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Introduction by the Organisers

Mixed finite element methods (MFEM) form a general mathematical framework
for the spatial discretisation of partial differential equations, mainly applied to
elliptic equations of second order. They become increasingly important for the
solution of nonlinear problems. In contrast to standard finite element schemes the
mixed finite element discretisation of problems in divergence form, i.e. f+divσ = 0
where σ = A(∇u), σ ∈ L and u ∈ H , allows more flexibility in the design of the
discrete approximation spaces contained in L and H , i.e. in the spaces for the
direct variables and the Lagrange multipliers.

The workshop focuses on new developments in the field of mixed and non-
standard finite element methods. The main points are

• The analysis of mixed FE formulations and of non-conforming methods,
including, for instance, enhanced strain and discontinuous Galerkin meth-
ods, cf. (F. Armero), (D. Braess), (R. Durán), (K. Garikipati), (P. Monk),
(F. Radu), (D. Reddy), (S. Reese), (R. Sacco), (J. Schöberl), (W. Wagner),
(R. Winther), (B. Wohlmuth).
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• The effective and reliable error estimation of finite element methods as
the basis for adaptive techniques and error control, cf. (M. Ainsworth),
(P. Houston) and (R. Rannacher).

• Numerical techniques to handle strong and weak discontinuities predicted
by the underlying boundary value problem, cf. (P. Steinmann). Cracks
and material failure need to be simulated in accordance with the physical
experiment, cf. (P. Hansbo), (U. Hoppe), (K. Weinberg).

• For a range of phenomena in structural mechanics the microscale of the
material needs to be taken into account to obtain accurate numerical so-
lutions, cf. (T. Arbogast).

The workshop aimed at bridging the gap between the computational engineering
community and applied mathematicians and in consequence to unify the scientific
language and foster later collaboration. Nonlinear mixed schemes were of par-
ticular concern for problems in elasticity and plasticity, but electromagnetics and
mathematically related topics were also included.

Mixed finite element methods for elliptic problems are based on a variational
description in saddle-point form. Side conditions such as divergence free velocity
fields in incompressible fluid dynamics are usually treated in this framework. The
appearance of ‘soft’ side conditions is typical for structural mechanics as is the
case with nearly incompressible materials or plates and shells with small thickness
parameters. We also mention materials which almost satisfy the Kirchhoff condi-
tion, i.e. problems with a high but finite shear stiffness. In such cases, which are
by no means ‘soft’ from the mathematical point of view, mixed methods lead to a
more robust discretisation.

The arising stability conditions and computational techniques cannot be under-
stood fully by intuitive mechanical principles; however, from the mathematician’s
point of view their reasoning is natural, clear and insightful.

Mixed and non-standard finite element methods gain increasing prominence in
the prevention of locking phenomena. We highlight a topic which is currently ac-
tively investigated: the development of stable and efficient plate and shell elements
with regard to shear locking, which is more intricate than volume locking. Here it
is important to understand how techniques based on heuristic ideas are consistent
with more modern mathematical methods.

Availability of fast solvers is decisive for the competitiveness of numerical tech-
niques. For a variety of applications, multigrid methods are crucial for the effi-
ciency of the implementation.

Methods have been proposed which do not appear plausible if one wants to
deduce the algorithms directly from the physical model. The advanced methods
depend on rigorous error estimators in order to guarantee that the numerical
solutions represent the exact solutions of the physical model.

D. Braess
C. Carstensen
K. Hackl
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Abstracts

A Posteriori Error Estimation for Non-Conforming and Discontinuous
Galerkin Finite Element Approximation

Mark Ainsworth

A posteriori error estimation for non-conforming and discontinuous finite element
schemes are discussed within a single framework. We show that the same common
underlying principles are at work in each case. The ideas are presented in the
context of piecewise affine finite element approximation of a second-order elliptic
problem for the Crouzeix-Raviart element and symmetric interior penalty discon-
tinuous Galerkin finite element scheme. In both cases, we derive computable upper
bounds on the error measured in the broken energy norm along with local lower
bounds. Numerical examples are included.

Mixed variational multiscale methods and multiscale finite elements

Todd Arbogast

(joint work with Kirsten J. Boyd)

A longstanding open problem in applied mathematics is to accurately approxi-
mate a function that possesses scales smaller than the level of practical discretiza-
tion. In this work, we consider the approximation on a coarse grid of spacing H
of the solution (u, p) to a second order elliptic problem in mixed form:

u = −K∇p in Ω,

∇ · u = f in Ω,

u · ν = 0 on ∂Ω,

where Ω ⊂ Rd, d = 2 or 3, is a bounded domain, K is uniformly elliptic and
bounded, and ν is the outward unit normal vector. We assume that K and possibly
f exhibit microstructure (i.e., variability or heterogeneity) on a small scale ǫ < H ,
which induces similar ǫ-scale variation into the solution.

In 1983, Babuška and Osborn [7] gave a practical strategy for problems in one-
dimension by defining what they called the generalized finite element method,
which uses nonpolynomial basis functions. The idea was to solve the differential
system locally over the elements (on a mesh that adequately resolves the scale
ǫ), and to piece these local solutions together to form the finite element basis
functions.

In 1997, Hou and Wu [12, 13] took up this idea and defined multiscale finite
elements with at least two advances. First, they suggested the use of oversampling,
i.e., solving the local problems over a larger domain to capture more of the local
microstructure. In multiple dimensions, this results in a nonconforming method,
because the basis functions do not piece together continuously. A second advance
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was to give a multiscale error analysis of the method, illuminating the dependence
of the error on both H and ǫ. Later, in 2002, Chen and Hou [11] extended the
ideas to mixed finite elements.

Beginning in 1995, Hughes [14, 15] and, independently, Brezzi [8] developed an
alternate variational approach, which is called the variational multiscale method.
The Hilbert space of trial solutions and test functions is divided into two pieces
through a direct sum decomposition. The two pieces in some sense represent coarse
and fine scales. This decomposition splits both the solution and the variational
problem (i.e., the test functions) into coarse and fine scales. If one omits the
fine-scale equation and the fine-scale component of the solution, traditional finite
element analysis results. However, approximation of the fine-scale components can
lead to a better overall approximation, such as greater numerical stability.

Beginning in 1998, Arbogast et al. [6, 1, 2, 3] developed a mixed variant of
the variational multiscale method, with the goal of improving the quality of the
approximation itself. A coarse grid is used to decompose the solution space
H(Div) = V̄⊕V′ and L2/R = W̄ ⊕W ′ so as to fulfill two main objectives. First,
the decomposition preserves an important physical principle. It conserves mass on
both the coarse grid scale and on the fine, or subgrid, scales. Secondly, it achieves
an important localization property needed for efficient numerical approximation.
The subgrid scales from different coarse elements do not interact.

The two-scale variational form can be upscaled, meaning that the subgrid parts
of the solution can be removed from the equations. If we denote u = ū+u′ ∈ V̄⊕V′

and p = p̄ + p′ ∈ W̄ ⊕W ′, then the upscaling operator takes the coarse space V̄
to the fine space V′ ×W ′, so that ū is mapped to (u′, p′). This operator is not
a linear operator; it is affine. The linear part is anti-diffusive [4]. The constant
component of the upscaling operator takes into account the source function f (and
external boundary conditions). This is important, since in some problems, such as
flow in porous media, f represents wells, which is a small scale feature that must
be resolved in the variational framework.

By approximating (ū, p̄) in the upscaled equation by functions in a standard
mixed finite element space, one is lead to a coarse grid mixed finite element method.
The standard mixed basis functions are modified by the linear part of the upscaling
operator, as in the generalized finite element method. In fact, compared to the
usual mixed method on a coarse grid, we obtain a linear system of the same size
and sparsity but with a modified matrix and right-hand side vector (since the
upscaling operator is affine). Because of these affine terms, this method is not
simply a generalized finite element method. However, when the source function
has no fine scale component, we obtain exactly the method of Chen and Hou
provided that oversampling is not used and we restrict our elements to RT0 [4],
the lowest order Raviart-Thomas elements [16]. It is the variational multiscale
framework that properly picks up the fine-scale components of f .

Since the construction of the multiscale basis on a fine subgrid parallelizes nat-
urally, the method is very efficient [2]. Numerical examples show that the method
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can capture significant fine-scale detail even on very coarse grids. Moreover, it can
pick up small-scale effects from wells of diameter much less than H [1, 2, 5].

Multiscale and variational aspects of the method have recently been put on a
sound theoretical foundation. The pressure and velocity errors are well approxi-
mated. For example, using BDM1, the first order Brezzi-Douglas-Marini spaces
[10, 9], on the coarse scale H and RT0 on a fine grid of spacing h to approximate
the upscaling operator, the error in u is O(H2) and the error in p is O(h+H3) [3].
The multiscale analysis of Chen an Hou extends to the full variational multiscale
method. The main assumptions are that the microstructure of K varies periodi-
cally on a scale ǫ, and that the upscaling operator is exact (i.e., not approximated).

The error bound for both u and p is O(ǫ+Hm +
√
ǫ/H), where m = 1 if RT0 is

used and m = 2 is BDM1 is used [4].
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Enhanced Finite Elements for Discontinuous Solutions in Solids and
Structures at Failure

Francisco Armero

(joint work with David Ehrlich)

The failure of solids and structures requires the modeling and the numerical res-
olution of highly non-smooth solutions, involving in the limit solutions with dis-
continuous displacement fields. Typical examples are not only cracks in brittle
materials, but also the large-scale modeling of localized failures like shear bands
in metals and soils. The length scale associated to these band can be of the or-
der of microns when typical applications may involve solids and structures of the
order of meters or higher. In this context, the presence of bands with highly lo-
calized shear strains, for example, can be effectively modeled by surfaces with a
discontinuous tangential displacement or slip. Furthermore, local continuum mod-
els with strain softening are well-known to lead to serious difficulties due to the
lack of a length scale defining the thickness of the localization bands, resulting
in ill-posed mathematical problems with physically meaningless solutions since
they model the failure of the solid with no dissipation. The need to introduce
a localized dissipative mechanism (i.e. dissipating the energy per unit area not
volume) appears as a clear need for the correct modeling of these failures. The so-
called strong discontinuity approach provides a general framework for the analysis
of these discontinuities in the displacements, incorporating a cohesive law in the
solid’s deformation that allows this objective modeling of the failure of the solid.
A main challenge is the need to develop finite element methods approximating the
boundary value problem and resolving the discontinuities of the displacements on
general, a priori unknown, surfaces.

The approach followed in this work is based on the development of special en-
hancements of the finite elements that incorporate a discontinuous displacement
interpolation at the element level. The local character of the enhancement leads
to clear advantages, since it allows the static condensation of the enhanced fields
at that level leading to a global problem on the usual nodal displacements only.
The discontinuity surface is propagated through a general unstructured meshed,
completely unrelated to the discontinuity surface to be modeled. The propagation
criterion is based on some physical argument involving the assumed constitutive
model in the bulk (e.g. the so-called acoustic tensor condition corresponding math-
ematically to a change of type of the governing equations). The key aspect that
remains is the design of the enhanced strain fields associated to the discontinuous
displacement across a given discontinuity surface.
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The cases of beams, plates and shells define an especially challenging problem
due to the more involved kinematics in these problems when compared to the
continuum problem. For example, the strain measures associated to a classical
Reissner-Mindlin plate are

(1) κ = ∇sϑ and γ = ∇w − ϑ ,

for the bending and transverse shear strains, respectively, in terms of the deflection
w and rotation ϑ fields. The coupling between the two generalized displacement
fields w and ϑ in the definition of the strain measures (1) is to be noted. The theory
developed in this work considers then solutions with discontinuous deflections and
rotations along a general surface Γ in the domain Ω ⊂ R2 defining the plate mid-
plane. The classical notion of a hinge curve is then recovered.

At the numerical level, a typical finite element Ωe is divided by a discontinuity
segment Γe, assumed straight in the proposed formulation. The local interpolated
strains εh = {κ,γ} are then written in general form as

(2) εh = Bd + Gcξe in Ωe\Γe ,
for the strain operator B (possibly an assumed/mixed strain operator), the nodal
displacements d of the base finite element, and a set of local enhanced parameters
ξe defining a local interpolation of the displacement jumps [[w]](ξe) and [[ϑ]](ξe)
across Γe. As a typical example, we have considered a piece-wise constant inter-
polation of the rotation jumps [[ϑ]] together with a linked linear interpolation of
the deflection jump [[w]] of the form

(3)

[
[[w]]

[[ϑ]]

]
=

[
1 x − xΓe

0 1

]

︸ ︷︷ ︸
LΓ

[
ξwe

ξϑe

]
for x ∈ Γe ,

and the articulation point xΓe
∈ Γe. The key remaining issue is the definition of

the enhanced strain operator Gc defining the influence of the displacement jumps
in the strain measures in the bulk of the element Ωe\Γe.

The approach considered in this work defines the operator Gc by imposing
that the enhanced finite element must be able to model a fully opened hinge,
characterized by a zero strain/stress in the bulk of the element Ωe\Γe for any
displacement jumps ξe (i.e., the zero strains must be in the space of enhanced
strains). This strategy avoids the presence of the so-called “stress locking”. To
this purpose, we identify the nodal displacements associated with this mode as

(4) dhinge := drigid + Dhingeξe ,

where drigid refers to a general set of rigid displacements and

(5) D
(i)
hinge =





[
1 0

(x(i) − xΓe
) 1

]
for i ∈ J + ,

0 for i ∈ J− .
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for the nodal coordinates x(i) and the two set of nodes J± of the element on each
side of the discontinuity Γe. Imposing that the strains (2) vanish for the nodal
displacements (4) we arrive at the general formula

(6) Gc = −
∑

i∈J+

B(i)D
(i)
hinge ,

for any considered base finite element with B = [B(1)B(2) . . .B(nnode)] for the
nnode nodes of the base finite element. The continuity of the enhanced operator
(6) is to be noted. An analysis of (6) can be found in [4] and reference therein.

Considering a linear elastic response for the bulk of the plate characterized by
a linear tangent C, the final set of finite element equations reads

R := fext −
∫

Ω

BT
C [Bd + Gcξe] dΩ = 0 ,(7)

re := −
∫

Ωe

GT
e C [Bd + Gcξe] dΩ −

∫

Γe

LT
ΓT (ξe) dΓ = 0 ,(8)

with the standard global equation (7) corresponding to the equilibrium of the
plate and the local equation (8) in terms of “equilibrium” operators Ge. Equation
(8)2 imposes that the driving tractions T along the hinge, defined in terms of
the displacement jumps ξe by the localized cohesive law, are given in terms of
the stresses in the bulk. The operator Ge can be constructed as a piece-wise
polynomial such that this local equilibrium relation is enforced exactly for the
assumed interpolations of the stress field in the base finite element (see [4]).

The local character of equation (8) allows the elimination of the enhanced para-
meters ξe modeling the displacement jumps at the element level. The final system
of equations involves only the nodal displacements d. This in combination with
the fact that the above developments can be combined with any base element,
through the strain operator B, makes the proposed approach especially interest-
ing. We have considered triangular and quadrilateral finite elements, in the basic
displacement form, mixed and assumed strain elements (like the MITC-4 assumed
strain quad for the plate problem discussed in this brief summary).

We refer to [1, 2] and [3] for complete details in the context of beams and
frames, and [4] for the formulation of finite elements for the modeling of localized
failures of plates. See also the references therein for application to other problems
in the continuum, both in the infinitesimal and finite deformation ranges, including
coupled thermomechanical and poroplastic problems.
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Advantage and Disadvantage of the Method of Enhanced Assumed
Strains

Dietrich Braess

(joint work with Carsten Carstensen and Daya Reddy)

Abstract. Finite elements with enhanced assumed strains are equivalent to mixed
methods associated to the Hellinger–Reissner principle. The softening of the en-
ergy which avoids locking phenomena and the role of the hidden LBB condition
are elucidated for nearly incompressible material.

1. The Need of Softening

In structural mechanics often problems with a small parameter are encountered
which give rise to locking phenomena:

• nearly incompressible material (volume locking),
• plates, beams and cantilevers (shear locking),
• shells (membrane locking),
• 3-dim. models of plates and shells (thickness locking).
Locking means that a portion of the stored energy is too stiff and must be soft-

ened. Here appropriate variational formulations and finite elements are required
which are able to cope with these situations. In particular, the stiff part of the
energy has to be softened.

If we exclude shells, the energy that is to be minimized is of the following form

Π(u) =
1

2
a0(u, u) +

1

2t2

∫

Ω

(Bu)2dx− (f, u).

Here a0 is a (nice) quadratic form that can be treated by standard methods, t is
the small parameter, B a mapping into L2(Ω), and the last term represents the
external load.

We consider a nearly incompressible material, then a0(u, u) = µ
∫
ε(u)2dx,

t2 = µ
λ

and

Bu = div u.

The kernel of the operator, keru = {v ∈ H1
0 (Ω); div v = 0 a.e.}, is a very rich

(thick) space. – This is quite different in the finite element space, in particular
when the quadrilateral Q1 element (with bilinear functions) is chosen. The kernel
consists of the rigid body motions and a linear one direction shear only. The kernel
is a low dimensional space, and the dimension is not increased by refinements of
the finite element mesh.
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[Similarly, when the Mindlin plate is considered, we have u = (θ, w) with θ
being the rotation, w the vertical displacement and

Bu := θ −∇w

is the shear term that has to be softened.]
The canonical way of softening via a mixed method with penalty [2, p. 301] is

not popular.

2. Softening Behavior of the Hellinger–Reissner Formulation

Another way of softening is the use of finite elements with enhanced assumed
strains [4]. It is equivalent to the mixed method associated to the Hellinger–
Reissner principle. For convenience, we describe it for the mixed formulation of
the Poisson equation σ − ∇u = 0, div σ = −f , since the analogous treatment
of the Lamé equations is less transparent. Here we consider the pairing with the
spaces L2(Ω)-H1(Ω) and not H(div,Ω)-L2(Ω). Let Sh ⊂ L2(Ω) and Vh ⊂ H1(Ω)
be the finite element spaces for σ and u, resp. Then

(1)
(σh, τ) − (τ,∇uh) = 0 ∀τ ∈ Sh,

−(σh,∇v) = −(f, v) ∀v ∈ Vh.

Let PSh
be the L2-orthogonal projector onto Sh. The first equation says σh =

PSh
(∇uh), and the second equation that we are computing the solution of the

minimum problem

1

2

∫

Ω

(PSh
∇uh)2 dx−

∫

Ω

fuhdx→ min!

Since the projection reduces the energy, we have got a softening effect.
Instead of defining the target space Sh of the projection, we can specify the

orthogonal complement. Note that σh = PSh
(∇uh) implies (in the framework of

the Lamé equation the elasticity matrix is found as a factor)

σh = ∇uh + ε̃h with ε̃h ∈ Ẽh ⊥ Sh.

Here Ẽh is the space of enhanced strains.

Lemma 1. [5] The mixed method (1) is equivalent to the variational formulation

(2)
(∇uh,∇v)0,Ω +(ε̃h,∇v)0,Ω = (f, v)0,Ω ∈ Vh,

(∇uh, η̃)0,Ω +(ε̃h, η)0,Ω = 0 forη ∈ Ẽh,

if the space Ẽh of enhanced gradients satisfies the decomposition rule
∇Vh ⊂ Sh ⊕ Ẽh.

Now it is clear that one cannot combine arbitrary pairs of spaces Vh and Ẽh
since one has to guarantee the LBB condition. This is often forgotten. Fortunately
it can be expressed in terms of displacements and enhanced strains.
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∇uh ∈ ∇Vh
ε̃h ∈ Ẽh

Sh

Figure 1. Projection of ∇uh to Sh and Ẽh in the EAS method.

Lemma 2. [2, p.153] The spaces Vh and Sh satisfy the inf-sup condition with a
constant β > 0 if and only if a strengthened Cauchy inequality holds,

(∇vh, ηh)0,Ω ≤
√

1 − β2‖∇vh‖0 ‖ηh‖0 for vh ∈ Vh, ηh ∈ Ẽh.

3. Interpolation

In particular, volume locking disappears if the divergence is replaced by its
mean value on each element. The volume term reads

(3)
λ

2

∑

T⊂Ω

∫

T

(div vh)
2dx

This projection is also achieved with enhanced strains by Simo and Rifai [4]. The
projection is related to the Stokes problem and the Q1-P0 element. Unfortunately
the Q1-P0 element is unstable. This induces complications also in 7 (or more)
almost equivalent remedies of locking known in engineering literature. Fortunately,
a stable variant is obtained by a filter, and the filtered element is sufficient for the
EAS method and linear problems for the following reason.

The efficient divergence of a finite element pair (vh, ε̃h) is obviously div vh +
trace ε̃h. There will be no locking if we find an interpolation operator Ih : v 7→
(vh, ε̃h) with the usual approximation properties and the additional prperty

(4) div vh + trace ε̃h = 0 if div v = 0.

An interpolation with these properties is indeed given by the Stokes problem with
the filtered Q1-P0 element [3] and related to (3). Thus the EAS method provides
a stable locking-free element without the need of implementing the filter. In par-
ticular, the regularity result in [1] admits a robust approximation with a constant
that is independent of the large parameter λ [3],

λ ‖ divu− div uh − trace ε̃h‖0 + ‖u− uh‖1 ≤ c h‖f‖0.

Finally, we emphasize that the pairs of spaces must be well balanced. If the
space Ẽh is too small, then we do not achieve property (4). If the space Ẽh is too
large, then stability is lost.
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The inf-sup condition for the Stokes equations: A constructive
approach in general domains

Ricardo G. Durán

(joint work with G. Acosta, M. A. Muschietti)

A fundamental result for the theoretical and numerical analysis of the Stokes
equations in a bounded domain Ω ⊂ R

n is the so called inf-sup condition. An
equivalent way of stating this condition is to say that, for any f ∈ L2(Ω) with
vanishing mean value in Ω, there exists u ∈ H1

0 (Ω)n such that

(1) divu = f in Ω

and

(2) ‖u‖H1(Ω)n ≤ C‖f‖L2(Ω),

where C is a constant which depends only on the domain Ω.
Several arguments have been given to prove this result. For example, if the

domain has a smooth boundary or if it is a convex polygon, the existence of u can
be proved by using a priori estimates for elliptic equations (see for example [5]).

Another possibility is to construct explicit solutions of (1). There are several
motivations to use a constructive approach. First, it provides some information
about the dependence of the constant C on the geometry of the domain Ω. On the
other hand, the explicit construction can be used to obtain an estimate like (2) in
different norms. For example, in [7], estimates in weighted norms were obtained
(these weighted norms can be used to obtain error estimates in the L∞-norm for
finite element approximations of the Stokes equations (see [8])).

In this lecture we show how explicit solutions of (1) can be obtained for a very
wide class of domains.

In order to present the ideas we recall first the construction for domains Ω which
are star-shaped with respect to a ball B (see [3, 7]).

Given a smooth function φ let us call φ =
∫
Ω φω, where ω is an arbitrary smooth

function such that
∫
Ω ω = 1 and suppω ⊂ B. A key point in our construction is
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to recover φ−φ from its gradient. To simplify notation we assume that the center
of the ball B is at the origin.

If for any y ∈ Ω and s ∈ [0, 1] we call γ(s, y) = (1− s)y then, for any z ∈ B, the
segment joining y with z is parametrized by γ(s, y)+sz. Therefore, integrating over

the segments [y, z], we have φ(y) − φ(z) = −
∫ 1

0
(γ̇(s, y) + z) · ∇φ(γ(s, y) + sz)ds,

where γ̇(s, y) indicates the derivative with respect to s. Multiplying by ω(z),
integrating on z and making the change of variable x = γ(s, y)+ sz, we obtain the
representation

(3) (φ − φ)(y) = −
∫

Ω

G(x, y) · ∇φ(x) dx,

where G = (G1, · · · , Gn) is defined as

G(x, y) =

∫ 1

0

(x− y)

s
ω

(
x− γ(s, y)

s

)
1

sn
ds.

If for f ∈ L1(Ω) such that
∫
Ω f = 0 we define

(4) u(x) =

∫

Ω

G(x, y) f(y) dy,

it follows from (3) that
∫
Ω
f(y)φ(y) dy = −

∫
Ω

u(x) ·∇φ(x) dx, for any φ ∈ C∞
0 (Ω),

and therefore u is a solution of (1). On the other hand, using that suppω ⊂ B,
it is not difficult to see that G(x, y) = 0 for every x ∈ ∂Ω, and consequently u
vanishes on ∂Ω.

Now, our goal is to extend this construction for more general domains. It is
known that the domain can not be arbitrary. Indeed, several counterexamples
have been given to show that solutions of (1) satisfying (2) may not exist if the
domain has external cusps. We give here an elementary counterexample due to G.
Acosta.

First we recall that, using functional analysis arguments, it can be shown that
the inf-sup condition implies the following result known as “Lions lemma”:

f ∈ L2(Ω) ⇐⇒ f ∈ H−1(Ω) and ∇f ∈ H−1(Ω)n.

(and the results are equivalent for domains for which the compact imbedding of
H1(Ω) into L2(Ω) holds).

Let Ω := {(x, y) ∈ R2 : 0 < x < 1 , 0 < y < x2} and f(x, y) = x−2. An
elementary computation shows that f /∈ L2(Ω). However, f ∈ H−1(Ω) and ∇f ∈
H−1(Ω)2. Indeed, ∂f

∂x
= ∂(−2yx−3)

∂y
, and it is easy to see that −2yx−3 ∈ L2(Ω) and

therefore ∂f
∂x

∈ H−1(Ω). In a similar way we can see that f ∈ H−1(Ω). Analogous
counterexamples can be constructed for the more general domain Ω := {(x, y) ∈
R

2 : 0 < x < 1 , 0 < y < xα}, for any α > 1 [1].
In view of these counterexamples, we have to work with a class of domains

which exclude domains with external cusps. Consequently, it seems natural to
consider the John domains which is a very general class containing in particular
the Lipschitz domains (a John domain can have a “very bad” boundary but it can
not have external cusps). A bounded open set Ω ⊂ Rn is a John domain if, for
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a fixed x0 ∈ Ω, there exists a function γ : [0, 1] × Ω → Ω and constants K and δ
such that,

1) γ(0, y) = y, γ(1, y) = x0

2) d(γ(s, y)) ≥ δs
3) |γ̇(s, y)| ≤ K,

where d(x) denotes the distance of x to the boundary of Ω. Given a John domain
there are many ways to choose the curves joining x0 with y. We have to choose
the curves in such a way that other properties needed in the proofs are satisfied
(see [2]).

Using the curves given by γ(s, y) we can repeat the construction given for the
star-shaped domains. Assume that x0 = 0 and take the averaging function ω
such that suppω ⊂ B(0, δ/2). Integrating over the curves γ(s, y) + sz joining
z ∈ B(0, δ/2) with y ∈ Ω we obtain the representation (3) where now

(5) G(x, y) :=

∫ 1

0

{
γ̇(s, y) +

x− γ(s, y)

s

}
ω

(
x− γ(s, y)

s

)
1

sn
ds.

As a consequence a solution of (1) is obtained as in (4) (that u vanishes on
the boundary follows now from the fact that suppω ⊂ B(0, δ/2) and using that
d(γ(s, y)) ≥ δs).

Up to this point our construction made use only of elementary results. The more
difficult point is to prove that u satisfies (2). In order to obtain this result we make
use of the theory of singular integral operators of Calderón and Zygmund [6] (see
[2] for details). We also obtain the generalization to the Lp case, 1 < p < ∞, of
the estimate (2). The results are summarized in the following theorem.

Theorem: Let Ω ⊂ Rn be a bounded John domain. Given f ∈ Lp(Ω), 1 <
p < ∞, such that

∫
Ω f = 0, let u be the function given by (4) with G defined as

in (5). Then, u ∈W 1,p
0 (Ω) and satisfies (1) and the estimate

(6) ‖u‖W 1,p(Ω)n ≤ C‖f‖Lp(Ω)

with a constant C depending only K, δ, p, ω and n.
An interesting question is whether the class of John domains is the more general

one for which a solution of (1) vanishing on the boundary and satisfying (6) can be
proved. A partial result in this direction is given in the following theorem which
can be obtained from the previous theorem and the results given in [4].

Theorem: Let Ω ⊂ R2 be a simply connected domain. Then, Ω is a John
domain if and only if, for every 1 < p < ∞, a solution u ∈ W 1,p(Ω)n of (1)
satisfying (6) exists for any f ∈ Lp(Ω) with vanishing mean value.
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[4] S. Buckley, P. Koskela, Sobolev-Poincaré implies John, Math. Ress. Lett. 2 (1995), 577–593.



Gemischte und nicht-standard Finite-Elemente-Methoden mit Anwendungen 273

[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer-Verlag, Berlin, 1994.

[6] A. P. Calderón, A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.
[7] R. G. Durán, M. A. Muschietti, An explicit right inverse of the divergence operator which

is continuous in weighted norms, Studia Math. 148 (2001), 207–219.
[8] R. G. Durán, R. H. Nochetto, Weighted inf-sup condition and pointwise error estimates for

the Stokes problem, Math. Comp. 54 (1990), 63–79.

Continuous/Discontinuous Galerkin methods for fourth-order partial
differential equations

Krishna Garikipati

(joint work with G. Engel, L. Mazzei, L. Molari, T. J. R. Hughes, M. G. Larsson,
R. L. Taylor, F. Ubertini, G. N. Wells)

Fourth-order partial differential equations arise in the strong forms of the Euler-
Bernoulli Thin Beam Theory and Poisson-Kirchhoff Plate Theory in structural
mechanics, Strain Gradient Theories in continuum mechanics, and Diffuse Inter-
face Theory (the Cahn-Hilliard Equation) in materials physics. The Galerkin finite
element method for these problems involves second-order spatial derivatives on the
solution and its weighting function in the weak form. The requirement of higher-
order continuity on the solution has led to the use of C1-continuous functions for
the beam and plate equations, mixed methods for the plate and strain gradient
equations, and reformulation into a coupled second-order system of equations for
the diffuse interface theory. The use of C1 functions is beyond the realm of practi-
cability, while mixed methods for strain gradient theories have not proved robust
or computationally-efficient yet. A class of continuous/discontinuous Galerkin
(C/DG) methods has been developed to address all of these difficulties while
maintaining robustness and numerical efficiency. In this communication we briefly
summarize some of these higher-order equations, the C/DG methods developed,
and error analyses.

1. Strain gradient damage in one dimension

The strain gradient damage model has been discussed in detail in [1]. Here we
provide a summary: The governing equations are

σ = [1 −D(κ)]E : ε, Stress-strain relation

0 ≤ D(κ) ≤ 1, Damage variable

∂κ

∂t
≥ 0, ε− κ ≤ 0,

∂κ

∂t
(ε− κ) = 0, Kuhn-Tucker relations

ε := εeq + c2∇2εeq, Strain gradient dependence.(1)

The stress “softens” with strain during the growth of damage. The strain
gradient damage model is motivated by the mesh-dependent pathology obtained
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in standard (local) inelastic models with softening in the stress-strain response,
and c is an material length scale.

Peerlings and co-workers [1] discuss a reformulation of this mathematical model
to avoid the difficulty of representing the strain gradient terms. Observe that, on
substituting the Kuhn-Tucker relation into the stress-strain relation, (1) becomes
a fourth-order partial differential equation in regions of increasing damage. Our
C/DG mixed formulation of this problem appeared in [2]. A simplified, one-
dimensional version of this formulation is written with εeq = ε:

Find uh ∈ S h = {uh ∈ H1(Ω)|uh = g on Γu} and εh ∈ E h ⊂ L2(Ω), s. t.
∀ wh ∈ V h = {wh ∈ H1(Ω)|wh = 0 on Γu} and νh ∈ E h

∫

Ω

(wh,x (1 −D(κ))Euh,x)dx− wht|Γσ
= 0,(2)

∫

eΩ

(
νh(εh − εh) + νh,xc

2εh,x
)
dx− ([[νh]]c2〈εh,x〉 + 〈νh,x〉c2[[εh]])|eΓ

+α
c2

h
[[νh]][[εh]]|eΓ = 0(3)

In (3) the jump and average operators, [[•]] and 〈•〉 respectively, are defined in the

usual manner on the union of inter-element boundaries, Γ̃, and Ω̃ is the union of
element interiors. The parameter, α, which multiplies the interior-penalty term, is
dimensionless. The Young’s modulus is E. Consistency of this method was shown
in [2].

An error analysis of (3) was carried out in [3]. Detailed numerical examples,
and a comparison of numerical results with convergence rates also established in
the same paper are also included therein.

2. Strain gradient elasticity in one dimension

The strain gradient elasticity theory used here is a linearized, one-dimensional
version of Toupin’s formulation [4]. It serves as a model for certain theories of
strain gradient plasticity. For a shear layer, letting the displacement be denoted
by u, the governing equations are:

(µu,x),x − (µc2u,xx),xx + f = 0 in Ω

u = g on Γg

u,x · n = q on Γq

µc2u,xx = r on Γr

µu,x · n− (µc2u,xx),x · n = t on Γt,(4)

where the boundary conditions in (4)2–(4)5 are for the displacement, strain, couple
stress traction, and the traction, respectively. The shear modulus is µ, and c is
the material length scale as in Section 1. The fourth-order term is seen explicitly
in (4)1. The C/DG single-field weak form is:
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Find uh ∈ S
h such that Bs

(
wh, uh

)
= Ls

(
wh

)
∀wh ∈ V

h, where

Bs

(
wh, uh

)
=

∫

eΩ

(
wh,xµu

h
,x + wh,xxµc

2uh,xx
)
dx− [[wh,x]]〈µc2uh,xx〉eΓ

− 〈µ〉c2wh,xx[[uh,x]]eΓ + τ [[w]]h,x[[u
h
,x]]eΓ − wh,x · nµc2uh,xx

∣∣
Γq

− µc2wh,xx u
h
,x · n

∣∣
Γq

+ τq w
h
,x · nuh,x · n

∣∣
Γq

(5)

Ls

(
wh

)
=

∫

eΩ

wh f dx+ wh,x · n r
∣∣
Γr

− µc2wh,xx q
∣∣
Γq

+ wh t
∣∣
Γt

+ τq w
h
,x · n q

∣∣
Γq
,(6)

The stabilization parameters are τ = O
(
µc2

h

)
, and τq = O

(
µc2

h

)
. For this method

we have established convergence rates in the energy and L2 norms, respectively:

(7) |||e|||2 ≤ C

nel∑

e=1

h2(k−1)
e |u|2Hk+1(Ωe); ‖e‖2 ≤ C

nel∑

e=1

h2(k+1)
e |u|2Hk+1(Ωe).

Numerical results compared with these rates of convergence are summarized in
[5]. Also included are details of the formulation for strain gradient elasticity, for
Euler-Bernoulli Beam Theory and Poisson-Kirchhoff Plate Theory.

3. Summary

The C/DG method outlined in Section 2 is being extended to the Cahn-Hilliard
equation, a fourth-order diffusion equation that describes diffuse interfaces that
develop during phase separation of binary alloys.
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Nitsche’s method for interface problems

Peter Hansbo

Consider the typical Poisson model problem of finding u such that

(1) −∆u = f in Ω, u = 0 on partialΩ,

where Ω is a bounded domain in two or three space dimensions, with boundary
∂Ω and with f a given function.

For domain decomposition purposes it is beneficial to rephrase (1) as follows.
Consider an (artificial) interface Γ dividing Ω into two open sets Ω1 and Ω2, with
interface Γ = Ω1 ∩Ω2. For any sufficiently regular function u in Ω1 ∪Ω2 we define
the jump of u on Γ by [[u]] := u1|Γ −u2|Γ, where ui = u|Ωi

is the restriction of u to
Ωi. Conversely, for ui defined in Ωi we identify the pair (u1, u2) with the function
u which equals ui on Ωi. For definiteness, we define n as the outward pointing
unit normal to Ω1, and we define ∂n := n ·∇. We can then formulate the following
variant of Poisson’s equation:

(2)

−∆u = f in Ω1 ∪ Ω2,
u = 0 on ∂Ω,

[[u]] = 0 on Γ,
[[∂nu]] = 0 on Γ.

Invoking the smoothness assumption u ∈ H2(Ω), we have that (2) is equivalent to
(1) with u|Ωi

= ui, i = 1, 2. We may then write u = (u1, u2) ∈ V1 × V2 with the
continuous spaces

Vi =
{
vi ∈ H1(Ωi) : ∂vi/∂ni ∈ L2(Γ), vi|∂Ω∩∂Ωi

= 0
}
, i = 1, 2.

To formulate the method, we suppose that we have finite element partitionings
Tih of the subdomains Ωi. We assume that at least one of the meshes contains
shape regular elements bordering to the interface. For definiteness, we define this
to be T1

h.
We seek the approximation U = (U1, U2) in the space V h = V h1 × V h2 , where

V hi =
{
vi ∈ Vi : vi|K is a polynomial of degree p for all K ∈ T

i
h

}
.

Nitsche’s method for the problem (2) can then be written as follows (cf. [1]): find
U ∈ V h such that

(3) ah(U, v) = L(v) ∀v ∈ V h,

with

ah(w, v) :=

2∑

i=1

(∇wi,∇vi)Ωi
+ γ(h−1 [[w]] , [[v]])Γ(4)

−(∂nw1, [[v]])Γ − (∂nv1, [[w]])Γ

and

(5) L(v) :=

2∑

i=1

(f, vi)Ωi
.
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This is a consistent method: multiplying the first equation in (2) with vi, inte-
grating over Ωi, using Greens formula and the fact that ∂nu1 = ∂nu2 on Γ yields

L(v) =

2∑

i=1

(f, vi)Ωi
=

2∑

i=1

(∇ui,∇vi)Ωi
− (∂nu1, v1)Γ + (∂nu2, v2)Γ

=

2∑

i=1

(∇ui,∇vi)Ωi
− (∂nu1, [[v]])Γ.(6)

Since [[u]] = 0 on Γ we have

(7) 0 = −(∂nv1, [[u]])Γ + γ(h−1 [[u]] , [[v]])Γ.

Finally, adding (6) and (7) shows consistency in that the solution u = (u1, u2) to
(2) satisfies

(8) ah(u, v) = L(v) ∀v ∈ V h.

As for the stability, we have that

ah(U,U) =
∑

i

(∇Ui,∇Ui)Ωi
− 2(∂nU1, [[U ]])Γ + (γh−1 [[U ]] , [[U ]])Γ

i.e.,

ah(U,U) ≥ ‖∇Ui‖2
L2(Ωi)

− 2‖∂nU1‖L2(Γ)‖ [[U ]] ‖L2(Γ) +
γ

h
‖ [[U ]] ‖2

L2(∂Ω)

i.e., using that (ax− y/a)2 ≥ 0 implies a2x2 + y2/a2 ≥ 2xy,

ah(U,U) ≥
∑

i

‖∇Ui‖2
L2(Ωi)

− h

ǫ
‖∂nU1‖2

L2(Γ) −
ǫ

h
‖ [[U ]] ‖2

L2(Γ) +
γ

h
‖ [[U ]] ‖2

L2(Γ).

Invoking now the inverse inequality

(9) ‖h ∂nU1‖2
L2(Γ) ≤ CI‖∇U1‖2

L2(Ω1),

valid for discrete U1, we find that ah(U,U) is positive if we choose γ > ǫ > CI .
Stability and consistency can then be used to show optimal order convergence of
the method in broken energy norm and in L2(Ω), see [1].

A particularly interesting thing about this method is the fact that the inverse
inequality (9) is used in a one-sided fashion: the stability only hinges on the shape
regularity of T1

h. This means that the method is still useful in cases where the
mesh T2

h is not shape regular, e.g., when its elements are cut. This fact can be
exploited for the construction of overlapping meshes as in [4] or for constructing
methods on unfitted meshes as in [2, 3]. Furthermore, it can be used to couple to
nonconforming finite element methods on Ω1 as in [5], or handle a deforming Ω2

as in [6]. Indeed, many other possibilities remain to be investigated: coupling to
meshless methods, to wavelets, or to finite difference methods; coupling of different
models as in model reduction methods, etc.
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Computing crack propagation by the extended finite element method

Ulrich Hoppe

(joint work with Klaus Hackl, Markus Peters)

Crack propagation is an important process in multi–scale modeling of damage
phenomena. Within the finite element method fracture can be modeled in different
ways: (i) In a smeared formulation the fracture energy is distributed over the full
width of an element or handled by enhanced strain modes, which are discontinuous
across element boundaries; (ii) In an interface–element formulation discrete cracks
are modeled by special interface–elements along the crack path. This approach
usually requires consecutive remeshing; (iii) In the extended finite element method
discrete cracks are modeled by enhanced shape–functions. This approach is based
on the partition of unity method and is applicable to various kinds of continuum
and structural elements in a robust manner [2].

1. Extended Finite Element Method (XFEM)

The XFEM for fracture problems enhances the approximation of the displace-
ment field with discontinuous shape–functions. The enhancement is based on the
partition of unity method (PUM), which permits the inclusion of a priori knowl-
edge about the differential equation in the ansatz space and allows a construction
of ansatz spaces of any desired regularity [1]. A field u(x) is interpolated as

(1) u(x) =

n∑

i=1

φi(x)



ai +

m∑

j=1

ψj(x)aij



 ,

where ai denote the regular nodal degrees-of-freedom, ψj the enhanced basis terms,
and aij the amplitudes of the j-th enhanced basis term at node i. In the special case
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of plane fracture problems the displacement field of a body with a one–dimensional
discontinuity Γd (Fig. 1(a)) is described by

(2) u(X, t) = û(X, t) + HΓd
[[u(X, t)]], with HΓd

=

{
1 if X ∈ Ω+

0 if X ∈ Ω− ,

where HΓd
denotes the Heaviside function centered on the discontinuity, [[z(x)]] =

z+(x)− z−(x) represents the jump of a quantity z across the discontinuity, and û
denotes the continuous part of the displacement field.

The discontinuous shape function enhancements are required only at those el-
ements that form the support of the crack. According to (2) the finite element
shape–functions at those elements are typically enhanced by a Heaviside function
term

(3) u =
∑

i

Niai +
∑

j

HΓd
Njbj ,

where bj accounts for the displacement jump degrees–of–freedom across the dis-
continuity and N denotes the finite element shape–functions.

In linear fracture mechanics an additional enhancement is needed, because the
stress field exhibits a 1√

r
–singularity near the crack–tip. For example, the stress

field for mode I fracture (crack opening) near the crack–tip reads

(4)





σx
σy
τxy



 =

KI√
2πr

cos(
ϕ

2
)





1 − sin(ϕ2 ) sin(3ϕ
2 )

1 + sin(ϕ2 ) sin(3ϕ
2 )

sin(ϕ2 ) cos(3ϕ
2 )



 ,

where r and ϕ denote polar coordinates centered at the crack–tip. The factor KI

gives the overall intensity of the stress intensity for the specific fracture mode. The
corresponding displacement field for fracture mode I is given by

(5)

{
u
v

}
=
KI

2G

√
r

2π

{
(κ− cosϕ) cos(ϕ2 )
(κ− cosϕ) sin(ϕ2 )

}
,

where u, v are referred to a coordinate system located at the crack–tip and G, κ are
material parameters. Similar functions can be found for fracture mode II (crack
sliding). In the XFEM approach the stress singularity is modeled by enhancing the
standard displacement field with special base functions Fi that span the function
space of the crack–tip displacement field for fracture modes I and II. A typical
crack-tip enhancement [2, 3] reads

(6) u =
∑

i

Niai +
∑

j

∑

k

NjFkcjk, F k =






√
r · sin(ϕ2 )

√
r · cos(ϕ2 )

√
r · sin(ϕ2 ) · sin(ϕ)

√
r · cos(ϕ2 ) · sin(ϕ)

.

The enrichment is restricted to those nodes that belong to the support of the
crack tip. The base functions Fl are formulated in polar coordinates centered at
the crack–tip and span the displacement field (Fig. 1(b)).
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Figure 1. (a) Continuous body with discontinuity line; (b)
Crack–tip base functions F1 and F2

A slight disadvantage of the XFEM is the need for non–standard integration
schemes for the enhanced shape-functions. Unfortunately, the standard low or-
der Gauss quadrature scheme does not provide accurate results for functions with
discontinuous or even singular terms. When almost straight cracks are considered
the Gauss quadrature can be applied by subdividing elements into subregions with
sufficiently regular functions. But in the vicinity of the crack–tip singularity and
along strongly curved crack–paths the subdivision strategy often leads to unde-
sirably small sub-elements. To keep control over the accuracy of the integration
scheme we have applied an adaptive hierarchical integration algorithm based on
Simpson’s rule, which provides a natural error indicator [4].

(a) (b) (c) (d)

Figure 2. Geometries and crack–paths in a three–point bending
test and a tension test.

2. Examples

Figures 2(a,b) show the geometry and the computed crack–paths for a beam
under three–point bending. Two initial cracks are prescribed on the left edge
of the body and propagate toward the concentrated load along a curved crack–
path. Figures 2(c,d) show the geometry and the principal stress contour of a
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tension strip with two cracks initiated on opposite edges. The kidney–shaped
stress concentration field in front of the crack–tip can be observed.
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Energy Norm a Posteriori Error Estimation of hp-Adaptive
Discontinuous Galerkin Methods for Elliptic Problems

Paul Houston

(joint work with Dominik Schötzau and Thomas Wihler)

Adaptive finite element methods that are capable of exploiting both local polyno-
mial–degree–variation (p–refinement) and local mesh subdivision (h–refinement)
offer greater flexibility and improved efficiency over mesh refinement methods
which only incorporate either local mesh subdivision of the computational do-
main with the degree of the approximating polynomial fixed, or global polynomial
degree variation on a fixed coarse mesh.

The aim of this talk is to consider the energy norm a posteriori error analysis of
the hp–version of the discontinuous Galerkin (DG, for short) finite element method
for approximating second–order linear elliptic partial differential equations. In
contrast to the approach of Becker et al. [2], which is based on employing a suitable
Helmholtz decomposition of the error, together with the underlying conservation
properties of DG methods, here we present a new technique to derive a posteriori
error bounds. Indeed, the analysis presented in this talk is based on rewriting the
method in a non-consistent manner using lifting operators in the spirit of Arnold
et al. [1], and employing a decomposition result for discontinuous spaces, cf. [3],
for the case of the h–version of the DG method applied to the Stokes problem.

The performance of the proposed error bound within an hp–adaptive mesh
refinement procedure will be demonstrated for problems with both smooth and
singular analytical solutions. The key step in the design of such an adaptive
algorithm is the local decision taken on each element κ in the computational mesh
as to which refinement strategy (i.e., h-refinement via local mesh subdivision or p-
refinement by increasing the degree of the local polynomial approximation) should
be employed on κ in order to obtain the greatest reduction in the error per unit
cost. Here, the decision as to whether to h–refine or p–refine an element is based
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on a new algorithm for Sobolev–index estimation via truncated Legendre series
expansions, cf. [4].
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A non-standard method for approximating the time harmonic
Maxwell system

Peter Monk

(joint work with Tomi Huttunen)

The numerical solution of Maxwell’s equations in the context of electromagnetic
scattering (for example from aircraft) poses several difficulties. For example the
scatterer is usually of complicated shape and made of various materials. A volume
based approach (like finite elements) can easily handle these difficulties but is then
faced with the problem that dispersion error builds up as the electric size of the
problem increases. Furthermore the resulting linear system is difficult to solve.
The use of special basis functions in the finite element method may improve the
dispersion accuracy of the method and may lead to a better conditioned linear
system, but then causes difficulties with implementation.

One possible scheme for using special basis functions (in fact plane wave solu-
tions of the Maxwell system) is the Ultra Weak Variational Formulation (UWVF)
of Maxwell’s equations due to Cessenat and Després [1, 2]. In this presentation we
show first show that the UWVF may be derived as a standard flux splitting Dis-
continuous Galerkin (DG) method [5] but with a special choice of basis functions.

In particular let Ω denote a bounded polyhedral domain in R3 and suppose
we seek to approximate the electric field E and magnetic field H that satisfy the
Maxwell system

−iωǫE −∇×H = 0 in Ω,(1)

−iωµH + ∇× E = 0 in Ω,(2)

where the electromagnetic parameters ǫ and µ have positive and bounded real
parts, and the imaginary part of ǫ is non-negative (µ is assumed real). A major
limitation of the UWVF is that it is necessary that the parameters be piecewise
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constant with respect to the upcoming finite element mesh. In addition the field
satisfies the general boundary condition

(3) −E × n+ σ(H × n) × n = Q(E × n+ σ(H × n) × n) + g on Γ = ∂Ω

where σ is a positive function of position on the boundary, n is the unit outward
normal and g is a tangential data field. The parameterQ is such that |Q| ≤ 1. Note
that Q = 1 gives the perfectly conducting boundary condition, while Q = 0 gives
the impedance boundary condition which includes a simple abosrbing boundary
condition.

We shall now derive the UWVF for the basic Maxwell system (1)–(3). Our
derivation, which differs from that of Cessenat and Despreés [1, 2], highlights
the connection between the UWVF and the classical flux splitting discontinuous
Galerkin method for symmetric hyperbolic systems (see for example [5]).

Let τh = {K} denote a mesh of finite elements K of maximum diameter h
covering Ω. We shall assume that each element K is a tetrahedron and hence has
triangular faces (so simplifying some integrals that need to be performed during
the calculation).

We now proceed along standard lines to derive a discontinuous Galerkin method
for the Maxwell system. For an element K let nK denote the unit outward normal
to the boundary ∂K of K. Now let ξK and ψK denote smooth vector functions
on an element in the mesh. Multiplying (1) and (2) by the complex conjugate of
ξK and ψK and integrating over K using integration by parts identity to move the
curl from the trial function to the test function we obtain (the overline denotes
complex conjugation):

∫

K

(
−iωǫE · ξK −H · ∇ × ξK

)
dV =

∫

∂K

nK ×H · ξK dA
∫

K

(
−iωµH · ψK + E · ∇ × ψK

)
dV = −

∫

∂K

nK × E · ψK dA.

Adding the two equations and reordering the left hand side we obtain
∫

K

(
E · (iωǫξK + ∇× ψK) +H · (iωµψK −∇× ξK)

)
dV

=

∫

∂K

(
nK ×H · ξK − nK × E · ψK

)
dA(4)

where we have used the fact that µ is assumed to be real valued. Usually in the
derivation of the discontinuous Galerkin method we would now specify how to
compute the “fluxes” or surface currents nK × E and nK ×H from approximate
discontinuous fields, but in this case we first make an important assumption that is
the essential part of the UWVF. We assume that ξK and ψK satisfy the following
adjoint Maxwell system on K:

iωǫξK + ∇× ψK = 0 in K,(5)

iωµψK −∇× ξK = 0 in K.(6)
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With this assumption the above identity (4) for (E,H) on K reduces to

(7)

∫

∂K

(
nK ×H · ξK − nK × E · ψK

)
dA = 0

We now apply the usual discontinuous Galerkin upwind splitting method to this
identity. Let

uK =

(
E|K
H |K

)
and φK =

(
ξK

ψK

)

then (7) becomes

(8)

∫

∂K

DKuK · φK dA = 0

where the matrix DK is given by

DK =

(
0 ZK

(ZK)T 0

)
and ZK =




0 nK3 −nK2

−nK3 0 nK1
nK2 −nK1 0



 .

Note that ZKa = −nK × a for any vector a.
Flux splitting amounts to a suitable factoring of DK into positive and negative

semi-definite parts corresponding to left and right going waves. To obtain the
general UWVF we use a slightly more general factorization than usual. Let σ > 0
be defined on the faces of the mesh (on the boundary faces it is the function σ
appearing in (3), for other faces it can be taken as the usual impedance). To define
the splitting of DK let

LK,± =
1√
2σ

(
±σ(ZK)2, ZK

)

and define DK,± = ±(LK,±)T (LK,±). A simple calculation then shows that DK =
DK,+ + DK,− with DK,+ positive semidefinite and DK,− negative semidefinite.
An important property of the splitting that we shall use is that if elements K and
K ′ share a common face then on K ′ ∩K we have (using the fact that nK = −nK′

there)

LK,+ =
1√
2σ

(
σ(ZK)2, ZK

)
=

1√
2σ

(
σ(ZK

′

)2,−ZK′

)
= −LK′,−.

Using the splitting of DK the factorization of each term in the splitting we may
rewrite (8) as

(9)

∫

∂K

(LK,+uK) · (LK,+φK) − (LK,−uK) · (LK,−φK) dA = 0

The discontinuous Galerkin flux splitting approach is then to couple the solution
on adjacent elements using the second term in the above equation. Thus if K ′

is an element sharing a face with K we have (using the continuity properties of
the solutions of Maxwell’s equations across an interface in the absence of surface
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charges) LK,−uK = −LK′,+uK
′

on the common face. For faces on the boundary
Γ we use the boundary condition (3) written in the convenient form

LK,−uK = QLK,+uK + ĝ on ∂K ∩ Γ

where ĝ = −(1/
√

2σ)g. Equation (9) then becomes
∫

∂K

(LK,+uK) · (LK,+φK) dA+
∑

K′,∂K′∩∂K=f 6=∅

∫

f

(LK
′,+uK

′

) · (LK,−φK) dA

+
∑

∂K∩Γ=f 6=∅

∫

f

(QLK,+uK + ĝ) · (LK,−φK) dA = 0(10)

This is essentially the UWVF of Cessenat and Després before discretization but
to make the connection more obvious we define

XK = LK,+uK |∂K , Y K = LK,+φK |∂K and FK(XK) = −LK,−φK |∂K .
Then (10) becomes the problem of finding XK on the face of each element such
that ∫

∂K

XK · Y K dA−
∑

K′,∂K′∩∂K=f 6=∅

∫

f

XK′ · FK(Y K) dA

−
∑

∂K∩Γ=f 6=∅

∫

f

QXK · FK(Y K) dA =

∫

∂K

ĝ · FK(Y K) dA(11)

for all appropriate Y K . It turns out that the correct space for XK and Y K is
the space of square integrable tangential fields on ∂K (see [1]). Equation (11) is
the UWVF for Maxwell’s equations before discretization. We remark that this
derivation of the UWVF extends in a simple way to the equations of elasticity
and to the Helmholtz equation written as a first order system (indeed to a general
class of symmetric hyperbolic equations).

The UWVF can now be discretized by approximating the function φK on each
element by plane wave solutions of the adjoint Maxwell system (5)-(6). The re-
mainder of the presentation is devoted to showing that techniques for controlling
ill-conditioning developed for the Helmholtz equation [4] also can be applied to
the Maxwell system. In addition we show that the Perfectly Matched Layer can
be implemented for Maxwell’s equations by extending the techniques of [3] to this
case. Preliminary numerical results also suggest that the PML allows the UWVF
to approximate solutions of Maxwell’s equations in a layered medium and hence
that the UWVF could be used to simulate ground penetrating radar.
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Finite element approximation of saturated/unsaturated flow and
reactive solute transport in porous media

Florin A. Radu

(joint work with I.S. Pop, P. Knabner)

Pollution of groundwater by organic compounds is recognized nowadays as a
serious and widespread problem. Wherever nocive substances are used or simply
deposited it can happen that they come into the soil and through precipitation
can reach the groundwater. A reliable prediction of the water movement and
solute transport through variably saturated soil, where the chemical species un-
dergo sorption or exchange processes on the surface of the porous skeleton, has a
fundamental importance in deciding how dangerous a contaminated site is.

Here, we consider a general mathematical model for coupled flow and reactive
solute transport and we briefly describe our numerical approach. A scheme equiv-
alent to the implicit Euler method is used for the discretization in time and the
mixed finite element method (MFEM) for the spatial discretization. The main
focus is set on the demonstration of the convergence of the fully discrete scheme
used for the saturated/unsaturated flow.

The groundwater movement, taking into account the unsaturated subregions
near the surface, is described by the Richards’ equation, a nonlinear degenerate
parabolic partial differential equation

(1) ∂tΘ(ψ) −∇ ·K(Θ)∇(ψ + z) = 0,

where ψ is the pressure head, Θ is the water content, K is the hydraulic conductiv-
ity and z is the height against the gravitational direction. For the two coefficient
functions different models can be choosen to end up with a single unknown in
(1). For negative pressure values the nonlinearities are monotone nondecreasing,
therefore (1) is a nonlinear parabolic equation there, but positive pressure values
lead to a constant value of saturation and represent the region below the ground-
water table, where the pressure obeys an elliptic equation. As a consequence we
deal with a nonlinear elliptic-parabolic equation whose solution is typically lacking
regularity. This and the high nonlinearities appearing in the coefficient functions
makes the analysis of numerical schemes for problem (1) generally difficult. A
classical trick to combine the two nonlinearities in (1) in just one is to apply the
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Kirchhoff transformation

(2) K : IR −→ IR, ψ 7−→
∫ ψ

0

K(Θ(s)) ds.

By defining now b(u) := Θ ◦ K−1(u), k(b(u)) := K ◦ Θ ◦ K−1(u) and letting ez

denote the vertical unit vector, equation (1) becomes

(3) ∂tb(u) −∇ · (∇u+ k(b(u)) ez) = 0.

Due to the above transformation, the diffusion becomes linear in equation (1).
However, also after the transformation the equation still remains degenerate and,
according to [1], we expect only ∂tb(u) ∈ L2(0, T ;H−1(Ω)) which does not allow a
mixed variational formulation being the basis for a mixed finite element discretiza-
tion. To overcome this, the equation (3) is first integrated in time [2, 7, 6]. To the
resulting we apply a backward Euler time stepping and MFEM.

Let Th be a regular decomposition of the domain Ω ⊂ Rd into closed d-simplices;
h stands for the mesh-size. We denote by Wh ⊂ L2(Ω) and Vh ⊂ H(div,Ω) the
lowest order finite element spaces of Raviart-Thomas type. Let T be the final
time, N > 1 an integer giving a time step τ = T/N and tn = nτ , n ∈ {1, . . . , N}.
At tn, the fully discrete mixed variational formulation of the problem reads as

Let un−1
h ∈ Wh be given. Find (unh,q

n

h
) ∈ Wh × Vh such that there for all

wh ∈ Wh and vh ∈ Vh holds

(b(unh), wh) + τ(∇ · qn

h
, wh) = (b(un−1

h ), wh),(4)

(qn

h
,vh) − (unh,∇ · vh) + (k(b(unh))ez,vh) = 0.(5)

The same method has been also analyzed in [2, 6] where similar techniques are
used. They consider a time continous semidiscrete scheme as well and prove for
it an optimal order of convergence for the L2-norm of the time integral of the
pressure and flux. Unfortunately, for the fully discrete scheme an explicit order
of convergence in terms of the discretization parameters τ and h can be obtained
only by assuming extra, unrealistic, regularity for the solution (especially for the
time derivatives of the pressure and flux).

A very important hint to prove the convergence of the fully discrete scheme
(4)–(5), without assuming unrealistic regularity for the solution, was furnished in
[3], which deals with a class of multidimensional degenerate parabolic equations
including Richards’ equation. A fully discrete scheme based on C0 piecewise lin-
ear finite elements is proposed and analyzed. The techniques used here to cope
with degenerate parabolic equations will permit us to extend the results in [2] to
the general, degenerate case. The idea is to state besides the mixed variational
formulations, also suitable continuous and semidiscrete conformal variational for-
mulations for the Richards’ equation and to prove their equivalence with the cor-
responding mixed formulations. In contrast to [2, 6] here the semidiscrete schemes
are continuous in space. Then, using specific techniques for conform discretized
degenerate parabolic equations [3, 4], we prove error estimates for the continuous
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to the semidiscrete step. Next, using the procedure described in [2, 6], error es-
timates for the semidiscrete to the fully discrete problem can be obtained. Error
bounds for the time integral of the flux and of the pressure are derived. In this
setting, the equivalence between the two different formulations becomes essential
since, in this way, results obtained for the conformal method can be transferred
to the mixed one and viceversa. The procedure is detailed presented in [5] (where
also a regularization step is performed). By assuming that the flux is in H1(Ω)d

instead H(div,Ω), which is obviously in the 1D case, our main result reads as

(6)

∥∥∥∥∥

N∑

n=1

∫ tn

tn−1

(u(t) − unh) dt

∥∥∥∥∥

2

+

∥∥∥∥∥

N∑

n=1

∫ tn

tn−1

(q(t) − qn

h
)dt

∥∥∥∥∥

2

≤ C(τ + h2).

We consider now P mobile and M immobile (including microbial populations)
species. To describe the transport of the species i ∈ {1, . . . , P}, including the
effects of advection, dispersion, sorption and degradation we use the equations

(7) ∂t(Θci) + ρb∂tsi −∇ · (Di∇ci − qci) = −Ri,
with ci, si denoting the concentration of the mobile and the absorbed species, re-
spectively, Di the diffusion-dispersion coefficient and ρb the bulk density. Here, Ri
is the degradation rate which can be a function of all the concentrations appearing
in the reaction in which i takes part. The sorption itself is described by

(8) si = φ(ci) or ∂tsi = ki(φ(ci) − si),

either as an equibrium or a nonequilibrium process. In (8) φ denotes a sorption
isotherm and ki a rate parameter. Finally, we formulate a mass balance to obtain
an equation for the evolution of a immobile species

(9) ∂tci + kdici = Ri, i ∈ {P + 1, . . . , P +M}.
with kdi being the death rate of the microbial population i.

Backward implicit Euler method is used for the temporal discretization and the
MFEM is applied for the spatial discretization. Precisely, the lowest order finite
elements of Raviart-Thomas type are used for the approximation of the fluxes
and piecewise constants for the concentrations. The resulting algebraic system of
equations is hybridized by adding Lagrange multipliers on the sides. Briefly, the
algorithm reads: within each time step we first solve the Richards equation by
a damped Newton’s method and then, having computed the water flux and the
saturation we solve the fully coupled equations for the species again by a Newton
method. Some illustrative numerical examples show that the resulting code can
be used as a powerful tool to predict the migration and the extent of contaminant
plumes in many case studies.
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L∞-stability of FEM on irregular meshes

Rolf Rannacher

The H1
0 -Ritz projection into finite element subspaces admits order-optimal L2-

error estimates on very general types of meshes. However, corresponding L∞-error
estimates are mostly proven under the more restrictive ‘uniform size’ and ‘uniform
shape condition’. Such ‘quasi-uniform’ meshes occur rather rarely in practice
since this condition excludes the appropriate mesh refinement for resolving local
singularities and boundary layers. This has raised the question whether local mesh
refinement and mesh distortion spoil the overall pointwise convergence of the finite
element method. This question is analyzed in Rannacher [9] for the simplest but
representative case of P1-elements on triangular or tetrahedral meshes in two and
three dimensions, respectively, for the model problem

−∆u = f in Ω, u = 0 on ∂Ω,(1)

on a (convex) polygonal or polyhedral domain Ω . It is shown that most of the L∞-
stability estimates known for quasi-uniform meshes remain valid in R2 and with
some restrictions also in R3 for much more irregular meshes. The argument uses
the weighted-norm technique introduced in Frehse & Rannacher [3] for proving
L1-error estimates for regularized Green functions. But the reduced regularity
assumptions on the meshes require some modifications at critical places.

Let {Th}h∈R+
be a family of decompositions Th = {T } of Ω into (closed)

‘cells’ (triangles or tetrahedra), such that two adjacent cells only intersect in com-
mon vertices, edges or faces. For any T ∈ Th , we denote by hT and ρT the radii
of the smallest circumscribed and the largest inscribed circle or ball, respectively,
and set hmax := maxT∈Th

hT and hmin := minT∈Th
hT .
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Definition 1.The mesh family {Th}h∈R+
is said to be ‘quasi-uniform’ if it sat-

isfies the ‘shape-regularity condition’, hT ≤ cρT , T ∈ Th , and the ‘size-regularity
condition’ hmax ≤ chmin , uniformly for h ∈ R+ .
For triangular meshes in R2 shape regularity is equivalent to the so-called ‘mini-
mum angle condition’ which requires that all inner angles of the triangles T ∈ Th

are uniformly bounded away from zero.
For the subspaces Vh := {vh ∈ H1

0 (Ω), vh|T ∈ P1(T ), T ∈ Th} of P1-finite

elements, the H1
0 -Ritz projection Rh : V → Vh is defined by

(∇Rhu,∇φh) = (∇u,∇φh) ∀φh ∈ Vh.(2)

For quasi-uniform meshes, we have the usual L2-convergence estimate

‖u−Rhu‖L2 + h‖∇(u−Rhu)‖L2 ≤ ch2‖u‖H2 ,(3)

which follows by the projection property of the Ritz method and the associated
error estimates for the cellwise defined ‘nodal interpolation’ Ih : V ∩C0(Ω) → Vh :

‖u− Ihu‖Lp(T ) + hT ‖∇(u− Ihu)‖Lp(T ) ≤ ch2
T ‖∇2u‖Lp(T ), d/2 ≤ p ≤ ∞.(4)

It is known that such local estimates also hold on meshes which violate the uniform
shape condition in so far that, in R2 , the inner angles of the triangles T ∈ Th

are only required to be uniformly bounded away from π ; for references see, e.g.,
Apel & Dobrowolski [1]. Therefore, the L2-error estimates (3) remains valid even
on degenerate meshes satisfying only this so-called ‘maximum angle condition’.
However, L∞-error estimates for Rh have usually been proven for quasi-uniform
meshes. Under these conditions the (almost) optimal-order L∞-error estimate

‖u−Rhu‖L∞ ≤ cL(h)h2 ‖u‖W 2,∞ ,(5)

was proven first in Natterer [5] and Nitsche [6] and then by various different tech-
niques in Scott [13], Frehse & Rannacher [3] and Schatz & Wahlbin [11]. In these
estimates the logarithmic factor L(h) := | ln(h)|+1 is unavoidable in the case of P1

elements. These estimates and their variations have important applications in the
finite element approximation of strongly nonlinear problems (Frehse & Rannacher
[4]), in the analysis of Richardson extrapolation and defect correction (Rannacher
[7], [8]) and in the approximation of parameter identification problems with point
observations (Rannacher & Vexler [10]).

For non-quasi-uniform meshe one can infer from the analysis in Schatz & Wahl-
bin [12] that in R2 the estimate (5) holds on shape regular meshes which satisfy
the uniform size condition only in the following weaker sense.

Definition 2.The family of triangulations {Th}h∈R+
is said to be ‘polynomial

size-regular’, if there exist an α ≥ d, such that minT∈Th
|T | ≥ chα, T ∈ Th, h ∈

R+ .
This condition allows the meshes to be locally refined with polynomial rate to-
wards ‘singular’ points or edges. It is shown in [9] that most of the above L∞-
results remain valid in R2 and with some restrictions also in R3 on ‘irregular’
meshes characterized by ‘polynomial size-regularity’ and ‘weak form-regularity’ in
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the sense of the following definition.

Definition 3.The family of triangulations {Th}h∈R+
is said to be ‘weakly shape-

regular’, if each cell T ∈ Th can be mapped to a fixed reference unit-cell T̂ by a
regular differentiable mapping ΦT combined with a diagonal scaling Λ = diag(λi) ,

i.e., T̂ = Λ ◦ ΦT (T ) , where ‖Φ′(x̂)‖ ≤ c, ‖Φ′(x̂)−1‖ ≤ c and ρT ≤ λi ≤ hT ,
uniformly for h ∈ R+ and T ∈ Th .
For triangular meshes in R2 this is equivalent to the ‘maximum angle condition’
requiring that all inner angles of T ∈ Th are bounded away from π .
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Discontinuous Galerkin Methods and Plasticity: Work in Progress

B. Daya Reddy

(joint work with Jules K. Djoko)

The initial-boundary value problem for elastoplasticity takes the form of a varia-
tional inequality (VI). The VI is of the first kind, ie. posed on a convex subset of
a Hilbert space, if the flow law is expressed as the classical normality law, while
it is of the second kind, ie. includes a non-differentiable functional, if the flow law
is expressed in the form that uses the dissipation function. This talk is concerned
with finite element approximations of the VI of the second kind.

The theory corresponding to classical Galerkin finite element approximations is
well established (see [2]), and this talk explores the use of discontinuous Galerkin
(DG) finite element methods for this class of problems.

which the use of DG methods would carry the same advantages as those for
elliptic equations. After a review of the relevant results for Galerkin finite element
approximations for the VI, the extension to interior penalty DG approximations
is discussed. It is shown that the extension is straightforward, with results on
consistency, stability and convergence mirroring those for elliptic equations [1].

Of greater interest and significance is the application of DG methods to gener-
alizations of the classical theory of plasticity to problems involving gradient plas-
ticity (see, for example, [3]). This extension of the classical theory takes account
of the fact that the classical theory is unable to capture adequately phenomena
such as shear bands that occur at the microscopic scale. Instead, it is necessary
to introduce in the theory a dependence not only on the internal variables, such
as plastic strain, but on their higher-order derivatives as well. The DG method
is particularly well suited to such situations, in which continuity of the internal
variables is not assumed.

Preliminary results on the use of DG approximations of the VI corresponding to
a model of gradient plasticity are presented, and the consistency and convergence
of the method are discussed. Current work, on the extension to other models of
gradient plasticity, their analysis and computational implementation, are sketched.
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A solid-shell finite element formulation – from a mixed method to a
reduced integration concept

Stefanie Reese

The notion solid-shell is commonly used for shell element formulations which in-
clude only displacement degrees-of-freedom. In most cases such elements possess
eight nodes, i.e. the geometry of a structure in thickness direction is realistically
displayed. This property is in particular important for contact simulations. In the
present contribution we derive a solid-shell approach for large deformation inelas-
ticity. Alternative concepts for such applications can be found in [1,2]. Starting
from a mixed principle two important assumptions are made. First of all the con-
stitutive relation for the first Piola-Kirchhoff stress includes a special ansatz for
the dependence on the local surface coordinates. Secondly the Jacobi matrix is
everywhere replaced by its value in the centre of the element.

Variational functional. The starting point of the formulation is the two-field
functional

g1 (uh,Hh
enh) =

∫

Bh
0

P (Hh) : Grad δuh dV + gext = 0(1)

g2 (uh,Hh
enh) =

∫

Bh
0

P (Hh) : δHh
enh dV = 0(2)

where the displacement vector uh and the “enhanced” strain tensor Hh
enh denote

the independent variables (see Simo & Armero [3]). The term gext represents the
virtual work of the external loading. The tensor Ph := ∂W/∂Hh = P(Hh) (W
strain energy per reference volume) defines the first Piola-Kirchhoff stress tensor
given as a function of the total strain Hh = Graduh + Hh

enh which is additively
decomposed into a compatible part Graduh and an incompatible (or enhanced)
part Hh

enh. The index h indicates that the superscripted quantities have already
been discretized by a suitable spatial interpolation.

Special treatment of the terms in thickness direction. The ansatz for
Hh which is in detail described in Reese [4] (with the Voigt notation being in-
dicated by means of italic bold letters) can be decomposed into a part which
depends on the local “thickness” coordinate ζ alone and another part which is
linear or bi-linear in the two other local “surface” coordinates ξ and η:

(3) Hh = Hh
0 + Hh

hg ζ + Hh
enh ζ︸ ︷︷ ︸

:= Hh
ζ

+ Hh
hg ⋆ + Hh

enh ⋆︸ ︷︷ ︸
:= Hh

⋆

Let us first consider purely elastic material behaviour. To arrive at a solid-shell
concept we addititively split the strain energy W into one part which depends only
on bζ = Fζ FTζ where Fζ is the tensor notation of F ζ = I +Hζ (I Voigt notation

of the identity tensor, index h from now on omitted) and another contribution
depending on H⋆: W = Wζ (bζ) +W⋆ (H⋆). The first summand Wζ is assumed
to have a classical non-linear form, it could e.g. be given as Neo-Hookean strain
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energy function. Futher it should be mentioned that the relation Wζ = W |ξ=η=0

holds. For the second summand we write

(4) W⋆ (H⋆) =
1

2
HT

⋆ Ael H⋆

where Ael is the classical elasticity matrix given in a nine-dimensional format.
To avoid volumetric locking the Lamé constant Λ is set equal to zero (in Ael).
The relation (4) can alternatively be represented in the six-dimensional format
W⋆ = 1

2 εT⋆ Cel ε⋆ where Cel is now the six-dimensional elasticity matrix and εT⋆ :=
{H11 ⋆, H22 ⋆, H33 ⋆, H12 ⋆ +H21 ⋆, H23 ⋆ +H32 ⋆, H31 ⋆ +H13 ⋆} an linearized strain
measure. Using the additively decomposed form of W together with (4) the first
Piola-Kirchhoff stress tensor is finally given by means of

(5) P = ∂Wζ/∂Hζ + Ael H⋆ := P ζ + Ael H⋆

Inelasticity. The situation becomes more complex in the case of inelastic
material behaviour. Restricting ourselves to isotropy it is easily understandable
that the first summand of the strain energy, Wζ , depends on be ζ = Fζ C−1

i FTζ .
Here, Ci is the so-called inelastic right Cauchy-Green tensor and plays the role
of an internal variable. It is determined by integrating an evolution equation
of the form (I) Ċi = f (C,Ci) or (II) Ċi = f (C, Ċ,Ci) depending on whether
rate-dependent (I) or rate-independent material behaviour (II) is considered.

Analogous to the choice of Wζ the second summand now reads W⋆ = 1
2 (ε⋆ −

ε⋆ i)
TCel (ε⋆ − ε⋆ i) where ε⋆ i is an inelastic strain measure. It can e.g. be con-

structed similarly to the Green-Lagrange strain tensor (Ei = 1
2 (Ci−1)). Another

possibility is the logarithmic form ln
√

Ci.
In order to arrive at a computationally efficient and simple finite element tech-

nology it is, however, suitable to express P ⋆ only in terms of H⋆. For this purpose
we solve the scalar equation

(6) (ε⋆ − ε⋆ i)
TCel (ε⋆ − ε⋆ i) = εT⋆ C in ε⋆

which contains as only unknown the so-called “inelastic” shear modulus µin (since
the Lamé constant has been set equal to zero). The stress is finally computed by
means of P = P ζ + Ain H⋆.

Note that the here presented computation of the inelastic shear modulus is
new and improves the concept proposed in Reese [4,5] where this parameter is
determined on the basis of an empirical formula.

Elimination of internal element degrees of freedom. The interpolation
of the enhanced part Henh includes nine internal element degrees of freedom to
be determined by means of solving (2) elementwise. Replacing everywhere the
Jacobi matrix by its value in the centre of the element we finally arrive at a linear
equation for six of the nine unknown element variables. These six variables can
be replaced by a linear expression in terms of the nodal element displacements
and therefore do not have to be determined explicitly. For the remaining three
element variables which are needed to avoid thickness locking a non-linear equation
is derived which must be solved iteratively. In the case of thin structures thickness
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locking does not play any role, the three “non-linear” enhanced degrees-of-freedom
can be neglected.

Reduced integration with hourglass stabilization. The main step is to
exploit the global weak form (1). Without any further assumption the use of
the stress relation P = P ζ + Ain H⋆ leads to the element contribution (index e)

ge1 = δUT
e (R0

u+Rhg
u +Kstab U e). In the latter relation R0

u is the constant part of

the residual force vector. Rhg
u is ζ-dependent. It can be determined by means of

a Gauss point integration in ζ-direction (two Gauss points are usually sufficient).
Kstab is the so-called hourglass stabilization matrix which is again constant within
the element and can therefore be evaluated in a separate subroutine outside of the
Gauss point loop. The form of Kstab is very similar to the one of the element
stiffness matrix in linear elasticity. However, we work with a much more sophisti-
cated nine-dimensional form of the “B” operator and the linear elasticity matrix
is replaced by Ain (see [5]).

Elimination of shear locking. Let us for the following analysis take into
account two different shear terms (Cin 44 = µin, Cin 55 = Cin 66 = b µin) in the elas-
ticity matrix (b 6= 0). An eigenvalue analysis at the element level for an rectangular
element shape (thickness T , length L, width D) shows that certain eigenvalues go
to infinity if the ratio (LD)/T 2 approaches infinity. These expressions are pro-
portional to b µin. In order to avoid the non-physical increase of these terms b is
set equal to T 2/(LD) where T is in general the smallest dimension of the element
and LD the product of the other two.

Summary. Numerical examples show that the new element formulation is well
suited for the computation of sophisticated shell problems. Locking is avoided
completely. The disadvantage of the former version of the element (documented
in [5]) is now overcome by a consistent derivation of µin.
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Discontinuous Finite Elements with Mixed and Hybrid Variables for
Elliptic and Advective–Diffusive Problems

Riccardo Sacco

(joint work with Carlo L. Bottasso, Paola Causin)

The object of the presentation is to discuss and analyze a novel finite element
formulation, namely, the Discontinuous-Petrov-Galerkin (DPG) method, for the
numerical approximation of elliptic [4, 6] and advective-diffusive boundary value
problems [5, 3].

Following the typical strategy of Discontinuous Galerkin (DG) methods [1, 2],
the DPG procedure emanates from a one-element weak formulation of the differ-
ential problem. At this level, two sets of variables are introduced, namely, mixed
variables (defined in the interior of each element) and boundary variables (defined
on element interfaces).

The interface variables are suitable Lagrangian multipliers that enforce interele-
ment continuity of the solution and of its normal derivative, thus providing the
proper connection between neighboring elements. The internal variables allow to
weakly satisfy both constitutive and equilibrium relatons, and can be eliminated in
favor of the interface variables using static condensation to end up with a system
of reduced size in the sole Lagrangian multipliers.

A stability and convergence analysis of the novel formulation are carried out
for both elliptic and advective-diffusive model problems. For these latter prob-
lems, some emphasis is devoted on the introduction and discussion of a proper
stabilization mechanism within the plain DPG formulation in order to cope with
advection-dominated flows. The properties of the resulting scheme are examined,
and it is shown how to end up with a monotone formulation satisfying a discrete
maximum principle irrespective of the value of the Péclet number.

Finally, numerical tests on several benchmark problems with strongly vary-
ing coefficients and with steep interior and boundary layers are presented and
illustrated to validate the stability and convergence performance, as well as the
flux-conservation properties of the DPG method.
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Thin Structures with Enhanced High Order Elements

Joachim Schöberl

Enhanced Assumed Strain (EAS) elements have been introduced to avoid vol-
ume and shear locking problems, and are commonly used nowadays [1, 5, 2]. We
consider the EAS technique as a convenient implementation method for realizing
selective projection operators.

EAS elements for beam and plate models are presented. In particular, we
discuss high order triangular plate elements based on a stabilization method by
Chapelle and Stenberg [3]. Their element is of order p+1 for the vertical deflection,
and of order p for the rotations (plus some bubbles). Their reduction operator is
an L2-projection into P p−1 of the main part of the shear term. Thus, the projec-
tion can be realized by the EAS technique.We propose the following modification:
Choose order p + 1 for the deflection w, but relax the continuity across edges to
[w]⊥P p, where [w] denotes the jump. The additional consistency error is bounded
by chp(h+ t), and thus optimal for the range t ≤ h. The advantage of this modi-
fication is that the global shape functions are the same for the deflection and the
rotations.

The kinematics of the plate element is translated to anisotropic 3D elements.
Since the global basis functions are the same for the deflection and for the ro-
tations, the same global basis functions can be used for all three components of
the displacement vector, what is important for curved elements and non-linear
elasticity. This is because the normal displacement of the mapped element is not
anymore the normal displacement of the reference element.

We present domain decomposition preconditioners which are robust in the plate
thickness. The key for the analysis are Fortin operators, which are robust interpo-
lation operators available for the reduced shear energy formulation. The relation
of Fortin operators and robust preconditioning was developed in [4].

Numerical examples for Reissner Mindlin plates as well as flat and curved 3D
structures are presented.
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New Research Results on Leibniz’ Calculating Machines

Erwin Stein

The lecture starts with an overview of new developments in philosophy, mathe-
matics and natural science in the 17th century, the cradle of modern science and
technology, with the beginning age of enlightenment based on a new understan-
ding of our world and the universe in the foregoing renaissance. Important new
developments in the 17th century are:

(i) The paradigmatic change from the ancient ’philosophia naturalis’ - as de-
duced from the Aristotelian school and valid until the late scholastics - into
new abstract physical theories based on consistent explanations and phys-
ical laws of axiomatic character, originating from theory-guided experi-
ments and related measurements, as postulated and achieved by Galileo
Galilei in his ’Discorsi’ and brought to a first summit by Isaac Newton in
his ’Principia’; herein the ’mechanica practica of the ’old’ is replaced by
the ’mechanica rationalis’ - the rational mechanics.

(ii) The invention of analytical geometry by René Descartes and the infinitesi-
mal calculus by Isaac Newton and Gottfried Wilhelm Leibniz

(iii) The theory of determinants by Leibniz using combinatorics and with this
the capability of solving algebraic equations and calculating power series,
e.g.

Leibniz’ ambitions for inventing, constructing and building principally new me-
chanical calculating machines are additionally motivated by his challenging project
of a ’universal science, the ’scientia generalis’ based on a new universal, logically
consistent scientific language without contradictions, the ’characteristica univer-
salis’ in connection with the ’ars inveniendi’, thus enabling a general ’calculus
logicus’. This program was intended to be developed and applied in existing and
new scientific societies, with the guiding goals ’theoria cum praxi’ and ’commune
bonum’ in order to promote science, economics and culture and moreover to im-
prove the condition of life for individuals and societies.

Without knowing the ’Pascaline’ of Blaise Pascal from 1644 for adding and
subtracting, Leibniz designed his first ’four-species- decimal calculating machine’
for adding, multiplication, subtracting and dividing in 1673 in Paris with 4/3/7
places, constructed with an axially movable carriage from place to place, moved
by a drawing spindle, and pin-wheels with radially outwards displaced cogs for
the input numbers as well as twin horn wheels between the pinwheel shafts which
are essential for the decimal carry. The 7 place result device with decimal carries
consists of:
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• recording gear wheels on the shafts of the recording wheels, driven by the
pin wheels

• single-horn wheels on the shafts of the recording wheels
• counting wheels on the shafts of the recording wheels with double func-

tions: (i) as dwelt notches for the result shafts, and (ii) for driving the
result wheels via five-bay wheels, thus completing the decimal carry

• intermediate shafts above the twin-horn wheels with five-bay wheels, five-
horn wheels and dwelt-notched wheels, each driven by a single horn in
front of a five-bay wheel.

This machine didn’t work successfully when first presented at the London Royal
Society in 1673 but appeared very impressive due to the completely new ingenious
and comprehensive concept. Unfortunately, this machine got lost.

From 1693 until the end of his life in 1716, he designed and got built by differ-
ent mechanicians two new - so called big - machines with axially movable stepped
drums instead of the former pin wheels, having 8 input-, 8 counting- and 16 result-
places. One of these machines - originating from about 1695 - survived and is
owned by the Library of Lower Saxony in Hanover, Germany, which originates
from Leibniz’ library after his death.
In the 80ies of the 20th century Nikolaus J. Lehmann, Technical University of Dres-
den, built three replicas of Leibniz’ late machine with an important correction and
improvement of the decimal carry by sequentially decreasing angles between the
two cogs of the twin horns by 35◦ each from right to left places with a maximal
angle of 171◦ at the rightest (1st) input place and a minimum angle of −171◦ at the
leftest (8th) input place. The twin horn angles of the original Leibniz machine are
90◦ ± 4◦ and thus do not yield correct decimal carries in the full available number
set in case of 8 input places. In 2004, Franz Otto Kopp and the author disco-
vered the necessity of rotating the magna rota crank (for adding or subtracting)
beyond a full 360◦ rotation with a distinct angle for completing the full decimal
carry over 8 places in the general case - if the calculating machine is strictly con-
ceived as a kinematic chain (a gear) with one rotational degree of freedom, i.e.
without taking into account free play due to imperfections (as defined by Meyer
zur Capellen) and pressing the cogs into dwelt notches of dwelt-notched wheels
at about 12◦ from 36◦ for a decimal digit by pressures onto the cog flanges. In a
research project of Karl Popp and the author, supported by the German Research
Foundation (DFG), a new robust four function machine was designed and built
with 6/6/12 places in the scale 2:1 as well as the two important parts ’stepped
drum’ and ’decimal carry’ in the scale 8:1 with all necessary corrections and some
partial optimizations, yielding the additional necessary magna rota rotation of 87◦

for 8 input places. This necessary angle is restricted by an admissible angle, de-
termined by a further adding or subtracting operation as well as - less sensitive -
a further counting of the number of operations. Unfortunately, this admissible an-
gle is clearly smaller than the necessary one in Leibniz’ and Lehmann’s machines.
One can conclude that we have designed and built in 2004/2005 the first replica of
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the four-species Leibniz machine which is fully functioning in the given number set.

Furthermore, a new functional model of Leibniz’ ’machina arithmeticae dyadi-
cae’, described in 1679, - with a carriage gliding on the double skew plane of the
result device - with 7/5/12 places for adding and multiplying - was designed in
2004 by Gerhard Weber and the author and built by Gerhard Weber, based on the
first design by Ludolf von Mackensen in 1669 and built in 1971 at the Deutsches
Museum Muniche. The new transparent and fully functioning machine has a ro-
bust construction of the release mechanism for the binary carry, using balance
springs and guideways for the down-rolling metal spheres, optimized inclinations
of the skew operating plane, a new closed transport system for the metal spheres
and indications for input and result data by rotating flags. the new construction
avoids the crucial problem of conflicts (jams) of spheres released from binary car-
ries with new down-rolling spheres according to the input data.
Both new machines fulfill the postulate for our Hanover Leibniz Exhibition: ’Leib-
niz for touching and understanding’.
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Novel FE Discretization Methods for the Computation of Strong and
Weak Discontinuities at Finite Strains

Paul Steinmann

(joint work with Julia Mergheim)

In the present contribution a discontinuous finite element method for the compu-
tational modelling of strong and weak discontinuities in geometrically nonlinear
elasticity is introduced. Thereby we denote with ’strong discontinuities’ jumps in
the deformation map, for example cracks, and with ’weak discontinuities’ jumps in
the deformation gradient, which occur e.g. at material interfaces. The location of
the interface is independent of the mesh structure and therefore discontinuous ele-
ments are introduced, to capture the jump in the deformation map or its gradient,
respectively. The presented method is closely related to the approach suggested
by Hansbo and Hansbo in [1] and [2], where an unfitted finite element method was
introduced to simulate strong and weak discontinuities, by means of an extended
version of Nitsche’s method [3].
In the present approach a variational formulation based on the principle of station-
ary potential energy is derived for both, the modelling of strong and weak discon-
tinuities. To model strong discontinuities the cohesive crack concept is adopted.
The inelastic material behaviour is covered by a cohesive constitutive law, which
associates the cohesive tractions, acting on the crack surfaces, with the jump in
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the deformation map.
If weak discontinuities, for example material interfaces or inclusions, are consid-
ered, the deformation map shall be continuous but its gradient can posses a jump
along the interface. Since the same discontinuous elements are used, the continu-
ity of the deformation map has to be ensured. Therefore a finite element method,
based on Nitsche’s method, for geometrically nonlinear elasticity is formulated.
By means of Nitsche’s method the continuity of the deformation map is ensured
in a weak sense, but the discontinuous element formulation allows for jumps of its
gradient.
We consider a body B which is divided by a discontinuity Γ into the parts B1

and B2. The associated normal vector N points from B2 to B1. We consider
a nonlinear and non-continuous deformation map ϕ, which maps the body from
the reference configuration to its spatial configuration. The deformation map as
well as its gradient and the related strain measures are defined separately for each
continuous part of the body

(1) ϕ(X) =

{
ϕ1(X) : B1 → S1

ϕ2(X) : B2 → S2 F =

{
F 1 = ∇Xϕ1

F 2 = ∇Xϕ2.

The variational formulation, concerning strong discontinuities, is given by

(2) δΠ(ϕ, δϕ) =

∫

B

δF : P dV +

∫

Γ

[[δϕ]] · t̄0([[ϕ]]) dĀ −
∫

∂BN

δϕ · t0 dA = 0,

whereby P denotes the Piola stress tensor, which is derived from the strain energy
function by P = ∂Ψ(F )/∂F . The additional interfacial contribution is due to the
cohesive traction vector t̄0 = ∂Ψ̄([[ϕ]])/∂[[ϕ]], which is calculated as the derivative
of the cohesive potential with respect to the jump in the deformation map.
For the bulk material we assume hyperelastic material behaviour of a compressible
Neo-Hooke type. Since we want the cohesive potential to depend only on the jump
in the deformation map, we introduce the following cohesive potential which leads
to the traction-separation law and results in a symmetric formulation

(3) Ψ̄([[ϕ]]) =
α

β
[1 − exp (−β |[[ϕ]]|)] t̄0 = α exp (−β |[[ϕ]]|) [[ϕ]]

|[[ϕ]]| .

Thereby α and β are material parameter.
The variational formulation for the case of weak discontinuities contains additional
interfacial contributions due to Nitsche’s method and is introduced as

(4)

δΠ(ϕ, δϕ) =

∫

B

δF : P dV+

∫

Γ

[[δϕ]] · {P } · NdĀ+

∫

Γ

[[ϕ]] · {A : δF } · NdĀ

+

∫

Γ

θ [[δϕ]] · [[ϕ]]dĀ −
∫

∂BN

δϕ · t0 dA = 0,

whereby the tangent operator A is calculated as the second derivative of Ψ with
respect to F . The scalar θ is a penalty parameter, which depends on the dis-
cretization and has to be sufficiently large to assure the stability of the method.



302 Oberwolfach Report 5/2005

The weak governing equations are solved using finite elements which allow for a
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Figure 1. Split of linear triangular element

jump in the deformation map. In the discontinuous elements additional displace-
ment degrees of freedom are introduced at the existing nodes. Two independent
copies of the standard basis functions are used, one set is put to zero on one side
of the discontinuity, while it takes its usual values on the opposite side, and vice
versa for the other set. Figure (1) highlights the construction of a discontinuous
linear triangular element.
Finally the applicability of the method for the mesh-independent modelling of
strong and weak discontinuities is highlighted by means of numerical examples.
For the simulation of strong discontinuities a stress-based crack propagation cri-
terion is adopted. As representative examples a symmetric peel test is considered,
see figure (2) and a plate with a soft circular inclusion, compare figure (3). The

Figure 2. symmetric
peel test
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0.8

1

1.2

Figure 3. deforma-
tion and strain in a
plate with soft circular
inclusion

present approach can be considered as a methodically unified framework for the
modelling of strong and weak discontinuities, since the same discretization is used,
which implies the formulation of the discontinuous elements, and the variational
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formulations differ only in the additional interface contributions due to the cohe-
sive crack concept and Nitsche’s method respectively.
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Formulation of robust shell elements on the basis of mixed variational
principles

Werner Wagner

(joint work with Friedrich Gruttmann)

In this paper a refined quadrilateral shell element based on a mixed formulation
is presented. Assuming a Reissner–Mindlin kinematic with inextensible director
the shell strains are derived from the Green–Lagrangean strain tensor and lead
to strains εG(v), see e.g. [1], where v denotes the displacement field. The ref-
erence surface of the shell is loaded with surface loads p̄ and boundary loads t̄.
Hence the variational formulation is introduced using a Hu–Washizu functional
with independent displacements v, strains ε and stress resultants σ as follows

(1) Π(v,σ, ε) =

∫

(Ω)

[W (ε)+ σT (εG(v)− ε)] dV −
∫

(Ω)

vT p̄ dV −
∫

(Γσ)

vT t̄ dA→ stat.

The strain energy function W is a function of the independent strain field and is
specified for nonlinear elastic and inelastic material behaviour. Thus, the station-
ary condition is approximated within the finite element method and iteratively
solved using Newtons method. For this purpose the position vectors X, x and
the displacement vector u of the mid-surface as well as the director vectors D
and d are interpolated with bilinear functions NI = 1/4(1 + ξIξ)(1 + ηIη) with
ξI ∈ {−1, 1, 1,−1} and ηI ∈ {−1,−1, 1, 1}. Based on the shell theory C0-
continuity is assumed for the displacements. The element formulation allows the
consideration of finite rotations. For the independent strain ε and stress resultant
field σ we assume C−1-continuity, which means that associated variables are de-
fined only on element level. The interpolation functions for the membrane forces
and bending moments are chosen according to [2]. The independent field of stress
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resultants σ is approximated as follows

(2)

σh = [18, Ñσ] σ̂ Ñσ =




Nm
σ 0 0
0 Nb

σ 0
0 0 Ns

σ




Nm
σ = Nb

σ = T0
σ




η − η̄ 0

0 ξ − ξ̄

0 0


 Ns

σ = T̃0
σ




η − η̄ 0

0 ξ − ξ̄





where the matrices T0
σ and T̃0

σ describe the transformation of contravariant tensor
components to the local cartesian coordinate system at the element center using
the components J0

αβ = Jαβ(ξ = 0, η = 0) of the Jacobian matrix J evaluated at the

element center. The constants ξ̄ and η̄ are introduced to obtain decoupled matrices
in the mixed formulation and denote the coordinates of the center of gravity of
the element. The approximation of the strain field ε is chosen in a similar way.
Restrictions concerning fulfilment of the patch test and stability are discussed. The
developed mixed hybrid shell element possesses the correct rank and fulfills the in–
plane and bending patch test. For geometrical and material linearity the element
matrices can be integrated analytically and lead to a fast and effective stiffness
computation, [3]. For the nonlinear case numerical integration is applied. The
formulation is illustrated by several numerical examples which include bifurcation
and post–buckling response as well as inelastic computations. The essential feature
of the new element is the robustness in the equilibrium iterations. It allows very
large load steps in comparison to other element formulations.

z

2F yx
2F

Figure 1. Hemispherical shell and deformed mesh for F=100

EXAMPLE: Hemispherical Shell with a 18 hole
The hemispherical shell with a 18 hole under opposite loads is a standard exam-

ple in linear and nonlinear shell analysis. A quarter of the shell is modelled with
16×16 elements using symmetry conditions, see Fig. 1. The material properties
are E = 6.825 ·107 and ν = 0.3, the radius is R = 10 and the thickness is t = 0.04.
The complete load deflection curve for a 16 × 16 mesh is presented in Fig. 2.
Results for the present element – which are nearly identical with the EAS–shell
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Figure 2. Load versus deflection for the hemispherical shell

[4] – show a very good agreement with those reported in [5]. Starting with F=0
a maximum load step of 40 is possible with the EAS–shell [4]. For this load step
the norm of the residual vector within the equilibrium iteration is given in Tab. 1
and shows the superior behaviour of the new element. It is important to note that
the relative large number of 19 iterations occur for a finite rotation element along
with large rigid body motions and is not a consequence of the enhanced strain
formulation. Moreover, the total load of 100 can be calculated using the present
element in one load step with 17 iterations.

Table 1. Comparison of iteration behaviour for load F: 0 → 40

Iterat. EAS-shell [4] present element

1 5.6568542E+01 5.6568542E+01
2 2.7885600E+06 2.8374888E+06
3 4.6613004E+05 3.3241348E+05
4 1.9427725E+05 2.4512080E+04
5 6.7170299E+04 2.8536896E+02
6 2.6142653E+04 4.5611620E-02
7 1.3555091E+04 1.5785771E-08
8 3.5529025E+03
9 5.5833012E+03

10 9.2807935E+02
11 4.6902795E+03
12 2.0239489E+02
13 2.2367207E+03
14 1.4962903E+01
15 2.2588811E+03
16 9.1847138E-01
17 1.4030970E+01
18 5.8607442E-04
19 9.5610236E-06
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Finite-Element Simulation of Failure of Materials under
Shock-Loading Conditions

Kerstin Weinberg

(joint work with Michael Ortiz and Alejandro Mota)

The goal of our work is to enable finite-element simulations of structural compo-
nents loaded up to their limit load in a rapid regime. Typical are situations of
shock-loaded metals and metal alloys but even human tissue may be subjected to
shock waves during medical treatment. In this paper we focus on the simulation
of failure of ductile metals. Most metals and alloys contain a certain amount of
arbitrarily distributed cavities, with their growth and finally coalescence being
the basic failure mechanism in ductile fracture. Typically the size of the cavities
(voids) is small compared to the size of the body, and their distribution is defined
by a characteristic function χ = χ(x), x ∈ R3. The spatial average over the current
volume of the body V defines the void volume fraction or porosity

(1) f =
1

V

∫

V

χ(x) dx,

which is, for typical engineering materials, initially in the range of 10−2 to 10−4. It
is known from experiments that the voids start to coalesce and eventually ductile
failure occurs when the porosity of the material reaches values from 0.1 to 0.3 (cf.
[4] and references therein).

In the following we sketch a variational constitutive model for porous plastic ma-
terials under static and dynamic loading conditions. The constitutive framework
used here is based on a multiplicative decomposition of the deformation gradient
into an elastic part and an inelastic part, and on a conventional internal-variable
formulation of continuum thermodynamics. Using a relatively simple dilute model
we link the mechanism of plastic expansion and global softening of the material
to parameters which describe the micromechanical mechanisms of void growth;
avoiding altogether the need of macroscopic failure criteria.
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The thermo-mechanical response of the solids considered here is characterized
by a free-energy density per unit undeformed volume of the form

(2) A = A(F ,F p, ǫp, θp, T ),

where F is the deformation gradient, F p and F e = FF p−1 are the plastic part
and the elastic part of the deformation gradient, respectively, ǫp ≥ 0 is an effective
deviatoric plastic strain, θp ≥ 0 is an effective volumetric plastic strain, T is the
absolute temperature. Analogously, the kinetic equations are derived from a rate
potential,

(3) ψ∗ = ψ∗(Ḟ
p
, ǫ̇p, θ̇p, T ).

The plastic deformation rate is assumed to obey the flow rule

(4) Ḟ
p
F p−1 = ǫ̇pM + θ̇pN ,

where ǫ̇p and θ̇p are subject to the irreversibility constraints

(5) ǫ̇p ≥ 0, θ̇p ≥ 0,

and the tensors M and N set the direction of the deviatoric and volumetric plastic
deformation rates, respectively. They are assumed to satisfy

(6) trM = 0, M · M =
3

2
, N = ±1

3
I,

with the plus sign in N corresponding to void expansion, and the minus sign to void
collapse. The tensors M and N are otherwise unknown and are to be determined
as part of the solution. The constraints (6) may be regarded as defining the
assumed kinematics of plastic deformation. The direction of plastic deformation, as
determined by M and N , follows from the variational structure of the constitutive
update in a manner which generalizes the principle of maximum dissipation, cf.
[2, 3].

For purely volumetric deformations the flow rule (4) reduces to

(7)
d

dt
log Jp = trN θ̇p = ±θ̇p,

where Jp is the Jacobian of the plastic deformation gradient, Jp = detF p. From
(7) we find

(8) θ̇p =

∣∣∣∣
d

dt
log Jp

∣∣∣∣ , θp(t) = θp(0) +

∫ t

0

θ̇p(ξ) dξ,

i.e., the variable θp is a measure of the accumulated volumetric plastic deformation.
Evidently, θp and log Jp coincide up to a constant for monotonic expansion, but
the distinction between the two variables becomes important for arbitrary loading
combining alternating phases of void expansion and collapse.
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We apply an incremental solution procedure with time intervals [tn, tn+1]. For
every t ∈ [tn, tn+1] we introduce the power functional

Φ[ϕ̇, ǫ̇p, θ̇p,M ,N ] =

∫

B

[
Ȧ+ ψ∗ −

(
∂L

∂F p − d

dt

∂L

∂Ḟ
p

)
· Ḟ p

]
dV−

∫

B

ρ0(B − ϕ̈) · ϕ̇ dV −
∫

∂2B

¯· ϕ̇ dS.

(9)

where F p, ǫp, θp, M and N are now regarded as fields over the body B during
deformation ϕ and supposed to body force and surface traction loads B and T .

The plastic deformation Ḟ
p

is determined by ǫ̇p, θ̇p, M and N through the flow
rule (4). In difference to the classical (static) approach we assume that the kinetic
energy of the body may be written as a sum of the macroscopic inertia and the mi-
croinertia attendant to plastic deformation during rapid void growth. The latter,

formulated as a function L = L(Ḟ
p
,F p) induces by variation the term in paren-

thesis in equation (9). This term may be regarded as an additional stress acting
on F p, arising from microinertia. For more details on the variational formulation
of the dynamic problem and on the kinematics of void growth we refer to [5].

An example of the capability of the method is the simulation of the forced
expansion and ductile fracture and fragmentation of U-6%Nb rings. An outward
radial force is applied to the rings by a driver ring, which in turn interacts with
a solenoid. When current is applied to the solenoid, a magnetic force is induced
in the driver ring creating a sudden uniform radial body force. The rings are thus
forced to expand and eventually fracture dynamically. The U-6%Nb rings have an
inner diameter of 34.37mm, and a thickness of 0.76mm.

The process is modelled by using the porous plasticity model in conjunction with
the strain localization model developed by Yang et al. [6], which is specially well-
suited for the simulation of nucleation and propagation of ductile fracture. The
finite element mesh used in our simulations is shown in Figure 1 (initially 2634
nodes, 882 tetrahedral elements). The nucleation and propagation of fracture is

ǫp

Figure 1. Finite element mesh for the U-6%Nb ring and frag-
mentation of the ring at 90µs.

simulated by adaptively inserting surface-like strain localization elements between
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bulk elements. Figure 1 shows the fragmentation that begins after around 30µs at
a final time of 90µs. The number of major fragments obtained in the simulation
is 26, compared to 19 fragments as observed in experiments [1].
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Mixed finite elements for elasticity; a constructive approach

Ragnar Winther

(joint work with Douglas N. Arnold, Richard S. Falk)

The purpose of this talk is to derive a connection between discrete de Rham
complexes and corresponding discrete elasticity complexes, and to utilize this con-
nection to derive new mixed finite elements for linear elasticity.

If Ω is a three dimensional domain then the de Rham complex corresponds to
the sequence of maps

R
⊂−−−−→ C∞ grad−−−−→ C∞(R3)

curl−−−−→ C∞(R3)
div−−−−→ C∞ −−−−→ 0.

Here C∞ is the space of smooth real valued functions on Ω, while C∞(R3) denotes
the space of smooth functions on Ω with values in R3. We recall that the state-
ment that this sequence is a complex simply means that the composition of two
succeeding maps is identical zero. Furthermore, if Ω is contractible this is an exact
complex, i.e., the range of each map is exactly the null space of the succeeding
map. A corresponding discrete de Rham complex is of the form

R
⊂−−−−→ Sh

grad−−−−→ Zh
curl−−−−→ Vh

div−−−−→ Qh −−−−→ 0,

where the spaces Sh, Zh, Vh, and Qh are suitable finite element spaces.
It is well–known by now that there is a close connection between discrete de

Rham complexes and the construction of mixed finite element methods for second
order elliptic problems. It can be argued that there is a similar connection be-
tween mixed finite element methods for elasticity, i.e., methods derived from the
Hellinger–Reissner variational principle, and a corresponding elasticity complex.
This complex takes the form

RM
⊂−−−−→ C∞(R3)

ǫ−−−−→ C∞(S)
J−−−−→ C∞(S)

div−−−−→ C∞(R3) −−−−→ 0.
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Here RM is the six dinensional space of rigid motions, and C∞(S) denotes the
space of smooth maps on Ω with values in the set of symmetric matrices, S. The
operator ǫ is the symmetric part of the gradient operator, while the divergence
operator, div, is applied row–wise on matrix valued functions. Finally, J denotes
the second order operator obtained by first taking curl of each row, followed by
applying the curl operator to each column. This operator maps C∞(S) into itself.

In [2] it is described how the elasticity complex is connected to the de Rham
complex via the Bernstein–Gelfand–Gelfand resolution. In this talk we discuss
how we can obtain discrete elasticity complexes, from known discrete de Rham
complexes, by mimicking the Bernstein–Gelfand–Gelfand procedure in the dis-
crete case. As a result, new and simple mixed elasticity elements are constructed.
In particular, for the mixed finite element formulation with weakly imposed sym-
metry, as in [1], we construct stable elements consisting of only piecewise linear
stresses, and piecewise constant displacements. These finite element spaces appear
to be simpler than those proposed previously.
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Finite element methods for nearly incompressible elasticity based on
Hu-Washizu formulation

Barbara I. Wohlmuth

(joint work with J. K. Djoko, B. P. Lamichhane and B. D. Reddy)

The classical three-field Hu-Washizu mixed formulation for problems in elasticity
is examined afresh through a modified formulation, with the emphasis on behavior
in the incompressible limit. This new formulation is parameterized by a scalar α,
with α = 1 corresponding to the standard Hu-Washizu formulation. It is shown
that, provided that α 6= −µ/λ, where µ and λ are the Lamé parameters in elas-
ticity, the continuous problem has a unique solution, with α- and λ-independent
bounds on the solution. Finite element approximations on planar domains are
considered, in which the displacements are approximated on quadrilaterals by
piecewise-bilinear functions. For these classes of discrete problems, conditions for
uniform convergence are made explicit. These conditions are shown to be met by
particular choices of approximations based on quadrilateral elements, and include
bases that are well-known as well as newly constructed bases.

The standard Hu-Washizu formulation is obtained by considering the consti-
tutive equation, the strain-displacement equation and the equation of equilib-
rium in a weak form. For the linear elastic body in Ω ⊂ R2, the modified
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formulation depending on α := α(µ, λ) considered in in [5] is given by: find
(uh,dh,σh) ∈ Vh ×Dh × Sh ⊂ H1(Ω)2 × L2(Ω)2×2 × L2(Ω)2×2 such that

aα((uh,dh), (vh, eh)) + bα((vh, eh),σh) = ℓ(vh), (vh, eh) ∈ Vh ×Dh,

bα((uh,dh), τ h) − (1−α)λ
4(µ+λ)2 c(σh, τ h) = 0, τ h ∈ Sh,

where the bilinear forms are defined by

aα((uh,dh), (vh, eh)) := 2µ(dh, eh)0 + αλ(tr dh, treh)0,

bα((vh, eh),σh) := (ε(vh) − 2µ C−1eh,σh)0 −
αλ

2(µ+ λ)
(tr σh, tr eh)0,

c(σh, τh) := (tr σh, tr τ h)0.

Utilizing the Voigt notation, the spaces Sh and Dh are generated from bases S�

and D� defined on K̂ := (−1, 1)2. Defining

I := span

2
4

1 0 0
0 1 0
0 0 1

3
5 , A := span

2
4
ŷ 0
0 x̂
0 0

3
5 , B := span

2
4
x̂ 0
0 ŷ
0 0

3
5 , C := span

2
4

0 0
0 0
x̂ ŷ

3
5 ,

some interesting choices of (Sih, D
i
h), 1 ≤ i ≤ 5 are:

Table 2. Different cases for the discrete spaces

Case I II III IV V
S� I + A I + A I + C I + A+ C I + A+ C

D� I + A I + A+B I + C I + A+ C I + A+B + C

S1
h = D1

h S2
h ⊂ D2

h S3
h = D3

h S4
h = D4

h S5
h ⊂ D5

h

Case II corresponds to the method of mixed enhanced strains [3, 4] while Case
V corresponds to the method of enhanced assumed strains [6].

While the spherical part of the stress might be polluted by checkerboard modes,
as in the case of the Q1 − P0 element, see also [2], it is shown in [5] that the error
in displacement satisfies a λ-independent a priori error estimate, and an optimal
a priori error estimate for the post-processed stress is established. The degrees
of freedom corresponding to stresses and strains are defined only element-wise,
and can easily be condensed out from the system. The theoretical analysis is
carried out for this statically condensed displacement-based formulation. Since
the discrete solutions for Cases I and IV depend on α, explicit bounds on α are
presented for the λ-independent error estimates.
Numerical Results:

We illustrate the performance of the formulation for isotropic and nearly incom-
pressible materials in plane strain, in two numerical tests. The implementation is
based on the finite element toolbox UG, [1].
Example 1: Cook’s membrane problem

In this popular benchmark problem [6, 3], we set Ω := conv{(0, 0), (48, 44), (48, 60), (0, 44)},
where convξ is the convex hull of the set ξ. The left boundary of the tapered panel
Ω is clamped, and the right one is subjected to an in-plane shearing load of 100N
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T

16

44

48

100N
1000

1000

A

Figure 1. (a) Cook’s membrane problem with initial triangula-
tion; (b) the square beam problem with a mesh of four squares

along the y-direction, as shown in Figure 1(a). The material properties are taken to
be E = 250 and ν = 0.4999, so that a nearly incompressible response is obtained.

The vertical tip displacement at the point T is computed for the different cases
in Table 2, for different levels of uniform refinement, starting with the initial
triangulation shown in Figure 1 (a). As can be seen from Table 3, the standard
displacement approach and standard Hu-Washizu formulation (α = 1) with stress
and strain spaces given in Cases I and IV exhibit locking whereas all other cases
show rapid convergence.

Table 3. Vertical tip displacement at point T, Example 1

α = 1 α independent α = µ

4λ
α = −

µ

4λ
α = 0 Q1-P0

lev Q1 I II III V I IV I IV I IV

0 2.00 2.00 4.00 4.58 3.15 2.93 2.70 3.18 2.82 3.04 2.75 3.01

1 2.07 2.08 5.40 5.64 4.42 4.18 3.76 4.53 3.97 4.34 3.86 4.31

2 2.10 2.12 6.73 7.02 6.24 5.93 5.60 6.20 5.83 6.06 5.71 6.28

3 2.15 2.22 7.59 7.52 7.17 7.00 6.85 7.13 6.97 7.06 6.91 7.21

4 2.32 2.54 7.59 7.68 7.53 7.45 7.40 7.50 7.45 7.48 7.42 7.55

5 2.84 3.39 7.69 7.73 7.67 7.63 7.62 7.66 7.64 7.64 7.63 7.68

6 4.03 4.94 7.74 7.75 7.73 7.71 7.70 7.72 7.71 7.71 7.71 7.73

Example 2: Square beam
In the second example, we illustrate the dependence of the numerical solution

uh on α. Here, we consider the domain Ω := (0, 2) × (0, 2), which is fixed in the
x-direction at the point (0, 2) and fixed in both directions at the origin. A linearly
varying horizontal force is applied in the x-direction along the boundary x = 2,
with resultant point forces p = 1000 at (2, 0) and p = −1000 at (2, 2) (Figure 1
(b)).

In Figure 2 the absolute error of the vertical tip displacement at A versus αλ
2µ

has been shown. The left picture shows the Case IV and the right pictures shows
the Case I with E = 1500 and ν = 0.4999. As can be seen from Figure 2, the
locking effect increases with αλ, and the optimal α is negative.
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Figure 2. Error of the vertical tip displacement at A versus αλ2µ ∈
[−1, 1], Case IV (left) and Case I (right)
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