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Introduction by the Organisers

The meeting was attended by over 50 participants from more than 10 countries
and three continents.

It brought together mathematicians, physicists and computer scientists working
on quantum information and computation. Experts were present as well as young
participants, both at predoctoral level as well as postdoctoral level. The focus was
on the problems of entanglement and decoherence, aiming at the formulation and
discussion of precise concepts, developments of models and their interrelations,
and the discussion of experiments in relation with the theory. Special attention
was given to recent developments, and to furthering interaction and co-operations
between the different groups. The scientific programm focused mainly on the fol-
lowing subjects: 1) Quantum Entanglement and Nonlocality: including Bell-type
inequalities (theoretical and experimental studies), equivalence of quantum states
under local unitary transformations. 2) Quantum Separability: separability cri-
teria for multiple quantum mixed states in arbitrary dimension. 3) Decoherence:
study of models; quantum error corrections, fault tolerant computation, multipar-
ticle problems. 4) Sources of Quantum Entanglement. 5) Quantum Information:
quantum cloning, teleportation, key distribution, algorithms. 6) Quantum Mea-
surement and Quantum Optics; Holonomic quantum gates; Quantum semigroups;
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Continuum Observation. 7) Mathematical Quantum and non commutative struc-
tures in connection with quantum information theory.

20 lectures were presented, including 15 surveys and 5 concentrating on specific
recent results. There were 10 informal evening lectures on 3 topics: entanglement,
control and decoherence. Besides 7 informal talks were presented in 2 round table
discussions.

All presentations and discussions amply demonstrated the vitality and actual-
ity of this area of research and the fascinating interrelations between the different
specialities it involves. The organizers and participants would like to take this op-
portunity to thank the Mathematisches Forschungsinstitut Oberwolfach for having
provided a comfortable and inspiring environment for the meeting and the scien-
tific work.
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Abstracts

Controllability of the Schrödinger Equation via Intersection of
Eigenvalues

Riccardo Adami and Ugo Boscain

The issue of designing an efficient transfer of population between different atomic
or molecular levels is crucial in atomic and molecular physics. In the experiments,
excitation and ionization are often induced by means of a sequence of laser pulses.
Mathematically, the description of such processes translates into the problem of
controlling the Schrödinger equation.

We introduce two toy models and propose a method to prove approximate
controllability of the Schrödinger equation. More specifically, given two arbitrary
eigenstates of the uncontrolled system, we construct a path in the space of controls
that steers the system from the first to the second; the target is reached only
approximately, but the accuracy of the approximation can be arbitarily improved
slowing the process down and correspondingly raising its duration. Our main
technical tool is the adiabatic theorem ([5, 6] and refereces therein), which requires
slowly varying controls and gives explicit estimates of the error.

It is worth pointing out that in order to apply our method we need a Hamilton-
ian with purely point spectrum that degenerates for some values of the controls.
This seems to be in contradiction with the claimed use of the the adiabatic the-
ory, which requires that during the whole time evolution the eigenvalues remain
separated by a non vanishing gap (“gap condition”).

The main idea is that such a difficulty can be overcome by a decoupling between
the levels other than the adiabatic one. This observation is crucial in our analysis
and we shall specialize it to the two toy models we deal with.

Before doing that, we stress that our strategy can be applied in many situations
in which classical control theory would be too difficult or cumbersome, provides
explicit expressions of controls (motion planning), and most of all is very robust,
in the sense that similar controls produce similar population transfers. This last
feature is very important in experiments.

Let us describe our two toy models. The former is the simplest generalization to
infinite dimension of three-level models that describe STIRAP processes (see for
instance [7]). As in that cases, it is given in the representation of the eigenfunction
of the uncontrolled Hamiltonian, namely as an infinite dimensional matrix.

The full Hamiltonian reads H(u, v) = H0 + uB1 + vB2, where the spectrum of
the drift (or “free”) Hamiltonian H0 is discrete and non degenerate. The coupling
B1 couples level Ei with Ei+1 for i even, while B2 couples Ei with Ei+1 for i odd.

For every value of u and v the spectrum of H(u, v) is still discrete, but degen-
eracies occur at isolated points in the space of the controls. This phenomenon
holds generically for Hamiltonians depending on two parameters, and one refers
to it as to the “conical crossing” of eigenvalues (see e.g. [4]).
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Assume that at time zero u = v = 0 and the system lies in the ground state of
the drift H0. The adiabatic theorem asserts that, employing slow varying controls
u(εt) and v(εt) such that H(u(εt), v(εt)) has no degeneracies for any t, then at
time t the system lies close to the ground state of H(u(εt), v(εt)).

As widely known, the situation becomes more complicated when the system is
driven near eigenvalues intersections.

Nevertheless, we exhibit paths in the control space that pass exactly through
an eigenvalue intersection and force the system to perform a transition from the
old to a new level. In Fig. 1 an example of a path steering the system from E0 to
E2 is portrayed.

Notice that, in order to employ such a strategy, we need to move controls along
a surface, so we must have at our disposal at least two controls: the crucial point
is to cross the eigenvalues intersections in one direction only, and this would not
be possible with one control.

The strategy presented here is inspired to a numerical method developed for
finite dimensional systems in [7].

Although this toy model is easily solvable using classical control theory, in our
opinion it clearly illustrates how our method works.

The second model we present consists of the Schrödinger picture of a quantum
particle in a one-dimensional infinite potential well with some additional controlled
external fields.

The main difficulty to overcome is due to the fact that in a one dimensional
quantum system the presence of degeneracies in the discrete spectrum is a highly
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nonstandard feature. In particular the non degeneracy of the ground state holds in
any dimension for systems subject to a locally integrable potential field. Therefore
our strategy consists in producing degeneracies by means of potentials with non
integrable singularities. To this purpose we use point interaction potentials (Dirac
δ and δ′ ) with a coupling constant to be sent to infinity. Let us recall that
interactions like Dirac δ and δ′ are widely used in modeling of quantum system,
since Fermi’s paper [3] up to contemporary applications [1, 2].

We consider a particle confined to the interval (−π/2, π/2), whose Hamiltonian
reads H(u, v, w) := −∂2

x + uδ(x− π/2) + vδ′(x− π/2) +wθ(x− π/2) and the drift
coincides with H(0, 0, 0) = −∂2

x.
Assume that at time zero the system lies in the ground state of the drift Hamil-

tonian. Then we switch a Dirac’s delta interaction on, located at the center of
the well, with a coupling constant u(εt). Then the energy of the ground state is
slowly increasing with time, while the energy of the first excited level remains un-
changed. In the limit u(εt) → ∞ the two energy levels coincide, but the associate
eigenfunctions do not. We then use a Heaviside function in order to perform a
rotation in the two dimensional eigenspace of the degenerate eigenvalue, and reach
the eigenfunction of the first excited level of the drift Hamiltonian. In this way we
obtain a transition from the ground level to the first excited.

In contrast with the previous model, here we exploit an intersection obtained
letting the control u diverge; however the above Hamiltonian is well defined also
for an infinite value of u and v.

Moreover, the gap condition is fulfilled because of the parity selection rule: the
δ potential and the ground state of the drift are even, therefore even and odd levels
are decoupled during the entire evolution and the effective gap is the one between
the ground state and the second excited.

Replacing the delta potential with a “delta prime” interaction, one can repeat
this procedure and induce a transition from the first excited state to the second;
more generally, alternating delta and delta prime one can reach any energy level.
This control strategy can be generalized to any symmetric (coercive) potential.

It is worth mentioning that, unlike the first toy model, in this case it seems ex-
tremely difficult to prove that it is possible to steer the system from two eigenstates
using classical control theory (for instance using finite dimensional techniques on
a Galerkin approximation of the system, and then passing to the limit).
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Reflection symmetries for multiqubit density operators

Claudio Altafini

(joint work with Timothy F. Havel)

The Wigner Theorem affirms that unitary and antiunitary operations exhaust
all possible symmetric transformations (intended as operations that preserve the
trace, the Hermitian structure and the inner product of density operators) applica-
ble to the wavefunction of a quantum mechanical system. For a density operator,
an antiunitary operation corresponds to transposition, and in a two-dimensional
Hilbert space this means a reflection, i.e. an orientation changing rotation in
O−(3) = O(3) \ SO(3) of the corresponding Bloch vector. Up to unitary equiva-
lence, this operation corresponds to spin flip [4], or (unconditional) NOT operation.
For multiqubit systems, local reflections correspond to partially antiunitary trans-
formations such as partial transposition, and they can be used to detect bipartite
entanglement, as is well-known [8, 6].
When multiqubit density operators are represented as Stokes tensors (obtained
by taking the “envelope” of the juxtaposition of the affine Bloch vectors, see [1,
7]), then other similar discrete reflection symmetries, i.e., orientation changing
rotations, arise:

(i): local reflections applied simultaneously to two or more qubits;
(ii): nonlocal reflections, i.e. reflections applied at the joint density of two

or more qubits.

The two cases are qualitatively different: while (i) is equivalent, up to local unitary
operations, to multiqubit partial transposition and to multiple spin-flip, (ii) is a
genuinely new operation and does not correspond to any local operation on two
or more qubits.
All local and nonlocal reflections originate from the presence of two disconnected
components (one orientation-preserving, the other orientation-changing) in the
group of rotations acting on the Stokes tensor. The parametrization used makes
this observation rather natural and allows to classify as reflection symmetries a
number of nonunitary operations used in the detection and synthesis of entangle-
ment. Operations reconducible to reflections appear in the Peres-Horodecki test
and in the various measures of entanglement relying upon “spin-flip” operations
(like concurrence, negativity and tangle) for what concerns (multiple) 1-qubit re-
flections. Also nonlocal reflections are used in the literature: for example a total
reflection corresponds to what is normally referred to as “taking the complement
of a density”, used for example in the construction of bound entangled states from
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an Unextendible Product Basis of orthogonal states [2]. In between local and to-
tal reflections lies a class of “nonlocal yet partial” reflections which also belong to
the type (ii) above. These maps resemble very closely those used in the so-called
reduction criterion [3, 5], although the reduction criterion is not trace-preserving.
More in detail, a total reflection acts by changing sign to all components of the
Stokes tensor other than the expectation value of the identity. Since the convex
sum of a density and of its reflection is the random state, a total reflection can
be intended as a nonlocal multiparty NOT operation. This operation does not
necessarily yield a valid (positive semidefinite) density operator. However, it does
so on sufficiently mixed states.
For the purposes of further understanding the structure of composite quantum
systems, we find it useful to have a unifying perspective on these nonunitary yet
symmetric (in the sense of Wigner Theorem) transformations.
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Quantum Convex Structures and their Physical Interrelations

Giacomo Mauro D’Ariano

(joint work with QUIT Group, Università di Pavia, Italy, http://www.qubit.it)

This talk reviews some results contained in Refs.[1]-[7], and the present extended
abstract mainly recalls the open problems posed during the talk.

The quantum convex structures that will be considered are those of Quantum
States, Quantum Operations (in particular trace-preserving, i. e. channels) and
POVM’s (Positive Operator Valued Measures). More than focusing only on the
convex structures themselves, I will analyze some physically meaningful interrela-
tions that link them each other: 1) one-to-one maps between States and Quantum
Operations, and between States and POVM’s, corresponding to Quantum Cali-
bration; 2) dilation maps from the convex set of States to those of Quantum Oper-
ations and of POVM’s, corresponding to Quantum Programmability; 3) mapping
POVM’s to POVM’s via channels, corresponding to pre-processing of POVM’s.
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Quantum Calibration. The convex Quantum Operations and that of bipar-
tite states are connected each-other (apart from a normalization) by the Choi-
Jamiolkowski isomorphism between CP-maps and positive bipartite operators.
Such correspondence can be extended to the following one: R = M ⊗ I(F ),
describing the output state R of the local action of the map M on the input state
F (I denotes the identity map). One calls the state F tomographically faithful[3]
when the correspondence M ↔ R is one-to-one. Using such correspondence, one
can perform the quantum tomography of the operation/channel M via a a joint
tomography on the bipartite system at the output. The inversion formula from
the output state to the map is M(ρ) = tr2[(I ⊗ ρ⊺)I ⊗ F−1(R)] where F is the
map F = tr2[(I ⊗ ρ⊺)F ] associated to the tomographically faithful state F .

The faithful state F establishes also the one-to-one correspondence between
POVM’s and ensembles of states: pnρn = F ′(Pn) and Pn = F ′−1(pnρn),, where
F ′ is the associated map F ′(X) = tr2[(I ⊗X)F ], pn being the probability of the
outcome n and ρn the corresponding conditioned state (to be determined tomo-
graphically). As an example of application, Ref.[4] presents a Monte Carlo simu-
lation of an experiment of quantum calibration of a typical photodetector using a
realistic homodyne tomography setup, and a twin beam from down-conversion of
vacuum for the state F .

Quantum Programmability. The Choi one-to-one correspondence between
channels and bipartite states is not only the basis of tomography of channels,
but carries also a physical interpretation in terms of probabilistic programmabil-
ity of channels. Here, however, we are interested in deterministic programmabil-
ity of channels. We want to program the channel by a fixed device as follows
MU,σ(ρ)

.
= tr2[U(ρ ⊗ σ)U †], with the system in the state ρ interacting with an

ancilla in the state σ via the unitary operator U of the programmable device (the
state of the ancilla is the program). For fixed U the above map can be regarded
as a linear map from the convex set of the ancilla states A to the convex set of
channels for the system. We will denote by MU,A the image of the ancilla states
A under such linear map. According to the well known no-go theorem by Nielsen
and Chuang it is impossible to program all unitary channels on the system with
a single U and a finite-dimensional ancilla, namely the image convex MU,A is a
proper subset of the whole convex of channels. This opens the following problem:

Problem 1 (The big U). For given dimension of the ancilla, find the unitary
operators U that are the most efficient in programming channels, namely which
minimize the largest distance of each channel C ∈ C from the programmable set
MZ,A : ε(U)

.
= maxC∈C minP∈MU,A

δ(C, E).

As a definition of distance one could consider any of those given in Ref.[8]. For
POVM’s we have a similar situation. In the following we will consider discrete
spectrum and denote the POVM with the vector notation P

.
= (P1, P2, . . .), Pi

denoting the POVM elements. Here the deterministic programmability is repre-
sented by the extension map MZ,σ

.
= tr2[(I⊗σ)Z] = P from states to POVM’s. A

no-go theorem analogous to that of channels holds for POVM’s[5], and this opens
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the following problem (in the following PN denotes the convex of POVM’s with
N outcomes)

Problem 2 (The big Z). For given dimension of the ancilla Hilbert space and
cardinality of the POVM N = |Z| = |P|, find the joint observables Z that are
the most efficient in programming POVM’s, namely which minimize the largest
distance of each POVM from the programmable set

MZ,A : ε(Z)
.
= max

P∈PN

min
Q∈MZ,A

δ(P,Q).

As a definition of distance we can use the physical distance δ(P,Q) =
maxρ

∑
i | tr[ρ(Pi −Qi)]|. The solution of Problems 1 and 2 are unknown even for

dimension d = 2 of the system. In Ref.[5] it is shown that using a joint observable
Z of the form of a fixed local system observable evolved with a controlled-unitary
interaction, one can program observables with polynomial growth of the dimen-
sion of the ancilla versus the accuracy ε−1. For qubits one can even achieve linear
growth.

Notice that if we pose restrictions on the set of programmable POVM’s, then it
maybe possible to program the full convex set exactly. This is the case of covariance
under a unitary irreducible representation of a group, where the POVM density
can be programmed by means of a fixed covariant Bell POVM density[5, 6] [the
“seed” of the POVM is just the state of the ancilla, apart from a simple antilinear
transformation]. This suggests that for ancilla having the same dimension of the
system the observable Z should be Bell. Notice that the controlled-unitary form
also occurs in connecting local to Bell observables[6]. Here another problem arises:

Problem 3 (The “Bellizing” U). Classify all unitary operators U that connect a
fixed separable orthonormal basis to a Bell orthonormal basis.

This problem needs the solution of another problem, namely that of the classi-
fication of Bell basis:

Problem 4 (Bell basis classification). Classify all orthonormal Bell basis, or,
equivalently, classify all orthonormal basis of unitary operators.

Regarding the last problem more material can be found on Ref.[9].

Processing of POVM’s and the problem of Clean POVM’s. If we precede a
measuring apparatus by a quantum channel E , the series of channel-measurement is
equivalent to a new measurement, whose POVM is given by Q = E(P). We call this
pre-processing of the POVM (this is the case, e.g. of optical pre-amplification of
photodetection or homodyning). The pre-processing scheme should be contrasted
with that of post-processing, in which the output outcomes of the measurement
are processed numerically, corresponding to an endomorphism of the probability
space of the POVM (for discrete probability space this is just the composition of
the POVM with a Markov matrix). Such post-processing is completely classical,
whereas the pre-processing is quantum.



196 Oberwolfach Report 4/2005

A quantum channel transforms POVM’s into POVM’s, generally irreversibly,
thus loosing some of the information retrieved from the measurement. This poses
the following problem:

Problem 5 (Clean POVM’s). Which POVM’s are ”undisturbed”, namely they
are not irreversibly connected to another POVM via a channel?

We will call such POVM clean. To define more precisely the problem, we
introduce a pre-ordering relation, which we call cleanness, defined as follows: For
two POVM’s P and Q we define P ≻ Q iff there exists a channel E such that
Q = E(P). We will say that the POVM P is cleaner than the POVM Q. We
will say that P ≃ Q if both Q ≻ P and P ≻ Q hold. We call a POVM P clean
when for any POVM Q such that Q ≻ P one has Q ≃ P. Partial solutions to the
problem are the following[7]: 1) for N < d outcomes there are no clean POVM’s,
and for N = d the set of clean POVM’s coincides with the set of observable; 2) all
rank-one POVM’s are clean; 3) for d = 2, P ≃ Q iff P is unitarily equivalent to
Q; 4) for A and B effects, A ≻ B iff [λm(A), λM (A)] ⊇ [λm(B), λM (B)]; 5) if the
POVM Q is infocomplete then every P such that P � Q is infocomplete; 6) for
infocomplete POVM’s cleanness-equivalence is the same as unitary equivalence.
One can easily see that generally cleanness equivalence is different from unitary
equivalence. In fact it is possible to connect each other two unitarily inequivalent
POVM’s via two different channels (consider two effects with different spectrum
and the same spectral interval). Moreover cleanness is different from extremality
in the POVM convex. In fact, there are extremal POVM’s that are not clean (e.g.
any extremal POVM with N < d outcomes, such as for d = 3, P = {Z0, Z1} with
Z0 = |0〉〈0|, Z1 = |1〉〈1| + |2〉〈2|), and viceversa there are clean POVM’s that
are not extremal (e.g. any rank one POVM with N > d2).

What does it mean that there are extremal POVM that are not clean? At a
first sight this looks quite strange, since an extremal POVM is already perfect, in
some sense. The answer is simply that sometimes we need to give-up some amount
of information for the quality of the information. This is because maximizing the
information is not necessarily compatible with the achievement of the minimal
cost function in an optimization problem. Therefore, even though the channel
decrease the information, this is the only way to achieve the minimal cost. On
the other hand, once the measurement is performed, there is no classical post-
processing that can achieve the same result of a quantum pre-processing, and
achieving the full available amount of information is then useless. If we want
to decide a posteriori the purpose of the measurement, then we need to use an
informationally complete measurement, and the same amount of information is
then available for each purpose.

Clearly, we can also define cleanness for post-processing, i.e. a POVM is cleaner
than another when the latter can be obtained from the former via an irreversible
classical processing. This classical case is very simple, since here cleanness is just
equivalent to be rank-one. Therefore we conclude that rank-one POVM’s are
clean under both pre-processing and post-processing, On the other hand, both
observables and rank-one informationally complete POVM’s have all the following
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properties: they are extremal, clean under post-processing, and clean under pre-
processing.
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Beyond quantum cloning

M. Barbieri, F. De Martini, P. Mataloni, M. Ricci, and F. Sciarrino

In the last years a great deal of efforts has been devoted to the realization of
the optimal approximations to the quantum cloning and flipping operations over
an unknown qubit |φ〉. It is well known that these two processes are unrealiz-
able in their exact forms [1, 2], but they can be optimally approximated by the
corresponding universal machines, i.e., by the universal optimal quantum cloning
machine (UOQCM) and the universal-NOT (U-NOT) gate [3]. The UOQCM
has been experimentally realized following several schemes, i.e. by exploiting the
process of stimulated emission in a quantum-injected optical parametric amplifier
(QI-OPA) [4, 5, 6, 7], by a quantum network [8] and by acting with projective
operators over the symmetric subspaces of many qubits [9].

Since also the perfect cloning of subsets containing non orthogonal states is for-
bidden, recently state dependent cloning machines have been investigated which
are optimal respect to any given ensemble [10]. It has been found in general
that for group-covariant cloning, i.e. where the set of input states is the or-
bit of a given state under the action of a group of unitary transformations, the
smaller is the group the higher is the optimal fidelity averaged over the input
states [11]. The simplest and most relevant case is represented by the cloning
covariant under the Abelian group U(1) of phase rotations, the so called ”phase-
covariant” quantum cloning machine (PQCM). There the information is encoded
in the phase φi of the input qubit belonging to any equatorial plane i of the corre-
sponding Poincare’ sphere, e.g. the general state may be expressed as: |φi〉 =

2−
1
2 (|ψi〉 + exp(iφi)

∣∣ψ⊥
i

〉
) and

{
|ψi〉 ,

∣∣ψ⊥
i

〉}
is a convenient normalized basis,
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〈
ψi | ψ⊥

i

〉
= 0 [10]. We have reported the realization of a 1 → 3 PQCM by

the implementation of a 1 → 2 UOQCM, followed by a spin flipper σi and the
projection of the output qubits over the symmetric subspace Πsym [12]. In the
experiment the qubit to be cloned has been encoded into the polarization state

|φ〉in = 2−
1
2 (|R〉 + exp(iφY ) |L〉) = α |H〉 + β |V 〉 of a single photon, where |H〉 ≡

|0〉 = 2−
1
2 (|R〉 + |L〉) and |V 〉 ≡ |1〉 = −i2−1

2 (|R〉 − |L〉) stand for horizontal and
vertical polarizations. We consider the optimal quantum cloning for x− z equato-
rial qubits by taking linear polarization states as input, that is, the ones adopted
in the BB84 cryptographic protocol. The UOQCM has been realized adopting a
quantum-injected optical parametric amplifier (QI-OPA) [5], while the σY oper-
ation and the Πsym have been implemented with linear optics and post-selection
techniques.

As a further contribution to the investigation of the quantum cloning process,
we reported on a nearly decoherence-free all optical scheme based on the quantum-
injected optical parametric amplification (QI-OPA) of a single photon in a quan-
tum superposition state of polarization (π), i.e. a π−encoded qubit [4, 13]. Concep-
tually, the method consists of transferring the well accessible condition of quantum
superposition characterizing a single-photon qubit, N = 1, to a mesoscopic, i.e.
multi-photons amplified state M >> 1, here referred to as a ”multi-particle qubit”
(M-qubit). In quantum optics this can be done by injecting in the QI-OPA the
single-photon qubit, α |H〉+β |V 〉, here expressed in terms of two mutually orthog-
onal π−states, e.g. horizontal and vertical linear π′s: |H〉, |V 〉. In virtue of the
general information preserving property of the OPA, the generated multi-particle
state is found to keep the same superposition character and the interfering capa-
bilities of the injected qubit, thus realizing the most relevant and striking property
of the M-qubit condition. Since the present scheme basically realizes the deter-
ministic 1 → M universal optimal quantum cloning machine (UOQCM), i.e. able
to copy optimally any unknown input qubit into M >> 1 copies with the same
fidelity, the output state will be necessarily affected by squeezed-vacuum noise
(SVN) arising from the input vacuum field.

A different approach to increase the number of involved qubits exploits projec-
tions over symmetric subspaces. For instance the probabilistic N → M cloning
process [14] it is based on the action of a projective operation on the symmetric
subspace of the N input qubits and (M −N) blank ancillas. This transformation
assures the uniform distribution of the initial information into the overall system
and guarantees that all output qubits are indistinguishable. In the last years some
experiments has been carried out adopting linear optical set-ups realizing the pro-
jection over the symmetric subspace of two or three polarization encoded qubits.
These are: teleportation of the universal NOT (U-NOT) gate; single qubits pu-
rification procedure; N→M universal and phase covariant cloning machine with
N=1,2 M=2,3; 1→3 phase covariant cloning machine; measurement of the overlap
between density matrices, entanglement enhanced capacity of a quantum channel
with correlated noise, etc. [9, 12, 15, 16, 17, 18]. This symmetric subspace pro-
jective measurement (SSPM) was achieved exploiting the bosonic behavior of the
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photons by stimulating a coalescence between the photon qubits to be projected
by means of Hong-Ou-Mandel interferometers.

An alternative strategy for enlarging the dimension of the Hilbert space con-
sists of manipulating the spatial degree of freedom of photons. A parametric
source of polarization-entangled photon pairs with striking spatial characteristics
is presented [19]. This consists of a high stability interferometer where the polar-
ization entanglement arises from the superposition of two emission cones, bearing
mutually orthogonal polarization, generated by SPDC under excitation of a thin
Type I, NL crystal in two opposite directions by a UV laser beam. The distrib-
ution of the output electromagnetic k modes excited by spontaneous parametric
down-conversion and coupled to the output detectors can be very broad. At least
in principle, this source allows the coupling to the output detectors of the full set
of optical modes carrying the particle pairs involved in the EPR measurement. In
other words, all entangled pairs created over the entire set of wavevectors allowed
by phase matching can virtually be detected. Since the detected emission process
is entirely ”quantum”, i.e., not affected by any previous”classical” manipulation,
such as wavelength of wavevector filtering, e.g., by filters and/or limiting pinholes,
the new scheme allows in principle the realization of the necessary premises un-
derlying the original formulation of the ”EPR paradox” [20]. Using these states
realized over a full entanglement ring output distribution, the nonlocal properties
of the generated entanglement have been tested by standard Bell measurements.

The spatial features of this source allows to produce arbitrary pure and mixed
states by exploiting a ”mode-patchwork” technique, based on the quantum super-
position principle. This is adopted to synthesize in a straightforward and reliable
way any kind of mixed state, of large conceptual and technological interest in
modern quantum information. Tunable Werner states and maximally entangled
mixed states have indeed been created by this technique and investigated by quan-
tum tomography. A study of the entropic and nonlocal properties of these states
has been undertaken experimentally. Moreover, Werner states has been tested by
means of the entanglement witness technique, which represents the most econom-
ical strategy for characterizing entanglement.

Furthermore, by the same source we have generated non maximally entangled
states, by which Hardy’s ladder theory has been verified up to the 20th step and
the contradiction between the standard quantum theory and the local realism has
been tested for 41% of entangled pairs [21].
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Quantum Entropies and Complexities

Fabio Benatti

(joint work with T. Krüger, M. Müller, R. Siegmund–Schultze and A. Szko la)

In this talk we will review some basic facts concerning classical information theory
and classical algorithmic complexity and relate them to existing counterparts in
the quantum setting.

The fast development of quantum information, communication and computa-
tion [1] is indeed the main motivation behind all the attempts at seeking extensions
to the so-called qubits of results and techniques so far applied to bit-strings emitted
by classical stationary sources. A paradigmatic example is the quantum Shannon-
Mc Millan theorem [3] which works for stationary quantum ergodic sources as
much as its classical partner [2].

At its simplest, a quantum source AZ is the C∗ inductive limit of local tensor
products A⊗n =

⊗n
j=−n(A)j of 2 × 2 matrix algebras (A)j describing qubits at

sites j ∈ Z. Notice that by considering 2×2 diagonal algebras one has an algebraic
description of classical sources.

The statistics of a stationary quantum source is fixed by a positive, normalized,
shift-invariant expectation Ψ such that its restrictions to A⊗n are density matrices
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ρ(n) with von Neumann entropy S(ρ(n)) := −Trρ(n) log2 ρ
(n) and entropy rate

h(Ψ) := lim
n→∞

1

n
S(ρ(n)) .

By restricting to diagonal matrix algebras, the above notions reduce to a shift-
invariant probability measure µ, with Shannon entropy H(µ(n)) relative to bit-
strings of length n, and entropy rate h(µ).

In classical information, nh(µ) ≤ n gives the optimal number of bits that can
be used to faithfully encode the information contained in the emitted strings of
length n, for large n; namely, using less than h(µ) bits per input bit causes larger
and larger errors [2].

In quantum information theory the same is true: one can compress the informa-
tion contained in the local states ρ(n) by projecting onto states acting on roughly
2n h(Ψ) dimensional Hilbert spaces, but not smaller, and still retrieve with high
fidelity the information emitted by AZ [3, 4].

The classical entropy rate does describe how random a source is, but says noth-
ing about the randomness of single strings i(n) := i1i2 · · · in, ij = 0, 1.

It was an idea of Kolmogorow to associate the intuitive notion of randomness of
i(n) with the difficulty of describing it by means of a bit-program run by a Universal
Turing Machine (UTM): if, for large n, the bits needed to have the UTM output
i(n) increase as n, then the string is patternless and cannot be compressed.

The algorithmic complexity of i(n) is defined as the length ℓ(p) of the shortest
program p that fed into any UTM U reproduces it, U(p) = i(n) [5]:

K(i(n)) := min
{
ℓ(p) : U(p) = i(n)

}

This is a machine-independent notion apart from an additive constant indepen-
dent of i(n) which disappears when looking at infinite strings and introducing the
complexity per symbol as [6]

k(i) := lim sup
n→+∞

1

n
K(i(n)) .

The intuitive idea that entropy rate and complexity per symbol should somehow
be related is rigorously proved by Brudno’s Theorem [7, 8] which states that for
ergodic sources h(µ) = k(i) for µ-almost all i.

In quantum computation, UTM are replaced by Universal Quantum Turing Ma-
chines (UQTM) which operate as probabilistic UTM, only their transition func-
tions are characterized by probabilities amplitudes and not by probabilities, with
the result that these machines operate unitarily on their inputs and create linear
superpositions outputting quantum states [9].

Clearly, the issues at stakes are 1) whether it is possible to assign a degree of
complexity to quantum states by quantifying how much it is possible to compress
their description and 2) whether such a measure can be related to the quantum
entropy rate via a Brudno-like relation.
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While the Shannon entropy per bit has a natural extension to the von Neu-
mann entropy per qubit, there is no unique quantum counterpart to the classical
algorithmic complexity. Indeed, UQTM may be fed with classical or quantum de-
scriptions of quantum objects; one must thus distinguish between a bit-based [10]
and a qubit-based [11] algorithmic complexity.

The second choice declares that the complexity of a state ρ acting on a Hilbert
space of dimension 2n is measured by the log2 of the dimension of the smallest
Hilbert space relative to an input quantum state σ, denoted by ℓ(σ), that operated
upon by a UQTM U

Q outputs a state closer in trace-norm to the target state than
any computable degree:

QC↑1(ρ) := min
{
ℓ(σ) : D(UQ(σ, k), ρ) ≤ 1

k
∀k ∈ N

}
,

where D(ρ1, ρ2) := Tr|ρ1 − ρ2| is the trace-distance of two density matrices.
Current research [12] indicates that the qubit-complexity is related to the von

Neumann entropy in the following sense.

Quantum Brudno’s relation: for any ǫ > 0 there exists Nǫ such that for all

n ≥ Nǫ there are typical subspaces T
(n)
ǫ ⊆ (C2)⊗n with orthogonal projections

P
(n)
ǫ carrying most of the probability relative to the state Ψ of the quantum

source, Ψ(P
(n)
ǫ ) ≥ 1 − ǫ, and such that all pure state projections p ≤ P

(n)
ǫ have

qubit-complexity

1

n
QC↑1(p) ∈ (h(Ψ) − ǫ , h(Ψ) + ǫ) .
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Distributed quantum dense coding

Dagmar Bruß

(joint work with G.M. D’Ariano, M. Lewenstein, C. Macchiavello, A. Sen(De),
U. Sen)

The idea of so-called superdense coding, i.e. coding that uses quantum en-
tanglement as a resource, was suggested in 1992 by Bennett and Wiesner [1]: a
maximally entangled state of two qubits is shared between Alice and Bob. Al-
ice applies one out of four operators (namely the three Pauli operators and the
identity) on her qubit, and then sends it through a noiseless channel to Bob. Bob
makes a measurement on the total state, which is one out of a set of four orthogo-
nal states. In this way he receives two bits of classical information, although only
one physical qubit was sent.

We study the generalisation of this scheme to a bipartite scenario in general
finite dimensions dA × dB, for a given state ρAB. Alice performs a local unitary
transformation Ui with probability pi on her part of ρAB, i.e. she transforms
the state ρAB to the ensemble {pi, ρ

AB
i }. She sends her state through a noiseless

channel to Bob, who performs a measurement on the total state. An achievable
upper bound on the accessible information on Bob’s side is given by the Holevo
bound [2]

(1) Iacc = S(ρ) −
∑

i

piS(ρAB
i ) .

Here S(ς) = −tr(ς log2 ς) is the von Neumann entropy, and the average of the
ensemble states is denoted as ρ =

∑
i piρ

AB
i . Thus, the capacity of dense coding is

defined as χ = max Iacc, where the maximization is over all sets {Ui} of unitaries
performed by Alice, and all choices of probabilities {pi}. Note that “capacity”
here refers to the given quantum state ρAB as a resource for dense coding, rather
than to a channel.

For bipartite systems the maximum is reached when Alice uses a complete set
of orthogonal unitary operators {Wj}, to be chosen with equal probabilities, which

satisfy the trace rule 1
d2

A

∑
j W

†
j ΞWj = tr[Ξ]I, for any operator Ξ. This choice can

be easily seen to maximise the first term (the entropy of the ensemble average) in
equation (1), while the second term is equal to S(ρAB) for any unitary encoding.
Therefore, the capacity of dense coding for a given shared bipartite state ρAB is

(2) χ = log2 dA + S(ρB) − S(ρAB),

see also [3]. The dense coding capacity is higher than in any classical protocol
when χ > log2 dA, or S(ρB) > S(ρAB). The latter inequality never holds for
separable states. Furthermore, it is also never satisfied for bound entangled states:
S(ρB) > S(ρAB) implies distillability, and thus bound entanglement is not useful
for bipartite dense coding. For dimension d× d this was pointed out in [4]. From
equation (2) one sees immediately that dense coding is possible with any pure
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entangled state. However, there are mixed entangled states, e.g. a Werner state
with singlet fraction less than ≈ .7476, that are not useful for dense coding.

We suggest a generalisation of the above scenario to dense coding in a distrib-
uted setting, i.e. for more than one sender and/or more than one receiver [5].
Suppose that there are N − 1 Alices, say, A1, A2, . . . AN−1 and a single Bob (B).
The Alices want to send (classical) information to Bob. The information of one
Alice will in general be different from another Alice. To do this, they use a pre-
viously shared N -party state ρA1...AN−1B. The jth Alice Aj chooses the unitary

tranformation U
Aj

ij
with probability p

Aj

ij
and applies it on her part of the total mul-

tipartite state. From the complete orthogonal set {WAl

jl
} for Al we can construct

the set of local operators ⊗lW
Al

jl
which is a complete and orthogonal set for the

composite system of all Alices, whence the trace rule holds for their global Hilbert
space. Then, the situation is equivalent to the previous case of a single Alice. We
arrive at the capacity for distributed dense coding with a single receiver,

(3) χA1...AN−1B = log2 dA1
+ . . .+ log2 dAN−1

+ S(ρB) − S(ρA1...AN−1B).

We now consider the situation of several senders (called Alices, A1, . . ., AN−1)
and two receivers (called Bobs, B1, B2). If the receivers are distant and do not com-
municate, the corresponding dense coding capacities are simply additive. When
the receivers are allowed to make global measurements, we are in the same situation
as considered previously, for a single receiver. The interesting case is the one where
the two receivers perform local operations and are allowed to use classical commu-
nication (LOCC). Here, some of the Alices, say A1, . . . , Ak, send their parts of the
shared state ρA1...AN−1B1B2 to B1, while the rest of the Alices, Ak+1, . . . , AN−1,
send their states to B2. A Holevo-like universal upper bound for the accessible
information ILOCC

acc for this case was obtained in [6]. Its asymptotic version, max-
imized over all choices of unitaries and probabilities of the Alices, is the dense
coding capacity χLOCC . We have shown that the same encoding as previously
is again optimal in this scenario, and leads to the following upper bound for the
capacity:

(4) χLOCC ≤ log2 dA1
+ . . .+ log2 dAN−1

+ S(ρB1) + S(ρB2) − max
x=1,2

S(ρ(x)),

where ρB1 = trA1...AN−1B2
ρ, ρB2 = trA1...AN−1B1

ρ, and ρ(1) = trAk+1...AN−1B2
ρ,

ρ(2) = trA1...Ak+1B1
ρ.

We propose a classification scheme for given quantum states, based on their
“dense-codeability” with the described protocols. For more than one receiver we
introduce convex sets for global, LOCC and local dense codeability. These sets
are non-empty and not of measure zero: example states are presented, namely a
state that is globally, but not LOCC dense codeable; a state that is LOCC, but
not locally dense codeable, and a state that is locally dense codeable.

There are several open questions related to multipartite dense coding: what is
the capacity (or at least an upper bound) for the case of more than two receivers?
Can multipartite bound entanglement be useful for distributed dense coding? Is
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the set of globally dense codeable states convex, and how to prove it? Is the so-
called W-state of four qubits in the LOCC dense codeable class? We hope that
answering these questions will shed more light on the usefulness of entanglement
for quantum information processing tasks.
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Test for entanglement: realignment criterion, entanglement witness
and positive maps

Kai Chen

(joint work with Sergio Albeverio, Shao-Ming Fei and Ling-An Wu)

Quantum entangled states have showed remarkable applications and become one
of the key resources in the rapidly expanding field of quantum information process-
ing recently. In practice, we do not yet have a full understanding of the physical
character and mathematical structure for entangled states. We even do not know
completely whether a generic quantum state is entangled, and how much entan-
glement remained after some noisy quantum processes.

In this talk, we introduce a serial of operational methods to detect entangle-
ment for quantum systems. A state of a composite quantum system is said to
be disentangled or separable if it can be prepared in a “local” or “classical” way.
A separable bipartite system can be prepared as an ensemble realization of pure
product states |ψi〉A |φi〉B (i = 1, ...,M for some positive integer M) occurring
with a certain probability pi:

ρAB =
∑

i

piρ
A
i ⊗ ρB

i ,

where ρA
i = |ψi〉A 〈ψi|, ρB

i = |φi〉B 〈φi|,
∑

i pi = 1 and |ψi〉A, |φi〉B are normal-
ized pure states of the subsystems A and B, respectively [1]. If no convex linear
combination exists for a given ρAB, the state is called “entangled” and includes
quantum correlation.

The realignment criterion. Motivated by the Kronecker product approx-
imation technique for a matrix, we developed a very simple method to obtain
the realignment criterion in [2] (independently given in [3] named the greatest
cross norm criterion). To recollect, the criterion says that, for any separable
m × n bipartite density matrix ρAB, the m2 × n2 matrix R(ρAB) should satisfy
||R(ρAB)|| ≤ 1, where ||·|| means the trace norm defined as ||G|| = Tr((GG†)1/2).
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Thus ||R(ρAB)|| > 1 implies the presence of entanglement in ρAB. Here R(ρAB)
is just a realigned matrix of the original ρAB to be R(ρAB)ij,kl = ρABik,jl.

The generalized partial transposition criterion and generalized reduc-
tion criterion. Developing the realignment idea further, we obtain a multipartite
version in [4]. A more generic criterion is obtained in [5] which include the Peres-
Horodecki criterion [i.e., PPT (positive partial transposition) criterion][6, 7], the
realignment criterion, the reduction criterion to be special cases. It one defines
ρ̃AB = abImn − aIm ⊗ ρB − bρA ⊗ In + ρAB where a, b are arbitrary complex
numbers, it says

If a bipartite density matrix ρAB defined on an m × n space is separable, then
the generalized reduction version ρ̃AB of ρAB should satisfy

||ρ̃AB
TY || ≤ hahb, ∀Y ⊂ {rA, cA, rB , cB},

where Trk
or Tck

(k = A,B) stands for transpositions with respect to the row or
column for the subsystem k. Here ha, hb are simple functions depending on a and
b, respectively.

All of the above-mentioned criterion are powerful to detect most of the bound
entangled stated appeared in the literatures, which can not be identified with the
strong PPT criterion.

Universal construction of entanglement witnesses and positive maps
Entanglement witness (EW) is another method to detect entanglement. It is a
Hermitian operator that satisfies Tr(WρA ⊗ ρB) ≥ 0 for any pure separable state
ρA ⊗ ρB, and has at least one negative eigenvalue. If a density matrix ρ satisfies
Tr(Wρ) < 0, then ρ is an entangled state. We develop two methods to construct
EW universally [8].

(1) For any density matrix ρ, we can associate with it an EW defined as

W = Id− (R−1(U∗V T ))T ,

where U, V are the unitary matrices that yield the singular value decompo-
sition (SVD) of R(ρ), i.e., R(ρ) = UΣV †.

(2) Another EW can be of

W = Id− (V U †)TA ,

where U, V are unitary matrices that yield the SVD of ρTA , i.e., ρTA =
UΣV †.

When these matrices W s are not Hermitian, we can choose EW to be W
′

=
1
2 (W + W †). Since entanglement witnesses are physical observables and may be
measured locally our construction could be of great significance for future experi-
ments.

Through the Jamio lkowski isomorphism

W = (IdA ⊗ Λ)Pm
+ ,
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where Pm
+ = |Φ〉〈Φ| and |Φ〉 = 1√

m

∑m
i=1 | ii〉 is the maximally entangled state in

HA⊗HA, one can have a corresponding positive map (PM) Λ : (|i〉〈j|) → 〈i|W |j〉.
From [7], one knows that ρ is separable iff for any positive map Λ the inequality
(IdA ⊗ Λ)ρ ≥ 0 holds. Thus any negative eigenvalue of (IdA ⊗ Λ)ρ will signal
existence of entanglement.

We find that the constructed EWs, their optimized versions and corresponding
PM are always more powerful than the PPT criterion, the realignment criterion
and their generalization versions. Our method also gives a new method to find a
large family of positive but non-completely positive maps of arbitrary high dimen-
sions, which can detect bound entangled states systematically. All these results
can significantly expand our ability to recognize directly the entanglement.
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Projected Entangled–Pair States: Properties and Applications

Ignacio Cirac

(joint work with Frank Verstraete)

The description of many-body quantum states is, typically, very hard. The rea-
son is that the number of parameters needed to characterize the quantum state of
N d–level systems scales as dN , so that even for qubits (d = 2) already for N > 40
it is impossible to store all the corresponding coefficients. Furthermore, if one
wants to determine the expectation value of any observable one needs to perform
a number of basic operations which also scale exponentially with the number of
particles. However, in Nature, only some particular states appear, and thus it
may happen that different ways of parametrizing quantum states are much more
efficient and do not require an exponential scaling. In this talk I presented a new
characterization of quantum states, what we call Projected Entangled-Pair States
(PEPS). This characterization is based on constructing pairs of maximally entan-
gled states in a Hilbert space of dimension D2, and then projecting those states
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in subspaces of dimension d. In one dimension, one recovers the familiar matrix
product states, whereas in higher dimensions this procedure gives rise to other
interesting states. We have used this new parametrization to construct numer-
ical algorithms to simulate the ground state properties and dynamics of certain
quantum-many body systems in two dimensions. The results are very encourag-
ing, since we have been able to simulate 20×20 spin 1/2 lattices interacting with
the Heisenberg nearest neighbor Hamiltonian, as well as with other frustrated
Hamiltonians.
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Classification of Quantum States under Local Unitary Transformations

Shao-Ming Fei

(joint work with S. Albeverio, L. Cattaneo, N.H. Jing, X.H. Wang, W.L. Yang)

As the nonlocal properties and the entanglement of a quantum system remain
invariant under local unitary transformations (LUT), it is of importance to classify
the quantum states under LUT. In principle one could judge wether two quantum
states are equivalent or not under LUT by computing all the invariants of LUT.
The method developed in [1, 2] allows one to compute all such invariants, though
it is generally not operational. An explicit set of invariants are calculated only for
some special cases, e.g., two and three qubits [3, 4]. We study the equivalence of
bipartite mixed states from both the invariants approach and the matrix tensor
product decomposition approach. The results are used in investigating the case of
tripartite pure states.

Let H be an N -dimensional complex Hilbert space, with |i〉, i = 1, ..., N , as an
orthonormal basis. A general pure state on H ⊗H is of the form

(1) |Ψ〉 =

N∑

i,j=1

aij |i〉 ⊗ |j〉, aij ∈ C

with the normalization
∑N

i,j=1 aija
∗
ij = 1. Let A denote the matrix given by

(A)ij = aij . The following quantities are invariants under LUT [5]:

(2) Iα = Tr(AA†)α, α = 1, ..., N ;

Two pure bipartite states |Ψ〉 and |Ψ′〉 are equivalent under LUT, |Ψ′〉 = U1 ⊗
U2|Ψ〉, if and only if Iα = I ′α, where U1 and U2 are unitary matrices on H .

Two bipartite density matrices ρ and ρ′ are said to be equivalent under LUT if

(3) ρ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)†.
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Let ρ be a density matrix onH⊗H with rank(ρ) = n ≤ N2, decomposed according
to its eigenvalues and eigenvectors: ρ =

∑n
i=1 λi|νi〉〈νi|. The eigenvector |νi〉 has

the form

|νi〉 =

N∑

k,l=1

ai
kl|k〉 ⊗ |l〉, ai

kl ∈ C,
N∑

k,l=1

ai
kla

i∗
kl = 1, i = 1, ..., n.

Let Ai denote the matrix given by (Ai)kl = ai
kl. We introduce {ρi}, {θi},

(4) ρi = Tr2|νi〉〈νi| = AiA
†
i , θi = (Tr1|νi〉〈νi|)∗ = A†

iAi, i, j = 1, ..., n,

T r1 and Tr2 stand for the traces over the first and second Hilbert spaces respec-
tively. Let Ω(ρ) and Θ(ρ) be two “metric tensor” matrices, with entries given
by

(5) Ω(ρ)ij = Tr(ρiρj), Θ(ρ)ij = Tr(θiθj), for i, j = 1, ..., n,

and Ω(ρ)ij = Θ(ρ)ij = 0, for N2 ≥ i, j > n. We call a mixed state ρ generic
one if the corresponding “metric tensor” matrices Ω, Θ satisfy det(Ω(ρ)) 6= 0,
and det(Θ(ρ)) 6= 0. Similarly we also introduce X(ρ) and Y (ρ) as X(ρ)ijk =
Tr(ρiρjρk), Y (ρ)ijk = Tr(θiθjθk), i, j, k = 1, ..., n. For generic states we have the
following conclusion [6]:

[Theorem 1]. Two generic density matrices are equivalent under LUT if and only
if there exists an ordering of the corresponding eigenstates such that the following
invariants have the same values for both density matrices:

(6) Js(ρ) = Tr2(Tr1ρ
s), s = 1, ..., N2; Ω(ρ), Θ(ρ), X(ρ), Y (ρ).

In fact if two density matrices ρ and ρ′ are equivalent under LUT, they have the
same set of eigenvalues λi, i = 1, ..., n. Let X and Y be the unitary matrices that
diagonalize two density matrices ρ and ρ′ respectively, ρ = XΛX†, ρ′ = Y ΛY †,
where Λ = diag(λ1, λ2, ..., λMN ).

[Theorem 2]. Set

(7) V = X




d1In1
0 · · · 0

0 d2In2
· · · 0

...
. . .

...
0 · · · · · · drInr


Y †,

where ni, i = 1, 2, ..., r, stands for the geometric multiplicity of the eigenvalue λi

of ρ,
∑r

1 nr = N2, di = eiθi for θi ∈ IR. Then two non-degenerate states ρ and ρ′

are equivalent under local unitary transformations if the rank r(Ṽ ) = 1, where Ṽ
is the realigned matrix of V [7].

The results for bipartite mixed states can be used to study the equivalence of
pure tripartite states under LUT. Let HA resp. HB resp. HC be K resp. M resp.
N dimensional complex Hilbert spaces. We denote by {|ei〉}K

i=1 , {|fi〉}M
i=1 and

{|hi〉}N
i=1 the orthonormal bases in HA, HB and HC respectively. A general pure
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state on HA ⊗HB ⊗HC is of the form

(8) |Φ〉 =

K∑

i=1

M∑

j=1

N∑

k=1

aijk|ei〉 ⊗ |fj〉 ⊗ |hk〉, aijk ∈ C

with the normalization

K∑

i=1

M∑

j=1

N∑

k=1

aijka
∗
ijk = 1. |Φ〉 can be regarded as a state on

the bipartite systems A-BC, The following quantities are invariants under LUT
with respect to the A-BC system, Jα = Tr(Tr1|Φ〉〈Φ|)α, α = 1, 2, · · · , S, where
S = min{K,M,N}. We have [8, 9]:

[Theorem 3]. For two tripartite states |Φ〉 and |Φ′〉, if they have the same values
of the invariants Jα, there are unitary matrices U1 on HA and V1 on HB ⊗ HC

such that |Φ′〉 = U1 ⊗ V1|Φ〉. |Φ〉 and |Φ′〉 are equivalent under local unitary

transformations: 1) if the V1 satisfies r(Ṽ1) = 1; or 2) the reduced bipartite
mixed states ρ = Tr1|Φ〉〈Φ| and ρ′ = Tr1|Φ′〉〈Φ′| are equivalent under LUT, ρ′ =
(U2 ⊗ U3)ρ(U2 ⊗ U3)† for some unitary matrices U2 on HB and U3 on HC .
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Optimizing Bell Experiments

Richard Gill

(joint work with Toni Aćın, Nicolas Gisin, Peter Grünwald, Wim van Dam)

Van Dam, Gill and Grünwald (2005) propose to compare existing Bell-type ex-
periments (CHSH, Hardy, GHZ, . . . ) and to optimally design or tune new ones
(CGLMP,. . . ) by the statistical strength of the experiment: how many runs are
required to obtain a pre-specified (large) degree of confidence that “local realism”
(local hidden variables) is violated. The better the experiment, the fewer the num-
ber of runs. Statistical strength is quantified by D(q;P) = infp∈P D(q : p), with
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D(q : p) =
∑

i qi log(qi/pi) being the relative entropy between the actual proba-
bility distribution q of the overall result i of one run (a choice of joint settings and
resulting joint outcomes), and a hypothetical probability distribution p from the
set P of all distributions allowed by local realism. If one experiment has twice as
large a value of D as another, then half the number of runs are equally convincing
statistical evidence against local realism.

The experimenter fixes a point q ∈ Q, the set of all probability distributions
allowed by quantum mechanics, by choice of a multipartite quantum state, mea-
surement settings for each of the parties, and a probability distribution over “joint
settings”, ie, over each party’s choice of measurement. So we are interested in
computing D(q̂ : p̂) = supq∈Q infp∈P D(q : p).

To be more specific, let us take for the moment the number of parties, the
number of measurements (or measurement settings) per party, and the number
of outcomes per measurement as fixed; together I call this the format of the ex-
periment. Given the format, let us also fix a joint probability distribution σ of
the measurement settings, for a given format. Given the format and the distrib-
ution σ, we consider the set of all local realistic probability distributions P , the
set of all probability distributions Q allowed by quantum mechanics, and the set
R containing all the probability distributions which do not violate causality: the
distribution of the outcome of one party’s measurement should not be influenced
by the settings of the other parties. It is well known that P ⊆ Q ⊆ R, both
inclusions being strict. P and R are closed, convex polytopes; R is just closed and
convex. P is called the local polytope, and R the non-signalling polytope. The
intermediate set Q is called the quantum body. The three sets are contained in an
affine subspace determined by the normalization constraints on the probabilities
(the setting distribution σ is fixed), and of a dimension determined by the format
of the experiment.

As the dimensions involved increase, the number and types of faces of the local
polytope rapidly increases. Each face of P which is not simultaneously a boundary
of Q is a Bell inequality. Very little is known about the structure of P and
Q; open questions abound, such as: are all faces of P , which are not contained
in faces of R, Bell inequalities? Is the boundary of Q covered by probability
distributions coming from projective measurements on pure states with minimal
dimension Hilbert space (thus all projectors having rank one)?

Van Dam, Gill and Grünwald (2005) made use of results from mathematical
statistics (computation of p̂) and from game theory (minimax theorem) to rig-
orously compute the strength of some celebrated experiments. It turns out for
instance that the GHZ experiment is about 9 times more powerful than CHSH.
Taking account of the way the GHZ experiment is conventionally performed, this
figure has to be divided by 2 exactly three times. Conclusion: GHZ is hardly
better than CHSH despite many claims to the contrary.

In recent and as yet unpublished work, Aćın, Gill and Gisin (2005) have been
further searching for good experiments. Under some plausible conjectures they
are able to compute the strength of the best 2× 2× d format experiment, for d up
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to several thousand. One of the conjectures being used here, is that all non-trivial
faces of the 2×2×d local polytope are versions of the CGLMP inequality, a recent
generalization of CHSH (Collins, Gisin, Linden, Massar and Popescu, 2002). The
best measurements are found numerically to be the same as certain measurements
involving the Quantum Fourier Transform, which have turned up in several quite
different contexts recently, but also, only as a result of numerical optimization.
Amazingly, the best state for the experiment turns out to be far from maximally
entangled. A corollary of the findings is that it pays off, for large d to use formats
with more than two measurements per party, which so far was not known.

A tantalizing open problem is to find out what is the mathematical link between
the CGLMP inequality and QFT.

A new derivation of the CGLMP was presented, which might aid this quest.
Suppose that X1, X2, Y1 and Y2 take values in {0, . . . , d − 1}. Note that
(a+ b) modd ≤ amod d+ bmodd. We have

(X1 − Y1) + (Y1 −X2) + (X2 − Y2) + (Y2 −X1 − 1) = −1.

Therefore,

[(X1 − Y1) + (Y1 −X2) + (X2 − Y2) + (Y2 −X1 − 1)] modd = d− 1

from which it follows that

(X1−Y1) mod d+(Y1−X2) mod d+(X2−Y2) mod d+(Y2−X1−1) mod d ≥ d−1.

Taking expectation values,

〈X1−Y1 mod d〉+〈Y1−X2 mod d〉+〈X2−Y2 mod d〉+〈Y2−X1−1 mod d〉 ≥ d−1,

equivalent to the CGLMP inequality (which looks rather more complicated and
takes much more hard work to derive).
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A complete set of local invariants for a class of mixed states.

Debashish Goswami

(joint work with S. Albeverio, S.M. Fei)

Quantum entangled states are playing very important roles in quantum informa-
tion processing and quantum computation [1]. The properties of entanglement for
multipartite quantum systems remain invariant under local unitary transforma-
tions on the subsystems. Hence the entanglement can be characterized by all the
invariants under local unitary transformations. A complete set of invariants gives
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rise to the classification of the quantum states under local unitary transformations.
Two quantum states are locally equivalent if and only if all these invariants have
equal values for these states. In [2, 3], a generally non-operational method has
been presented to compute all the invariants of local unitary transformations. In
[4], the invariants for general two-qubit systems are studied and a complete set of
18 polynomial invariants is presented. In [5] the invariants for three qubits states
are also discussed. In [6] a complete set of invariants for generic density matrices
with full rank has been presented.

In the present talk we investigate the invariants for arbitrary (finite-) dimen-
sional bipartite quantum systems. We present a complete set of invariants for a
class of quantum mixed states and show that two of these density matrices are
locally equivalent if and only if all these invariants have equal values for these
density matrices [7].

Let us consider a general mixed state ρ in a bi-partite n × n system H ⊗ H
(n ≥ 2), with a given orthonormal basis {e1, ..., en} of H . Let ρ have the eigen-
decomposition

ρ =

N∑

l=0

µl|ξl >< ξl|,

where the rank of r(ρ) is N + 1 (N ≥ 1), µl are eigenvalues with the eigenvectors

|ξl >=
∑

ij ξ
(l)
ij |ij > (and |ξl >< ξl| denotes, as usual, the projector onto |ξl >).

Let Al := (ξ
(l)
ij ). We call a matrix “multiplicity free” if each of its singular values

has multiplicity one. Let F denote the class of states ρ for which A0’s is multiplicity
free. We shall find a complete set of local invariants for the class F .

Let (ψ1, ...ψn). (η1, ..., ηn) be orthonormal bases such that

A0 =
∑

i

λi|ψi >< ηi|

be the singular value decomposition of A0, where λ1 > ... > λn denote the singular

values arranged in a decreasing order. Let b
(l)
ij :=< ψi|ρlηj > for l = 1, 2, ..., N ,

and for positive integers k, r ≥ 1, and multi-indices i = (i1, ...ik+1), (with ip’s
all distinct), j = (j1, ..., jr+1) (jq’s distinct) where ip, jq ∈ {1, ..., n} ∀p, q, l =
(l1, ..., lk), m = (m1, ...mr) (lt, js ∈ {1, ..., N}) with i1 = j1, ik+1 = jr+1, we define

(1) Iρ(i, j, l,m) :=
b
(l1)
i1i2

...b
(lk)
ikik+1

b
(m1)
j1j2

...b
(mr)
jrjr+1

whenever the denominator in the above formula is nonzero. Let Σρ be the set of
(i, j, l,m) such that Iρ(i, j, l,m) is well defined.

We are now in a position to state the main result :
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[Theorem]. A complete set of local invariants for the class of states F is given by:

(2)

{µl, l = 0, ..., N},
{| < ψi|ρlηj > |, i, j = 1, ..., n; l = 1, ..., N},
{< ψi|ρlηi >, i = 1, ..., n− 1; l = 0, ..., N},
{Iρ(i, j, l,m), (i, j, l,m) ∈ Σρ}.

Two states in F are locally equivalent if and only if all these invariants (2)
have equal values in these two states. For instance, the Werner state [8] ρw =
(1 − p)I4×4/4 + p|Ψ− >< Ψ−|, where 0 ≤ p ≤ 1, I4×4 is the 4 × 4 identity
matrix and |Ψ− >= 1√

2
(|01 > −|10 >), gives the same values to all the invariants

(2) as does the isotropic state [9] ρiso = (1 − p)I4×4/4 + p|P+ >< P+|, where
P+ = 1√

2
(|11 > +|00 >).
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Decoherence in the Algebraic Framework

Mario Hellmich

(joint work with Philippe Blanchard, Piotr  Lugiewicz and Robert Olkiewicz)

In my talk I reviewed some recent work of Ph. Blanchard (Bielefeld), and R. Ol-
kiewicz and P.  Lugiewicz (Wroc law) on decoherence in the algebraic framework of
quantum theory.

The question why the objects surrounding us obey the laws of classical physics,
despite the fact that our most fundamental physical theory, quantum theory, when
directly applied to these objects, results in contradictions to what is observed,
is a fundamental one. The most promising answer is given by the program of
decoherence [1, 2]. It asserts that quantum theory is universally valid and that
classicality is due to the unavoidable interaction of quantum systems with their
environment. The algebraic approach allows a rigorous description of both finite
and infinite quantum systems (i. e. quantum fields or many body systems) as well
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as classical systems and is therefore well suited for the discussion of the emergence
of classical properties.

Consider a quantum system S described by a von Neumann algebra M acting
on a Hilbert space HE. The total system S + E consisting of S and its environ-
ment E is described by a von Neumann algebra N acting on H . Since S + E
is considered as a closed system, its time evolution is reversible and given by a
group of *-automorphisms {αt}t∈R on N. To study decoherence we consider the
reduced dynamics of S. In the Heisenberg picture it is given by a family of com-
pletely positive normal contractive and unital maps Tt = E ◦ αt ◦ i, t ≥ 0, on M ;
here i : M −→ N describes the inclusion of S in S + E and i ◦ E is a conditional
expectation onto i(M). In models one frequently has N = M ⊗̄ ME, where ME is
the algebra of the environment, acting on HE, thus H = HS ⊗ HE. In this case
the reduced dynamics is given by

(1) Tt(x) = EωE

[
eitH(x ⊗ 1)e−itH

]
, x ∈ M,

where EωE
is a conditional expectation onto M with respect to the reference

state ωE of the environment and H is the total Hamiltonian. By duality the
Schrödinger picture time evolution becomes Tt,∗(ρ) = trE

[
e−itH(ρ ⊗ ωE)eitH

]
for

any density matrix ρ of S, where trE denotes the partial trace with respect to the
environment E. Generally the operators {Tt}t≥0 satisfy a complicated integro-
differential equation, however, in many models they can be approximated by a
dynamical semigroup, e. g. by using a weak or singular coupling limit.

Now it is possible to discuss the emergence of classical properties of the system S.
It was shown [3, 7] that for any dynamical semigroup {Tt}t≥0 on M satisfying a
number of technical assumptions the following decomposition exists:

(2) M = M1 ⊕ M2,

where M1 is a Tt-invariant von Neumann subalgebra of M such that the restric-
tion Tt|M1

is a *-automorphism on M1, and M2 is a linear Tt-invariant subspace
such that for any state ρ of S and x ∈ M2 we have 〈Tt(x), ρ〉 → 0 as t → ∞,
i. e. all expectation values for observables in M2 tend to 0 as time becomes large
and are thus beyond experimental resolution after the decoherence time. We
call M1 the algebra of effective observables, it describes the system after the de-
coherence time. More generally, also in case {Tt}t≥0 does not satisfy a semigroup
law we say that environmental decoherence takes place if the splitting (2) exists
with M2 6= {0}. According to the structure of M1 we can identify the following
scenarios of environmental decoherence [4] : If M1 is noncommutative and its cen-
ter is nontrivial we speak of environment induced superselection rules. If M1 is
commutative and Tt|M1

is trivial, we speak of environment induced pointer states.
Both superselection rules and pointer states may either be discrete or continu-
ous. If M1 = L∞(Ω) is commutative and Tt|M1

is given by a nontrivial flow on
the configuration space Ω we speak of an environment induced classical dynamical
system (see [4] for an example). Finally if M1 is noncommutative with a trivial



216 Oberwolfach Report 4/2005

center then M1 again describes a quantum system without any classical proper-
ties, but possibly with different quantum properties. In this way a transition from
an infinite quantum system to a finite system is possible.

We now present a simple model illustrating the emergence of continuous pointer
states [5] and of new quantum properties [6], see also [7]. The system S consists
of an infinite array of spins at positions labeled by n = 1, 2, . . ., each spin is
described by the 2 × 2-matrix algebra M2, thus M is given by the weak clo-
sure of π0

(⊗∞
n=1M2

)
, where π0 is a faithful representation of the Glimm alge-

bra
⊗∞

n=1M2 on a Hilbert space HS. Remark that M is a factor of type II1. The
environment E consists of an infinitely extended thermal system of phonons of a
linear crystal, the Hilbert space of a single phonon is given by H1 = L2(R, dk).
The algebra of the environment ME is the weak closure of πωE

(∆(H1)), where
we denote the CCR algebra over one-particle space H1 by ∆(H1), and πωE

is
the GNS-representation, acting on HE, of the quasifree gauge invariant thermal
state ωE with two-point function ωE(a∗(f)a(g)) =

∫
ρ(k)f(k)ḡ(k) dk, f, g ∈ H1,

and with thermal equilibrium distribution of the phonon energy given by ρ(k) =
1/(eβω(k) − 1) with respect to the dispersion relation ω(k) = |k|. The joint
system S + E evolves unitarily with Hamiltonian H = HS ⊗ 1 + 1 ⊗ HE + HI,
where HE describes the free phonon evolution and HS = 0. We choose the inter-
action as HI = λQ⊗φ(g), where Q = π0

(∑∞
n=1 2−nσ3

n

)
, and σ3

n denotes the third
Pauli matrix of site n, φ(g) is a field operator corresponding to the representa-
tion πωE

with a suitably chosen test function g. Using the singular coupling limit
the reduced dynamics can be approximated by a dynamical semigroup Tt = etL

with generator Lx = ib[Q2, x] + 2πλbβ−1(QxQ − 1
2{Q2, x}), with b depending on

the test function g.

Theorem 1. The decomposition (2) exists where M1 is a continuous and commu-
tative algebra of functions on the configuration space Ω = {(i1, i2, . . .) : in = ±1}
of the one-dimensional Ising model. The dynamics Tt restricted to M1 is trivial.

We identify each x ∈ M1 with the function Ω ∋ η 7→ x(η). If µ0 is a probability
measure on {+1,−1} with the values 1

2 at {±1}, and if µ =
⊗∞

n=1 µ0 is the product

measure on Ω, for all x ∈ M1 we have trx =
∫
x(η) dµ(η). Thus for any α ∈ [0, 1]

there exists a self-adjoint x ∈ M1 with trx = α. In this sense the pointer states
correspond to a pointer with continuous readings.

Now suppose that system S and environment E are as above, but we assume
that the spin chain is exposed to a magnetic field. We choose the free Hamil-
tonian as HS = π0

(∑∞
n=1 −gµBH(n)σ3

n

)
, where g is the Landé factor and µB

the Bohr magneton, we assume that the magnetic field H(n) at site n decreases
like H(n) ∼ 2−n. The interacting Hamiltonian is again chosen as HI = λQ⊗ φ(g)
with Q = π0

(∑∞
n=1 anσ

1
n

)
, where σ1

n is the first Pauli matrix of site n and

the coupling constants decrease like an ∼ 2−n, so that Q is a bounded op-
erator. If the test function g is suitably chosen, the reduced dynamics of S
may again be approximated by a Markovian one, i. e. Tt = etL with genera-
tor Lx = i[HS − bQ2, x] + 2πλβ−1(QxQ− 1

2{Q2, x}).
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Theorem 2. The decomposition (2) exists and M1 = C1. Moreover, if the first

site does not interact, i. e. a1 = 0, then M1 = M2 and Tt(x) = eitH(1)σ3

xe−itH(1)σ3

for all x ∈ M1.

We see the algebra of effective observables is again a noncommutative factor and
thus after the decoherence time S behaves effectively like a system with a pure
quantum character. Albeit being physically unsatisfactory (but mathematically
nontrivial), this example shows that the interaction with an environment may
not only induce classical properties but also new quantum properties without
introducing any classicality.

To discuss in a systematic way Boson systems with finitely or infinitely many
degrees of freedom we developed a formalism to construct dynamical semigroups
on CCR algebras by using perturbed convolution semigroups of promeasures. For
details see [7]. A current effort is to extend these to the von Neumann algebras
generated by representations of the CCR algebras. For example in the case of
infinite Boson systems in thermal equilibrium this would yield a class of dissipative
dynamics on type III von Neumann algebras.
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Additivity: from finite to infinite dimensions

A.S. Holevo

Steklov Mathematical Institute, Moscow

Institute for Mathematical Physics, TU Braunschweig

Recently P. Shor [7] gave arguments which show that conjectured additivity
properties for several quantum information quantities are in fact equivalent. In
this talk we first give several equivalent formulations of the additivity conjecture for
finite-dimensional constrained channels, which formally is substantially stronger
than the unconstrained additivity [2]. To this end a characteristic property of the
optimal ensemble for such a channel is derived, generalizing the maximal distance
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property [4]. It is shown that the additivity conjecture for constrained channels
holds true for certain nontrivial classes of channels. After giving an algebraic for-
mulation for the Shor’s channel extension, its main asymptotic property is proved.
It is then used to show that additivity for two constrained channels can be reduced
to the same problem for unconstrained channels, and hence, ”global” additivity for
channels with arbitrary constraints is equivalent to additivity without constraints.

Then we pass to the systematic study of the classical capacity (more precisely,
closely related entropic quantities: the output entropy, its convex closure and
their difference, called the χ-capacity), of infinite dimensional quantum channels.
While major attention in quantum information theory up to now was paid to
finite dimensional systems, there is an important and interesting class of Gaussian
channels which act in infinite dimensional Hilbert space. Although many questions
for Gaussian Bosonic systems with finite number of modes can be solved with
finite dimensional matrix techniques, a general underlying Hilbert space operator
analysis is indispensable.

There are two important features essential for channels in infinite dimensions.
One is the necessity of the input constraints (such as mean energy constraint for
Gaussian channels) to prevent from infinite capacities (although as we have shown
considering input constraints is quite useful also in the study of the additivity
conjecture for channels in finite dimensions). Another is the natural appearance
of infinite, and, in general, “continuous” state ensembles understood as probability
measures on the set of all quantum states.

Moreover, it was observed recently that Shor’s proof of global equivalence of
different forms of the famous additivity conjecture is related to weird discontinuity
of the χ-capacity in the infinite dimensional case. It is also well known that
quantum entropy has some pathological properties in infinite dimensions [8]. All
this calls for a mathematically rigorous treatment involving specific results from
operator theory and measure theory.

By using compactness criteria from probability and operator theory we can
show that the set of all generalized ensembles with the average in a compact set
of states is itself a compact subset of the set of all probability measures eqipped
with the weak topology. With this in hand we give a sufficient condition for
existence of an optimal generalized ensemble for a constrained quantum channel.
This condition can be verified in particular in the case of Bosonic Gaussian channels
with constrained mean energy [3].

In [5] it is shown that additivity of χ-capacity for all finite-dimensional chan-
nels without constraints implies additivity for infinite-dimensional channels with
arbitrary constraints.

For a general survey of current state of art in the additivity/multiplicativity
problems in quantum information theory see [1].
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Environmental localization of matter waves

Klaus Hornberger

(joint work with Markus Arndt)

Recent interference experiments with fullerene matter waves allow one to study
the natural decoherence phenomena affecting massive particles with a complex
internal structure [1, 2]. These effects, which are due to the interaction with
unobserved, environmental degrees of freedom, lead to the loss of coherence of
the initially delocalized center-of-mass states in an interferometer. Specifically,
we focus on the theoretical description of decoherence due to collisions with a
thermal background gas (of small mass) and on the emission of heat radiation by
the particle.

In both cases it is appropriate and necessary to use a Markovian master equation
which treats the interaction non-perturbatively. Rather than by a weak coupling
calculation, they are obtained by evaluating the rate of decoherence events (such
as a collision or the emission of a thermal photon) and the effect of a single event
individually.

The change of the state due to a single scattering-type interaction is obtained
by a trace over the environmental degree of freedom. In the studied cases, this
leads to a modification of the particle’s center-of-mass statistical operator ρ̂ which
is multiplicative in the position representation,

ρ′ (r1, r2) = ρ (r1, r2) η (r1 − r2) .

A careful calculation of the scattering process based on a convex decomposition of
the environmental state in terms of localized wave packets yields the decoherence
function η [3]. It satisfies the natural requirements η(0) = 1, lim|R|→∞ (R) = 0.

The rates, on the other hand, can be characterized by an appropriately simpli-
fied description of the complex interior structure of the particles in terms of their
bulk properties (such as the frequency dependent polarizability or the dielectric
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function). This way realistic quantitative predictions can be obtained for com-
plex molecules. Moreover, scaling assumptions on the bulk properties allow one
to predict decoherence rates in the macroscopic domain.

The master equations obtained by combining rate and effect read, for particles
of large mass m,

∂tρ̂t =
1

i~
[Ĥ, ρ̂t] −

∫
drdr′γt(r − r′)ρt(r, r

′)|r〉〈r′|.

In the case of collisional interactions the localization rate is given by [3]

γt(R) = nt

∫ ∞

0

dq νt(q)
q

m

∫
dndn′

4π

(
1 − eiq(n−n′)R/~

)
|f(qn′, qn)|2

(and differs by a factor from earlier results [4, 5]). Here, nt and νt are the gas
density and its (typically thermal) momentum distribution, respectively. f is
the scattering amplitude and dn gives the element of solid angle associated with
the unit vector n. The limit of a large mass ratio between scattered and colliding
particle taken here is compatible with a detailed asymptotic analysis of the collision
dynamics [6, 7]. Moreover, we note that the structure of this equation is compatible
with the approximate master equation for finite mass ratios in terms of the dynamic
structure factor obtained by Vacchini [8].

The localization rate due to isotropic heat radiation reads

γt(R) =

∫ ∞

0

R(λ;Tt)

[
1 − sinc

(
2π

|R|
λ

)]
dλ,

where R(λ;Tt) is the temperature-dependent spectral photon emission rate at
wavelength λ. In practice this rate differs from the Planck law of a macroscopic
black body even for mesoscopic particles with many hundreds of internal degrees
of freedom, but it can be characterized by the absorption cross section and the
heat capacity of the object.

When treating the effect of decoherence in an interferometer it is advantageous
to avoid solving the time dependent master equation. Instead, one integrates an
equivalent differential equation for the stationary state. It describes the change of
coherence in the state at the interferometer output with an increasing region where
decoherence takes place [9]. In the case of a near-field Talbot-Lau interferometer
this can be done analytically and one obtains a closed expression for the reduction
of the interference visibility.

The result of decoherence is particularly simple in the case of a background gas
at room temperature, where a single collision suffices to localize the particle below
the observable scale. As a result, the contrast is expected to fall exponentially
with increasing gas pressure (unlike the case of simple absorption or loss, where
the particle flux would fall exponentially at constant visibility). The decay is de-
termined by the characteristic pressure pd = kBT/(2Lσeff) where L is the distance
between the gratings in a Talbot-Lau setup and σeff is the effective scattering cross
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section in the thermal gas at particle velocity v,

σeff(v) =

∫ ∞

0

dq ν(q)

∫
dn

4πv
σ(|qn −mvnp|)

∣∣∣∣
qn

mg
− vnp

∣∣∣∣ .

The situation is a bit more complicated in the case of heat radiation, when the
wave lengths of the thermal photons are comparable to the separation between the
interfering paths. The resulting reduction of the interference visibility V is then
given by an integration over all possible wavelengths λ and longitudinal positions
vt in the interferometer,

V = V0 exp

(
−
∫ 2L/v

0

dt

∫ ∞

0

dλ R(λ, Tt)

[
1 − sinc

(
2πd

λ

L− |vt− L|
LT

)])
.

The argument of the sinc function involves the grating constant d and the Talbot
length LT = mvd2/h. It gives the ratio between the effective path separation at
the various possible emission positions to the photon wavelength. Note that the
time dependence of the particle temperature T allows for the effect of cooling in
the interferometer, which can be important in practice.

The comparison with the experimental data for fullerenes with various back-
ground gases and different temperatures shows that the observed loss of interfer-
ence can be fully understood in the described framework [1, 2]. Specifically, the
fullerenes turn gradually from a pure quantum behavior to being indistinguishable
from classical particles as their internal temperature increases from 2000 to 3000 K
in the experiment.
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Tensor product decomposition and Separability

Naihuan Jing

(joint work with Shao-Ming Fei)

Since the beginning of the study of quantum information, quantum entanglement
has occupied a central position in quantum information processing due to its im-
portant applications in quantum teleportation, quantum cryptography, quantum
dense coding, quantum error correction and parallel computation [1, 2, 3]. However
the theory of quantum entanglement itself is far from satisfaction.

A mixed state on H1⊗H2 is described by a density matrix ρ: ensembles of state
|Ψi〉 with probabilities pi. The quantum state is called separable if there exists a
decomposition such that

(1) ρ =
∑

i

piρ
1
i ⊗ ρ2

i ,

where ρ1
i and ρ2

i are rank one density matrices on H1 and H2 respectively. It
is a challenge to find a decomposition like (1) or proving that it does not exist
for a generic mixed state ρ [4, 5, 6]. With considerable effort in analyzing the
separability, there have been some (necessary) criteria for separability in recent
years, for instance, the Bell inequalities [7], PPT (positive partial transposition)[8]
(which is also sufficient for the cases 2×2 and 2×3 bipartite systems [9]), reduction
criterion[10, 11], majorization criterion[12], entanglement witnesses [9] and [13, 14],
realignment [15, 16, 17] and generalized realignment [18], as well as some necessary
and sufficient criteria for low rank density matrices [19, 20, 21] and also for general
situations but not easy to apply or not operational [9].

In this work we use the idea of matrix approximation to study separability. The
basic idea is to use appropriate tensor products to approximate the given density
matrix. In [22] the minimum distance (in the sense of matrix norm) between a
given matrix and some other matrices with certain rank is studied. In [23] and
[24], for a given matrix A, the minimum of the Frobenius norm like ||A−∑iBi ⊗
Ci||F is investigated. We see that if this minimum is zero, then the matrix A
has a decomposition of the form A =

∑
iBi ⊗ Ci, which looks similar to the

separable decomposition of a density matrix (1). To achieve our goal we need to put
constraints on the components Bi and Ci. We have developed systematically how
to decompose a given Hermitician matrix into a sum of Hermitian tensor products.
By dealing with the Hermitian condition as higher dimensional real constraints,
an explicit construction of density matrices on H1 ⊗H2 according to the sum of
the tensor products of Hermitian matrices as well as real symmetric matrices on
H1 ⊗ H2 is presented. The results are generalized to the multipartite case. The
separability problem is discussed in terms of these tensor product expressions. We
also define a special quantity called separability indicator and proved that the given
density matrix is separable if and only if the separability indicator is non-negative.
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Let A be a matrix, and ||A|| :=
√
tr(AA†) be the Hilbert-Schmidt norm (real

case called Frobenius norm). Our first result is obtained via the singular value de-
composition. We first study the problem of approximation of A by tensor product
of symmetric matices, i,e. we are looking for

∑
iBi ⊗ Ci to minimize the norm

||A−∑i Bi ⊗ Ci|| where Bi, Ci are real symmetric matrices.

[Theorem 1]. Let A be an mn×mn real symmetric matrix on H1 ⊗H2, where
dim(H1) = m, dim(H2) = n. The minimun of the Frobenius norm
||A −∑r

i Bi ⊗ Ci||F is obtained for some m × m real symmetric matrix Bi on
H1 and n× n real symmetric matrix Ci on H2, given by

(2) vec(Bi) = Q1

(
0

B̂i

)
, vec(Ci) = Q2

(
0

Ĉi

)
.

For i 6= j ∈ {1, · · · ,m}, let qij be the column vector of dimension m2 with

all entries zero except that the ij entry is 1/
√

2 and ji entry is −1/
√

2, here we
arranged the numbers 1, · · · ,m2 lexicographically. Let Qs be the following block

matrix of size m2 × m(m−1)
2

[q12, q13, · · · , q1m, q23, · · · , q2m, · · · , qm−1,m]

We consider now the tensor product decompositions of Hermitian matrices.
Let A be a given mn ×mn Hermitian matrix on H1 ⊗H2. As any Hermitian

matrix A can be uniquely expressed as A = B + iC, where B and C are real
symmetric and skew-symmetric matrices respectively. It is easy to show that any
Hermitian matrix of size n1n2 × n1n2 can always be expressed as a summation of
tensor product of n1 × n1 Hermitian matrices and n2 × n2 Hermitian matrices.
However the explicit decomposition needs special treatment. We give a systematic
method for such a decomposition.

Let Ã be the realignment of A, and set

(3) Qt
1ÃQ2 =

(
Â11 Â12

Â21 Â22

)
.

where Q1 and Q2 are the matrices defined above for the space H1 and H2 respec-

tively. Let ui (resp. vi) be the eigenvectors of the matrix Â22Â
†
22 (resp. Â†

22Â22).

Let r and λi, i = 1, 2, ..., r, be the rank and eigenvalues of Â†
22Â22 respectively.

According to the singular value decomposition we have Â22 =
∑r

i=1 λiuiv
t
i . Set

B̂i = λiui, Ĉi = vi.
[Theorem 2]. Let A be an mn × mn Hermitian matrix on H1 ⊗ H2, where

dim(H1) = m, dim(H2) = n. The minimum of the Hilbert-Schmidt norm
||A −∑r

i Bi ⊗ Ci||HS is obtained for some m × m Hermitian matrix B on H1

and n × n Hermitian matrix C on H2, if Â22 =
∑r

i=1 B̂iĈt
i , where Â22 is defined

by (3), Bi = bi + iBi, Ci = ci + iCi, are given by the relations

(4)

(
vec(bi)
−vec(Bi)

)
= Q1

(
0

−B̂i

)
,

(
vec(ci)
−vec(Ci)

)
= Q2

(
0

−Ĉi

)
.



224 Oberwolfach Report 4/2005

Let m(A) and M(A) denote the smallest and the largest eigenvalues of a matrix
A. For a decomposition of A =

∑
iBi ⊗ Ci we can transform the decomposition

into another decomposition such that each factor has the smallest eigenvalue zero
as follows,

A =

r∑

i=1

(Bi −m(Bi)Im) ⊗ (Ci −m(Ci)In)

+

[
r∑

i=1

m(Ci)(Bi −m(Bi)Im) −m

(
r∑

i=1

m(Ci)(Bi −m(Bi)Im)

)]
⊗ In

+Im ⊗
[

r∑

i=1

m(Bi)(Ci −m(Ci)In) −m

(
r∑

i=1

m(Bi)(Ci −m(Ci)In)

)]

+qB,CIm ⊗ In ,

where Im and In stand for m×m and n× n identity matrices and the coefficient
of Im ⊗ In is

qB,C ≡ m

(
r∑

i=1

m(Ci)Bi

)
+m

(
r∑

i=1

m(Bi)Ci

)
−

r∑

i=1

m(Bi)m(Ci)

In general the qB,C associated with A =
∑r

i=1 Bi⊗Ci is not necessary positive. We
define the separability indicator S(A) to be the maximum of qB,C for all possible
decomposition of A =

∑
i Bi ⊗ Ci.

[Theorem 3]. Let A be a Hermitian matrix with tensor product decompositions
of Hermitian matrices like A =

∑r
i=1 Bi ⊗ Ci. A is separable if and only if the

separability indicator S(A) ≥ 0. Moreover S(A) satisfies the following relations:

S(A) ≤ m(A),

S(A) ≥ 1

2

r∑

i=1

[M(Bi)m(Ci) +M(Ci)m(Bi)

−|m(Bi)|(M(Ci) −m(Ci)) − |m(Ci)|(M(Bi) −m(Bi))],

S(A) ≥ m(A) −
∑

i

M(Bi)M(Ci).
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The Bogoliubov transformation and its effect in phase space

Gerd Leuchs

(joint work with Norbert Lütkenhaus, Ulrik L. Andersen)

Intense light pulses with non-classical properties are used to implement proto-
cols for quantum communication. Most of the elements in the tool box needed
to assemble the experimental set-ups for these protocols are readily described by
Bogoliubov transformations corresponding to Gaussian transformations that map
Gaussian states onto Gaussian states. This seemingly linear field transformation
also accounts for squeezing of light in phase space. One particularly interest-
ing application is quantum interferometry [1] where e.g. phase resolution can be
improved. A closely related protocol is quantum dense coding [2]. Quantum key
distribution with continuous variables does require a quantum state but not neces-
sarily one which belongs to the class of non-classical states [see QKD with coherent
states: [3],[4]. For recent experiments see [5],[6]. Furthermore, it was realized that
a higher secret bit rate can be attained by measuring the Q-function at the re-
ceiving end as oppose to the standard switched-basis measurement strategy [6],[7].
Among the quantum protocols which have been realized in our laboratory, based on
Bogoliubov transformations, are quantum cryptography, quantum erasing, quan-
tum cloning and quantum purification. Due to the fact that these protocols can be
described by Bogoliubov transformations, only Gaussian operations were required.
However, for some more advanced continuous variable quantum protocols (such
as quantum computing and entanglement distillation) non-Gaussian operations,
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which cannot be described by Bogoliubov transformations, are required. This
involves Hamiltonians which are third or higher order in the field operators, an
example being the Kerr effect. Intense light pulses propagating in standard fibres
experiences the Kerr effect. An interesting aspect is that the Bogoliubov trans-
formations leading to squeezing and to optical amplification are formally closely
related. While the amplifier can be readily implemented using just linear optical
elements [8], we found no way to do the same for squeezing. For a proposal to
implement a cubic phase gate based on squeezing and detection see page 15-18 in
[9].
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Optimal phase covariant transformations in arbitrary dimension

Chiara Macchiavello

(joint work with F. Buscemi, G.M. D’Ariano and P. Perinotti)

We present some recent results related to the optimality of phase covariant
quantum transformations for quantum systems with arbitrary finite dimension.
We will study some tasks of interest in quantum information, where the infor-
mation itself is encoded into relative phases of quantum systems in dimension d.
This kind of analysis is motivated by the fact that relative phases play a fun-
damental role in quantum information theory: for example, it was shown that
most existing quantum algorithms can be viewed as multi-particle interferometers
where the result of the computation is encoded in a relative phase [1], or also the
latest generation of atomic clocks is based on the measurement of a phase shift
in atomic systems [2]. The interest in looking at quantum systems in dimension
higher than two is triggered by the fact that some quantum information tasks can
be advantageous by increasing the dimension: for example, it was shown that the
robustness of quantum cryptographic protocols increases [3]. Moreover, experi-
mental achievements have been recently reported in the generation, manipulation
and detection of quantum systems with higher dimension[4].

We address the issues of phase covariant cloning, multi-phase estimation pro-
cedures and transposition maps. We will optimise these procedures for the set of
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equatorial states for d-dimensional quantum systems, defined as

|ψ({φj})〉 =
1√
d

(|0〉 + eiφ1 |1〉 + eiφ2 |2〉 + ...+ eiφd−1 |d− 1〉) ,(1)

where {|0〉, |1〉, |2〉...|d− 1〉} represents a basis for the system under consideration
and {φj} denotes a set of d− 1 independent phase-shifts (φj ∈ [0, 2π]).

We first consider phase covariant cloning for qudits. A cloning map can be
viewed as a special kind of quantum channel, i. e. a trace-preserving completely
positive (CP) map. We consider the general case of an arbitrary number of input
copies N and an arbitrary number of output copies M . We impose the phase
covariant condition on the cloning map CNM , given by

(2) CNM (U⊗N
{φj} ρN U †⊗N

{φj} ) = U⊗M
{φj} CNM (ρN )U †⊗M

{φj} ,

where U{φj} = exp(i
∑d−1

j=1 φj |j〉〈j |) is the unitary phase rotation operator acting
on a qudit and ρN is the state of the N input qudits. Such a condition guarantees
that all equatorial input states are treated in the same way.

The optimal phase covariant cloning maps, which are optimised by maximising
the single output copy fidelity with respect to the input, can be easily derived for
any value of N and for values of M related to N and d as M = kd+N [5], where
k can take any positive integer value. The most interesting aspect in the case
M = kd + N is that the optimal phase covariant cloning map can be realised in
an “economical” way, without the need of auxiliary qudits in addition to the M
output copies. This is in contrast to the case of universal cloning [6] and to the
case of 1 → 2 phase covariant cloning [7, 8], where auxiliary qubits are needed to
achieve the optimal transformation.

The issue of phase covariant cloning is closely related to the issue of optimally
estimating the d − 1 phases, assumed to be completely unknown, for equatorial
states (1). This problem was studied in [9] following the framework of quantum
estimation theory, and the optimal positive operator valued measurement (POVM)
was derived for arbitrary dimension and arbitrary number of available input copies
N . It can be seen that the optimal phase estimation fidelity is equal to the optimal
phase covariant cloning fidelity for an infinite number of output copies. This result
is an interesting generalisation to arbitrary dimension of the same correspondence
between estimation and cloning procedures proved to hold for the case of qubits
[10, 11].

Another interesting quantum map is the transposition of the density operator.
This operation has recently attracted much interest: for example, when transposi-
tion is performed on a subsystem of a composite system it leads to the well known
partial transpose criterion for separability of mixed states [12]. As in the case of
ideal cloning, transposition of a density operator is not a unitary transformation
and can just be appriximated by physical processes. Approximate universal trans-
position transformations, i.e. transformations whose fidelity is the same for any
input state, have been studied in the case of qubits for an arbitrary number of
input and out copies (they are unitarily related to the U-NOT gate [13], which
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corresponds to the inversion of the Bloch vector) and for a single copy in arbitrary
dimension [14]. In both cases it was shown that the optimal universal transposi-
tion can be achieved by optimally measuring the input state and then prepare the
transposed of the estimated state according the result of the classical measurement
step. This feature is what is usually referred to as the classicality of the universal
map.

We study the case of phase covariant transposition map for equatorial qudits.
We prove that for a single copy the optimal fidelity is given by the simple expression
F = 2/d. We also derive “economical” realisations for the case of M = kd − N ,
with k ≥ N [15]. It is interesting to notice that in the case of phase covariant
transposition the optimal fidelity is always higher than the optimal fidelity of
phase estimation with the same number of input copies. This means that, in
contrast to the universal case, the transposition operation can be approximated
optimally for equatorial states only in a fully quantum fashion, with the exclusion
of a classical measurement/preparation step. This situation is particularly trivial
in the case of qubits, for which it is possible to perfectly transpose all equatorial
states by means of a σx operation (and actually F = 1 for d = 2), while the phase
can never be measured exactly with finite resources.

Finally, we report some preliminary results achieved for mixed states. All the
procedures presented above hold for input pure states. When the input states
become mixed, such as for example after the action of some noise process, the
derivation of optimal covariant maps becomes highly non trivial. We have recently
studied the problem of optimal phase estimation for mixed qubit states, namely
for a set of input qubits all in the same mixed state ρ = (I + ~r · ~σ)/2, with |r| ≤ 1
[16]. We have derived the optimal estimation procedure, while the asymptotic
behaviour of its efficiency for a large number of available copies is presently under
study. Of course it is a very interesting and still open problem the relation between
optimal estimation procedures and other kinds of quantum transformations, such
as cloning and transposition, for mixed states.
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Quantum String Flipping

Serge Massar

Coin Tossing is the cryptographic task in which two parties who do not trust
each other want to generate a random bit. If the parties can only communicate
through a classical communication channel this task is impossible. But if they
can communicate through a quantum channel it is possible to guarantee some
degree of randomness to the bit. However using quantum communication, perfect
randomness is impossible when a single random bit must be generated.

Here we consider the task, called string flipping, of generating a string of n
bits. We describe a simple protocol for doing so using quantum communication.
We show that for this protocol it is possible to guarantee that all but a vanishing
fraction of the bits are random [1][2]. More precisely we show that it is possible
to ensure that the total entropy of the string if one of the parties is dishonest and
the other is honest is H = n − cn−α where c > 0 and 0 < α < 1 are constants.
Thus much better randomness is possible than when tossing a single coin.

We then describe an experimental realization of quantum string flipping in
which the randomness of the string is provably higher than could be achieved
classically, even when all imperfections, such as limited optical visibilities, detector
inefficiency, detector dark counts are taken into account[3]. This experiment uses
light pulses at 1550nm propagating in optical fibers. It is based on the “plug and
play” scheme developed by N. Gisin and coworkers for long distance Quantum Key
Distribution. Hence it is suitable for long distance implementation.
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Quantum Information Processing with Neutral Atoms

Dieter Meschede

Introduction Neutral atoms are one of the most promising candidates for re-
alising quantum information processing devices. Sophisticated methods, widely
applied in atomic clocks, have been developed over many decades to coherently
manipulate the internal quantum states of an atom. Their charge neutrality pro-
tects them well from external perturbations, leading to a reduced decoherence of
the quantum dynamics. Neutral atoms in optical lattices are unique for quantum
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information purposes, as they are so far the only physical system, in which both
an outstanding degree of single particle control exists, while simultaneously large
scale qubit systems can be realized.
This contribution is focused on the state of art of controlling individual neutral
atoms in 1D optical lattices and outline the path for future challenges in this field.

Trapping atoms in optical lattices. Optical lattices are formed by interfering
several laser beams to form a perfectly periodic intensity pattern of light in space.
The simplest (1D-) optical lattice can in fact be created by just superposing two
counterpropagating laser beams, such that an optical standing wave is created.
The optical standing wave consists of dark and bright stripes with a period of
half an optical wavelength. The interfering light pattern, the standing wave, is
completely defect free and forms a perfectly periodic spatial structure. Typically
the wavelength of the light fields used to form the optical lattice are very far de-
tuned from an atomic resonance transition but the oscillating electric field of the
laser light nevertheless induces an oscillating atomic dipole moment within the
atom which is in-phase for red detuning and 180◦ out-of-phase for blue detuning
of trapping laser field and atomic resonance frequency. This oscillating electric
dipole then interacts with the external oscillating electric field of the laser which
causes the internal energy of the atom to decrease for red and increase for blue de-
tuning. In inhomogeneous, patterned light fields, the internal energy shift results
in an effective potential which is used to trap neutral atoms. For example, when
the frequency of the laser light is below an atomic transition frequency, atoms
are pulled into the intensity maxima of the laser field, whereas they are repelled
from it in the opposite case. This force is very feeble and only extremely slow
‘cold’ atoms can be influenced by this force. The advent of efficient laser cooling
methods was thus necessary before such experiments could start.

Storing, observing, and transporting single atoms.[1]–[3] A small but exact
number of neutral atoms is initially prepared in a so called magneto-optical trap,
where atoms from the residual gas of the experimental chamber are slowed by
radiation pressure forces and detected by fluorescence. With sensitive photon
counters the number of atoms is inferred from the step like fluorescence.

These atoms are then transferred to the 1D lattice which is formed from two
counterpropagating laser beams. If the frequency of one of the two counterpropa-
gating laser beams is slightly lowered or increased the interference pattern walks in
the direction of the laser beams. allowing transport of the atoms over macroscopic
distances (cm). A photon counting camera allows to record small movies showing
such controlled motion of a group of atoms when the optical lattice is operated
as the optical conveyor belt. The ‘optical conveyor belt’ opens the potential to
bring atoms in a controlled way from one functional site to another one. For ap-
plications the quantum state of atoms can for example be prepared at one point
and then transported into the electromagnetic field of a Fabry-Perot type optical
microcavity where interactions with single photons can take place.
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Figure 1. Quantum Register with 5 Caesium Atoms. The im-
ages were taking with a photon counting camera. Resolution is
about 1 µm per pixel.

Controlling individual atom qubits in optical lattices: a neutral atom
quantum register. [4] With neutral atoms, qubits can in principle be realized
with any two levels of their quantum structure, external states of atomic motion
as well as internal states of the atomic electron and spin. For this article we
concentrate on magnetic sublevels of the internal atomic quantum state which
allow convenient manipulation by external radiofrequency fields. In an experiment,
two specific magnetic sublevels of the electronic atomic ground state are selected
for the representation of the qubit. The qubit may be modelled by a sphere where
the north- and southpole correspond to the logical ‘0’ and ‘1’state, respectively.
The state of the qubit can be indicated by an arrow locating the state on the
surface of the sphere. Application of a resonant microwave pulse causes rotation
of the arrow, and the rotation angle depends on the duration of the pulse. For
instance, a so called ‘π-pulse’ rotates the angle from the north- to the south-pole
and vice versa, thus it is equivalent to a logical inversion operation. A quantum
register is obviously a combination of several qubits, which can be manipulated
one by one, in our case atom by atom.

Operation of a register, whether of classical and quantum nature, requires real-
ization of several functional steps: In the first step, the register must be physically
prepared and initialised. In the second step, information must be written into the
individual bits or qubits. In the final step, the full information must be retrieved
bit by bit or qubit by qubit. For a quantum register one must demonstrate in
addition to the case of a classical register that coherent superposition states of the
two qubit states can be generated and is maintained for extended periods of time.

The first step is straightforward once a string of neutral atom is prepared as
described in the previous section: Identical spin states (more precisely pseudo spin
states) of all atomic qubits are prepared by ‘optical pumping’ which by a series
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of absorption-emission cycles prepares all atoms to the same quantum state, for
example the state corresponding to the logical ‘0’ .

To achieve selectivity in the second step, an inhomogeneous magnetic field is
applied which renders the magnetic resonance condition for the microwave pulse
rotating the qubit state valid for a single qubit site only. Thus application of
the microwave field causes rotation at this site only, even though the microwave
field fills all space. At a measured spatial resolution of 2.5 µm this method could
nominally allow operation of a 400 qubit register in a 1mm standing wave light
field. Note that a closely related method is used to obtain spatial resolution in
magnetic resonance imaging procedures (MRI).

For information retrieval the quantum state of the atomic qubit is unambigu-
ously detected through quantum state projection by methods of laser spectroscopy
which can discriminate between two atomic levels with excellent contrast. With
this method for example the time evolution of the coherent superposition of the two
qubit states can be observed as a function of the microwave pulse duration. The
sinusoidal oscillation of the qubit state between the ‘0’ and the ‘1’state is called
‘Rabi-oscillation’İt proves the coherent nature of the superposition and thus the
quantum property of the neutral atom quantum register.

References

[1] Single atoms in a standing-wave dipole trap W. Alt et al., Phys. Rev. A 67, 033403 (2003)
[2] An optical conveyor belt for single neutral atoms, D. Schrader et al., Appl. Phys. B 73, 819

(2001)
[3] Continued imaging of the transport of a single neutral atom Y. Miroshnychenko et al.,

Optics Express 11, 3498-3502 (2003)
[4] Neutral atom quantum register, D. Schrader et al., Phys. Rev. Lett. 93, 150501 (2004)

Positive linear maps and entanglement: an application

Marco Piani

(joint work with Fabio Benatti, Roberto Floreanini)

Entanglement appears to be a basic resource in the fields of quantum information
and quantum computation (see [1, 2] and references therein). A state ρAB of a
finite dimensional bipartite system A+B is entangled if can not be written as [3]:

(1)
∑

i

ci ρ
(i)
A ⊗ ρ

(i)
B , ci ≥ 0 ,

∑

i

ci = 1,

with every ρ
(i)
A(B) a state of system A(B).

There are different results in the literature regarding the classification of states.
One of the more interesting [4, 5] is based on the use of linear maps which are
positive (P) but not completely positive (CP) [6, 7, 8, 9]: we shall refer to them as
PnCP maps. A map is P if it transforms any state into another positive operator.
A map Λ is CP if also the map id ⊗ Λ, i.e. the action of Λ on a part of a
composed system, is P. In the case of a bipartite system, a state is entangled if
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and only if there exists a PnCP map such that the operator obtained acting with
the map on only one of the two subsystems is not positive any more. The simplest
example of PnCP map is the operation of transposition T (with respect to a given
basis). The action of transposition on one of the subsystems is called partial
transposition (PT). Because of the structure of the set of positive maps [10, 11],
in the 2× 2 and 2× 3 dimensional cases PT can “detect” all the entangled states:
states that remain positive under PT (PPT states) are separable; states that
develop negative eigenvalues under PT (NPT states) are entangled. Unfortunately
in higher dimensions PT is not a “complete” test any more and there are PPT
states which are entangled [12].

The PnCP approach to the problem of entanglement characterization can also
give information about the distillability of the state (see [13] for a review). A state
is said to be distillable if, having at disposal a large number of copies of the state,
it is possible to obtain some maximally entangled states, under the constraint of
using only local operations and classical communication. It turns out that a PPT
entangled state (PPTES) can not be distilled, so that its entanglement can be
considered “bound” [14]; however it can still be useful for tasks that it would be
impossible to perform classically [15]. In order to identify this bound entanglement
it is necessary to use PnCP that are not decomposable, that is which can not be
written as Λ1

CP + Λ2
CP ◦ T , with Λi

CP, i = 1, 2, CP maps, T the transposition
operation and ◦ the symbol for composition.

It is therefore clear that the study of P maps is strictly related to the study
of entanglement, the link being provided by the Choi-Jamio lkowsky isomorphism
[6, 16]. Inspired by the study of properties of factorized semigroups [17, 18, 19], we
contribute to the phenomenology of positive maps [20, 21, 22] giving some general
methods to construct classes of PnCP maps acting on operators of a bipartite
d1 × d2 dimensional system [23].

We denote by Md(C) the set of d× d matrices with complex entries. Let Λi be
maps acting on Mdi

(C), i = 1, 2, in the following way

(2) Λi[X ] =

d2
i−1∑

µ=0

λ(i)
µ F (i)

µ X F (i)
µ ,

with

(3) F (i)
µ =

(
F (i)

µ

)†

for all µ = 0, . . . , d2
i − 1, i = 1, 2, and trF

(i)
µ F

(i)
ν = δµν , i = 1, 2. If all the coef-

ficients λ
(i)
µ ∈ R are positive apart from one, let us say λ

(2)
k = −|λ(2)

k |, and all the

positive coefficients are greater or equal to |λ(2)
k |, then the map Λ : Md1×d2

(C) →
Md1×d2

(C),

(4) Λ = Λ1 ⊗ idd2
+ idd1

⊗ Λ2

is positive.
In particular, we consider the case in which d1 = 2m, d2 = 2n, so that Λ acts

on the state space of N = m + n qubits, i.e. N two-level systems. We test the
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decomposability of Λ by finding at the same time examples of PPT (and therefore
bound) entangled states of N +N qubits.

For the sake of concreteness, we give here some results in the case of the lowest
dimension, m = n = 1, N = 2. Given σ0, the identity in M2(C), and the Pauli

matrices σa, a = 1, 2, 3, we define σ̂α = σα/
√

2, α = 0, 1, 2, 3. Then we consider a
map ΛB as in (4) with

(5) Λ1[X ] =
3∑

α=0

σ̂αXσ̂α, Λ2[X ] =
3∑

α=0

εασ̂αXσ̂α, εα = (−1)δα2,

that, according to the result just stated, is positive; it is moreover non-CP. Let us
define the maximally entangled state of 2+2 qubits

(6) |ψ+〉AB =
1

2

2∑

a,b=1

|a⊗ b〉A ⊗ |a⊗ b〉B

and the orthogonal maximally entangled states

(7) |ψαβ〉 =
(14 ⊗ (σα ⊗ σβ)

)
|ψ+〉, α, β = 0, 1, 2, 3.

We consider mixed states

(8) ρI =
1

#I

∑

(α,β)∈I

|ψαβ〉〈ψαβ |,

with I a subset of {(α, β)|α, β = 0, 1, 2, 3}. The properties of a state ρI depend
only on I. The condition of positive partial transposition is easily checked for such
states. In particular one finds that the state corresponding to the choice

(9) I = Ĩ = {(α, β)|α, β = 1, 2, 3} ∪ {(0, 2)}
is PPT. Moreover, (idA ⊗ ΛB)[ρĨ ] � 0 so that one can conclude that ρĨ is a PPT
bound entangled state and ΛB is non-decomposable. Such a result is quite easily
generalized to construct PPT bound entangled states of N +N qubits [23].

There are some open questions: can the family of positive maps (4) be gener-
alized someway, for example relaxing condition (3)? What are the properties of
states like ρĨ? In particular, may their entanglement be detected by other criteria?
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Two and multi-particle entanglement manipulation under
positive-partial-transpose preserving operations

Martin B. Plenio

Constraints and resources are intimately related in physics. If we impose a con-
straint on a physical setting then certain tasks become impossible. A resource
must be made available to overcome the restrictions imposed by the constraints.
By definition such a resource cannot be created employing only the constrained set
of operations but it may be manipulated and transformed under these operations.
That the amount of resource does not increase under any operation satisfying the
constraint emerges then as a fundamental law, for example in entanglement theory.

One example of particular importance is the restriction to local quantum oper-
ations and classical communication (LOCC). The resource that is implied by this
constraint are non-separable states and in particular pure entangled states such as
singlet states, neither of which can be created by LOCC alone. This setting gives
rise to a theory of entanglement as a resource under LOCC operations.
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Any such theory of entanglement as a resource will generally aim to provide
mathematical structures to allow answers to three questions, namely (1) the char-
acterization of entanglement, (2) the manipulation of entanglement and (3) the
quantification of the entanglement resource [1, 2, 3] under the given constraint. Of
particular interest is the question of how many inequivalent types of entanglement
exist within such a theory. In the limit of infinitely many identically prepared
copies of bipartite pure states, entanglement can be inter-converted reversibly [4]
and it is reasonable to say that there is only one type of pure bipartite entangle-
ment. Even for pure states, the situation changes dramatically when we consider
the single copy setting. It has been shown that the Schmidt rank of bipartite pure
states cannot be increased by LOCC [5, 6, 7, 8, 9]. At the single copy level, the
convertibility of bi-partite entanglement is then characterized by the Schmidt-rank
[10]. For finite dimensional systems a state can be converted to another one with
finite probability exactly if the Schmidt-number of the target state is not larger
than that of the initial state. In a tripartite setting the situation is more compli-
cated. Here it is well-known for example that a GHZ state cannot be transformed
to a W state and vice versa [10]. These states are then said to be incomparable.
It can be shown that there are two incomparable types of tripartite entanglement
in three qubits systems. The situation is even more complicated in multipartite
settings composed by many parties [11] or infinite dimensional bipartite systems
[12], where there are many (possibly infinitely many) incomparable types of en-
tanglement.

A different setting is presented by the concept of partial time reversal or par-
tial transposition [13]. For two qubits, states that remain positive under partial
transposition (denoted as PPT-states) are exactly the separable states [14] but
for higher dimensions this is generally not the case as there are PPT-states that
are inseparable [15]. This motivates the definition of the set of positive-partial-
transpose-preserving operations (PPT-operations), defined as operations that map
any PPT-state into another PPT-state [16]. In this case, the resource are states
that are not PPT (denoted as NPT-states).

The emerging theory of entanglement under ppt-operations still possesses the
property that in an asymptotic setting pure state transformations are reversible
and that consequently there is only one type of pure state entanglement. In the
mixed state setting examples for reversible state transformations have been discov-
ered [17] and supported by further numerical evidence it has been conjectured
that in this setting all entanglement reduces to only one type, in stark contrast
to the LOCC setting where reversible mixed entanglement transformations are
known only in trivial cases [18, 19]. The additional power afforded by ppt oper-
ations as compared to LOCC operations becomes transparent both in the mixed
state and the multi-party setting. In the non-asymptotic setting for pure state
it has been shown that both under ppt operations [17] and under LOCC oper-
ations supported by ppt-bound entanglement [20] state transformations become
possible that are impossible under LOCC. Indeed, it has been shown that on the
single copy level we can use trace preserving completely positive ppt-operations
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to transform for example a GHZ state |GHZ〉 = (|000〉 + |111〉)/
√

2 into a W-

state |W 〉 = (|001〉 + |010〉 + |100〉)/
√

3 with a maximal success probability of

x1
4 (−2 + (18 − 6

√
3)1/3 + (18 + 6

√
3)1/3), ie approximately 75% [21]. This is in

marked contrast to the situation under LOCC where this transformation has a
zero success probability [10]. The surprisingly large success probability and the
proven existence of some asymptotically reversible state transformations under
ppt-operations in the bi-partite setting suggests that a theory of entanglement
under ppt-operations might have a simpler structure than that under the LOCC
constraint. Motivated by this the MREGS problem under the more general set-
ting of ppt-preserving operations has been considered in [22]. Unfortuantely, it
was found that in this asymptotic setting GHZ and W states remain asymptoti-
cally inequivalent even under ppt-operations. In fact, the the structure of MREGS
appears to be as complicated as that under LOCC.

More work is required to achieve a full understanding of the structure of quan-
tum entanglement under various possible constraints and the possible relations of
such theories to the structures underlying other resource theories such as entan-
glement.
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Complementarity, Entanglement and Schrödinger cat states: Rabi
oscillation in a new light.

Jean-Michel Raimond

Manipulating single quantum systems in a carefully controlled environment, we can
now perform some of the gedankenexperiments used by the founders of quantum
mechanics to assess their interpretation of the formalism. On the one hand, these
experiments shed light onto intimate quantum features, such as entanglement and
decoherence. On the other hand, they are prototypes of quantum information
processing networks.

In this context, Cavity Quantum Electrodynamics (CQED), using circular Ry-
dberg atoms and superconducting cavities, is a particularly fertile ground [1]. The
strong atom-field coupling and the weak relaxation of both systems makes it possi-
ble to reach the ‘strong coupling regime’, in which the coherent atom-field coupling
dominates dissipative processes. The simplest situation is then the ‘vacuum Rabi
oscillation’, periodic energy exchange between an initially excited atom and the
empty cavity. The photon emitted by the atom is trapped in the cavity and
absorbed again. This ‘oscillatory spontaneous emission’ produces long-lived atom-
field entangled states and provides elementary stitches to knit complex quantum
logics manipulations [2]. This abstract is devoted to CQED experiments illus-
trating directly complementarity, entanglement, decoherence and the deep links
between them.

The first experiment [3] is an implementation of the ‘moving slit’ Young’s in-
terferometer discussed by Bohr in the early days of quantum mechanics. In this
device, the interfering particle kicks the moving slit when crossing it. The final
slit’s motion reveals the path followed by the particle in the interferometer. For
a macroscopic slit, as found in usual interferometers, this kick is very small. The
slit does not record any which-path information and fringes are observed. A mi-
croscopic slit, on the other hand, is set in motion by the particle. It gets entangled
with it, and fringes are blurred by this entanglement. In intermediate, mesoscopic
situations, the which-path information is partial and the fringes have a reduced
contrast.
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We have implemented a variant of this experiment, using a Ramsey atomic
interferometer. Two π/2 pulses induced by a resonant field drive the atom from
the upper state to the lower one. A transition may occur in one pulse or in the
other, and interferences result from the superposition of the associated amplitudes.
The atom, while making the transition, leaves a photon in one of the pulses. For the
large fields used in standard Ramsey interferometers (atomic clocks for instance),
the Ramsey fields involve very many photons. The single photon added by the
atom does not provide an unambiguous which-path information and interferences
are observed.

When one of the Ramsey fields is a mesoscopic coherent state stored in the
cavity, it is noticeably modified by the addition of a single photon. In the limiting
case in which the cavity is initially empty, the Ramsey pulse is produced by the
vacuum Rabi oscillation. The final sates corresponding to the interfering paths
(zero or one photon Fock state) are then orthogonal. The atom and the cavity
field are maximally entangled and no fringes show up. We have observed the
progressive washing out of the interferences when the photon number is reduced,
which plays the role of the slit’s mass in Bohr’s ‘experiment’.

Which-path information can also be gathered by an external detector that ob-
serves the interfering particle on its trajectory through the interferometer. We
have realized an experiment of this kind [4], using a mesoscopic cavity field as a
detector. The atom undergoes a Ramsey interference process between two classi-
cal fields sandwiching the cavity. It interacts dispersively with the cavity field. It
thus cannot exchange energy with the mode, but behaves as a piece of transparent
dielectrics that transiently shifts the cavity mode frequency. The shifts corre-
sponding to the two atomic levels have opposite signs. The final classical phase
of the field thus ‘measures’ the atomic state. We have observed, accordingly, a
cancelation of the fringes contrast when the phase kick produced by the atom is
larger than the initial quantum uncertainty on the field phase.

The final cavity state after atomic detection is particularly interesting. It is
a quantum superposition of two coherent fields with noticeably different classical
phases, a close analogue of the famous ‘Schrödinger cat’s’ state. Using a second
atom as a probe, we have measured the progressive decoherence of this state
towards a mere statistical mixture [4]. The decoherence time scale is much shorter
than the cavity energy damping time, and gets shorter and shorter when the
distance in phase space between the two field components increases. This is an
essential feature of decoherence, which explains why macroscopic quantum state
superpositions are never observed.

This first exploration of the quantum/classical boundary opens interesting per-
spectives for fundamental decoherence studies, having an obvious interest for un-
derstanding the limitations of quantum information processing. It is essential,
thus, to generate larger and larger cats. We have recently prepared large cat
states via the resonant interaction between a mesoscopic cavity field and a single
atom. This seemingly trivial situation leads to an interesting atom-field entangle-
ment. The Rabi oscillation results from a quantum interference process between
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two atomic states, in phase or π-out-of-phase with two coherent field components.
These two fields rotate slowly in phase space in opposite directions. At most
times, they are distinguishable. They then carry a which-path information about
the atomic interference signal. The Rabi oscillations show up only when these
two field components overlap. This complementarity argument explains, in simple
terms, the quantum collapse and revival of the Rabi oscillations.

Using a field phase distribution measurement technique, we have observed the
gradual splitting of the initial coherent field into two components [5]. Using an
echo technique, reminiscent of the spin echoes of RMN, we have also assessed the
coherence of the whole process. The evolution is time-reversed at some point and
the two components merge back, erasing the which-path information and restoring
the Rabi oscillation [6].

These experiments shed light onto fundamental quantum processes. They il-
lustrate the deep links between complementarity, entanglement and decoherence.
They also open the way to more sophisticated decoherence studies. The ability to
measure directly the Wigner function of the cavity field [7] is particularly promis-
ing for monitoring, in ‘real time’, the detailed features of a Schrödinger cat state
decoherence. Moreover, a two-cavity set-up, under construction, should allow us
soon to realize non-local cat states, shared by two radiation modes. Studying the
decoherence of their non-local properties is a very exciting perspective.
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[4] M. Brune, E. Hagley, J. Dreyer, X. Mâıtre, A. Maali, C. Wunderlich, J.M. Raimond and S.
Haroche, Observing the progressive decoherence of the meter in a quantum measurement,
Phys. Rev. Lett. 77 (1996), 4887.

[5] A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues, M. Brune, J.M. Raimond and S.
Haroche, Entanglement of a mesoscopic field with an atom induced by photon graininess in
a cavity, Phys. Rev. Lett. 91 (2003), 230405.

[6] T. Meunier, S. Gleyzes, P. Maioli, A. Auffeves, G. Nogues, M. Brune, J.M. Raimond and S.
Haroche, Rabi oscillations revival induced by time reversal : a test of mesoscopic quantum
coherence, Phys. Rev. Lett. 94 (2005), 010401.

[7] P. Bertet, A. Auffeves, P. Maioli, S. Osnaghi, T. Meunier, M. Brune, J.M. Raimond and
S. Haroche, Direct Measurement of the Wigner function of a one-photon Fock state in a
Cavity, Phys. Rev. Lett. 89 (2002), 200402.



Entanglement and Decoherence: Mathematics and Physics . . . 241

Mathematical Model for Decoherence Induced by Scattering

Alessandro Teta

(joint work with R. Adami, R. Figari, D. Finco)

We consider a quantum system in R3 composed by one heavy plus N light particles
described by the hamiltonian

(1) Ĥ = − ~2

2M
∆R + U(R) +

N∑

j=1

(
− ~2

2m
∆rj

+α0V (rj −R)

)

Notice that each light particle is assumed to interact only with the heavy particle
through the potential α0V , while the heavy particle is also subject to the one-
particle potential U .
To simplify the notation we fix ~ = M = 1, m = ǫ and then we rescale the coupling
constant α0 → α = ǫα0. The hamiltonian now reads

(2) Ĥ(ǫ) = −1

2
∆R + U(R) +

1

ǫ

N∑

j=1

(
−1

2
∆rj

+ αV (rj −R)

)

Moreover we consider an initial state in the product form

(3) Ψ0(R, r) = φ(R)

N∏

j=1

χj(rj) R ∈ R3, r ∈ R3N

where φ and χj are the initial states of the heavy particle and and the j-th light
particle respectively.
Our main result concerns the asymptotic behaviour for ǫ → 0 (and α kept fixed)
of the solution Ψǫ(t) of the Schrödinger equation associated to (2),(3), i.e.

(4) Ψǫ(t) = e−itĤ(ǫ)Ψ0

It is clear that the problem has two distinct time scales, one slow for the heavy
particle and the other one fast for the light ones. In a rather crude zero-th order
appoximation (see [5], [4]) one can describe the interaction through the instanta-
neous transition

(5) φ(R)

N∏

j=1

χj(rj) → φ(R)

N∏

j=1

(Ω−1
+ (R)χj)(rj)

where Ω+(R) is the wave operator for each light particle with the heavy one in the
fixed position R. In formula (5) the evolution in time of the system is neglected
in the sense that time zero for the heavy particle corresponds to infinite time for
the light ones.
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In order to restore the time evolution and to “see” the motion of the particles a
first order approximation is required. The result is summarized in the following
theorem.

Theorem 1. Assume
1) V , U “smooth” and decaying “sufficiently fast” at infinity
2) 0 is not eigenvenvalue nor resonance for − 1

2∆ + αV
3) φ,χj “smooth”.
Then for 0 < t < T <∞

(6) ‖Ψǫ(t) − Ψa(t)‖ ≤ C
√
ǫ

Ψa(R, r; t) =

∫
dZe−itX(R,Z)φ(Z)

N∏

j=1

(
e−i t

ǫ
h0,j Ω−1

+ (Z)χj

)
(rj)(7)

where

X = −1

2
∆R + U(R)

h0,j = −1

2
∆rj

,Ω+(Z)=s− lim
τ→∞

eiτ [− 1
2
∆+αV (·−Z)]e−iτ [− 1

2
∆]

Z ∈ R3.

Moreover the dependence of the constant C on T,N, α,Ψ0, V, U is explicitely given.

For the proof see [2] (see also [3], [1] for the analysis of the two-particle case).
The result given in theorem 1 can be used for a derivation of the decoherence effect
on the heavy particle due to the scattering of the light ones, starting from first
principles, i.e. from the Schrödinger equation for the entire N + 1-particle system.
In fact, we can define the reduced density matrix for the heavy particle

(8) ρ̂ǫ
t(R,R

′) ≡
∫
drΨǫ(R′, r, t)Ψǫ(R, r, t)

and from theorem 1 we easily get

(9) lim
ǫ→0

Tr|ρ̂ǫ
t − ρ̂a

t | = 0

where
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ρ̂a
t (R,R′) ≡

∫
drΨa(R′, r, t)Ψa(R, r, t)

=

∫
dZdZ ′e−itX(R− Z)eitX(R′ − Z ′)φ(Z)φ(Z ′)

N∏

j=1

(
Ω−1

+ (Z ′)χj ,Ω
−1
+ (Z)χj

)
(10)

Using the asymptotic reduced density matrix ρ̂a
t it is now possible to see that the

interference terms of a superposition state are reduced as a consequence of the
scattering of the light particles.
In fact, let us choose φ(R) = 1√

2
(f+(R) + f−(R)) where

f+(R) =
1

σ3/2
f

(
R+R0

σ

)
eiP0·R,

f−(R) =
1

σ3/2
f

(
R−R0

σ

)
e−iP0·R and

f ∈ C∞
0 (R3), R0, P0 ∈ R3.

Moreover let us assume 2|R0| ≫ σ and ασ ≪ 1. Then it is easily seen that

ρ̂a
t (R,R′) =

1

2

(
e−itXf+

)
(R)

(
eitXf+

)
(R′)

+
1

2

(
e−itXf−) (R)

(
eitXf−

)
(R′)

+
Λ

2

(
e−itXf+

)
(R)

(
eitXf−

)
(R′)

+
Λ

2

(
e−itXf−) (R)

(
eitXf+

)
(R′) + E(11)

where Λ =
∏N

j=1

(
Ω−1

+ (−R0)χj ,Ω
−1
+ (R0)χj

)
and E is a computable small error.

Formula (11) shows that the diagonal terms remain unchanged while the non-
diagonal terms are reduced by the factor Λ.
Taking into account that for N large |Λ| ≪ 1 one concludes that the non-diagonal
terms in ρ̂a

t are negligible.
This means that the interaction with the light particles produces a decoerence
effect on the heavy one and the corresponding reduced density matrix is close to
a (classical) statistical mixture of the two pure states f+ and f−.
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Mathematical characterization and physical examples of
translation-covariant Markovian master equations

Bassano Vacchini

The notion of covariance under a given symmetry group has proved to be very
powerful in characterizing different mathematical structures relevant for quantum
mechanics and especially for quantum information and computation, such as posi-
tive operator-valued measures and channels. In the same spirit, more recent work
has been devoted to exploit the notion of covariance in order to point out inter-
esting structures of generators of quantum-dynamical semigroups, which describe
the Markovian dynamics of an open system.

In particular Holevo has given a full characterization of possible generators
of quantum-dynamical semigroups for the case of covariance under translations,
relying on a non-commutative generalization of the Lévy-Khintchine formula [1].
These results provide a natural setting to look in a unified way at different master-
equations used for the description of decoherence of the center of mass degrees of
freedom. Since one generally has to deal also with unbounded operators, the gen-
eral strategy has been to characterize the so-called form-generators, which essen-
tially amounts to provide a formal operator expression and an invariant domain.
The generator may be expressed in the Heisenberg picture as

L[X̂] = i[H(p̂), X̂] + LG[X̂] + LP [X̂ ]

putting into evidence a Gaussian and a Poisson component

LG[X̂] = i

[
ŷ0 +

1

2i

3∑

k=1

(ŷkLk(p̂) − L†
k(p̂)ŷk), X̂

]

+

3∑

k=1

[
(ŷk + Lk(p̂))

†
X̂(ŷk + Lk(p̂)) − 1

2

{
(ŷk + Lk(p̂))

†
(ŷk + Lk(p̂)) , X̂

}]
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LP [X̂] =

∫ ∞∑

j=1

[
L†

j(q, p̂)Û †(q)X̂Û(q)Lj(q, p̂)− 1

2

{
L†

j(q, p̂)Lj(q, p̂), X̂
}]
dµ(q)

+

∫ ∞∑

j=1

[
ωj(q)L†

j(q, p̂)(Û †(q)X̂Û(q) − X̂)

+ (Û †(q)X̂Û(q) − X̂)Lj(q, p̂)ω∗
j (q)

]
dµ(q)

+

∫ ∞∑

j=1

[
Û †(q)X̂Û(q) − X̂ − i

[X̂,q · x̂]

1 + |q|2

]
|ωj(q)|2dµ(q)

with x̂ and p̂ position and momentum operators, ŷj =
∑3

i=1 ajix̂i, aji ∈ R

(j = 0, . . . , 3), Û(q) = eiq·x̂, and the other functions depending on the system
considered.

A general structure of master-equation for the description of both dissipation
and decoherence of the center of mass degrees of freedom of a quantum system
interacting through collisions with a homogeneous fluid has been obtained in [2]
providing a physical realization of the Poisson component according to

L[ρ̂] = −i [H0(p̂), ρ̂]

+
2π

~
(2π~)3n

∫
d3q |t̃(q)|2

[
Û(q)

√
S(q, p̂)ρ̂

√
S(q, p̂)Û †(q) − 1

2
{S(q, p̂), ρ̂}

]

corresponding to the Schödinger picture, with S(q,p) a two-point correlation func-
tion known as dynamic structure factor, here appearing operator-valued, n the
particle density in the fluid, t̃(q) the Fourier transform of the interaction poten-
tial. Neglecting the dependence on the momentum operator, which is responsible
for the dissipative effects, one recovers the typical structure of master-equation
recently used in the quantitative experimental assessment of collisional decoher-
ence [3]. Considering furthermore the limit of small momentum and energy transfer
one obtains a quantum description of Brownian motion [4]

L[ρ̂] = −i [H0(p̂), ρ̂]

− η

3∑

i=1

{
i

2~
[x̂i, {p̂i, ρ̂}] +

∆p2
th

~2
[x̂i, [x̂i, ρ̂]] +

∆x2
th

4~2
[p̂i, [p̂i, ρ̂]]

}

with η a microscopically determined friction coefficient, ∆p2
th

= M/β and ∆x2
th

=
β~2/4M , used in the recoilless approximation in order to estimate decoherence
effects and giving a physical realization of the Gaussian component.

It thus appears that all these different master-equations used in the physical
literature share the common feature of translation covariance, which strongly char-
acterizes their structure.
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Quantum Information as Private Information

Reinhard F. Werner

1. No measurement without disturbance

Quantum information theory deals with the kind of information carried by sys-
tems described by quantum theory. Among the characteristic differences between
these systems and classical ones is their great sensitivity to perturbations, demon-
strated, for example in Heisenberg’s Uncertainty Relations.

Another sharp formulation of this fundamental fact is the Theorem summa-
rized as “No measurement without disturbance”. It refers to a general kind of
measurement, by which some classical data are obtained from a quantum system,
leaving the system in a typically changed state for further experimentation. The
Theorem considers measurements introducing no disturbance, in the sense that
all statistical experiments with the output particles (without selecting according
to the measurement outcomes) give exactly the same expectations as the corre-
sponding experiment on the input particles. The conclusion is that in this case
the measured outcomes are independent of the input, i.e., the whole measurement
can effectively be replaced by a classical random generator producing “outcomes”
completely unrelated to the quantum system. In other words, such a device does
not measure anything.

This guarantees privacy of transmitted information in a very strong way: if
sender and receiver operating the channel T can verify that their channel is ideal,
then they can be sure that nothing whatsoever can be learned from observing
the environment of the channel: no tapping of wires, and no “receive, read and
resend” (or “man in the middle”) attack has a chance. Of course, verifying that
the channel is ideal is itself a statistical problem, so there is a subtle tradeoff
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between monitoring the channel and sending messages, and hence between the
level of security and the usable transmission rate. This tradeoff is the subject of
quantum cryptography.

For a formal statement of the principle, recall that the statistical properties
of quantum systems are characterized by spaces of operators on a Hilbert space
H: The possible preparations are given by “density operators”, i.e., by positive
operators ρ with trace 1, whereas the yes/no measurements are given by operators
F with 0 ≤ F ≤ 1. The probability for finding F on systems prepared according
to ρ is then tr(ρF ). We will denote the space of bounded operators by B(H), and
consider finite dimensional Hilbert space only, for which all operators are bounded
anyhow.

The possible operations on quantum systems are given by normalized com-
pletely positive maps. When Hin is the Hilbert space for the input systems, and
the outputs are described in the space Hout, we need a map T : B(Hout) → B(Hin).
The interpretation is that, for a measurement F ∈ B(Hout), the image T (F ) ∈
B(Hin) describes the measurement on the input systems consisting of first doing
the operation and then measuring F . The property of complete positivity [1] is,
by definition, that F ≥ 0 implies T (F ) ≥ 0, even if the operation is applied to
only a part of the system, i.e., if the operation is applied with an innocent, but
possibly correlated bystander. Normalization means that T (1) = 1. The possible
measurement outcomes compatible with the overall state change T correspond to
a decomposition of T into likewise completely positive terms Tx, i.e., T =

∑
x Tx.

Then tr(ρTx(F )) is the probability, in an experiment on systems prepared accord-
ing to ρ, first the measurement result x and then a positive answer on the yes/no
measurement described by F .

Now the structure of such measurements is completely described by the Stine-
spring dilation theorem, which asserts that T can be represented as T (F ) =
V ∗(F ⊗ 1)V , where V : Hin → Hout ⊗ K is an isometry, and K is some auxiliary
Hilbert space. These objects are uniquely determined up to unitary equivalence,
provided the set {(A⊗ 1)V φ|φ ∈ Hin, A ∈ B(Hout)} generates the whole Hilbert
space Hout⊗K, which we will assume. Moreover, any decomposition of T =

∑
x Tx

into completely positive summands is of the form

(1) Tx(F ) = V ∗(F ⊗Gx)V,

where the operators Gx ∈ B(K) satisfy Gx ≥ 0 and
∑

xGx = 1.
The interpretation is that K represents the environment, and that T (or, equiv-

alently, V ) transforms the input states ρ into a state V ρV ∗ on Hout ⊗K, which is
correlated between the output and the environment. Due to the essential unique-
ness of the Stinespring dilation (K, V ), we can associate with each quantum chan-
nel T a companion channel T ♯, in which the roles of environment and output are
interchanged.

The principle in the section title can now be obtained very simply: If T is the
identity, its Stinespring decomposition is with a 1-dimensional environment K,
and V = 1. Hence only trivial measurements Gx = px1 on the environment are
possible.
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2. No disturbance without measurement

The principle of the previous section has a converse: If we can be sure in
that particular, strong way that no information can be obtained from observing
the channel and its environment, we can conclude that the channel must be, in
some sense, an ideal quantum channel. More precisely, all the input quantum
information must be retrievable from the output. Or put in a way explaining the
title of this section: any disturbance, which cannot be corrected, is accompanied
by some information flow to the environment, so that a suitable measurement on
the environment gives non-trivial information about the input state.

In formal terms this means that if the companion channel T ♯ of a channel is
a depolarizing channel, i.e., T ♯(F ) = tr(σF )1, for some density operator σ, or,
equivalently if the output state of the companion channel is σ, irrespective of
the input state, then the channel has a right inverse, i.e., there is a decoding
channel D : B(Hin) → B(Hout) such that TD is the identity on B(Hin). This is
readily shown by computing the Stinespring dilation of the depolarizing channel
and connecting it with the isometry V , which also gives a decomposition of T ♯,
although the minimality condition (“H⊗K spanned by (1⊗X)V φ”) need not be
satisfied. This gives an isometry connecting the two decompositions, from which
the inverse channel D is readily constructed.

In another guise, this is a fundamental result on quantum error correcting codes:
the Knill-Laflamme condition for the existence of a decoding operation for a given
quantum code is precisely of this form.

Summarizing our conclusions so far, we can say that transmitting quantum
information perfectly is equivalent to establishing a communication link which is
absolutely (physically) safe against eavesdropping.

3. Doing it approximately

Such a conclusion is worth very little, however, if it only pertains to perfect
channels: Nothing in the world is ideal. So in order to really support the conclusion
we must show that it is stable under small modifications of the channels involved:
having a nearly ideal channel should be equivalent to a channel which is nearly
safe against intrusion, with explicit bounds making sense of the two occurrences
of “nearly” in this sentence.

Since we are dealing with finite dimensional systems such bounds can be given,
by just making estimates for every step of the Stinespring construction. However,
bounds obtained in this way usually depend very strongly not only on the size of
errors, but also on the dimensions dimHin and dimHout. This may be tolerable for
some applications with a fixed single channel. But it is desastrous for applications
in the theory of channel capacity, where one considers asymptotically many parallel
uses of the channel, and hence an exponentially exploding sequence of dimensions.

The main (apparently new) result of this talk is just such a dimension inde-
pendent estimate securing the continuity of the Stinespring dilation. This is much
more than the cases needed (i.e., the neighbourhoods of the ideal and depolarizing
channels). Surprisingly, it turns out that the bounds are of exactly the same form
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as bounds known for the case of states, i.e., the special case with 1-dimensional in
put Hilbert space Hin. Therefore, we will also use terminology familiar from that
case.

Consider two channels T1, T2 with the same input and output Hilbert spaces.
Since these Ti : B(Hout) → B(Hin) are operators between normed spaces, there
is a natural norm, ||T1 − T2|| = supX ||T1(X) − T2(X)||/||X || to quantify the dif-
ference. From the statistical interpretation this is directly linked to the largest
difference of probabilities, between two experiments of the form “preparation-
channel-detection”, differing only by substituting T2 for T1. However, for many
applications it is better to allow more general experiments, namely also experi-
ments in which the two channels are only applied to a subsystem. This leads to
the so called norm of complete boundedness, or “cb-norm” for short. It is defined
as

‖T1 − T2‖ cb = sup
n

||idn ⊗ (T1 − T2)||,

where idn denotes the identity channel on an n-dimensional Hilbert space, and
the norm on the right hand side is the ordinary Banach space norm discussed
previously.

On the other hand, we would like to have a description of how close the two
Stinespring isometries V1, V2 for these channels are. Since the dilating isometries
are only unique up to unitary equivalence in the first place, and the dilation
spaces K1,K2 are a priori unrelated, we cannot directly look at the norm difference
between V1 and V2. What we rather want to know is how close together these
operators can be chosen. Therefore we just define the Bures Distance [2] of the
channels T1, T2 as

(2) β(T1, T2) := inf ||V1 − V2||,
where the infimum is over all Hilbert spaces K and all operators Vi : Hin → Hout⊗
K such that Ti(F ) = V ∗

i (A⊗ 1K)Vi. This is a generalization of the corresponding
definition for states, where the dilating isometries become “purifying vectors”. The
cb-norm difference in that case is equal to the trace norm difference of the density
operators. Then the following is a direct generalization of the known bounds for
states:

Theorem 1. For any two channels T1, T2 with the same finite dimensional input
and output spaces,

(3) β(T1, T2)2 ≤ ‖T1 − T2‖ cb ≤ 2β(T1, T2).

The proof (written out for the first time at the Oberwolfach workshop) uses
the result for states, but in addition an application of von Neumann’s Minmax
Theorem. Some parts were also inspired by bounds for fidelity-like quantities
defined by D’Ariano et al. [3].

The non-trivial part of this result is the lower bound. It says, quite generally,
that if two channels are close in cb-norm, their dilating isometries can be chosen
to be close in norm. Consequently, the companion channels (which share) the
dilating isometries are also close to each other in cb-norm. Hence if a channel T
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is nearly ideal in cb-norm, its companion T ♯ must be close to the companion of
the ideal channel, which is depolarizing. So small disturbance means almost no
information leakage to the environment.
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