.

Let ω− be the infimum of the support of the random variables (ωγ1)γ1 . Let h(θ)
be the real analytic function

h(θ) =
∑

γ∈Zd

hγe
iγθ.

One checks

Proposition 3 ([5]). Write h(θ) = h(θ1, θ2) where θ = (θ1, θ2), θ1 ∈ Td1 , θ2 ∈
Td2 . Then, 0 is a stable spectral edge if and only if ω− satisfies condition

(5) 1 + ω−I∞ ≥ 0 where I∞ := sup
θ1∈Td1

∫

Td2

1

h(θ1, θ2)
dθ2

1. The fluctuation edges

We now assume that inf σ(H) > 0. In this case, we consider a effective operator

H̃ which acts on `2(Zd1). In Fourier representation this operator is multiplication

by the function h̃ given by:

(6) h̃(θ1) =

(∫

Td2

1

h(θ1, θ2)
dθ2

)−1

We either suppose:

(H2): the function h : Td → R admits a unique minimum; it is quadratic
non-degenerate.

or we assume the weaker hypothesis:

(H2’): the function h̃ : Td → R is not constant.

Let P0 be the common distribution of the random variables (ωγ1)γ1 defining the
potential (3). We assume:

(H3): P0 is not trivial and P0([ω−, ω− + ε)) ≥ εk/k for some k > 0.
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We prove

Theorem 4 ([5]). If (H0) – (H2) and (H3) are satisfied then

lim
E↘0

ln | ln(Ns(E))|
ln E

= −d1

2
.

We have an additional result for low dimension of the surface:

Theorem 5 ([5]). Assume (H0) – (H2’) and (H3) hold. If d1 = 1 then

(7) lim
E↘0

ln | ln(Ns(E))|
ln E

= − lim
E↘0

ln(n(E − ω−))

ln E

where n(E) is the integrated density of states for H̃.
If d2 = 2, then

(8) lim
E↘0

ln | ln(Ns(E))|
ln(E

< 0.

Both limits (7) and (8) can be computed in terms of the Taylor series of h̃ at its
minima (see [5] for details).

2. The stable edges when d2 ∈ {1, 2}
In this case, we prove

Theorem 6. Assume (H0) and (H2) hold. Assume, moreover, that 0 is a stable
spectral edge for Hω. Then,

• if d2 = 1: Ns(E) ∼
E→0+

Vol(Sd1−1) · C(h)

d1(d1 + 2)(2π)d1
E1+d1/2;

• if d2 = 2: Ns(E) ∼
E→0+

2Vol(Sd1−1) · C(h)

d1(d1 + 2)(2π)d1

E1+d1/2

| logE| .

Here, the constant C(h) depends only of the Hessian of h at its minimum.

The striking feature is that to first order these asymptotics are independent of
the random potential. The reason for this is that the asymptotics of integrated
density of surface states for a constant surface potential near a stable edge does
not depend on the value of the potential (to leading order).

3. The stable edges when d2 ≥ 3

We assume that

(H3): for almost every θ1, the function θ2 7→ h(θ1, θ2) is not constant.

Consider the embedding U2 : `2(Zd1) → `2(Zd) defined by v = U2(u) where

(9) vγ1,γ2 = uγ1δγ2,0 for u = (uγ1)γ1∈Zd1 .

The embedding U2 is a partial isometry as U∗
2U2 = Id on `2(Zd1). One proves that,

under assumptions (H0) – (H3), for almost every ω, the operator U ∗
2HU2 + Vω is
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positive and the operator E((U∗
2HU2 + Vω)−1) is bounded and positive.

Define Veff to be the operator

Veff =
[
E((U∗

2HU2 + Vω)
−1

)
]−1

− U∗
2HU2

acting on `2(Zd1). One proves that the operator Veff acts as a convolution. Let
θ1 7→ veff(θ1) be the symbol of this operator (i.e. the operator is conjugated to
multiplication by this function using the discrete Fourier transform). The function
veff is real analytic on the torus Td1 . Note that the strict convexity of x 7→ 1/x
for x > 0 implies that, for θ1 ∈ T

d1 , ω− < veff(θ1) < E(ω0).
Our main result is

Theorem 7 ([6]). Assume that 0 is a stable edge. Under the assumptions (H0) –
(H3), one has

• if veff(0) 6= 0, then

N(E) =
C√

DetQ

veff(0)

1 + veff(0) · I ·Ed/2(1 + o(1)) as E → 0+,

• if veff(0) = 0, then

N(E) = o(Ed/2) as E → 0+.

where

• C is a constant depending only on d1 and d2;

• Q is the Hessian matrix of h at 0 and I =

∫

Td2

1

h(0, θ2)
dθ2.
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Recent results on singular spectrum of Schrödinger operators

Alexander Kiselev

In the recent years, there has been significant interest and progress in studying
spectral types of one-dimensional Schrödinger operators with slowly decaying po-
tentials and Stark (constant electric field) operators with rough potentials. Many
of the new results concern the operators which can have rich and subtle spectral
structure, such as dense imbedded point spectrum, singular continuous spectrum
imbedded in the absolutely continuous, or singular continuous spectrum of fixed
Hausdorff dimension. New results often involved new technology, such as use of
fairly advanced Fourier analysis for studying the asymptotic behavior of solutions
or a fruitful interaction of spectral theory methods and methods developed by
orthogonal polynomials community. This brief note reviews just a small piece of
the big picture consisting of a couple of recent results of the author, partly in
collaboration with Michael Christ. The references are far from complete - rather
fairly sketchy given the format of the note.

Let us define

(1) HV = − d2

dx2
+ V (x)

to be a Schrödinger operator defined on half-axis R+ = (0,∞) with, say, Dirichlet
boundary condition at the origin. Let us also denote modified wave operators

Ωm
±f = lim

t→∓∞
eitHV e−itH0±iW (H

1/2
0 ,∓t)f

for all f ∈ L2(R+), where existence of the limit has to be established. Here W is
given by

W (λ, t) = −(2λ)−1

∫ 2λt

0

V (s) dx.

Theorem 1. Assume that the potential V ∈ Lp with p < 2. Then there exist
modified wave operators Ωm

± . If
∫ x

0
V (s) ds has a finite limit as x goes to infinity,

usual Möller wave operators exist. Moreover, for a.e. k there exist a solution
u(x, k) with WKB-type asymptotic behavior as x → ∞ :

(2) u(x, k) = exp(ikx− i

2k

∫ x

0

V (s)) ds)(1 + o(1)).

This theorem appeared in [2]. Classical results on one-dimensional Schrödinger
operators with decaying potentials gave L1 condition. The proof is based on study-
ing the asymptotic behavior of solutions based on almost everywhere convergence
results for the multilinear integral operators. The theorem does not hold for p > 2
[13, 9]. The theorem is conjectured to be true for V ∈ L2, but this case is open,
and, at least as far as the asymptotic behavior (2) is concerned, presumably very
hard. The solution is likely to be related to a nontrivial extension of celebrated
Carleson theorem on a.e. convergence of the Fourier series of an L2 function.
It is known, however, that the absolute continuity of the spectrum persists for
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p = 2. This sharp result is due to Deift and Killip [3], who employ a sum rule
to control the spectrum. In the higher dimensions, the slowly decaying pertur-
bations are much less understood. The conjecture of Barry Simon, which is also
put forward as one of his fifteen ”twenty first century” problems in Schrödinger
operators [14], states that the absolutely continuous spectrum is preserved as far
as
∫
|V (x)|2(1 + |x|)−d+1 dx < ∞. However, the best general result available is

still a classical short range result of Agmon. There are some recent results under
mild additional conditions on the oscillation of potential [4, 10], and an interesting
result of Bourgain in random case [1].

While in the situation of Theorem 1, the absolutely continuous spectrum fills the
whole real axis, the crucial difference with the short range case is that the singular
spectrum can also be very rich. Dense imbedded point spectrum is possible due
to the results of Naboko and Simon. The set of singular energies (which we define
as a Lebesgue measure zero set where the asymptotic behavior (2) fails) can have
any Hausdorff dimension ≤ 1. For p = 2, the singular part of the spectral measure
can be pretty much arbitrary modulo some normalization conditions, as follows
from work of Killip and Simon (see [7] for the discrete case). One of the ”twenty
first century” problems of Barry Simon has asked whether potentials satisfying
|V (x)| ≤ C(1 + |x|)−α for α > 1/2 can lead to imbedded singular continuous
spectrum. Controlling imbedded singular continuous spectrum is difficult, since
there is no simple criteria to establish its existence, and the typical approach of
proving there is some spectra which cannot be neither pure point nor absolutely
continuous [15] does not work. First important progress has been achieved by
Denisov [5], who proved that if V ∈ L2, the singular continuous spectrum may
appear (with further beautiful and complete results of Killip and Simon). Our
next two theorems provide a sharp answer to the question of a decay rate for
which singular continuous spectrum may appear [8].

Theorem 2. For any function h(x) → ∞, there exists a potential V (x) such that

|V (x)| ≤ h(x)
1+x and the singular continuous spectrum of the operator HV is not

empty.

The theorem also provides, up to the best of my knowledge, the first example
where the wave operators exist and cohabit with imbedded singular continuous
spectrum, thus leading to the lack of asymptotic completeness. The proof of this
theorem is fairly involved; it is based on approximation by operators having imbed-
ded eigenvalues and careful study of the asymptotic behavior of the solutions to
establish control over the weights the spectral measure assigns to these eigenval-
ues. Generalized Prüfer transform and analysis of oscillatory integrals with the
nonlinear dependence of phase on the argument function play a key role.

Theorem 3. If |V (x)| ≤ C
1+|x| for some constant C, then the singular continuous

spectrum of the operator HV is empty.

This theorem shows that the critical threshold is the Coulomb rate of decay and
so the construction of the previous theorem is sharp. The proof of the absence
of the singular continuous spectrum for potentials decaying at the Coulomb rate
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is based on the analysis of approximations where the potential is cut off at a
finite scale. The main difficulty lies in the fact that there can be a singular set
where the derivative of the spectral measure is infinite and which would be large
enough to support the singular continuous spectrum (and can even be dense in
(0,∞)!). Therefore, one cannot use some sort of standard resolvent estimates.
The technique used involves Gilbert-Pearson subordinacy theory, analysis of the
singular set using Fourier transform methods, and a general approximation lemma
proved in [6].
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Dispersive estimates for Schrödinger equations

Kenji Yajima

We consider the time decay in Lp spaces of solutions of the initial value problem
for three dimensional Schrödinger equations

(1) i∂tu = (−∆ + V (x))u, u(0) = φ ∈ L2(R3).

We assume that the potentials V (x) decay faster than C〈x〉−5/2−ε
at infinity. The

operator H = −∆ +V in the right of (1) is selfadjoint in L2(R3) and the solution
of (1) is uniquely given by u(t) = e−itHφ. Let Pc be the orthogonal projection to
the continuous spectral subspace for H . Then, e−itHPcφ is a scattering solution
of (1) and it is now well known that it satisfies the so called Lp-Lq estimates

(2) ‖e−itHPcu‖p ≤ Cpt
−3( 1

2−
1
p )‖u‖q, u ∈ L2 ∩ Lq

for 1 ≤ q ≤ 2 ≤ p ≤ ∞, 1/p + 1/q = 1, provided that 0 is not an eigenvalue
nor a resonance of H (Goldberg-Schlag ([5]), see also [7], [1], [15], [15], [16], [13],
[10], [12] for earlier and related works). This implies Strichartz inequality and
it has been a very useful and important tool for studying linear and nonlinear
Schrödinger equations (see e.g. [8]). It is also known that (2) cannot hold for
all 2 ≤ p ≤ ∞ if H is of exceptional type as it would contradict the local decay
estimate of Jensen-Kato[6] or Murata[9].

In this paper, we analyze the behavior as t → ±∞ of scattering solutions of (1)
in Lp spaces when 0 is an eigenvalue or/and a resonance of H . We show how (2) is
violated and propose a new estimate which replaces (2). To state the main results
we introduce some notation. For 1 ≤ p, q ≤ ∞, Lp,q is the Lorentz space with
the norm ‖u‖p,q. For γ ∈ R, L2

γ = L2(R3, 〈x〉2γdx) is the weighted L2 space. We

write R0(z) = (H0 − z)−1 and R(z) = (H − z)−1 for the resolvents of H0 = −∆
and H respectively. For λ ∈ C

(3) G0(λ)u(x) =
1

4π

∫
eiλ|x−y|

|x− y| u(y)dy.

We have R0(λ
2) = G0(λ) for =λ > 0. The integral kernel of G0(λ) is an entire

function of λ ∈ C and, using its derivatives at λ = 0, we define

(4) Dju(x) =
1

4πj!

∫
|x− y|j−1u(y)dy, j = 0, 1, . . . ,

so that G0(λ) = D0 + iλD1 + (iλ)2D2 + · · · at least formally.
For any 1/2 < γ < β − 1/2, the operator D0V is of Hilbert-Schmidt type in

L2
−γ and we denote the null space of 1 + D0V by M. The space M is finite

dimensional and is independent of 1/2 < γ < β − 1/2. All φ ∈ M satisfy the
stationary Schrödinger equation −∆φ(x) + V (x)φ(x) = 0 and the converse is also
true for φ ∈ L2

− 3
2

. The eigenspace E of H with eigenvalue 0 is therefore a subspace

of M. The function φ ∈ M is in E if and only if 〈V, φ〉 = 0 and codimME ≤ 1.
The sesquilinear form −(u, V v) is an inner product in M.
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Definition 1. We say H or V is of generic type if M = {0} and is of exceptional
type otherwise. H is of exceptional type of the first kind if M 6= {0} and E = 0;
of the second kind if E = M 6= {0}; and of the third kind if {0} ⊂ E ⊂ M with
strict inclusions. A function φ ∈ M \ E is called a resonance of H.

Any resonance φ(x) satisfies φ(x)−C|x|−1 ∈ L2 for a constant C 6= 0 and that

φ ∈ E may decay as slowly as C〈x〉−2
. We write P0 for the orthogonal projection

in L2 onto E .
When H is of exceptional type of the third kind, we let φ1 ∈ M be a (uniquely

determined) resonance such that 〈V, φ1〉 > 0, −〈φ1, V φ1〉 = 1 and −〈φ1, V φj〉 = 0
for all φj ∈ E and define the canonical resonance by ϕ(x) = φ1(x)+P0V D2V φ1(x).

Using ϕ(x), set a = 4πi|〈V, ϕ〉|−2 and ζ(t, x) = ei x2

4t ϕ(x). We define

(5) µ(t, x) =
i

|x|

∫ 1

0

(e
i|x|2

4t − e
iθ2|x|2

4t )dθ;

µ(t) is multiplication with µ(t, x) and f ⊗ g is the rank one operator defined by

integral kernel f(x)g(y) (not f(x)g(y)).

Definition 2. We define the operators R(t) and S(t) respectively by

R(t) =
ae−i 3π

4√
πt

ζ(t, x) ⊗ ζ(t, x),(6)

S(t) =
e−i 3π

4√
πt

(−iP0V D3V P0 + µ(t)D2V P0 + P0V D2µ(t)) .(7)

When H is of exceptional type of the first or the second kind, we use the same
notation, setting, of course, S(t) = 0 or R(t) = 0 respectively.

We remark that ζ(t, x) − ϕ(x) and µ(t, x) are both bounded by

(8) C min

(
1√
t
,

1

|x| ,
|x|
|t|

)
.

As φ ∈ E satisfy
∫
V (x)φ(x)dx = 0, (D2V φ)(x) are bounded and, if {φ2, . . . , φd}

is an orthonormal basis of E and wj(t, x) = µ(t, x)(D2V φj)(x), j = 2, . . . , d, then
wj(t, x) are bounded by (8) and S(t) may be written in the form

e
iπ
4√
πt




d∑

j,k=2

ajkφj ⊗ φk +

d∑

j=2

(wj(t) ⊗ φj + φj ⊗ wj(t))


 .

Theorem 3. Let V satisfy |V (x)| ≤ C〈x〉−β
for some β > 11/2. Suppose that H

is of exceptional type. Then the following statements are satisfied:

(i) Estimate (2) holds when 3/2 < q ≤ 2 ≤ p < 3 and 1/p+ 1/q = 1.

(ii) (2) holds when L3 and L
3
2 are respectively replaced by L3,∞ and L

3
2 ,1.

(iii) When 3 < p ≤ ∞ and 1 ≤ q < 3/2 are such that 1/p + 1/q = 1, there
exists a constant Cpq such that for any u ∈ L2 ∩ Lq

(9)
∥∥(e−itHPc −R(t) − S(t)

)
u
∥∥

p
≤ Cpqt

−3( 1
2−

1
p )‖u‖q.
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If H is of exceptional type of the first kind, theorem holds under the condition

|V (x)| ≤ C〈x〉−β
with β > 9/2.

Theorem 4. Let V satisfy |V (x)| ≤ C〈x〉−β for some β > 11/2. Suppose that
H is of exceptional type. Then, for 3 < p ≤ ∞ and 1 ≤ q < 3/2 such that
1/p+ 1/q = 1, there exists a constant C such that

(10) ‖e−itHPcu‖p ≤ Ct−3( 1
2−

1
p )(‖u‖q + ‖〈x〉 6

q −5u‖1)

for any u ∈ L2 ∩Lq which satisfies 〈φ, u〉 = 0 for all φ ∈ M and 〈x〉 6
q −5

u ∈ L1. If
H is of exceptional type of the first kind, the same statement holds under a weaker

decay condition |V (x)| ≤ C〈x〉−β with β > 9/2.
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Classical and Quantum Mechanics for a Particle in a Long-Range
Magnetic Field

Ira Herbst

This talk is about some work of Horia Cornean, Erik Skibsted, and I in progress
[CHS2] concerning the dynamics of a charged particle moving in a plane subject
to a magnetic field which is homogeneous of degree −1. The work the talk is
drawn from also deals with electric forces with the same homogeneity, but for
simplicity, here we set the electric potential equal to zero. We analyze the classical
and quantum dynamics of this system for large time with the objective to prove
asymptotic completeness in quantum mechanics with some simple appropriate
approximate dynamics.

Thus consider a magnetic field of the form

B =
b(θ)

r
,

where (r, θ) are the polar coordinates of a point in R2. We always assume that b
is smooth (and periodic of period 2π). Introducing the velocities

ρ =
dr

dt
,

η =
rdθ

dt
,

and the new time τ given by
dτ

dt
=

1

r
,

we can write the equations of motion of the particle in a reduced phase space as

dρ

dτ
= η(η + b(θ)),

dη

dτ
= −ρ(η + b(θ)),

dθ

dτ
= η.

Introducing the angle φ by

ρ =
√

2E sinφ,

η =
√

2E cosφ,

where E is the conserved kinetic energy, the first two equations above become

dφ

dτ
=

√
2E cosφ+ b(θ),
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which shows that the reduced classical phase space at energy E is a 2-torus. Note
that r can be found once ρ is known:

r = r0e
R

τ
0

ρ(τ ′)dτ ′

.

The case of b < 0 was treated in [CHS], where it was shown that in classical
mechanics, above a certain energy Ed there is an attracting periodic orbit on the
torus which attracts all orbits except for another periodic orbit which only lives
for a finite amount of real time. Asymptotic completeness was proved in quantum
mechanics above Ed using a semiclassical approximate dynamics based on this
attracting periodic orbit. Below Ed nothing is known. But in the case where b is
a non-zero constant the Hamiltonian has dense point spectrum [CFKS] below Ed.

We consider below mostly the classical mechanics of the model and only mention
any difficulties that arise in quantum mechanics. One of these difficulties arises
immediately when we consider the classical observable

A1 = ρ−
∫ θ

0

b(θ′)dθ′.

Note that

A1(τ2) − A1(τ1) =

∫ θ(τ2)

θ(τ1)

η(τ)2dτ.

The problem with this observable is that unless the “flux”
∫ 2π

0 b(θ)dθ = 0, it is not
a function on the torus (but rather on a covering space of the torus), so it does
not have a good quantization. Let

A2 = −ρηb(θ).
Then for bounded E, we have that for C large enough

d(CA1 +A2)

dτ
≥ Eb2 + η2.

Let us assume that the flux is ≤ 0, and that b has zeros but all are non-degenerate.
Then with some additional work, it follows that either

(1)

θ(τ) → ∞,

or
(2)

lim
τ→∞

[θ(τ) − θ0]
2 + η(τ)2 = 0,

where b(θ0) = 0.

Consider the fixed point in (2) where at τ = ∞, ρ =
√

2E. Then this classical
channel has a corresponding quantum channel if and only if the fixed point is a sink
on the torus [HS2] (this corresponds to b′(θ0) > 0). Otherwise the fixed point has
a corresponding stable manifold, but there are no states for which θ approaches θ0

in quantum mechanics. The fixed points in (2) for which ρ = −
√

2E correspond to
orbits which hit the origin in finite time and have no analog in quantum mechanics.
The ρ = +

√
2E quantum channels may be described by an approximate dynamics
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as in [HS1] and asymptotic completeness proved, at least if the energy is high
enough.

If (1) obtains, then aside from a finite set of energies, if the orbit does not col-
lapse at the origin, it is attracted to a periodic orbit in the reduced phase space.
There is also a corresponding channel in quantum mechanics. Asymptotic com-
pleteness can be proved there using a simple semiclassical approximate dynamics
as in [CHS].

The analysis in [CHS2] consists first of a detailed description of the classical
dynamics of this model. This alone is very non-trivial. Where quantum observables
with positive Heisenberg derivatives are available to prove appropriate smoothness
estimates, they are used. But there seem to be situations where not enough of
these observables are available, and we supplement the analysis with “propagation
of decay” estimates as in the usual propagation of singularities theorems. This
idea (with x and ξ reversed) of using propagation of singularity theorems was
introduced into scattering theory by Melrose in [M] and used for example in [HMV]
in work closely related to [HS1].
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Some variational principles for relativistic energy functionals

Jean-Marie Barbaroux

(joint work with V. Bach, M. Esteban, W. Farkas, B. Helffer, E. Séré and
H. Siedentop)

We give here some connections between two models describing the energy of a
system of relativistic particles in the field of a pointwise fixed nucleus: The Dirac-
Fock equations [4, 7], derived from the so-called Dirac-Fock functional EDF , and

the electron/positron field functional Ee−/e+

(see (2) below) derived from a simple
no photon QED formal Hamiltonian, in the generalized Hartree-Fock approxima-
tion [1, 3].
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The Hamiltonien for one electron in the field of a nucleus of charge eZ is given
by the Coulomb-Dirac operator

(1) DZ := α · 1

i
∇ +mβ − e2

Z

|x| on H := L2(R3) ⊗ C
4,

where e2 is the Sommerfeld fine structure constant, and α and β are the 4 × 4
Dirac matrices. Here, we assume e2Z ∈ [0,

√
3/2). For Z = 0, D0 is the free Dirac

operator. In the following we will also need the Coulomb-Dirac operator written
in another system of units:

Dc := cα · 1

i
∇ +mc2β − 1

|x| ,

where c is the speed of light. Let H+ be a closed subspace of H, and define Λ+ to
be the orthogonal projection onto H+, Λ− := 1 − Λ+ and H− := Λ−H = (H+)⊥.
We construct the following variational sets

S(H+) = {γ ∈ S1(H) | γ = γ∗, tr(|D0| 12 |γ| |D0| 12 ) <∞, −Λ− ≤ γ ≤ Λ+, } ,
SN (H+) = {γ ∈ S(H+) | trγ = N} ,
TN(H+) = {γ ∈ S(H+) | trγ = N, Λ−γΛ+ = 0} ,

where S1(H) denotes the space of trace class operators on H. For γ ∈ S(H+), trγ
is the charge of the system (corresponding to an electronic charge −etrγ). The
electron/positron field functional we consider is
(2)

Ee−/e+

:
S(H+) → R

γ 7→ tr(DZγ) + e2

2

∫ ργ (x)ργ (y)
|x−y| dxdy − e2

2

∫ γ(x,y)γ(x,y)
|x−y| dxdy

where x = (x, σ) and y = (y, τ) are in R3 × {1, 2, 3, 4}, γ(x, y) is the kernel of γ

and ργ(x) =
∑4

σ=1 γ((x, σ) , (x, σ)).
Our first result states that without any constraints on the charge, the most

stable projection Λ+ , i.e., the one yielding the highest ground state energy, is
given by the projection onto the positive spectral subspace of the Coulomb-Dirac
operator.

We denote by T the set of all closed subspace H+ of H such that the orthogonal
projections Λ± onto H± leave D(DZ) invariant.

Theorem 1. [1] Consider DZ with values of e, Z ≥ 0 such that e2 ≤ 4(1−2e2Z)/π.
We have

(3) sup
H+∈T

inf
γ∈S(H+)

Ee−/e+

(γ) = inf
γ∈S(χ(0,+∞)(DZ))

Ee−/e+

(γ) = Ee−/e+

(0) = 0.

Moreover, the supremum in (3) is attained only for H+ = χ(0,+∞)(DZ).

We now discuss the case of systems with fixed total chargeN ∈ N. For that pur-
pose, we first need to define Dirac-Fock operators. For δ ∈ F := {δ ∈ S1(H) | δ =
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δ∗, tr( |D0|1/2 |δ| |D0|1/2) <∞}, we construct the associated Dirac-Fock operator
D(δ) as

D(δ)ψ(x) = DZψ(x) + e2W (δ)ψ(x)

= DZψ(x) + e2
∫

ρδ(y)

|x − y|dy ψ(x) + e2
∫
δ(x, y)ψ(y)

|x− y| dy ,

where δ(x, y) is the kernel of δ and ρδ(x) =
∑4

σ=1 δ((x, σ); (x, σ)). Here, W (δ) is
the mean field Dirac-Fock potential created by the N electrons in the state δ.

We define the associated one-electron space

H
(δ)
+ = Λ

(δ)
+ H ,

where

Λ
(δ)
+ = χ(0,+∞)(D

(δ)) .

As argued in [6], the equality (3) suggests to explore a max-min variational
problem similar to (3) in the case of atomic systems with prescribed electronic
charge e(Z −N), in order to find the ground state energy:

(4) sup
δ∈F

inf
γ∈TN (H

(δ)
+ )

Ee−/e+

(γ).

The next result shows the existence of solutions for the minimization procedure
in (4), and gives the properties of the minimizers.

Theorem 2. [3] Let 0 ≤ δ ∈ F and assume Z ≥ N ∈ N such that

e2π(N + 1/4)/(1− 2e2Z − 4e2N) < 1.

Then Ee−/e+ |
TN (H

(δ)
+ )

has a minimizer in TN(H
(δ)
+ ), and each minimizer γ0 is equal

to the spectral projection onto the N first eigenvalues of the projected Dirac-Fock

operator Λ
(δ)
+ D(γ0)Λ

(δ)
+ : there exist ϕ0

1, ϕ
0
2, . . . , ϕ

0
N in Λ

(δ)
+ H ∩

(
H1/2(R3) ⊗ C4

)
,

normalized and orthogonal, and (ε0i )i=1, ..., N in (0,m) such that

γ0 =

N∑

i=1

|ϕ0
i 〉 〈ϕ0

i | ,

and

Λ
(δ)
+ D(γ0)Λ

(δ)
+ ϕ0

i = ε0iϕ
0
i , i = 1, . . . , N ,

where (ε0i )i=1, ..., N are the N lowest eigenvalues in (0, m) of Λ
(δ)
+ D(γ0)Λ

(δ)
+ .

We can now compare the max-min procedure (4) with the solutions obtained in
[4, 5, 7] by solving the Dirac-Fock equations. We discuss here the nonrelativistic
limit case, i.e., with DZ replaced by Dc, c� 1, and for δ ∈ F , D(δ) = Dc+e2W (δ).

Let λ1 < λ2 < ... be the ordered (positive) eigenvalues of the Coulomb-Dirac
operator Dc and let Ni := dim(Ker(Dc − λi)) be the dimension of the associated
eigenspaces.
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Theorem 3. [2][Close to the linear closed shells case]
Let N be the number of electrons, and assume c � 1 and e2 � 1. If N =∑K
i=1Ni (closed shells), then the variational problem (4) is attained by the self-

consistent pair (γ0, γ0), where γ0 =
∑N

i=1 |ϕ0
i 〉〈ϕ0

i |, with

Λ
(γ0)
+ = χ(0,+∞)(D

(γ0)) ,

and (
Dc + e2W (γ0)

)
ϕ0

i = ε0iϕ
0
i , ε0i ∈ (0,m), i = 1, · · · , N ,

i.e., the N -uple (ϕ0
1, · · · , ϕ0

N ) is solution of the self-consistent Dirac-Fock equa-
tions. Moreover, it is the ground state solution of the Dirac-Fock equations in
the sense that it yields the smallest Dirac-Fock energy among the solutions of the
Dirac-Fock equations: for any solution (ψ1, · · · , ψN ) of the self-consistent Dirac-
Fock equations, we have

N∑

i=1

(ψi, Dcψi)+
e2

2

∑

i6=j

(∫ |ψi(x)|2|ψj(y)|2
|x − y| dxdy−

∫
ψi(x)ψj(y)ψi(y)ψj(x)

|x − y| dxdy

)

≤
N∑

i=1

(ϕ0
i , Dcϕ

0
i ) +

e2

2

∑

i6=j

(∫ |ϕ0
i (x)|2|ϕ0

j (y)|2
|x − y| dxdy

−
∫
ϕ0

i (x)ϕ
0
j (y)ϕ

0
i (y)ϕ

0
j (x)

|x − y| dxdy
)

= Ee−/e+

(γ0) .
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On the mathematical model of the irreversible quantum graph

Mikhail Solomyak

Some time ago the physicist Uzy Smilansky suggested a mathematical model
which he called “Irreversible quantum graph”. In this model an interaction be-
tween the Laplacian on a metric graph Γ and the harmonic oscillator in an “outer
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space” is studied. The interaction is introduced by means of the boundary con-
dition of a specific type. This condition involves the coupling parameter α ≥ 0
which expresses the strength of interaction. For α = 0 the interaction is absent.

In the mathematical language the problem consists in the study of the spectral
properties of a self-adjoint operator Aα in the Hilbert space L2(Γ ⊗ R). For
simplicity, we consider the case when Γ = Γd, i.e. the star graph with d edges,
each of infinite length, emanating from the only vertex o, the root of the tree. The
operator is defined by the differential expression

AU(x, q) = −U ′′
xx +

1

2
(−U ′′

qq + q2U), x ∈ Γ \ {o}, q ∈ R,

and the condition

[U ′
x](o, q) = αqU(o, q), ∀q ∈ R.

Here [U ′
x] stands for the combination of derivatives appearing in the classical Kirch-

hoff condition.

On the first glance, this can be reduced to a typical problem of Perturbation
Theory for operators defined via their quadratic forms. However, the perturbation
turns out to be too strong: it is only bounded but not compact with respect to
the unperturbed quadratic form. For this reason, the standard approaches do
not apply, and the character of results is rather unusual. Their most important
feature is a “phase transition” at the value α = d/

√
2 of the parameter: the

spectral properties of the operator Aα for α
√

2 < d and for α
√

2 > d are quite
different.

For α = 0 separation of variables shows that

σ(A0) = σa.c.(A0) = [1/2,∞);

ma.c.(λ;A0) = dn for λ ∈ (n− 1/2, n+ 1/2), n ∈ N.

Here ma.c.(λ; .) stands for the multiplicity function for a self-adjoint operator.
The following results describe the picture for α > 0.

1. Let 0 < α
√

2 < d. Then the operator Aα is positive definite;

σa.c.(Aα) = σa.c.(A0) = [1/2,∞),

and the similar equality is satisfied for the multiplicity function.
The operator has no eigenvalues ≥ 1/2. The spectrum on (0, 1/2) is non-

empty and finite. The number N−(1/2;Aα) of eigenvalues satisfies the asymptotic
formula

N−(1/2;Aα) ∼ 1

4
√

2(µ(α) − 1)
, µ(α) =

d

α
√

2
as α

√
2 ↗ d

2. Let α
√

2 ≥ d. Then the operator has no eigenvalues;

σa.c.(Aα) =

{
[0,∞), α

√
2 = d;

R, α
√

2 > d.
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ma.c.(λ;Aα) = 1 + ma.c.(λ;A0).

The results for α
√

2 ≥ d were obtained in cooperation with S.N. Naboko.

So, at α
√

2 = d the point spectrum disappears and a new branch of σa.c. arises.

For the proof we use the variational techniques (case α
√

2 < d) and the tech-

niques of operator-valued analytic functions (case α
√

2 ≥ d). In both cases Jacobi
matrices arise and play the decisive role in the analysis.
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A Lieb–Thirring Inequality and an Isoperimetric Problem for Closed
Curves Curves in R2

Rafael D. Benguria

(joint work with Michael Loss)

The Lieb–Thirring inequalities [8] play a crucial role in the proof of the stability of
matter [9]. Let H = −∆+V be the Schrödinger operator acting on L2(Rn), n ≥ 1
and denote by e1 ≤ e2 ≤ · · · < 0 the negative eigenvalues of H . The Lieb–Thirring
inequalities are given by

(1)
∑

j≥1

|ej |γ ≤ Lγ,n

∫

Rn

V−(x)γ+n/2 dx,

where V−(x) ≡ max(−V (x), 0) is the negative part of the potential. The above
inequalities hold for γ ≥ 1/2 when n = 1, for γ > 0 when n = 2, and for γ ≥ 0 for
n ≥ 3. The sharp constants for the Lieb–Thirring are known for any n ≥ 1 when
γ ≥ 3/2 and also in the case n = 1, γ = 1/2. See e.g., [6] and references therein
for the best constants to date. The sharp constants for the one dimensional Lieb–
Thirring inequalities with exponent γ ∈ (1/2, 3/2) are still not known. Lieb and
Thirring have conjectured [10] that the sharp constants for this range of exponents
should be attained by potentials having only one bound state, and therefore,

(2) Lγ,1 ≡ L1
γ,1 =

1√
π

1

γ − 1/2

Γ(γ + 1)

Γ(γ + 1/2)

(
γ − 1/2

γ + 1/2

)γ+1/2

([7, 10]).
We have recently shown [1] that there is a connection between this conjecture

for γ = 1 and n = 1 and an (still open) isoperimetric inequality for smooth, closed
curves, with positive curvature in R2.
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Let’s denote by C a smooth closed curve in the plane, of length 2π, with positive
curvature κ(s), and let

(3) H(C) ≡ − d2

ds2
+ κ2

acting on L2(C) with periodic boundary conditions. Here s denotes arc–length.
Let λ1(C) the lowest eigenvalue of H(C). It has been conjectured (see e.g., [3, 4]),
that

(4) λ1(C) ≥ 1,

with equality for a one parameter family of curves that includes the circle.
In recent years several authors have obtained isoperimetric inequalities for the

lowest eigenvalues of a variant of H(C). Consider the Schrödinger operator

(5) Hg(C) ≡ − d2

ds2
+ gκ2

defined on L2(C) with periodic boundary conditions. As before, C denotes a
closed curve in R

2 with positive curvature κ, and length 2π. If g < 0, the lowest
eigenvalue of Hg(C), say λ1(g, C) is uniquely maximized when C is a circle [2].
When g = −1, the second eigenvalue, λ2(−1, C) is uniquely maximized when C
is a circle [5]. If 0 < g ≤ 1/4, λ1(g, C) is uniquely minimized when C is a circle
[3]. It is an open problem to determine the curve C that minimizes λ1(g, C) in
the cases, 1/4 < g ≤ 1, and g < 0, g 6= −1. If g > 1 the circle is not a minimizer
for λ1(g, C) (see, e.g., [3, 4] for more details on the subject).

Our main result [1] is the following theorem:

Theorem 1. Suppose that the Schrödinger operator H = −d2/dx2 + V , acting
on L2(R), has only two negative eigenvalues, say e1 < e2 < 0. Then, if the
isoperimetric inequality (4) holds, we have

(6) |e1| + |e2| ≤ L1
1,1

∫

R

V−(x)3/2 dx.
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Accurate estimates for magnetic bottles in connection with
superconductivity

B. Helffer

(joint work with S. Fournais)

In this talk, which refers to [FoHe2], we consider a magnetic Schrödinger operator
with Neumann boundary conditions in a smooth, bounded domain Ω. We are
interested in finding an accurate description of the eigenvalues near the bottom
of the spectrum. In particular, we will improve estimates given in [HeMo] in the
case of constant magnetic field.

Apart from its intrinsic mathematical interest, this question is important for
applications to superconductivity. Precise knowledge of the lowest eigenvalues
of this magnetic Schrödinger operator is crucial for a detailed description of the
nucleation of superconductivity (on the boundary) for superconductors of Type
II and for accurate estimates of the critical field HC3 . We refer the reader to the
works of Bernoff-Sternberg [BeSt] who are the first to propose the main conjecture
on the basis of formal constructions of quasimodes, Lu-Pan [LuPa1, LuPa2, LuPa3]
and Del Pino-Felmer-Sternberg [PiFeSt] for further discussion of this subject.

The domain Ω ⊂ R2 is supposed to be smooth, bounded and simply connected.
Points (x1, x2) in R2 are denoted by x. At each point x of the boundary, we
denote by ν(x) the interior unit normal vector to the boundary of Ω. We define
the magnetic Neumann operator H by

(1) D(H) 3 u 7→ Hu = Hh,Ωu = (−ih∇x −A(x))2u .

Here A(x) = (−x2/2, x1/2), so that curlA = 1, and the domain D(H) of the
operator H is defined by

D(H) =
{
u ∈ H2(Ω)

∣∣ ν · (−ih∇x −A(x))u
∣∣
∂Ω

= 0
}
.
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The case of the half-plane, Ω = R × R+, will be important for fixing notations
and determining the main term of the asymptotics. After a gauge transformation
and a partial Fourier transformation, we get,when h = 1, the family of models on
the half-line:

HN,ξ = D2
t + (t+ ξ)2 ,(2)

on L2(R+) and with Neumann boundary conditions at t = 0. Let µ̂(1)(ξ) be the
lowest eigenvalue ofHN,ξ. Then ξ 7→ µ̂(1)(ξ) has a unique minimum Θ0 attained at
a point that we will denote by ξ0. The corresponding unique positive, normalized
eigenfunction of HN,ξ0 will be denoted by u0. We also introduce :

C1 =
u2

0(0)

3
.(3)

The main result in [FoHe2] gives the asymptotic expansion of the lowest eigen-
values of H.

Theorem 1. Suppose that Ω is a smooth bounded domain, that its curvature
∂Ω 3 s 7→ κ(s) at the boundary has a unique maximum,

κ(s) < κ(s0) =: kmax , for all s 6= s0 ,(4)

and that the maximum is non-degenerate, i.e.

k2 := −κ′′(s0) 6= 0 .(5)

Then, for all n ∈ N∗, there exists a sequence {ζ(n)
j }∞j=1 ⊂ R (which can be calcu-

lated recursively to any order) such that the n-th eigenvalue of H µ(n)(h) admits
the following asymptotic expansion, when h↘ 0,

µ(n)(h) ∼ Θ0h− C1kmaxh
3/2 + C1Θ

1/4
0

√
3k2

2 (2n− 1)h7/4 + h15/8
∞∑

j=0

hj/8ζ
(n)
j .

(6)

Remark 2.
Previous results on the bottom of the spectrum of Hh,Ω were obtained in [HeMo],

who gave the two first terms in the expansion of µ(1)(h) (see [HeMo, Theorems 10.3
and 11.1]):

µ(1)(h) = Θ0h− kmaxC1h
3/2 + O(h5/3) .(7)

Remark 3. If the uniqueness condition in (4) is replaced by the assumption that
there is a finite number of maxima (for which (5) is assumed to hold), we expect
the existence of sequences of eigenvalues z(n)(h) corresponding to each maximum.

For applications to bifurcations from the normal state in superconductivity it
seems important to calculate the splitting between the ground and first excited
states of H(h). Let us define

(8) ∆(h) = µ(2)(h) − µ(1)(h) .
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Corollary 4.
Under the hypothesis of the theorem, ∆(h) admits the following asymptotics :

∆(h) ∼ C1Θ
1/4
0

√
6k2h

7/4 + h15/8
∞∑

j=0

hj/8ξj .(9)

where ξj = ζ
(2)
j − ζ

(1)
j .

The case where Ω is a disc has been analyzed in great detail in [BaPhTa], using
the radial symmetry to reduce the problem to ordinary differential equations. In
this case the splitting ∆(h) turns out to become zero for a sequence of values of h
tending to 0. This is a complication in the analysis of bifurcation. Thus, in some
sense, the more ‘generic’ situation considered here has a nicer property.
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Wave Front Set for Solutions to Schrödinger Equations

Shu Nakamura

In this talk, we discuss the wave front set for solutions to Schrödinger equation with
variable coefficients. It is well-known that the propagation speed of the wave front
set of solutions to Schrödinger equation is infinite, and hence we cannot expect
the usual propagation theorem such as for the solutions to the wave equation.
Instead, relations between the decay property of the initial condition and the
wave front set of solutions have been studied, which is generally called (microlocal)
smoothing properties. Here we present a different formulation, which is closer to
the “propagation of singularity theorem”, at least in the spirit.

Part of results we discuss is joint work with André Martinez and Vania Sordoni
(Bologna University).

We consider a Schrödinger equation:

d

dt
u(t) = −iHu(t), u(0) = u0 ∈ L2(Rd)

on L2(Rd), where d ≥ 1, and H is the Schrödinger operator defined by

H =
1

2

d∑

i,j=1

Djajk(x)Dk + V (x), Dj = −i ∂
∂xj

.

We suppose the coefficients {aij(x)} and the potential V (x) satisfy the following
conditions:

Assumption A. aij(x), V (x) ∈ C∞(Rd; R) for i, j = 1, . . . , d, and there exist
µ > 0, and Cα > 0 for each α ∈ Z

d
+ such that

|∂α
x (aij(x) − δij)| ≤ Cα〈x〉−µ−|α|, |∂α

xV (x)| ≤ Cα〈x〉2−µ−|α|,

for x ∈ Rd. Moreover, H is elliptic, i.e., det(aij(x)) 6= 0 for each x ∈ Rd.

Then it is well-known that H is essentially self-adjoint on C∞
0 (Rd). We denote

the unique self-adjoint extension by the same symbol H . Thus, by the Stone
theorem, u(t) = e−itHu0 is the solution to the Schrödinger equation with the initial
condition u(0) = u0. We consider the following quite basic PDE-type problem:

Problem: Describe the singularity of u(t) in terms of u0.

We use the notion of the wave front set to describe singularity of solutions to the
Schrödinger equation (see [6] Section X.10, or [8] Section VI.1 for the definition).
We denote the wave front set of u ∈ D′(Rd) by WF (u) ⊂ R2d.
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Let us recall the propagation of singularity theorem for the wave equation. It
shows that the propagation of the wave front set for the solutions to the wave equa-
tion is described by the geometric optics. We note the analogue of the geometric
optics for Schrödinger equation is the classical mechanics, and the relationship is
given by the WKB analysis. However, the WKB theory describe the semiclassical
behavior of the solution, and it does not give any information about the singularity
of solutions, at least directly. As we will see, the high energy classical mechanics
gives us the description of the singularity of the solutions, and it is closely related
to the scattering theory of the classical mechanicss.

We denote the symbol of the kinetic energy part by p(x, ξ), i.e.,

p(x, ξ) =
1

2

d∑

i,j=1

aij(x)ξiξj , x, ξ ∈ R
d.

We denote the solution to the Hamilton equation:

d

dt
y(t) =

∂p

∂ξ
(y(t), η(t)),

d

dt
η(t) = − ∂p

∂x
(y(t), η(t))

with initial condition y(0) = x, η(0) = ξ by y(t;x, ξ) and η(t;x, ξ).

Definition 1: (x, ξ) ∈ R2d is said to be backward nontrapping if |y(t;x, ξ)| → +∞
as t→ −∞.

We say H is a short-range perturbation of H0 = − 1
24 (or simply short-range

type) if Assumption A is satisfied with µ > 1. In this case, if (x, ξ) is backward
nontrapping, then it is well-known that there exists (x−, ξ−) ∈ R2d such that

|y(t;x, ξ) − (x− + tξ−)| → 0 as t→ −∞.

Namely, the classical trajectory y(t;x, ξ) approaches to a free motion x− + tξ− as
t→ −∞. The map:

S : (x, ξ) 7→ (x−, ξ−)

is the classical (inverse) wave operator.
Theorem 1 ([5]) Suppose Assumption A with µ > 1, and suppose (x, ξ) ∈ R2d is
backward nontrapping. Let u(t) = e−itHu0 with u0 ∈ L2(Rd), and let t > 0. Then

(x, ξ) ∈ WF (u(t)) ⇐⇒ (x−, ξ−) ∈WF (e−itH0u0).

If the metric is flat, i.e., if H = − 1
24 + V (x), then Theorem 1 implies that

WF (u(t)) = WF (e−itH0u0). This observation suggests that eitH0e−itH is a pseudo-
differential operator, and in fact we can prove it. This result and its generalization
to non-flat case will be discussed in a forthcoming paper.

Recently, Hassel and Wunsch [2] have obtained different characterization of the
wave front set of solutions to Schrödinger equations using the quadratic scatter-
ing wave front set. The setting and the formulation are quite different, and the
relationship is not clear to the author.
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If the perturbation is long-range type, i.e., if 0 < µ ≤ 1, then the above theorem
does not hold in general, and we need to replace the free propagator e−itH0 by
a different Fourier multiplier, quite similar to one appearing in the long-range
scattering theory. This part is still in progress, and we do not discuss here. We
have somewhat weaker result, which we discuss in the following. We recall that the
classical motion not necessarily approaches to a free motion, but the asymptotic
momentum ξ− := limt→−∞ η(t;x, ξ) does exists if the trajectory is nontrapping.
We introduce the following notion of the wave front set:

Definition 2: Let u ∈ S ′(Rd). We say (x, ξ) ∈ R2d \ 0 is not in the homoge-
neous wave front set of u if there exists a ∈ C∞

0 (R2d) such that a(x, ξ) 6= 0 and
‖a(hx, hDx)u‖L2 = O(hN ) as h → +0 with any N . We denote (x, ξ) /∈ HWF (u)
if this condition is satisfied, and denote the complement by HWF (u).

Theorem 2 ([4]) Suppose Assumption A with µ > 0, and suppose (x, ξ) ∈ R
2d

is backward nontrapping. Let t0 > 0. If (−t0ξ−, ξ−) /∈ HWF (u0), then (x0, ξ0) /∈
WF (u(t0)).

The microlocal smoothing property of Craig, Kappeler and Strauss [1] follows
from Theorem 2. (In fact our result is more general, since they considered short-
range case only.) It is also related to a work by Wuncsh [9], though the relationship
is not clear to the author. A similar theorem also holds for the analytic wave front
set under the assumption of the analyticity of the coefficients. This result is proved
by a recent joint work with Martinez and Sordoni [3], and it is a generalization of
results by Robbiano and Zuily [7].
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Spectral shift function for self-adjoint operators without spectral gaps

D. R. Yafaev

The concept of the spectral shift function first appeared in the work of I. M.
Lifshits [7] in connection with the quantum theory of crystals. A mathematical
theory of the SSF was soon thereafter constructed by M. G. Krĕın in [5]. One of
his results can be formulated in the following way. Let H0 and H be self-adjoint
operators with a trace class (denoted S1) difference V = H−H0. Then there exists
a functionξ(λ) = ξ(λ;H,H0), ξ ∈ L1(R), known asthe spectral shift function such
that the trace formula

(1) Tr
(
f(H) − f(H0)

)
=

∫ ∞

−∞

ξ(λ)f ′(λ)dλ, ξ(λ) = ξ(λ;H,H0),

holds at least for all functions f ∈ C∞
0 (R). A relatively detailed presentation of

the theory of the SSF can be found in [3] or [8].
If the operators H0 and H have a common spectral gap, then the trace formula

automatically remains true for a much wider class of the operators V . If, for
instance, λ = 0 is a common regular point of the operators H0 and H and H−m −
H−m

0 ∈ S1 for some integer odd m, then the trace formula (1) for the pair H0, H
can be deduced from that for the pair H−m

0 , H−m (see [8], for details).
A connection between scattering theory and the theory of the SSF was found by

M. Sh. Birman and M. G. Krĕın in [1]. Actually, they showed that the scattering
matrix S(λ;H,H0) minus the identity operator I belongs to the trace class and

(2) detS(λ;H,H0) = e−2πiξ(λ;H,H0)

for almost all λ (from the core of the spectrum of the operator H0).
Our goal is to extend the theory of the spectral shift function to the case where

only the difference of some powers of the resolvents of self-adjoint operators belongs
to the trace class. The main result is given by the following

Theorem 1. Let, for a pair of self-adjoint operators H0 and H, the assumption

(H − z)−m − (H0 − z)−m ∈ S1

hold for some positive odd integer m and all z with =z 6= 0. Suppose that a function
f(λ) has two bounded derivatives and

∂α(f(λ) − f0λ
−m) = O(|λ|−m−ε−α), α = 0, 1, 2, ε > 0,

where the constant f0 is the same for λ→ ∞ and λ → −∞. Then

f(H) − f(H0) ∈ S1

and there exists a function ξ(λ;H,H0) satisfying the condition
∫ ∞

−∞

|ξ(λ;H,H0)|(1 + |λ|)−m−1dλ <∞

such that the trace formula (1) is true. Moreover, for the corresponding scattering
matrix S(λ;H,H0), the operator S(λ;H,H0) − I ∈ S1 and the relation (2) holds
for almost all λ.
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Note that in the case m = 1 Theorem 1 reduces to a well-known result of M. G.
Krĕın [6]. Somewhat different general conditions for the existence of the spectral
shift function were given by L. S. Koplienko [4].

Our proof of Theorem 1 relies on its reduction to the special case m = 1 with
the help of the theory of Double Operator Integrals developed by M. Sh. Birman
and M. Z. Solomyak (see, e.g., [2]).
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Uniform Magnetic Lieb-Thirring inequalities

László Erdős

(joint work with Jan Philip Solovej)

Lieb-Thirring inequalities refer to estimates that bound moments of negative
eigenvalues of Schrödinger type operators in terms of the external fields. They play
a fundamental role in various results concerning localized many-fermion systems.
Most notably, the ground state energy of the many-body Hamiltonian in many
cases is related to the sum of the negative eigenvalues of an effective one-body
Hamiltonian. Among other useful applications, Lieb-Thirring inequalities stand
behind the most effective and elegant proofs of stability of matter. They also serve
as a powerful apriori estimate for the semiclassical analysis of the many-fermion
ground state.

We focus on the particular case of magnetic Lieb-Thirring (MLT) inequalities.
They estimate moments of negative eigenvalues e1(H) ≤ e2(H) ≤ . . . ≤ 0 of the
Pauli operator

(1) H := [σ · (−i∇ + A)]2 + V

on L2(R3,C2) with a vector potential A, magnetic field B := ∇×A and external
potential V . Here σ · v = σ1v1 + σ2v2 + σ3v3, v ∈ R3, and σ1, σ2, σ3 are the
Pauli matrices. Unlike in the nonmagnetic case, where the optimal form of the
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estimates is well-established and the remaining main challenge is to find the optimal
constants, the magnetic case is much less understood.

For a constant magnetic field B, the inequality

(2)
∑

j

|ej(H)| ≤ (const)
(∫

R3

|B|[V ]
3/2
− +

∫

R3

[V ]
5/2
−

)
,

proven in [LSY], is optimal, apart from the constant, where [a]− := −min{0, a}
denotes the negative part of a. It has seemed to be reasonable to conjecture that
(2) also holds for an arbitrary magnetic field. However, such a naive generalization
fails for two reasons.

Firstly, even when B has constant direction in R3, (2) can be correct only if
|B(x)| is replaced by an effective field strength, B∗(x), obtained by averaging |B|
locally on the magnetic lengthscale, |B|−1/2.

Secondly, the existence of the celebrated Loss-Yau zero modes [LY] contradicts
(2). Indeed, for certain magnetic fields with nonconstant direction the Dirac oper-
ator D := σ · (−i∇+ A) has a nontrivial L2-kernel. In this case a small potential
perturbation of D2 shows that

∑
j |ej(H)| behaves as

∫
n(x)[V (x)]−dx, i.e. it is

linear in [V ]−. Here n(x) is the density of zero modes, n(x) =
∑

j |uj(x)|2, where

{uj} is an orthonormal basis in KerD. Thus an extra term linear in [V ]− must
be added to (2) and n(x) has to be estimated.

Let

H(h, b) := [σ · (−ih∇ + bA)]2 + V

be the Pauli operator with the semiclassical parameter h and a field strength
parameter b. The semiclassical formula for the sum of the negative eigenvalues,
i.e. the asymptotic formula for

∑
j |ej(H(h, b))| as h → 0, behaves linearly in

the field strength for a constant magnetic field ([LSY]). This fact suggests that∑
j |ej(H)| may be bounded by an expression that grows only with the first power

of |B| even for nonconstant magnetic fields.
Our goal is to establish such MLT estimates with as few technical assumptions

on B as possible and no technical assumptions on V . The density n(x) has a
dimension (length)−3. Since |B| has dimension (length)−2, we need to introduce
an extra lengthscale to be able to bound n(x) by the magnetic field. We will
therefore make assumptions on certain derivatives of the field.

In almost all previous Lieb-Thirring bounds, the density n(x) was estimated by
a function that behaves quantitatively as |B(x)|3/2. This power was reduced to
5/4 in [ES-I] with a further unnatural V ∈ W 1,1 assumption on the potential. A
worse power, 17/12, was obtained in [BFG] but without further assumptions on
the potential.

For our theorem we assume that B(x) 6= 0 for all x ∈ R3, i.e. the unit vectorfield
n := B/|B| is well defined. We also assume that the vectorfield n satisfies the
following global regularity condition

(3) L−1
n :=

5∑

γ=1

‖∇γn‖1/γ
∞ <∞ .
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For any L > 0, x ∈ R3 we also define

B∗
L(x) := sup{|B(y)| : |y − x| ≤ L} + L · sup{|∇B(y)| : |y − x| ≤ L} .

Theorem 1 (Magnetic Lieb-Thirring inequality). [ES-IV] For any 0 < L ≤ Ln,
the sum of the negative eigenvalues, e1(H) ≤ e2(H) ≤ . . . ≤ 0, of H satisfies

(4)
∑

j

|ej(H)| ≤ (const)
(
L−1

∫
(B∗

L + L−2)[V ]− +

∫
B∗

L[V ]
3/2
− +

∫
[V ]

5/2
−

)
.

The density of Loss-Yau zero modes is estimated by

n(x) ≤ L−1(B∗
L(x) + L−2) .

The linear power of |B| in the estimate reflects the basic fact that the space with
a magnetic field cannot be considered isotropic: the quantum motion parallel with
the magnetic field behaves differently than the transversal one. The magnetic field
affects only the two-dimensional transversal motion. All MLT estimates that yield
|B|3/2 behaviour neglect this geometric fact by simply comparing the magnetic
problem with a three dimensional nonmagnetic one, usually via a diamagnetic
inequality that loses the anisotropic feature of the problem. The typical estimate
is of the form

(5) D2 ≥ b−1D2 = b−1[(−i∇ + A)2 + σ · B] ,

where b := ‖B‖ � 1 is some (local) norm of B. The kinetic energy is scaled down
so that the dangereous σ · B becomes bounded uniformly in b. The magnetic
Laplacian can then be controlled by the nonmagnetic Laplacian, −∆, but the
factor b−1 now affects all three coordinates, yielding a scaling of b3/2. The key to
our theorem is to separate the parallel and transversal motions and use a crude
estimate similar to (5) only in the two-dimensional transversal kinetic energy.

Our theorem uses only natural assumptions on V and it gives the correct (linear)
dependence on the field strength |B|. However, the original magnetic field B is
replaced by an effective field B∗

L + L−2 that involves the global L∞-norm of n.
In particular the estimate (4) is sensitive to the behavior of the magnetic field
far away from the support of [V ]−. Hence the irregular behaviour of n far away
from the support of [V ]− renders our estimate large despite that it should not
substantially influence the negative spectrum.

In a separate work [ES-III] we also proved a magnetic Lieb-Thirring bound
that enjoys a locality property. More precisely, the constant Ln was replaced by a
function L(x) describing the local variation lengthscale of the magnetic field. The
precise definition is somewhat complicated, but it depends only locally on B. In
particular the inverse lengthscale L−1(x) can be bounded by cδ−1 if B vanishes in
a δ-neighborhood of x.

The proof of this second theorem is much more involved. The complications
are due to the lack of effective offdiagonal bounds on the resolvent of the Pauli
operator, (D2 + E)−1(x, y). For constant magnetic field, the resolvent decays on
the magnetic lengthscale B−1/2 in the direction perpendicular to the field:

(D2 +E)−1(x, y) ∼ e−cB(x⊥−y⊥)2
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but similar estimate is unknown for a general field. This problem is closely related
to the poorly understood structure of the Loss-Yau zero modes.

It is amusing to note that it was a substantial endeavour to show that a zero
mode may exist at all [LY], and that multiple zero modes may also occur [ES-II].
On the other hand, it seems also quite difficult to give an upper bound on their
number in terms of the first power of the field strength.
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Old and New Tales about Lifshitz Tails

Werner Kirsch

We consider random Schrödinger operators Hω = H0 + Vω with Vω either of alloy
type or of Poisson type.

By alloy type we mean potentials of the form

(1) Vω(x) =
∑

i∈Zd

qi(ω)f(x− i)

with independent identically distributed random variables qi. For the Poisson
model the potential Vω is given by

(2) Vω(x) =
∑

f(x− ξi(ω))

where the {ξi} are Poisson distributed random points.
In both cases the function f , also called the single site potential, has to decay

fast enough at infinity to ensure convergence of the series (1), e.g.

(3) |f(x)| ≤ c

1 + |x|α
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with α > d, |x| large.
We study the integrated density of states N(E) for these operators. N(E) is

defined as a thermodynamic limit in the following way: Let ΛL be the cube of side
length L around the origin and restrict Hω to `2(ΛL) with appropriate boundary
conditions (Dirichlet, say). The corresponding operator HL has a purely discrete
sprectrum. Let us denote its eigenvalues by E1(HL) ≤ E2(HL) ≤ · · · , repeated
according to multiplicity.

For any E we set NL(E) = 1
Ld #{En(HL) ≤ E}.

Under very weak conditions on Vω it is known that NL converges (for all but
countably many E at least) to a nonrandom limit N(E), the integrated density of
states.

The physicist Lifshitz [1] observed in 1964 that the low energy behavior of N(E)
of random potentials is drastically different from the one for periodic potentials.
In fact, Lifshitz argued that in the ordered (i.e. periodic) case

(4) N(E) ∼ (E −E0)
d
2

as E ↘ E0 = inf σ(Hper). For random operators Lifshitz obtained

(5) N(E) ∼ e−c(E−E0)
− d

2

as E ↘ E0. This super exponential decay is nowadays called Lifshitz tail
behavior.

Lifshitz´ arguments for his results were convincing but not mathematically rig-
orous.

The first mathematical proof of (5) was given by Donsker and Varadhan in [2].
Their proof relies on the machinery of the Donsker-Varadhan large deviations

results. For their proof to work Donsker and Varadhan need that the single-site
potential decays fast enough, namely:

(6) |f(x)| ≤ c

1 + |x|α

with α > d+ 2.
Pastur [3] proved that for slower decay, i.e.

(7) f(x) ∼ c

1 + |x|α

with d < α < d+ 2 the Lifshitz behavior (5) is changed to

(8) N(E) ∼ e−c(E−E0)
− d

α−d
.

In the eighties the so called Dirichlet-Neumann-bracketing technique was used
to prove Lifshitz tails (as in (5) or in (8)) for a greater variety of random potentials



Spectral Analysis of Partial Differential Equations 2881

([4], [5], [6]). This technique is much simpler than the Donsker-Varadhan method.
It is also much closer to the original physical arguments by Lifshitz.

Recently, in [7] single-site potentials with anisotropic decay were considered.
Suppose that x = (x1, x2) x1 ∈ Rd1 , x2 ∈ Rd2 and

(9) |f(x)| ∼ c

1 + |x1|α1 + |x2|α2
.

We define γi = di

dk
and γ = γ1 + γ2. Then

(10) N(E) ∼ e−c(E−E0)
−η

where

(11) η = max(
d1

2
,
γ1

1 − γ
) + max(

d2

2
,
γ2

1 − γ
).

If we introduce a constant magnetic field into the Hamiltonian the Lifshitz
behavior is qualitatively changed.

For example for d = 2 and f(x) ∼ c
1+|x|α it was proved [8] that

(12) N(E) ∼ e−c(E−E0)
− d

α−d
.

even if α > d+ 2. L. Erdös [9] proved that for compactly supported f N(E)
decays polynomially. For d = 3 see ([10], [11]).

Finally, we mention that Lifshitz tails may also exist at internal band edges
([12], [13]) as well as for random surface potentials ([14], [15]).
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Liouville theorems on abelian coverings of compact manifolds

Peter Kuchment

(joint work with Yehuda Pinchover, Technion, Israel)

The classical Liouville theorem claims that any harmonic function in Rn of a
polynomial growth is in fact a polynomial. In particular, the space of all harmonic

functions that grow not faster than C(1+|x|)N , is of finite dimension

(
n+N
N

)
−

(
n+N − 2
N − 2

)
. Analogously, the space of holomorphic function in Cn of same

growth consists of holomorphic polynomials of order N . The problem of extending
this result to more general elliptic operators and/or to Laplace-Beltrami operators
on general Riemannian manifolds of non-negative Ricci curvature was suggested
in work of S. T. Yau [14]. One is interested in finite dimensionality of the spaces
of solutions of a prescribed polynomial growth, estimates of (or even formulas
for) their dimensions, and structure of these solutions (see [3, 7, 8] and references
therein). Yau’s conjecture on validity of the Liouville theorem for Riemannian
manifolds of non-negative Ricci curvature was proven in full generality in [3] (see
a description of previous partial results in [7, 8]).

An amazing case was discovered in [1, 13], where divergence form periodic
elliptic equations Lu = − ∑

1≤i,j≤n

(ai,j(x)uxi)xj = 0 were considered. It was

shown that the space of solutions of polynomial growth of order at most N of
Lu = 0 has the same dimension as the space of harmonic polynomials of the
same rate of growth. Any such solution is representable in the Floquet form
v(x) =

∑
j=(j1,...,jn)∈Zn

+

xjpj(x), with periodic coefficients pj(x).

The natural questions to ask are: Is it important that the operator is of di-
vergence form? What can be said about more general periodic (including higher
order and matrix) equations? Is it possible to determine for a given periodic el-
liptic equation whether the Liouville theorem holds? How crucial is the usage
in [1, 13] of homogenezation theory tools (which automatically restrict the class
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of equations)? Can these results be generalized for abelian coverings of compact
manifolds?

Some partial answers to these questions were obtained in simultaneous papers
[5, 9]. In [9], the results were generalized to second order periodic operators without
lower order terms. At the same time, [5] contained a necessary and sufficient
condition for the validity of the Liouville theorem for a periodic elliptic operator
in Rn, as well as (in most cases implicit) description of the dimensions of the
corresponding spaces of solutions.

Simultaneously, an activity has existed of studying Liouville theorems for holo-
morphic functions on complex analytic manifolds (see e.g., [10, 11, 12]). In par-
ticular, one asks whether Liouville theorems for holomorphic functions hold for
coverings of compact analytic manifolds. One of the results in [10] shows that
the space of such bounded functions is finite-dimensional on nilpotent coverings
of compact complex analytic manifolds. It was not clear whether one could say
the same about the spaces of functions of given polynomial growth, except in the
Kähler case [2].

The talk describes the results of [6] that clarify these issues for elliptic equa-
tions and systems (including overdetermined ones) on abelian coverings of compact
Riemannian manifolds and holomorphic functions on abelian coverings of compact
complex manifolds. The crucial techniques used come from the Floquet theory
and are related to spectral notions common to the solid state physics.

Let X
G7→M be an abelian covering of a compact d-dimensional Riemannian

manifold M with an abelian deck group G (w.l.o.g. one can assume G = Zn). Let
P be an elliptic G-periodic operator on X , with sufficiently smooth coefficients.
For any character χ ofG, one can consider a “twisted” version P (χ) of P onM that
acts in sections of the linear bundle on M determined by χ (it is the push-down of
P considered on χ-automorphic functions on X). In “normal” cases, the spectra
of all P (χ) are discrete. The spectrum of P (χ) as a multiple-valued function of
the character χ is called in solid state physics the dispersion curve or dispersion
relation of P . The Fermi surface F of P is the set of unitary characters χ s.t.
Pu = 0 has a non-zero χ-automorphic solution (i.e., F is the zero level set of the
dispersion relation).

We say that the Liouville theorem holds to an order N for Pu = 0, if the space
VN (P ) of solutions of the equation with a bound |u(x)| ≤ C(1 + ρ(x))N is finite
dimensional. Here ρ(x) is the distance of x ∈ X from a fixed point x0 ∈ X .

The theorem below describes our main results for the elliptic case.
Theorem 1

(1) If Liouville theorem for the equation Pu = 0 holds to an order N ≥ 0, it
holds to any order.

(2) In order for the Liouville theorem to hold, it is necessary and sufficient
that the Fermi surface F consists of finitely many points (this essentially
means that one should expect the Liouville theorem to hold only when zero
is at an edge of the spectrum of P ).
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(3) If the Liouville theorem holds, then under some genericity condition on the
operator P , the dimension of the space VN (P ) can be computed explicitly in
terms of the first non-zero term of the Taylor expansion of the dispersion
curve near its zeros.

(4) Under the same conditions, one can describe a constant coefficient (‘ho-
mogenized’) linear differential operator Λ(D) on Rn, such that there is a
one-to-one correspondence between polynomial solutions of Λv = 0 on Rn

and polynomially growing solutions of Pu = 0 on X.

Similar results hold for overdetermined elliptic systems, including Cauchy-Riemann
∂̄ operators. Here one obtains in particular the following

Theorem 2 Let X →M be an abelian covering of a compact complex analytic
manifold M and X be equipped with a periodic with respect to the deck group
Riemannian metric. Then for any N the space of holomorphic functions on X
of the polynomial growth of order N is finite dimensional. All such functions are
polynomials of a fixed finite set of holomorphic functions.

The proofs of the results dependent upon the techniques of Floquet theory [4].
This work was partially supported by NSF and BSF grants.
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Homogenization problem for the stationary periodic Maxwell system

T. A. Suslina

1. We study the homogenization problem for the stationary periodic Maxwell
system in the small period limit. There is a vast literature on this problem. In
particular, it was discussed in the books [1,2]. However, known results provide
only the weak convergence of solutions. We report on the new results [5,6] about
approximations of the solutions in the L2(R

3)-norm. The results are based on the
abstract operator theory approach developed in [3,4].

2. Statement of the problem. Let Γ be a lattice in R3, and let Ω be the cell
of Γ. Suppose that the permittivity η(x) and the permeability µ(x) are Γ-periodic
measurable (3 × 3)-matrix-valued functions in R3 with real entries, and

c01 ≤ η(x) ≤ c11, c01 ≤ µ(x) ≤ c11, x ∈ R
3, 0 < c0 ≤ c1 <∞. (1)

Here 1 is the identity matrix. We put G = L2(R
3; C3). By G(η−1) = L2(R

3; C3; η−1)

we denote the ”weighted” space with the norm (η−1f , f)
1/2
G

. The space G(µ−1) =
L2(R

3; C3;µ−1) is defined in a similar way. We denote J = {f ∈ G : div f = 0}.
In what follows, u and v stand for the electric and magnetic field intensity, re-
spectively, w = ηu is the electric displacement vector, and z = µv is the magnetic
induction vector. We represent the Maxwell operator M = M(η, µ) in terms of
w and z assuming that they are divergence free. Then M acts in the space J ⊕ J
and is defined by the relations

M(η, µ) =

(
0 i rotµ−1

−i rot η−1 0

)
,

DomM(η, µ) = {(w, z) : w ∈ J, z ∈ J, rot η−1w ∈ G, rotµ−1z ∈ G}.
(2)

The operator M is selfadjoint in J ⊕J treated as a subspace of G(η−1)⊕G(µ−1).
Let ε be a parameter. We denote ηε(x) = η(ε−1x), µε(x) = µ(ε−1x). Consider

the family of operators Mε = M(ηε, µε). Our goal is to study the behavior of the
resolvent (Mε − iI)−1 as ε→ 0. Consider the equation

(Mε − iI)

(
wε

zε

)
=

(
q
r

)
, q, r ∈ J. (3)

The corresponding intensities are given by uε = (ηε)−1wε and vε = (µε)−1zε. We
are interested in the behavior of all four fields uε, vε, wε, zε as ε→ 0.

3. Results. It is useful to represent the solution components as the sums

wε = w
(q)
ε + w

(r)
ε , zε = z

(q)
ε + z

(r)
ε , where the pair w

(q)
ε , z

(q)
ε is the solution of

(3) with r = 0 and the pair w
(r)
ε , z

(r)
ε is the solution of (3) with q = 0. The

fields uε and vε are represented in a similar way. For ”half of the fields”, namely,

for v
(r)
ε , z

(r)
ε and u

(q)
ε , w

(q)
ε we obtain uniform approximations in the G-norm.
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These approximations are of precise order with respect to parameter ε. For the

remaining fields v
(q)
ε , z

(q)
ε and u

(r)
ε , w

(r)
ε we still have only weak convergence

(which was known before).
Consider the case where q = 0 in detail. Then equation (3) takes the form

w
(r)
ε = rot (µε)−1z

(r)
ε , div z

(r)
ε = 0,

rot (ηε)−1w
(r)
ε + z

(r)
ε = ir, divw

(r)
ε = 0.

}
(4)

Accordingly,

u(r)
ε = (ηε)−1w(r)

ε , v(r)
ε = (µε)−1z(r)

ε . (5)

The results are formulated in terms of the ”homogenized” Maxwell system and
the ”correction” Maxwell system. Let µ0 be the ”effective” matrix (e. g., see
[1,2]) corresponding to the elliptic operator −divµ(x)∇. Recall the definition
of the (constant positive) matrix µ0. Let e1, e2, e3 be the standard ortonormal
basis in R3, and let Φj ∈ H1

loc(R
3), j = 1, 2, 3, be a Γ-periodic solution of the

equation divµ(x)(∇Φj(x) + ej) = 0. By µ̃(x) we denote the matrix with columns
µ(x)(∇Φj(x) + ej), j = 1, 2, 3. Then µ0 = |Ω|−1

∫
Ω
µ̃(x) dx. The effective matrix

η0 corresponding to the operator −div η(x)∇ is defined in a similar way. We put

M0 = M(η0, µ0). Let (w
(r)
0 , z

(r)
0 ) be the solution of the ”homogenized” Maxwell

system

(M0 − iI)

(
w

(r)
0

z
(r)
0

)
=

(
0
r

)
. (6)

We put

u
(r)
0 = (η0)−1w

(r)
0 , v

(r)
0 = (µ0)−1z

(r)
0 . (7)

Now we describe the ”correction” Maxwell system. Let F (x) be the matrix with
columns ∇Φj(x), j = 1, 2, 3. Note that F (x) is a Γ-periodic matrix-valued function
with zero mean value. We denote F ε(x) = F (ε−1x). Let P0 be the orthogonal
projection in G((µ0)−1) onto J . We put rε = P0(F

ε)∗r. Then rε ∈ H−1(R3; C3)

and div rε = 0. Let (w̃
(r)
ε , z̃

(r)
ε ) be the solution of the ”correction” Maxwell system

(M0 − iI)

(
w̃

(r)
ε

z̃
(r)
ε

)
=

(
0
rε

)
. (8)

We put

ṽ(r)
ε = (µ0)−1z̃(r)

ε . (9)

Note that the fields w̃
(r)
ε , z̃

(r)
ε , ṽ

(r)
ε weakly tend to zero in G. The reason is that

the right-hand side rε in (8) contains the factor F ε, which weakly tends to zero in
L2,loc(R

3) (by the ”mean value property”).

Our main result (as applied to the case q = 0) is the following theorem.
Theorem. Suppose that Γ-periodic matrix-valued functions η(x), µ(x) satisfy

conditions (1). Let (w
(r)
ε , z

(r)
ε ) be the solution of system (4) with r ∈ J , and let

u
(r)
ε ,v

(r)
ε be defined by (5). Supose that (w

(r)
0 , z

(r)
0 ) is the solution of system (6),
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and let u
(r)
0 ,v

(r)
0 be defined by (7). Suppose that (w̃

(r)
ε , z̃

(r)
ε ) is the solution of

system (8), and let ṽ
(r)
ε be defined by (9). Then the following assertions hold.

1◦. For the magnetic intensity v
(r)
ε we have the approximation

‖v(r)
ε − (1 + F ε)(v

(r)
0 + ṽ(r)

ε )‖G ≤ Cε‖r‖G, 0 < ε ≤ 1. (10)

2◦. As ε → 0, v
(r)
ε weakly tends in G to v

(r)
0 , and rotv

(r)
ε weakly tends in G to

rotv
(r)
0 .

3◦. For the magnetic induction vector z
(r)
ε we have the approximation

‖z(r)
ε − (1 +Gε)(z

(r)
0 + z̃(r)

ε )‖G ≤ Cε‖r‖G, 0 < ε ≤ 1, (11)

where G(x) := µ̃(x)(µ0)−1 − 1 is a Γ-periodic matrix-valued function with zero
mean value, and Gε(x) = G(ε−1x).

4◦. As ε→ 0, z
(r)
ε weakly tends in G to z

(r)
0 .

5◦. As ε → 0, the electric field intensity u
(r)
ε weakly tends in G to u

(r)
0 . For

rotu
(r)
ε = ir − z

(r)
ε we have approximation in the G-norm (see (11)).

6◦. As ε→ 0, the electric displacement vector w
(r)
ε weakly tends in G to w

(r)
0 .

The case where r = 0 can be treated in a similar way. For the fields u
(q)
ε and

w
(q)
ε we obtain approximations in the G-norm similar to (10), (11), while for v

(q)
ε ,

z
(q)
ε we have only the weak convergence.

In the case where permeability is constant: µ = µ0, the results simplify. In this
case the solutions of the ”correction” system (8) are trivial, and we have

‖v(r)
ε − v

(r)
0 ‖G ≤ Cε‖r‖G, ‖z(r)

ε − z
(r)
0 ‖G ≤ Cε‖r‖G, 0 < ε ≤ 1. (12)

For µ(x) = 1 this result has been obtained before in [4]. If η = η0, then for u
(q)
ε ,

w
(q)
ε we have similar results.
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129, Birkhäuser, Basel, 2001, pp. 71–107.
[4] M. Sh. Birman and T. A. Suslina, Second order periodic differential operators. Threshold

properties and homogenization, Algebra i Analiz 15 (2003), no. 5, 1–108; English transl., St.
Petersburg Math. J. 15 (2004), no. 5, 1–77.

[5] T. A. Suslina, On the homogenization of the periodic Maxwell system, Funct. Anal. Appl.
38 (2004), no. 3, 234–237.

[6] T. A. Suslina, Homogenization of a stationary periodic Maxwell system, Algebra i Analiz 16

(2004), no. 5, 162–244; English transl., St. Petersburg Math. J. 16 (2005), no. 5.



2888 Oberwolfach Report 53/2004

Bound States and Essential Spectrum

David Damanik

Given a Schrödinger operator HV = −∆ + V in L2(Rd) or hV = ∆ + V in `2(Zd),
a basic problem is to study the discrete spectrum and the essential spectrum. In
recent years, several papers have uncovered a surprising connection between these
two parts of the spectrum.

We first consider operators with empty discrete spectrum. The following theo-
rem was shown by Killip and Simon [5]:

Theorem 1. Suppose H = `2(Z). Then σ(hV ) ⊆ [−2, 2] implies V ≡ 0.

In particular, every potential that does not vanish identically must produce
spectrum outside of the free spectrum, [−2, 2]. Note that this result holds without
any apriori assumption on V . The proof of Theorem 1 given in [5] relies on sum
rules and is, to some extent, a by-product of their general study culminating
in a characterization of all (half-line) Jacobi matrices that are Hilbert-Schmidt
perturbations of the free operator in terms of properties of the spectral measure.

A more direct and elementary proof based on suitable choices of test functions
was given in [1]. Moreover, it was possible to extend the result to two dimensions:

Theorem 2. Suppose H = `2(Zd) with d = 1 or 2. Then σ(hV ) ⊆ [−2d, 2d]
implies V ≡ 0.

It was also shown in [1] that σess(hV ) ⊆ [−2d, 2d] implies V → 0. Both state-
ments fail in dimensions d ≥ 3.

On the half-line, the following example was discussed in [1]. Consider the
operator hV in `2(Z+) with potential V (n) = (−1)n/n. Then, hV has spectrum
[−2, 2]. This shows that not only can V ≡ 0 fail under the assumption σ(hV ) ⊆
[−2, 2] for half-line operators, it is also not immediately clear what one can say
about the spectral type inside [−2, 2].

Half-line operators were studied in [2], where the following theorem was proven:

Theorem 3. Suppose H = `2(Z+). Then σ(hV ) ⊆ [−2, 2] implies σsing(hV ) = ∅.

The main steps in the proof of Theorem 3 are as follows: First map the spectral
measure to the unit circle via E = z+z−1 and find relations between the potential
and the Verblunsky coefficients of the associated measure. Then use this connec-
tion to find bounds on the potential. Finally, use these bounds to show that there
cannot be any embedded singular spectrum. For example, it is shown that under
the assumption σ(hV ) ⊆ [−2, 2], V may be written as

V (n) = W (n) −W (n− 1) +Q(n),

where

Q ∈ `1 and

N∑

n=1

nW (n)2 ≤ 1

4
logN + C.

The continuum case is also studied in [2]. Note that the unitary [Uφ](n) =
(−1)nφ(n) conjugates h−V and −hV . Therefore, σ(hV ) ⊆ [−2, 2] is equivalent to
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the two conditions σ(h±V ) ⊆ [−2,∞). Thus, the following theorem from [2] is the
natural continuum analogue of Theorem 3:

Theorem 4. Suppose H =  L2(R+) and V ∈ `∞(L2). Then σ(H±V ) ⊆ [0,∞)
implies σsing(HV ) = ∅.

Given this observation, it natural to ask whether the `2(Z) and `2(Z2) results
have continuum analogues. This is indeed the case, as shown in [3]:

Theorem 5. Let d = 1 or 2. Suppose that Q ∈ L2
loc(R

d) and the operator HQ

has a bounded positive ground state. If V ∈ L2
loc(R

d) and both HQ±V are bounded
below by the ground state energy of HQ, then V ≡ 0.

For Q ≡ 0, this gives the continuum analogue of Theorem 2 (choose ψ ≡ 1 as
the bounded positive ground state), but it also applies to periodic Q, for example.

Thus, one has a good understanding of cases without bound states. If a pertur-
bation introduces only finitely many bound states, one may still hope for strong
restrictions on V and the spectral type inside the essential spectrum. In fact,
Theorems 3 and 4 extend quite easily to the case of finitely many bound states.
Thus, on the half-line, finiteness of the number of bound states implies the absence
of embedded singular spectrum, as shown in [2]. For operators on the line, the
corresponding results were shown in [3]. The problem is open in two dimensions.

The following example shows that an extension to operators with infinitely
many bound states could be involved. On the half-line, the operator with Wigner-
von Neumann-type potential V (n) = (1 + ε)(−1)n/n + O(1/n2), ε > 0, has an
embedded eigenvalue and the discrete eigenvalues decay exponentially; see [3].
In particular, the finiteness of bound state moments is not sufficient to exclude
embedded singular spectrum. On the other hand, positive results are obtained in
[4]. For example, if the p-th bound state moment is finite, then the embedded
singular spectrum must be supported on a set of Hausdorff dimension 4p.
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Properties of Coulombic wavefunctions and their electron density

Maria Hoffmann-Ostenhof

(joint work with Søren Fournais, Thomas Hoffmann-Ostenhof and Thomas
Østergaard Sørensen)

Let H be the non-relativistic Schrödinger operator of an N -electron atom with
nuclear charge Z and the nucleus fixed in the origin, given by

(1) H = −∆ + V =

N∑

j=1

(−∆j −
Z

|xj |
) +

∑

1≤i<j≤N

1

|xi − xj |

where xj ∈ R3, 1 ≤ j ≤ N , are the electron coordinates and the ∆j the associated
Laplacians. Let ψ ∈ L2(R3N ) be an eigenfunction of H with eigenvalue E. By a
classical result of Kato [5], ψ is locally Lipschitz and real analytic away from the
singularities of the potential V .

The main result in [3] is a representation result for electronic wavefunctions of
atoms and molecules which is stated here for simplicity for the atomic case:

Theorem
Let ψ be as above and let

F = eF2+F3

with

F2 = −Z
2

N∑

i=1

|xi| +
1

4

∑

1≤i<j≤N

|xi − xj |

and

F3 = c0Z
∑

1≤i<j≤N

〈xi|xj〉 ln(|xi|2 + |xj |2), c0 =
2 − π

12π
.

Then
ψ = FΦ with Φ ∈ C1,1(R3N ).

From this and earlier results of the present authors certain properties of ψ and the
associated 1-electron density

ρ(x) =

∫

R3N−3

|ψ|2(x, x′)dx′, x ∈ R
3

can be shown (work in progress): In 1957 Kato, [5], analyzed the behaviour of ψ in
an averaged sense near two particle coalescence points, (Kato’s cusp conditions).
Generalizations of such ”cusp properties” are investigated. By a cusp condition
(resp. property) we will understand a condition a solution ψ has to satisfy near
a point, where the potential in (1) is singular. In an L∞-sense such properties
concerning second order partial derivatives of ψ are given in [3]. In progress is
work on cusp conditions for the 1-electron density ρ. It can be shown that for
some −→c ∈ R3

∂ρ(rω)

∂r

∣∣∣
r=0

= lim
r↓0

∂

∂r
ρ(rω) = −Zρ(0) + 〈ω|−→c 〉
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where x = rω, so that ω ∈ S
2.

Other investigations concern the regularity properties of ρ, respectively, of the
spherically averaged density ρ̃ = ρ̃(r). It is known [1, 2] that ρ is smooth and even
real analytic away from the origin. An open question is the regularity of ρ̃ near
the origin O. So far only C2([0,∞)) was known, [4], and this can be extended, via
apropriate estimates derived in [3], to C3.

Another interesting question is whether ρ is strictly positive in R3. Of course
this cannot be true in general, since it fails for excited states of the Hydrogen
atom. It is well known that the mathematical groundstate ψ satisifies |ψ| > 0 in
R3N and therefore the associated density ρ is strictly positive.

We investigate the spherically averaged density associated to a groundstate of
an atom in some symmetry subspace and are going to show that it is strictly
positive and we will also give an explicit lower bound to ρ(0). (Note that for
these considerations we use the symmetrized (physical) density ρ instead of the
one defined above.)

Whether ρ̃(r) is monotonically decreasing is an open problem for decades. This
monotonicity is expected to hold for groundstate densities, but not known even for
the bosonic case like the Helium groundstate in spite of overwhelming numerical
evidence. So far it is only known in a sufficiently small neighborhood of the origin
and sufficiently far away from the nucleus.
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On a Magnetic Hardy Inequality in The Waveguide

Hynek Kovař́ık

(joint work with Denis Borisov and Tomas Ekholm)

It is well known that the classical Hardy inequality fails to hold in dimensions
one and two. This is closely related to the fact, that arbitrarily small attractive
potential perturbation produces at least one negative eigenvalue of the Schrödinger
operator on L2(Rd), d = 1, 2. As a consequence, the threshold of the spectrum of
the Laplacian in the so called quantum waveguide, i.e. in a two-dimensional strip
Ω with Dirichlet boundary conditions, is unstable under any local enlargement or
bending of the waveguide, see [BGRS], [EŠ], [GJ].
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On the other hand, in 1999 Laptev and Weidl proved a modified version of the
Hardy inequality in R2 for the quadratic form of a magnetic Schrödinger operator

(1) Const

∫

R2

|u(x)|2
1 + |x|2 dx ≤

∫

R2

|(−i∇ +A)u(x)|2 dx,

and gave a sharp result for the case of Aharonov-Bohm field. See [LW] for details.
This work was later extended in [B] to multiple Aharonov-Bohm magnetic poten-
tials, see also [EL]. Recently another generalization of the result by Laptev and
Weidl was obtained in [BLS].

In our model we study the spectrum of the magnetic Schrödinger operator
(−i∇+A)2 on L2(Ω) with Ω = R× (0, π)). Essential difference to the case treated
in [LW] is that due to the Dirichlet boundary conditions the spectrum starts from
1. Consequently inequality (1) becomes trivial. Therefore we shall subtract the
threshold of the spectrum and prove a Hardy-inequality in the form

(2) Const

∫

R×(0,π)

|u(x)|2
1 + x2

1

dx ≤
∫

R×(0,π)

(
|(−i∇ +A)u(x)|2 − |u(x)|2

)
dx,

for all u in the magnetic Sobolev space H1
0,A(R× (0, π)). We prove this inequality

for the magnetic Schrödinger operator with a locally bounded field.
As an application of inequality (2) we show that the threshold of the spectrum of

the corresponding magnetic Schrödinger operator is stable under local geometrical
perturbations of the waveguide as well as under local perturbations of the boundary
conditions. In the first case it is shown that a sufficiently weak enlargement of
the waveguide, depending on the magnetic field, will not produce any discrete
spectrum of the operator (−i∇ +A)2. In a similar way we note that the discrete
spectrum of (−i∇ +A)2 in a mildly curved waveguide stays empty as long as the
corresponding curvature and its first derivative are small enough.

In the second model we consider a situation where the Dirichlet boundary con-
dition is switched to magnetic Neumann on a fixed segment of the length 2l of the
boundary of Ω. Such a perturbation is stronger than the geometrical perturbations
of the boundary mentioned above and therefore a different approach is needed in
order to establish the desired stability result. Using a similar integral inequality
to (2) we are able to show that it suffices to prove the non-existence of discrete
eigenvalues of the one-dimensional Schrödinger operator

A = − d2

dx2
+ V,

where V is a sum of the purely attractive potential well of the width 2l and a
small, but fixed positive potential. We conclude that the discrete spectrum of
A and consequently also the discrete spectrum of of the corresponding magnetic
Schrödinger operator stays empty provided l is small enough.

This talk has been based on two papers, [EK] and [BEK], obtained in the
collaboration with T.Ekholm and D.Borisov, T.Ekholm respectively.
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Spectral asymptotics for the Landau Hamiltonian and logarithmic
capacity

Alexander Pushnitski

(joint work with Nikolai Filonov)

Consider the operator

H0 =

(
−i ∂
∂x

+
B

2
y

)2

+

(
−i ∂
∂y

− B

2
x

)2

in L2(R2, dx dy),

where B > 0 is the strength of the constant magnetic field. The spectrum of H0

consists of the eigenvalues (known as Landau levels) Λq = B(2q+1), q = 0, 1, 2, . . . ;
each of these eigenvalues has infinite multiplicity.

Let V ≥ 0 be a perturbation potential such that V ∈ L∞(R2), and Ω = supp (V )
is compact. We consider the spectrum of the operators H± = H0 ± V . It is well
known that σess(H±) = σess(H0) = ∪∞

q=0Λq . Moreover, for any q the eigenvalues
of H+ can accumulate to Λq only from the right, and eigenvalues of H− can
accumulate to Λq only from the left.

Let us enumerate the eigenvalues of H− in (−∞,Λ0) in the ascending order
(counting multiplicities):

λ−1 ≤ λ−2 ≤ · · · ≤ λ−n ≤ · · · < Λ0.

Similarly, let us enumerate the eigenvalues of H+ in (Λ0,Λ1) in the descending
order (counting multiplicities):

Λ0 < · · · ≤ λ+
n ≤ · · · ≤ λ+

2 ≤ λ+
1 < Λ1.
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For a bounded Borel set C ⊂ R
2, we denote by CapC the logarithmic capacity

of C (see [2]). Denote

ρ(V ) = Cap Ω, Ω = suppV,

ρ−(V ) = inf{CapC | C ⊂ R
2 is a bounded Borel set,

∫

R2\C

V (x, y)dx dy = 0}.

Clearly, ρ−(V ) ≤ ρ(V ).
Theorem Assume that ρ−(V ) = ρ(V ). Then one has the asymptotics:

(∗) λ±n − Λ0 = ± 1

n!

(
B

2
ρ(V )2

)n+o(n)

, n→ ∞.

Remarks

(1) The asymptotics (∗) should be understood as

log(±(λ±n − Λ0)n!) = n log

(
B

2
ρ(V )2

)
+ o(n), n→ ∞.

(2) An elementary calculation shows that the asymptotics (∗) is equivalent to

λ±n+k − Λ0 = ± 1

n!

(
B

2
ρ(V )2

)n+o(n)

, n→ ∞,

for any integer k.
(3) We also have a way of treating the eigenvalue asymptotics near higher

Landau levels Λq, q ≥ 1, but at present this construction requires more
restrictive assumptions on V and slightly more technical arguments, so we
do not include it in this preliminary report.

For t > 0, let us define N−(t) as the total number of eigenvalues of H− (counting
multiplicities) in the interval (−∞,Λ0 − t). Similarly, for 0 < t < 2B, let us define
N+(t) as the total number of eigenvalues of H+ in (Λ0 + t,Λ1). An elementary
calculation shows that (∗) is equivalent to

N±(t) =
|log t|

(log|log t|)2
(

log|log t| + log log|log t| + log

(
B

2
ρ(V )2

)
+ 1 + o(1)

)
,

as t→ +0. In the papers [4] and [3], the asymptotics

N±(t) =
|log t|

(log|log t|) (1 + o(1)), t→ +0

was obtained.
The proof is based on the following ideas. First, as in the papers [4] and [3], we

reduce the question to the asymptotics of the eigenvalues of the auxiliary operator
P0V P0. Here P0 is the spectral projection of H0, corresponding to the first Landau
level Λ0. Next, the eigenvalues of P0V P0 are identified with the singular numbers of
the embedding F ⊂ L2(R2, Ṽ (x, y)dx dy), where F is the so-called Fock class, and

Ṽ (x, y) = V (x, y)e−x2−y2

. Using the techniques of [6], the singular numbers of this
embedding are then expressed in terms of the asymptotics for a certain sequence
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of orthogonal polynomials. Finally, application of the “regularity criteria” of [5]
yields the required result.
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Gaussian extremizers for the Strichartz inequality in one and two
dimensions

Dirk Hundertmark

(joint work with Vadim Zharnitsky)

We show that in dimension one and two the only maximizers for the homogenous
Strichartz inequality for the free Schrödinger evolution are Gaussians.

More precisely, let u be the solution to the free Schrödinger equation

(1) i∂tu = ∆u

with initial condition u(0) = f ∈ L2(R2). It is, of course, given by

(2) u(t, x) = (e−it∆f)(x)

where e−it∆ is defined, for example, by the functional calculous. Since, for fixed
time t, e−it∆ is a unitary operator on L2(Rd), one immediately sees that u ∈
L∞

t (L2(Rd)). But, in fact, due to the dispersive nature of the free Schrödinger
equation, the solution u, as a function of space-time, obeys the stronger Lp-bound

(3) ‖u‖Lp(R×Rd) ≤ Sd‖f‖L2(Rd)

where p = p(d) = 2 + 4
d . This was first shown by Strichartz [6] who followed the

Lp restriction proof of Stein-Tomas. Later simplified proofs were given by Ginibre
and Velo [4], see also [2, 7].

The sharp value of Sd, i.e., the quantity

(4) Sd = sup
f 6=0,

‖u‖Lp(R×Rd)

‖f‖L2(Rd)
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has been unknown until very recently. In fact, even the existence of maximizers
for (4), that is, functions f∗ 6= 0 such one has equality in (4),

(5) Sd =
‖e−it∆f∗‖Lp(Rd+1)

‖f∗‖L2(R)
,

has been only recently established. By using an elaborate application of Lions’
concentration compactness method, Markus Kunze showed in [5] that (4) has a
maximizer in one dimension. His proof does not, however, provide any explicit
information about the maximizer nor the value of S1. The reason why even the
existence of maximizers has not been known until recently is the invariance of
the Strichartz inequality under the rather large group of Galilei transformations
and scaling. This makes the usual existence proof for maximizers via minimizing
sequences very hard, since they can very easily converge weakly to zero. The usual
method to circumvent this is the concentration compactness principle, however, in
this setting it has to be used twice, first in Fourier space, then in real space.

Very recently, Damiano Foschi [3] gave a proof of the Strichartz inequality in
one and two dimensions, which yields the sharp constant. He showed

Theorem 1 (Foschi 2004, [3]). The sharp constants for the Strichatz inequality in
one and two dimensions are S1 = 12−1/12 and S2 = 2−1/2, respectively. Moreover,
if the initial condition f is given by a Gaussian, then one has equality in the
Strichartz inequality.

However, the existence of non-Gaussian maximizers was not ruled out in [3].
The main purpose of this note is to give an simple argument which shows that at
least in one and two dimensions the only maximizers in the Strichartz inequality
are Gaussians. More precisely, we have the following

Theorem 2 (Gaussian maximizers). Let d = 1 or 2. The function f∗ ∈ L2(Rd)
is a maximizer for the Strichartz inequality (3), that is, (4) holds, if and only if
f∗ is a Gaussian. More precisely, there exists A ∈ C, λ > 0, µ ∈ R, a ∈ Rd, and
b ∈ Cd such that

(6) f∗(x) = Ae(−λ+iµ)|x−a|2+b·x.

The key for our proof is the following representation theorem. It shows that
the Strichartz estimate follows from a simple bound on a linear operator and,
moreover, gives a geometric criterion for the maximizer in the Strichartz inequal-
ity. For f ∈ L2(Rd), denote by f ⊗ f be the usual tensor product, Rd × Rd 3
x = (x1, x2) → f ⊗ f(x) := f(x1)f(x2). Similarly for the triple tensor product
f ⊗ f ⊗ f . Furthermore, let P1 : L2(R3) → L2(R3) be the orthogonal projection
operator onto the subspace consisting of functions F ∈ L2(R3) which are sym-
metric under rotations of R3 keeping the (1, 1, 1) direction fixed. And similarly,
let P2 : L2(R4) → L2(R4) be the orthogonal projection operator onto functions
F ∈ L2(R3) which are symmetric under rotations of R4 fixing both the (1, 0, 1, 0)
and (0, 1, 0, 1) direction. With this, we have

Theorem 3. Let f ∈ L2(Rd).
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a) In dimension one,
∫

R

∫

R

|e−it∆f(x)|6 dxdt =
1

2
√

3
〈f̂ ⊗ f̂ ⊗ f̂ , P1(f̂ ⊗ f̂ ⊗ f̂)〉L2(R3)

b) In dimension two,
∫

R

∫

R2

|e−it∆f(x)|4 dxdt =
1

4
〈f̂ ⊗ f̂ , P2(f̂ ⊗ f̂)〉L2(R4),

where f̂ is the (space) Fourier transform of f .

One immediately gets the sharp Strichartz inequality, using that any projection
operator operator is bounded by the identity. One also sees that, in order to have

equality in the Strichartz inequality, the function f̂⊗ f̂⊗ f̂ must be in the range of
P1 in dimension one, and similarly for the two-dimensional case. In other words,
for any one-dimensional maximizer f of the Strichartz inequality, the function

f̂ ⊗ f̂ ⊗ f̂ is invariant under rotations of R3 which keep the (1, 1, 1) direction fixed.

Similarly, for any two-dimensional maximizer f , the function f̂ ⊗ f̂ is invariant
under rotations of R4 which keep both the (1, 0, 1, 0) and (0, 1, 0, 1) directions fixed.

This is obviously the case if f̂ , and hence f , is a Gaussian, and a simple proof,
mimicked after a result by Carlen [1], shows that this geometric condition forces
f to be a Gaussian.
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Some Results on the Spectra of Periodic Landau Operators

Daniel M. Elton

The periodic Landau operator on Rd is the magnetic Schrödinger operator

(1) HB,V = (D −A)2 + V,

where D = −i∇, V is a periodic potential (with respect to some lattice Λ) and
the magnetic field B = ∇×A is constant. In this talk we are interested in spectral
problems related to HB,V when d = 2, 3. For technical convenience we take B =
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(0, 0, β) with β > 0 when d = 3; when d = 2 this reduces to B = β. We will also
assume that the lattice of periods is Λ = (2πZ)d.

1. Reduction of the operator

To study the spectrum σ(HB,V ) we firstly use a metaplectic transformation to
replace (1) with a unitarily equivalent operator; when d = 2 we get

(1) D2
x + (βx)2 + Opw

(
V (x+ y/β,−η − ξ/β)

)

acting in L2(R2), where Opw(p) denotes the Weyl-quantised pseudo-differential
operator (on R2) with symbol p(x, y, ξ, η). In general (1) is a harmonic oscillator
with a free variable, perturbed by an oscillatory pseudo-differential operator.

Although V and B are periodic functions, HB,V is not a periodic operator
(owing to the presence of the magnetic potential A in (1)). The Bloch (or Floquet)
techniques commonly used for periodic spectral problems are not directly available
to study the spectrum σ(HB,V ). A partial remedy is available via a symmetry
group consisting of “magnetic Bloch-transformations”; however this is only useful
under the flux rationality assumption:

(FR) β = |B| =
p

2πq
for some p, q ∈ N.

Under this condition, HB,V is unitarily equivalent to a direct integral

(2)

∫ ⊕

[0,1)

dk1

∫ ⊕

S1

dk2 H(k1, k2)

with fibre operatorH(k1, k2) = (D2
x+(βx)2)⊗Ip+A(k1, k2) acting on

⊕p−1
j=0 L

2(R);
the potential V has become a p × p matrix of oscillatory pseudo-differential op-
erators A(k1, k2). Since the spectrum of (D2

x + (βx)2) ⊗ Ip consists of discrete
eigenvalues (the eigenvalues of the 1-dimensional harmonic oscillator, each with
multiplicity p), we obtain a band gap picture for σ(HB,V ) (the bands are simply
the ranges of the eigenvalues of H(k1, k2) considered as functions of the parameters
k1, k2).

The above discussion modifies in the obvious way for the case d = 3.

2. Dimension d = 3

When V ≡ 0 a straightforward calculation shows σ(HB,0) = [β,∞) and this
spectrum is purely absolutely continuous. Under the assumption of flux rationality,
the addition of a periodic potential does not alter the broadest features of σ(HB,V );
the spectrum remains purely absolutely continuous (this can be proved using the
standard Thomas approach employed for −∆ + V ). Furthermore the spectrum
contains at most finitely many gaps (the “Bethe-Sommerfeld conjecture”):

Theorem 1. Suppose (FR) holds and V satisfies the regularity condition
∑

m∈Z3

|m|δ|V̂m| < +∞
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for some δ > 0 (where V̂m denote the Fourier coefficients of V ). Then there exists
Γ ∈ R such that [Γ,∞) ⊆ σ(HB,V ); in particular, σ(HB,V ) contains only finitely
many gaps. Furthermore, Γ depends continuously on the lattice Λ and on β = |B|.

See [1]; previously the result was obtained for any sufficiently small bounded V
in [3].

There do not appear to be any general results on σ(HB,V ) in the case of non-
rational flux.

3. Dimension d = 2

It is well known that σ(HB,0) consists of the discrete eigenvalues β(2n − 1),
n ∈ N, each of which has infinite multiplicity (the Landau levels). The presence of
a non-zero potential V smears the Landau level β(2n−1) into a region of spectrum
contained within the interval

In
β,V = β(2n− 1) + V̂0 + Cβ,V n

−1/4[−1, 1].

In particular, σ(HB,V ) contains infinitely many gaps for any β 6= 0 and V .
The character of the spectrum σ(HB,V ) ∩ In

β,V depends critically on the ratio-

nality of the flux. Under condition (FR), the form of the direct integral (2) makes
it clear that (for sufficiently large n) σ(HB,V ) ∩ In

β,V will consist of p (possibly

overlapping and/or degenerate) bands. The existence of eigenvalues for V 6≡ 0 has
not been fully resolved, although it appears the spectral bands are non-degenerate
at least for generic V ([5]).

The study of σ(HB,V )∩In
β,V in the case of non-rational flux has been undertaken

in various limiting regimes (strong and weak magnetic fields were considered in
[4]); in particular, it has been found that, after suitable normalisation, the limiting
spectrum σ(HB,V )∩In

β,V can be described by a Harper type operator. In this line,
the following new result has been obtained for the large energy limit n→ ∞.

Theorem 2. For all n � 1 there exists a neighbourhood Ωn of Cβ,V [−1, 1] ⊂ C

and a holomorphic family of oscillatory pseudo-differential operators on L2(R),
Qn(µ), µ ∈ Ωn, such that λ ∈ σ(HB,V ) ∩ In

β,V iff 0 ∈ σ(Qn(µ)), where λ =

β(2n− 1) + V̂0 + n−1/4µ. Furthermore, as n→ ∞
Qn(µ) = Opw

(
Wn(x, ξ/β)

)
− µ+O(n−1/4 lnn),

where Wn is the periodic function given by

Wn(x, ξ) =
(2β)1/4

√
π

∑

m∈Z2\0

ei(m1x+m2ξ) V̂m√
|m|

cos
(√2 |m|√

β

√
n− π

4

)
.

In particular, in the limit n → ∞ the normalised spectrum σ(HB,V ) ∩ In
β,V

is given as the spectrum of the operator Opw(Wn(x, ξ/β)). This operator is in
general of Harper type; in particular, for the potential V (x, y) = cos(x) + cos(y)
we get

Opw
(
Wn(x, ξ/β)

)
=

(2β)1/4

√
π

cos
(√

2n/β − π

4

)(
cos(x) + cos(D/β)

)
,
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which is a scaled version of the standard Harper operator (with parameter 1/β).
In [4] it is shown that for certain V and large irrational magnetic fluxes β, the

spectrum σ(HB,V ) ∩ In
β,V is a Cantor set (as is the case for the limiting Harper

type operator). It is anticipated that similar results should be attainable for the
large energy limit n→ ∞ (and probably for the weak electric field limit V → 0).

The methods used to obtain Theorem 2 lead to an asymptotic formula for
the eigenvalues of a harmonic oscillator perturbed by a (quasi-)periodic potential;
these asymptotics are unusual in the sense that the leading order term contains an
oscillatory factor, knowledge of which leads to the recovery of “half” the Fourier
coefficients of V (see [2]).
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Spectral Shift Function for Magnetic Schrödinger Operators

Georgi Raikov

Let H0 := (i∇ + A)2 − b be the 3D magnetic Schrödinger operator essentially

self-adjoint on C∞
0 (R3). Here A =

(
− bx2

2 , bx1

2 , 0
)

is a magnetic potential which
generates the constant magnetic field B = curl A = (0, 0, b), b > 0. It is well-
known that σ(H0) = σac(H0) = [0,∞) (see e.g. [1]), where σ(H0) stands for the
spectrum of H0, and σac(H0) for its absolutely continuous spectrum. Moreover,
the so-called Landau levels 2bq, q ∈ Z+, play the role of thresholds in σ(H0).
Further, assume that the function V satisfies

(1) V 6≡ 0, V ∈ C(R3), 0 ≤ V (x) ≤ c0(1 + |x|)−m, m > 3, x ∈ R
3.

On the domain of H0 define the operator H± := H0 ± V so that the electric po-
tential ±V has a fixed sign. For every E < inf σ(H±) we have (H± − E)−1 −
(H0 − E)−1 ∈ S1 where S1 denotes the trace class. Hence, there exists a unique
function ξ = ξ(·;H±, H0) ∈ L1(R; (1 + E2)−1dE) vanishing identically on
(−∞, inf σ(H±)), such that the Lifshits-Krein trace formula

Tr (f(H±) − f(H0)) =

∫

R

ξ(E;H±, H0)f
′(E)dE

holds for each f ∈ C∞
0 (R) (see [7, Chapter 8]). The function ξ(·;H±, H0) called

the spectral shift function (SSF) for the operator pair (H±, H0), is well defined
on R \ 2bZ+, bounded on every compact subset of R \ 2bZ+, and continuous on
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R \ {2bZ+ ∪σpp(H±)} where σpp(H±) is the set of the eigenvalues of H± (see [2]).
In this talk based on the results of [3], we will discuss the asymptotic behaviour
as λ→ 0 of ξ(2bq + λ;H±, H0), the parameters b > 0 and q ∈ Z+ being fixed.

Let h0 :=
(
i ∂

∂x1
− bx2

2

)2

+
(
i ∂

∂x2
+ bx1

2

)2

− b be the Landau Hamiltonian essen-

tially self-adjoint on C∞
0 (R2). It is well-known that σ(h0) = ∪∞

q=0 {2bq}, and each
eigenvalue 2bq, q ∈ Z+, has infinite multiplicity (see e.g. [1]). For q ∈ Z+ denote
by pq = pq(b) the orthogonal projection onto the eigenspace Ker (h0 − 2bq).
Assume that (1) holds. For X⊥ := (x1, x2) ∈ R2 set W (X⊥) :=

∫
R
V (X⊥, x3) dx3.

Then the Toeplitz-type operator pqWpq : L2(R2) → L2(R2) satisfies 0 ≤ pqWpq ∈
S1 and rank pqWpq = ∞ for each q ∈ Z+.
If T = T ∗ is a compact operator, we denote by n+(s;T ) the number of the eigen-
values of T lying on the interval (s,∞), s > 0, and counted with the multiplicities.

Theorem 1. [3, Theorem 3.1] Assume that V satisfies (1). Fix b > 0 and q ∈ Z+.
Then for each ε ∈ (0, 1) we have

(2) ξ(2bq − λ;H+, H0) = O(1), λ ↓ 0,

−n+((1 − ε)2
√
λ; pqWpq) +O(1) ≤

ξ(2bq − λ;H−, H0) ≤

(3) −n+((1 + ε)2
√
λ; pqWpq) +O(1), λ ↓ 0.

Estimate (2) shows that ξ(2bq − λ;H+, H0) remains bounded while, since rank
pqWpq = ∞, estimate (3) implies that ξ(2bq − λ;H−, H0) −→ −∞ as λ ↓ 0.
Suppose that V satisfies (1). For λ ≥ 0 define the matrix-valued function

Wλ = Wλ(X⊥) :=

(
w11 w12

w21 w22

)
, X⊥ ∈ R

2,

where

w11 :=

∫

R

V (X⊥, x3) cos2 (
√
λx3)dx3, w22 :=

∫

R

V (X⊥, x3) sin2 (
√
λx3)dx3,

w12 = w21 :=

∫

R

V (X⊥, x3) cos (
√
λx3) sin (

√
λx3)dx3.

Then the operator pqWλpq : L2(R2)2 → L2(R2)2 satisfies 0 ≤ pqWλpq ∈ S1 and
rank pqWλpq = ∞ for each q ∈ Z+ and λ ≥ 0.

Theorem 2. [3, Theorem 3.2] Assume that (1) holds. Fix b > 0 and q ∈ Z+,
Then for each ε ∈ (0, 1) we have

± 1

π
Tr arctan (((1 ± ε)2

√
λ)−1pqWλpq) +O(1) ≤

ξ(2bq + λ;H±, H0) ≤

± 1

π
Tr arctan (((1 ∓ ε)2

√
λ)−1pqWλpq) +O(1), λ ↓ 0.
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Since rank pqWλpq = ∞, Theorem 2 implies that ξ(2bq + λ;H±, H0) −→ ±∞
as λ ↓ 0.
The main tool used in the proofs of Theorems 1 and 2 is the representation of the
SSF due to A. Pushnitski (see [4]).
Combining Theorems 1 and 2 with some results on the eigenvalue asymptotics for
compact Toeplitz-type operators obtained in [5] and [6], we can deduce more ex-
plicit asymptotic formulae describing the behaviour as λ → 0 of ξ(2bq+λ;H±, H0)
under generic assumptions about the decay of the electric potential at infinity.
Roughly speaking, these assumptions concern the cases where W admits a power-
like decay at infinity, W decays exponentially, or the support of W is compact.

Corollary 3. [3, Corollaries 3.1, 3.2] Let (1) hold. Fix b > 0 and q ∈ Z+.
i) Assume that W ∈ C1(R2), and

W (X⊥) = w0(X⊥/|X⊥|)|X⊥|−α(1 + o(1)), |X⊥| → ∞,

|∇W (X⊥)| ≤ c1(1 + |X⊥|)−α−1, X⊥ ∈ R
2,

with α > 2, 0 ≤ w0 ∈ C(S1), and w0 6≡ 0. Then we have

ξ(2bq − λ;H−, H0) = −ψα(2
√
λ) (1 + o(1)), λ ↓ 0,

ξ(2bq + λ;H±, H0) = ± 1

2 cos (π/α)
ψα(2

√
λ) (1 + o(1)), λ ↓ 0,

where ψα(s) := s−2/α b
4π

∫
S1 w0(t)

2/αdt, s > 0.

ii) Assume that W ∈ L∞(R2), and

lnW (X⊥) = −µ|X⊥|2β(1 + o(1)), |X⊥| → ∞,

with some µ > 0, and β > 0. Suppose in addition that V satisfies the estimate

(4) V (X⊥, x3) ≤ c2(1 + |X⊥|)−m⊥(1 + |x3|)−m3 , X⊥ ∈ R
2, x3 ∈ R,

with m⊥ > 2,m3 > 2. Then we have

ξ(2bq − λ;H−, H0) = −ϕβ(2
√
λ) (1 + o(1)), λ ↓ 0,

ξ(2bq + λ;H±, H0) = ± 1

2
ϕβ(2

√
λ) (1 + o(1)), λ ↓ 0,

where

ϕβ(s) :=





b
2µ1/β | ln s|1/β if 0 < β < 1,

1
ln (1+2µ/b) | ln s| if β = 1,

β
β−1 (ln | ln s|)−1| ln s| if 1 < β <∞,

s ∈ (0, e−1).

iii) Finally, assume that W ∈ L∞(R2), suppW is compact, and there exists a
constant c > 0 such that W ≥ c on an open non-empty subset of R2. Suppose in
addition that V satisfies (4) with m⊥ > 2,m3 > 2. Then we have

ξ(2bq − λ;H−, H0) = −ϕ∞(2
√
λ) (1 + o(1)), λ ↓ 0,

ξ(2bq + λ;H±, H0) = ± 1

2
ϕ∞(2

√
λ) (1 + o(1)), λ ↓ 0,
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where

ϕ∞(s) := (ln | ln s|)−1| ln s|, s ∈ (0, e−1).

References

[1] J.Avron, I.Herbst, B.Simon, Schrödinger operators with magnetic fields. I. General inter-

actions, Duke Math. J. 45 (1978), 847-883.

[2] V. Bruneau, A. Pushnitski, G. D. Raikov, Spectral shift function in strong magnetic

fields, Algebra i Analiz 16 (2004), 207 - 238.

[3] C. Fernández, G. D. Raikov, On the singularities of the magnetic spectral shift function

at the Landau levels, 5 (2004), 381 - 403.
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On the Laplacian in the halfspace with a periodic boundary condition

Rupert L. Frank

The characteristic feature of Schrödinger operators that are periodic with respect
to some, but not all directions is the appearance of surface states, see [1] and the
references in [5], [6]. On physical grounds one expects that these states are not
bound but correspond to additional channels of scattering, i.e., that the spectrum
of the corresponding operator is purely absolutely continuous. We are only aware
of [2], [3], [4], [5] dealing with this problem.

Here we follow [4] and study spectral and scattering properties of the Laplacian

H(σ)u = −∆u on R
d+1
+ := {(x, y) ∈ R

d × R : y > 0}
together with a boundary condition of the third type

∂u

∂ν
+ σu = 0 on R

d × {0}

with a (2πZ)d-periodic function σ : Rd → R. Under the condition

(1) σ ∈ Lq,loc(R), q > 1, if d = 1, σ ∈ Ld,loc(R
d) if d ≥ 2,
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H(σ) can be defined as a self-adjoint operator in L2(R
d+1
+ ) by means of the lower

semibounded and closed quadratic form
∫

R
d+1
+

|∇u(x, y)|2 dxdy +

∫

Rd

σ(x)|u(x, 0)|2 dx, u ∈ H1(Rd+1
+ ).

Note that H(σ) can be viewed as a Schrödinger-type operator with singular po-
tential σ(x)δ(y) describing the interaction of a quantum-mechanical particle with
the surface of a crystal.
We investigate the scattering with respect to the Neumann Laplacian H (0).

Theorem 1. Assume that σ satisfies (1). Then the wave operators

W
(σ)
± := s− lim

t→±∞
exp(itH(σ)) exp(−itH(0))

exist and satisfy R(W
(σ)
+ ) = R(W

(σ)
− ).

If σ is non-negative, we obtain a rather complete result.

Theorem 2. Assume that σ satisfies (1) and σ(x) ≥ 0 for a.e. x ∈ Rd. Then the

wave operators W
(σ)
± are unitary and satisfyH (σ) =W

(σ)
± H(0)W

(σ)∗
± .

However, in general the wave operators will not be complete due to the existence
of surface states, i.e., states that are localized near the boundary for all time.
These states correspond to bands in the spectrum of H (σ). A sufficient condition
for σ

(
H(σ)(k)

)
∩ (−∞, 0) 6= ∅ is

∫

(−π,π)d

σ(x) dx ≤ 0, σ 6≡ 0.

It is natural to ask whether the spectrum of H (σ) is still absolutely continuous in
this situation.

Theorem 3. Assume that σ satisfies (1) if d ≤ 4 and σ ∈ L2(d−2),loc(R
d) if d ≥ 5.

Then the operator H (σ) has purely absolutely continuous spectrum.

Hence surface states correspond to additional channels of scattering.

Let us explain some of the mathematical ideas involved. By means of Floquet
theory we represent H(σ) as a direct integral

∫

[− 1
2 , 1

2 ]d
⊕H(σ)(k) dk

with operators H(σ)(k) acting in L2(Π) where Π := (−π, π)d × R+ is a halfcylin-
der. The investigation of the operator H (σ) reduces to the study of the fibers
H(σ)(k). Note that the fundamental domain Π is unbounded, so the operators
H(σ)(k) have continuous spectrum. This part can be studied by scattering theory.
To prove the absolute continuity of the spectrum of H (σ) we cannot (directly)
apply the Thomas approach, since eigenvalues of H (σ)(k) may be embedded in the
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continuous spectrum. We ”separate” them from the remaining spectrum by char-
acterizing them, in the spirit of the Birman-Schwinger principle, as parameters λ
for which a pseudo-differential operator B(σ)(λ, k) on the boundary (−π, π)d×{0}
has eigenvalue 0. The latter operator has discrete spectrum and can be handled
by Thomas’ method.
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a great pleasure to thank R. G. Shterenberg for numerous consultations and Prof.
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A Multidimensional Trace Formula

A. Laptev

(joint work with S. Naboko and O. Safronov)

Let us consider the equation

(1) Hu = −∆u+ V u = k2u,

where V ∈ C∞
0 (R3) and suppV ⊂ {x : c1 < |x| < c2}, c1, c2 > 0. By using the

unitary transformation U from L2((0,∞), dr;L2(S2)) to L2((0,∞), r2dr;L2(S2)),

v(t, θ) = Uu(r, θ) = r−1u,

we reduce the study of (1) the operator H̃ in L2((0,∞), dr;L2(S2))

(2) H̃v = −∂2
rrv +

B

r2
v + V v = k2v,

where B is the Laplace-Beltrami operator in L2(S2).
We now consider the equation

(3) −f ′′
rr(r, θ, k) +

B

r2
f(r, θ, k) + V f(r, θ, k) = k2f(r, θ, k),
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subject to the initial condition

(4) f(r, θ, k) = e−ikr , 0 < r < c1.

It can be shown that there are ”scattering” coefficients a and b such that
(5)

f(r, θ, k) = a(θ, k)e−ikr
(
1 +O(|kr|−1)

)
+ b(θ, k)eikr

(
1 + O(|kr|−1)

)
, r → ∞.

If f(r, θ, k), k ∈ C, r ≥ 1, is a solution of the differential equation (3) then it
satisfies the integral equation

(6) f(r, θ, k) = e−ikr − 1

2ik

∫ r

0

(
e−ik(r−t) − eik(r−t)

)(
V (t, θ) +

B

r2

)
f(t, θ, k) dt.

Substituting ψ(r, θ, k) = eikrf(r, θ, k) we obtain

(7) ψ(r, θ, k) = 1 −Kψ(r, θ, k) =

∫ r

0

K(r, t, k)ψ(t, θ, k) dt,

where by K we denote the integral operator whose operator valued symbol is equal
to

(8) K(r, t, k) =
(1 − e2ik(r−t))

2ik

(
V (t, ·) +

B

r2

)
.

Solving the Volterra equation (6) we obtain the series

ψ(r, θ, k) = 1 +

∞∑

j=1

∫
· · ·
∫

r≥t1≥···≥tm≥0

j∏

q=1

K(tl−1, tl, k) dx1 · · · dxj · 1 .

This series is convergent pointwise and, in particular, ψ(r, θ, k) ≡ 1 if 0 ≤ r ≤ c1.
The function ψ(r, θ, k) is smooth and also analytic with respect to k ∈ C \ {0}.
Indeed, since the kernel K(r, t, k) is analytic in k, we obtain

∂

∂k̄
ψ(r, θ, k) = −

∫ r

0

K(r, t, k)
∂

∂k̄
ψ(t, θ, k) dt.

Therefore ∂ψ(r, θ, k)/∂k̄ satisfies a homogeneous Volterra integral equation and
hence it identically equal to zero.

The Volterra equation (6) can be rewritten as

(9) f(r, θ, k) = e−ikr
[
1 − 1

2ik

∫ r

0

V (t, θ, k) dt

− 1

2ik

∫ r

0

(
V (t, θ, k) +

B

r2

)
(ψ(t, θ) − 1) dt

]

+
eikr

2ik

[∫ r

0

e−2ikt V (t, θ, k) dt+

∫ r

0

e−2ikt
(
V (t, θ, k) +

B

r2

)
(ψ(t, θ) − 1) dt

]
.

Comparing (9) with (5) we see that

(10) a(θ, k) = 1 − 1

2ik

∫ r

0

V (t, θ, k) dt
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− 1

2ik

∫ r

0

(
V (t, θ, k) +

B

r2

)
(ψ(t, θ) − 1) dt

(11) b(θ, k) =
1

2ik

∫ r

0

e−2ikt V (t, θ, k) dt

+
1

2ik

∫ r

0

e−2ikt
(
V (t, θ, k) +

B

r2

)
(ψ(t, θ) − 1) dt.

Note that for a fixed k0, Im k0 > 0, if we assume that the function f is from the
class L2((0,∞)×S2), then a(θ, k0) is equal to zero identically in θ. This implies
that a(θ, k0) ≡ 0 if k0 is an eigenvalue of the operator (1).

Let κj , j = 1, . . . , J , be zeros of the function
∫

S2 a(θ, k) dθ in the upper half plane.
We obtain a version of Buslaev-Faddeev-Zakharov trace formula, see [1] and [2].

Theorem 1. Let V be a C∞
0 (R3) and suppV ⊂ {x : c1 < |x| < c2}, c1, c2 > 0.

Then the following trace formula holds true
∑

j

κ
3
j +

3

2π

∫ ∞

−∞

k2 log
∣∣∣
∫

S2

a(θ, k) dθ
∣∣∣ dk

=
3

16

∫

S2

∫ ∞

0

{∣∣∣
∫ r

0

∇θV (t, θ) dt
∣∣∣
2

r−2 + V 2(r, θ)
}
dr dθ.

When proving the theorem we use an approach developed in [3], where the authors
have considered trace formulae with operator valued potentials and their applica-
tions. Similar ideas have been also used in [4] when proving absolute continuity of
the spectrum of Schrödinger operators with oscillating potentials.

Acknowledgements. A.L and O.S. thank a partial support by the SPECT ESF
European programme. S.N. was also partly supported by the KBN grant 5,
PO3A/026/21. g1925l.
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