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Introduction by the Organisers

This conference was one of a series of Oberwolfach conferences, held every two
years or so, with focus on graph structure, decomposition, and representation.
There were 49 participants, including over a dozen graduate students and postdocs.

At the request of the Oberwolfach Director, the conference schedule was de-
signed to promote informal collaboration. In particular, there were fewer formal
talks than usual, and instead there were a number of discussion groups or “work-
shops”. Also, the first day (except for one plenary talk) was devoted to having the
participants introduce themselves – we asked all participants to give a five-minute
presentation of their current interests.

We were fortunate in that several of the plenary talks described major new
results. For instance, Ron Aharoni and Eli Berger have just solved the Erdős-
Menger conjecture; Bertrand Guenin has proved a major extension of the four-
colour theorem; and Stephan Brandt and Stéphan Thomassé have settled a long-
standing question about the chromatic number of dense graphs.



136 Oberwolfach Report 3/2005

But probably the most distinctive feature of the meeting were the workshops.
Some of these were planned before the conference, and others were held sponta-
neously. They were each on a topic with a chairman, but made as informal as
possible. Some were more or less a sequence of talks on the topic, some were
monologues, and some were genuine discussions. There were several different
topics: infinite graphs and Ramsey theory, matroid theory, connectivity, graph
minors and width, and topological methods. Three topics in particular gave rise
to particularly active and long-running workshops: the proof of the Erdős-Menger
conjecture, the prospects of extending the graph minors project to matroids, and
the use of topological methods for combinatorial problems.

Our thanks to the organizers of the workshops for making them run successfully,
to the Director for encouraging us to try out new ways of informal collaboration,
and to all the participants for making this a highly stimulating meeting.
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Proof of the Erdős-Menger conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Henning Bruhn (joint with Reinhard Diestel, Maya Stein)
The topological cycle space of a locally finite graph . . . . . . . . . . . . . . . . . . . . . 143

András Frank (joint with Mihály Bárász, Johanna Becker)
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Abstracts

Dense triangle-free graphs are four colorable.

Stéphan Thomassé

(joint work with Stephan Brandt)

For every ε > 0, Hajnal provided examples of triangle-free graphs with arbitrar-
ily large chromatic number and minimum degree greater than (1/3 − ε)n, where
n is the number of vertices. The construction involves a large bipartite graph
(to increase the minimum degree) to which is attached a small Kneser graph (to
increase the chromatic number). Any further attempt to find triangle-free graphs
with unbounded chromatic number and minimum degree greater than n/3 failed.

It was known that triangle-free graphs with minimum degree greater than 2n/5
are bipartite, following a result of Andrásfai, Erdős and Sós [1].

This motivated P. Erdős and M. Simonovits [4] to ask whether a triangle-free
graph with minimum degree greater than n/3 is always three colorable.

Using a suitable weight function on the set of vertices of the Grőtzsch graph- the
smallest triangle-free four-chromatic graph - R. Häggkvist gave a counterexample
to this question. The minimum degree of this counterexample being 10n/29. Later
on, G.P. Jin [5] proved that every triangle-free graph with minimum degree greater
than 10n/29 is indeed 3-colorable.

The only gap to fill in was then to describe what could happen between mini-
mum degree n/3 and 10n/29.

The finiteness of the bound came from a result of C. Thomassen [6] who proved
that for every ε > 0, if the minimum degree is at least (1/3 + ε)n, then the
chromatic number is bounded by some constant (depending on ε).

By the same time, S. Brandt proved that every triangle-free graph which is
regular of degree > n/3 has chromatic number at most four.

Our main result with S. Brandt is that the regularity hypothesis can be dropped
in the previous statement. Our proof is in three steps.

The first one consists of a characterization of the regular triangle-free graphs
of degree > n/3 with chromatic number four. An automatic search performed by
Brandt and Pisanski gave rise to an infinite family of such graphs, called Vega
graphs, named after the computer program used to generate the first examples. In
fact, we proved that the regular triangle-free graphs are exactly the Vega graphs.
The methods we use in this part of the proof are basically these of [2].

The second step of the proof is a direct application of the complementary slack-
ness lemma of linear programming. Basically, if a graph is endowed with a weight
function w which insures minimum degree, and no vertex is weighted zero, then
the dual weight function which insure maximum degree must be regular. Since the
regular case was settled in step one, we can assume that there exists a vertex x of
the graph with w(x) = 0. In other words, removing the vertex x leaves a graph
which still has minimum degree greater than n/3. So one can apply induction.
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The last step, very technical, shows that adding a vertex to a Vega graph gives
a Vega graph.

These three steps together give the result. And just to sum-up, and highlight
the threshold let us observe that:

A triangle-free graph with min degree 0.3333333n can have arbitrarily large χ.
A triangle-free graph with min degree 0.3333334n has χ ≤ 4.

We do not know what happens when the minimum degree is exactly n/3.
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[1] B. Andrásfai, P. Erdős, V.T. Sós, On the connection between chromatic number, maximal
clique and minimal degree of a graph, Discrete Math. 8 (1974), 205–218.

[2] S. Brandt, A 4-colour problem for dense triangle-free graphs, Discrete Math., 251 (2002),
33–46.

[3] S. Brandt, T. Pisanski, Another infinite sequence of dense triangle-free graphs, Electron. J.
Combin. 5 (1998).
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Proof of the Erdős-Menger conjecture

Eli Berger

(joint work with Ron Aharoni)

We prove that Menger’s theorem is valid for infinite graphs, in the following
strong form: given two sets of vertices, A and B, in a possibly infinite digraph,
there exist a set P of disjoint A-B paths, and a set S of vertices separating A from
B, such that S consists of a choice of precisely one vertex from each path in P .
This settles an old conjecture of Erdős.

History of the problem. In 1927 Karl Menger proved the following:

Theorem 1. For any two sets A and B in a finite digraph, the minimal size of
an A-B-separating set is equal to the maximal size of a family of vertex-disjoint
paths from A to B.

Soon thereafter, Erdős proved that, with the very same formulation, the theo-
rem is also valid for infinite graphs. The idea of the proof is this: take a maximal
family P of A-B-disjoint paths. The set S =

⋃{V (P ) : P ∈ P} is then A-B-
separating, since an A-B-path avoiding it could be added to P , contradicting the
maximality of P . Since every path in P is finite, if P is infinite then |P| = |S|,
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proving the theorem. If P is finite then one of the proofs known for the finite case
of the theorem applies.

Of course, there is some “cheating” here. Equality of cardinalities does not
provide much information in the infinite case, and the separating set produced
in the case that P is infinite is obviously too “large”. Erdős, who realized this,
proposed the following conjecture, better grasping the spirit of the finite theorem,
known as the Erdős-Menger Conjecture. Since it is now proved, we state it as a
theorem:

Theorem 2. Given two sets of vertices, A and B, in a (possibly infinite) digraph,
there exists a family P of disjoint A-B-paths , and a separating set consisting of
the choice of precisely one vertex from each path in P.

The earliest reference we have for this conjecture is from 1964 (Problem 8, p.
159 in [10]. See also [7]).

The first to be tackled was of course the bipartite case, and the first break-
through was made by Podewski and Steffens [8], who proved the countable bipar-
tite case of the conjecture.

Podewski and Steffens [9] made yet another important progress: they proved
the conjecture for countable digraphs containing no infinite paths. Later, in [1],
it was realized that this case can be easily reduced to the bipartite case, by the
familiar device of doubling vertices in the digraph and turning it into a bipartite
graph. The bipartite reduction is very useful, and some of the insights leading to
the solution of the conjecture are derived from it.

At that point in time there were two obstacles on the way to the proof of the
conjecture - uncountability and the existence of infinite paths. The first of the
two to be overcome was that of uncountability. In 1982 the marriage problem was
solved for general cardinalities, in [6]. Soon thereafter, this was used to prove the
bipartite case of the Erdős-Menger Conjecture. Let us state it explicitly:

Theorem 3. In any bipartite graph there exists a matching F and a cover C,
such that C consists of the choice of precisely one vertex from each edge in F .

By the result of [1], we can deduce Theorem 2 from Theorem 3 for all graphs
containing no infinite (unending or non-starting) paths. Thus there remained the
problem of infinite paths. The difficulty they pose is that when one tries to “grow”
the disjoint paths desired in the conjecture, they may end up being infinite, instead
of being A-B-paths . In fact, in [1] it is proved that the Eredős-Menger Conjecture
is true, if one allows in P not only A-B-paths, but any paths that if they start at
all, they do so at A, and if they end they do so at B.

The first breakthrough in the fight against infinite paths was made in [2], where
the countable case of the conjecture was proved.

The main tools in [2] are hindrances and waves. A wave is a set of disjoint
paths starting at A whose set of ending vertices is A-B-separating. A wave is
called a hindrance if it avoids some vertex from A. The following conjecture,
which is equivalent to the Erdős-Menger Conjecture, was formulated and proved
for countable graphs.
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Conjecture 4. If there is no hindrance then there is a set of disjoint paths linking
all of A to B.

The tool used in [2] to overcome infinite paths was the following lemma, which
was proved there only for countable graphs, but is stated here generally, since it
is now known for all graphs:

Lemma 5. If there is no hindrance, then any point in A can be linked to B by a
path, whose removal does not yield a hindrance.

This lemma is quite easy to prove in the bipartite case and also in graphs
containing no unending paths, but in the countable case it requires new tools and
methods. Later, Conjecture 4 was proved for graphs in which all but countably
many points of A are linked to B [3], and the Erdős-Menger Conjecture was proved
for such graphs in [5].

In [4] there was given a reduction of the ℵ1 case of the Erdős-Menger Conjecture
to Lemma 5.

Main ideas of the proof. The breakthrough leading to the solution of the gen-
eral case was indeed the proof of Lemma 5 for general graphs. As claimed in [4],
the way from the lemma to the general proof indeed follows the same outline as
in the ℵ1 case. But the general case demands quite a bit more effort.

The notion lying at the core of the proof of the uncountable case is that of
κ-hindrances, for regular uncountable cardinals κ. A κ-hindrance is a ladder-like
structure having κ rungs, each “carving off” another part of the graph, and in
which “many” rungs are of the form of a hindrance in the graph remaining at the
present stage. The notion of “many” is captured by a well known set-theoretical
notion - that of a “stationary set” of ordinals.

The proof of the theorem is divided into two stages.

(1) Showing that if there is no hindrance and no κ-hindrance for any uncount-
able regular cardinality κ, then there is a set of disjoint paths linking all
of A to B.

(2) Proving that the existence of a κ-hindrance implies the existence of a
hindrance.
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The topological cycle space of a locally finite graph

Henning Bruhn

(joint work with Reinhard Diestel, Maya Stein)

Almost all of the more advanced theorems about the cycle space, such as Tutte’s
generating theorem and MacLane’s planarity criterion, are considerably weakened
or fail completely in locally finite graphs. The reason for this, Diestel and Kühn [5,
6] realised, is that the traditional cycle space has too “few” cycles in an infinite
graph, and in particular that what is missing are suitable infinite cycles. To remedy
this, they defined cycles in a topological way, namely as the homeomorphic images
of the unit circle in the Freudenthal compactification of the graph by its ends.
This definition allows not only the usual finite cycles but also infinite cycles. The
resulting cycle space, the topological cycle space C(G), has been almost surprisingly
successful: suddenly all of the finite theorems carry over to locally finite graphs.
See Diestel [3, 4] for a survey.

So far there was neither a satisfactory concept of duality nor a characterisation
of the elements of C(G) in terms of degrees. We present results in this direction.

Using only finite cycles, Thomassen [7, 8] defined dual graphs for infinite graphs
and found that a necessary condition for a graph to have a dual is that

(∗) no two vertices are joined by infinitely many edge-disjoint paths.

While, within the class of graphs satisfying (∗), Thomassen proved an infinite
version of Whitney’s planarity criterion, that a graph is planar if and only if it has
a dual, his duals differ in several points from their finite counterparts. In a finite
graph, going to the dual is a symmetric operation, i.e. if G∗ is the dual of G then G
is a dual of G∗. Also, a finite 3-connected planar graph has a unique dual. Both of
these properties, symmetry and uniqueness, are lost for Thomassen’s duals. This
turns out to be because the duals are defined with regard to only finite cycles and
cuts. If, in contrast, we also consider infinite cycles and cuts we regain symmetry
and uniqueness, while Whitney’s planarity criterion remains true, although we use
a more restrictive defintion of duals.

Duality can also be expressed in terms of trees. Let G and G∗ be finite graphs
with a bijection ∗ of their edge sets. Then G and G∗ are duals if and only if for
every spanning tree T of G, (V ∗, E∗ \E(T )∗) is a spanning tree of G∗. This, too,
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fails for locally finite graphs if only finite cycles are considered but becomes true
once we work within the topological cycle space.

In a finite graph, the elements of the cycle space are precisely those edge sets
that induce a eulerian subgraph. In an infinite graph, however, looking at the
vertex degrees is not enough: Indeed, although each vertex of a double ray R
has even degree, its topological cycle space C(R) consists of only the empty set.
Therefore, we need to impose a degree condition on the ends as well.

For an end ω of a locally finite graph, let deg(ω) ∈ N∪{∞} denote the maximal
number of edge-disjoint rays in ω. If deg(ω) <∞ we say that ω is even if deg(ω) is
even, and if deg(ω) is odd, we call ω odd. This leaves the case when deg(ω) = ∞.
The figure shows that in that instance we need a slightly more sophisticated parity
concept.

Each end of the two graphs contains infinitely many edge-disjoint rays. How-
ever, for the left graph it clearly is that E(Gl) ∈ C(Gl), so its single end should
better be even, while for the right graph it holds that E(Gr) /∈ C(Gr), which means
that both of its ends need to be odd. We offer a definition of parity for an end,
which yields the desired answers in these two examples and which coincides with
the parity of deg(ω) if deg(ω) <∞. Then the following statements are equivalent:

(1) E(G) ∈ C(G);
(2) all vertices and all ends of G are even; and
(3) G admits a topological Euler tour,

where a topological Euler tour is a continuous mapping of the unit circle in the
Freudenthal compactification of G such that each edge is traversed exactly once.

We have only indicated necessary and sufficient conditions for the whole edge set
of a graph to be in its topological cycle space. Characterising arbitrary elements
of C(G) in terms of vertex and end degrees seems to be difficult and remains so far
unsolved. With a notion of the end degree that is adapted to subgraphs we can,
however, recognise cycles.
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An algorithm for source location in directed graphs

András Frank

(joint work with Mihály Bárász, Johanna Becker)

Source location is a new type of location problems where the flow-amount or edge-
connectivity rather than the distance between facilities and customers is taken
into consideration. In their paper Hiro Ito, Kazuhisa Makino, Kouji Arata, Shoji
Honami, Yuichiro Itatsu, and Satoru Fujishige, (Source location problem with flow
requirements in directed networks, Optimization Methods and Software, Vol. 18,
No. 4, August 2003, pp. 427-435) considered and analysed the Flow-constrained
Directed Source Location (FDSL) problem. They proved a min-max theorem for
the minimum cardinality of a subset R of nodes of an edge-capacitated digraph
D = (V,A) so that, for every node v ∈ V − R, the maximum flow-amount from
R to v is at least k and from v to R is at least l. Based on this, they described
an algorithm for computing such a minimum set R whose running time depends
polynomially on the size of D but exponentially on k and l.

In the present work, we describe a strongly polynomial algorithm for solving
the FDSL problem. A crucial idea is the introduction of the new concept of solid
sets. Given a digraph D = (V,A), we call a nonempty subset Z of V in-solid
(respectively, out-solid) if ̺(X) > ̺(Z) (respectively, δ(X) > δ(Z)) for every
nonempty proper subset X of Z. An in- or out-solid set is called solid. Singletons
are always in- and out-solid, and a minimal k-in-deficient set is in-solid (where k-
in-deficient means that the indegree is smaller than k). Let HD = (V, ED) denote
the hypergraph of all solid sets. The set of in-solid sets is exactly the union of all
k-in-deficient sets (k = 1, 2, . . . ). An analogous statement holds for out-solid and
solid sets. The algorithm is based on the following results.

Theorem 1. For every directed graph D = (V,A), there is a spanning tree on the
groundset V such that each solid set of D induces a subtree, that is, HD = (V, ED)
is a subtree hypergraph.

Theorem 2. For every node sV , the family of maximal s-avoiding solid sets is a
partition of V − s.

We call this partition the solid partition of V −s. Let H ′
D denote hypergraph

of subsets appearing in a solid partition for some v.

Theorem 3. If T is a basic tree for H ′
D, then T is basic for the hypergraph HD

of all solid sets (and, in particular, for its subhypergraph Hkl of deficient sets).
For the full paper, see Operations Research Letters, 33 (2005) 221-230.
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Graphs that have rank 2 matrices

Hein van der Holst

(joint work with Wayne Barrett, Raphael Loewy)

Let F be a field. For any graph G = (V,E) on n vertices (all graphs are
undirected and simple), let S(F,G) be the set of all symmetric n × n matri-
ces over F whose off-diagonal entries occur in exactly the positions correspond-
ing to the edges of G. On the diagonal entries there is no restriction. Let
mr(F,G) = min{rankA | A ∈ S(F,G)}. Fix a nonnegative integer k. The problem
is to identify, for any field F , those graphs G such that mr(F,G) ≤ k. For k = 1
this is easy: a graph G has mr(F,G) ≤ 1 if and only if G is the union of a complete
graph Kr and an independent set of vertices. We have given a characterization of
those graphs G with mr(F,G) ≤ 2 for infinite fields in [1] and for finite fields in
[2]. The characterization depends on the field. The results for infinite fields are
stated below.

The complement of a graph G is denoted by Gc. If G1 and G2 are graphs, we
denote the disjoint union of G1 and G2 by G1 ∪G2. The join of G1 and G2 is the
graph (Gc

1 ∪Gc
2)

c. We denote the join of G1 and G2 by G1 ∨G2.

Theorem 1. Let F be an infinite field with charF 6= 2 and let G be a graph.
Then mr(F,G) ≤ 2 if and only if Gc is of the form (Ks1

∪Ks2
∪Kp1,q1

∪Kp2,q2
∪

· · · ∪Kpk,qk
) ∨Kr for nonnegative integers s1, s2, k, p1, q1, p2, q2, . . . , pk, qk, r with

pi + qi > 0, i = 1, 2, . . . , k.

Theorem 2. Let F be an infinite field with charF = 2 and let G be a graph. Then
mr(F,G) ≤ 2 if and only if Gc is either of the form (Ks1

∪Ks2
∪ · · · ∪Ksk

)∨Kr)
or of the form (Ks1

∪Ks2
∪Kp1,q1

∪Kp2,q2
∪ · · · ∪Kpk,qk

) ∨Kr for nonnegative
integers k, s1, s2, . . . , sk, p1, q1, p2, q2, . . . , pk, qk, r with pi + qi > 0, i = 1, 2, . . . , k.

If F is a finite field, there are similar results. The proofs of these two theorems
show how to construct a matrix A ∈ S(F,G) with rankA ≤ 2.

If A is a principal submatrix of B, then the rank of A is at most the rank
of B. Hence, if H is a induced subgraph of G, then mr(F,H) ≤ mr(F,G). We
can therefore characterize the class of graphs G with mr(F,G) ≤ 2 in terms of
forbidden induced subgraphs. We say that a graph G is H-free if G does not
contain H as an induced subgraph. If F is a set of graphs, we say that G is F -free
if G is H-free for each H ∈ F . One of the forbidden induced subgraphs of the class
of graphs G with mr(F,G) ≤ 2 is P4, the path with four vertices. Graphs which
do not contain P4 as an induced subgraph can be constructed by the following
rules. The graph with one vertex and no edges is a P4-free graph. If G1 and G2

are P4-free graphs, then Gc
1 and G1 ∪ G2 are P4-free graphs. Hence each of the

other forbidden induced subgraphs for the class of graphs G with mr(F,G) ≤ 2 can
recursively be constructed by these rules. Some of these other forbidden induced
subgraphs are P3 ∪ K2, 3K2, ⋉ := (diamond ∪ K1)

c, and dart := (K1 ∪ paw)c,
where paw := (K1 ∪ P3)

c and diamond := (2K1 ∪K2)
c. There are also forbidden

induced subgraphs depending on the field F .
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Theorem 3. Let F be an infinite field with charF 6= 2 and let G be a graph. Then
mr(F,G) ≤ 2 if and only if G is (P4,⋉, dart, P3 ∪K2, 3K2,K3,3,3)-free.

Theorem 4. Let F be an infinite field with charF = 2 and let G be a graph. Then
mr(F,G) ≤ 2 if and only if G is (P4,⋉, dart, P3 ∪K2, 3K2, (P3 ∪ 2K3)

c)-free.

For finite fields we need some additional forbidden induced subgraphs. Each of
them depends on the number of elements in the field.

Theorem 5. Let F be a finite field with pt elements, p prime and p 6= 2, and
let G be a graph. Then mr(F,G) ≤ 2 if and only if G is (P4, dart,⋉, P3 ∪
K2, 3K2,K3,3,3, ((m + 2)K2 ∪K1)

c, (K2 ∪ 2K1 ∪mP3)
c, (K1 ∪ (m + 1)P3)

c)-free,
where m = (pt − 1)/2.

Theorem 6. Let F be a finite field with 2t elements and let G be a graph. Then
mr(F,G) ≤ 2 if and only if G is (P4, dart,⋉, P3 ∪K2, 3K2, (P3 ∪ 2K3)

c, ((2t−1 +
1)K2 ∪ (2t−1 + 1)K1)

c, (P3 ∪ 2t−1K2 ∪K1)
c, (2K3 ∪ 2tK1)

c, (2t−1P3 ∪ 2K1)
c)-free.
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Even Pairs in Perfect Graphs

Frédéric Maffray

(joint work with Nicolas Trotignon)

An even pair in a graph is a pair of vertices such that every chordless path between
them has even length. A graph G is perfect if, for every induced subgraph H of
G, the chromatic number χ(H) of H is equal to its maximum clique size ω(H).
Fonlupt and Uhry [5] proved that if {x, y} is an even pair in any graph G, then
the graph G/xy obtained by contracting x, y into one vertex satisfies χ(G/xy) =
χ(G) and ω(G/xy) = ω(G). In particular it is possible to obtain an optimal
coloring of G from any optimal coloring of G/xy by assigning to x and y the
color of the contracted vertex and maintaining the color of the other vertices.
This suggests a conceptually simple algorithm for coloring optimally the vertices
of (some) perfect graphs, and indeed variants of such an algorithm have worked
for a number of classical families of perfect graphs, see [4]. Unfortunately, not all
perfect graphs have even pairs. This has led to several questions, based on the
following definitions.

Say that a graph G is a quasi-parity graph [8] if, for every induced subgraph
H of G, either H or H has an even pair or |V (H)| = 1. Say that a graph G is
even contractile [1] if it can be turned into a clique by a sequence of contractions
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of even pairs, and perfectly contractile [1] if every induced subgraph of G is even-
contractile. A prism is a graph that consists in two vertex-disjoint triangles and
three vertex-disjoint chordless paths between the triangles, with no other edge.

A prism is odd (even) if these three paths are odd (resp. even), and long if
one of the three paths has length at least 2. A graph G is bipartisan [3] if G and
G contain no odd hole, no long prism, no line-graph of K3,3 − e and no double
diamond (a self complementary graph on eight vertices); bipartisan graphs form
“Class F6” in [2].

• Conjecture 1 (Everett and Reed [4, 9]): A graph that contains no odd
hole, no antihole and no prism is perfectly contractile.

• Conjecture 2 (Everett and Reed [4, 9]): A graph is perfectly contractile if
and only if it contains no odd hole, no antihole and no odd prism.

• Conjecture 3 (Hougardy [6]): There exists a class C of line-graphs of
bipartite graphs such that every minimally even pair-free graph is either
an odd hole, an antihole or a graph in C.

• Conjecture 4 (Hougardy [6]): There exists a class C′ of line-graphs of
bipartite graphs such that every minimally non-quasi-parity graph is either
an odd hole, an odd antihole, a graph in C′ or the complement of a graph
in C′.

• Conjecture 5 (Thomas [10]): If G is bipartisan then either G or G has an
even pair or |V (G)| = 1.

Conjecture 1 was proved recently by Maffray and Trotignon [7], who established
that every graph G in the class A described in Conjecture 1 either is a clique or
has an even pair whose contraction yields a graph in A and that such a pair can
be found in polynomial time. The coloring algorithm suggested above can then be
implemented to work in time O(|V (G)|2|E(G)|) for every graph G in class A [11].

The other conjectures have been proved partially only, for claw-free graphs, bull-
free graphs, diamond-free graphs, planar graphs, etc — see [4] for a more detailed
account of these results. A proof of Conjecture 5 would provide an alternate way
for the last and arguably most complex fifty pages of the strong perfect graph
theorem [2].
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The Roots of the Stable Set Polynomial of a Clawfree Graph

Maria Chudnovsky

(joint work with Paul Seymour)

A stable set in a graph is a set of pairwise non-adjacent vertices. The stable set
polynomial of a graph G is the polynomial

S(G)(x) = Σi≥0aix
i

where ai is the number of stable sets in G of size i.
Given a graph H , its line graph L(H) is the graph whose vertex set is the set

of edges of H , and two vertices are adjacent if they share an end in H . In [2]
Heilmann and Lieb proved that if G is a line graph, then all the roots of S(G) are
real. This property does not hold for all graphs, since the stable set polynomial of
a claw is

1 + 4x+ 3x2 + x3

and not all its roots are real (a claw is the graph with vertex set {v1, v2, v3, v4}
and three edges v1v2, v1v3, v1v4.)

A graph G is said to be clawfree if no induced subgraph of it is a claw. We
answer a question of Hamidoune [1] that was later posed as a conjecture by Stanley
[3].

Theorem 1. If G is clawfree then all roots of S(G) are real.

Since all line graphs are clawfree, this extends the result of [2].
The proof of 1 consists of two parts. First we prove a lemma about polyno-

mials, that allows us to deduce that non-negative linear combinations of certain
polynomials have all roots real. Then we find a recursion formula for S(G), de-
scribing S(G) as a non-negative linear combination of polynomials, satisfying the
hypotheses of the lemma. We then combine the two parts, applying the lemma to
the recursive formula for S(G), to conclude that all roots of S(G) are real.
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Certifying non-representability of matroids

Geoff Whittle

(joint work with Jim Geelen, Bert Gerards)

Seymour [4] showed that, for a matroid M given by a rank oracle, it requires
in the worst case exponentially many calls in the size of M to prove that M is
binary. It is straightforward to extend this result to all other fields. What about
proving that a matroid is not binary? We know that U2,4 is the only excluded
minor for representability over GF (2), and the existence of a U2,4-minor can be
shown in eight rank evaluations, so it can be proved in a constant number of rank
evaluations that a matroid is not binary. Rota bravely conjectured that for each
prime power q, the set of excluded minors for representability over GF (q) is finite.
This conjecture, which is arguably the most famous in matroid theory, would
imply that there is a constant cq such that there exists a proof that a matroid is
not representable over GF (q) that uses at most cq calls to the rank oracle.

While Rota’s Conjecture has not been verified for fields other than GF (2),
GF (3) and GF (4), it turns out that it is still possible to give a short proof that a
matroid is not representable over GF (q). In particular we prove

Theorem 1: For any prime power q, proving non-representability over GF (q) for
an n-element matroid requires only O(n2) rank values.

Note that the theorem tells us nothing about how we might find such a proof.
Establishing Theorem 1 relies crucially on a study of inequivalent representations
of matroids and we discuss this now. Two representations of a matroid over a field
are equivalent if one can be obtained from the other by elementary row operations
and column scaling. A major obstacle to proving Rota’s Conjecture and to giving
short proofs of non-representability is the existence of inequivalent representations
of matroids. This problem does not arise for GF (2) and GF (3) and Kahn [2]
showed that it arises in only a limited way for GF (4). Moreover, in that paper,
Kahn conjectured that for a fixed finite field, there was a bound on the number
of inequivalent representations of a 3-connected matroid over a given field. While
this conjecture turns out to be true for GF (5), examples are given in [3] that show
that Kahn’s Conjecture fails for all fields with at least seven elements. Now we
are challenged for a short proof of non-representability. I can convince you that a
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certain matrix does not represent M—that just requires one call to the oracle—
but this is of no use if there is a potentially unbounded set of matrices that are
plausible candidates for representations of M .

A natural way to try to get past this obstacle is to raise connectivity. Unfortu-
nately matroid 4-connectivity is a very restrictive condition. There are satisfactory
chain theorems for 3-connected matroids. Moreover, via the 2-sum decomposition,
it is easily seen that one can reduce the problem of proving non-representability to
3-connected matroids. Neither of these desirable properties hold for 4-connected
matroids. These problems are overcome by considering a notion of connectiv-
ity that is intermediate between 3-connectivity and 4-connectivity that we call
k-coherence.

The idea of k-coherence is that we allow 3-separations in matroids, but we
explicitly forbid the type of structures that lead to counterexamples to Kahn’s
Conjecture. The counterexamples to Kahn’s Conjecture described in [3] belong to
two very specific classes. For each k ≥ 5, there is a member of each class with
a partition into k subsets such that these subsets form a particular pattern of
interlocking non-degenerate 3-separations. For one type, any union of blocks of
the partition is 3-separating; for the other type, any union of blocks that respects a
certain cyclic ordering is 3-separating. Loosely speaking, a matroid is k-coherent
if it is 3-connected and there is no partition into k-parts of either of the above
types. Unlike 4-connectivity it is possible to prove reasonable chain theorems for
k-coherence. In particular it can be shown that if M is k-coherent and is not
a wheel or a whirl, then there is an element e such that either M\e or M/e is
k-coherent.

We prove that Kahn’s Conjecture does hold for k-coherent matroids. Specifi-
cally we have

Theorem 2: For any prime power q and integer k ≥ 2, there exists a constant cq,k

such that each k-coherent matroid has at most cq,k inequivalent representations
over GF (q).

A very coarse outline of the techniques used to prove Theorem 2 follows. Two
elements of a matroid M are clones if the function that interchanges them and
is the identity on all other elements is an automorphism of M . An element x
of M is fixed if it is not possible to extend M by an element x′ to obtain a
matroid M ′ in which x and x′ are independent clones. It is the existence of
elements that are not fixed (and dually, not cofixed) that leads to inequivalent
representations. On the other hand, it is easily proved that, if x is fixed in M , then
a representation of M\x that extends to a representation of M does so uniquely.
Thus the number of inequivalent representations of M is at most the number of
inequivalent representations of M\x.

For a fixed k ≥ 5, a matroid N is a k-skeleton if it is k-coherent and, for each
element x of N , if x is fixed, then N\x is not k-coherent and if x is cofixed, then
N/x is not k-coherent. We have proved that for any positive integer n, there are
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only a finite number of k-skeletons that do not contain the n-point line or its dual
as a minor. The proof is long and technical; it uses, amongst other things, the
grid theorem for GF (q)-representable matroids [1].

As the (q + 2)-point line and its dual are not GF (q)-representable, it follows
that, for any prime power q, there are a finite number of GF (q)-representable
k-skeletons. Thus there exists a bound on the number of inequivalent GF (q)-
representations of a k-skeleton. Moreover, for any k-coherent matroid M , there
exists a k-skeleton minorN ofM such thatM can be built fromN via a sequence of
single-element extensions and coextensions with the property that the extensions
are fixed and the coextensions are cofixed. This establishes Theorem 2. This
theorem and the techniques used to prove it provide us with the tools needed to
prove Theorem 1.
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Recognizing rank-width

Sang-il Oum

(joint work with Bruno Courcelle, Paul Seymour)

Some algorithmic problems, NP-hard on general graphs, are known to be solvable
in polynomial time when the input graph admits a decomposition into trivial pieces
by means of a tree-structure of cutsets of bounded order. However, it makes a
difference whether the input graph is presented together with the corresponding
tree-structure of cutsets or not. We have in mind two kinds of decompositions,
“tree-width” and “clique-width” decompositions. There are many results known
for graphs of bounded tree-width, but less progress had been made for graphs of
bounded clique-width. We have a linear-time algorithm to decide whether an input
graph has tree-width at most k for fixed k by Bodlaender [1], but for clique-width,
the existence of polynomial-time algorithms to recognize graphs of clique-width at
most k is only shown for k ≤ 3 by Corneil, Perl, and Stewart [4] for k = 2 and by
Corneil, Habib, Lanlignel, Reed, and Rotics [3] for k = 3.

Open problem For fixed k > 3, is there a polynomial-time algorithm that decides
whether an input graph has clique-width at most k?

We define the rank-width [7], that is a graph parameter approximately equal to
clique-width. More precisely, we have the following inequality for every graph G:

rank-width ≤ clique-width ≤ 2rank-width+1 − 1.
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Moreover in polynomial time we can transform the tree-structure of rank-width
to that of clique-width and vice versa.

Clique-width has nice algorithmic properties, but no good “minor” relation was
known analogous to graph minors for tree-width. But for rank-width, we have
a vertex-minor relation of graphs [8]. For a graph G and a vertex v of G, local
complementation at v is an operation on G, replacing a subgraph induced on the
neighbors of v by its complement graph. The graph obtained by applying local
complementation at v to G is denoted by G ∗ v. A graph H is a vertex-minor
of G if H can be obtained by applying a sequence of local complementations and
deletions of vertices to G. Vertex-minors were called l-reductions by Bouchet [2].

We show the following three theorems.

Theorem 1 (Oum and Seymour [7]) For fixed k, there is an algorithm that
with input an n-vertex graph G, either decides that G has rank-width at least k+1,
or outputs a decomposition of G with rank-width at most 3k+ 1. Its running time
is O(n9 logn).

Theorem 2 ([8] or [9]) For fixed k, there is a finite list of graphs G1, G2, . . . , Gm

such that for every graph H, rank-width of H is at most k if and only if Gi is not
isomorphic to a vertex-minor of H for all i.

Theorem 3 (Courcelle and Oum [5]) For every graph H, there is a closed
modulo-2 counting monadic second-order logic formula ϕH expressing that a given
graph contains a vertex-minor isomorphic to H.

In [9], Theorem 2 was proved by showing much stronger statement on vertex-
minors; we show that a set of graphs of bounded rank-width are well-quasi-ordered
by the vertex-minor relation. In other words, for every infinite sequence of graphs
G1, G2, . . . of bounded rank-width, there exist i and j such that i < j and Gi is
isomorphic to a vertex-minor of Gj . This well-quasi-ordering theorem is analogous
to the well-quasi-ordering theorem [10, 6] for graphs and matroids of bounded tree-
width, branch-width respectively.

It is known that given (counting) monadic second-order logic formula ϕ on
graphs, there is a linear-time algorithm to evaluate ϕ for graphs of bounded clique-
width if an input graph is given by the tree-structures of clique-width, called k-
expressions. Since an algorithm in Theorem 1 can output the k-expression in
O(n9 logn) time, we may eliminate the need of an explicit input of k-expressions.
Therefore, Theorem 3 implies that if an input graph has bounded rank-width, then
for fixed graph H , there is a polynomial-time algorithm that answers whether the
input graph contains a vertex-minor isomorphic to H . For fixed k, Theorem 2
states that only a finite number of vertex-minor testing is enough to show that
a graph has rank-width at most k. By combining with Theorem 1, we obtain a
O(n9 logn)-time algorithm that decides whether an input graph has rank-width
at most k for fixed k.
Note. At this workshop at Oberwolfach, J. Geelen suggested an idea based on
blocking sequences, that would improve the running time of Theorem 1. Theorem 1
uses submodular function minimization algorithms as a black box. However by
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taking advantages of some properties of cut-rank functions of graphs, this can be
done much faster and now the algorithm of Theorem 1 can run in O(n4) time.
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The local chromatic number and topological properties of graphs

Gábor Tardos

(joint work with Gábor Simonyi)

The local chromatic number of graphs is a coloring type graph parameter that
was introduced about 20 years ago by Erdős, Füredi, Hajnal, Komjáth, Rödl, and
Seress [3]. This talk was based on the three upcoming papers [11, 12, 13] that try
to better understand the properties of this graph parameter. We think that the
local chromatic number deserves more attention than what it has obtained so far.

The definition of the local chromatic number is as follows.

Definition 1. ([3]) The local chromatic number ψ(G) of a graph G is

ψ(G) := min
c

max
v∈V (G)

|{c(u) : u ∈ N(v)}| + 1,

where N(v) = {u : uv ∈ E(G)} and the minimum is taken over all proper colorings
c of G.

In short, ψ(G) is the fewest number of colors we can have in the most colorful
closed neighborhood of a vertex in a proper coloring of the graph. It is obvious
that the chromatic number χ(G) is an upper bound on ψ(G). At first sight it is
quite surprising, however, that ψ(G) < χ(G) is also possible, moreover, the gap
between these two parameters can be arbitrarily large, cf. [3].
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In [4] it was observed that the fractional chromatic number χf (G) can serve as
a lower bound for ψ(G). This motivates the study of the local chromatic number
of graphs where the fractional and ordinary chromatic numbers are far apart. Not
very many different families of such graphs are known. Here we discuss the local
chromatic number of some of the standard examples for this gap. These standard
examples have the other common feature that the topological technique introduced
by Lovász [5] to bound the chromatic number from below is relevant for them in
the sense that the bound it gives is sharp for these graphs. It turns out that
the same kind of topological information that results in a lower bound for the
chromatic number can also be used to bound the local chromatic number from
below, and this bound is also sharp in many cases.

The main examples of graphs with a large gap between their fractional and
ordinary chromatic number given in the book [9] are Kneser graphs and Mycielski
graphs. More important for us are two variants of these families that clearly pro-
vide at least the same large gap between the two mentioned coloring parameters.
The first of these variants is the family of Schrijver graphs SG(n, k) discovered
by Schrijver [10] as vertex color-critical induced subgraphs of Kneser graphs. The
second is the family of so-called generalized Mycielski graphs, see their definition,
e.g., in [7] or [14].

The chromatic number of SG(n, k) is determined by Schrijver [10] to be n−2k+2
by generalizing the topological argument of Bárány [2] that provided a short proof
for the earlier result of Lovász [5] determining the chromatic number of Kneser
graphs.

For the local chromatic number of Schrijver graphs we have the following result.

Theorem 2. ([11]) If t = n− 2k + 2 > 2 is odd and n ≥ 4t2 − 7t then

ψ(SG(n, k)) =

⌈

t

2

⌉

+ 1.

The proof of the lower bound in this result uses topological methods. The same
argument applies to all graphs that satisfy a certain topological criterion which
implies that the chromatic number of the graph is at least t.

The upper bound part of Theorem 1 is given by a combinatorial construction
that also can be formulated in a more general setting. As a result we can prove
similar statements determining the local chromatic number of generalized Myciel-
ski graphs and Borsuk graphs (for the definition of the latter see [6]) of certain
parameters.

For 4-chromatic Schrijver graphs we have:

Theorem 3. ([12])
ψ(SG(2k + 2, k)) = 4.

This theorem is again true in a more general setting, namely, for all graphs G
satisfying a topological criterion that implies χ(G) ≥ 4 we also have ψ(G) ≥ 4.
For this statement, however, we need a somewhat stronger topological criterion
than the one used for Theorem 1. See [12] for the definition of the two criteria
and for discussion on the different implications.
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For even t ≥ 6 we do not know the minimal local chromatic number of a t-
chromatic Schrijver (or generalized Mycielski, etc.) graph: it is either t/2 + 1 or
t/2 + 2.

It turns out that 4-chromatic Schrijver graphs are closely related to quadran-
gulations of the Klein bottle. The chromatic number of surface quadrangulations
is a widely investigated topic, see [1, 8, 15], and the above mentioned connection
suggests that analogs of Theorem 2 may be true for certain quadrangulations of
non-orientable surfaces. Indeed, one can show that non-bipartite quadrangulations
of the projective plane have local chromatic number 4, generalizing a celebrated
result of Youngs [15] stating that such graphs are 4-chromatic. We also prove that
certain quadrangulations of the Klein bottle that are shown to be 4-chromatic in
[1] and [8] have local chromatic number 4. Surprisingly, however, one can construct
graphs that quadrangulate other non-orientable surfaces, have chromatic number
4, and local chromatic number only 3. For further details we refer the reader to
[13].
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[2] I. Bárány, A short proof of Kneser’s conjecture J. Combin. Theory Ser. A, 25 (1978), no.
3, 325–326.
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The intersection of a matroid and a simplicial complex

Ron Aharoni

(joint work with Eli Berger)

A classical theorem of Edmonds from 1970 relates the maximal size of a set in
the intersection of a pair of matroids with a “covering number” of the pair. We
prove a generalization of this theorem, in which one of the matroids is replaced
by a general simplicial complex (i.e., a hypergraph closed down with respect to
containment), and its rank function is replaced by the topological connectivity of
the complex.

As is well known, a complex can be realized geometrically, in a unique way.
For example, every graph can be embedded, without generating new intersection
between edges, in R3. A complex C is said to be k-connected if for every i ≤ k,
every continuous function from the i-dimensional sphere into C can be extended
to a continuous function from the i + 1-dimensional ball to C. As a matter of
definition, −1-connectedness means being non-empty. A parameter η(C) of the
complex C is defined as the largest k for which C is k-connected, plus 2. If C is
k-connected for every k, we write η(C) = ∞.

For matroids, η is basically the rank function - the two are equal if η is finite.

Definition 1. Let Γ be a bipartite graph with sides A and B, and let C be a
simplicial complex on B. A C-ISR is a function f : A→ B using only edges of Γ,
such that f [A] ∈ C.

The following generalization of Rado’s theorem (which states the same for ma-
troids) was proved by Aharoni and Haxell:

Theorem 2. If η(C ↾ N [X ]) ≥ |X | for every X ⊆ A then there exists a C-ISR.

(Here N [X ] is the set of neighbors of X .)
We use this theorem to prove the aforementioned generalization of Edmonds’

theorem:

Theorem 3. Let M, C be a matroid and a simplicial complex, respectively, on the
same ground set S. Then

max{|σ| : σ ∈ M∩ C} ≥ min{ρM(A) + η(C ↾ (S \A) : A ⊆ S}
.

One application is an extension of Edmonds’ theorem to the case of three ma-
troids:

Theorem 4. Let M1,M2,M3 be matroids on the same ground set S. Then
max{|σ| : σ ∈ ⋂

1≤i≤3 Mi} ≥ 1
2 min{∑1≤i≤3 ρMi

(Ai) :
⋃

1≤i≤3 Ai = S}.
Here is one of numerous other applications:

Theorem 5. If M,N are two matroids on S, and S can be partitioned into k sets
belonging to M and into k sets belonging to N , then it can be partitioned into 2k
sets belonging to M∩N .
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Intrinsic metric and 2-cell embeddings of graphs

Bojan Mohar

(joint work with Matt DeVos)

By taking a collection of disjoint polygons in the Euclidean plane and identifying
pairs of their sides of equal length, one obtains a polyhedral surface S, assuming
each side of every polygon is identified with precisely one other side. The identified
sides determine the edges, and the corners of polygons give rise to vertices of
certain graph G. We say that G is 2-cell embedded in S. The polygons determine
the 2-cells or faces of this embedding.

By viewing each 2-cell as a subset of the plane, we obtain a metric on S that
is called the polyhedral metric of the embedding of G. The distances in this met-
ric space correspond to lengths of shortest rectifiable curves in S connecting the
corresponding points.

Let v be a vertex of a polyhedral surface S, and let α1, α2, . . . , αd (where d is
the degree of v) be the incident angles in the faces containing v. Then we define
the Gaussian curvature at v as

κ(v) = 2π −
d

∑

i=1

αi.

For such notion of the discrete curvature, an analogue of the Gauss-Bonnet theorem
holds, whose version restricted to convex polyhedra in the 3-space is known as the
Descartes Lost Theorem, see [1]:

∑

v∈V (G)

κ(v) = 4π.

If all 2-cells are regular polygons with side length 1, then we have

φ(v) =
1

2π
κ(v) = 1 − 1

2
deg(v) +

∑

v∼f

1

|f | ,

where the summation runs over all faces f incident with v, and |f | denotes the
number of sides of f . As this notion of curvature can be defined without any
reference to angles and actual polygons, it is called the combinatorial curvature.

In [5], Higuchi made a conjecture equivalent to the one given below concerning
graphs with everywhere positive combinatorial curvature.

Conjecture 1 (Higuchi). Let G be a graph which is 2-cell embedded in a surface
S so that every vertex and face has degree ≥ 3. If S is homeomorphic to a subset
of the 2-sphere and the combinatorial curvature φ is everywhere positive, then G
is finite.

A complete solution of this conjecture follows from the following theorem whose
proof can be found in [4].



Graph Theory 159

Theorem 2 (DeVos and Mohar). Let G be a graph which is 2-cell embedded in
a surface S so that every vertex and face has degree ≥ 3. If φ is everywhere
positive, then S is homeomorphic to either the 2-sphere or the projective plane
and G is finite. Furthermore, if G is not a prism, antiprism, or the projective
planar analogue of one of these, then |V (G)| ≤ 3444.

Although all of our results concern polygonal metric spaces, many of these
results can be extended to more general spaces by way of approximation. As noted
by Higuchi, Theorem 2 can be viewed as a discrete analogue of a result of Myers
[7] who proved that every complete Riemannian manifold with Ricci curvature
bounded below by a positive constant κ0 is compact, has volume bounded in terms
of κ0 and has finite fundamental group. On the other hand, results in [4] show
other possible directions for improvements of such results. One such extension
may be a conjecture of Milnor [6] that every complete Riemannian manifold with
non-negative Ricci curvature has finitely generated fundamental group.

If a polyhedral surface S is the 2-sphere, its graph G is 3-connected, and every
vertex of G has nonnegative Gaussian curvature, then a theorem of Alexandrov
[2, 3] states that the polyhedral metric of S can be obtained from some polyhedral
realization in the 3-space corresponding to a cell complex that is obtained from
the given embedding by diagonal flips. Besides the presentation of this beautiful
and, unfortunately, less known result, several applications of the intrinsic met-
ric were presented. In particular, an extension of Theorem 2 about positively
curved spherical complexes and a structural characterization of planar triangula-
tions with maximum degree 6 was discussed. The latter result was obtained earlier
by Thurston [8] by means of other methods.
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Wide embedded graphs behave chromatically like plane or projective
plane graphs

Luis A. Goddyn

An embedded graph G →֒ X is a 2-cell embedding of a graph G on a surface X .
(HereX is piecewise-linear and homeomorphic to either a sphere with g handles Sg,
or a sphere with k cross-caps, Nk.) We often write G instead of G →֒ X . Since
faces of G are open 2-cells, if X 6= S0, then G contains graph cycles which are
not contractible (homotopicly nontrivial), The edgewidth, ew(G), is the length of a
shortest noncontractible cycle in G. Embedded graphs of very high edgewidth are
(informally) said to be wide. Thomassen [6] proved that for every X there exists
w such that every G →֒ X with ew(G) ≥ w satisfies χ(G) ≤ 5. This result may be
informally stated “wide embedded graphs behave chromatically almost like plane
graphs.”

The point of this talk is to promote the view that this informal notion is not
quite accurate. It is perhaps better to make a statement such as in the title of
this talk. This becomes apparent when considering the circular chromatic num-
ber χc(G). This graph invariant is now widely studied (eg. [8]) since it is a re-
finement of the chromatic number χ(G). We define χc(G) to be the least possible
value of

(1) max

{ |C|
|C+| ,

|C|
|C−| | C ⊆ E(G) is a circuit in G

}

among all orientations ofG. Here (C+, C−) is the natural partition of C induced by
the orientation of G. By replacing “circuit” with “cocircuit” in (1) we may define
the dual invariant φc(G), the circular flow number of G. By replacing “circuit”
with “contractible circuit” in (1) we may define the local chromatic number χloc(G)
of an embedded graph G. It is known [2] that if G →֒ X and X is orientable, then

(2) φc(G
∗) = χloc(G) ≤ χc(G) ≤ ⌈χc(G)⌉ = χ(G).

Here G∗ denotes the surface dual of G →֒ X The inequalities (2) also hold when
X is nonorientable, but we must replace φc(G

∗) by the circular biflow number
βc(G

∗), which we do not define here. (Biflow numbers are signed-graph invariants
as discussed in [1].) The relationship between φc(G

∗) and χloc(G) seems to be
unexplored where X is not orientable.

It is natural to define the following invariant in order to characterize the chro-
matic properties of wide embedded graphs. The wide chromatic number of a
surface X is the real number

(3) χw(X) = lim
w→∞

sup{χc(G) | G →֒ X and ew(G) ≥ w}.

By Thomassen’s upper bound, every surface X satisfies

(4) 4 ≤ χw(X) ≤ 5.

Replacing χc(G) with χ(G) in (3) would result in an uninteresting definition,
since every surface different from S0 embeds arbitrarily wide graphs with chromatic
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number 5. However, such graphs may have circular chromatic numbers very close
to 4, which makes χw(X) somewhat more interesting, and perhaps a truer measure
of “chromatic properties” of wide embedded graphs.

For every nonorientable surface X = Nk we have χw(X) = 5. This follows from
the existence [2, Example 6.5] of arbitrarily wide embedded graphs G →֒ Nk with
χc(G) = 5, for any k ≥ 1.

Perhaps surprisingly, for orientable surfaces X = Sg, g > 0 we only know that
4 ≤ χw(Sg) ≤ 5. I now propose the following.

Conjecture 1. For any g ≥ 0, we have χw(Sg) = 4.

In [2] it is proved that for any surface X and ǫ > 0, there exists w > 0 such
that every G →֒ X with ew(G) > w satisfies

(5) χc(G) ≤ χloc(G) + ǫ.

In view of (4) this implies that we may replace “χc(G)” with “χloc(G)” in the
definition (3). If, further, X is orientable, then we may replace “χc(G)” with
“φc(G

∗)” in definition (3). Thus Conjecture 1 is equivalent to the assertion that
for any g and ǫ > 0, wide enough embedded graphs G →֒ Sg satisfy φc(G) < 4+ ǫ.
By standard “lifting arguments” (such as in [7]) it suffices to verify this assertion
for cubic graphs G.

Grünbaum [4] has proposed something much stronger than Conjecture 1.

Conjecture 2. For any G →֒ Sg such that ew(G∗) ≥ 3 we have φc(G) = 4.

Equivalently, Grünbaum asserts that every cubic graph G →֒ Sg with fw(G) ≥ 3
is three edge colourable. (Here, the facewidth fw(G) is the least number of points
in which a noncontractible curve in Sg meets G. For cubic embedded graphs we
have fw(G) = ew(G∗) .)

The following weak form of Grünbaum’s conjecture would suffice to prove Con-
jecture 1.

Conjecture 3. For any g there exists w such that every cubic graph G →֒ Sg with
ew(G) ≥ w is 3-edge colourable.

Conjecture 3 may be informally stated, “snarks on Sg have bounded facewidth”.
On the negative side, it seems to be difficult to find a nontrivial class of graphs

for which any of these conjectures can be proven. Even worse, I have not been
able to demonstrate χw(Sg) < 5 for some g > 0.

On the positive side, wide embedded graphs G →֒ Sg for which χc > 4 seem
to be difficult to construct. Steve Fisk [3] proposed an a class of graphs (called
Fisk graphs) with this property. He showed that if every face of G →֒ Sg is a
triangle, and there are exactly two vertices of odd degree, and these two vertices
are adjacent, then χ(G) ≥ 5. Fisk graphs of arbitrary edgewidth exist on every
Sg 6= S0. If Conjecture 3 holds, then by (5), χc(G) is only very slightly greater
than 4 for any wide Fisk graphG →֒ Sg. To date, the best I have been able to show
[unpublished] is that χloc(G) < 5 for a very special subclass of Fisk triangulations
on the torus.
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This state of knowledge is embarrassing, compared to our supposed intuition of
chromatic properties of wide embedded graphs. The fact χw(Nk) = 5, justifies the
statement that wide embedded graphs on a nonorientable surface behave at worst
very much like projective plane graphs. I propose that it is of central importance
to work toward proving the “obvious” oriented analogue: “wide embedded graphs
on Sg are chromatically very similar to plane graphs.”
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Finding large planar subgraphs

Deryk Osthus

(joint work with Daniela Kühn and Anusch Taraz)

Planar subgraphs. In [6], we studied the following extremal question: Given a
function m = m(n), how large does the minimum degree of a graph G of order n
have to be in order to guarantee a planar subgraph with at least m(n) edges?

For example, we proved the following result, which gives the threshold for a
planar subgraph which is almost a spanning triangulation:

Theorem 1. For every γ > 0 there exists C = C(γ) such that every graph G of
order n and minimum degree at least (1/2 + γ)n contains a planar subgraph with
at least 3n− C edges.

This is best possible in the sense that the constant C has to depend on γ and
the additional term γn in the bound on the minimum degree cannot be replaced
by a sublinear one.

The following result from [4] improves an earlier one from [6], which had an
additional error term in the minimum degree condition.

Theorem 2. There exists an integer n0 such that every graph G of order n ≥ n0

and minimum degree at least 2n/3 contains a triangulation as a spanning subgraph.
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The bound on the minimum degree is best possible: for all integers n there are
graphs of order n and minimum degree ⌈2n/3⌉−1 without a spanning triangulation.
Komlós, Sárközy and Szemerédi [3] proved the related result that every graph of
sufficiently large order n and minimum degree at least 2n/3 contains the square
of a Hamilton cycle.

Our work was partly motivated by the maximum planar subgraph problem:
In a given graph G, it asks for a planar subgraph with the maximum number of
edges. Cǎlinescu et al. [2] showed that this problem is Max SNP-hard. On the
other hand, our proof of Theorem 2 implies that the maximum planar subgraph
problem can be solved in polynomial time for graphs with minimum degree at
least 2/3n. Similarly, the proofs of our results in [6] give improved approximation
algorithms for graphs whose minimum degree is sufficiently large for the respective
results to apply.

Simultaneous partition of graphs. Given a graph G with m edges, the Max
cut problem is to determine (the size of) the maximum cut in G. For complete
graphs, the largest cut has size m/2 + o(m). On the other hand, it is well known
that a cut of size at least m/2 in a graph G can be found using the natural greedy
algorithm. Now consider two graphs G1 and G2 on the same vertex set V and
suppose that Gi has mi edges. The aim now is to find a partition of V so that this
induces a large cut in both of the Gi. In [5] we proved the following result (where
for a given graph G and disjoint subsets A,B of its vertex set, eG(A,B) denotes
the number of edges between A and B):

Theorem 3. Suppose that G1 and G2 are two graphs on the same vertex set V ,
where Gi has mi edges. There is a bipartition of V into two classes A and B so
that for both i = 1, 2 we have

eGi
(A,B) ≥ mi/2 −√

mi.

This is clearly best possible up to the error term
√
mi and answers a question of

Bollobás and Scott [1]. We also proved analogues of this result for partitions into
more than two vertex classes. D. Rautenbach drew our attention to the problem
during the workshop and the probabilistic argument leading to its solution was
also found (and announced) during the same workshop.
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[4] D. Kühn and D. Osthus, Spanning triangulations in graphs, J. Graph Theory, to appear.
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Matchings and Hamilton cycles in uniform hypergraphs

Daniela Kühn

(joint work with Deryk Osthus)

Matchings in uniform hypergraphs. The so called ‘marriage theorem’ of Hall
provides a necessary and sufficient condition for the existence of a perfect matching
in a bipartite graph. For hypergraphs there is no analogue of this result—up to
now only partial results are known. For example, Conforti et al. [3] extended Hall’s
theorem to so-called balanced hypergraphs and Haxell [5] extended Hall’s theorem
to a sufficient condition for the existence of a hypergraph matching which contains
a given set of vertices. Moreover, there are many results about the existence of
almost perfect matchings in hypergraphs which are pseudo-random in some sense.
Most of these are based on an approach due to Rödl (see e.g. [1] for an introduction
to the topic or Vu [11] for more recent results). For random r-uniform hypergraphs,
the threshold for a perfect matching is still not known. There are several partial
results, see e.g. Kim [6].

A simple corollary of Hall’s theorem for graphs states that every bipartite graph
with vertex classes A and B of size n whose minimum degree is at least n/2 con-
tains a perfect matching. This can also be easily proved directly by considering a
matching of maximum size. In [7] we proved an analogue of this result for uniform
hypergraphs. For simplicity, I will only describe the situation for 3-uniform hy-
pergraphs here, but we have proved analogous results for r-uniform hypergraphs.

So let us consider a 3-partite 3-uniform hypergraph H with vertex classes A,
B and C where |A| = |B| = |C| = n. Let E denote the set of hyperedges of H.
Thus the elements of E are triples abc with a ∈ A, b ∈ B and c ∈ C. One way to
define the minimum degree of H is the following. Given vertices x, y ∈ A∪B ∪C,
the neighbourhood N(x, y) of x and y in H is the set of all those vertices z which
form a hyperedge together with x, y, i.e. for which xyz ∈ E. The minimum degree
δ2(H) is then defined to be the minimum |N(x, y)| over all pairs x, y which lie
different vertex classes of H.

A B
a b

CN(a,b)
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Theorem 1. Every 3-uniform 3-partite hypergraph H whose three vertex classes
have size n ≥ 1000 and whose minimum degree δ2(H) is at least n/2 +

√
2n logn

has a perfect matching.

Theorem 1 is best possible up to the error term
√

2n logn. The proof relies on
a probablistic argument based on the number of perfect matchings in a bipartite
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graph with given degrees (the latter is given by Brégman’s proof [2] of the Minc
conjecture on the permanent of a 0-1 matrix).

Surprisingly, a simple argument already shows that a significantly smaller min-
imum degree guarantees a matching which covers all but at most 3 vertices of H:

Theorem 2. Every 3-uniform 3-partite hypergraph H whose three vertex classes
have size n and whose minimum degree δ2(H) is at least n/3 has a matching which
covers all but at most 3 vertices of H.

The bound on the minimum degree in Theorem 2 is again best possible. Both
Theorems 1 and 2 can be used to prove analoguous results about matchings in
3-uniform hypergraphs which are not required to be 3-partite.

Hamilton cycles in 3-uniform hypergraphs. A classical theorem of Dirac
states that every graph on n vertices with minimum degree at least n/2 contains
a Hamilton cycle. If one seeks an analogue of this result for 3-uniform hyper-
graphs H, then several alternatives suggest themselves. We define the minimum
degree δ(H) of H to be the minimum |N(x, y)| over all pairs of distinct vertices
x, y ∈ H (where N(x, y) is defined as in the previous section).

We say that a 3-uniform hypergraph C is a cycle of order n if there a exists a
cyclic ordering v1, . . . , vn of its vertices such that every consecutive pair vivi+1 lies
in a hyperedge of C and such that every hyperedge of C consists of 3 consecutive
vertices. Thus the cyclic ordering of the vertices of C induces a cyclic ordering of its
hyperedges. A cycle is tight if every three consecutive vertices form a hyperedge.
A cycle of order n is loose if it has the minimum possible number of hyperedges
among all cycles on n vertices.
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loose cycle of even order
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A Hamilton cycle of a 3-uniform hypergraph H is a subhypergraph of H which is
a cycle containing all its vertices. In [8] we proved the following result.

Theorem 3. For each σ > 0 there is an integer n0 = n0(σ) such that every 3-
uniform hypergraph H with n ≥ n0 vertices and minimum degree at least n/4+σn
contains a loose Hamilton cycle.

The bound on the minimum degree in Theorem 3 is best possible up to the error
term σn. In fact, if the minimum degree is less than ⌈n/4⌉, then we cannot even
guarantee any Hamilton cycle.

Recently, Rödl, Ruciński and Szemerédi [10] proved that if the minimum degree
is at least n/2+σn and n is sufficiently large, then one can even guarantee a tight
Hamilton cycle. Their bound is best possible up to the error term σn.
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The proofs of both our Theorem 3 and the result of Rödl, Ruciński and Sze-
merédi [10] rely on the Regularity Lemma for 3-uniform hypergraphs due to Frankl
and Rödl [4]. However, Rödl, Ruciński and Szemerédi make extensive use of the
fact that the intersection of the neighbourhoods of any two pairs of vertices is
nonempty, which is far from true in our case. For this reason, our argument has
a rather different structure. (In fact, if we assume that our hypergraph has min-
imum degree n/2 + σn and the number of vertices is divisible by four, then our
result is much easier to prove). Instead, we prove and use a ’blow up’ type result:
every ‘pseudo-random’ hypergraph contains a loose Hamilton cycle. This in turn
uses a probabilistic argument based on results about random perfect matchings in
pseudo-random graphs [9].
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Lifts of graphs - The state of the art

Nathan Linial

This talk was a survey of lifts of graphs. The most developed part of this theory
concerns random lifts. We also mention some extremal problems in this area, as
well as a recent application to the construction of expander graphs with near-
optimal spectral gap. These papers were written jointly with (in alphabetical
order)
Alon Amit, Yonatan Bilu, Yotam Drier, Jirka Matousek, and Eyal Rozenman.
Covering maps are fundamental objects of study in topology. They apply to graphs
as well, since graphs are one-dimensional simplicial complexes. It is well-known
and easy to show that if G is a finite connected graph, then any covering map
ϕ : H → G has a degree, or fold number. This is an integer n such that the inverse
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image of every vertex x ∈ V (G) consists of n vertices in V (H), and likewise for
edges |ϕ−1(e)| = n for every e ∈ E(G). This allows us to define the class Ln(G)
of all those (labelled) graphs H that have an n-fold cover map onto G. This set
has a natural structure of a probability space. Indeed, the most well developed
part of the theory deals with the asymptotic almost-sure properties of graphs in
Ln(G). The main question is how these properties are affected by the features of
the base graph G.

Here and below, G is a finite connected graph. The first question to ask is how
likely is it for a graph in Ln(G) to be connected. This turns out to be easy to
answer

Proposition. Let G be a finite connected graph.

• If G is a tree, then none of the graphs in Ln(G) is connected for any n ≥ 2.
• If G in unicyclic, then a random graph in Ln(G) is connected with proba-

bility 1
n
.

• If G has more edges than vertices, then a random graph in Ln(G) is con-
nected with probability 1−o(1). (Henceforth we state this briefly as ”almost
all lifts of G are connected”).

The degree of connectivity is a more complicated matter. In [1] we first observe
that if δ = δ(G) is the smallest vertex degree in G, then no graph in Ln(G) has
connectivity exceeding δ. On the other hand, we prove:

Theorem. If δ(G) ≥ 3, then almost every lift is δ-connected.

We also stated the following zero-one law from [5] about the largest matching
in graph lifts:

Theorem. Every G falls into one of the following mutually exclusive four cate-
gories:

• Every lift of G has a perfect matching.
• In every lift of G, the largest matching misses at least a fraction ǫ of the

vertices for some fixed ǫ(G) > 0.
• The largest matching in almost every n-lift of G almost surely misses

Θ(logn) vertices.
• Some lifts of G have no perfect matching, but almost all of them do.

Given G, we are able to efficiently tell the category to which it belongs.

We also mentioned our work [2] in which the typical chromatic number in lifts
of G is analyzed. In [4] we consider typical and extremal Hadwiger numbers of
lifts of graphs. In this context we ask:

Problem. Do there exist lifts of the complete graphs Kr in which the Hadwiger
number is o(r)?

Finally in [3] we use random lifts to construct regular graphs with nearly max-
imal spectral gaps. This is a very desirable property in the theory of expander
graphs. In this context we mentioned the following conjecture, the proof of which
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would show, among others, that d-regular Ramanujan Graphs exist for every inte-
ger d ≥ 3. A signing of a symmetric 0, 1 matrix A is a symmetric 0, 1,−1 matrix
B such that bij = 0 iff aij = 0.

Conjecture. Let A be the adjacency matrix of a d-regular graph. Then A has a
signing B with a spectral radius ≤ 2

√
d− 1.
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Reducibility for the Four-Color Theorem

Robin Thomas

(joint work with Serguei Norine)

A proof of the Four-Color Theorem (4CT) was given by Appel, Haken and Koch
in [2] and [3], and was later reprinted in [4]. The proof is computer-assisted,
but even the non-computer part is extremely complicated, and to the author’s
knowledge has never been independently verified. A simpler proof was obtained
by Robertson, Sanders, Seymour and Thomas in [6]. While this proof has been
independently verified, it is still computer-assisted. The purpose of the present
research was to come closer to a computer-free proof.

Both known proofs of the 4CT proceed in two steps—reducibility and discharg-
ing. The proof in [6] uses computers for both steps, but the discharging argument
has been completely written down (by a computer) on approximately 13, 000 lines.
Each of those lines takes some thought to verify, but, in principle, they can all be
checked by a human.

Thus the main bottleneck is reducibility, and so we focus exclusively on that
part of the proof. A near-triangulation is a non-null connected planar drawing G
such that every finite region is a triangle. A configuration K consists of a near-
triangulation G(K) and a map γK : V (G(K)) → Z with the following properties:

(i) for every vertex v, G(K)\v has at most two components, and if there are
two, then γK(v) = d(v) + 2,
(ii) for every vertex v, if v is not incident with the infinite region, then γK(v) =
d(v), and otherwise γK(v) > d(v); and in either case γK(v) ≥ 5,
(iii) K has ring-size ≥ 2, where the ring-size of K is defined to be
∑

v(γK(v)− d(v)− 1), summed over all vertices v incident with the infinite region
such that G(K)\v is connected.
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Let T be a triangulation. A configuration K appears in T if G(K) is an induced
subgraph of T , every finite region of G(K) is a region of T , and γK(v) = dT (v)
for every vertex v ∈ V (G(K)). The reducibility part of the 4CT consists of
showing that no member of an explicit set U of 633 configurations appears in a
minimal counterexample to the 4CT. This is done by running the same program
on each of the 633 configurations in U to check that each of those configurations
is “reducible”. We have studied the concept of “exterior” (in the sense of [1]) of
certain configurations and proved various theorems. Due to space limitations we
are not able to state them here.

What is needed and is sorely missing is a theory of reducibility, which should
imply statements of the form “if a certain configuration K is reducible, then so
is another configuration obtained from K by means of some well-defined rules”.
There are several conjectures along those lines, most notably [5, Vermutung 1a].
Unfortunately, that conjecture is too strong—it implies that the configuration K,
where G(K) is a triangle and γK(v) = 5 for every vertex v of G(K), cannot appear
in a minimal counterexample to the 4CT. That would be a fantastic result to prove,
but there is currently no hope, because the existing methods are not sufficiently
strong. Thus our best hope is to prove something weaker, but the right statement
eludes us at the moment. We managed to prove the following.

Let G1, G2, . . . , Gk be disjoint graphs, each isomorphic to K4 with one edge
deleted; let xiyi be the deleted edge ofGi. LetG be obtained fromG1∪G2∪. . .∪Gk

by identifying xi and yi+1 for all i = 1, 2, . . . , k − 1. Let Kk be the configuration
with G(Kk) = G and γKk

(v) = 6 if v = xi = yi+1 for some i = 1, 2, . . . , k − 1,
and γKk

(v) = 5 otherwise. We were able to show that Kk is reducible for all
k ≥ 1. This is the first nontrivial example of an infinite sequence of reducible
configurations. The proof is computer-free and not too hard. However, we are still
far away from a computer-free proof of the 4CT.
Acknowledgement. This research was based on earlier work and discussions
with M. Chudnovsky, N. Robertson, D. P. Sanders and P. D. Seymour.
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Bricks and Pfaffian orientations.

Serguei Norine

(joint work with Robin Thomas)

A labeled graph is a graph with vertex-set {1, 2, . . . , n} for some n. Let G be a
directed labeled graph and let M = {u1v1, u2v2, . . . , ukvk} be a perfect matching
of G. Define the sign of M to be the sign of the permutation

(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)

.

Note that the sign of a perfect matching is well-defined as it does not depend on
the order in which the edges are written. We say that a labeled graph G is Pfaffian
if there exists an orientation D of G such that the signs of all perfect matchings
in D are positive, in which case we say that D is a Pfaffian orientation of G.
An unlabeled graph G is Pfaffian if it is isomorphic to a labeled Pfaffian graph.
It is well-known and that in that case every labeling of G is Pfaffian. Pfaffian
orientations have been introduced by Kasteleyn [5, 6, 7], who demonstrated that
one can enumerate perfect matchings in a Pfaffian graph in polynomial time.

Matching decomposition procedure by Kotzig, Lovász and Plummer [9] allows
us to reduce characterization of Pfaffian graphs to two special classes: braces,
which are bipartite, and bricks. Pfaffian bipartite graphs were characterized in
terms of forbidden subgraphs by Little [8]. A structural characterization of Pfaf-
fian bipartite graphs was given by Robertson, Seymour and Thomas [14] and inde-
pendently by McCuaig [10]. No satisfactory characterization is known for Pfaffian
bricks.

We have discovered substantial obstructions to implementing both structural
and forbidden minor approaches. We have found examples of Pfaffian bricks on
2n − 2 vertices, (n2 + 5n − 12)/2 edges and a complete graph on n vertices as a
subgraph. This implies that most likely there is no structural characterization of
Pfaffian bricks similar to the characterization of Pfaffian braces in [14], because
such a characterization would imply a linear upper bound on the number of edges
in Pfaffian bricks. We have also found an infinite family of bricks, which are
minimally non-Pfaffian. In fact, this family contains exponentially many elements
with given number of vertices. However, we believe that the graphs in this family,
K3,3, the Petersen graph and twinplex are the only minimal non-Pfaffian graphs.

In [12] I was able to obtain a characterization of Pfaffian graphs in terms of
their drawing in the plane.

Theorem 1. A graph G is Pfaffian if and only if there exists a drawing of G in
the plane such that cr(M) is even for every perfect matching M of G.

There are several ways to generalize Theorem 1. In [] For a labeled graph G, an
orientation D of G and a perfect matching M of G, denote the sign of M in the
directed graph corresponding to D by D(M). We say that a graph G is k-Pfaffian
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if there exist, a labeling of G, orientations D1, D2, . . . , Dk of G and real numbers
α1, α2, . . . , αk, such that for every perfect matching M of G

k
∑

i=1

αiDi(M) = 1.

For surfaces of higher genus the following result was mentioned by Kasteleyn [6]
and proved by Galluccio and Loebl [4] and independently by Tesler [15].

Theorem 2. Every graph that can be embedded on a surface of genus g is 4g-
Pfaffian.

I was able to prove the following analogue of Theorem 1 for the torus [13].

Theorem 3. Every 3-Pfaffian graph is Pfaffian. A graph G is 4-Pfaffian if and
only if there exists a drawing of G on the torus such that cr(M) is even for every
perfect matching M of G. Every 5-Pfaffian graph is 4-Pfaffian.

The theorem above suggest that the following conjecture might hold.

Conjecture 4. For a graph G and a non-negative integer g the following are
equivalent

(1) There exists a drawing of G on an orientable surface of genus g such that
cr(M) is even for every perfect matching M of G.

(2) G is 4g-Pfaffian.
(3) G is (4g+1 − 1)-Pfaffian.

In [11] we generalize Pfaffian orientations to Pfaffian labelings. Let Γ be an
Abelian group, denote by 1 an identity of Γ and denote by −1 some element of order
two in Γ. Let G be a graph with V (G) = {1, 2, . . . , 2n}. We say that l : E(G) → Γ
is a Pfaffian labeling of G if for every perfect matchingM = {u1v1, u2v2, . . . , ukvk},
such that ui < vi for every 1 ≤ i ≤ k we have

∏

e∈M

l(e) = sgn

(

1 2 3 4 . . . 2k − 1 2k
u1 v1 u2 v2 . . . uk vk

)

.

The definition of Pfaffian labelings is motivated by the list-edge coloring con-
jecture. In a k-regular multigraph one can define a sign for every k-edge coloring
(see [1]). A powerful algebraic technique developed by Alon and Tarsi [2] implies
that if in a k-edge-colorable k-regular multigraph G all k-edge colorings have the
same sign then G is k-list-edge-colorable. In [11] we prove the following theorem,
which generalizes a theorem by Ellingham and Goddyn [3] and settles a conjecture
by Goddyn.

Theorem 5. A multigraph G admits a Pfaffian labeling if and only if for all k
all the k-edge colorings of every k-regular multigraph G′ with the same underlying
simple graph as G have the same sign.

We also give two characterizations of graphs that admit a Pfaffian labeling.
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Theorem 6. A graph admits a Pfaffian labeling if and only if every brick and
every brace in its tight cut decomposition is either Pfaffian or isomorphic to the
Petersen graph. If a graph admits a Pfaffian Γ-labeling for some Abelian group Γ
then it admits a Pfaffian Z4-labeling.

Theorem 7. A graph admits a Pfaffian labeling if and only if there exists a draw-
ing of it in the projective plane (possibly with crossings) and a representation of
this drawing so that every perfect matching intersects itself an even number of
times and goes through the crosscap an even number of times.
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Dense minors in highly connected graphs

Ken-ichi Kawarabayashi

(joint work with Thomas Böhme, John Maharry and Bojan Mohar)

Let a be an integer. It is proved that for any s and k, there exists a constant
N = N(s, k, a) such that every 16a-connected graph with at least N vertices either
contains a subdivision of Ka,sk or a minor isomorphic to s disjoint copies of Ka,k.
In fact, we prove that the connectivity 3a + 2 and the minimum degree at least
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16a are enough. The condition “a subdivision of Ka,sk” is necessary since G could
be a complete bipartite graph K16a,m, where m could be arbitrarily large. The
requirement on N(s, k, a) vertices is necessary since there exist graphs without
Ka-minor whose connectivity is Θ(a

√
log a).

When s = 1 and k = a, this implies that every 16a-connected graph with at least
N(a) vertices has a Ka-minor. This is the first result where a linear lower bound
on the connectivity in terms of a forces a Ka-minor. This was also conjectured in
[4, 5].

Our result together with the recent result in [3] also implies that there exists an
absolute constant c such that there are only finitely many ck-contraction-critical
graphs without Kk as a minor. This result is related to the well-known conjecture
of Hadwiger [2].

Our result was also motivated by the well-known result of Erdős and Pósa [1].
Our result may be stated as follows. Suppose that G is 16a-connected and without
a subdivision of Ka,t. Then there exists an integer F (s, k, a, t) such that either
there are s disjoint copies of Ka,k-minor in G, or G has a vertex set F of order at
most F (s, k, a, t) such that G− F has no minor isomorphic to Ka,k.

Our result also implies that there exist absolute constants c1 and c2 with c1 ≥ c2
such that there are only finitely many c1k-connected c2k-color-critical graphs with-
out Kk as a minor. This fact is related to Thomassen’s result [6] which says that
there are only finitely many 6-color-critical graphs on a fixed surface. Notice that
the set of graphs embeddable on a fixed surface is closed under taking minors.
More generally, Mohar conjectured that there are only finitely many 3-connected
k-color-critical graphs without Kk as a minor.

Our result implies the following, as well.
There is a constant c > 0 and a polynomial time algorithm for deciding either

(1) a given graph G is k-colorable, or
(2) G contains Kck-minor, or
(3) there is a graph H without Kck-minor and with no k-coloring.

Observe that if c would be 1, then H in (3) would be a counterexample to
Hadwiger’s conjecture
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Global Rigidity of Graphs

Bill Jackson

(joint work with Tibor Jordán)

A framework is a pair (G, p), where G = (V,E) is a graph and p is a map from
V to R2. We consider the framework to be a straight line realisation of G in R2

in which the length of an edge uv ∈ E is given by the Euclidean distance between
the points p(u) and p(v).

Let (G, p) and (G, q) be frameworks. We say that

• (G, p) and (G, q) are equivalent if |p(u)−p(v)| = |q(u)−q(v)| for all uv ∈ E.
• (G, p) and (G, q) are congruent if |p(u) − p(v)| = |q(u) − q(v)| for all
u, v ∈ V .

• (G, p) is rigid if there exists an ǫ > 0 such that every framework (G, q)
which is equivalent to (G, p) and satisfies |p(v)− q(v)| < ǫ for all v ∈ V , is
congruent to (G, p).

• (G, p) is globally rigid if every framework (G, q) which is equivalent to
(G, p), is congruent to (G, p).

It can be seen that (G, p) is rigid if and only if there is no ‘continuous deformation’
of (G, p) which preserves the lengths of all its edges, see [1].

Saxe [9] showed that it is NP-hard to determine if a given framework is globally
rigid. General feeling is that the problem of deciding when a given framework
is rigid is also NP-hard, although no proof is yet known. We obtain problems
of a different complexity, however, if we prohibit algebraic dependencies between
the points of the framework. We say that (G, p) is a generic framework if the
coordinates of all the points p(v), v ∈ V , are algebraically independent over Q.
Gluck [4] showed that if a particular generic framework (G, p) is rigid then all
generic frameworks (G, q) are rigid. Thus the rigidity of a generic framework
(G, p) depends only on the graph G and not the map p. We say that a graph G
is rigid if (G, p) is rigid for some (or equivalently, all) generic frameworks (G, p).
The graph G is minimally rigid if it is rigid and G − e is not rigid for all e ∈ E.
Minimally rigid graphs were characterised in 1970 by Laman.

Theorem 1. [7] Let G = (V,E) be a graph. Then G is minimally rigid if and
only if |E| = 2|V | − 3 and |E(H)| ≤ 2|V (H)| − 3 for all subgraphs H of G with
|V (H)| ≥ 2.

The inequality in Laman’s theorem can be used to define a matroid RG on the
edge set E of a graph G: we say that a subset F ⊆ E is independent in RG if, for all
∅ 6= F ′ ⊆ F , the number of vertices covered by F ′, v(F ′), satisfies |F ′| ≤ 2v(F )−3.
It follows from Laman’s theorem that a graph G is rigid if and only if RG has rank
2|V |−3. Lovász and Yemini determined the rank function of RG by using the fact
that the function which defines independence in RG is intersecting submodular.
In particular they obtained the following characterization of rigid graphs.
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Theorem 2. [8] Let G = (V,E) be a graph. Then G is rigid if and only if for all
families {H1, H2, . . . , Ht} of subgraphs of G which cover E, we have

t
∑

i=1

(2|V (Hi)| − 3) ≥ 2|V | − 3.

This theorem is used in [8] to show that every 6-connected graph is rigid.
In order to describe the characterization of globally rigid frameworks we need

some further concepts. A graph G = (V,E) is redundantly rigid if G − e is rigid
for all e ∈ E. Hendrickson showed in 1992 that the redundant rigidity and 3-
connectivity of the graph G are necessary conditions for the global rigidity of any
generic framework (G, p).

Theorem 3. [5] Suppose (G, p) is a generic framework. If (G, p) is globally rigid
then either G is a complete graph with at most three vertices, or G is 3-connected
and redundantly rigid.

Hendrickson conjectured that these conditions are also sufficient to imply the
global rigidity of a generic framework. An important step in resolving this conjec-
ture is the following result of Connelly which was announced in the early 1990’s
but its proof is only currently due to appear in print. The result uses the operation
of a 1-extension: given graphs G and H we say that G is a 1-extension of H if G
can be obtained from H by deleting an edge uw and then adding a new vertex v
of degree three joined to u, w and some other vertex x of H .

Theorem 4. [3] Let (G, p) be a generic framework. If G can be obtained from K4

by a sequence of 1-extensions and edge additions then (G, p) is globally rigid.

The missing step in proving Hendrickson’s conjecture was to show that every 3-
connected redundantly rigid graph can be obtained from K4 by a sequence of edge
additions and 1-extensions. This was first verified for 3-connected redundantly
rigid graphs which have the minimum number of edges, by Berg and Jordán.

Theorem 5. [2] Let G = (V,E) be a 3-connected and redundantly rigid graph with
|E| = 2|V | − 2. Then G can be obtained from K4 by a sequence of 1-extensions.

Their proof was extended in [6] to all 3-connected redundantly rigid graphs.

Theorem 6. Let G = (V,E) be a 3-connected and redundantly rigid graph. Then
G can be obtained from K4 by a sequence of edge additions and 1-extensions.

Hendrickson’s conjecture now follows.

Theorem 7. Let (G, p) be a generic framework. Then (G, p) is globally rigid if
and only if either G = K2,K3, or G is 3–connected and redundantly rigid.

We may also deduce the following extension of the above mentioned result of
Lovász and Yemini.

Theorem 8. Let (G, p) be a generic framework. If G is 6-connected then (G, p)
is globally rigid.
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Odd-K5-free graphs are 4-colourable

Bertrand Guenin

A colouring of a graph G is an assignment of colours to the vertices of G. A
colouring is proper if adjacent vertices are assigned different colours. We say that
G is k-colourable if there exists a proper colouring of G with k colours. The Four-
Colour theorem [1, 3] states that every (loopless) planar graph is 4-colourable.

A graph G contains a graph H as a minor if H can be obtained from G by
deleting and contracting edges of G. A graph G is K5-free if it does not contain
K5 as a minor. Wagner [4] proved that K5-free graphs are essentially planar, i.e.
they can be constructed from planar graphs and a special fixed graph by pasting
on a vertex, an edge, or a triangle. It is straightforward to see that this structural
result, together with the Four-Colour theorem, implies that K5-free graphs are
4-colourable.

We say that G contains H as an odd minor if H can be obtained from G by
first deleting edges and then contracting every edge on some cut. A graph G is
odd-K5-free if it does not contain K5 as an odd minor. Clearly if a graph is K5-
free it is odd-K5-free. However the converse is not true in general as the graph
obtained from K5 by replacing a single edge by two series edges illustrates. Bert
Gerards [2] conjectured the following result which is now a theorem:

Theorem 1. Odd-K5-free graphs are 4-colourable.

We say that a graph G is a minimum counterexample if G contradicts the
theorem but no graph with fewer vertices does. We say that a vertex v of G is
saturated if for every pair of edges f, g, where f, g are incident to v, there exists
a triangle using v which avoids both f and g. Theorem 1 is a consequence of the
following two propositions:
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Proposition 2. Let G be a minimum counterexample. Then

(1) all vertices of G are saturated,
(2) G is 4-connected,
(3) G has a K5 minor.

Proposition 3. If a graph G satisfies properties (1),(2), (3) then G contains K5

as an odd minor.

Graphs which are K5-free are 4-colourable thus (3) holds. The proof of (1) is
short so we give the main idea next. An (odd) circuit C is said to be spanned by a
cut δ(U) if all edges of C except one, are contained in δ(U). Then (3) is obtained
by restricting the result in the next proposition to cuts of the form δ(v).

Proposition 4. Let G be a minimum counterexample and let δ(U) be a non-empty
cut. Then there is no pair of edges in δ(U) which intersect all circuits spanned
by δ(U).

Proof (sketch): Suppose, for a contradiction, there is a pair of edges f, g which
intersect all the circuits spanned by δ(U). Delete f, g and contract every edge in
δ(U). Observe that the resulting graph is loopless. By minimality we can 4-colour
that graph. Uncontract all contracted edges and extend the colouring (if edge uv
was contracted to a single vertex, then both u, v are assigned the same colour as
that vertex). Now by suitably permuting the colour classes of vertices in U we
obtain a proper colouring for the original graph. �

The main challenge in the paper is to show Pr. 3. To indicate the strategy we
need to introduce the following definition: A signed graph (G,Σ) is a pair which
consists of a graph G and a subset of the edges Σ called the signature. We may
think of the edges of Σ as having odd length and the edges outside Σ, even length.
Two signed graphs (G,Σ) and (G,Γ) are equivalent if Γ = Σ △ δ(U) for some cut
δ(U). We say that the signed graph (G,Σ) contains the signed graph (H,Γ) as a
signed minor, if we can obtain (H,Γ) from (G,Σ) by a sequence of the following
operations: (i) delete an edge (and remove it from the signature), (ii) contract an
edge which is not in the signature, (iii) replace the signed graph by an equivalent
signed graph. It is easy to verify that: G contains K5 as an odd minor if and only
if (G,EG) contains (K5, EK5) as a signed minor. Hence, it suffices to show that
if G satisfies properties (1),(2),(3) then (G,EG) contains (K5, EK5) as a signed
minor. In Figure 1 we list all signed graphs (K5,Σ) up to equivalence. Consider a
minimum counterexample G. Since G contains K5 as a minor, (G,EG) contains
(K5,Σ) as a signed minor where (K5,Σ) is equivalent to one of the signed graphs in
figure 1. Among all such signed minors (K5,Σ) we choose one which corresponds
to a signed graph which is as far down the list as possible (where the order is
given from (a) to (g)). If (K5,Σ) is equivalent to (K5, EK5) then we are done.
Otherwise we use the fact that every vertex is saturated (1) and connectivity (2)
to find another signed minor (K5,Σ) which appears further down the list.
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(b) edge (c) vertex (d) C5

(e) matching (f) triangle (g) (K  ,EK  )5 5

(a) empty

Figure 1. All signatures of K5 (bold edges are in the signature).
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