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Introduction by the Organisers

Respecting the different backgrounds of the participants, most of the talks were
aimed to a broad audience, among those nine survey talks invited by the organizers.
This concept was very successful and opened many discussions and interdiscipli-
nary interactions. It was also very fruitful for the many young participants. Also
most of the non speakers took the opportunity to present their recent work via
posters.

The theory of lattices has many applications and interactions with various other
mathematical and technical disciplines such as information technology, topology,
algebraic geometry, representation theory, combinatorics, number theory and mod-
ular forms to name only the most prominent ones. One of the most classical
problems is the construction of dense lattice sphere packings. The densest lattice
sphere packings are only known in dimensions up to 8 and, due to a recent work
by H. Cohn and A. Kumar, also in dimension 24. A. Kumar gave a very illumi-
nating talk on the strategy of their proof of this great result which uses certain
linear programming techniques based on the fact that the minimal vectors of the
Leech lattice form a very good design. Design techniques have also been used by
B. Venkov to define the notion of strongly perfect lattices, which realize certain
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local maxima of the density function and which are now classified up to dimension
12.

The theory of modular forms is one well established tool in the investigation of
lattices as shown in the nice introduction by Krieg. Bannai applies this theory to
bound the strength of designs provided by layers of unimodular lattices. On the
other hand, lattices provide one important tool for the construction of modular
forms. The last talk by Böcherer showed that in many situations all modular forms
are linear combinations of theta-series.

Of increasing interest but computationally very difficult is the investigation of
thin lattice sphere coverings. Vallentin and Schürmann developed new algorithms
to find local optimal coverings and discovered lattice coverings better than the
ones previously known.

Nguyen presented new reduction algorithms for lattices in small dimensions
motivated by practical applications to cryptosystems. For certain applications in
information technology not only the density of the lattice but also other properties
that minimize the fading error play a role. It turns out that lattices constructed
from algebraic number fields yield good codes for Rayleigh fading channels. These
ideal lattices are also used to investigate the ring of integers in algebraic number
fields as shown in the talk by Schoof and also in the applications of ideal lat-
tices introduced by Bayer-Fluckiger. Strongly related to this is the application to
Arakelov theory as illustrated in the talks by Bost and Künnemann.

Also Voronoi’s classical theory of perfect forms (see Martinet’s talk for an in-
troduction) has new fruitful applications in number theory more precisely in the
calculation of the homology of GLn(Z) as presented by Elbaz-Vincent.

Last but not least one should mention the talk by J.-P. Serre on BL-bases and
unitary groups in characteristic 2.
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René Schoof
Arakelov class groups and ideal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Jacques Martinet (joint with Anne-Marie Bergé)
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Abstracts

Perfect lattices and spherical designs

Boris Venkov

This talk was an introduction to the theory of perfect lattices and especially
those related to spherical 5-designs, the strongly perfect lattices. The notion of
a perfect lattice arose about 100 years ago in papers by Korkin, Zolotarev and
especially Voronoi ([6]). It arises naturally when one studies dense lattice sphere
packings in an euclidean space Rn. If the centers of the spheres in a packing form
a lattice Λ then the density of the sphere packing is proportional to the Hermite
function of the lattice

γ(Λ) :=
min{(λ, λ) | 0 6= λ ∈ Λ}

(det(Λ))1/n
.

So the densest lattice sphere packings correspond to maxima of the Hermite func-
tion. The densest lattices are extremely difficult to study (they are known for
n ≤ 8 and n = 24 (see Kumar’s talk in this conference)). Much easier to study are
the local maxima of γ, which are called extreme lattices. They are characterized
as those lattices that are perfect and eutactic. Perfect means that the space of
quadratic functions on Rn is generated by the squares of the linear forms associ-
ated with the minimal vectors of Λ. In particular the number of minimal vectors
(kissing number) of a perfect lattice is ≥ n(n+ 1). The condition to be eutactic is
more technical. Voronoi (1907, [6]) has found a very nice description of extreme
forms as faces of a very natural infinite convex polyhedron in the space of posi-
tive semidefinite quadratic forms on Rn. This description leads to an algorithm
(Voronoi’s algorithm) which permits in principle to find all extreme forms in a
given dimension. This was worked out for n ≤ 7. Unfortunately the number of
extreme lattices grows rapidly with the dimension and Voronoi’s algorithm does
not seem to be practicable for n ≥ 8. So the question arises to find more restricted
classes of perfect lattices which include interesting classical lattices (such as the
Leech lattice, the E8-lattice and others) and which is more affordable for classi-
fication. One such possibility is given by the notion of strongly perfect lattices.
These are lattices whose minimal vectors form a spherical 5-design. They are per-
fect and eutactic and hence local maxima of γ but they are not so numerous. For
example the lattice E8 is the only strongly perfect lattice in dimension 8. A com-
plete classification of strongly perfect lattices is known up to dimension 11 ([5],
[3]), the 12-dimensional case will hopefully be finished soon ([4]). Still for n = 32
all even unimodular lattices without roots are strongly perfect, so by Oliver King
([1]) there are > 106 strongly perfect lattices in dimension 32.

References

[1] O. King: A mass formula for unimodular lattices with no roots. Mathematics of Computation
72 (2003), no. 242, 839–863.

[2] J. Martinet: Les Réseaux parfaits des espaces Euclidiens. Masson (1996)
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Lattices and Modular Forms

Aloys Krieg

We review the interaction between the theory of lattices and the theory of
modular forms in several variables. Let Λ = Λ2k always be an even unimodular
lattice in (R2k, 〈 , 〉) k ∈ N. The Siegel half-space of degree n is denoted by

Hn =
{
Z = X + iY ∈Mn(C); Z = Ztr, Y > 0

}
.

The vector spaceM(n)
k of Siegel modular forms of degree n and weight k consists

of all holomorphic functions f : Hn → C (also at ∞ if n = 1) satisfying

f
(
(AZ +B)(CZ +D)−1

)
= det(CZ +D)kf(Z)

for all M =

(
A B
C D

)
∈ Spn(Z), i.e. M ∈ M2n(Z), M trJM = J , J =

(
0 −I
I 0

)
.

Each f ∈M(n)
k possesses a Fourier expansion of the form

f(Z) =
∑

T≥0 even

αf (T ) eπ i trace(TZ) ,

where even means T = T tr = (tνµ) ∈ Mn(Z), tνν ∈ 2Z. The subspace S(n)
k of all

cusp forms inM(n)
k consists of the kernel of the Siegel φ-operator

φ :M(n)
k →M(n−1)

k , f 7→ f | φ(Z1) := lim
y→∞

f

(
Z1 0
0 iy

)
.

This can be characterized by the condition on the Fourier expansion

αf (T ) = 0 if detT = 0.

Examples are given by the Siegel-Eisenstein series

E
(n)
k (Z) =

∑

(A B
C D ):( ∗ ∗

0 ∗ )
∖

Spn(Z)

det(CZ +D)−k ∈ M(n)
k , E

(n)
k | φ = E

(n−1)
k ,

for even k > n+ 1. Moreover consider the theta series of degree n

Θ
(n)
Λ (Z) =

∑

(λ1,...,λn)∈Λn

eπi tr((〈λν ,λµ〉)·Z) ∈M(n)
k , Θ

(n)
Λ | φ = Θ

(n−1)
Λ .

Let M(n)
k (Θ) denote the subspace of M(n)

k spanned by all Θ
(n)
Λ , Λ ⊂ R2k even,

unimodular. The most important result is contained in
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Theorem 1. (Böcherer, Freitag, Igusa, Resnikoff, Weissauer, Witt).

a)
⊕

k∈4ZM
(n)
k is the normalization of

⊕
k∈4N

M(n)
k (Θ).

b) If 0 < 2k < n one has

M(n)
k =

{
M(n)

k (Θ), if 4 | k,
{0}, otherwise.

The theta series Θ
(n)
Λ of the different isometry classes of all even unimod-

ular lattices in R2k are linearly independent if 2k ≤ n.
c) If 2k > 4n, 4 | k, one has

M(n)
k =M(n)

k (Θ).

d) Let f ∈ S(n)
k , n ≤ 2k ≤ 4n, 4 | k, be a simultaneous Hecke eigenform.

Then

f ∈ M(n)
k (Θ) if and only if Lf (k − n) 6= 0,

where Lf (s) denotes the completed standard L-function associated with f .
e) If n = 1 or n = 2 one has

M(n)
k =M(n)

k (Θ) for all 4 | k,

Θ
(n)
Λ8

= E
(n)
4 , Θ

(n)
Λ16

= E
(n)2

4 = E
(n)
8 .

In b) we deal with singular modular forms, i.e. the Fourier coefficients of non-
degenerate matrices are 0. We observe that the theta series contains the full
information about the lattice in this case because the lattice can be recovered
from the Fourier expansion of the modular form. In d) we observe that k − n
is outside the range of absolute convergence of the L-series, which possesses an
analytic continuation. In e) the results follow because the graded ring of modular
forms can explicitly be described in terms of generators and relations.

Kohnen and Salvati Manni constructed a Siegel modular form of weight k, 4 | k,
which is not a linear combination of theta series, by means of an Ikeda lift. They
applied d).

Theorem 2. (Witt, Weissauer) Let Λ1, . . . ,Λh be representatives of the isometry
classes of the even unimodular lattices in R2k. Then one has

h∑

ν=1

βνΘ
(n)
Λν

= δk,n ·E(n)
k , δk,n =

{
1 if k > n+ 1
1
2 if k ≤ n+ 1

,

where

βν =
1/♯AutΛν

(1/♯AutΛ1) + . . .+ (1/♯AutΛh)
, ν = 1, . . . , h.
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Here AutΛν denotes the (finite) automorphism group of the lattice Λν . Note
that the Eisenstein series on the right hand side has to be constructed by analytic
continuation if k ≤ n+ 1.

Finally we consider the cusp forms obtained from the theta series of all even
unimodular lattices of fixed dimension.
If 2k = 16, there are two different isometry classes of even unimodular lattices
given by Λ8

⊕
Λ8 and Λ16. Kneser and Igusa showed that

0 6= Θ
(4)
Λ8

L

Λ8
−Θ

(4)
Λ16
∈ S(4)

k .

If 2k = 24 the filtration of the cusp forms spanned by the 24 isometry classes of
even unimodular lattices was calculated by Nebe and Venkov.
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Spherical designs, extremal lattices and the Fourier coefficients
modulo p of the extremal modular forms

Eiichi Bannai

(joint work with Masao Koike, Masashi Shinohara, Makoto Tagami)

Theorem of Venkov (cf.[5],[6]), which is an analogue of Assmus-Mattson theorem
for codes, says that each nontrivial shell of an extremal even unimodular lattice in
the Euclidean space Rn is (at least) a spherical 11-design (resp. 7-design, 3-design)
in Rn, if n is a multiple of 24 (resp. congruent to 8 modulo 24, congruent to 16
modulo 24). It is an interesting problem, posed by Venkov, de la Harpe and Pache
(cf.[2]), when does it become a t-design, for a bigger value of t than mentioned
above. This innocent looking problem is not easy to solve, as it is seen for exam-
ple from the fact that the statement that no shell of the E8-lattice can become an
8-design is equivalent to the famous Lehmer’s conjecture (cf.[4]) in number theory
that the Ramanujan function τ(m) can never become 0 for any positive integer m.

In the first part of this talk, we consider more specific problem when do all the
shells of an even unimodular lattice become t-designs for a bigger value of t than
mentioned above. We will show that, when n ≡ 0 (mod 24) this does not happen
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in many cases. Namely, we prove the following experimental result:

Theorem 1. Let Λ be an extremal even unimodular lattice in Rn with n = 24µ. If
µ ≤ 150 and µ is not in B, where B = {5, 10, 15, 17, 20, 25, 28, 30, 39, 40, 45, 50, 52,
55, 61, 65, 70, 72, 75, 80, 83, 90, 94, 95, 100, 103, 115, 116, 120, 125, 127, 128, 130, 135,
138, 140, 145, 147, 149, 150}, then at least one shell Λ2m of Λ is not a 12-design.

In proving Theorem 1, we use the following:
Fundamental Equation (Venkov [5],[6]). A subset X(= −X) in Sn−1(r) is a
t-design (where Sn−1(r) is the sphere of radius r with the center at the origin) if
and only if for all α ∈ Rn

1

|X |
∑

x∈X

(α, x)2k =
1 · 3 · 5 · · · · · (2k − 1)

n(n+ 2) · · · (n+ 2k − 2)
(α, α)k(x, x)k

for all k = 1, 2, . . . , [ t
2 ].

By taking k = 6 and taking α and x from Λ2m, for each µ 6 150 (µ 6= 6)
not in the set B, we can find an odd prime p and m which satisfy the following
conditions:
(i) p|n(n+ 2) · · · (n+ 2k − 2)
(ii) p 6 | 1 · 3 · 5 · · · · · (2k − 1)
(iii) p 6 | |Λ2m|
(iv) p 6 |m.
The existence of such integer m clearly implies that Λ2m is not a 12-design, by
comparing the order of the p-power of both sides of the Fundamental Equation.

The extremal modular form (of weight k = 12µ+k0 with k0 ∈ {0, 4, 6, 8, 10, 14})
is the modular form

f(τ) =
∑

m≥0

amq
m (q = e2πiτ ),

with a1 = a2 = · · · = aµ = 0. (Note that the theta series of an extremal even
unimodular lattice in Rn is the extremal modular form of weight k = n/2. Also,
note that the extremal modular form exists for each k with k even and ≥ 4,
independent of the existence of extremal even unimodular lattices.)

Motivated by Theorem 1, we are interested in studying the modulo p property of
the Fourier coefficients of the extremal modular forms. Namely, we are interested
in dividing for each pair of k and prime p, which of the following three (exclusive)
cases holds:
Case (1) p|ai, for all i ≥ 1,
Case (2) p 6 | ai, for all i ≥ 1 with p 6 | i, and there exists at least one j ≥ 1 with
p 6 | aj ,
Case (3) there exists at least one j ≥ 1 with p 6 | j such that p 6 | aj .
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We first prove that Case(1) holds, if and only if (p − 1)|k. (These primes p in
Case(1) are called Bernoulli type primes for k.)

We also obtain several conditions which guarantee that Case (2) holds. For
example, we prove the following theorem, by using the method of Serre [3].

Theorem 2. Let k1 to be the number in {4, 6, 8, · · · , p − 1, p + 1} such that
k ≡ k1(mod p− 1). Let (p− 1) 6 | k. Let l1 satisfy : pl1 ≤ µ+ 1 < p(l1 + 1), and let
k2 to be the smallest integer with k2 ≡ k1(mod p− 1) and dimMk2 ≥ l1 + 1. Then
r2 is determined by k = k2 + (p− 1)r2. If r2 ≥ k2 holds for p, then the extremal
modular form f of weight k is expressed as f ≡ g(pτ)(mod p), where g(τ) is the
extremal modular form of weight k2. Moreover, we have p | al1+1.

Theorem 2 is used to prove the following result, which was motivated by The-
orem 1. (Note that the the property in Theorem 3 is true for the theta series
of extremal even unimodular lattices (by using the theorem of Venkov), but we
anticipated that this property may hold for extremal modular forms.

Theorem 3. Let k = 12µ, and let fk = 1+0 ·q+0 ·q2+ · · ·+0 ·qµ+aµ+1q
µ+1+ · · ·

be the extremal modular form of weight k. Let p be a prime number greater than
or equal to 13. Suppose that p divides 2k(2k+2)(2k+4)(2k+6)(2k+8)(2k+12).
Then Case (2) holds for p, and we get p|aµ+1.

We believe that when p is in Case (2) might be characterized by the following:

Conjecture 4. Let f be the extremal modular form of weight k = 12µ. Suppose
that p is in Case (2). (i) Then f is expressed as

f(τ) ≡ g(pτ)(mod p).

for a modular form g(τ) of smaller weight.
(ii) Moreover, there exist the extremal modular form g(τ) of a smaller weight, and
a natural number r such that

f(τ) ≡ g(prτ)(mod p).

(It would be very interesting either to prove or disprove this conjecture. We proved
this in many cases, including all the cases of µ ≤ 150. )

Remark. We obtained a similar result as Theorem 1 for extremal Type II
codes, by using the method of Bachoc [1], which gives an alternative proof of the
Assmus-Mattson theorem by using the invariants theory of finite groups. Also, we
note that in this code case, we can prove that each nontrivial shell of the code has
the constant strength t. However, this property cannnot easily be generalized for
extremal lattices so far.
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On the Minkowski-Hlawka bound for lattice-packings

Roland Bacher

Let µ ≥ 2 be a positive integer. A µ−sequence is a sequence s0 = 1, s1, s2, . . . of
strictly positive integers such that the n−dimensional lattice

Λn = {(z0, z1, . . . , zn) ∈ Zn+1 |
n∑

k=0

skzk = 0} = (s0, . . . , sn)⊥ ∩ Zn+1

has minimum ≥ µ for all n ≥ 1. Since det(Λn) =
∑n

k=0 s
2
k we get a lower bound

for the center-density

δ(Λn) =

√
(min Λn)n

4n det Λn
≥

√
µn

4n
∑n

k=0 s
2
k

(or for the density ∆(Λn) = δ(Λn)πn/2/(n/2)!) of the n−dimensional lattice Λn

associated to a µ−sequence.

Theorem 1. Given an integer µ ≥ 2 as above there exists a µ−sequence s0 =
1, s1, . . . satisfying for all n ≥ 1

sn ≤ 1 +
√
µ− 2

√
µ− 1 + n/4

n
√
π

n

(n/2)!
≤ √µ

√
µ+ n/4

n
√
π

n

(n/2)!
.

The proof of Theorem 1 is very elementary and consists essentially of an analy-
sis of the “greedy algorithm” which constructs the first µ−sequence with respect
to the lexicographic order on sequences. An easy analysis shows that the lexico-
graphically first sequence satisfies the first inequalities of Theorem 1. The greedy
algorithm, although very simple, is however quite useless for applications because
of astronomical memory requirements (which can be lowered at the price of an
astronomical amount of computations).
µ−sequences satisfying the inequalities of Theorem 1 yield rather dense lattices

as shown by the next result.
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Corollary 2. For any µ ≥ 2, there exists a µ−sequence (s0, s1, . . . , sn) ∈ Zn+1

such that the density of the associated lattice Λn = (s0, . . . , sn)⊥ ∩ Zn+1 satisfies

∆(Λn) ≥ (1 + n/(4µ))−n/2

2n
√

(n+ 1)µ
.

Remark 3. Taking µ ∼ n2/4 we get the existence of lattices in dimension n (for
large n) with density ∆ roughly at least equal to

1

2n−1 n
√

(n+ 1) e
.

This is already close to the Minkowski-Hlawka bound (which shows the existence
of lattices with density at least ζ(n) 21−n, cf. formula (14) in [3], Chapter 1. The
best known lower bound concerning densities of lattice packings (together with a
very nice proof) seems to be due to Ball and asserts the existence of n−dimensional
lattices with density at least 2(n− 1)2−nζ(n), see [2].

A more careful analysis of µ−sequences yields the following result.

Theorem 4. For every ǫ > 0, there exist n−dimensional lattices with density

∆ ≥ 1− ǫ
2n

∑∞
k=1 e

−k2π
∼ (1− ǫ) 23.1388 2−n

for all n large enough.

Denote by Ln the set of all n−dimensional sublattices in Zn+1 which are of the
form Λn as above for a suitable µ−sequence (1, s1, s2, . . . , sn+1). The following
result implies that the upper bound for densities of lattices in Ln is equal to the
maximum for densities of all n−dimensional lattices.

Proposition 5. The set Ln is dense in the set of similarity classes of n−dimen-
sional Euclidean lattices.

The preprint [1] contains proofs of all results presented above.
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A matching principle for theta series and theta integrals

Rainer Schulze-Pillot

(joint work with Hidenori Katsurada)

S. Kudla [2] recently pronounced a matching principle for theta integrals that
gives a systematic framework for identities between theta series for definite and
for indefinite integral quadratic forms.

Such identities lead to relations between

(1) representation numbers of definite integral quadratic forms
(2) representation measures of indefinite quadratic forms
(3) geometric information, in particular degrees of special cycles on modu-

lar varieties, e. g. Heegner points on modular curves, Hirzebruch-Zagier
curves on Hilbert modular surfaces, Humbert surfaces on Siegel modular
threefolds.

Here the connection between b) and c) is independent of this talk; it is established
in work of Kudla and Millson [3] and of Oda [5], and in other research following
that work.

We discuss here first the following classical example obtained in joint work [1]
by H. Katsurada and the author:

Let L be a lattice of full rank on the m = 2k-dimensional vector space V
over Q, q : V −→ Q a regular quadratic form with q(L) ⊆ Z, N = N(L) the
level of q; we assume m = 2k to be even. For x = (x1, . . . , xn) ∈ Ln we write
q(x) = (1

2B(xi, xj)) ∈M sym
n (1

2Z).
If q is positive definite, the theta series

ϑ(n)(L,Z) =
∑

x=(x1,...,xn)∈Ln

exp(2πi tr(q(x)Z)

of degree n of (L, q) is in the space M
(n)
k (Γ

(n)
0 (N), χ) of Siegel modular forms of

weight k = m
2 and character χ, where χ is the character of Γ

(n)
0 (N) induced by the

Dirichlet character χ̃(d) =
(

(−1)k detL
d

)
modulo N and detL is the determinant

of the Gram matrix of L with respect to some basis.
By ϑ(n)(genL,Z) we denote Siegel’s weighted average of the ϑ(n)(K,Z) where

K runs through a set of representatives of the classes in the genus of L.
By Siegel’s theorem the Fourier coefficient r(gen L,A) of ϑ(n)(genL,Z) at the

positive definite half integral symmetric matrix A can be expressed as a product
of local densities,

(1) r(gen L,A) = c · (detA)
m−n−1

2 (detL)
n
2

∏

ℓ prime

αℓ(L,A)

with some constant c.
We recall that for an integral lattice of positive determinant and even rank

Siegel [6] for degree one and Maaß [4] for arbitrary degree defined a holomorphic
theta series in the indefinite case whose Fourier coefficients are proportional to the
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product of the local densities of that lattice, subject to the restriction that the
signature (m+,m−) satisfies the condition min(m++m−−3

2 ,m+,m−) > n. Denote

this theta series (if it is defined) for L̃, normalized such that its Fourier coefficient
at A is equal to

c · (detA)
m−n−1

2 (det L̃)
n
2

∏

ℓ prime

αℓ(A, L̃),

by ϑhol(L̃, z). If the signature condition is not satisfied, we use the same notation
for the series with these Fourier coefficients (without knowing a priori whether this
series defines a modular form).

Theorem 1. Let p be a prime not dividing the discriminant of L.

a) For 1 6 j 6 m−2
4 there is a unique isometry class of rational quadratic

spaces Ṽ = (Ṽ , q̃) of dimension m and the same discriminant as V such
that

(2) Ṽℓ
∼=

{
pVℓ if p 6= ℓ
Vp if p = ℓ

for finite primes ℓ and Ṽ∞ = Ṽ ⊗Q R is either positive definite or of
signature (m− 2− 4j, 2 + 4j).

Ṽ carries a lattice L̃ such that

(3) L̃ℓ
∼=

{
pLℓ if p 6= ℓ
Lp if p = ℓ.

Ṽ∞ is indefinite if and only if χ(p) = −1.

b) Let the notations be as in a).

Then ϑ(n)(gen L, z) | T (p) = λp(L)ϑ(n)(L̃, z) with

λp(L) =

n∏

j=1

(1 + χ(p)pk−j).

In particular, the series ϑ(n)(gen L̃, z) defines a modular form of the same
level as L for all n < k.

c) If the level N of L is prime, the theta series ϑ(n)(L̃, z) of the indefinite

lattice L̃ can be explicitly expressed as a linear combination of the theta
series of the genera gen(Li) of the (positive definite) lattices on V of the
same level as L.

We let now (V ′, L′) denote one of (V, L), (Ṽ , L̃). In the representation theo-
retic framework both types of theta series occurring above are expressed as theta
integrals over the adelic orthogonal group with the help of the oscillator or Weil
representation ω of Spn(A) × O(V ′,q′)(A) acting on the Schwartz-Bruhat space
S((V ′(A))n):

With the theta kernel θ(g, h;ϕ) =
∑

x∈V ′(Q)

ω(g)ϕ(h−1x), where g ∈ Spn(A),
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h ∈ O(V ′,q′)(A), ϕ ∈ S((V (A))n), the Siegel-Weil theorem gives that the theta
integral

I(g;ϕ) =

∫

O(V,q′)(Q\O(V,q′)(A))

θ(g, h, ϕ)dh

is the value at s0 = m−n+1
2 of an Eisenstein series on the adelic symplectic group.

For a suitable test function ϕ (depending on the lattice at hand) the theta integral
I(g;ϕ) is proportional to the function on the group Spn(A) that corresponds to the

holomorphic theta series of the (genus of the) lattice L respectively of L̃ discussed
above.

Moreover, the Siegel-Weil theorem also gives a natural intertwining operator
λ : S(V ′(A)) −→ I(s0, χ) (where I(s0, χ) is a principal series representation of
Spn(A) depending only on χ) which factors into a product λ =

∏
v λv over all

places v of Q.

Theorem 2. (Matching principle, Kudla) Let V1, V2 be quadratic spaces over Q of
the same dimension m and discriminant d. Then two test functions
ϕ1 ∈ S(V1(A)) and ϕ2 ∈ S(V2(A)) match if λ1(ϕ1) = λ2(ϕ2).

If two test functions ϕ1 ∈ S(V1(A)) and ϕ2 ∈ S(V2(A)) match as above, one
has an identity of theta integrals I(g;ϕ1) = I(g;ϕ2). Such an identity expresses
nontrivial relations between the arithmetic properties of the quadratic spaces V1, V2.

The existence of matching test functions for a pair of quadratic spaces can often
be proved by representation theoretic arguments. In such cases it is of interest to
exhibit matching test functions explicitly.

We can now state the contribution of our computations to the matching prin-
ciple discussed above:

Theorem 3. Let L be of prime level N and of non-square discriminant d, let p be
a prime with χ(p) = −1. Let n = 1 and let ϕ ∈ S(V (A)), ϕ̃ ∈ S(Ṽ (A)) be the test
functions giving the classical theta series for the genus of positive definite lattices
gen(L) and the indefinite lattice L̃ from Theorem 1 respectively.

Let ϑ(gen(L))|T (p) =
∑
ciϑ(gen(Li)) be the explicit linear combination of theta

series of all the positive definite genera of lattices of level N and discriminant in
d · (Q×)2 given by Theorem 1, let ψi be the test function attached to the positive
definite lattice Li as above.

Then the test functions ψ :=
∑

i ciψi ∈ S(V (A)) and ϕ̃ ∈ S(Ṽ (A)) match and
we have I(g, ψ) = I(g, ϕ̃).

The result given above can be generalized to square free level and to higher
degree n of the theta series or integrals.
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Algebraic lattices and channel coding for digital transmission

Emanuele Viterbo

(joint work with E. Bayer-Fluckiger, J-C. Belfiore, F. Oggier, G. Rekaya)

This survey talk presents some applications of algebraic lattices to the problem of
code design for digital transmission over fading channels.

1. Algebraic lattices for Rayleigh fading channels

We consider the following communication problem (see the figure below). A
transmitter sends a codeword x through a wireless channel. Since the channel
attenuates the signal (this is modeled by the fading α) and adds noise (n), we
model the modified codeword at the receiver by

r = α ∗ x + n,

where ∗ represents the component-wise vector product. We have that ri = αixi+ni

for i = 1, 2, . . . n, where the αi are independent real Rayleigh random variables
and ni are real Gaussian random variables with mean zero and variance σ2.

Transmitter
Channel

α, n Receiver
x r

α

The problem that we address is the design of a codebook or a signal constellation
S for this channel, that is, a finite set of points in Rn. In order to derive code design
criteria, we estimate the error probability of this transmission system. Assuming
the receiver estimates the channel (i.e. α), one can estimate the probability that
the codeword y is received while the codeword x was sent, which is

P (x→ y) ≤ 1

2

∏

xi 6=yi

8σ2

(xi − yi)2
=

1

2

(8σ2)l

d
(l)
p (x,y)2

where d
(l)
p (x,y) is the l-product distance of x from y, when these two codewords

differ in l components, i.e., d
(l)
p (x,y) =

∏
xi 6=yi

|xi − yi|. The minimum number of
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distinct components between any two codewords L = min(l) is called the modula-
tion diversity or diversity order of S.

To obtain a good codebook (with a low error probability), we have to:

(1) Maximize the diversity L = min(l).
(2) For a given L, maximize the minimum product distance

dp,min = min
x 6=y

d(L)
p (x,y)

under the constraint of bounded average energy ES = 1
|S|

∑
x∈S ‖x‖2.

In the design of the signal constellations, two fundamental operations should
also be kept in mind: bit labelling and constellation shaping.

Bit labelling consists in mapping bits to signal points and vice-versa, and is
best performed by an efficient algorithm. On the other hand, it is well known
that lattice constellations bounded by a sphere have the best shaping gain. Unfor-
tunately, labelling algorithmically a spherically shaped constellation is not easy.
Cubic shaped constellations offer a good trade-off: they are only slightly worse in
terms of shaping gain but are usually very easy to label.

Moreover, the complexity of the general decoding problem suggests to use con-
stellations with lattice structure for which a more efficient decoder is available.

We conclude that good signal constellations are provided by rotated Zn–lattices,
which have full diversity and maximal minimum product distance.

These Zn-lattices can be constructed via the embedding of a number field.
Furthermore, both their diversity and minimum product distance can be related
to the properties of the underlying number field. Constructions of such lattice
codes and their performance analysis can be found in [1] while a complete survey
is given in [2].

2. Algebraic lattices for coherent MIMO channels

We consider the following communication problem (see the figure below). We
have a transmitter with Mt transmit antennas and a receiver with Mr receive
antennas. If y(k) ∈ CMr is the received (column) vector at time k, we can write

y(k) = H(k)x(k) + z(k) ,

where the matrix H(k) ∈ CMr×Mt represents the channel, the column vector
x(k) ∈ CMt is the channel input and z(k) ∈ CMr is zero mean i.i.d. Gaussian
noise.
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coding

x1 x3

x2 x4

decoding

y1 y4

y2 y5

y3 y6

X Y = HX + Z

The channel is assumed to be block time-invariant, that is, H(k) is independent
of k over a transmission block of m symbols, say H(k) = H. Looking at a single
block of length m, during which the channel is assumed to be time-invariant, we
can write

YMr×m = HMr×Mt
XMt×m + ZMr×m .

Information symbols are taken from a complex signal constellation (or alphabet)
A ⊂ Z[i] (the Gaussian integers) or Z[j] (the Eisenstein integers), and are encoded
into the codewords X.

The problem that we address is the design of a codebook or space-time block
code C for this channel, in the case where Mt = Mr = m, that is, we have the
same number of transmit and receive antennas. If we furthermore assume that
the receiver has perfect knowledge of all the channel coefficients (coherent case),
it has been shown that minimizing the probability of error requires to maximize

min
X6=̂X∈C

| det(X− X̂)|2.

Cyclic division algebras naturally provide a linear family of invertible matrices,
thus codebooks whose minimum determinant is ensured to be different from zero.
We further exploit the algebraic structure of the algebra to get

(1) a shaping constraint: vectorized codewords have to be points of a Z[i]n

(resp. Z[j]n) lattice with diversity, which is obtained algebraically, as in
the previous section.

(2) a non-zero lower bound on the minimum determinant even when increasing
the size of A.

The above conditions appear to be a key point in improving the performance of
these codes and define the so called perfect space-time block codes. In [7] the 2× 2
Golden code is presented and in [8] all other perfect space-time codes are given,
which appear only for 3× 3, 4× 4 and 6× 6 MIMO systems.
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Arakelov class groups and ideal lattices

René Schoof

In his 1972 Boulder paper [10], Daniel Shanks observed that the quadratic
forms in the principal cycle of reduced binary quadratic forms of positive discrim-
inant exhibit a group-like behavior. This was a surprising phenomenon, because
the principal cycle itself constitutes the trivial class of the class group. Shanks
called this group-like structure ‘inside’ the neutral element of the class group the
infrastructure. He exploited it by designing an efficient algorithm to compute reg-
ulators of real quadratic number fields. Eight years later, Hendrik Lenstra made
Shanks’s observations more precise. He introduced a certain topological group and
provided a satisfactory framework for Shanks’s algorithm [4], [9]. Both Shanks and
Lenstra indicated that the infrastructure ideas could be generalized to arbitrary
number fields. In 1988, Buchmann [2], [3] described an algorithm for computing
the class group and regulator of an arbitrary number field that, under reasonable
assumptions, has a subexponential running time. It has been implemented in the
LiDIA, MAGMA and PARI software packages [6], [7], [8].

In this talk we present a natural setting for the infrastructure phenomenon and
for Buchmann’s algorithm. It is provided by Arakelov theory [11], [12], [13]. We
show that Buchmann’s algorithm for computing the class number and regulator
of a number field F has a natural description in terms of the Arakelov class group
Pic0

F of F and the set RedF of reduced Arakelov divisors. We show that Lenstra’s
topological group is essentially equal to the Arakelov class group of a real qua-

dratic field. We also introduce the oriented Arakelov class group P̃ic
0

F . This is
a natural generalization of Pic0

F , useful for analyzing Buchmann’s algorithm and
for computing the units of the ring of integers OF themselves rather than just the
regulator. Since Arakelov divisors of number fields can be viewed as ideal lattices
[1], lattice reduction algorithms [5] play an important role.
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Voronoi graphs, cells, and spherical designs

Jacques Martinet

(joint work with Anne-Marie Bergé)

Abstract. We discuss here various questions related to Voronoi’s theory: the cellular

decomposition of the space of positive definite quadratic forms over Rn, the Voronoi

graph, “mass formulae with signs”, and spherical 2- (= 3-) designs. The text below is

essentially a survey, except its last part, in which we present some recent constructions

of strongly eutactic lattices. It is closely related to Elbaz-Vincent’s talk [E].

1. The cell complex.

We fix an integer n > 2. We represent elements x ∈ Rn by column-matrices
X . Let Qn be the set of positive definite quadratic forms over Rn. We identify
Q ∈ Qn with A ∈ Symn(R) such that Q(x) = tXAX , and denote by S(Q) or
simply by S its set of minimal vectors ; we moreover set s = 1

2 |S|. The perfection
rank perf Q of Q is the rank of the set of matrices X tX ⊂ Symn(R) for x ∈ S; we
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say that Q is perfect if perfQ = n(n+1)
2 , the dimension of Symn(R). A perfection

(resp. eutaxy) relation on S is a relation of the form
∑

x∈S

λxX
tX = 0 (resp.

∑

x∈S

λx X
tX = A−1) .

We say that Q is weakly eutactic if it possesses a eutaxy relation, and semi-eutactic
(resp. eutactic) if there exists such a relation with non-negative (resp. strictly pos-
itive) coefficients.

[Note that perfection is a property of the set S whereas eutaxy, which involves con-

vexity, does depend on Q.]

We now fix the minimum of the forms we consider and restrict ourselves to
well rounded forms (those with rkS = n). With S we associate the set CS =
{Q ∈ Qn | S(Q) = S}. If non-empty, this is an open convex polyhedron in

Symn(R) of dimension n(n+1)
2 −perf S (the perfection co-rank of S). The collection

of these sets is a cellular decomposition of Qn. Cells of dimension 0 and 1 are the
vertices and the edges of the Voronoi graph.

In the talk, we briefly described an algorithm relying on the consideration of
the set of perfection relations which, given the set S of minimal vectors of a cell C,
lists all cells C′ with perf C′ = perf C − 1. It uses the fact that the Bacher matrix
Bc = S tS =

∑
x∈S X

tX of S (the barycentre matrix in [E-G-S]) characterizes C
up to equivalence. Note that a fast algorithm starting from perfect forms occurs
in [E-G-S].

We also outlined an alternative method, relying on Watson’s index theory (see
[M1]) which could be used to classify cells with not too large s− n in dimensions
7 and 8. (According to [E-G-S], interesting information on the cohomology of
SLn(Z) can be obtained using such a classification.)

Recall that the Hermite invariant of Q ∈ Qn is γ(Q) =
minQ

det(Q)1/n
. About ten

years ago, we proved that a cell C contains at most one weakly eutactic form EC ,
and that the minimum of γ on C is attained at EC if EC exists and in some cell
C′ ⊂ CrC otherwise; see [M], Section 9.4.

Questions. Can one decide whether a given integral matrix is the Bacher matrix
for some class ? How to construct this class if it exists ? Is there a fast algorithm to
decide from its Bacher matrix whether a given class contains a (weakly) eutactic
form?

2. Mass formulae with signs.

We refer to two formulae, due to Bavard ([Bv]) and Ash ([Ash]), which both
take the form of a summation on cells modulo equivalence

∑

C/∼

(−1)i(C)

|Aut+(C)|
= χ(SLn(Z)) ,
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but differ by the domain of summation: all (well rounded) cells in Bavard’s, only
those which contain a eutactic lattice in Ash’s; the exponent i(C) is the perfection
co-rank; Aut+(C) is the stabilizer in SLn(Z) of C; χ(SLn(Z)), the Euler Charac-
teristic of SLn(Z), is zero for all n > 3, ζ(−1) = − 1

12 for n = 2.
Bavard’s formula is related to the action of SLn(Z) on a symmetric space,

whereas Ash’s relies on topological Morse theory and an interpretation of eutactic
forms as non-degenerate critical points. Of course, the sum must be zero on cells
which either contain no weakly eutactic form, or contain a weakly eutactic, non-
eutactic form. In dimensions n 6 5, these two types of cells can be regrouped in
pairs having the same automorphism group and whose co-ranks differ by 1, hence
obviously cancel. This is not general. However, some experiments suggest that
a kind of “local” cancellation could be generally true, which would allow one to
deduce one formula from the other, despite their different original proofs.

3. Strongly eutactic lattices.

In this section, we use for convenience the language of lattices; S(Λ) denotes
the set of minimal vectors of a lattice Λ. We refer to Venkov’s paper in [M-V] for
the definition of a spherical t-design. We say that a lattice Λ is strongly eutactic
if S(Λ) is a spherical 2-design. This is equivalent to the existence of a eutaxy
relation with equal (hence strictly positive) coefficients. We shall also consider
strongly semi-eutactic lattices, which have equal non-zero coefficients; then the
set of minimal vectors whose corresponding eutaxy coefficients are non-zero is a
spherical 2-design.

In a recent work, we have tried to classify strongly eutactic lattices Λ having a
basis of minimal vectors for which s−n is small. The result is well-known for s = n
(the eutactic configurations of lines are the sets of n pairwise orthogonal lines) and
easy for s = n+ 1 (one only finds A∗

n). For s = n+ 2, we have proved that these
lattices are either reducible, and then similar to a direct sum A∗

m ⊥ A∗
m, n = 2m,

or belong to an infinite two-parameters family, of dimensions n = k(4ℓ2 − 1)− 2,
with n large enough with respect to k.
[For some slightly too small values of n, we obtain only strongly semi-eutactic lattices.

Example: ℓ = 1, k = 2, hence n = 4 ; here, s = 7 but the 2-design we obtain has s = 6.]

For s = n+3, results become complicated. This nevertheless suffices to classify
all strongly eutactic lattices with s 6 n+ 3 for, say, n 6 100.

We have also constructed infinite families whose configuration of minimal

vectors is derived from that of the root lattice An (e.g., with s = n2−1
2 , n > 3

odd, or with s = (n+1)(n−2)
2 , n ≡ 2 mod 3, n > 5).

The table below is an update of Table 3.1 of [M-V]. Using the Bacher matrix, the

classification of strongly eutactic and semi-eutactic cells easily follows from that of all

cells, due to Batut ([Bt]) in dimensions n 6 5 and to Elbaz-Vincent and Gangl (see [E])

in dimension 6. (Previously, 20 strongly eutactic, 6-dimensional lattices were known,

19 listed in [M-V] and 1 in [Be-M].) For numerical data on 2- and 4-designs related to

lattices, see http://math.u-bordeaux.fr/emartinet/ .
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Low-dimensional strongly eutactic lattices

dimension 1 2 3 4 5 6

well-rounded cells 1 2 5 18 136 5634

eutactic 1 2 5 16 118 ??

strongly eutactic 1 2 3 6 9 21

semi-eutactic 0 0 0 1 5 ??

strongly semi-eutactic 0 0 0 1 1 6
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Unimodular hermitian lattices

Kanat Abdukhalikov

(joint work with Rudolf Scharlau)

In 1978 W. Feit [7] described all unimodular hermitian lattices of dimensions up
to 12 over the ring of integers in Q(

√
−3). They all have roots, that is, vectors of

norm 1 or 2. Dimension 13 is the first case where a unimodular root-free lattice
appears [1, 3, 15]. All unimodular lattices in dimension 13 are classified in [2].
It turns out that the lattice without roots is unique. It has minimum norm 3
and its automorphism group is isomorphic to the group Z6 × PSp6(3) of order
210 · 310 · 5 · 7 · 13. The remaining lattices all have root systems of rank 12.

In this talk we are going to report on recent work extending the above results
to dimensions 14 and 15. Such a classification is of interest in the broader context
of investigating modular lattices over the rational integers in the sense of Quebbe-
mann [11]. In particular, the question of existence and uniqueness of extremal
modular lattices has turned out to be very interesting from several perspectives
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(sphere packings, modular forms, finite groups) and has been studied by many
authors in the past 10 years.

Before stating the result more precisely, we give some definitions and notation.
Let ω denote a primitive cube root of 1. Then Z[ω], the ring of Eisenstein integers,
is the ring of integers in the field Q(

√
−3). Let V be a vector space over Q(

√
−3)

with a positive definite hermitian product (−,−). A lattice L on V is a finitely
generated, in fact free, Z[ω]-module in V containing a basis v1, . . . , vn of V . We
further assume that (x, y) ∈ Z[ω] for all x, y ∈ L. The matrix with entries (vi, vj)
is called the Gram matrix of L (with respect to the given basis), its determinant
is called the discriminant d(L) of L. The lattice L is unimodular if d(L) = 1. The
norm of a vector x ∈ L is N(x) = (x, x). The minimum norm, or just minimum, of
a lattice L is min{N(x, x) | x ∈ L, x 6= 0}. The group G(L) of all automorphisms
of L which preserve the form is finite. Any lattice can be uniquely decomposed
into (orthogonally) indecomposable lattices.

Theorem
a) There are precisely 58 indecomposable unimodular lattices over Z[ω] of di-

mension 14. One of them has no roots; the remaining lattices have root systems
of ranks 6, 8, 10, 11, 12, 13, and 14. The root-free lattice has minimum norm 3
and automorphism group Z6 ×G2(3).2 of order 28 · 37 · 7 · 13.

b) There are precisely 259 indecomposable unimodular lattices over Z[ω] of di-
mension 15. For any integer number r from 0 to 15 there is an indecomposable
unimodular lattice of dimension 15 with root system of rank r. There are precisely
two root-free lattices, with minimum norm 3. One of them is isometric to the
exterior square U6 ∧ U6 of the unimodular lattice U6 of rank 6 and has automor-
phism group Z2 × 3.U4(3).2 of order 29 · 37 · 5 · 7. The second root-free lattice has
automorphism group Z2 × (31+2

+ × 31+2
+ ).SL2(3).2 of order 25 · 37.

This classification illustrates the fact that hermitian lattices can be fully classified
in certain cases where the classification of the corresponding modular Z-lattices
(here: 3-modular of dimensions 28 and 30) appears totally hopeless since at the
same time the dimension and the class number are too large.

Our result is heavily based on the computer program hn by A. Schiemann
[15] which determines neighbours (in the sense of Kneser) of a given lattice and
computes the order of the automorphism groupG(L). In addition to the neighbour
method we have used various other techniques for the construction of lattices,
such as representations of finite groups, hand computations, codes over F4 and
more generally root systems and gluing. For certain calculations, the Magma
Computational Algebra System [4] has been used. The completeness of our list
has been checked by the well known mass formula (see [7]), using the known group
orders.

Some lattices are constructed with the help of self-dual codes of length 14 over
F4. These codes have been classified in [5, 9]. Let ϕ denote the canonical mapping
Z[ω] → Z[ω]/2Z[ω] ∼= F4. Then for any self-dual code C of length 14 over F4 the
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lattice

L =
1√
2
〈(a1, . . . , a14) ∈ I14 | (ϕ(a1), . . . , ϕ(a14)) ∈ C〉

is a unimodular lattice of dimension 14. In particular, one lattice is constructed
with the help of the quadratic residue code [8] of length 14 over F4. Recall [1] that
the unimodular root-free lattice of dimension 13 can also be constructed from the
quadratic residue code of length 14.

Let us consider some further examples. There is a unimodular 15-dimensional
lattice Λ with root system A2 which is obtained by gluing a 2-dimensional lattice
with root system A2 and a 13-dimensional lattice Λ′ with discriminant 3. Its
automorphism group is isomorphic to 6.(S3 × PSL2(27).3). Therefore Aut(Λ′) ∼=
6.(PSL2(27).3) and Λ′ is associated with the irreducible complex character of the
group PSL2(27) of degree 13. It is the Weil character and it can indeed be realized
over Z[ω] (see [12]).

Similarly, there is a 15-dimensional unimodular lattice with root system A1

with automorphism group 6.(S2×PSL2(13)). It is obtained from a 14-dimensional
lattice of discriminant 2 with automorphism group 6.PSL2(13). The corresponding
vector space gives rise to an irreducible complex character of the group PSL2(13)
of degree 14.

As mentioned above, the unimodular 14-dimensional lattice of minimum norm
3 produces an extremal euclidean 3-modular 28-dimensional lattice (see [6, 13, 14]
for more information on extremal and modular lattices). This 3-modular lattice
also appears in [10] since its automorphism group is a rational irreducible maximal
finite subgroup of GL28(Q). The situation is completely analogous for one of the
two 15-dimensional lattices of minimum norm 3. Independently of matrix groups,
the two root-free lattices of dimension 15 were found previously by Schiemann [15],
performing computations in the course of the works [13, 14] on euclidean extremal
lattices.

There is one interesting observation in dimension 14 which did not occur in other
dimensions.
Proposition Every hermitian indecomposable unimodular lattice of dimension 14
has exactly 17472 vectors of norm 3.
This is proved using an explicit basis of the appropriate space of modular forms
which has dimension 3 in this case (see [11]).

To summarize all results known so far, the following table shows the number of
indecomposable unimodular hermitian lattices of dimensions up to 15.

Dimension 1 6 8 9 10 11 12 13 14 15
Number of indecomposable lattices 1 1 1 1 2 2 11 14 58 259

The next two tables show the number of unimodular lattices in dimensions 14 and
15, respectively, with root system of given rank.

root rank 0 6 8 10 11 12 13 14
number of lat. 1 1 2 4 4 12 12 22 58



30 Oberwolfach Report 1/2005

root rk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number 2 1 2 2 2 4 4 8 11 11 27 31 55 54 34 11 259
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Model sets as generalizations of lattices

Michael Baake

(joint work with Daniel Lenz, Robert V. Moody)

Lattices in Rd have been studied for a long time, compare [10] and references
therein, and can be considered as a well-understood paradigm of an ordered sys-
tem, even though many open problems continue to challenge a large and active
community. Key properties of a lattice Γ ⊂ Rd include its Delone property (Γ is
both uniformly discrete and relatively dense), periodicity (Γ − Γ = Γ ), coherence
(meaning that the dual object Γ ∗ := {x ∈ Rd | e2πixy = 1 for all y ∈ Γ} is again
a lattice), but also the pure point diffractivity of the lattice Dirac comb [11, 9]
δΓ =

∑
x∈Γ δx (which follows from Poisson’s summation formula) and the torus

nature of the appropriate orbit closure of {t + Γ | t ∈ Rd} (when viewed as a
dynamical system under the continuous action of Rd).
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One particularly interesting class of generalizations consists of the so-called
Meyer sets [19, 20]. In Rd, they are the sets Λ with the property that Λ is
relatively dense and Λ−Λ is uniformly discrete. In particular, they are all Delone
sets, while the converse is not true [16, 17]. Instead of periodicity, one now has
Λ − Λ ⊂ Λ + F with F a finite set, and coherence appears via relative denseness
of the ε-duals Λε := {x ∈ Rd | |e2πixy − 1| < ε for all y ∈ Λ} for all ε > 0, see
[20] for details. In general, pure point diffractivity is lost though [4], as is a “nice”
structure of the dynamical system attached to Λ.

Among Meyer sets, model sets [22] probably form the best studied subclass.
They are important examples of aperiodic order, and have proved useful as models
of real world quasicrystals, which are solids with long-range aperiodic order and
sharp diffraction images, the latter typically with non-crystallographic symmetries,
see [2, 8, 21, 23, 27] for recent developments.

To construct a genuine model set, one starts with a lattice in a high-dimensional
space and considers a partial “image” in a space of smaller dimension. This image
will not be periodic any more, but still preserve many regularity features due to
the periodicity of the underlying high-dimensional lattice structure. The approach
can be extended to locally compact Abelian groups in a natural way. For a survey
and further references, we refer the reader to [20, 22, 25].

Let us give a brief recapitulation of the abstract setting of a cut and project
scheme and the definition of a model set, together with some of their important
properties. We start from two locally compact Abelian groups, G and H , where
G is also assumed to be σ-compact, see [26] for the reasons why this is needed. As
usual, neutral elements will be denoted by 0 (resp. by 0G, 0H). A cut and project
scheme [25] emerges out of the following collection of groups and mappings:

(1)

G
π←−−− G×H πint−−−→ H

∪ ∪ ∪ dense

L
1−1←−−− L̃ −−−→ L⋆

‖ ‖

L
⋆−−−−−−−−−−−−−−−−−−→ L⋆

Here, L̃ is a lattice in G×H , i.e., a cocompact discrete subgroup. The canonical
projection π is one-to-one between L̃ and L (in other words, L̃∩{0G}×H = {0}),
and the image L⋆ = πint(L̃) is dense in H , the so-called internal space. In view
of these properties of π and πint, one defines the ⋆-map as (.)⋆ : L −→ H via

x⋆ :=
(
πint ◦ (π|

L̃
)−1

)
(x), where (π|

L̃
)−1(x) = π−1(x) ∩ L̃, for all x ∈ L.

A model set [26, 22] is now any translate of a set of the form

(2) f(W ) := {x ∈ L | x⋆ ∈W}
where the window W is a relatively compact subset of H with non-empty interior.
Without loss of generality, we may assume that the stabilizer of the window,
HW := {c ∈ H | c+W = W}, is the trivial subgroup of H , i.e., HW = {0}. If this
were not the case (which could happen in compact groups H for instance), one
could factor by HW and reduce the cut and project scheme accordingly [26, 7].
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Furthermore, we may assume that 〈W−W 〉, the subgroup ofH that is algebraically
generated by the subset W −W , is the entire group, i.e., 〈W −W 〉 = H , again by
reducing the cut and project scheme to this situation, compare [25, 26] for details.

There are variations on the precise requirement to W which depend on the
fine properties of the model sets one is interested in, compare [22, 26, 6, 7]. In
particular, a model set is called regular if ∂W has Haar measure 0 in H , and
generic if, in addition, ∂W∩L⋆ = ∅. Regular, generic model sets are also repetitive
[18, 22], i.e., each finite patch repeats itself with bounded gaps, and, in addition,
does so with a well-defined frequency [25, 26].

A key feature of regular model sets, in the generality mentioned here, is their
pure point diffractivity. This means that, given the Dirac comb δΛ of a regular
model set, its autocorrelation measure γΛ has a Fourier transform, denoted γ̂Λ,
which is a positive, pure point measure, see [14, 15, 26, 9] and references therein
for proofs of increasing generality. In this sense, model sets are really “almost
lattices”, and they also define very interesting dynamical systems [26, 5]. These
are no longer torus-like, but have a local product structure of G× C, where C is a
Cantor set, compare [1] and references therein. This, in turn, has rather interesting
topological consequences on questions such as averaged shelling, patch frequencies
and many other combinatorial properties, see [3].

As I have tried to indicate above, there are many properties of lattices that
possess a very natural generalization to a larger class of point sets, such as Meyer
sets or model sets. Quite often, this leads to new insight also to the “classical”
problems, or to unexpected connections to other disciplines, both pure and ap-
plied. Some of the most fascinating aspects at present originate from the theory
of dynamical systems [24, 7] with their relation to topological invariants [1], and
from harmonic analysis and the theory of almost periodicity [12, 13].
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Lattices and hermitian vector bundles in Arakelov geometry

Jean-Benôıt Bost

from the handwritten abstract in the Vortragsbuch

In this survey talk, I gave an introduction to Arakelov geometry, emphasizing the
role of constructions involving hermitian vector bundles over a scheme H of finite
type over SpecZ - whenH = SpecZ, they coincide with classical euclidean lattices.
I also described the formalism of slopes associated to such hermitian vector bundles
over H = SpecOk, k a number field. When k = Q, these slopes coincide with the
successive minima of lattices; in general they satisfy nice invariance properties.
Finally, I emphasized how inequalities relating the slopes of two hermitian vector
bundles Ē and F̄ over SpecOk, and the heights of some linear map ϕ : Ek 7→ Fk

provide a geometric approach to Diophantnie approximation results, when applied
to hermitian vector bundles Ē (resp. F̄) of sections of some line bundle L over a
projective scheme H/Z (resp. a closed selescheme Σ) and to the restriction map
ϕ sending a section of L over H to its restriction to Σ.
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Optimality and Uniqueness of the Leech lattice among lattices

Abhinav Kumar

(joint work with Henry Cohn)

1. Introduction

The problem of finding the densest lattice in Euclidean space Rn is a famous
problem in geometry and number theory. The determination of the largest possible
density of a lattice in Rn also yields the Hermite constant γn, which is defined as the
largest real number represented as the minimum nonzero value of some quadratic
form of determinant 1 in n variables. In geometry, the problem of finding a densest
lattice is a special case of the sphere packing problem, which asks for the densest
packing of Rn by spheres of the same size. However, in low dimensions, many of the
interesting sphere packings come from lattices, and it is believed that exceptionally
dense lattices such as E8 and the Leech lattice should solve not just the lattice
packing problem, but also the sphere packing problem.

The densest lattices in Rn were known for n ≤ 8; they are the root lattices
A1, A2, A3, D4, D5, E6, E7 and E8. For n = 3 the result is due to Gauss, for
4 6 n 6 5 to Korkine and Zolotareff, and for 6 6 n 6 8 to Blichfeldt. In
each dimension, the optimal lattice is also known to be unique, up to scaling and
isometries. For n ≤ 5 the optimality and uniqueness were proved simultaneously,
while for n = 6 it was proved by Barnes and for 6 ≤ n ≤ 8 by Vetčinkin.

We determine the densest lattice in dimension 24 [CK1], [CK2].

Theorem 1 (Cohn, Kumar). The Leech lattice is the unique densest lattice in R24,
up to scaling and isometries of R24. No sphere packing in R24 can have density
greater than 1 + 1.65 · 10−30 times that of the Leech lattice.

Using a similar line of proof, we prove an analogous result for E8, giving another
proof that E8 is the densest lattice in 8 dimensions.

Theorem 2 (Blichfeldt, Vetčinkin). The E8 root lattice is the unique densest
lattice in R8, up to scaling and isometries of R8.

Theorem 3. No sphere packing in R8 can have density greater than 1 + 10−14

times that of the E8 lattice.

The error bounds in theorems 1 and 3 can be narrowed with more computation,
as we shall indicate below. The next section outlines a proof of these theorems.

2. Outline of Proof

We start by applying the following of Cohn and Elkies [CE], [Co].

Theorem 4. Suppose f : Rn → R is an admissible function, is not identically
zero, and satisfies the following three conditions:

(1) f(0) = f̂(0) > 0
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(2) f(x) ≤ 0 for |x| ≥ r, and

(3) f̂(t) ≥ 0 for all t.

Then the center density of sphere packings in Rn is bounded above by (r/2)n.

We can find a function f which satisfies these properties for an r which satisfies
2 ≤ r ≤ 2(1+6.851 · 10−32). Thus, an application of Theorem 4 proves the second
statement in Theorem 1.

Now we wish to prove that the Leech lattice Λ24 is the densest lattice in R24.
Assume that there exists a lattice Λ which is at least as dense as the Leech lattice.
We may assume that Λ is unimodular. Then the argument outlined below will
show that Λ is the same as Λ24 up to an orthogonal transformation.

Recall the following facts about the Leech lattice. The norms of the nonzero
vectors are all the even positive integers greater than 2. The 196560 minimal vec-
tors, of length 2, when renormalized to lie on the unit sphere, form a spherical code
C24 of minimal angle π/3. In fact, they provide the unique solution to the kissing
number problem in dimension 24, as was shown by Odlyzko, Sloane, Levenshtein
and Bannai. This is proved by using the technique of linear programming bounds
(for instance see [CS]). The spherical code C24 is a spherical 11-design. This also
implies that if pairs of minimal vectors are grouped into separate classes depend-
ing on the inner product between them, we obtain the structure of an association
scheme on C24. The main strategy of the proof is to prove similar assertions for
the lattice Λ in order to show that it is “close to” Λ24 in a sense that we shall
make precise.

First, note that the argument used to prove Theorem 4, namely Poisson sum-
mation, shows also that the first few vector lengths of Λ must be close to that of
Λ24. Let us use the term “nearly minimal vector” to mean a vector whose length
is close to 2 (to be more precise, we may say it differs from 2 by at most 10−25).
Then, using a linear programming bound and analysis similar to Theorem 4, as
well as the linear programming bound for spherical codes, we may show that there
are exactly 196560 nearly minimal vectors. From the constraints on the successive
vector lengths of Λ, we may show that the inner products between nearly minimal
vectors are close to that of the minimal vectors of Λ24, namely 0,±1,±2,±4. Nor-
malizing the vectors to have unit length, we obtain a spherical code C of minimal
angle φ, with 1/2 ≤ cosφ ≤ 1/2+6.733 · 10−27. Linear programming bounds then
show that C must be a nearly spherical 10-design. More precisely,

Lemma 5. If g : S23 → R is a polynomial of total degree at most 10, then
∣∣∣∣∣
∑

z∈C
g(z)− 196560

vol(S23)

∫

S23

g(z) dz

∣∣∣∣∣ 6 2.50193 · 10−5|g|2,

where |g|2 denotes the norm on L2(S23).

Applying this lemma to suitable functions g, we deduce that C is also an associ-
ation scheme, when we pair vectors according to their approximate inner product,
and also that this scheme has the same multiplicities and intersection numbers



36 Oberwolfach Report 1/2005

as C24. We show, using the uniqueness of the optimal kissing configuration in 24
dimensions, that there is only one 6-class association scheme with the same multi-
plicities and intersection numbers as C24. Therefore we obtain a bijection between
C and C24, approximately preserving inner products between vectors. Next, we
choose a basis of minimal vectors of Λ24 and look at the corresponding nearly
minimal vectors of Λ. We show that they form a basis of Λ, and furthermore, that
the two Gram matrices involved have corresponding entries differing by at most
5.04975 · 10−25.

To finish the argument, we derive explicit bounds for the allowed perturbation
in the Gram matrix of Λ24 in Voronoi’s theorem [Vo] below and notice that Λ lies
within those bounds.

Theorem 6 (Voronoi). A lattice is locally optimal for density if and only if it is
perfect and eutactic.

This proves Theorem 1. The proof of Theorem 2 is analogous.

3. Remarks

An important open problem is to determine whether a function f exists which
satisfies the criteria of Theorem 4 for n = 24 (resp. n = 8) and r = 2 (resp.

r =
√

2) exactly. Such functions would show that the Leech lattice and the E8

lattice give densest sphere packings in their dimensions. In our proof, we determine
by an intensive computer calculation a function f for which r is very close to 2.
It seems reasonable to conjecture that with unlimited time and memory, the same
method will be able to produce f for which r is arbitrarily close to 2. For a
generalization of the density problem to potential energies of periodic packings
and a generalization of this conjecture, we direct the reader to [CK3]. We would
also like to mention recent work of Cohn and Miller regarding similar conjectures.
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Application of a new lattice reduction algorithm

Jean-Claude Belfiore

from the handwritten abstract in the Vortragsbuch

As presented by E. Viterbo, we need number theory tools to design coded mod-
ulation for the wireless communication problem. Constellations of symbols that
are sent by the transmitter are either vectors with real components in the fast
fading case (one transmit antenna) or matrices with complex components in the
MiMo case (multiple antennas). In the fast fading case the transmit vector uses
the canonical embedding in Rn of a well chosen number field whereas in the MiMo
case, the transmit matrix uses the matrix representation of a well chosen cyclic
algebra.
In this talk, we are interested in the decoding of these constellations. All these
transmitted constellations are finite subsets of lattices. The receiver must solve
the “closest point” problem. More over, the channel changes these lattices when
time varies. In order to have a “not too complex” receiver, we need some lattice
reduction with lattices that vary with the time (random lattices). The LLL algo-
rithm may be used, but, in that specific case, another type of reduction algorithm
is used.

BL-bases and unitary groups in characteristic 2

Jean-Pierre Serre

In what follows, K is a commutative field of characteristic 2.

1. A criterion for the existence of a BL-basis

Let L/K be a finite Galois extension, with Galois group G. A basis (ei) of the
K-vector space L is called a self-dual normal basis (BL-basis, for short) if it has
the following two properties (cf. [1], [2], [3]):

a) TrL/K(ei.ej) = δi
j ;

b) G acts transitively on the (ei).

Note that b) means that (ei) is a “normal basis” of L/K, while a) says that it
is orthonormal with respect to the nondegenerate bilinear form TrL/K(x.y).

One finds in [1] and [2] several cases where BL-bases can be proved to exist (or
not to exist):
Existence: when G is of odd order, or when G is abelian and does not contain

any element of order 4.
Non-existence: when G has a quotient which is cyclic of order 4.
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These results are special cases of:

Theorem 1 - A BL-basis exists if and only if G is generated by squares and by
elements of order 2.

Note that this criterion does not depend on K, nor of the chosen extension L/K.
It only depends on the structure of G. This is quite different from what happens
in characteristic 6= 2, cf. e.g. [3].

Examples. A BL-basis exists if G is a dihedral group or a simple group; it does
not exist if G is a quaternion group.

2. Proof of theorem 1

First, we may assume that K is perfect. Indeed, a BL-basis for L/K exists
if and only if there exists one for the extension L.K ′/K ′, where K ′ is the perfect
closure of K.
Consider now the group algebra K[G], with its usual involution g 7→ g∗ = g−1.

Let Usch
G be its scheme-theoretic unitary group, which is an algebraic group over

K. The group scheme Usch
G is not reduced; call UG the corresponding reduced

scheme; it is a smooth algebraic group over K. We have a natural embedding
G → Usch

G (K) = UG(K).

Let now K be an algebraic closure of K, and put ΓK = Gal(K/K). The given
extension L/K corresponds to a surjective homomorphism ϕL : ΓK → G. By
composing ϕL with the embedding G → UG(K), one may view ϕL as a 1-cocycle
of ΓK with values in UG(K). Let zL ∈ H1(K,UG) be the cohomology class of this
cocycle.

Proposition 1 - We have zL = 0 if and only if L/K has a BL-basis.

This is explained in [3], § 1.5 when the characteristic of K is 6= 2; the case of
characteristic 2 is similar. (Loosely speaking, the BL-bases are the K-points of a
UG-torsor which corresponds to zL.)

Put now:

Uo
G = connected component of UG ;

Go = subgroup of G generated by the elements of order 2 and by the squares g2,
where g runs through G.

Proposition 2 - (a) Go = G ∩ Uo
G.

(b) UG/U
o
G is a finite commutative group of type (2, . . . , 2).

Both (b) and the inclusion Go ⊂ G ∩ Uo
G are fairly easy. The inclusion

G ∩ Uo
G ⊂ Go requires more work.

Proposition 3 - H1(K,Uo
G) = 0.
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This is a special case of a general result on unitary groups, cf. §3, th.2.

Let us now prove half of theorem 1, namely that a BL-basis exists if G = Go.
Indeed, in that case, by Proposition 2, we may view ϕL : ΓK → G as a 1-cocycle
with values in Uo

G(K); let zo
L ∈ H1(K,Uo

G) be the class of this cocycle. The image
of zo

L in H1(K,UG) is zL. By Proposition 3, we have zo
L = 0, hence zL = 0 and

Proposition 1 shows that L/K has a BL-basis.
It remains to show that, if G 6= Go, there is no BL-basis. To do so, one first

remarks that the assumption G 6= Go is equivalent to the existence of a surjective
quadratic character e: G→ {±1} with the property that e(s) = 1 for every s ∈ G
with s2 = 1. Choose such an e, and assume there exists an element x of L whose
G-orbit is a BL-basis. Put:

x0 =
∑

e(g)=1

g.x and x1 =
∑

e(g)=−1

g.x.

An explicit computation, similar to the one made in [2], proof of Proposition 6.1
b), shows that x0.x1 = 0. Since L is a field, we have either x0 = 0 or x1 = 0,
which contradicts the assumption that the g.x are linearly independent.

3. Unitary groups

We continue to assume that K is perfect of characteristic 2.
Let R be a finite-dimensional K-algebra with involution, and let UR be the corre-
sponding reduced unitary group. Let Uo

R be the connected component of UR.

Theorem 2 - H1(K,Uo
R) = 0.

Let S be the quotient of Uo
R by its unipotent radical; the algebraic group S is a

reductive group overK (it is the largest reductive quotient of Uo
R), and the natural

map H1(K,Uo
R) → H1(K,S) is a bijection. Hence proving Theorem 2 amounts

to proving that H1(K,S) = 0. To do so, we need to describe the structure of S.
The result is:

Theorem 3 - Up to a purely inseparable isogeny, S is a product of classical
groups of the following three types:
(i) Multiplicative group of a central simple algebra over a finite extension of K.
(ii) Unitary group of a central simple algebra with involution (of first or second
kind) over a finite extension of K.
(iii) Special orthogonal group of a nondegenerate quadratic form of even rank > 2
over a finite extension of K.
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This is proved by choosing a maximal torus of Uo
R and looking at the weights

of its action on R (by left multiplication), and at the root system of S. Most of
the proof can be done under the assumption that K is algebraically closed: the
descent from K to K is easy.

Once Theorem 3 is proved, Theorem 2 follows by standard methods in Galois
cohomology, based essentially on the fact that cd2(ΓK) 6 1, and on the following
auxiliary result:

Proposition 4 - Let A be a connected linear algebraic group over K, and let
K1 be a quadratic extension of K. The natural map H1(K,A) → H1(K1, A) is
injective.
(See e.g. [4], Chap. III, § 2.3, Exercise 2 (b).)

Here are a few more properties of the unitary group UR:

Theorem 4 - (i) The finite group UR/U
o
R is commutative of type (2, . . . , 2).

(ii) The map H1(K,UR)→ H1(K,UR/U
o
R) is injective.

(iii) Every commutative smooth subgroup of UR of multiplicative type is contained
in a maximal torus.
(iv) If K ′ is an odd degree extension of K, the map H1(K,UR)→ H1(K ′, UR) is
injective.

Properties (i) and (iii) are easy; (ii) follows from (i) and from Theorem 2; (iv)
follows from (ii). (It would be interesting to have an a priori proof of (iv).)
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Perfect Lattices, Homology of Modular groups and Algebraic
K-Theory

Philippe Elbaz-Vincent

(joint work with Herbert Gangl, Christophe Soulé)

Brief abstract - For N = 5 and N = 6, we compute the Voronöı cell complex attached

to real N-dimensional quadratic forms, and we obtain the homologies of GLN (Z) and

SLN (Z) with trivial coefficients, up to small primes. We also prove that K5(Z) = Z and

K6(Z) = 0. We give a complete list of cells for the Voronöı complex in rank 5 and 6

modulo the action of GLN (Z) and SLN (Z), and give also the list of strongly eutactic

and semi-eutactic cells completing lists of Batut, Bergé and Martinet (see the extended

abstract of Martinet’s talk for more on this notion). Part of this report is work in progress.

1. Voronöı theory

Let N > 2 be an integer. Denote by CN the space of definite and positive
real quadratic forms of rank N . Given h ∈ CN , there is only a finite number of
minimal vectors of h, i.e., the non zero vectors v ∈ ZN such that h(v) is minimal.
We will denote it by m(h). A form h ∈ CN is said perfect if it is characterized by
its minimum on ZN −{0} and by m(h). Denote by Γ either the group GLN (Z) or
SLN(Z). Voronöı has shown [3] (Thm., p.110) that modulo the action of Γ and
up to scalar multiplication by positive real numbers, there is only a finite number
of perfect forms.

Denote by C∗
N the space of positive real quadratic forms on RN such that the

kernel is generated by a (strict) subspace of QN . Let X∗
N be the quotient of C∗

N

by positive homotheties, π : C∗
N → X∗

N the quotient map, XN = π(CN ) and
∂X∗

N = X∗
N −XN . The group Γ acts on C∗

N , and on X∗
N , by the action

h · γ = γthγ, γ ∈ Γ, h ∈ C∗
N ,

where γt denotes the transpose of γ.
If v ∈ ZN −{0}, we can consider the form v̂ ∈ C∗

N , defined as v̂(x) = (v|x)2. Given
a finite subset B of ZN − {0}, the convex hull of B is the subset of X∗

N , image by
π of the subset { ∑

j

λj v̂j , vj ∈ B, λj > 0
}

of C∗
N . If h is a perfect form, we denote by σ(h) ⊂ X∗

N the convex hull of the set
m(h) of its minimal vectors. Voronöı has shown [3] (§§8-15) that the cells σ(h) and
their intersections, when h runs through the set of perfect forms, give a cellular
decomposition (in the sense of algebraic topology) of X∗

N , compatible with the
action of Γ. We endow X∗

N of the corresponding CW-structure. If τ is a closed
cell of X∗

N and if h is a perfect form such that τ ⊂ σ(h), we denote by m(τ) the
set of vectors v of m(h) such that v̂ is in τ . The cell τ is the convex hull of m(τ)
and m(τ) ∩m(τ ′) = m(τ ∩ τ ′).
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2. Explicits computations

Denote by Σn, 0 6 n 6 d(N) = N(N+1)/2−1, a set of representatives, modulo
the action of Γ, of the cells of dimension n in the Voronöı complex and such that
no elements of their stabilizer in Γ change their orientation. For N 6 6 we have
computed such sets Σn and we have the results below (the subscript (−)op means
that we work modulo the cells such that the orientation is changed by an element
of its stabilizer).

Proposition 1. (Elbaz-Vincent/Gangl/Soulé, 2002).

The cardinality of Σn is given as follows (empty slots denote zeros):

n 5 6 7 8 9 10 11 12 . . .

GL5(Z) 5 10 16 23 25 23 16 9 . . .

GL5(Z)op 0 0 0 1 7 6 1 0 . . .

GL6(Z) 3 10 28 71 162 329 589 874 . . .

GL6(Z)op 0 0 0 0 3 46 163 340 . . .

SL6(Z) 3 10 28 71 163 347 691 1152 . . .

SL6(Z)op 0 3 10 18 43 169 460 815 . . .

. . . 13 14 15 16 17 18 19 20 total

. . . 4 3 136

. . . 2 3 20

. . . 1066 1039 775 425 181 57 18 7 5634

. . . 544 636 469 200 49 5 0 0 2455

. . . 1532 1551 1134 585 222 62 18 7 7576

. . . 1132 1270 970 434 114 27 14 7 5486

Answering a question of Martinet (cf. his extended abstract), we have shown that
there are, up to equivalence, exactly 21 strongly eutactic forms and 6 strongly
semi–eutactic forms in rank 6. We also have confirmed the computations of Bergé
and Martinet in rank 5.

Euler characteristic (a.k.a. “mass formula”): From the data we can verify
that if N = 5, 6, χ(SLN(Z)) =

∑
σ∈E(−1)dim(σ) 1

|Γσ| = 0, E family of represen-

tatives of cells of the Voronöı complex of rank N and Γσ is the stabilizer of σ in
SLN(Z). More precisely, for N = 6, we get:

45047

1451520
−

10633

11520
+

6425

576
−

12541

192
+

7438673

34560
−

3841271

8640
+

9238

15
−

266865

448
+

14205227

34560

−
14081573

69120
+

830183

11520
−

205189

11520
+

61213

20736
−

1169

3840
+

17

1008
−

1

2880
= 0 .

For the dimension N = 7 the computations are not complete yet (only 60% of the
forms).

3. Cohomology of modular groups and the K-theory of integers

Using the previous computations and the Borel/Serre duality for arithmetic
groups [1], we get the following theorem.
Let m be a positive integer. We denote by Sm the Serre class of finite abelian
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groups A such that for every prime number p dividing the order of A the inequal-
ity p 6 m holds.

Theorem A. (Elbaz-Vincent/Gangl/Soulé, 2002)

(i) Modulo S5 we have

Hm(GL5(Z),Z) =

{
Z if m = 0, 5,

0 otherwise.

(ii) Modulo S7 we have

Hm(GL6(Z),Z) =

{
Z if m = 0, 5, 8,

0 otherwise,

and

Hm(SL6(Z),Z) =





Z2 if m = 5,

Z if m = 0, 8, 9, 10,

0 otherwise.

At the level of the K–theory of integers we have

Theorem B. (Elbaz-Vincent/Gangl/Soulé, 2002 and 2003)
We have K5(Z) = Z and K6(Z) = 0.

The Theorem B is mainly a consequence of the study of the torsion of the so-called
Hurewicz map and from the computation of homology of GLN (Z) with coefficients
in Steinberg modules. Namely, we have the following computations

Proposition 2. (Elbaz-Vincent/Gangl/Soulé, 2002 and 2003).

(i) Modulo S2 we have H3(GL3(Z), St3) = Z and

H1(GL5(Z), St5) = H2(GL5(Z), St5) = H2(GL4(Z), St4) = H4(GL2(Z), St2)

= H1(GL6(Z), St6) = 0 .

(ii) Modulo S3 we have H3(GL4(Z), St4) = Z and

H4(GL3(Z), St3) = H5(GL2(Z), St2) = 0 .

Remark: For K7(Z) the computations are still incomplete. We expect that the
perfect forms of rank 7 do not contribute to the odd torsion of K7(Z) (we already
know that for 60% of the perfect forms). We also know that the kernel of the
so-called Hurewicz map is a subgroup of Z/15 (up to 2-torsion).
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On Reduction Theory and its Algorithmic Aspects

Phong Q. Nguyên

(joint work with Damien Stehlé)

Reduction theory, in the language of quadratic forms, goes back to the work of
Lagrange, Gauss, Hermite, Korkine-Zolotarev, Minkowski, etc. It was introduced
to upper bound Hermite’s constant: the existence of the constant was first proved
by means of reduction, namely Hermite’s reduction. In low dimension up to di-
mension four, Hermite-Korkine-Zolotarev (HKZ) reduction gives tight bounds on
Hermite’s constant. From a mathematical point of view, the strongest notions of
reduction known are those of Hermite-Korkine-Zolotarev and Minkowski.

¿From an algorithmic point of view, one is rather interested in notions of reduc-
tion which are easy to compute: given an arbitrary basis of a lattice, one would
like to find a reduced basis efficiently. The celebrated LLL (or L3) algorithm [1]
was the first efficient reduction algorithm in arbitrary dimension: Its running time
is O(d6|og3B) where d is the lattice dimension and B is an upper bound on the
Euclidean norm of the initial basis vectors. It outputs lattice bases which are
almost Hermite-reduced, and therefore consist of relatively short lattice vectors.
LLL has had incredibly many applications over the past twenty years, especially
in algorithmic number theory and theoretical computer science (see for instance
the survey [2]).

In this talk, we discuss two new reduction algorithms: the greedy algorithm [3]
and the L2 algorithm [4]. The greedy algorithm is a natural geometric general-
ization of Euclid’s gcd algorithm, which can itself be viewed as a one-dimensional
reduction algorithm. In fixed dimension 6 4, the greedy algorithm outputs Min-
kowski-reduced bases with the same running time as Euclid’s algorithm: without
fast integer arithmetic, the complexity is O(log2B). In dimension > 5, greedy-
reduced bases may be arbitrarily far from the first minimum of the lattice, and it
is unknown if the greedy algorithm still has polynomial-time complexity, except
in dimension 5. The L2 algorithm [4] achieves approximate Hermite reduction in
time polynomial in d and logB like LLL. However, it is the first polynomial-time
reduction algorithm whose complexity without fast integer arithmetic is O(log2B)

(instead of the usual O(log3 B)) for fixed dimension d. In other words, L2 matches
the complexity of Euclid’s algorithm.
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[3] P. Q. Nguyen and D. Stehlé. Low-dimensional Lattice Basis Reduction Revisited. In Al-
gorithmic Number Theory – Proc. ANTS-VI, volume 3076 of Lecture Notes in Computer
Science, pages 338–357. Springer-Verlag, 2004.



Gitter und Anwendungen 45

[4] P. Q. Nguyen and D. Stehlé. Floating-Point LLL Revisited. In Advances in Cryptology –
Proc. Eurocrypt, to appear in Lecture Notes in Computer Science. Springer-Verlag, 2005.

Weil representations, Clifford groups, and conjectures of Larsen and
Katz

Pham Huu Tiep

(joint work with Robert M. Guralnick)

Let V = Cd with d > 4. Fix a nondegenerate quadratic form and if d is even
fix a nondegenerate symplectic form on V , and let G be one of GL(V ), O(V ) or
Sp(V ). If G is any subgroup of GL(V ), define M2k(G, V ) to be the dimension of
EndG(V ⊗k), and G is called reductive if G is closed and the connected component
G◦ of G is reductive. We are interested in Larsen’s conjecture:

Conjecture 0.1. If G is a reductive subgroup of G, then either G ≥ [G,G] or
M2k(G, V ) > M2k(G, V ) for some k ≤ 4.

An interesting application of this conjecture comes from algebraic geometry
[Ka1]. Given a projective smooth variety X of dimension n + 1 ≥ 1 over a fi-
nite field k. Of interest is the monodromy group Gd which is the Zariski closure
of the monodromy group of a local system Fd on the space of all smooth de-
gree d hypersurface sections (see [Ka1]). Fix a degree d hypersurface H which
is tranverse to X , and let V be the subspace spanned by the vanishing cycles in
Hn((X⊗k k̄)∩H,Qℓ) [D, (4.2.4)]. Then the cup product induces a (Gd-invariant)
nondegenerate bilinear form on V . Deligne [D, 4.4] showed that Gd = Sp(V ) if
n is odd; if n ≥ 2 is even then Gd = O(V ) or Gd is finite. One would like to be
able to rule out the finite group possibility (under additional hypotheses). Katz
has shown in [Ka1] that Gd is a subgroup of G := Sp(V ) or O(V ) with the same
fourth moment as of G, that is, M4(Gd, V ) = M4(G, V ).

A more recent application is described in [Ka2], where Larsen’s conjecture, as
well as drop ratio conjectures (cf. [Ka2, Chapter 2] and Theorem 5 below) play an
important role in the determination of the geometric monodromy group attached
to a family of character sums over finite fields.

Another application is purely lattice-theoretic. Assume that G = O(V ) and G
is a finite subgroup of G such that M2k(G, V ) = M2k(G, V ) for some k ≥ 2. Then
any (symmetrized) G-orbit on V is a spherical 2k-design, cf. [LST]. Moreover, for
any subspace 0 6= U < V , the G-orbit of U is a grassmannian 2k-design as defined
in [BCN]. IF G stabilizes an integral lattice Λ in V , then Λ is strongly perfect as
defined by Venkov.

In fact, we will prove:

Theorem 1. Let V = Cd with d ≥ 5 and G be GL(V ), Sp(V ), or O(V ). Assume
that G is a closed subgroup of G such that G◦ is reductive. Then one of the
following holds:

(i) M8(G, V ) > M8(G, V );
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(ii) G ≥ [G,G];
(iii) d = 6, G = Sp(V ), and G = 2J2.

Notice that in the case (iii) of Theorem 1, G and G have the same 2k-moments
if and only if k ≤ 5.

Theorem 2. Let V = Cd with d ≥ 5, G = GL(V ), Sp(V ), or O(V ). Assume G
is a closed subgroup of G. Then G is irreducible on every G-composition factor of
V ⊗3 (this condition is equivalent to M6(G, V ) = M6(G, V ) if G◦ is reductive) if
and only if one of the following holds.

(A) G ≥ [G,G]; moreover, G 6= SO(V ) if d = 6.
(B) (Extraspecial case) d = 2a for some a > 2. If G = GL(V ) then G =

Z(G)E · Sp2a(2) with E = 21+2a
+ . If G = Sp(V ), resp. O(V ), then E · Ωǫ

2a(2) ≤
G ≤ E ·Oǫ

2a(2), with E = 21+2a
ǫ and ǫ = −, resp. ǫ = + . (This groups are called

Clifford groups in [NRS].)
(C) (Exceptional cases) G is finite, with the unique nonabelian composition

factor being L3(4), U3(3), U4(3), J2, Alt9, Ω+
8 (2), U5(2), G2(4), Suz, J3, Co2,

Co1, F4(2), and dim(V ) being 6, 6, 6, 6, 8, 8, 10, 12, 12, 18, 23, 24, and 52,
respectively.

From Theorem 2 we recapture the facts that the Barnes-Wall lattices BW2n ,
the root lattice E8, the Leech lattice Λ24 and the short Leech lattice Λ23 give rise
to spherical/grassmannian 6-designs, which are well-known to the experts in the
area.

Theorem 3. Let V = Cd with d ≥ 5, G = GL(V ), Sp(V ), or O(V ). Assume G is
a closed subgroup of G. Set S̄ = S/Z(S) for S := F ∗(G) if G is finite. Then G is
irreducible on every G-composition factor of V ⊗ V ∗ (this condition is equivalent
to M4(G, V ) = M4(G, V ) if G◦ is reductive) if and only if one of the following
holds.

(A) G ≥ [G,G].
(B) (Lie-type case) One of the following holds.

(i) S̄ = PSp2n(q), n ≥ 2, q = 3, 5, G = Z(G)S, and V ↓S is a Weil
representation of dimension (qn ± 1)/2.

(ii) S̄ = Un(2), n ≥ 4, and V ↓S is a Weil representation of dimension
(2n + 2(−1)n)/3 or (2n − (−1)n)/3.

(C) (Extraspecial case) d = pa for some prime p, p > 2 if G = GL(V ) and p = 2
otherwise, F ∗(G) = Z(G)E for some extraspecial subgroup E of order p1+2a of G
(and G satisfies one more technical condition which we omit here).

(D) (Exceptional cases) (G, dim(V )) is either one of the 13 examples described
in Theorem 2, or one of 19 more explicit exceptions (which we omit here).

Corollary 4. Assume G is one of the finite groups mentioned in Theorem 3 and
let χ be the character of the G-module V .

(i) If Q(χ) ⊆ Q(exp(2πi/3)) then G gives rise to a strongly perfect lattice.
(ii) If G = O(V ) then any G-orbit of any nonzero proper subspace of V is a

grassmannian 4-design.
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Corollary 4 yields several new infinite series of strongly perfect lattices as well
as of grassmannian 4-designs.

Katz [Ka2] defines the projective drop dV (g) of any element g ∈ GL(V ) to be the
smallest codimension (in V ) of g-eigenspaces on V . In [Ka2], Katz has formulated
three conjectures on the projective drop, Conjectures (2.7.1), (2.7.4), and (2.7.7),
in increasing order of strength. We will show that the second strongest, Conjecture
(2.7.4) of [Ka2], holds true. (A slightly different version of this result has also been
proved by Gluck and Magaard.)

Theorem 5. Let V = Cd with d ≥ 2, G = GL(V ), Sp(V ), or O(V ). Assume G is
a finite subgroup of G such that M4(G, V ) = M4(G, V ). Then

min

{
dV (g)

dim(V )
| g ∈ G \ Z(G)

}
≥ 1/8 .

Moreover, the equality occurs precisely when G is the Weyl group W (E8) of type
E8 on its (8-dimensional) reflection representation.

In fact we have also proved modular versions of the above results (that is, where
V is a finite dimensional vector space over algebraically closed fields of positive
characteristics), cf. [GT] for more details. In particular, our results give another
proof for Dixon’s conjecture [Di] in the case of finite simple groups of Lie type
defined over Fq when q →∞.
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Sphere Coverings in Dimensions 1, . . . , 24

Frank Vallentin

(joint work with Achill Schürmann)

1. Introduction

Classical problems in geometry are the determination of most economical sphere
packings and coverings of the Euclidean space Rd. While the sphere packing prob-
lem and especially the lattice packing problem has attracted many mathematicians
over the last three hundred years, the sphere covering problem has only a com-
paratively short history. Even if we restrict ourselves to the special case of lattice
coverings we are just beginning to develop a theory.

We present the current state of this theory for low-dimensional lattice coverings.
This includes an algorithm which in principle solves the lattice covering problem
in every given dimension d. Using this approach we were able to solve the lattice
covering problem up to dimension 5 (which was known before) and we were able
to find new best known lattice coverings in dimensions 6, 7, 8. Furthermore, we
show that the Leech lattice gives a locally optimal solution of the lattice covering
problem in dimension 24. We give the current best known lattice coverings in
dimension 1, . . . , 24 and conclude with the most tantalizing questions. For more
details and for references to the relevant literature we refer to [SV04a] and [SV04b].

2. The Lattice Covering Problem

We shall define the lattice covering problem. A lattice L is a full rank, dis-
crete subgroup of Rd. There exist matrices A ∈ GLd(R) with L = AZd which we
call bases of L. If Bd denotes the Euclidean unit ball, then the Minkowski sum
L+αBd = {v+αx : v ∈ L, x ∈ Bd}, α ∈ R>0, is a lattice covering if Rd = L+αBd.
The covering radius µ(L) is given by µ(L) = min{µ : L+ µBd is a lattice covering}.
For a lattice L we define its determinant det(L) = | det(A)|. The covering density

of L is Θ(L) =
√
µ(L)d/ det(L) · volBd.

Problem. (Lattice Covering Problem) For d ≥ 1, determine Θd = minL Θ(L)
and lattices L attaining it.

3. Dimensions 1, . . . , 5

The lattice covering problem has only been solved up to dimension 5 where
the one-dimensional case is trivial. The (unique) solutions are shown in Table 1.
This table invites to a question formulated by Ryshkov in 1967, who asked for the
lowest dimension in which A∗

d does not give the thinnest lattice covering.
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d lattice density Θd author(s)
1 Z 1
2 A

∗
2 1.2091 . . . Kershner, 1939

3 A∗
3 1.4635 . . . Bambah, 1954

4 A∗
4 1.7655 . . . Delone, Ryshkov, 1963

5 A∗
5 2.1242 . . . Ryshkov, Baranovskii, 1975

Table 1. Optimal lattice coverings

4. Classifying all locally optimal lattice coverings

Now we describe how one finds all locally optimal lattice coverings in a given
dimension. These are only finitely many and one finds them by solving convex op-
timization problems. This is mainly due to Voronoi’s theory of Delone subdivisions
[Vor08], which we briefly review.

4.1. Voronoi’s Theory of Delone Subdivisions.
We work in the classical setting of positive definite quadratic forms (PQFs from
now on) to represent lattices. Let Q be a positive semidefinite quadratic form. A
polyhedron P = conv{v1,v2, . . .} with v1,v2, . . . ∈ Zd, is called a Delone polyhe-
dron of Q if there exists a c ∈ Rd and a real number r ∈ R with Q[vi − c] = r2

for all i = 1, 2, . . ., and Q[v − c] > r2 for all other v ∈ Zd \ {v1,v2, . . .}. The
set Del(Q) of all Delone polyhedra is called the Delone subdivision of Q. It is a
periodic face-to-face tiling of Rd. Therefore Del(Q) is completely determined by
all Delone polytopes having a vertex at the origin 0. We call two Delone polyhedra
L,L′ equivalent if there exists a v ∈ Zd such that L = v ± L′. Note moreover
that the inhomogeneous minimum µ(Q) is at the same time the maximum squared
circumradius of its Delone polyhedra. We say that the Delone subdivision of a
positive semidefinite quadratic form Q′ is a refinement of the Delone subdivision
of Q, if every Delone polytope of Q′ is contained in a Delone polytope of Q.

By the theory of Voronoi, the set of positive semidefinite quadratic forms with
a fixed Delone subdivision D is an open (with respect to its affine hull) polyhedral
cone in the cone of positive semidefinite quadratic forms S≥0. We refer to this set
as the secondary cone (L-type domain) ∆(D) of the subdivision. The topologi-

cal closure ∆(D) of a secondary cone is a closed polyhedral cone. The relative
interior of each face is the secondary cone of another Delone subdivision. If a
face is contained in the boundary of a second face, then the corresponding Delone
subdivision of the first is a true refinement of the second one.

The interior of faces of maximal dimension
(
d+1
2

)
contain PQFs whose Delone

subdivision is a triangulation, that is, it consists of simplices only. We refer to
such a subdivision as a simplicial Delone subdivision or Delone triangulation. The
group GLd(Z) acts on S≥0. One of the key observations is that under this group
action there exist only finitely many inequivalent Delone subdivisions, respectively
secondary cones.
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Theorem. The topological closures of secondary cones of Delone triangulations
give a face-to-face tiling of S≥0. The group GLd(Z) acts on the tiling, and under
this group action there are only finitely many non-equivalent secondary cones.

Given a Delone triangulation D, the Delone triangulations D′ with ∆(D′) shar-

ing a facet with ∆(D) are attained by bistellar operations (flips). These change a
triangulation only in certain repartitioning polytopes associated to the facet. By
this operation it becomes possible to enumerate all Delone triangulations, and
hence all Delone subdivisions in a given dimension.

4.2. Obtaining Local Optima via Convex Optimization.
For a fixed triangulation D, we can formulate the lattice covering problem in the
framework of Determinant Maximization Problems which can be efficiently solved
(in the sense that one can approximate optimal solution for every given precision)

by interior point methods. We maximize det(Q) while µ(Q) ≤ 1. For allQ ∈∆(D)
this can be achieved by solving

minimize − log det(Q)
subject to Q ≻ 0,

Q ∈∆(D), µ(Q) ≤ 1.

5. Dimensions 6, . . . , 24

For each of the triangulations in dimension d ≤ 5 we determined by an imple-
mention (in C++) the local optima with respect to Θ. By this we confirmed the
known results for dimensions d ≤ 5. Since they are several millions (no reasonable
bound is known) different triangulations in dimension 6 there is no hope that this
algorithm will solve the problem in this dimension. Nevertheless, we found a lat-
tice in dimension 6 which currently is the best known covering lattice. Thereby
we answer Ryshkov’s question.

Theorem. ([SV04a]) In dimension 6, there exits a lattice Lc
6 with Θ(Lc

6) =
2.4648 . . ..

In [SV04b] we show that the root lattice E8 does not give a locally optimal
lattice covering, by constructing a refining triangulation D of Del(QE8) in which
Θ’s local optimum is not attained by the PQF QE8 . The PQF found in this way
even beats the formerly best known value Θ(A∗

8) by more than 12%.
Looking at the results in dimension d = 6, 8 it is interesting to observe that we

found the new covering lattices by looking at triangulations refining the Delone
subdivisions of the lattices E∗

d which inherits as much symmetry as possible. By
looking at a corresponding refinement of E

∗
7, we also found a new covering record

in dimension 7. It remains to see if these results have a common explanation.
Theorem. ([SV04b]) In dimension 8, there exists a lattice Lc

8 with Θ(Lc
8) =

3.1423 . . ..
Motivated by the work of Cohn and Kumar on the lattice packing problem we

proved
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Theorem. ([SV04b]) The Leech lattice provides a locally optimal lattice cov-
ering in dimension 24.

This provides a first step for proving the conjecture that the Leech lattice gives
the optimal sphere covering in dimension 24. The proof does not make use of
computers.

We conclude with Table 2 which lists the currently best known lattice covering
in dimensions 6, . . . , 24.

d lattice density Θd d lattice density Θd

6 Lc
6 2.464803 16 A∗

16 15.310927
7 Lc

7 w.i.p. 17 A∗
17 18.287811

8 Lc
8 3.142297 18 A∗

18 21.840949
9 A5

9 4.340185 19 A∗
19 26.081820

10 A∗
10 5.251713 20 A∗

20 31.143448
11 A4

11 5.598338 21 A∗
21 37.184568

12 A∗
12 7.510113 22 Λ∗

22 ≤ 27.8839
13 A

7
13 7.864060 23 Λ∗

23 ≤ 15.3218
14 A5

14 9.006610 24 Λ24 7.903536
15 A8

15 11.601626

Table 2. Best known lattice coverings.

6. The Situation

The situation of the sphere covering problem is quite embarrassing. We think
that the restriction to lattices is a crucial restriction and that there are sphere
coverings in low dimensions beating the optimal lattice coverings. Another point
of embarrassment is Table 2 which should — and definitely can — be drastically
improved at least for 9 ≤ d ≤ 21. Then, the covering densities of the lattices Λ∗

22

and Λ∗
23 are not known and a proof of the global optimality of the Leech lattice

covering seems not to be in reach at the moment.
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Hermite constants.

Renaud Coulangeon

This is a survey on recent work about generalizations of the classical Hermite
constant γn = supA∈P 1

n
minX∈Zn\{0}A[X ], where P 1

n stands for the set of n-ary
real positive definite quadratic forms with determinant 1.

First we present two examples of Hermite like constants, namely the Hermite-
Rankin constant ([7], [3]) and the Hermite-Humbert constant([4], [1]). These ex-
amples, and others, fit into the general setting of adelic geometry of numbers that
was developed recently by Takao Watanabe and which is explained below (see [9]
and [6] for details):

Let k be a number field, and V = Vf ∪ V∞ the set of places of k. In what
follows, G denotes a connected reductive algebraic group over k. Let

ρ : G −→ GL(V )

be a strongly k-rational absolutely irreducible representation of G on a k-vector
space V and D the highest weight space of ρ, with stabilizer P (parabolic sub-
group). Then X := G/P is a smooth projective variety embedded in P(V ) via
ρ. One also needs a maximal compact subgroup K in G(A), satisfying some tech-
nical assumptions (see [9]). Namely, if for x ∈ GL(V (A))V (k), we set ||x||A :=∏

v∈V ||xv||v, we assume that ||.||A is K-invariant. Moreover, one can normal-

ize ||.||A by the condition that ||x0||A = 1 for x ∈ D(k) \ {0}. Let G(A)1 :=
{g ∈ G(A) : ∀χ ∈ Xk(G) |χ(g)|A = 1}. For each g ∈ G(A)1, define Hg(x) :=

||ρ(gγ)x0||1/[k:Q]
A , where x = ρ(γ)x0. Then

Theorem 1 (Watanabe, 2000 [9]).

K \G(A)1/G(k) −→ R+

g 7→ min
x∈X(k)

Hg(x)

is a bounded continuous function. The generalized Hermite constant associated to
(ρ, ||.||A) is

µ(ρ, ||.||A) := max
g∈G(A)1

min
x∈X(k)

Hg(x)
2.

Examples. Let G be the general linear group GLn. Varying the ground field
k and the representation ρ, one obtains:

(1) k = Q,
(a) ρ the natural representation in Qn,

then µ(ρ, ||.||A) = γn, the Hermite constant.

(b) ρd the natural exterior representation in
∧d Qn,

then µ(ρ, ||.||A) = γn,d, the Hermite-Rankin constant.
(2) k = number field,

ρ the natural representation in kn,
then µ(ρ, ||.||A) = γn,k, the Hermite-Humbert constant.
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The last part of the talk is devoted to the so-called Voronöı theory. We first
recall the following classical theorem

Theorem 2 (Voronöı’s theorem 1908 [8]). A positive definite quadratic form A
is extreme (i.e. achieves a local maximum of the function γ) if and only if it is
perfect and eutactic.

A similar characterization holds for extremality with respect to the Hermite-
Rankin invariant [3] and the Hermite-Humbert invariant [4]. This allowed us to
compute the actual value of the Hermite-Humbert constant in dimension 2 over
real quadratic fields of small discriminant:

d 2 3 5

γ2,Q(
√

d) 4/(2
√

6− 3) 4 4/
√

5
Baeza, Coulangeon, Icaza,
O’Ryan (2001) [1]

In a recent work with Watanabe ([5]), we defined the Hermite constant of a
quaternion field, and also obtained a characterization of extreme points in terms
of perfection and eutaxy. An important tool regarding this kind of problems is the
theory developed by Bavard in [2]. It would, of course, be interesting to extend
these results to a widest class of Hermite like invariants, and to know for instance
under which assumptions on the group G and the representation ρ a Voronöı type
theorem holds for Watanabe’s constant µ(ρ, ||.||A).
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K. Saito’s conjecture on positivity of eta products and “extremal
pair” of lattices

Tomoyoshi Ibukiyama

This report is a summary of the paper [1]. Let η(τ) be the Dedekind eta function
defined by

η(τ) = q1/24
∞∏

n=1

(1− qn)

where q = e2πiτ and τ ∈ C, Im(τ) > 0. In his theory of extended affine root
systems and other things, K. Saito treated eta products of the form

∏

i

η(iτ)e(i)

where e(i) are integers which might be negative, and considered the condition
that the coefficients of the q-expansion of this function are all non-negative. For
example, in his paper [2], he defined a notion of elliptic eta product and he proved
that an eta product of this kind has only non-negative coefficients if and only if
this is not a cusp form. There are exactly four such eta products. These cases are
examples of his more general conjecture on the positivity of eta products defined
by “regular systems of weight” ([2], [3]). Apparently irrelevant to this, he also
gave a conjecture in his paper [4] that for any natural number h the eta product

η(hτ)φ(h)

∏
d|h η(dτ)

µ(d)

has only non-negative Fourier coefficients, where φ(h) is the Euler function and
µ(d) is the Möbius function. He has proved this conjecture for h = 2, 3, 5, 6, 10.
When h is a prime p or a product of two different primes p, q, we can see that the
latter conjecture is contained in the former conjecture. Anyway we can prove the
latter conjecture when h is a power of any prime p. Namely we have

Main Theorem
(1) For any prime p, all the Fourier coefficients of

η(pτ)p

η(τ)
= q(p

2−1)/12
∞∏

n=1

(1− qpn)p(1− qn)−1

are non-negative.
(2) For any prime p and any natural number a, all the Fourier coefficients of

η(paτ)pa−pa−1

η(pτ)

η(τ)

are non-negative.
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The outline of the proof is given as follows. The assertion (2) is an easy corollary
of the assertion (1). So we prove (1). For the sake of simplicity, we write fp(τ) =
η(pτ)p/η(τ). We also assume that p ≥ 5 since the case p = 2 or 3 is easier.

(i) A key point of the proof of (1) is to express this function as a difference
θL1(τ) − θL2(τ) of theta functions associated with a lattice L1 and a sublattice
L2 ⊂ L1 up to constant. It is clear that such difference has only non-negative
coefficients. The Fourier coefficients of fp(τ) starts in a sense from the biggest
possible power of q, and in this sense, the pair L1 and L2 may be called “extremal
pair” of lattices as an analogue of the usual extremal lattice.

(ii) We need some characterization of fp(τ) as a modular form. We put

Γ0(p) =

{(
a b
c d

)
∈ SL2(Z); c ≡ 0 mod p

}

and for any γ =

(
a b
c d

)
∈ Γ0(p), we put ψ(γ) =

(
(−1)(p−1)/2

d

)
. We denote

by Mk(Γ0(p), ψ) the space of holomorphic modular forms of Γ0(p) with charac-
ter ψ. Then, we can show that fp(τ) is, up to constant, the unique element in
M(p−1)/2(Γ0(p), ψ) such that it has at the cusp i∞ zero of order more than or

equal to (p2 − 1)/24. This is an easily proved lemma but useful.
(iii) To find the lattices we want, the theory of cyclotomic fields is helpful.

We take the cyclotomic field generated by ζ = e2πi/p. We regard Q(ζ) as a
(p − 1) dimensional vector space over Q with a positive definite quadratic form
TrQ(ζ)/Q(xx)/p and take ideals in the ring of integers Z[ζ] as lattices. We put

L1 = (1 − ζ)(p−3)/2Z[ζ] and L2 = (1 − ζ)(p−1)/2Z[ζ]. The minimum length of
elements of these lattices are at most p − 1. This is fairly small compared with
(p2 − 1)/12 which we expect for fp(τ). So lattices does not seem very promising
at first look for big p.

(iv) But a really surprising point is that the number of vectors in L1 and L2

are the same up to the length (p2 − 1)/12− 1. This can be proved by some tricky
argument. Then we can show fp(τ) = (θL1(τ) − θL2(τ))/p(p− 1).

Open problem: When h is divisible by at least two distinct primes, the con-
jecture becomes more complicated and we have no general answer, except for some
affirmative examples proved by alternating sum of theta functions.

References

[1] T. Ibukiyama, Positivity of eta products – a certain case of K. Saito’s conjecture, to appear
in Proceedings RIMS.

[2] K. Saito, Extended affine root systems V. Elliptic eta-products and their Dirichlet series.
Proceedings on Moonshine and related topics (Montréal, QC, 1999), 185–222, CRM Proc.
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Hermitian vector bundles and extension groups on arithmetic varieties

Klaus Künnemann

(joint work with Jean-Benôıt Bost)

Let K be a number field with ring of integers OK . For hermitian vector bundles F

and G on the arithmetic curve S = SpecOK , we introduce the group Êxt
1
(F,G)

of admissible extensions of F by G

E : 0→ G→ E → F → 0

(i.e. the underlying sequence of projective OK-modules is exact and FC and GC

carry the induced hermitian metrics from EC). For arithmetic curves, this group
has a natural structure of a real torus with Riemannian metric. The size

∫
(E) of

an admissible extension E is a measure for its non-triviality and is defined as the
distance to zero in the torus. Using the transference theorem from the geometry

of numbers and the inequalities relating ûdeg, µ̂max, and − log λ1 discussed in the
talk of Jean-Benôıt Bost at this meeting, one obtains the following fundamental
inequality

µ̂min(G)− µ̂max(F ) +
∫
(E) ≤ log |∆K |

[K : Q]
+ log

(
rkKG · rkKF

2

)
,

which relates the size of E to slope invariants of the involved hermitian vector
bundles.

A prori the size of an extension E may decrease under base change for a finite
extension L/K of the ground field. The problem of invariance of size under base
change is discussed. It asks whether the (suitably normalized) size of an extension
remains invariant under base change for finite extensions L/K. In the case K = Q,
we give the following positive answers to this problem. The size

∫
(E) is invariant

under base change if i) L/Q is abelian, or ii) F∨ ⊗G is a root lattice, or iii) F∨ ⊗G
is a lattice of Voronoi’s first kind. Using reduction theory, one gets furthermore
that the size is invariant under base change up to a constant which depends only
on K and the ranks of F and G.

As an example of an admissible extension, the arithmetic Hodge extension as-
sociated with an elliptic curve is introduced and discussed. Let X be an elliptic
curve over K which has semiabelian reduction and admits a projective, regular,
semistable model X over S. Let H denote the rank two hermitian vector bundle
given as the hypercohomology H = H1(X ,Ω·

X/S,≤1) of the truncated de Rham

complex equipped with the hermitian metric from complex Hodge theory. The
hypercohomology spectral sequence degenerates at E2 and H defines a natural ex-
tension of H1(X ,OX ) by H0(X ,Ω1

X/S). We obtain an admissible extension which

we call the arithmetic Hodge extension. An application of the fundamental in-
equality to this extension gives an upper bound for the Faltings height of X in
terms of the conductor of X and the size of the Hodge extension.
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A local-global principle for extensibility of representations of
quadratic forms and applications

Myung-Hwan Kim

(joint work with Wai-Kiu Chan, Byeong Moon Kim, Byeong-Kweon Oh)

In 1978, Hsia, Kitaoka and Kneser [HKK] proved the following remarkable
theorem :

Theorem 1. (Hsia-Kitaoka-Kneser) Let M be a positive definite Z-lattices of
rank m > 2n+ 3. Then there exists a constant C = C(M) > 0, depending only on
M , such that M represents any positive definite Z-lattice N of rank n, provided
that µ1(N) > C and Mp represents Np at every prime p, where µ1(N) is the
minimum of N .

See [BR], [CEJ], [J1], [J2], [JK], and [DS], [OS], [R], [T] for related works.
Let us consider a more general setting as follows : Let K and M be positive

definite Z-lattices of rank k and m, respectively, with 0 6 k < m, such that
M represents K via σ. Let N be any positive definite Z-lattice of rank n with
k < n < m, representing K via τ . Assume further that for every prime p, there
exists a local representation ρ(p) : Np → Mp such that ρ(p) ◦ τp = σp on Kp . We
can ask : “Under what condition does there exist a global representation ρ : N →M
such that ρ ◦ τ = σ on K ?”

A representation σ : K → M is said to be extensible to N (at p, resp.) via τ
if there exists a representation ρ : N → M ( ρ(p) : Np → Mp , resp.) such that
Diagram (∗) commutes. Such ρ (ρ(p), resp.) is called an extension of σ to N (at
p, resp.) via τ .

Diagram (∗)

K -
σ

M

τ
j

N

*

ρ(p) : Np →Mp , ∀ p =⇒ ∃ ρ : N →M ?
	

In this talk, we prove

Theorem 2. If m > k+2(n−k)+3, then there exists a constant C = C(K,M) >
0, depending only on K and M, such that the local extensibility of σ to N at
every prime p via τ implies the global extensibility of σ to N via τ, provided that
µk+1(N) > C, where µk+1(N) is the (k + 1)-th successive minimum of N .

In this vein, we may call Theorem 2 a local-global principle for extensibility for
representations of Z-lattices.
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Observe that if we replace Z-latticesK,M,N by quadratic spaces QK,QM,QN ,
respectively, then there exists a representation ρ′ : QN → QM by Hasse-Min-
kowski’s theorem, provided that σ : QK → QM is extensible to QN at p via
τ : QK → QN for every p and hence there exists a representation ρ : QN → QM
such that ρ ◦ τ = σ by Witt’s theorem. So, the local-global principle for extensi-
bility of representations holds over Q.

If we let K = {0}, then σ = τ = 0 and hence any ρ(p) : N →M is an extension
of σ to N at every p via τ . Therefore, Theorem 1 follows immediately as a special
case of Theorem 2.

In matrix term, Theorem 2 can be rephrased as following :

Theorem 3. Let M ∈ S+
m(Z), H ∈ S+

n−k(Z) and A ∈ Mk×m(Z),
B ∈ Mk×(n−k)(Z) such that m > k + 2(n − k) + 3. Then there exists a con-
stant C = C(B,M) > 0, depending only on B and M , satisfying the following
property: If XtMX = H and AX = B has a solution X ∈Mm×(n−k)(Zp) for all
p and µ1(H) > C, then it has a solution X ∈Mk×(n−k)(Z).

As a very simple application of Theorem 3 (with n = 2 and k = 1), we prove : If
m > 6, then the system of equations

{
c1x

2
1 + · · ·+ cmx

2
m = h

a1x1 + · · ·+ amxm = b

has a solution in Z if h is sufficiently large, ci’s are pairwise coprime positive odd
integers, and (h− b)a1 · · · am is even.
This can be regarded as a generalization of Cauchy’s Lemma which was used in
the proof of his famous polygonal number theorem. Theorem 3 can also be used to
show that certain Fourier coefficients of Siegel-Jacobi theta series do not vanish.

A Z-lattice M is called (almost) n-universal if M represents all Z-lattices of
rank n (except finitely many, resp.). An (almost) n-universal Z-lattice is called
new if it does not contain an (almost) n-universal sublattice of smaller rank. As
another application of Theorem 2, we prove that there are infinitely many new
almost 2-universal Z-lattices of rank 6. More precisely : Z-lattices of the form
M(a, b) ∼= 〈1, 1, 2, 5, a, b〉 are new almost 2-universal if a is sufficiently large, where
a 6 b such that 5 ∤ (a, b), 8 ∤ (a, b), and p2 ∤ (a, b) for each prime p satisfying
(10

p ) = −1.

This is a quite different feature for almost universality compared to the fact that
there are only finitely many new n-universal Z-lattices (see [KKO]).
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Minkowski’s second theorem over a simple algebra

Takao Watanabe

Let k be a global field, D a central division k-algebra of degree d and A =
Mm(D) the simple algebra of m by m matrices with entries in D, V a right
free A-module of rank n with a basis e1, · · · , en and G the group of A-linear
automorphisms of V . By the obvious way, V and G are identified with Mmn,m(D)
and GLmn(D), respectively. For a place v of k, let kv be a completion of k at
v. Since D ⊗k kv is a central simple kv-algebra, it is isomorphic with an algebra
Md/dv

(D(v)), where D(v) is a division kv-algebra of degree dv. Then A⊗k kv and
V ⊗ kv are identified with Mmv (D(v)) and Mmvn,mv(D(v)), respectively, where
mv = dm/dv. We denote by G(A) the adele group of G.

Let s > t > 0 be positive integers and let Is,t denote the set of all subsets
I ⊂ {1, 2, . . . , s} with cardinality |I| = t. For each infinite place v, the map
A 7→ A∗ from Ms,t(D(v)) to Mt,s(D(v)) is defined by A∗ = (aij)

T for A = (aij),
where the superscript T means the transpose and aij 7→ aij stands for the canonical

involution of D(v). The local height F
(s,t)
v on the matrix space Ms,t(D(v)) is

defined as follows:

F (s,t)
v (A) =




|NrMt(D(v))/kv

(A∗A)|1/2
kv

(v is infinite)
sup

I∈Is,t

(|NrMt(D(v))/kv
(IA)|kv ) (v is finite)

where IA denotes the t by t submatrix of A ∈Ms,t(D(v)) having rows indexed by
I. Then, for g = (gv) ∈ G(A), we define the global twisted height Hg : V −→ R+

by

Hg(X) =
∏

v∈V

F (mvn,mv)
v (gvX)1/(dm) for X ∈ V.

For g ∈ G(A) and a positive real number λ, we set

Ωg(λ) = {x ∈ Ge1 : Hg(x) 6 λ} .
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Then Ωg(λ)A
× = Ωg(λ), and Ωg(λ)/A

× is a finite set. The i-th successive minima
λi(g) of g is defined to be

λi(g) = min{λ > 0 : Ωg(λ) contains i A-linearly independent elements}.

We introduce the notion of a g-chain. A sequence of n A-linearly independent
elements x1, . . . , xn ∈ Ge1 is identified with the matrix x = (x1, . . . , xn) in G. We
call an element x ∈ G a g-chain if Hg(x1) = λ1(g) and

Hg(xi) = min{Hg(y) : y ∈ Ge1 and x1, . . . , xi−1, y are A-linearly independent}

holds for all i = 2, . . . , n. Let Xg denote the set of all g-chains in G. If x ∈ Xg, we
set

λi(g,x) = Hg(xi) for i = 1, 2, . . . , n.

If m > 2, then A has zero divisors, and we can not conclude that x1, . . . , xi−1, y
are A-linearly independent even if y 6∈ x1A + · · ·+ xi−1A. Taking account of this,
we define another successive minima µi(g,x) for g ∈ G(A) and x ∈ G as follows:

µi(g,x) = min{Hg(y) : y ∈ Ge1 and y 6∈ x1A + · · ·+ xi−1A} .

We define the constant c(g) by

c(g) = min
x∈Xg

max
16i6n

{
λi(g,x)

µi(g,x)

}
> 1 .

The main theorem is the following, which is an extension of Minkowski’s second
theorem.

Theorem 1. The inequality

λ1(g) · · ·λn(g) 6 c(g)nγ̃n(A)1/(dm)|NrMmn(D)/k(g)|1/(dm)
A

holds for any g ∈ G(A), where we put

γ̃n(A) = max
g∈G(A)

λ1(g)
dmn

|NrMmn(D)/k(g)|A
.

If m = 1, i.e., A = D is a division algebra, then c ≡ 1 and we have

λ1(g) · · ·λn(g) 6 γ̃n(D)1/d|NrMn(D)/k(g)|1/d
A .

In the case that k is an algebraic number field and d = m = 1, this result is
due to Vaaler [3]. The constant γ̃n(A) is an analogue of Hermite’s constant. For
example, if k is an algebraic number field, then γ̃n(Mm(k)) = γmn,m(k)n[k:Q]/2

holds. A Minkowski–Hlawka type lower bound of γ̃n(A) is given in [2]. If D is a
quaternion algebra, then an upper bound of γ̃n(D) is given in [1]. More general
theory of Hermite’s constant was developed in [4].
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On the basis problem for squarefree levels

Siegfried Böcherer

We first recall the definition of theta series: For a given positive definite even
integral matrix S of even size m = 2k we put

ϑn(S,Z) =
∑

X∈Z(m,n)

exp(tr(XtSXZ)) ,

where Z is an element of Siegel’s upper half space Hn.
It is well known that this defines an element of Mn

k (N,χS), the space of Siegel

modular forms of weight k and nebentypus χS =
(

(−1)kdet(S)
.

)
for the group

Γn
0 (N). For a genus g of such quadratic forms we can consider the linear space
θn(g) generated by all the ϑn(S) with S ∈ g. Then for a given quadratic character
χ with χ(−1) = (−1)k

Mn
k (N,χ) ⊃

∑

g

θn(g),

where g runs over all the genera of level (dividing) N, rank m and character χ.
We can ask two versions of the basis problem (with the notations above):
Weak version:When does Mn

k (N,χ)cusp ⊂∑
g θ

n(g) hold ?

Genus version: Here we fix a genus g and ask, whether Mn
k (N,χ)cusp ⊂ θn(g)

holds.
In my talk I present two recent contributions to these questions, both for squarefree
levels. From now on N should be squarefree.
Theorem 1: (with Katsurada and Schulze-Pillot)
If k ≥ 2n+ 1, then all cusp forms of degree n, weight k and character χ are linear
combination of appropriate theta series, i.e.

Mn
k (N,χ)cusp ⊂

∑

g

θn(g) .

In this formulation, we avoid any problem at the bad primes, but we have to allow
theta series from sufficiently many genera of levels dividing N. In the proof, a
recent result of Katsurada and Schulze-Pillot about the space of Eisenstein series
is crucial [4]; it allows us to use the “pullback method” for a “simple” Eisenstein
series of level N; here “simple” means that we can compute (or avoid) contributions
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from the bad primes. An additional feature used here is the injectivity of the U(p)-
operator (p | N) on such spaces [2].

The second theorem is about the genus version. We will only consider the case
n=1 and the case N=q (a prime). We have not much hope to extend this to the
Siegel case, the restriction to prime level is only done to simplify our statements.
In principle, our methods work for arbitrary squarefree level.
To illustrate the result, we recall a famous theorem of Waldspurger: For a prime
q ≡ 1 and m divisible by 4, we denote by g(m, q, qν) the genus of quadratic
forms of level q and discriminant qν with ν odd, 1 ≤ ν ≤ m − 1 and we put
θ(m, q, qν) = θ1(g(m, q, qν).

Theorem (Waldspurger)

Mk(Γ0(q), k, χ)cusp ⊂ θ(m, q, q) + θ(m, q, qm−1) ⇐⇒
the Hecke operator U(q) does not have real eigenvalues.

This is a somewhat mysterious condition and one may naturally ask what hap-
pens for the remaining genera. Surprisingly (for me), the situation becomes much
simpler:

Theorem 2: For 1 < ν < m− 1 we always have

Mk(Γ0(q), χ)cusp ⊂ θ(m, q, qν)

Remarks:

• The really delicate case is m = 4, where only the genera treated by Wald-
spurger exist.
• This result also works for theta series with harmonic polynomials.
• There is also a formulation for squarefree N (instead of N = q).
• There is also a version of this for m ≡ 2 modulo 4.
• Our method also works for Haupttypus (trivial character), but here Wald-

spurger already had an affirmative answer to the basis problem (even for
more general levels, but always just for one particular genus). By our
method, we can get a result for the genus version of the basis problem for
all genera!
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[2] Böcherer, S.: On the Hecke operator U(p). Preprint 2004
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klaus.kuennemann@...

...mathematik.uni-regensburg.de

NWF-I Mathematik
Universität Regensburg
93040 Regensburg

Prof. Dr. Jacques Martinet

martinet@math.u-bordeaux1.fr

Jacques.Martinet@math.u-bordeaux1.fr

Laboratoire d’Algorithmique
Arithmetique
Universite Bordeaux I
351 cours de la Liberation
F-33405 Talence Cedex

Prof. Dr. Jorge F. Morales

morales@math.lsu.edu

Dept. of Mathematics
Louisiana State University
Baton Rouge, LA 70803-4918
USA

Prof. Dr. Gabriele Nebe

nebe@math.rwth-aachen.de

Lehrstuhl D für Mathematik
RWTH Aachen
52056 Aachen

Dr. Phong Nguyen

pnguyen@di.ens.fr

Departement de Mathematiques et
d’Informatique
Ecole Normale Superieure
45, rue d’Ulm
F-75005 Paris Cedex

Frederique Oggier

frederique.oggier@epfl.ch

Institut de Mathematique Bernoulli
Ecole Polytechnique Federale
de Lausanne
CH-1015 Lausanne

Prof. Dr. Wilhelm Plesken

plesken@momo.math.rwth-aachen.de

Lehrstuhl B für Mathematik
RWTH Aachen
Templergraben 64
52062 Aachen

Prof. Dr. Michael E. Pohst

pohst@math.tu-berlin.de

Fakultät II -Institut f. Mathematik
Technische Universität Berlin
Sekr. MA 8-1
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Heinz-Georg Quebbe-

mann

quebbemann@mathematik.uni-oldenburg.de

Fachbereich 6 Mathematik
Carl von Ossietzky
Universität Oldenburg
26111 Oldenburg

Cordian Riener

cordi777@gmx.de

Laboratoire d’Algorithmique
Arithmetique
Universite Bordeaux I
351 cours de la Liberation
F-33405 Talence Cedex



66 Oberwolfach Report 1/2005

Prof. Dr. Rudolf Scharlau

Rudolf.Scharlau@math.uni-dortmund.de

Fachbereich Mathematik
Universität Dortmund
44221 Dortmund

Prof. Dr. Rene Schoof

schoof@science.uva.nl

schoof@mat.uniroma2.it

Dipartimento di Matematica
Universita degli Studi di Roma II
Tor Vergata
Via della Ricerca Scientifica
I-00133 Roma

Dr. Rainer Schulze-Pillot

schulzep@math.uni-sb.de

schulzep@count.math.uni-sb.de

Fachrichtung - Mathematik
Universität des Saarlandes
Postfach 151150
66041 Saarbrücken

Prof. Dr. Jean-Pierre Serre

serre@dma.ens.fr

6, Avenue de Montespan
F-75116 Paris

Prof. Dr. Tetsuji Shioda

shioda@rikkyo.ac.jp

shioda@rkmath.rikkyo.ac.jp

Dept. of Mathematics
Rikkyo University
Nishi-Ikebukuro
Tokyo 171
JAPAN

Prof. Dr. Nils-Peter Skoruppa

skoruppa@math.uni-siegen.de

Universität Siegen
Fachbereich 6 Mathematik
Walter-Flex-Str. 3
57068 Siegen

Prof. Dr. Patrick Sole

ps@essi.fr

Laboratoire d’Informatique
Signaux et Systems de
Sophia Antipolis (I3S)
250, rue Albert Einstein
F-06560 Valbonne

Bernd Souvignier

souvi@math.ru.nl

Dept. of Mathematics
Radboud Universiteit Nijmegen
Postbus 9010
NL-6500 GL Nijmegen

Dipl.-Math. Ute Staemmler

ute@math.uni-sb.de

Fachrichtung 6.1 Mathematik
Universität des Saarlandes
Geb. 27
66123 Saarbrücken

Prof. Dr. Ivan Suarez Atias

ivan.suarez@epfl.ch

Departement de Mathematiques
Ecole Polytechnique Federale
de Lausanne
CH-1015 Lausanne

Maria Teider

maria.teider@mathematik.uni-ulm.de

Abteilung Reine Mathematik
Universität Ulm
89069 Ulm

Prof. Dr. Pham Huu Tiep

tiep@math.ufl.edu

Dept. of Mathematics
University of Florida
358 Little Hall
P.O.Box 118105
Gainesville, FL 32611-8105
USA



Gitter und Anwendungen 67

Frank Vallentin

vallenti@ma.tum.de

Zentrum Mathematik
TU München
Boltzmannstr. 3
85748 Garching bei München

Prof. Dr. Boris B. Venkov

bbvenkov@yahoo.com

St. Petersburg branch of Steklov
Mathematical Institute
Fontaka 27
191011 St. Petersburg
Russia

Prof. Dr. Emanuele Viterbo

viterbo@polito.it

Dipartimento di Elettronica
Politecnico di Torino
Corso Duca degli Abruzzi, 24
I-10129 Torino

Ina Voigt

Ina.Voigt@mathematik.uni-dortmund.de

Fachbereich Mathematik
Universität Dortmund
44221 Dortmund

Prof. Dr. Takao Watanabe

watanabe@math.wani.osaka-u.ac.jp

Dept. of Mathematics
Graduate School of Science
Osaka University
Machikaneyama 1-16, Toyonaka
Osaka 560-0043
JAPAN




