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Introduction by the Organisers

This workshop was attended by 47 participants with broad geographic representa-
tion from all continents. It was enlightened by this cheerful atmosphere special to
Oberwolfach, and which the participants contributed to by their mutual friendship
and esteem.

The theme was optimization problems, their theory and resolution, and above
all applications of them. Some emphasis was put on the still recent subject of
optimization over the cone of positive semidefinite matrices (SDP). In the following
20 extended abstracts, one finds

– several papers devoted to theory per se: exitence and stability of solutions,
analysis of algorithms;

– a good number on methodology of resolution: design, development, implemen-
tation of algorithms;

– a majority dealing with applications; some such applications come from other
branches of mathematics (combinatorics, dynamic systems), but most from the
real world: operations research, telecommunications, production and transporta-
tion, medicine, model management.
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We thank Gail Pieper (Argonne National Laboratory) for her careful proofread-
ing of every abstract; her editorial work substantially improved the presentation
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Abstracts

An Overview of Nonsmooth Dynamical Systems

Vincent Acary

1. A Very Short Introduction to Moreau’s Sweeping Process

Nonsmooth dynamical systems (NSDS) are a very special kind of dynamical
systems, characterized by a nonsmooth evolution with respect to time and by a
set of nonsmooth generalized equations. The so-called Moreau sweeping process
[10, 11] is a special kind of differential inclusion with a maximal monotone operator
[5], which appears to be a nice formulation for the unilateral dynamics:

(1)

{
ẋ(t) + f(x, t) = λ(t), x(t) ∈ Rn, λ(t) ∈ Rm

−λ(t) ∈ NΦ(t)(x(t)),

where f is a smooth vector field and NΦ(t) is the normal cone to an admissible set
Φ(t) for the state x. We refer to [2] for the equivalence with other types of order-one
NSDS and to [7] for a review of various extensions of Moreau’s sweeping process
and associated mathematical results with weaker assumptions on the regularity of
the solution.

Many examples of NSDS come from the engineering sciences. In electrical
engineering, networks with idealized components (diodes, saturation, relays, etc.)
are easily formulated as in (1). If the dynamics is linear, linear complementarity
systems are often considered:

(2)






ẋ = Ax + Bλ, x ∈ Rn, λ ∈ Rm

w = Cx + Dλ

0 6 w ⊥ λ > 0.

For passive systems, this formulation is equivalent to (1) when D = 0 (see [6]);
but we will see that it is not well defined in all cases. In mechanical engineering,
M. Schatzman [16] has given a correct meaning to motion with measure accelera-
tion for Lagrangian systems with unilateral contact, and J.-J. Moreau has extended
the sweeping process to the second-order system [12]

−du + f(t, q(t)) ∈ NT (q)(u(t)).(3)

Here u = q̇ is the velocity assumed to be a right-continuous function of bounded
variations, and T (q) is the tangent cone to the admissible set Φ at the position q(t).
The acceleration is replaced by a differential measure du, which may be viewed as
the derivative in the sense of distributions of the velocity u (for more details see
[13]). This compact formulation is powerful, not only from the computational point
of view, but also from the pure mathematical point of view [9, 17, 4]. In control
engineering, the standard problem of controlling a dynamical system with state
constraints yields a dual problem that is also an NSDS. Numerous applications also
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exist in biology, in economics, and in any problems where a constraint is imposed
on the state variable.

Numerical methods inherit from the approach chosen to investigate NSDS. Two
major approaches are widespread: the hybrid approach and the nonsmooth ap-
proach.

The hybrid approach considers NSDS as a hybrid multimodal dynamical system.
In each mode, separated by two events, sufficient regularity is assumed on the
system to accommodate standard analysis and classical numerical methods. This
approach results in a family of computational schemes called event driven. In this
framework, one cannot establish a general convergence proof, and the accumulation
of events in finite time cannot be circumvented.

The nonsmooth approach is based on Moreau’s sweeping process and its vari-
ants. The key idea is to write a suitable approximation of measures on a finite
interval, which yields efficient and robust numerical schemes, called time stepping.
The first such algorithm was the “catching-up algorithm” [11]. In the framework
of multibody dynamics, the derived algorithm is a “nonsmooth contact dynam-
ics” method [14, 15, 8], which can treat several thousands of 3D frictional contact
conditions. The time step is no longer driven by events but is simply fixed by
an a priori error criterion. Accumulations of events, or large numbers thereof in
finite time, are handled without difficulty. Furthermore, convergence analysis of
this family of schemes gives a constructive existence proof for rather complicate
systems [9, 17].

2. Higher Relative-Degree Moreau’s Sweeping Process

In joint work with B. Brogliato and D. Goeleven [1, 3], higher relative-degree
systems are studied1. If the relative degree is at least 3, a generalized solution
is a distribution of order larger than 2. Therefore, a positivity constraint on λ
is meaningless. To circumvent this problem, we propose a new formulation of
such systems as a measure-differential inclusion of higher order. This derivation
is rather technical; we refer the reader to [3] for more details.

With this formulation, we give a precise meaning to solutions as distributions
generated by a finite set of differential measures. Global existence and uniqueness
results are also proved for a certain class of regular functions (analytical in every
right neighborhood) and under a monotonicity assumption. Moreover, an efficient
time-stepping scheme is designed; its convergence proof is currently under study.
Applications for such types of systems include electrical and mechanical systems
with feedback control, as well as the design of an indirect framework for solving
optimal control problems with state constraints, based on necessary conditions.

1In systems of the form (2), the relative degree r between the output w and the multiplier λ

may be defined as the rank of the first nonzero element in the sequence of Markov parameters
(D, CB, CAB, CA2B, . . .). A clear analogy exists between this relative degree and the differential
index in differential algebraic equations.
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Managing Models in Simulation-Based Design Optimization

Natalia Alexandrov

(joint work with Robert Michael Lewis)

Advances in numerical modeling and computational power enable increasingly ac-
curate simulation of physical and engineering phenomena. However, the enormous
cost of repeated high-fidelity simulations, such as the Navier-Stokes equations or
those based on fine computational meshes, makes the use of high-fidelity models
impractical in the context of single-discipline or multidisciplinary design optimiza-
tion.

Engineering designers have traditionally alleviated this difficulty by the com-
bined use of high-fidelity and low-fidelity models in heuristic procedures, with
low-fidelity models ranging from data-fitting models to simplified physics models.
See, for instance, [8] for a review of approximations in structural optimization
and [15] for a review of models in aerodynamic optimization. Some approaches
to optimization with variable-fidelity models attempt to create the “best” low-
fidelity model and optimize it, while others update the model by using heuristic
procedures. See, for example, [10] and the references therein. Convergence to
high-fidelity solutions is not guaranteed, in general.

Approximation and model management optimization (AMMO) [3, 1, 6, 7, 2, 4,
5] combine the use of general variable-fidelity models with analytically substanti-
ated algorithms to improve tractability of design with high-fidelity models while
preserving provable convergence properties. We consider the following general de-
sign problem. Given a set of design variables x, the analysis computes a set of
quantities u(x) of engineering interest. The computational model used in comput-
ing u(x) often involves the solution of a set of (coupled) differential equations, as
in the case of computing the flow around an airplane. The design problem is

minimize
x

f(x, u(x))

subject to h(x, u(x)) = 0
g(x, u(x)) ≥ 0
xl ≤ x ≤ xu.

In conventional optimization, the analysis supplies the optimizer with objective
and constraint function and derivative information. The optimizer builds local
approximations of the objective and constraints—usually first- or second-order
Taylor series—to compute new designs x. The basic idea of AMMO is to replace
the local Taylor series model in the optimization subproblems with general models
that satisfy consistency conditions with respect to the high-fidelity model. This is
motivated as follows.

In general, the favorable situation in optimization occurs when the trends in the
low-fidelity model responses coincide with those of the high-fidelity model. Thus,
while the absolute difference between the low- and high-fidelity responses may be
large, it is the trend in the low-fidelity model that is of significance to optimization.
In practice, the trends in the low-fidelity problem may behave differently from
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those in the high-fidelity problem. To address this, AMMO borrows from existing
engineering practice to transform the low-fidelity responses to produce a better
approximation of the trends of the high-fidelity problem.

The first-order AMMO idea can be used in conjunction with any gradient-based
optimization algorithm. Here is an example of an AMMO algorithm for bound
constrained minimization.

Initialize xc, ∆c

Do until convergence:
Select model ac with ac(xc) = fhi(xc); ∇ac(xc) = ∇fhi(xc)
Solve approximately for sc = x − xc:

minimize
s

ac(xc + s)

subject to xl ≤ xc + s ≤ xu

‖ s ‖∞ ≤ ∆c

Compute ρc ≡ fhi(xc) − fhi(xc + sc)

fhi(xc) − ac(xc + sc)
Accept sc if fhi(xc) > fhi(xc + sc); otherwise reject
Update ∆c and xc based on the value of ρc

End do

The ratio ρc of the actual reduction in the high-fidelity objective to the predicted
reduction obtained by computing with the corrected low-fidelity model measures
the performance of the corrected low-fidelity model. The trust radius ∆c is up-
dated, based on the value of ρc, according to the standard trust-region practice.
The step of choosing the model ac and the nature of the trust-region subproblem
distinguish this algorithm from conventional optimization.

The first-order consistency conditions in this case require the model ac used in
the optimization subproblem to satisfy ac(xc) = fhi(xc) and ∇ac(xc) = ∇fhi(xc).
These ensure that ac mimics the local behavior of a Taylor series model around
the current best design xc. This, in turn, can be used to prove that the overall
optimization process will converge to a constrained stationary point of the high-
fidelity objective fhi.

Although exact consistency is unnecessary, a number of easily computed correc-
tions ensure consistency, for instance, a technique we call the β-correction [13, 11].
Given the high-fidelity objective fhi = f and any low-fidelity approximation flo of
the objective fhi, we correct flo as follows. Define

β(x) =
fhi(x)

flo(x)
, βc(x) = β(xc) + ∇β(xc)

T (x − xc) .

Then ac(x) = βc(x)flo(x) satisfies the first-order consistency conditions. Conver-
gence analysis of the resulting AMMO schemes relies on the consistency conditions
and standard assumptions for the convergence analysis of the underlying optimiza-
tion algorithm.

Practical efficiency of any particular AMMO scheme depends on the ability to
transfer the computational load to the lower-fidelity computations and the relative
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cost of low-fidelity model with respect to high-fidelity model. AMMO has been
implemented by several research groups, mostly in the context of optimization of
systems governed by computational fluid dynamics. Threefold to sevenfold savings
in terms of high-fidelity evaluations have been observed in accumulated numerical
experience.

Model management has also been explored in the context of derivative-free
optimization (e.g., [9]), as well as in the special algorithmic context of multigrid-
based approaches (e.g., [14] and [12]).
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Musin’s Proof of the Kissing Number in Dimension Four

Kurt M. Anstreicher

For n ≥ 3 let Sn−1 = {x ∈ Rn : xT x = 1}, and −1 < z < 1. A finite set
C = {xi}M

i=1 ⊂ Sn−1 is called a spherical z-code if xT
i xj ≤ z for all i 6= j. For

z = 1
2 , {xi} correspond to contact points between Sn−1 and M non-overlapping

spheres of radius one that are all incident to Sn−1. Maximizing the number M of
such spheres is called the kissing problem in dimension n, and the maximal M is
called the kissing number.

The kissing problem in dimension 3 has a long history, going back to a discussion
between Isaac Newton and David Gregory in 1694. Newton apparently believed
that for n = 3 the kissing number was 12, while Gregory thought that 13 might be
possible. In fact 13 is not possible but this is surprisingly difficult to prove. The
first complete proof is credited to Schütte and van der Waerden [8] in 1953, and
a subsequent proof by Leech [5] (see also [9]) in 1956 is now standard. The idea
of Leech’s proof is relatively simple but there are many details, some non-trivial,
that require verification. The proof also appears to be impossible to extend to
higher dimensions, for example to n = 4.

For general n and z there are several approaches that provide upper bounds
on the size M of a z-code C ⊂ Sn−1; see for example [2, 9]. For small n the
best results are typically obtained using the Delsarte bounds, which are based on a
combination of harmonic analysis and linear programming [2, 3, 4, 6, 9]. For z = 1

2
this approach leads to a complete characterization of maximal codes in dimensions
n = 8 and 24 [1, 2], but for n = 3 the result is a bound of 13. For n = 4 a 1

2 -code
with M = 24 is known, but the Delsarte bound is 25. The determination of the
kissing number in dimension 4 has been an outstanding open problem for many
years.

A 2003 paper of Musin [7] appears to have settled the kissing problem in dimen-
sion 4 via an interesting extension of the Delsarte bounds. To describe Musin’s
result we need to introduce the original linear programming bounds. The distance
distribution of a code C = {xi}M

i=1 is the function λ(·) : [−1, 1] → R+ defined as

(1) λ(s) =
|{(i, j) :xT

i xj = s}|
M

.

It follows that if C is a spherical z-code the distance distribution satisfies λ(s) ≥ 0,
−1 ≤ s ≤ z, λ(1) = 1, and

∑
−1≤s≤z λ(s) = M − 1. Let Φk(·), k = 0, 1, . . . denote

the Gegenbauer, or ultraspherical, polynomials Φk(t) = P
(β,β)
k (t)/

(
k+β

k

)
, where

P
(β,β)
k (·) is the Jacobi polynomial with β = (n− 3)/2. The normalization of Φk(·)

is chosen so that Φk(1) = 1 for all k. Using techniques from harmonic analysis it
can be shown ([4], [2, Chapters 9, 13], [9, Chapter 8]) that

(2) 1 +
∑

−1≤s≤z

λ(s)Φk(s) ≥ 0, k = 1, 2, . . . .
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From (1) and (2), using k = 1, . . . , K, the Delsarte bound on M is obtained via
the semi-infinite linear programming problem

LP : max
∑

−1≤s≤z

λ(s)

s.t.
∑

−1≤s≤z

λ(s)Φk(s) ≥ −1, k = 1, . . . , K,

λ(s) ≥ 0, −1 ≤ s ≤ z.

The dual of LP is the problem

LD : min

K∑

k=1

fk

s.t.

K∑

k=1

fkΦk(s) ≤ −1, −1 ≤ s ≤ z,

fk ≥ 0, k = 1, . . . , K.

Let f(s) = 1 +
∑K

k=1 fkΦk(s), where fk ≥ 0, k = 1, . . . , K. For the Delsarte
bound, obtained from LD rather than LP, fk are chosen to minimize f(1) subject
to f(s) ≤ 0, s ∈ [−1, z]. Musin’s idea is to generalize f(·) in such a way that more
detail regarding the possible structure of λ(·) can be exploited. Note that if λ(·)
is the distance distribution of a spherical z-code, then

∑

−1≤s≤z

λ(s) =

K∑

k=1

fk +
∑

−1≤s≤z

λ(s)

[
1 +

K∑

k=1

fkΦk(s)

]

−
K∑

k=1

fk

[
1 +

∑

−1≤s≤z

λ(s)Φk(s)

]
≤

K∑

k=1

fk +
∑

−1≤s≤z

λ(s)f(s),

and therefore

M = 1 +
∑

−1≤s≤z

λ(s) ≤ f(1) +
∑

−1≤s≤z

λ(s)f(s).

Musin allows f(·) to be nonnegative and decreasing on [−1, t0) and nonpositive
on [t0, z], for some t0 < −z. We refer to such an f(·) as a Musin polynomial. Let

λi(s) = |{j : xT
i xj = s}|, so that λ(s) = [

∑M
i=1 λi(s)]/M . Then if f(·) is a Musin

polynomial,

M ≤ f(1) +
∑

−1≤s≤t0

λ(s)f(s) = f(1) +

M∑

i=1

∑

−1≤s≤t0

[λi(s)/M ]f(s)

≤ f(1) + max
i=1,...,M

∑

−1≤s≤t0

λi(s)f(s).

For given (n, z, t0), define Ym to be the set of spherical z-codes {yi}m
i=0 in Sn−1

that satisfy the additional condition yT
0 yi ≤ t0, i = 1, . . .m. Let µ be the maximum
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m so that Ym is nonempty, and define

(3) hm = max
y∈Ym

m∑

i=1

f(yT
0 yi), m = 1, . . . , µ.

Musin’s final bound is then given by

(4) M ≤ f(1) + max
m=1,...,µ

hm.

The computation of Musin’s bound (4) has two main steps. The first requires
construction of an appropriate Musin polynomial f(·). For fixed (n, z, t0) this
involves the solution of a problem similar to LD, with added terms corresponding
to certain candidate configurations in Ym, m = 1, . . . , µ. The second step is
verification of the bound (4) via computation of hm, m = 1, . . . , µ. While the
construction of f(·) is relatively straightforward, verification of the bound is more
complex since the optimization problem (3) defining each hm is highly nonconvex.
There are, however, several factors that facilitate the verification phase. First,
if n is small and |t0| is not too small then µ cannot be too large. For example
for z = 1

2 and a value t0 ≈ −0.6, the value of µ in dimensions 3 and 4 is 4 and
6, respectively [7]. Second, Musin is able to partially characterize the structure
of a maximizing set Y ∗

m, simplifying the computation of hm. For m ≤ n Musin
shows that Y ∗

m must be a regular spherical simplex containing −y0. For m > n the
structure of Y ∗

m is more complex, but for dimensions 3 and 4 the form is sufficiently
constrained to permit the computation of hm. For z = 1

2 the result is the first
proof that M < 25 in dimension 4, and a new proof that M < 13 in dimension
3. In some higher dimensions Musin constructs a polynomial f(·) that appears
to give an improvement over the Delsarte bound, but verification of the bound
in these dimensions is currently too difficult to complete. Simplification of the
verification phase is an interesting topic of ongoing research.
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Some New Results on the Total Least Squares Problem

Amir Beck

(joint work with Aharon Ben-Tal and Marc Teboulle)

Many problems in data fitting and estimation give rise to an overdetermined sys-
tem of linear equations Ax ≈ b, where both the matrix A ∈ Rm×n and the vector
b ∈ Rm are contaminated by noise. The total least squares (TLS) approach to
this problem [8, 10] is to seek a perturbation matrix E and a perturbation vector
w that minimize ‖E‖2 + ‖w‖2 subject to the consistency equation; that is, E and
w are the solutions of the optimization problem

(TLS) min
w,E,x

{‖E‖2 + ‖w‖2 : (A + E)x = b + w}.

One of the main reasons for the wide use of TLS is the fact that the problem
has essentially an explicit solution, expressed by the singular value decomposition
(SVD) of the augmented matrix (A, b) [8, 10].

We consider here two variants of the TLS problem:

• The regularized TLS (RTLS) problem, in which a quadratic con-
straint on the vector x is introduced:

(RTLS) min
w,E,x

{‖E‖2 + ‖w‖2 : (A + E)x = b + w, L2 ≤ xT Qx ≤ U2},

where Q is a positive definite matrix.

• The structured TLS (STLS) problem, in which an additional linear
constraint on the perturbation matrix is enforced:

(STLS) min
w,E,x

{‖E‖2 + ‖w‖2 : (A + E)x = b + w,L(E) = 0}.

Here L is a linear operator. The linear structure discussed here is the block
circulant structure.

A key difficulty with both problems is their nonconvexity. All current known
methods to solve them (see, e.g., [13, 9, 12, 1]) converge to a point satisfying
first-order necessary optimality conditions. In [4, 2] we show that a global optimal
solution to both problems can be found efficiently.

The analysis of (RTLS) relies on a different formulation of the problem. Specif-
ically, if we fix x and minimize with respect to E and w, (RTLS) becomes:

(RTLS’) min
x

{‖Ax − b‖2

‖x‖2 + 1
: L2 ≤ xT Qx ≤ U2

}
.

A simple observation, which goes back to Dinkelbach [7] and which will enable
us to solve (RTLS’), is the following.
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Observation: The following two statements are equivalent for a given α:

(1) minL2≤xT Qx≤U2

‖Ax−b‖2

‖x‖2+1 ≤ α.

(2) minL2≤xT Qx≤U2{‖Ax − b‖2 − α(‖x‖2 + 1)} ≤ 0.

The second problem, of minimizing an indefinite quadratic function subject to a
double-sided quadratic constraint, can be reduced to the following convex problem
by using an argument of Ben-Tal and Teboulle [6]:

(CP) min
vj≥0

{ n∑

j=1

λjvj − |fj |√vj + c : L2 ≤
n∑

j=1

vj ≤ U2

}
.

By using convex duality, the solution of (CP) can be obtained just by solving at
most two single-variable convex optimization problems.

The above discussion gives rise to an efficient algorithm for solving (RTLS’). An
ǫ-global optimal solution to (RTLS’) is calculated by solving a sequence of very
simple convex minimization problems parametrized by a single parameter. The
overall computational effort of the algorithm is O(n3 log ǫ−1).

In [2] we study (STLS), where the matrix A has either a block circulant (BC)
structure or a (more special) elementary block circulant structure (EBC):

A =




A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

...
A1 A2 · · · A0




︸ ︷︷ ︸
BC

, A =




A0 A1 · · · A1

A1 A0 · · · A1

...
...

...
A1 A1 · · · A0




︸ ︷︷ ︸
EBC

,

where A0, A1, . . . , AN−1 are m× n matrices. The BC and EBC structures appear
in the context of multichannel signal estimation [5, 3], image restoration [11] and
more. We show that by applying the discrete Fourier transform, (STLS) decom-
poses into N unstructured (TLS) problems. The N solutions of these problems are
then assembled to generate the optimal global solution of (STLS). Similar results
are obtained for elementary block circulant matrices. Here the optimal solution is
obtained by assembling two solutions: one of an unstructured TLS problem and
the second of a multidimensional TLS problem.
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UMTS Radio Network Evaluation and Design

Andreas Eisenblätter

(joint work with Hans-Florian Geerdes, Thorsten Koch)

The Universal Mobile Telecommunications System (umts) is a third-generation
cellular system for mobile telecommunications. umts supports all services of the
worldwide-predominant gsm and gprs networks and is more powerful, more flexi-
ble, and more radio-spectrum efficient than its predecessors. The present short
exposition reports on activities within the EU-funded project Momentum [7]
and within the DFG Research Center Matheon: Mathematics for Key Tech-
nologies [1].

umts is a Wideband Code Division Multiple Access system [5]. Radio transmis-
sions are generally not separated in the time or the frequency domain. Complex
coding schemes are used to distinguish different radio transmissions at a receiver.
The capability to properly detect the desired carrier signal, however, requires that
the ratio between the carrier signal and interfering signals (cir) does not drop
below some threshold value. Interference thus needs to be carefully controlled
during network planning and operation because it is a limiting factor for network
capacity [6].
The Problem. A central part in the initial deployment and the subsequent ex-
pansions of a umts radio network is to decide about the location and configuration
of the base stations, including their antennas. Among others, the type of an an-
tenna (and thus its radiation pattern), the mounting height, and its main radiation
direction– azimuth in the horizontal plane and the tilt in the vertical plane –have
to be decided. Basically, the problem is to design a network of sufficient coverage
and capacity.

Each antenna provides coverage and capacity to the network, but the two are
coupled through intercell interference and depend on the current occupation of
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the network. In consequence, even assessing the merits of a given network design
with respect to coverage and capacity is not easy. Moreover, there is no canonical
optimization goal. Irrespective of such subtleties, mathematical umts radio net-
work optimization models typically have aspects of facility location/set covering
(trying to establish coverage) and (multiple) knapsack (trying to reflect coupled
cell capacity).
A System Model. Concerning network evaluation, closed linear characteriza-
tions of the receive and transmit powers for umts cells have recently been de-
veloped. Here, they are presented in a simple version to illustrate the strong
interrelation among cells.

The transmit powers for the up- and downlink of all mobiles can be derived
from these characterizations. The powers are obtained under the assumptions
that perfect power control applies to each dedicated radio link (signals are not
stronger than necessary) [5], that no cell is in overload, and that no restrictions
are imposed on the transmit powers of mobiles. Only the downlink case (base
station to mobile communication) is addressed here. Similar expressions exist for
the uplink case.

For cell i, let p̄↓i denote the total transmit power in the cell, p̌↓i the cumulative
power of all common channels (not subject to power control), and p

(η)
i the power

the cell would need to emit for its users if all receptions were interference free, that
is, the power needed for overcoming receiver noise only. Moreover, let C↓ denote
a square matrix containing the interference coupling within cells (on the diagonal)
and between cells. A linear equation system allows the derivation of the total cell
transmit powers given the other terms:

(1) p̄↓ =
(
I − C↓

)−1 · (p(η) + p̌↓) .

The matrix C↓ and the vector p
(η)
i are defined below, based on a measure for the

impact of serving a user. For mobile m, let α↓
m ∈ (0, 1] denote the service-specific

transmit activity, µ↓
m the service-specific cir requirement, and ω̄m ∈ [0, 1] the

fraction of own-cell signals received as interference due to loss of code orthogonality

in the radio propagation environment. Moreover, let γ↓
im denote the end-to-end

attenuation between cell i and mobile m, and let Mi be the set of users served by
cell i. Mobile m can be associated with a downlink user load l↓m defined as

(2) l↓m := (α↓
m µ↓

m)/(1 + ω̄m α↓
m µ↓

m) .

This quantity is the key to defining the traffic noise power p(η) and the downlink
coupling matrix C↓:

(3) p
(η)
j :=

∑

m∈Mj

ηm

γ↓
jm

l↓m , C↓
ii :=

∑

m∈Mi

ω̄m l↓m , C↓
ij :=

∑

m∈Mi

γ↓
jm

γ↓
im

l↓m (i 6= j) .

Definitions (2) and (3) can be extended to spatial (average) traffic intensity.
Optimization Models. Various mixed integer programming models have been
proposed in recent years. Two distinct approaches are sketched. On the one hand
are models that try to closely reflect the expected network performance. They
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consider traffic snapshots and try to find a network optimized for these snapshots;
see, for example, [4]. On the other hand, a recent development is based on (1)
with average traffic intensities [2]. Here, the goal is basically to obtain a network
with good “average” performance.
Challenges. The challenge of developing effective optimization techniques is pre-
ceded by two other challenges. One involves devising a reasonable system model
([7, 4, 2], still ongoing), and the other involves collecting sufficient real-world data
[7, 3] to guide the modeling and to perform computational studies on other opti-
mization models and methods.

The robustness of solutions, as well as the fact that input is statistical data, be-
comes increasingly important. What if the expectations to the traffic distribution
are off by 10%? Advanced optimization and evaluation techniques should certify
their superiority to simple planning heuristics in these respects.

In practice, however, the simple heuristic methods often outperform (or at
least compete with) heavy-duty optimization techniques, simply because the latter
fail on large instances. An amazing gap still exists between our state-of-the-art
optimization techniques and what is needed to prevail for regular planning and
optimization tasks in radio network planning.
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Optimizing Call Center Staffing by Using Simulation and
Analytic-Center Cutting-Plane Methods

Marina A. Epelman

(joint work with Júĺıus Atlason, Shane Henderson)

We describe a method for selecting staff levels at an inbound call center, or a
similar service facility, that minimizes cost while simultaneously ensuring satisfac-
tory customer service. Simulation is used to report service-level performance for
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a given set of staffing levels, and an analytic-center cutting-plane method guides
the selection of staffing levels.

Define the vector of staffing levels as y ∈ Z
p
+, where p is the number of time

periods in the planning horizon. The call center staffing problem can then be
formulated as a MINLP as follows:

(1) min{f(y) : gi(y) ≥ 0, i = 1, . . . , p, y ∈ Z
p
+}.

Here the constraints gi(y) ≥ 0, i = 1, . . . , p, express the quality-of-service require-
ments in each period, which typically represent “π percent of calls are answered
within τ seconds.” The objective function f(y) represents the minimal cost of
covering the desired staffing level y by predetermined feasible staff schedules, or
shifts, and can be evaluated by solving an integer linear covering problem.

The main challenge in solving (1) lies in the difficulty of identifying feasible
staffing levels, or even verifying feasibility of a particular y, especially when there
is significant linkage in performance between different periods. To this end, we use
simulation with n independent replications to approximately evaluate performance
of the call center at proposed staffing level y. Thus, after selecting n, we replace
problem (1) with its sample average approximation:

(2) min{f(y) : ḡi(y, n) ≥ 0, i = 1, . . . , p, y ∈ Z
p
+}.

Use of common random numbers ensures consistency of function evaluations be-
tween simulations. See [1] for convergence analysis of solutions of (2) as n → ∞.

It has been empirically confirmed that service-level functions in each period
exhibit behavior similar to that of pseudoconcave functions of continuous variables.
We say that a function h(·) is discrete pseudoconcave if for any ŷ ∈ Z+

p , there exists

a vector q(ŷ) ∈ Rp such that for any y ∈ Z+
p ,

(3) q(ŷ)T (y − ŷ) ≤ 0 ⇒ h(y) ≤ h(ŷ).

We refer to vectors q(·) as pseudogradients. Since the constraint functions of (1)
and (2) appear to be discrete pseudoconcave, it is appealing to apply a cutting
plane-type algorithm to solve the MINLP (2).

Although several such methods for solving MINLPs have been proposed, they
cannot be directly applied to (2). Indeed, in these algorithms it is assumed that the
constraint functions are, in fact, differentiable functions of continuous variables;
the integrality restrictions on the variables are, in a sense, exogenous. In such a
setting the concept of a convex (continuous) nonlinear relaxation of the integer
program is straightforward, and feasibility cuts are generated simply by using the
gradients of these continuous functions. In our setting, however, the service-level
functions and their sample average approximations are not defined at noninteger
values of y, and devising their continuous extension is nontrivial at best.

To address this difficulty, we introduce the first application of an Analytic Cen-
ter Cutting Plane Method (ACCPM) to MINLPs with discrete pseudoconcave
constraints. Our method differs from algorithms described above in two main
ways (see [6] for review of ACCPMs):
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– As in ACCPM, the analytic center of the polyhedral localization set is computed
at every iteration. Next, however, the integer point in the localization set nearest
to the analytic center is found by solving an IP; feasibility of this integer point
ŷ is then checked by simulation.

– To add a feasibility cut if ŷ found above violates one or more of the constraints,
we estimate a pseudogradient of the violated constraint at ŷ and generate a cut
using inequality (3). Among many approaches tested, forward finite differencing
was shown to perform the best in approximating the pseudogradients (see [3]).

Under reasonable assumptions, this algorithm will converge finitely to the optimal
solution of (2).

We have successfully implemented the algorithm above and tested its perfor-
mance on the call center staffing problem. Our benchmarks were the heuristics
based on the analytical queueing methods developed by Green et al. ([4, 5]),
widely considered to be the state of the art in multiperiod staffing. Experiments
on a call center modeled as an M(t)/M/s(t) queue show that our algorithm out-
performs, or at least equals, these heuristics in every case in which shift structure
is explicitly considered, which is the setting we are primarily interested in (see [2]).
Of course, these extremely appealing properties have to be traded off against the
computational cost of the procedure, which is not inconsiderable. Nonetheless, it
is a robust procedure that can be applied in a near-black-box fashion. Moreover,
the complex structure of realistic call centers imposes a limit on the applicability
of queueing-based heuristics. In such cases, simulation and our simulation-based
algorithm are a viable alternative.
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Breast Cancer Epidemiology:
Calibrating Simulations via Optimization

Michael C. Ferris

(joint work with Geng Deng, Dennis G. Fryback, Vipat Kuruchittham)

We investigate the use of optimization and data mining techniques for calibrating
the input parameters to a discrete event simulation code. In the context of a
breast-cancer epidemiology model we show how a hierarchical classifier can accu-
rately predict those parameters that ensure the simulation replicates benchmark
data within 95% confidence intervals. We formulate an optimization model that
evaluates solutions based on an integer valued score function. The scores are deter-
mined from a simulation run (and are therefore subject to stochastic variations),
and are expensive to calculate.

The Wisconsin Breast Cancer Epidemiology Simulation uses detailed individual-
woman-level discrete event simulation of four processes (breast cancer natural his-
tory, detection, treatment and nonbreast cancer mortality among U.S. women) to
replicate breast cancer incidence rates according to the Surveillance, Epidemiol-
ogy, and End Results (SEER) Program data from 1975 to 2000. Incidence rates
are calculated for four different stages of tumor growth, namely, in situ, local-
ized, regional, and distant; these correspond to increasing size and/or progression
of the disease. Each run involves the simulation of 3 million women and takes
approximately 8 minutes to execute on a 1 GHz Pentium machine with 1 GB of
RAM.

The four simulated processes overlap in complex ways, and thus it is very dif-
ficult to formulate analytical models of their interactions. However, each can be
modeled by simulation; these models need to take into account the increase in
efficiency of screening processes that has occurred since 1975, the changes in non-
screen detection as a result of increased awareness of the disease, and a variety of
other changes during that time. The simulations are grounded in mathematical
and statistical models that are formulated by using a parameterization. For ex-
ample, the natural history process in the simulation can be modeled by using a
Gompertzian growth model that is parameterized by a mean and variance typically
unknown exactly but for which a range of reasonable values can be estimated. The
overall simulation facilitates interaction between the various components, but it is
extremely difficult to determine values for the parameters that ensure the simula-
tion replicates known data patterns across the time period studied. In all, there
are 37 parameters, most of which interact with each other and are constrained by
linear relationships. Further details can be found in [1, 3].

A score is calculated that measures how well the simulation output replicates an
estimate of the incidence curves in each of the four growth stages. Using SEER and
Wisconsin Cancer Reporting System (WCRS) data, we generate an envelope that
captures the variation in the data that might naturally be expected in a population
of the size we simulated. For the 26 years considered, the four growth stages give
a total of 104 points, each of which is tested to see whether it lies in the envelope.
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The number of points outside the envelope is summed to give the score (0 is ideal).
While one could argue that distance to the envelope might be a better measure,
such calculations are scale dependent and were not investigated. Unfortunately,
the score function also depends on the “history” of breast cancer incidence and
mortality that is generated in the simulation based on a random seed value ω. We
will adopt the notation fω(v), where v represents the vector of parameters and
ω indexes the replication. While we are interested in the distribution (over ω) of
fω(v), we will focus here on the problem

min
v

max
ω

fω(v).

The purpose of this study is to determine parameter values v that generate
small values for the scoring function. Prior to the work described here, acceptance
sampling had been used to fit the parameters. Essentially, the simulation was run
tens of thousands of times with randomly chosen inputs to determine a set of good
values. With over 450,000 simulations, only 363 were found that had a score no
more than 10. That is, for a single replication ω, 363 vectors v had fω(v) ≤ 10.

Our first goal was to generate many more vectors v with scores no more than
10. To do this, we attempted to use the given scoring function data to generate a
classifier that quickly predicts whether a given vector v is in

L(λ) = {v|fω(v) ≤ λ} , for a fixed replication ω.

We typically use λ = 5 to indicate good fit and λ = 10 for acceptable parameter
choices. Our approach is as follows:

– Split the data into a training (90%) and testing (10%) set.

– Given the training set, generate a (hierarchical) classifier that predicts member-
ship of L(λ). Validate this classifier on the testing set.

– Generate 100,000 potential values for v, uniformly at random.

– For those vectors v that the classifier predicts are in L(λ), evaluate fω(v) via
simulation.

Since the classifier is cheap to evaluate, this process facilitates a more efficient
exploration of the parameter space. Clearly, instead of using a single replication ω,
we could replace fω(v) by maxω∈Ω fω(v) where Ω = {ω1, . . . , ωm} for some m > 1.
In fact this approach was carried out. The difficulty is that we require replication
data (for our experiments we choose m = 10) and we update the definition of L(λ)
appropriately. However, the process we follow is identical to that outlined here.

In our setting, v has dimension 37. Using expert advice, we allowed only 9
dimensions to change; the other 28 values were fixed to the feasible values that
have highest frequency of occurrence over the “positive” samples. For example, if
v37 can take possible values from [φ1, φ2, . . . , φn], then we set the value of v37 to
be argminn

i=1
Pi

Wi
, where Pi and Wi are the number of appearances of φi in the

positive and whole sample set. This is similar to using a naive Bayesian classifier to
determine which value has the highest likelihood to be “positive”. Our experiments
showed this choice of values outperformed even the values that experts deemed
appropriate for these 28 values; a posteriori analysis confirmed their superiority.
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We generated a hierarchical classifier. The key difficulty in generating a classifier
is the fact that we have a vast majority of “negative” data points (i.e., vectors
v /∈ L(λ)). By successively projecting our training data into two-dimensional slices,
we identified two pairs of planes (meanGamma/varGamma and onsetProp/lag) in
which only “negative” data points in our training set were present outside a small
band of values. The top level of the classifier labels points outside these bands
as “negative”. The remaining points (within the bands, the positive and negative
points are intermingled) are classified by using the following procedure.

Given a particular training set A, a variety of support vector machine classifiers
can be generated by solving an optimization problem for values u and γ, and using
the kernel classifier [7]

K(v′, A′)u − γ ≤ 0

to imply that a new point v is “negative”, where K is a given kernel function. We
used the following kernels: linear, polynomial degree 2, polynomial degree 3, and
Gaussian. We also used the C45 decision tree classifier and k-nearest neighbor
classifier with k = 5. All of these classifiers are publicly available [6, 9].

Furthermore, the one-sided sampling approach [4] was used to generate a num-
ber of different training sets; the sampling approach iteratively removes “negative”
points in a rigorously defined manner, and we stop this process when there are
approximately 500 “negative” points remaining (there are around 300 “positive”
points in each training set). The resulting classifier is evaluated on the testing set
by using the measures

TP =
# correctly classified positives

total # of positives
and TN =

# correctly classified negatives

total # of negatives
.

(Note that cross-validation accuracy is inappropriate to use in this setting because
it can be made large by classifying all points as “negative” on account of the
imbalanced nature of the data.) Classifiers are discarded if the value of TP is less
than 0.9 (typically TN is around 0.4). This value was chosen to guarantee the
probability of removing positive points in error is small. We also generate training
sets by resampling with replacement.

For a uniform sample of 100,000 potential values of v, the naive banding clas-
sifier removes all but 8 640. Each of the above classifiers was used successively to
determine whether the point v was “negative” (and hence removed from consid-
eration); if not, v was passed onto the next classifier. This process was repeated
until the number of points being removed decreased to zero. At that stage there
were 788 points that were hypothesized to be “positive”. These 788 points were
tested using simulation, and 65% were found to be “positive”. This is a significant
improvement over the random sampling scheme.

A further sequence of classifiers was determined from a training set generated
by using the above sampling schemes, but where we adjusted the number of “neg-
ative” points in the training set so that the resulting values for TP and TN were
approximately 0.6 and 0.7. These additional classifiers have a larger chance of
removing “positive” samples in error, but they reduce the number of remaining
points in our sample much more quickly. For our example set the remaining 788
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points was reduced to 220 points. Evaluating these remaining points by simula-
tion, 195 were found to be in L(10). Thus, with very high success rate (89%), our
classifier is able to predict values of v that have a low score fω(v).

We employed the classifier technique above to generate a large number of sam-
ples in L(30). Given these samples, we used the DACE toolbox [5] to fit a kriging
model to the data, which we consider a surrogate function [2] for our objective.
We used the Nelder-Mead simplex method [8] to optimize this surrogate and gen-
erated several local minimizers for this function based on different trial starting
points. These local minimizers were evaluated by simulation. To improve our
results further, we updated the surrogate function with the simulation results of
the local minimizers and repeated the optimization. The parameter values found
by using this process outperform all previous values found. Furthermore, expert
analysis of various output curves generated from the simulation results with the
best set of parameter values confirms the quality of this solution.

While our procedure is somewhat ad hoc, the following conclusions are evident:

– The classifier technique is cheap to use and predicts good parameter values very
accurately without performing additional simulations.

– A hierarchical classifier significantly improves classification accuracy.

– Imbalanced training data has a detrimental effect on classifier behavior. Ensur-
ing the data is balanced in size is crucial before generating classifiers.

The classifier facilitates easy generation of parameter settings within a given
level set of score values and potentially allows investigation of such level sets and
good parameter settings from a biological perspective. Future work will investigate
characterizing the level set more precisely with the aim of enhancing biological
understanding of the model parameters.
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L1-Optimal Boundary Control of a String to Rest in Finite Time

Martin Gugat

Hyperbolic partial differential equations often appear as models in engineering, for
example as systems of conservation laws that model fluid flow.

The control of such systems is usually possible only with boundary controls,
which in the mathematical model corresponds to control via the boundary condi-
tions. To get some insight into the nature of optimal controls for such systems, we
consider the following problem of optimal Dirichlet boundary control for the wave
equation:

(P)





min
u1,u2∈L1(0,T )

∫ T

0

|u1(t)| + |u2(t)| dt suject to

ytt(x, t) = c2yxx(x, t), (x, t) ∈ (0, L) × (0, T )

y(0, t) = u1(t), y(L, t) = u2(t), t ∈ (0, T )
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L)
y(x, T ) = 0, yt(x, T ) = 0, x ∈ (0, L).

The functions y0 and y1 are given, as well as the real numbers T > 0, L > 0, c > 0.
In general, this problem does not have a unique solution. An explicit represen-

tation of all solutions is given in the following theorem.

Theorem 1. Assume that T ≥ t0 = L/c, that y0 ∈ L1(0, L), and that Y1(x) =∫ x

0 y1(s) ds ∈ L1(0, L). For t ∈ (0, t0), let

α0(t) = y0(ct) + (1/c)

∫ ct

0

y1(s) ds,

β0(t) = y0(L − ct) − (1/c)

∫ L−ct

0

y1(s) ds.

Choose a real number r that minimizes

(1) I(r) =
1

2

∫ t0

0

|α0(t) − r| + |β0(t) + r| dt.

Let k = max{j ∈ N : jt0 ≤ T } and ∆ = T −kt0. For j ∈ {0, . . . , k} and t ∈ (0, ∆),
let λj(t) ≥ 0, νj(t) ≥ 0 almost everywhere be such that λj(α0 − r) ∈ L1(0, ∆),
νj(β0 + r) ∈ L1(0, ∆), and

k∑

j=0

λj(t) = 1 =
k∑

j=0

νj(t) almost everywhere on (0, ∆).
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For j ∈ {0, . . . , k−1} and t ∈ (∆, t0), let µj(t) ≥ 0, ωj(t) ≥ 0 almost everywhere
be such that µj(α0 − r) ∈ L1(∆, t0), ωj(β0 + r) ∈ L1(∆, t0) and

k−1∑

j=0

µj(t) = 1 =

k−1∑

j=0

ωj(t) almost everywhere on (∆, t0).

Then the optimal solutions of (P) are the controls u1, u2 described by (2) below:

(2)





u1(t + jt0) = λj(t)[α0(t) − r]/2 if j is even and t ∈ (0, ∆),
u1(t + jt0) = µj(t)[α0(t) − r]/2 if j is even and t ∈ (∆, t0),
u1(t + jt0) = −νj(t)[β0(t) + r]/2 if j is odd and t ∈ (0, ∆),
u1(t + jt0) = −ωj(t)[β0(t) + r]/2 if j is odd and t ∈ (∆, t0),

u2(t + jt0) = νj(t)[β0(t) + r]/2 if j is even and t ∈ (0, ∆),
u2(t + jt0) = ωj(t)[β0(t) + r]/2 if j is even and t ∈ (∆, t0),
u2(t + jt0) = λj(t)[−α0(t) + r]/2 if j is odd and t ∈ (0, ∆),
u2(t + jt0) = µj(t)[−α0(t) + r]/2 if j is odd and t ∈ (∆, t0).

The minimal value of (P) is given by the integral I(r) of (1) with an optimal
choice of r. The solution of (P) is unique if and only if its minimal value is zero.

A proof of this result is given in [2]. This proof is based on the traveling waves
solution of the wave equation. It shows how the structure of the optimal controls
is related to the characteristic curves.

The solutions of the corresponding problems for Lp-norms with p ∈ [2,∞)
are given in [3], where a proof based on Fourier series and moment problems is
presented. For these problems, where

∫ T

0

|u1(t)|p + |u2(t)|p dt

is minimized, the optimal controls are uniquely determined and have the same
structure as in (2) but only with

λj(t) = νj(t) = 1/(k + 1), µj(t) = ωj(t) = 1/k.

This is true also for p ∈ (1, 2), but then the proof uses the technique of [2].
For the corresponding L∞ problem where the objective function is an essential

supremum, the controls u1, u2 described as in the case p ∈ (1,∞) give the element
of minimal L2 norm in the solution set (see [3]).

Theorem 1 shows that, if the problem data T , L, or c is changed, the structure
of the solution set can change if T = kt0. Note that, even for C∞ initial data,
the optimal state may have jumps generated by the discontinuities of the optimal
controls.

Problem (P) is related to control problems for nonlinear hyperbolic systems;
see [1]. We hope that Theorem 1 helps to exploit the structure of optimal controls
for quasilinear hyperbolic systems.
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Joint Online Truck Scheduling and Inventory Management for
Multiple Warehouses1

Christoph Helmberg

(joint work with Stefan Röhl)

Consider the following real-world problem. Given several warehouses connected
by a shuttle service of several trucks for shipping pallets of stored articles between
them, and given an online stream of orders that are stochastic and that have to be
handled within short time at specific warehouses, find, online, a schedule of truck
routes and truck loads so that (one hopes) all products are available at the right
place ahead of processing time.

For this problem we suggest an approach based on convex relaxation of an
integer programming formulation and demonstrate its practical suitability on real
world data of our industrial partner eCom Logistik GmbH & Co. KG. For up to
three warehouses and roughly 40 000 articles, the method computes a schedule
within five to twelve minutes. In long-term simulations it reduces the average
number of pallets that have to be transported on short notice because of demand
to less than half the number of the semi-automatic approach currently in use.

Several issues are of relevance in this problem. An appropriate stochastic opti-
mization model is required that links the success probability of the inventory of the
warehouses to the truck rides. The model must be solvable within short time in
order to be suitable for online computations, and the approach must be sufficiently
robust to compensate frequent external changes in orders and uncertainties in the
logistic transportation process.

In our method we follow the classical approach to model large-scale trans-
portation or network design problems as multicommodity flow problems (see, e.g.,
[19, 16, 14]). These can be decomposed and solved efficiently with Lagrangian
relaxation by combining min-cost flow algorithms (see, e.g., [1]) and bundle meth-
ods (see, e.g., [11, 4]). In particular, we model the rides of the trucks as well as
the flow of pallets between warehouses by time-discretized networks coupled via
linear capacity constraints. Our main contribution is the development of a convex
piecewise-linear cost function that models the stochastic quality of the warehouse
configurations as follows. We assume that for each article p and each warehouse

1This work was supported by research grant 03HEM2B4 of the German Federal Ministry of
Education and Research (responsibility for the content rests with the authors).
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w, a probability distribution Fw
p : Z → [0, 1] is given that assigns to a number

α of pallets of article p the probability that demand at w for p over a specified
period of time will not exceed α pallets. Our cost function penalizes the reduction
of α available pallets by one by g(Fw

p (α− 1)), where g : [0, 1] → R+ is required to
be nonnegative, nonincreasing, and convex. Choosing g identical for all products
p and warehouses w yields a reasonable priority on the sequence in which pallets
should be transported. If we choose g(x) = 1 − x and evaluate the cost function
at the end of the planning period, we minimize the expected number of pallets
that still have to be transported after the last truck ride. In practice, we compute
estimates for Fw

p using the empirical distribution based on past demand (see, e.g.,
[8, 18]), choose g(x) ≈ − log x to enforce transportation of pallets that are needed
with high probability, and evaluate at several time steps. Even moderately ac-
curate solutions for this cost structure give rise to reasonable schedules. Indeed,
within five to ten minutes a schedule based on rounding, an approximate solu-
tion to linear programs with up to 1.5 million variables and 500,000 constraints is
obtained on a Linux PC, using MCF [15] for solving the min-cost-flow problems
and ConicBundle, which is an outgrowth of [9], for finding appropriate multipliers.
Solving the linear program by a state-of-the-art simplex solver would need between
half an hour and four hours on the same machine without leading to significantly
better rounded solutions.

Within online environments, robustness hinges on reacting flexibly to new situ-
ations rather than sticking to past decisions. Consequently, our method does not
keep any information on previous solutions but operates solely on status messages
of the logistic operating system (the message system has been developed jointly
with our industrial partner for this purpose). Therefore, the method is capable of
continuing independent on what part of its proposed solution has been accepted
by the human planner. The approach has been thoroughly tested in a detailed
simulation study over a period of 100 days on the real-world online data stream
of our industrial partner.

There is a vast literature on inventory management and logistics (see, e.g., [7]),
yet we found few references that deal with both problems at the same time; and
none of them treat both problems in sufficient detail for our purposes. In some
works the transportation process is assumed to be instantaneous (see e.g. [12, 13,
5, 3, 20]), in others the stochastic part is fixed (see e.g. [2, 6]) or considerations
are reduced to only one product [17]. To the best of our knowledge the approach
proposed is the first that deals jointly with inventory management of multiple
products and interwarehouse logistics involving vehicle routing with transportation
times. The full paper [10], code, and data are available at www.tu-chemnitz.de/
mathematik/discrete/projects/warehouse trucks/
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Stability in Nonlinear Optimization under Constraint Degeneracy

Diethard Klatte

(joint work with Bernd Kummer)

The stationary solution map X of a perturbed nonlinear program is studied. We
characterize stability properties of X under constraint degeneracy (which here
means that the linear independence constraint qualification (LICQ) is not satisfied
at the solutions under consideration), and we compare this with known stability
results in the nondegenerate case. We restrict our study here to a basic model: a
nonlinear program under canonical perturbations, namely,

P(p)
f(x) − aTx → minx

s.t. gi(x) ≤ bi (i = 1, . . . , m)
, p = (a, b) perturbation vector,

where f, gi ∈ C2(Rn, R) ∀i. In a similar way, certain perturbed variational in-
equalities could be handled, and additional equality constraints (or constraints
with C1,1 functions) or nonlinear parameterizations could be included.
Notation. Following Kojima [6], we write the Karush-Kuhn-Tucker (KKT) con-
ditions for P(p), p = (a, b) as

(1)
Φ1(x, y) := Df(x) +

∑m
i=1 y+

i Dgi(x) = a , y+
i = max{0, yi},

Φ2i(x, y) := gi(x) − y−
i = bi , y−

i = min{0, yi}.
We will study the stationary solution set mapping

X(p) := {x | ∃y : (x, y) satisfies (1)}
for (p, x) ∈ gphX near (0, x0), where x0 ∈ X(0) is some given point. The multiplier
set associated with (0, x0) is

Y 0 := {y | (x0, y) satisfies (1) at p = 0}.
Without loss of generality suppose throughout g(x0) = 0. Further, let

Ai = Dgi(x
0)T (rows), L(x, y) = f(x) +

∑m

i=1
y+

i gi(x), Q(y) = D2
xxL(x0, y).

We are interested in the following three stability notions: X is said to be locally
upper Lipschitz (l.u.L.) at (0, x0) ∈ gphX if there exist µ, ε > 0 such that

‖x − x0‖ ≤ µ‖p‖ ∀x ∈ X(p) ∩ B(x0, ε), p near 0,

in particular, X(0) ∩ B(x0, ε) = {x0} holds, and X(p) ∩ B(x0, ε) = ∅ for p 6= 0
is possible; X is called strongly Lipschitz-stable (s.L.s.) at (0, x0) ∈ gphX if, for
some ε > 0, X(·) ∩ B(x0, ε) is single-valued and Lipschitz near p = 0; X is called
strongly stable in Kojima’s sense at (0, x0) if, w.r.t. small quadratic perturbations
of the objective and small righthand side perturbations of the constraints, X(·) ∩
B(x0, ε) is (for some ε > 0) single valued and continuous near p = 0.

Obviously, if X is s.L.s. at (0, x0), then X is l.u.L. at (0, x0) and fulfills X(p)∩
B(x0, ε) 6= ∅ for some ε > 0 and all p near 0 (and hence the Mangasarian-Fromovitz
constraint qualification (MFCQ) holds at x0; see [5]), while the opposite direction
already fails for linear programs under MFCQ.
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Stability under LICQ. Suppose that LICQ holds at x0; hence Y 0 is a singleton,
say Y 0 = {y0}. We recall some well-known results for this case.

Supposing in addition strict complementarity, the KKT system for (x, y, p) near
(x0, y0, 0) reduces to a C1 equality system. Thus Φ−1 is locally single-valued
and lies in C1 (with the well-known formula for DΦ−1) if and only if DΦ(x0, y0)
is nonsingular. This classical result (see [3]) uses the standard inverse function
theorem.

Avoiding strict complementarity, Jongen et al. [2] have shown that X is s.L.s.
at (0, x0) if and only if X is strongly stable in Kojima’s sense at (0, x0).

At this point, let us answer a question of the discussion at the Oberwolfach
meeting: it is not enough to require that X is locally single valued and continuous
under canonical perturbations only to imply strong stability in Kojima’s sense. The
following one-dimensional parametric unconstrained program is a counterexample:

x4 − ax − cx2 → minx∈R , |a|, |c| small.

Next we characterize l.u.L. and s.L.s. of X under LICQ by linearization of the
KKT system: X is s.L.s at (0, x0) if and only if the system

(i) Q(y0)u +
∑m

i=1 αiAi
T = 0,

(ii) y0
i Ai u = 0 (∀i)

(iii) αi Ai u ≥ 0 (∀i)

has the unique trivial solution (u, α) = 0; see [4] for the above form. Several
equivalent conditions are well known; see, for example, [7, 2, 1, 4]. Further, X is
l.u.L. at (0, x0) if and only if the system

(i), (ii), (iii) and (iv) Ai u ≤ 0 ≤ αi (for all i : y0
i = 0)

has the unique trivial solution (u, α) = 0; see, for example, [4].
Both characterizations may be rewritten in terms of quadratic auxiliary pro-

grams. Further, they show that under LICQ and strict complementarity at x0, the
three stability concepts coincide. However, under LICQ without strict complemen-
tarity, s.L.s. and l.u.L. already differ for (solvable) quadratic convex programs.
Stability under possible constraint degeneracy. The formal negation of the
properties l.u.L. and s.L.s., respectively, leads to the violation of injectivity of
appropriate generalized derivatives of X ; for details of the corresponding concepts
see [8, 4]. Thus, the negation of the local upper Lipschitz property gives

singularity 1: ∃ξk ∈ X(πk) with ξk → x0 and πk → 0
such that ξk 6= x0 and ‖πk‖/‖ξk − x0‖ → 0.

This means that, by taking a cluster point u of uk = ξk−x0

‖ξk−x0‖
, some u 6= 0 belongs

to CX(0, x0)(0), the contingent derivative of X at (0, x0) in direction 0.
Strong Lipschitz stability of X at (0, x0) is violated iff one has local unsolvability

(i.e., there are ε > 0 and pk → 0 with X(pk) ∩ B(x0, ε) = ∅), or

singularity 2: ∃xk ∈ X(pk), ξk ∈ X(πk) with xk, ξk → x0 and pk, πk → 0
such that xk 6= ξk and ‖πk − pk‖/‖ξk − xk‖ → 0.
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The latter means, in terms of the strict graphical (Thibault) derivative TX , that
some u 6= 0 belongs to TX(0, x0)(0).

A subtle analysis of CX and TX in terms of the original problem gives the
following results (note that the above conditions under LICQ were obtained simi-
larly). In the following, suppose MFCQ at x0; for partial use of a weaker CQ see
[5].

Singularity 1 holds if and only if there are y0 ∈ Y 0 and (u, α) with u 6= 0 such
that (y0, u, α) satisfies the above system (i), (ii), (iii) and (iv); see [4, Chapt. 8]
for this result and further refinements. In [5], we prove that singularity 2 holds if
and only if there are y0 ∈ Y 0 and u 6= 0 such that

(ii) y0
i Ai u = 0 (∀i)

and for certain sequences xk → x0 and αk, one has

(i)′ Q(y0)u +
∑

αk
i Dgi(x

k) → 0,
(iii)′ αk

i Ai u ≥ 0 (∀i).

While the above characterizations under LICQ and that of singularity 1 use only
information for P(0) at {x0} × Y 0, our condition for singularity 2, and hence for
s.L.s. of X at (0, x0) under constraint degeneracy, depends on limits of data at a
sequence xk → x0. In [5], we discuss examples with convex polynomial problem
functions which show that s.L.s. is not invariant when the problem functions are
replaced by their quadratic approximations at x0.

It is standard that local solvability may be guaranteed by appropriate second-
order optimality conditions; see, for example, [1, 4]. In [5] we prove in the case
of linear constraints under MFCQ that nonsingularity 2 automatically implies
X(p) ∩ B(x0, ε) 6= ∅ for some ε > 0. For further stability results under con-
straint degeneracy (relations to Kojima’s strong stability and the Aubin property,
simplifications for linearly constrained programs, and so on), we again refer to [5].
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Recent Progress in the NLP-SDP Code PENNON

Michal Kočvara

(joint work with Michael Stingl)

We report on recent advances in the computer program PENNON, aimed at solving
optimization problems with nonlinear and semidefinite constraints. The problems
are of the type

min
x∈Rn

f(x)(NLP-SDP)

s.t. hi(x) ≤ 0, i = 1, . . . , mh

A(x) 4 0 ,

where f, hi : Rn → R are twice continuously differentiable and A : Rn → SmA

is generally nonconvex. The principal idea of the algorithm is to replace the
inequality constraints by penalized ones. With pi > 0 for i ∈ {1, . . . , m}, we have

hi(x) ≤ 0 ⇐⇒ piϕ(hi(x)/pi) ≤ 0, i = 1, . . . , mh

and
A(x) 4 0 ⇐⇒ ΦP (A(x)) 4 0 ,

where ϕ and ΦP are smooth penalty functions satisfying a number of properties
(see [4]). For the penalized problem we write the Lagrangian

(1) F (x, u, U, p, P ) = f(x) +

mh∑

i=1

uipiϕ(hi(x)/pi) + 〈U, ΦP (A(x))〉SmA

and define the algorithm, a variant of the method of multipliers:
PENNON algorithm:

(i) Find xk+1satisfying ‖∇xF (x, uk, Uk, pk, P k)‖ ≤ εk

(ii) uk+1
i = uk

i ϕ′(hi(x
k+1)/pk

i ), i = 1, . . . , mh

Uk+1 = DAΦp(A(x); Uk)

(iii) pk+1
i < pk

i , i = 1, . . . , mh

P k+1 < P k .

The algorithm was originally proposed and analyzed for convex nonlinear programs
(NLPs) by Polyak [7], later refined by Ben-Tal and Zibulevsky [1], generalized for
nonconvex NLP by Breitfeld and Shanno [2], and recently revised by Polyak and
Griva [8]. For details on the current SDP-NLP algorithm as used in PENNON,
see [4, 5].

The approximate unconstrained minimization in Step (i) is performed by the
modified Newton or trust-region method. In both cases, we find a search direction
by solving the equation Hd = −g, where g and H is the gradient and Hessian of
the Lagrangian (1) at a given point. In the standard version of the code we use
(sparse or dense) Cholesky factorization to solve this system. Recently, we have
implemented preconditioned conjugate gradient (PCG) method. The advantage
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is twofold, depending on the structure of the matrix H and on the type of the
constraints.
PCG and Large-Scale Sparse NLP. Large-scale NLP problems often have
sparse structure, leading to sparse H and allowing us to use efficient variants of
sparse Cholesky factorization. If, however, the gradient of just one constraint is
dense, the matrix H becomes dense, too. In such a case, we replace the Cholesky
factorization by PCG. In PCG, we need to compute only the Hessian-vector prod-
uct Hz; we do not need to compute H explicitly. In the above situation, we
evaluate and store only the “sparse part” of H (call it Hsp), and the dense gradi-
ents ∇hi. The product is then performed by the formula of the type

Hz = Hspz +
∑

dense

γiγ
T
i z .

This strategy allows us to solve large “sparse-dense” problems. For instance,
problem lane-emden40 from the COPS3 collection [3] (n = 19241, mh = 81) can
be solved in 1 min 40 sec using 300MB of memory, as compared to 26min and
1600MB needed by the Cholesky-based version.
PCG and Medium-Scale Dense SDP. Most linear SDP problems arising from
various applications lead to a dense matrix H , even if the problem data matrices
are sparse. For linear problems with A(x) =

∑n
i=1 xiAi the complexity of Hessian

computation is O(m3
An + m2

An2) for dense Ai and O(m2
An + K2n2) for sparse Ai,

where K is the maximum number of nonzeros in Ai, i = 1, . . . , n. The complexity
of the Cholesky factorization for a dense matrix is O(n3). For problems with
n ≫ m, the Cholesky method is expected to become the bottleneck of the code.
In this case, the use of approximate PCG (with expected complexity of O(n2))
can improve the efficiency significantly. Further, we need only the product with
∇2F (xk), which can be replaced by a finite-difference formula

∇2F (xk)z ≈ ∇F (xk + θz) −∇F (xk)

θ

with θ = (1 + ‖xk‖2
√

ε). Thus, in each PCG iteration, we need to compute just
one gradient; this may significantly decrease the demands on the memory and
CPU time (see [6] for details).

Table 1 gives comparison of the standard code with the PCG-based code with
and without exact Hessian computation. Tested are problems with n ≫ m from [9],
arising from maximum clique problems on randomly generated graphs (theta*)
and maximum clique problems from the Second DIMACS Implementation Chal-
lenge.
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Table 1. Results for selected TOH problems. PENSDP: standard code
with Cholesky algorithm; P-PCG(diag): code with CG algorithm and diago-
nal preconditioner; P-A-PCG(BFGS): code with CG algorithm, approximate
Hessian computations and BFGS preconditioner. CPU/it: time per a New-
ton iteration. Times in seconds; Sun UltraSparc III 1200 MHz with 4 GB
RAM.

PENSDP P-PCG(diag) P-A-PCG(BFGS)
Problem n m CPU CPU/it CPU CPU/it CPU CPU/it

ham 7 5 6 1 793 128 104 3.2 19 0.7 4 0.1
ham 9 8 2305 512 266 9.8 138 5.3 210 4.7
ham 8 3 4 16129 256 71264 2036.1 2983 80.1 104 2.7
ham 9 5 6 53761 512 memory memory 1984 37.4
theta42 5986 200 3978 104.6 391 9.3 51 1.2
theta6 4375 300 1719 42.9 197 5.3 108 2.0
theta62 13390 300 51359 1222.8 3779 77.1 196 4.3
theta8 7905 400 8994 243.0 783 19.1 263 5.
theta82 23872 400 memory memory 650 14.4
theta10 12470 500 30610 956.5 6571 126.4 492 10.
theta102 37467 500 memory memory 1948 47.5
theta103 62516 500 memory memory 6149 149.9
theta104 87845 500 memory memory 8400 215.3
theta12 17979 600 timed out 14098 223.7 843 16.2
theta123 90020 600 memory memory 11733 266.66
theta162 127600 800 memory memory 50098 927.74
keller4 5101 171 3724 66.5 297 6.5 52 1.1
sanr200-0.7 6 033 200 4210 107.9 393 9.1 52 1.2
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Local Structure and Algorithms in Nonsmooth Optimization

Adrian S. Lewis

(joint work with James V. Burke and Michael L. Overton)

The Belgian Chocolate Problem. Illustrating the difficulty of control design
problems, Blondel [1] proposed the following problem in 1994:

Given a real δ, find stable real polynomials p and q such that the
polynomial r(s) = (s2 − 2δs + 1)p(s) + (s2 − 1)q(s) is also stable.

(We call a polynomial p stable if its abscissa α(p) = max {Re s : p(s) = 0} is non-
positive.) Clearly the problem is unsolvable if δ = 1, since then r(1) = 0; more
delicate results (summarized in [7]) show it remains unsolvable for δ < 1 close to 1.
Blondel offered a prize of 1 kg of Belgian chocolate for the case δ = 0.9, a problem
solved by using randomized search in [7].

To illustrate the theme of this talk, we first outline (based on joint work with
D. Henrion) a more systematic optimization approach to the chocolate problem.
We fix the degrees of the polynomials p and q (say 3). Without loss of generality,
suppose p is monic, and consider the resulting problem

(CP ) min{α(pqr) : p, q cubic, p monic.}
A feasible solution with negative objective value would solve Blondel’s problem.

A Simple Nonsmooth Algorithm. For nonsmooth optimization problems like
(CP ), it is convenient to have on hand a simply-implementable, intuitive, robust
algorithm for minimizing a nonsmooth function f . We present such a method in
[3]. To motivate it, suppose for simplicity f (unlike the abscissa α) is Lipschitz.

Fundamental for good behavior in nonsmooth optimization is the regularity of
the function f at points x, which means we can write the directional derivative as

f ′(x; d) = lim sup
y→x

∇f(x)T d, for all d

(noting the almost everywhere differentiability of f on its domain in Rn). Both
convex and smooth functions are regular. Assuming regularity, we can check that
the steepest descent direction at x is

− lim
ǫ↓0

argmin
{
‖d‖ : d ∈ co{∇f(y) : y ∈ x + ǫB}

}
,

where B denotes the unit ball. The gradient sampling algorithm of [3] approxi-
mates this direction by a random vector

Gm
ǫ (x) = − argmin

{
‖d‖ : d ∈ co{∇f(Yi) : i = 1, 2, . . . , m}

}
,

for some fixed radius ǫ, fixed m > n, and independent, uniformly distributed,
random points Yi ∈ x+ ǫB. (In practice, we add the point x.) The algorithm then
performs a simple line search along this direction, and repeats.
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The Performance of Gradient Sampling. The gradient sampling algorithm is
intuitive and straightforward to implement when function and gradient evaluations
are cheap. Experiments on a wide variety of examples are promising [3]. Rigorous
justifications include

– the almost sure convergence of the search direction Gm
ǫ (x) to a “robust” steepest

descent direction as the sample size m grows [2], and

– convergence results for the algorithm under a variety of underlying assumptions
and implementation regimes (for reducing the radius ǫ, for example) [3].

Among these results, however, the following fact is particularly suggestive of the
“smoothing” effect of the algorithm.

Theorem 1. The expectation of the search direction Gm
ǫ (x) depends continuously

on the point x.

We sketch a proof suggested by S. Henderson. First, we sample the points Yi

corresponding to the current point x, as above. Next, we construct random points
Y ′

i corresponding to a perturbed point x′, but “coupled” with the points Yi as
follows. If Yi ∈ x′ + ǫB, then we set Y ′

i = Yi; otherwise we choose Y ′
i uniformly

distributed on the set (x′ + ǫB) \ (x + ǫB). The resulting random points Y ′
i are

mutually independent, and uniformly distributed on the ball x′ + ǫB, as required.
Since the set (x + ǫB) \ (x′ + ǫB) has measure O(‖x − x′‖), the sets {Yi} and
{Y ′

i } (and hence the vectors Gm
ǫ (x) and Gm

ǫ (x′)) are identical with probability
1−O(‖x−x′‖). On the other hand, even if this latter event does not occur, since
f is Lipschitz, the vector Gm

ǫ (x)−Gm
ǫ (x′) is uniformly bounded. In summary, the

expectation of this latter vector must be O(‖x − x′‖).
Solving the Chocolate Problem. The gradient sampling algorithm suggests
numerically that the solution of the problem (CP ) for any value of δ near 0.9 has
a distinctive structure: the polynomial q is a constant, and the polynomial r has
a negative real zero of order five. Armed with this observation, a simple hand
calculation reveals a unique feasible solution of this form under the assumption

δ < 1
2

√
2 +

√
2 ≈ 0.924, in particular solving Blondel’s problem.

A nice exercise in nonsmooth calculus verifies our numerical observation that
the above solution is indeed a local minimizer for the problem (CP ), at least when
we further restrict the polynomial q to be constant. The requisite nonsmooth
chain rule we need relies heavily on the following striking result [4].

Theorem 2. The abscissa α is regular throughout the set of degree-k polynomials.

Structural Persistence in Nonsmooth Optimization. The persistent solu-
tion structure for the chocolate problem (CP ) as the parameter δ varies illustrates
another important feature of concrete nonsmooth optimization problems, akin to
active set phenomena in nonlinear programming. For classical nonlinear programs,
the second-order sufficient conditions have several important consequences:

(i) The current point is a strict local minimizer.

(ii) As we perturb the problem’s parameters, this minimizer varies smoothly on
an “active” manifold.
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(iii) We can calculate perturbed minimizers via smooth systems of equations.

Properties (ii) and (iii) do not rely fundamentally on second-order theory; indeed,
they also hold for a broad class of nonsmooth functions introduced in [6].

For simplicity once again, we restrict attention to Lipschitz functions f . We
call f partly smooth relative to the active manifold M if f is regular throughout
M and the directional derivative f ′(x; d) is continuous as x varies on M, with

f ′(x;−d) > −f ′(x; d) whenever 0 6= d ⊥ M at x.

This last condition enforces a “vee-shape” on the graph of f around a “ridge”
corresponding to M. Partial smoothness holds, for example, for the function
x 7→ max{xi}, the Euclidean norm, and the maximum eigenvalue of a symmetric
matrix, and the property is typically preserved under smooth composition, gen-
erating a wealth of applications. Furthermore, critical points of partly smooth
functions typically satisfy the sensitivity properties (ii) and (iii) above.

The structural persistence we first observed numerically in the chocolate prob-
lem (CP ) is explained by the following refinement of Theorem 2. We associate
with any polynomial p a list of multiplicities of those zeroes of p with real part
equal to the abscissa, listed in order of decreasing imaginary part.

Theorem 3. The abscissa α is partly smooth relative to any manifold of polyno-
mials having a fixed list of multiplicities.

By contrast with the sensitivity properties (ii) and (iii) above, convenient checks
for property (i) (strict local minimality) do typically involve second-order analysis.
For partly smooth functions f , the extra assumption we need is prox-regularity [5].
This property requires, locally, that the nearest-point projection onto the epigraph
{(x, r) : r ≥ f(x)} be unique (as typically holds if f is the pointwise maximum of
some smooth functions, for example). The question of the prox-regularity of the
abscissa α remains open. The essential ingredient is the following question, with
which we end.

Question 1. Does every degree-k polynomial p(s) near the polynomial sk have a
unique nearest stable polynomial?

References

[1] V. D. Blondel. Simultaneous Stabilization of Linear Systems. Springer, Berlin, 1994.
[2] J. V. Burke, A. S. Lewis, and M. L. Overton. Approximating subdifferentials by random

sampling of gradients. Math. of O.R., 27:567–584, 2002.
[3] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for

nonsmooth, nonconvex optimization. SIAM J. Opt., to appear.
[4] J..V. Burke and M. L. Overton. Variational analysis of the abscissa mapping for polynomials.

SIAM J. Control Opt., 39:1651–1676, 2001.
[5] W. L. Hare and A. S. Lewis. Identifying active sets via partial smoothness and prox-

regularity. J. Convex Analysis, to appear.
[6] A. S. Lewis. Active sets, nonsmoothness and sensitivity. SIAM J. Opt., 13:702–725, 2003.
[7] V. V. Patel, G. Deodhare, and T. Viswanath. Some applications of randomized algorithms

for control system design. Automotica, 28:2085–2092, 2002.



Optimization and Applications 107

The Return of the Active Set Method

Sven Leyffer (Argonne National Laboratory)

For solving nonlinear optimization problems, two competing iterative approa-
ches are available: active set methods and interior-point methods. Current imple-
mentations of interior methods often outperform active set methods in terms of
speed. On the other hand, active set methods are more robust and better suited for
warm starts, which are important for solving integer optimization problems [8, 9].
Consequently, we have recently become interested in new active set approaches,
which are reviewed in this note.

1. Active Set Methods for Quadratic Programs

Consider the quadratic programming (QP) problem

minimize
x

1

2
xT Hx + gT x subject to AT x = b and l ≤ x ≤ u,

where A ∈ Rn×m has full rank and H is symmetric but not necessarily positive
definite. Our new active set approach has two main components.

First, we identify an estimate of the optimal active set by approximately mini-
mizing the augmented Lagrangian

L(x, y, ρ) :=
1

2
xT Hx + gT x − yT (AT x − b) +

1

2
ρ‖AT x − b‖2,

in the box l ≤ x ≤ u, where y are the multipliers of AT x = b and ρk is the penalty
parameter. This step provides a Cauchy-point xk

c , a first-order multiplier estimate
yk

c = yk −ρk(AT xk
c − b), and an active set estimate Ak := {i : [xk

c ]i = li or [xk
c ]i =

ui}. This step is similar to the iterates generated by LANCELOT [3].
Next, we solve an equality constraint QP in the remaining inactive variables

indexed by I := {1, . . . , n} A by computing an approximate solution to the first-
order conditions[

HI,I −A:,I

AT
:,I

] (
∆xI

∆y

)
= −

(
[∇xL(xc

k, yc
k, 0)]I

AT xc
k − b

)
,

where HI,I is the submatrix of H corresponding to rows and columns of I. We
then perform a backtracking line-search along (xk

c + α∆xI , yk
c + α∆y) to ensure

global convergence. We show that if α = 1, then the two steps are equivalent to a
Newton step on the first-order conditions.

Global convergence is enforced through the use of a filter [6, 7]. A filter F is a
list of pairs of constraint violation hl := ‖AT xl − b‖ and projected gradient error
θl := ‖∇xLl − zl‖ (zl are the multipliers of the box constraints). A new point xk

is acceptable to the filter if hk ≤ βhl, or θk ≤ βθl for all l ∈ F . The backtracking
line-search reduces α until an acceptable iterate is found. This acceptable iterate
may be added to the filter.

Traditional proofs for augmented Lagrangian methods use two forcing sequences
ηk ց 0 and ωk ց 0 to control progress in hk and θk, respectively, and guide the
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penalty parameter. Recently, it has been shown [4] that ηk ց 0 is sufficient to
ensure convergence for certain QPs. The filter approach removes the need for
any forcing sequence whose choice may be problematic in practice. Preliminary
numerical experience is encouraging, and we are able to detect the optimal active
set in a modest number of iterations.

2. Active Set Methods for Nonlinear Programs

Recently, researchers have expressed renewed interest in sequential linear pro-
gramming (SLP) methods for nonlinear optimization problems such as

minimize
x

f(x) subject to c(x) ≥ 0;

see [5, 2, 1]. These SLP methods solve a trust-region LP around the current iterate
xk, given by

minimize
d

gT
k d subject to ck + AT

k d ≥ 0 and ‖d‖∞ ≤ ∆k,

where gk = ∇f(xk), ck = c(xk), and Ak = ∇c(xk)T . The solution of this LP
provides an estimate of the active inequality constraints, which is used to define
an equality constrained QP to compute a second-order step.

One problematic aspect of this approach is the use of the ℓ∞ trust-region. It has
been observed that while the active constraints corresponding to c(x) ≥ 0 settle
down, the active trust-region bounds do not, and this feature may cause the LP
solver to perform many wasteful pivots even close to the solution.

We propose an alternative trust-region subproblem based on penalizing an el-
liptic or ℓ2 trust-region. This gives rise to the following active set identification
problem

minimize
d

µgT
k d +

1

2
dT d subject to ck + AT

k d ≥ 0.

It can be shown that the dual of this problem is a bound-constrained QP in the
multipliers y,

minimize
y

1

2
yT AT Ay − (c − µAT g)T y +

µ2

2
gT g subject to y ≥ 0.

Convergence of a filter algorithm along the lines of [2] can be shown. The proof
exploits a piecewise quadratic relationship between the penalty parameter µ and
the ℓ2 trust-region radius ∆.

3. Conclusions

We have introduced two active set identification strategies for optimization.
Both schemes can be implemented in a matrix-free format, requiring only matrix-
vector operations and iterative linear system solves. We believe that this is an
important ingredient for a successful large-scale active set strategy.
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Stability Optimization of Periodic Walking and Running Motions

Katja D. Mombaur

(joint work with H. G. Bock, J. P. Schlöder, R. W. Longman)

The model-based mathematical investigation of walking and running motions plays
an important role in many areas of application, such as the design of walking ro-
bots, computer graphics, sports, and medicine. Mathematical models of walking
involve distinct model phases with possibly different degrees of freedom, each de-
scribed by a different set of nonlinear differential and algebraic equations with
invariants

(q̇T (t), v̇T (t)) = (v(t)T , aT (t))(
M(q(t), v(t), p) GT (q(t), p)

G(q(t), p) 0

)
·
(

a
λ

)
=

(
f(q(t), v(t), u(t), p)

γ(q(t), v(t), p)

)

gpos = g(q(t), p) = 0 gvel = G(q(t), p) · q̇(t) = 0.

Phase boundaries are implicitly defined by the roots of some switching func-
tions si(t, q(t), v(t), p) = 0. At these points, there may be discontinuities in
the righthand side of the linear system, that is, ∆f(q, v, u, p), ∆γ(q, v, p) (which
translates into discontinuities in the accelerations ∆a), or even in the velocities,
∆v(t, q, v, u, p), which are part of the state variables xT = (qT , vT )). Walking prob-
lems also involve a number of complex linear and nonlinear, coupled and decoupled
equality and inequality constraints; one example is the periodicity constraint on
the state variables (or a subset thereof) x̃(T ) = x̃(0).
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A crucial aspect of walking and running is stability. Stabilization by means of
feedback control is a complex issue, and the large amount of online computations
performed by the feedback system restricts the speed of operation. As an alter-
native approach we therefore investigate the existence of open-loop stable (i.e.,
self-stabilizing) systems that – under small perturbations – asymptotically con-
verge back to the precomputed periodic orbit without any feedback corrections at
all, relying just on the inherent dynamic and kinematic properties.

The determination of open-loop stable solutions for such complex systems as
walking robots is possible only by means of optimization. We have developed a
numerical method for the optimization of open-loop stability of periodic systems
based on a two-level approach [1]. In the outer loop, a stability optimization is
performed with the model parameters left free for variation. Stability is defined
by using a generalization of Lyapunov’s first method to multiphase systems with
discontinuities: the spectral radius |λ|max of the nonsymmetric monodromy matrix
Cx must be smaller than 1 for the system to be stable. This requirement leads to
the optimization criterion

min
p

|λ(Cx(p))|max,

which is nondifferentiable, may be non-Lipschitz at points of multiple maximum
eigenvalue, and involves the derivatives of the Poincaré mapping; it thus represents
a difficult nonstandard optimization criterion. The task of the inner loop is a
generation of an energy optimal periodic gait solution for the model parameter
values given by the outer loop, that is, a solution of the optimal control problem

multiphase DAE-model min
x,u,T

∫ T

0

‖u‖|22dt

subject to

x(τ+
j ) = h(x(τ−

j )) for j = 1, . . . , nph

gj(t, x(t), u(t), p) ≥ 0 for t ∈ [τj−1, τj ]
req/ineq(x(0), . . . , x(T ), p) = / ≥ 0.

For the solution of this problem we built on the optimal control methods based on
the direct boundary value problem approach developed by Bock and Plitt [2] and
Leineweber [3] and adapted these methods to handle 3-index DAEs. The outer-
loop nondifferentiable problem has been solved by using a direct search method.

This method has been used to design a number of fundamentally new open-loop
stable robot configurations with one and two legs performing walking, running,
and gymnastics motions; some are shown in the figure (for details, see, e.g., [4,
5, 6]). The range of application of this method is not restricted to robots and
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biomechanical systems however; it can be used for any periodic dynamic process
with discontinuities, for instance, from chemistry or economics.
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Global Performance of the Newton Method

Yurii Nesterov

(joint work with Boris Polyak)

We consider a special strategy for regularizing the standard Newton method as
applied to the unconstrained minimization problem

f(x) → min : x ∈ E,

where E is a finite-dimensional real vector space and f is two times continuously
differentiable function whose Hessian is Lipschitz continuous on some convex open
set F ⊆ E:

‖f ′′(x) − f ′′(y)‖ ≤ L‖x − y‖, x, y ∈ F .

The classical Newton iterate yf (x) is defined as a minimizer of the quadratic model
of f around x:

yf(x) = argmin
y

Vf,x(y)

Vf,x(y) = f(x) + 〈f ′(x), y − x〉 + 1
2 〈f ′′(x)(y − x), y − x〉.

Sometimes this iterate is not well defined. Therefore we suggest using the following
regularization [1]:

cf,M (x) = argmin
y

[
Vf,x(y) + M

6 ‖y − x‖3
]
,

where M is a positive parameter. The advantages of this construction follow from
two observations:

– If M ≥ L, then for any y ∈ F we have

f(y) ≤ Vf,x(y) + M
6 ‖y − x‖3.
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– The point cf,M (x) can be computed by standard techniques from linear algebra
from a convex univariate minimization problem (as could be inferred from [2]).

Thus, iterating

(1) xk+1 = cf,M (xk), k = 0, 1, . . . ,

we obtain a sequence that satisfies all naturally expected properties of a second-
order process:

– any limit point satisfies second-order necessary optimality conditions;

– the local rate of convergence is quadratic;

– the global rate of convergence in terms of the norm of the gradient is better than
that of the gradient method.

Moreover, for some nontrivial classes of (nonconvex) problems, we managed to
justify for (1) a global rate of convergence. For example, if f is star-convex, then
(1) converges globally as O( 1

k2 ), where k is the iteration counter.
A similar idea can be used for modifying the Gauss-Newton method [3] as

applied to the system of nonlinear equations

F (x) = 0,

with F : E1 → E2. Introducing for Ei the norms ‖ · ‖i, i = 1, 2, we can define the
corresponding operator norm ‖ · ‖12:

‖A‖12 = max
x∈E1

{‖Ax‖2 : ‖x‖1 ≤ 1}.

Let us assume that F has a Lipschitz-continuous Jacobian:

‖F ′(x) − F ′(y)‖12 ≤ L‖x− y‖1, x, y ∈ F .

Then, we can define

gF,M (x) = argmin
y

[
‖F (x) + F ′(x)(y − x)‖2 + M

2 ‖y − x‖2
1

]
,

where M is a positive parameter. As before, this object is computable in polyno-
mial time. Moreover, if M ≥ L, then for any y ∈ F we have

‖F (y)‖2 ≤ ‖F (x) + F ′(x)(y − x)‖2 + M
2 ‖y − x‖2

1.

This inequality is essential for global and local convergence analysis of the process

xk+1 = gF,M (xk), k = 0, 1, . . . .
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A Boundary-Point Method for Semidefinite Programs

Franz Rendl

(joint work with I. Dukanovic, J. Povh, A. Wiegele)

1. Semidefinite Programs and Projection onto the Positive
Semidefinite Cone

Recently, Burer and Vandenbussche [2] proposed to solve lift-and-project relax-
ations of binary integer problems by exploiting the augmented Lagrangian tech-
nique applied to the primal positive semidefinite program (SDP). We will apply
the idea to the dual SDP; see also [4, 5]. This approach seems to be more natural,
and also gives an interesting interpretation of the augmented Lagrangian approach
as a boundary-point method.

We consider the following primal-dual pair of SDP problems, given by symmet-
ric n × n matrices C and Ai, i = 1, . . . , m and a vector b ∈ Rm:

(P) max〈C, X〉 , such that A(X) = b, X � 0 ,

whose dual is

(D) min bT y such that AT (y) − C = Z � 0 .

We make the usual assumption that both problems have strictly feasible points,
so that strong duality holds and (X, y, Z) is optimal if and only if

X � 0 , A(X) = b , Z � 0 , AT (y) − Z = C , ZX = 0 .

We have problems in mind where the size n of the primal matrix is not too large,
say n ≤ 1000, but the number m of constraints could be arbitrary.

If W is a symmetric matrix with eigenvalue decomposition W = PΛP T , we
partition P and the diagonal matrix Λ according to positive and negative eigen-
values: Λ = (Λ1, Λ2), P = (P1, P2) with diag (Λ1) ≥ 0, diag (Λ2) < 0. Thus
W = P1Λ1P

T
1 + P2Λ2P

T
2 = W+ + W−. It is well known that

min
Z�0

‖Z − W‖2

is attained at Z = W+ = P1Λ1P
T
1 . In other words, the projection of W onto the

cone of semidefinite matrices is given by setting the negative eigenvalues of W to
zero.

2. An Augmented Lagrangian Approach to Solve (D)

We apply the augmented Lagrangian method to solve (D). Thus we introduce
a Lagrange multiplier X for the dual equations Z + C − AT (y) = 0 and consider
for fixed σ > 0 the augmented Lagrangian Lσ:

Lσ(y, Z; X) := bT y + 〈X, Z + C − AT (y)〉 +
σ

2
‖Z + C − AT (y)‖2.



114 Oberwolfach Report 2/2005

Define

(1) W (y) := AT (y) − C − 1

σ
X,

so that Lσ(y, Z; X) = bT y + σ
2 ‖Z − W (y)‖2 − 1

2σ ‖X‖2, and let

(2) f(y, Z) := bT y +
σ

2
‖Z − W (y)‖2 .

The augmented Lagrangian method to solve (D) consists in minimizing f(y, Z)
(approximately), to get y and Z � 0. Then X is updated to X +σ(Z +C−AT (y))
and the whole process is iterated until convergence; see [1].

Clearly, the crucial step here is minimizing f(y, Z), so we take a closer look at
the optimality conditions of this problem.

3. Optimality Conditions for the Inner Minimization

To minimize f(y, Z) of (2) subject to y ∈ Rm, Z � 0 is a convex quadratic
SDP. After introducing a Lagrange multiplier V � 0 for the constraint Z � 0, we
get the Lagrangian

L(y, Z, V ) := f(y, Z) − 〈V, Z〉
and the following KKT necessary conditions for optimality:

∇yL = 0 , ∇ZL = 0 , V � 0 , Z � 0 , V Z = 0 .

Since the problem is convex and the Slater condition holds, these conditions are
also sufficient for optimality. Expanding the gradient conditions, we note that y, Z
is optimal if and only if there exists V such that

A(AT (y)) = A(Z + C) + 1
σ (A(X) − b) ,(3)

V = X − σW (y) , Z � 0 , V � 0 , V Z = 0 .(4)

For y fixed, the problem minZ�0 f(y, Z) is a projection onto the cone of semidefi-
nite matrices. Therefore, Z must also satisfy the projection condition

(5) Z = W (y)+.

Thus we can reformulate the necessary and sufficient conditions for optimality as
follows: (y, Z, V ) is optimal if and only if

A(AT (y)) = A(Z + C) +
1

σ
(A(X) − b) , Z = W (y)+ , V = −σW (y)− .

Keeping Z constant, we get y from the linear system (3), while keeping y constant,
we get Z from (5). Note that here we alternate solving a system of order m, and
a projection onto the cone S+ of SDP matrices. Using (1) and (5), the update on
X is given by X + σ(Z + C − AT (y)) = −σW (y)− = V � 0.

These updates for X and Z motivate us to call this a boundary-point method, as
both Z and X are on the boundary of the cone of semidefinite matrices. Moreover
ZX = 0 holds throughout. Hence, once feasibility with respect to the primal and
dual linear equations is reached, we have an optimal solution.

Finally, the matrix variables X and Z can be eliminated, since they can be
defined through y. The problem is really to minimize over y ∈ Rm the function
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h(y) := bT y + σ
2 ‖W (y)−‖2; it is convex differentiable with Lipschitz continuous

gradient given by ∇h(y) = b + σA(W (y)−). We could also minimize h(y) directly,
using for instance the method of Nesterov [6].

4. Application to Compute ϑ(G)

The theta number ϑ(G), associated to a graph G = (V, E), is the optimal value
of the following SDP; see for instance [3]:

ϑ(G) = max〈J, X〉 , such that xij = 0 ∀[ij] /∈ E , tr(X) = 1 , X � 0 .

Let n = |V | and m =
(
n
2

)
− |E|, that is, m denotes the number of equations

xij = 0. We consider graphs with edge density 0.5, which are the hardest for
standard methods because m ≈ |E(G)|. We solve the resulting SDP to about
six digits of relative accuracy and get the following computational results on a
laptop (1.7 Mhz, 1 GB RAM, Matlab under Linux). The computation times are
essentially determined by the number of eigenvalue decompositions. There are
typically less than 1 000 of these. Current research focuses on further applications
of this approach and will be reported elsewhere.

n 200 300 400 500 600
m 10000 22500 40000 62500 90100

time (sec.) 120 350 880 1700 3060
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A Full-Newton Step O(n) Infeasible Interior-Point Algorithm for
Linear Optimization

Kees Roos

Interior-point methods (IPMs) for solving linear optimization (LO) problems were
initiated by Karmarkar [6]. They not only have polynomial complexity but are
also highly efficient in practice. One may distinguish between feasible IPMs and
infeasible IPMs (IIPMs). Feasible IPMs start with a strictly feasible interior point
and maintain feasibility during the solution process. An elegant and theoretically
sound method to find a strictly feasible starting point is to use a homogeneous
embedding model, by introducing artificial variables. This technique was presented
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first by Ye et al. [29] and studied by many others [1, 4, 5, 8, 11, 12, 14, 15, 16, 18,
21, 24, 25, 27, 29, 30]. Only a few commercial software packages are based on this
approach: to our knowledge, only MOSEK [2], SeDuMi [19], and XpressMP.

Most of the existing software packages use an IIPM. IIPMs start with an arbi-
trary positive point, and feasibility is reached as optimality is approached. The
first IIPMs were proposed by Lustig [9] and Tanabe [20]. Global convergence was
shown by Kojima et al. [7], whereas Zhang [30] proved an O(n2L) iteration bound
for IIPMs under certain conditions. Mizuno [10] introduced a primal-dual IIPM
and proved global convergence of the algorithm. A discussion and analysis of
IIPMs can be found in the book by Wright [26] and, with less detail, in the books
by Ye [28] and Vanderbei [22]. The performance of existing IIPMs highly depends
on the choice of the starting point, which makes these methods less robust than
the methods using the homogeneous embedding technique.

As usual, we consider the linear optimization (LO) problem in the standard
form

(P) min
{
cT x : Ax = b, x ≥ 0

}
,

with its dual problem

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
.

Here A ∈ Rm×n; b, y ∈ Rm and c, x, s ∈ Rn. Without loss of generality we assume
that rank (A) = m. The vectors x, y and s are the vectors of variables. The
best-known iteration bound for IIPMs is

(1) O


n log

max
{(

x0
)T

s0,
∥∥b − Ax0

∥∥ ,
∥∥c − AT y0 − s0

∥∥
}

ε


 .

Here (x0, y0, s0) > 0 denotes the starting point; b − Ax0 and c − AT y0 − s0 are
the initial primal and dual residue vectors, respectively, whereas ε is an upper
bound for the duality gap and the norms of residual vectors upon termination of
the algorithm. It is assumeed in this result that an optimal solution (x∗, y∗, s∗)
exists with ‖(x∗, s∗)‖ ≤ ζ and that the initial iterate is (x0, y0, s0) = ζ(e, 0, e).

Until 2003, the search directions used in all primal-dual IIPMs were computed
from the linear system

A∆x = b − Ax

AT ∆y + ∆s = c − AT y − s

s∆x + x∆s = µe − xs,

which yields tho so-called primal-dual Newton search directions ∆x, ∆y, and ∆s.
To describe the idea underlying our algorithm, we make some remarks with

a historical flavor. In feasible IPMs, feasibility of the iterates is given, and the
ultimate goal is to get iterates that are optimal. There is a well-known IPM
that aims to reach optimality in one step, namely, the affine-scaling method. But
everybody familiar with IPMs knows that this does not yield a polynomial-time
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method. The past two decades have made it very clear that, to get a polynomial-
time method, one should be less greedy and work with a search direction that
moves the iterates only slowly in the direction of optimality. Only then can one
take full profit of the efficiency of Newton’s method, which is the working horse in
all IPMs.

In IIPMs, the iterates are not feasible; and, apart from reaching optimality,
one needs to strive for feasibility. This is reflected by the choice of the search
direction, as defined above: when moving from x to x+ := x+∆x, the new iterate
x+ satisfies the primal feasibility constraints, except possibly the nonnegativity
constraint. In fact, in general x+ will have negative components; and, to keep the
iterates positive, one is forced to take a damped step of the form x+ := x + α∆x,
where α < 1 denotes the stepsize. But this same phenomenon occurred with the
affine-scaling method in feasible IPMs. There the best complexity results clearly
hold for methods that are much less greedy and that use full Newton steps (with
α = 1). Striving to reach feasibility in one step might be too optimistic and may
deteriorate the overall behavior of a method. One may better exercise a little
patience and move more slowly in the direction of feasibility. Therefore, in our
approach, the search directions are designed in such a way that a full Newton step
reduces the sizes of the residual vectors with the same speed as the duality gap.
The outcome of our analysis confirms that this is a good strategy. It yields a full-
Newton step method with the same complexity as given by (1). We conjecture,
however, that a more careful analysis will reduce this bound by a factor of

√
n.
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On Recursive Multiscale Trust-Region Algorithms for
Unconstrained Minimization

Annick Sartenaer and Philippe L. Toint

(joint work with Serge Gratton)

Many large-scale finite-dimensional minimization programs arise from the dis-
cretization of infinite-dimensional problems, such as optimal-control problems de-
fined in terms of either ordinary or partial differential equations. We report here
on a potentially efficient new class of algorithms using this structure and briefly
discuss a first set of numerical experiments.

A simple first approach is to use coarser grids in order to compute approximate
solutions, which can then be used as starting points for the optimization problem
on a finer grid (see [10, 3, 5, 4], for instance). However, potentially more efficient
techniques are inspired from the multigrid paradigm in the solution of partial
differential equations and associated systems of linear algebraic equations (see,
for example, [6, 7]). The work presented here was in particular motivated by the
“generalized truncated Newton algorithm” presented in Fisher [9], a talk by Moré
[13], the contributions by Lewis and Nash [11, 12] and the computational success
of the low/high-fidelity model management techniques of Alexandrov, Lewis, and
coauthors [1, 2].

We consider the solution of the unconstrained optimization problem

(1) min
x∈Rn

f(x),

where f is a twice-continuously differentiable objective function which maps Rn

into R and is bounded below. The trust-region methods which we study produce,
given an initial point x0, a sequence {xk} of iterates (one hopes) converging to a
local first-order critical point for the problem. At each iterate xk, these methods
build a (typically quadratic) model mk(xk + s) of f(xk + s). This model is then
assumed to be adequate in a “trust region”, defined as a sphere of radius ∆k > 0
centered at xk, and a step sk is then computed that sufficiently reduces this model
in the region. The objective function is computed at the trial point xk + sk and
this trial point is accepted as the next iterate if and only if the achieved reduction
in f is sufficiently large compared to the predicted reduction in mk. The value
of the radius is then updated to ensure that it is decreased when the trial point
cannot be accepted as the next iterate, and is increased otherwise. Obtaining
sufficient decrease on this model then amounts to (approximately) solving the
problem min‖s‖≤∆k

mk(xk + s).
We investigate what can be done to reduce the cost of solving (1) if one attempts

to exploit the knowledge of simplified expressions of the objective function, when
available. More specifically, we assume that we know a collection of functions
{fi}r

i=0 such that each fi is a twice-continuously differentiable function from Rni

to R (with ni ≥ ni−1), the connection with our original problem being that nr = n
and fr(x) = f(x) for all x ∈ Rn. We will also assume that, for each i = 1, . . . , r, fi

is “more costly” to minimize than fi−1. This may be because fi has more variables
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than fi−1 (as would typically be the case if the fi represent increasingly finer
discretizations of the same infinite-dimensional objective) or because the structure
(in terms of partial separability, sparsity, or eigenstructure) of fi is more complex
than that of fi−1, or for any other reason. To fix terminology, we will refer to
a particular i as a level. Of course, for fi−1 to be useful at all in minimizing
fi, there should be some relation between the variables of these two functions.
We henceforth assume that, for each i = 1, . . . , r, there exist a full-rank linear
operator Ri from Rni into Rni−1 and another full-rank operator Pi from Rni−1

into R
ni such that Pi = RT

i , where Pi and Ri are interpreted as restriction and
prolongation between a fine and a coarse grid. The idea is then to use fr−1 to
construct an alternative model hr−1 for fr = f in the neighborhood of the current
iterate that is cheaper than mk and to use this alternative model to define the
step in the trust-region algorithm whenever possible. If more than two levels
are available (r > 1), this procedure can be done recursively, the approximation
process stopping at level 0, where the usual quadratic model is always used. The
resulting algorithm can then be specified as a variant of the basic trust-region
algorithm of [8].

We briefly describe the global convergence theory associated with this algorithm
and show convergence from arbitrary starting points to first-order critical points
under classical assumptions. We also discuss an associated dimension-independent
worst-case complexity result. We next present a first numerical application for one
of the possible implementations. This implementation specifies the nature of the
nonrecursive iterations, which fall into two classes: smoothing iterations, aimed
at decreasing high-frequency components of the gradient, and damping iterations,
which decrease their low-frequency components (an important issue is to modify
these iterations so as to ensure “sufficient decrease” in the sense of the Cauchy
condition). Other implementation issues concern the form of the recursive itera-
tions, ranging from free form (where the optimization at lower levels is governed
purely by accuracy requirements) to fixed cycles (such as the V and W cycles in-
spired by multigrid techniques). The efficiency of the method is demonstrated on a
minimum-surface problem with highly oscillatory boundary conditions. Problems
of this type involving up to 1.1 million variables were solved by the new algorithm
in Matlab on an oldish laptop PC (Pentium 4 Mobile, 1.6 GHz). Perspectives are
described, which are both numerous and interesting.
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Complexity Analysis of Interior-Point Algorithms and Geometric
Properties of the Central Trajectory for Linear Programming

Takashi Tsuchiya

(joint work with Renato D. C. Monteiro)

We study the geometrical structure of the central trajectory associated with a
linear programming (LP) problem using the same techniques developed in [2] to
establish a new complexity bound for the Mizuno-Todd-Ye predictor-corrector
(MTY-PC) primal-dual interior-point algorithm.

We consider the LP problem

(1) minimizex cT x subject to Ax = b, x ≥ 0,

and its associated dual problem

(2) maximize (y,s) bT y subject to AT y + s = c, s ≥ 0,

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm are given, and the vectors x, s ∈ Rn and
y ∈ Rm are the unknown variables. We assume that both (1) and (2) have interior
feasible solutions.

The MTY-PC algorithm solves (1) and (2) by closely following the central
trajectory, which is defined as the set of solutions of the following family of systems
of bilinear equations in (x, s, y), parametrized by ν > 0:

(3) x ◦ s = ν1, Ax = b, AT y + s = c, x > 0, s > 0.
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Here ◦ denotes the Hadamard product of vectors, that is, componentwise product
of two vectors. The vector of all ones is denoted by 1. Given β ∈ (0, 1), we define
the 2-norm neighborhood of the central trajectory with opening β as

N(β) ≡
{

(x, y, s) feasible solution :

∥∥∥∥
x ◦ s

µ(x, s)
− e

∥∥∥∥ ≤ β

}
,

where µ(x, s) = xT s/n.
We now describe the MTY-PC algorithm with opening β ∈ [0, 1/2]. One itera-

tion of the algorithm consists of a predictor step followed by a corrector step. At
the beginning of an iteration, an iterate lying in the smaller neighborhood N(β2)
is assumed given. A predictor step is then performed, which consists of moving
along the Newton direction for system (3) with ν = 0 until a point lying in the
boundary of the larger neighborhood N(β) is located. Next, a corrector step from
the latter point is performed to obtain the next iterate of the MTY-PC algorithm
lying in the smaller neighborhood N(β2). This corrector step consists of taking a
full Newton step toward the central trajectory point with the same duality gap as
the base point. Classical results about the MTY-PC algorithm establish that it
has the iteration-complexity bound O(

√
n log(1/ε)) for reducing the duality gap

by a factor of ε, as well as asymptotic quadratic convergence.

Set χ̄A = max{‖G−1A‖ : G ∈ G̃}, where G̃ denotes the set of all m × m
nonsingular submatrices of A. This quantity is known as the condition number of
A and its properties have been studied by several authors starting from Dikin [1]
(see references in [4, 6] for more details). It is known that χ̄A is bounded by 2LA

if A is integral, where LA is the input size of A. Furthermore, let

χ̄∗
A ≡ inf{χ̄AD : D is a positive definite diagonal matrix}.

We established in [4] the following complexity result for the MTY-PC algorithm.

Theorem 1 Given 0 < ε ≤ 1 and an initial point (x0, s0, y0) ∈ N(β2) with β ∈
(0, 1/4], the MTY-PC algorithm generates an iterate (xk, sk, yk) ∈ N(β2) satisfy-
ing µ(xk, sk) ≤ εµ(x0, s0) in O

(
min[n2 log log(1/ε), log(1/ε)] + n3.5 log(χ̄∗

A + n)
)

iterations.
This result was strongly motivated by Vavasis and Ye’s seminal work [6], where

a polynomial-time interior-point algorithm with an iteration-complexity bound of
O(n3.5 log(χ̄A + n)) is developed (see also [3]). Their analysis is based on the
clever notion of a crossover event, and their algorithm occasionally uses a special
step, namely, the layered least squares (LLS) step, in order to make substantial
progress along the straight parts of the central trajectory. Crossover events and
LLS steps are also used in a crucial way in the proof of the above theorem and the
subsequent results about the geometrical structure of the central trajectory.

Vavasis and Ye [6] made an interesting observation that the central trajectory
consists of O(n2) “long and straight” parts and that its remaining curved part is
relatively short , in that it can be traversed by a standard short-step path-following
algorithm in O(n3.5 log(χ̄A +n)) iterations. This observation was essentially moti-
vated by the technique used to establish the iteration-complexity of their method
and was not formally justified, in that the notion of straightness of the central
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trajectory was not defined rigorously. The purpose of this work is to relate the
new complexity analysis of the interior-point algorithms developed in [3, 4, 6] with
the geometrical structure of the central trajectory in a more concrete way.

To this end, the following integral over the central trajectory plays a fundamen-
tal role:

F (ν0, ν1) =

∫ ν0

ν1

κ(ν)

ν
dν,

where κ(ν) = ‖νẋ(ν)ṡ(ν)‖1/2. This integral was first introduced by Sonnevend,
Stoer and Zhao [5] to analyze the iteration-complexity of a predictor-corrector
type path-following algorithm (see also [7]). We refer to the function κ(·) as the
“curvature” of the central trajectory. The following result gives an estimation of
the number of iterations of the MTY-PC algorithm in terms of the above integral.

Proposition 2 For given 0 < µ1 < µ0, denote by #(µ0, µ1, β) the number of
iterations of the MTY-PC algorithm with opening β needed to reduce the duality
gap from µ0 to µ1. Then,

lim
γ→0

F (µ0, µ1)/
√

β

#(µ0, µ1, β)
= 1.

One of the interpretations of the above formula is that, as the opening β becomes
sufficiently small, the curvature κ(ν) divided by β1/2 provides an estimate on the
number of iterations needed to reduce the current duality gap ν by a factor of
e−1. Thus, κ is a reasonable measure of straightness of the central trajectory. The
classical complexity analysis yields κ ≤ √

n, and therefore we have F (µ, εµ) =
O(

√
n log(1/ε)) as a trivial bound, where 0 < ε ≤ 1.

The main results we have obtained about the behavior of the curvature and the
integral are summarized in the following two theorems.

Theorem 3 For any constant κ̄ ∈ (0,
√

n], there exists l ≤ n(n − 1)/2 closed
intervals Ik = [dk, ek], k = 1, ..., l, such that:

i) dk ≥ ek+1 for all k = 1, ..., l − 1;
ii) {ν > 0 : κ(ν) ≥ κ̄} ⊆ ∪l

k=1Ik;
iii) log(ek/dk) = O(n log(χ̄∗

A + n) + n log κ̄−1) for all k = 1, ..., l.

Theorem 4 Let ν > 0 and 0 < ε ≤ 1. Then, we have

F (ν, εν) = O(n3.5 log(χ̄∗
A + n) + min[n3.5 log log(1/ε), log(1/ε)]).

A few remarks are now in order. Theorem 3 bounds the length (in the logarith-
mic scale) of the curved part of the central trajectory. The intervals Ik (i = 1, ..., l)
contain the parameters ν with large curvature (i.e., such that κ(ν) ≥ κ̄) and the
theorem claims that the total length of all the Ik’s is reasonably bounded. Theo-
rem 4 gives an upper bound on the integral F . The bound consists of two terms:
the first one is independent of ε, and the second one grows very slowly as a function
of ε or independent of n.

In view of existing results about the limiting behavior of the central trajectory,
it is not difficult to see that F (∞, 0) is well defined as an improper integral and is
bounded by a constant depending on (A, b, c). Therefore, an interesting question is
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whether there is an upper bound on F (∞, 0) depending only on A. We conjecture
that F (∞, 0) = O(n3.5 log(χ̄∗

A + n)).
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Newton-Type Preconditioned Multilevel Methods for
Infinite-Dimensional Complementarity Problems with Applications

Michael Ulbrich

In this study, we give an overview of recent results and work in progress on Newton-
type methods for the following infinite-dimensional Mixed Complementarity Prob-
lem (MCP):

(a) G(y, u) = 0

(b) u ∈ K, F (y, u) ∈ K+, 〈F (y, u), u〉U∗,U = 0.
(1)

Here G : Y × U → Z and F : Y × U → V are continuously Fréchet differentiable
operators; Y, Z are Banach spaces; and U ⊂ M(Ω) is a function space, M(Ω)
denoting the space of real-valued measurable functions on the bounded measurable
set Ω ⊂ R

n. Furthermore, V ⊂ U∗ is a (generalized) function space, where U∗ is
the dual space of U , K ⊂ U is the cone of a.e. nonnegative functions in U , and
K+ ⊂ U∗ denotes the dual cone of K.

When V ⊂ M(Ω), the complementarity condition (1) (b) can be written point-
wise as

u ≥ 0, F (u) ≥ 0, uF (u) = 0 a.e. on Ω.

We can further transform this problem into the operator equation

(2) H(y, u)
def

=

(
G(y, u)

Φ(y, u)

)
= 0,

where Φ(y, u)(·) def

= φ(u(·), F (y, u)(·)). Here, φ : R2 → R is an NCP-function, that
is, satisfies φ(a, b) = 0 iff a, b ≥ 0 and ab = 0. Commonly used NCP-functions, for
example, φmin(a, b) = min(a, b), are usually nonsmooth, but Lipschitz continuous
and semismooth. As a consequence, the operator Φ is in general nonsmooth and
this is inherited by H .



Optimization and Applications 125

For simplicity, we now focus on an important special case of (1), the nonlinear
complementarity problem (NCP). Assuming again V ⊂ M(Ω), one can state the
NCP as follows:

(3) u ≥ 0, F (u) ≥ 0, uF (u) = 0 a.e. on Ω.

The reformulated problem (2) then reduces to the nonsmooth equation

(4) Φ(u) = 0, with Φ(u)(·) := φ(u(·), F (u)(·)).
We present a rigorous analysis for the case where U = Lp(Ω), V = Lq(Ω), p ∈
[2,∞], q ∈ [1, p], 1/p + 1/q ≤ 1. Under appropriate assumptions (which are mild
if p > q and require a particular structure of φ and F if p = q), we then can show
that Φ : U → V is ∂Φ-semismooth [2] (this concept is introduced below), that is,

sup
M∈∂Φ(u+s)

‖Φ(u + s) − Φ(u) − Ms‖V = o(‖s‖U ) (‖s‖U → 0),

where ∂Φ(u) ⊂ L(U, V ) is a suitably chosen generalized differential. Under slightly
stronger assumptions, we can prove semismoothness of order κ > 0. Here, we
propose to call a continuous operator H : W1 → W2 between Banach spaces
∂H-semismooth at w if the following holds:

sup
M∈∂H(w+s)

‖H(w + s) − H(w) − Ms‖W2
= o(‖s‖W1

) (‖s‖W1
→ 0).

The operator H is called ∂H-semismooth of order κ > 0 if o(‖s‖W1
) can be

strengthened to O(‖s‖1+κ
W1

). We then can show that the Newton-type iteration

Given wk, choose Mk ∈ ∂H(wk), solve Mksk = −H(wk), set wk+1 = wk + sk

converges locally q-superlinearly (with order 1 + κ if H is semismooth of order
κ > 0) to a solution w∗ ∈ W1 if all the operators Mk are uniformly bounded
invertible (we call regularity condition this property and related ones).

With regard to the specific operator Φ, the structure of its associated general-
ized differential implies that the regularity condition usually can be verified only
in the case U = V . Fortunately, this choice of spaces is possible if F is con-
tinuously Fréchet differentiable and has the structure F (u) = γu + A(u), where
A : U → Lr(Ω) is locally Lipschitz continuous for some r > p and if we make the
particular choice φ(a, b) = min(γa, b) for the NCP-function. Alternatively, we
can use a more general class of NCP-functions, obtain semismoothness of Φ with
a norm gap (i.e., p > q), and then have to augment the Newton iteration by a
smoothing step [2]. Here, however, we follow the first approach.

The following theoretical questions are addressed:

– Sufficient conditions for regularity [3, 4], that is, conditions implying
∥∥M−1

∥∥
V,U

≤ C ∀ M ∈ ∂Φ(u), ‖u − u∗‖U < ε.

Two variants are given for the case U = V = L2(Ω), where the main assumption
is a coercivity condition for F ′(u∗) either on L2 or on an appropriate tangent
space.
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– A mesh independence results [1]. Here the NCP (3) and piecewise constant
discretizations (3)h, h > 0 denoting the mesh size, are considered. The corre-
sponding reformulations (4) and (4)h, respectively, induce semismooth Newton
iterations that generate sequences uk and uk

h, respectively. Under very natural
assumptions, we show that, for any given rate θ, there exists a universal radius
δθ > 0 and a mesh size hθ > 0 such that the Newton iterates (uk) and (uk

h),
h ≤ hθ, converge with at least q-linear rate θ to a solution u∗ and corresponding
discrete solutions u∗

h, respectively, whenever the initial points lie within δθ-balls
centered at u∗ and u∗

h, respectively.

– Verification of the assumptions for concrete problems.

In our study, a strong focus is placed on applications in the field of optimization
with PDEs and on efficient implementations of the proposed method for large-scale
discretizations. In particular, we discuss control-constrained semilinear elliptic
control problems and 3D elastic two-body contact problems. The first problem
class directly fits in our theoretical framework, whereas for the contact problem
a regularization procedure is required to make the theory rigorously applicable.
Error estimates for the regularized solutions are also presented [5].

For both, the control problem and the contact problem we show that multigrid
solvers for elliptic PDEs can be used to solve the linear operator equations arising
in each iteration of the semismooth Newton method very efficiently. To this end,
we observe that appropriate block eliminations in the Newton systems result in an
elliptic system of PDEs to which multigrid methods can be applied. For instance,
the semismooth Newton system for the (regularized) elastic contact problem can
be reduced to a system involving the linear operator

(
E + γ−1B∗(d · B) 0

−d · B γI

)
,

where E is the elliptic differential operator of the elasticity equations, B is the
normal trace operator on the potential contact boundary ΓC , γ is the regular-
ization parameter, and d(x) ∈ {0, 1}, x ∈ ΓC . Since the upper left block is a
system of elliptic differential operators, we can apply a multigrid method to solve
the Newton system with optimal complexity. A similar approach can be taken for
the elliptic optimal control problem. The multigrid method can either be used as
a direct solver or, which is more efficient for harder problems (e.g., the elasticity
problem), one or more multigrid cycles can serve as a preconditioner for Krylov
subspace iterative solvers. Also, a nested iteration can be used to take additional
advantage of the multilevel grid hierarchy. Starting on the coarsest grid, approxi-
mate solutions of the discretized optimization problem are transported to the next
finer grid to obtain good initial points for the Newton process on this grid and so
forth.

Numerical results for both problems are presented. They support the super-
linear convergence results for the Newton iteration (less than 10 iterations are
needed), its mesh-independent behavior, and they prove the efficiency of the multi-
grid Newton approach.
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Primal-Dual Interior-Point Multigrid Methods for
PDE-Constrained Optimization

Stefan Ulbrich

We present recent results from [1] on interior-point methods for PDE-constrained
optimization problems of the form

min
(y,u)∈Y ×U

f(y, u) subject to c(y, u) = 0, u ∈ B := {v ∈ U : l ≤ u ≤ r}

where U = Lp(Ω), 2 ≤ p < ∞ is the control space, Ω ⊂ Rd is bounded and
measurable, Y is the state space and the bounds l, r lie in L∞(Ω), r − l ≥ ν > 0.
The constraint c(y, u) = 0 is the appropriate formulation of a (system of) PDE(s)
with boundary and/or initial conditions. We assume that f : Y × U → R and
c : Y × U → Z are twice locally Lipschitz-continuously differentiable, that there
exists a unique solution y = y(u) ∈ Y of c(y, u) = 0 for all u ∈ B and that cy has
a bounded inverse.

As in the finite-dimensional case the basic concept of the proposed interior
point method consists in following the central path by using damped Newton
steps inside a neighborhood of the central path. However, the algorithmic details
and the convergence analysis are strongly influenced by the infinite-dimensional
nature of the problem and differ significantly from the finite-dimensional case.

Starting from the first order optimality conditions we introduce the central
path as the solution path of the relaxed optimality conditions with perturbed
complementarity condition. Although the associated logarithmic barrier function
is not a barrier function in the classical sense, since C has no interior point in Ls(Ω)
for s < ∞, the perturbed optimality conditions are nevertheless the optimality
system for a corresponding barrier problem.

The proposed interior point algorithm follows the central path approximately
by applying damped primal-dual Newton steps, which are projected on a wide
neighborhood of the central path. The convergence of the algorithm is analyzed
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for convex linear-quadratic problems that have the following smoothing property:
the reduced gradient ĝ(y, u) corresponding to the control component has the form
ĝ(y, u) = αu + ĝs(y, u), where ĝs is locally bounded in Lq(Ω) for some q > p and

the reduced Hessian Ĥ has the structure Ĥ(y, u) = αI+Ĥs(y, u), where Ĥs(y, u) is
locally bounded in L(Lp(Ω), Lq(Ω)). These structural assumptions are satisfied for
several important applications, e.g., distributed and Neumann boundary control
of elliptic and parabolic PDEs, distributed control of hyperbolic PDEs and the
incompressible Navier-Stokes equations, and regularized contact problems.

In the case q = ∞ we prove global linear convergence. The case q < ∞ leads to
a norm gap that is closed by using a smoothing step. We show that the resulting
method converges globally linear und locally superlinear under a moderate strict
complementarity assumption. An extension to nonlinear problems can be obtained
in a vicinity of a solution satisfying appropriate regularity assumptions.

Moreover, we show how multigrid methods can be applied to solve the Newton
system efficiently. We demonstrate this for control constrained elliptic problems
and 3D elastic two body contact problems. Numerical results are shown for these
problems which demonstrate the efficiency of the approach.
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Universitätsstr. 65-67
A-9020 Klagenfurt

Prof. Dr. James Renegar

renegar@mac.com

renegar@orie.cornell.edu

School of Operations Research and
Industrial Engineering
Cornell University
Upson Hall
Ithaca, NY 14853-7901
USA



132 Oberwolfach Report 2/2005

Prof. Dr. Kees Roos

c.roos@ewi.tudelft.nl

EWI/ISA/ALG
Delft University of Technology
Mekelweg 4
NL-2628 CD Delft

Prof. Annick Sartenaer

annick.sartenaer@fundp.ac.be

as@math.fundp.ac.be

Departement de Mathematique
Universite de Namur
(FUNDP)
Rempart de la Vierge 8
B-5000 Namur

Prof. Dr. Mike Saunders

saunders@stanford.edu

Management Science and Engineering
Terman Engineering Center
Room 330
Stanford University
Stanford CA 94305-4026
USA

Prof. Dr. Josef Stoer

jstoer@mathematik.uni-wuerzburg.de

Institut für Angewandte Mathematik
und Statistik
Universität Würzburg
Am Hubland
97074 Würzburg

Prof. Dr. Jean-Jacques Strodiot

jean-jacques.strodiot@fundp.ac.be

Departement de Mathematique
Universite de Namur
(FUNDP)
Rempart de la Vierge 8
B-5000 Namur

Prof. Dr. Michael J. Todd

miketodd@cs.cornell.edu

miketodd@orie.cornell.edu

School of Operations Research and
Industrial Engineering
Cornell University
Upson Hall
Ithaca, NY 14853-7901
USA

Prof. Dr. Philippe L. Toint

philippe.toint@fundp.ac.be

Department of Mathematics
The University of Namur
FUNDP
61, rue de Bruxelles
B-5000 Namur

Prof. Dr. Takashi Tsuchiya

tsuchiya@sun312.ism.ac.jp

The Institute of Stat. Mathematics
4-6-7 Minami Azabu, Minato-ku
Tokyo 106-8569
JAPAN

Prof. Dr. Reha Tütüncü
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