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Introduction by the Organisers

The workshop was well attended with about 50 participants from many conti-
nents. The core group was from the representation theory of algebras, with several
experts from related areas.

The previous Oberwolfach meeting devoted to representations of finite-dimen-
sional (associative) algebras took place in 2000. After discussions with the then
director, we decided to shift the activities to other mathematical centers. We are
grateful to the new director who convinced us that all parts of active mathematical
research are again welcome at Oberwolfach.

The 2005 Oberwolfach meeting was preceded by a two days conference held
at Bielefeld with the title Perspectives in Mathematics: Algebras and Represen-
tations. The lectures at Bielefeld provided outlines of new developments. They
were given by J. F. Carlson (Athens), W. W. Crawley-Boevey (Leeds), S. Iyen-
gar (Lincoln), J. C. Jantzen (Aarhus), M. Reineke (Münster), I. Reiten (Trond-
heim), R. Rouquier (Paris, New Haven), J. Schröer (Leeds), Jie Xiao (Beijing), A.
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Zelevinsky (Boston), and E. Zelmanov (San Diego). Since most of the Oberwol-
fach participants took part in the Bielefeld conference, it was possible to arrange
the Oberwolfach schedule in a complementary way.

By now, the usefulness of methods and results from the representation theory
of algebras is well-known. In particular, the notion of a quiver, its representations
and the corresponding quiver varieties have become quite popular in many parts
of mathematics. In this way, there have been a lot of interactions between the
representation theory of algebras and other areas. A main focus of this meeting
was to promote the interaction with such areas, and most of the talks dealt with
topics of general interest.

One of the important connections with other areas is given by the Hall algebras
and their connection with quantum groups. Recent developments in this area,
partially inspired also by work of Drinfeld, were presented by Hubery and by
Keller. The latter report was based on a recent construction of Toën.

The cluster algebras introduced by Fomin–Zelevinsky have had a lot of influ-
ence on various parts of algebra, including representation theory of algebras. Some
recent investigations on quantum cluster algebras were presented by Zelevinsky,
with challenging questions about further connections with finite dimensional al-
gebras. The work on cluster algebras inspired work on what are called cluster
categories and cluster tilted algebras, which gives some feedback on the theory of
cluster algebras, in particular in the acyclic case. This was discussed in talks by
Marsh and Buan. The cluster tilted algebras are of interest for several reasons:
they provide a new class of algebras whose representation theory is controlled by
a quadratic form, and they shed light on the tilted algebras themselves: any tilted
algebra is the factor algebra of a corresponding cluster tilted algebra. Further re-
lationship between cluster algebras and finite dimensional preprojective algebras
was discussed by Geiß.

The cluster categories are Calabi-Yau categories of dimension 2 (and related
categories give arbitrary dimensions). They contain the stable categories of pre-
projective algebras of finite type, and such stable categories are Calabi-Yau of
dimension 2 for finite dimensional preprojective algebras in general. This has put
an emphasis on the study of Calabi-Yau categories and their dimensions for cate-
gories related to finite dimensional algebras, in particular for stable categories of
selfinjective algebras. Results of this nature were discussed by Erdmann. Iyama’s
higher analogue of almost split sequences in maximal n-orthogonal subcategories
is also related to this, and his talk dealt with complements in Calabi-Yau cate-
gories. There are interesting examples in commutative ring theory, as discussed
by Yoshino. With many experts on areas where Calabi-Yau categories appear, an
evening session was organized to provide a survey on Calabi-Yau phenomena, with
contributions by Buchweitz, Geiß, Hille, Lenzing, Neeman and Van den Bergh. A
wide range of topics was touched, for example mirror symmetry and reflexive
polytopes, A∞ categories, elliptic curves. Three short abstracts concerning these
evening lectures are included at the end of the report.
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Derived and triangulated categories were also discussed from other points of
view, in connection with coherent sheaves by Burban, infinitesimal deformations
by Keller, thick subcategories by Krause, and with homotopy categories of pro-
jectives and of injectives by Iyengar. And we have to mention here the various
aspects of Koszul duality. The corresponding Koszul algebras are a topic of central
interest. Questions concerning Koszul algebras were discussed by Mart́ınez-Villa,
Martsinkovsky, Green, and Zacharia.

An important collection of problems in finite dimensional algebra theory are the
homological conjectures, including the finitistic dimension conjecture, the (gener-
alized) Nakayama conjecture and the Gorenstein symmetry conjecture. Some of
these problems are of interest also in commutative algebra. A survey, along with
new ideas for attacking the first conjecture, was given by Xi, and ideas for the
Gorenstein symmetry conjecture by Beligiannis. A simple counterexample to a
more general conjecture of Auslander was presented by Smalø. Here, a first ex-
ample was given within commutative algebra. A related homological conjecture
is the conjecture of Happel, that the eventual vanishing of Hochschild cohomol-
ogy implies finite global dimension, where a counterexample was given in the
talk by Green. Homological techniques in commutative algebra were discussed by
Avramov.

Various aspects of quiver representations were dealt with in talks by Reineke
and Buchweitz, and de la Peña discussed problems related to spectral radii. Ap-
plications of techniques and results for proving finite, tame or wild representation
type were given by Schmidmeier and Farnsteiner.

The workshop presented a vivid picture of the present state of the art. And
it provided a clear sight of the many still open problems, and on methods which
may be helpful to attack them. We are sure that the interaction between the
participants will lead to further progress in the coming years.

We thank Angela Holtmann (Bielefeld) for her careful preparation of this report.

Trondheim and Bielefeld, May 16th, 2005
Idun Reiten, Claus Michael Ringel
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Abstracts

The Calabi-Yau dimension of tame symmetric algebras

Karin Erdmann

(joint work with Andrzej Skowroński)

Let K be a field and T a K-linear triangulated category which has Serre duality,
that is there is a triangle functor S such that DHomT (X,−) ∼= HomT (−, SX)
for each object X in T . By a definition of Kontsevich [8], T is Calabi-Yau if S is
isomorphic to some power of the shift of T , if so, then the CY-dimension is the
minimal d ≥ 0 such that S is isomorphic to [d] (see also [7]).

Let A be a finite-dimensional selfinjective algebra over K and assume that K is
algebraically closed. The stable category mod(A) is triangulated, with shift given
by Ω−1, which is the inverse of the functor which sends a module M to the kernel
Ω(M) of a minimal projective cover. The stable category mod(A) has Serre duality
given by Ω◦ν. Here ν is the Nakayama functor ν = DHomA(−, A). Then mod(A)
is Calabi-Yau of CY-dimension d if d ≥ 0 is minimal such Ω ◦ ν is isomorphic to
Ω−d. When A is symmetric, Ω ◦ ν ∼= Ω−d if and only if Ωd+1 is isomorphic to the
identity on mod(A).

Suppose A is symmetric. If mod(A) has finite CY-dimension then it is necessary
that all simple A-modules are Ω-periodic. Recently we completed classifying tame
symmetric algebras which have only Ω-periodic simple modules [4]. These are
precisely the algebras whose connected components are, up to Morita equivalence,

(1) symmetric algebras of Dynkin type;
(2) symmetric algebras of tubular type;
(3) algebras of quaternion type;
(4) socle deformations of algebras in (1) or (2).

The algebras in (1) and (2) are of the form B̂/(ϕ) where B̂ is the repetitive
algebra of B and ϕ is an appropriate root of the Nakayama automorphism νB̂ .
Here the algebras B are tilted of Dynkin type (in (1)), or of tubular type (in (2));
for details and further references see [3]. An algebra A is of quaternion type if
it is connected, tame and symmetric with non-singular Cartan matrix, and such
that all indecomposable non-projective A-modules are periodic of period ≤ 4. Any
such algebra belongs, up to Morita equivalence, to a small list, explicitly given by
quivers and relations [2].

These algebras have been known and studied extensively over the last years. In
[4] we show that these are all tame symmetric algebras with only periodic simple
modules. Moreover, we have:

Theorem 1. Assume A is tame and symmetric. Then mod(A) has finite CY-
dimension if and only if A is one of the algebras in this list.

This is proved in [3]. In each case, we determine the Calabi-Yau dimension of
mod(A) explicitly. For algebras as in (1) the CY-dimension is given by a formula
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involving the Coxeter number of the associated Dynkin diagram, and it turns out
that all integers can occur. These are the symmetric algebras of finite type. As a
contrast, for selfinjective algebras of finite type, the stable category need not have
finite CY-dimension. For the algebras in (2) the CY-dimensions are precisely the
prime numbers 2, 3, 5, 7 and 11.

If A is an algebra of quaternion type, then the stable module category has CY-
dimension 3. As the main part of the proof, we show, using [6], that all derived
equivalence classes of such algebras, except for a few (which are of tubular type),
contain an algebra which has a periodic bimodule resolution of period 4. As a
consequence we can complete the classification of algebras of quaternion type.
Namely it follows that for the algebras in the list given in [2], all indecomposable
non-projective modules have Ω-period at most 4.

Furthermore, we study arbitrary selfinjective algebras A such that mod(A) has
CY-dimension 2. For this to happen it is necessary that every simple A-module S
satisfies ν(S) ∼= Ω−3(S); and algebras with this property were studied in [1]. The
main result is:

Theorem 2 ([1]). Let A be a connected finite-dimensional selfinjective algebra.
Then the following are equivalent:

(a) Every simple A-module S satisfies ν(S) ∼= Ω−3(S);
(b) A is either generalized preprojective, i. e. A is Morita equivalent to P (∆)

with ∆ either Dynkin of type ADE, or of type L, or A is Morita equivalent
to a certain deformation P f (∆).

Moreover, any such algebra has a periodic bimodule resolution.

The preprojective algebra P (∆) for ∆ a Dynkin graph has quiver Q∆ obtained
from ∆ by replacing each edge by a pair of vertices, one in each direction, denoted
by a and ā, setting ¯̄a = a. Then P (∆) = KQ∆/I where I is the ideal of the path
algebra generated by all relations of the form

∑

a,ia=v

aā (v a vertex of Q∆).

The algebra P (Ln), which we call generalized preprojective, is defined similarly.
Its quiver is obtained from QAn

by by attaching a loop, ε say, to one of the end
vertices. We set ε̄ = ε and define P (Ln) by the same relations as the preprojective
algebras; see also [7]. The algebras P f (∆) are deformations of P (∆) where only the
relation at the branch vertex (or at the loop) is deformed. The precise definition is
given in [1]. This theorem is proved by exploiting subadditive functions, as studied
in [5].

The stable category of an algebra P (∆) in the Dynkin case is known to have
CY-dimension 2; and for ∆ = Ln this also holds. Our theorem implies that the
stable categories of the deformed algebras P f (∆) have finite CY-dimension. We
do not know at present whether they also have CY-dimension 2.
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[4] K. Erdmann, A. Skowroński, Classification of tame symmetric algebras with only periodic
modules. In preparation.

[5] D. Happel, U. Preiser, C.M. Ringel, Binary polyhedral groups and Euclidean diagrams, Man-
uscripta Math. 31 (1980), 317-329.

[6] T. Holm, Derived equivalence classification of algebras of dihedral, semidihedral and quater-
nion type, J. Algebra 211 (1999), 159-205.

[7] B. Keller, On triangulated orbit categories. Preprint 2005.
[8] M. Kontsevitch, Triangulated categories and geometry. Course at the ENS Paris, notes taken

by J. Bellaiche, J.F. Dat, I. Marin, G. Racinet, H. Randriambolona, 1998.

On the growth of the Coxeter transformations of derived-hereditary
algebras

José Antonio de la Peña

(joint work with Helmut Lenzing)

For a finite dimensional k-algebra A of finite global dimension, the Coxeter trans-
formation ϕA is an automorphism of the Grothendieck group K0(A). Moreover,
for any complex X• in the bounded derived category D(A) := Db(modA) of finite
dimensional A-modules, we have [X•]ϕA = [τD(A)X

•], where τD(A) is the auto-
morphism of D(A) given by the Auslander-Reiten translation. The characteristic
polynomial χA(T ) of ϕA, called the Coxeter polynomial and the corresponding
spectral radius ρ(ϕA) = {‖λ‖ : λ ∈ SpecϕA} control the growth behavior of ϕA

and hence of τD(A). Clearly, χA and ρ(ϕA) are invariant under derived equiva-
lences of the algebra A and provide natural links between the representation theory
of finite dimensional algebras and other theories: the theory of Lie algebras, the
theory of C∗-algebras, the spectral theory of graphs and the theory of knots and
links, among other topics.

In the representation theory of algebras several cases have been extensively

studied. For a hereditary algebra A = k[~∆] associated to a finite quiver ~∆ without
oriented cycles, either ∆ is Dynkin or affine and ρ(ϕA) = 1, or A is of wild type and
ρ(ϕA) is a simple root of the Coxeter polynomial; moreover, if A is wild for any non-
preprojective indecomposable moduleX , the sequence of vectors ([τn

AX ])n∈N grows
exponentially with ratio ρ(ϕA), where τA denotes the Auslander-Reiten translation
in the module category modA. Moreover, if A is wild, we have ρ(ϕB) < ρ(ϕA) for

any algebra B = k[~∆′] where ∆′ is a proper full subgraph of ∆. For a canonical
algebra A = A(p,λ), associated to a weight sequence p = (p1, . . . , pt) of positive
integers and a parameter sequence λ = (λ3, . . . , λt) of pairwise distinct non-zero
elements from the base field k, the K-theory is well understood. In this case
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ρ(ϕA) = 1, even while A is a one-point extension B[M ] of the hereditary star
B = Tp1,...,pt

•

(1, p1 − 1)

(2, p2 − 1)

(t, pt − 1)

(1, 2)

(2, 2)

(t, 2)

· · ·

· · ·

· · ·

...

(1, 1)

(2, 1)

(t, 1)

%%LLLLLLLLLLLLL

,,YYYYYYYYY

99rrrrrrrrrrrrr

//

//

//

//

//

//

//

//

//

which has spectral radius ρ(ϕB) arbitrarily large. In case A is wild, that is Tp1,...,pt

is not Dynkin or affine, the growth of τA is more complicated than in the hereditary
case, since there are indecomposable A-modules X and Y for which ([τn

AX ])n and
([τ−n

A Y ])n grow exponentially with ρ(ϕB) while ([τ−n
A X ])n and ([τn

AY ])n grow
linearly.

We consider the case of an algebra A derived equivalent to a hereditary algebra

k[~∆]. These algebras may be obtained by a finite sequence of tilting processes

starting from k[~∆]. Moreover, if ∆ is of Dynkin or affine type, the construction of
A and its Auslander-Reiten quiver is well described. In general, ϕA is conjugate
to ϕk[~∆], hence if ∆ is of wild type, ρ(ϕA) is a simple root of χA(T ). On the

other hand, we show simple examples of derived hereditary algebras A and B,
with B a full convex subcategory of A and ρ(ϕB) > ρ(ϕA). We give conditions on
a B-module M such that, for the one-point extension A = B[M ], the inequality
ρ(ϕB) ≤ ρ(ϕA) is satisfied. Namely, we prove that such a module should be
derived-directing, that is, M = F (X) for X a direct sum of directing complexes in

D(k[~∆]) and F : D(k[~∆])→ D(A) an equivalence of triangulated categories.
We describe all possible one-point extensions B[M ], of certain representation-

finite algebrasB derived equivalent to wild hereditary algebras, by an indecompos-
able B-module M . For modules which are not derived-directing, we find algebras
A = B[M ] which are not derived canonical or derived tame or wild hereditary;
nevertheless, the spectral radius ρ(ϕA) of the Coxeter polynomial is 1, but not an
eigenvalue of ϕA. This new class of algebras will be further studied.
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Quantum affine gln via Ringel-Hall algebras

Andrew Hubery

Ringel-Hall algebras were introduced in [6] and provide a generalisation of the
classical Hall algebra of a discrete valuation ring with finite residue field to an
arbitrary finitary ring. It was later shown in [4] that in the case of a hereditary
algebra, the (twisted, generic) composition algebra (informally, the subalgebra of
the Ringel-Hall algebra generated by the simple modules) realises the quantum
group of the same type. In particular, this isomorphism identifies the simple
modules with the Chevalley generators.

For an affine Lie algebra, Drinfeld gave a ‘new realisation’ of the quantised
enveloping algebra by quantising the loop-algebra construction of the Lie algebra
[2]. An explicit isomorphism between the two presentations was given by Beck [1]
in the untwisted case, but the question of understanding the Drinfeld generators
in terms of Ringel-Hall algebras remained open.

In the talk, we solved this problem for the affine Lie algebra ŝln using the
Ringel-Hall algebra of the cyclic quiver with n vertices. In fact, we extended the

result to include ĝln and thus proved a conjecture of Schiffmann [9].
Let Cn be the cyclic quiver with vertices 1, . . . , n and arrows i→ i+ 1 mod n.

The (generic) composition algebra Cv(Cn) was originally studied in [7], and then
Schiffmann [8] proved that the whole Ringel-Hall algebra Hv(Cn) consists of the
composition algebra together with a central polynomial subalgebra Zn on count-
ably many generators. In particular, since the composition algebra is isomorphic to

the affine quantum group of type ŝln, this result showed that the whole Ringel-Hall

algebra is isomorphic to the quantum group of type ĝln.
Explicit generators for this central subalgebra were subsequently given in [5],

where it was also shown that this is in fact the whole of the centre of the Ringel-Hall
algebra. Furthermore, a Hopf algebra monomorphism was given from Macdonald’s
ring of symmetric functions to the centre Ψn : Λ→ Zn.

Let gir for i = 1, . . . , n and r > 0 be the Heisenberg generators for Drin-

feld’s new realisation of Uv(ĝln) (see for example [3]). Then the isomorphism
between the quantum group and the Ringel-Hall algebra sends virgir to the ele-
ment −πir + vrπi−1r , where r

[r]πir is the image of the r-th power sum function

under the composition Λ
Ψi−−→ Zi ⊂ Hv(Ci) →֒ Hv(Cn). (Here we have used the

natural embedding of the Hall algebras arising from the embedding of the module
categories modCi →֒ modCn which identifies the first i− 1 simple modules.)
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We remark that this Hopf algebra isomorphism restricts to Green’s isomor-

phism U+
v (ŝln) → Cv(Cn) (after using Beck’s isomorphism, suitably normalised).

Moreover, the natural ‘upper left corner’ embeddings on the quantum group side,
as described in [3], correspond to the natural embeddings of Ringel-Hall algebras
mentioned above.

References

[1] J. Beck, Braid group action and quantum affine algebras, Commun. Math. Phys. 165 (1994),
555–568.

[2] V. G. Drinfeld, A new realization of Yangians and of quantum affine algebras, Soviet Math.
Dokl. 36 (1998), 212–216.

[3] E. Frenkel and E. Muhkin, The Hopf algebra Rep Uq
bgl
∞

, Selecta Math. (N.S.) 8 (2002),
537–635.

[4] J. A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995),
361–377.

[5] A. Hubery, Symmetric functions and the centre of the Ringel-Hall algebra of a cyclic quiver,
to appear in Math. Z.

[6] C. M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), 583–591.
[7] C. M. Ringel, The composition algebra of a cyclic quiver. Towards an explicit realization of
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An introduction to B. Toën’s construction of derived Hall algebras

Bernhard Keller

The Ringel-Hall algebra H(A) of a finitary abelian category A is the free abelian
group on the isomorphism classes of A endowed with the multiplication whose
structure constants are given by the Hall numbers fZ

XY , which count the number
of subobjects of Z isomorphic to X and such that Z/X is isomorphic to Y , cf. [1].
Thanks to Ringel’s famous theorem [6] [7], for each simply laced Dynkin diagram
∆, the positive part of the Drinfeld-Jimbo quantum group Uq(∆) (cf. e.g. [4]) is
obtained as the (generic, twisted) Ringel-Hall algebra of the abelian category of

finite-dimensional representations of a quiver ~∆ with underlying graph ∆. Since
Ringel’s discovery, it has been pointed out by several authors, cf. e.g. [3], that an
extension of the construction of the Ringel-Hall algebra to the derived category

of the representations of ~∆ might yield the whole quantum group. However, if
one tries to mimic the construction of H(A) for a triangulated category T by
replacing short exact sequences by triangles, one obtains a multiplication which
fails to be associative, cf. [2]. A solution to this problem has been proposed by
Bertrand Toën in his recent preprint [8]. He obtains an explicit formula1 for the
structure constants φZ

XY of an associative multiplication on the rational vector

1not yet included in the first version of [8]
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space generated by the isomorphism classes of any triangulated category T which
appears as the perfect derived category of a dg category T over a finite field all
of whose Hom-complexes have homology of finite total dimension. The resulting
Q-algebra is the derived Hall algebra. Toën’s formula for the structure constants
reads as follows:

φZ
XY =

∑

f

|Aut(f/Z)|−1
∏

i>0

|Ext−i(X,Z)|(−1)i |Ext−i(X,X)|(−1)i+1

,

where f ranges over the set of orbits of the group Aut(X) in the set of morphisms
f : X → Z whose cone is isomorphic to Y , and Aut(f/Z) denotes the stabilizer of
f under the action of Aut(X). Toën’s proof of associativity is inspired by methods
from the study of higher moduli spaces [11] [9] [10] and by the homotopy theoretic
approach to K-theory [5]. It remains to be investigated if and how the derived

Hall algebra of the category of representations of ~∆ over a finite field is related to
the quantum group Uq(∆). In any case, it seems likely that Toën’s construction
will prove influential in the study of Ringel-Hall algebras.
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The K-theory of triangulated derivators

Amnon Neeman

It has been known for a long time that chain complexes are very useful, and it is
a good idea to study categories of chain complexes. If A is an abelian category
then the chain complexes in A are sequences

. . .
∂−−−−→ X i−1 ∂−−−−→ X i ∂−−−−→ X i+1 ∂−−−−→ . . .

with ∂∂ = 0. It is an old idea to look at categories whose objects are the chain
complexes.

It is not quite so clear what the morphisms in the category should be. There
are two traditional choices. In the derived category D(A) the morphisms between
two chain complexes X and Y are composites of homotopy equivalence classes
of chain maps and of inverses of homology isomorphisms. The derived category
D(A) satisfies a short list of properties, which are formulated as the axioms of a
triangulated category. One can find an extensive treatment of this subject in, for
example, [9].

Another very classical construction is to consider the category C(A). The ob-
jects are still the chain complexes, but the morphisms are now the chain maps (not
homotopy equivalence classes, and nothing formally inverted). It is customary to
view C(A) as a model category. There are at least three ways to give an axiomatic
description of model categories: Quillen closed model categories [7], Waldhausen
model categories [10] and the complicial biWaldhausen categories of Thomason [8].
In all of these we assume we are given a mapping cone functor. We also declare
some morphisms to be special. Certain of the morphisms are the so–called cofibra-
tions, while some others are declared to be weak equivalences. The combined data
is assumed to satisfy a fairly long list of axioms. For us the important feature is
that the category C(A), with all the added structure that it carries by virtue of
being a model category, carries the information needed to construct the derived
category D(A). Given any model category C there is an associated homotopy
category hoC, and hoC(A) is just D(A).

For various reasons people have, over the last decade, been led to consider
constructions intermediate between model categories and triangulated categories.
The constructions fall into two broad categories:

(1) dg–categories, or the more general A∞ categories.
(2) Grothendieck derivators.

I will say almost nothing about (1). The basic idea of a dg–category (or of the
more general A∞ categories) is to consider the morphisms in C(A) not as groups,
but as chain complexes of abelian groups. For any two objects of C(A), that is
for any two chain complexes X and Y in A, we construct a natural chain complex
Hom(X,Y ) of abelian groups, whose 0th homology is the usual group of morphisms
up to homotopy. The axioms of dg–categories (or A∞ categories) encapsulate the
properties this construction has. The literature is enormous; for a sample, the
reader is referred to [1] and [6].
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A completely different way to obtain a construction, intermediate between
model categories and triangulated categories, is (2) above; it goes by the name
Grothendieck derivator. The idea is to consider not just the derived category of
A, but the derived categories of all functor categories Hom(Iop,A).

Suppose I is a small category, and A is any (fixed) abelian category. Then the
category Hom(Iop,A) is naturally an abelian category. We can form the derived
category of Hom(Iop,A), that is

D(I) = D
(
Hom(Iop,A)

)
.

If F : I −→ J is a functor of small categories, we get an induced functor of
triangulated categories

D(F ) : D(J) −→ D(I).

If F,G are two functors F,G : I −→ J and φ : F =⇒ G is a natural transformation,
then we deduce a natural transformation

D(φ) : D(G) =⇒ D(F ).

This data assembles to give a 2–functor from the category Cat of small categories
to the category Tri of triangulated categories. Since this 2–functor is contravariant,
we denote it

D : Catop −−−−→ Tri.

The idea of derivators is to encapsulate the extra structure of the 2–functors
D : Catop −→ Tri which arise as D

(
Hom(Iop,A)

)
. For example, they have the

useful property that for any functor F : I −→ J of small categories, the induced
functor D(F ) : D(J) −→ D(I) has both a right and a left adjoint.

The first attempt to describe this was made by Heller [4]. Independently, but a
little later, there is Keller’s PhD thesis [5], and the manuscript by Grothendieck [3].
Still later there is the work of Franke [2], which cites Heller and Keller. Heller,
Keller and Franke should undoubtedly receive recognition for their independent
contributions. But in the last few years the name that has become attached
to these is “Grothendieck derivators”, possibly because the manuscript which
Grothendieck wrote was so massive.

In the late 1990s Maltsiniotis took it upon himself to edit Grothendieck’s man-
uscript and publish it. The work is still ongoing, with contributions by Cisinski
and Keller. Much more can be found on Maltsiniotis’ web page

http://www.math.jussieu.fr/~maltsin

In the process of editing the manuscript Maltsiniotis has done a great deal of work.
In particular he defined for every derivator D a K–theoryK(D). And he formulated
three conjectures about the K–theory of triangulated derivators (see pages 6–8 of
the manuscript La K–théorie d’un dérivateur triangulé on Maltsiniotis’ web page,
as above). We wish to report on recent progress regarding Conjecture 3.

Conjecture 3 of Maltsiniotis says that additivity should hold for derivator K–
theory. One way to formalise the conjecture is the following: A derivator D is a
functor from small categories to triangulated categories. Given a derivator D we
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can define a new derivator D′ by the rule

D′(I) = D(1× I),

where 1 is the category

1 = · −→ ·
There are two inclusions of the one–point, terminal category into 1. These induce
two inclusions of I into 1× I, and hence two maps

D(I)
π0←−−−− D(1× I) π1−−−−→ D(I)

As we let I vary, these give two natural transformations, π0 and π1, from D′ to D.
They induce two maps in K–theory

K(D)
K(π0)←−−−− K(D′)

K(π1)−−−−→ K(D).

Conjecture 3 of Maltsiniotis, the “additivity conjecture”, asserts that the map

K(D′)

0
@ K(π0)
K(π1)

1
A

−−−−−−−−−→ K(D)×K(D)

is an isomorphism.
Very recently Garkusha proved the conjecture in the special case where the

derivator comes from a biWaldhausen complicial model. Garkusha’s paper should
appear soon in Mathematische Zeitschrift. A little later Cisinski, Keller, Maltsin-
iotis and I found a proof that works for a general derivator.
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Cluster tilting I

Robert J. Marsh

(joint work with Aslak B. Buan, Markus Reineke, Idun Reiten and Gordana
Todorov)

1. Tilting Theory

For an introduction to tilting theory, see e.g. [1]. The initial motivation was
provided by Gabriel’s Theorem [11], which states that the path algebra H = kQ
of a quiver Q over an algebraically closed field k has finite representation type
if and only if Q is a Dynkin quiver of type A, D or E. Bernstein, Gelfand and
Ponomarev [3] found an alternative proof employing so-called reflection functors,
which relate the representation theory of a quiver with that of a second quiver in
which all arrows incident with a fixed source or sink of the original quiver have
been reversed.

These reflection functors can be realised as Hom-functors; see [2]. If S is a
projective noninjective simple module corresponding to the source or sink, then
the reflection functor is realised in the form Hom(T,−), where T is the direct sum
of τ−1S and the indecomposable projective modules not isomorphic to S.

2. Cluster-tilting theory

A key result in the work on cluster-tilted algebras [4, 6] has been the generalisation
of APR-tilting theory to arbitrary vertices of Q. Let S be the simple module
associated to a vertex i in Q. Then it is shown in [4] that there is an algebra
B with simple module S′ such that modH

add(S) ≃ modB
add(S′) , where add(M) denotes the

additive subcategory generated by a module M . In fact, this result, suitably
adapted, holds more generally for a large family of algebras known as the cluster-
tilted algebras. This theory was inspired by recent development of the theory of
cluster algebras (see [10]).

We define the cluster category C = CH as the quotient of the bounded derived
category of its module category by the autoequivalence F = [1]τ−1 (see [6]),
where [1] denotes the shift. Keller [12] has shown that C is naturally triangulated.
A combinatorial/geometric definition in type An has been given in [8]. Cluster
categories are also studied in [7, 9, 5, 13, 14]. We also remark that the cluster
category is Calabi-Yau of dimension 2. This category can be regarded as an
extension of the usual module category in which any almost complete cluster-tilting
object has precisely two complements. An object T in C is labelled a (cluster-)
tilting object if Ext1C(T, T ) = 0 and T has a maximal number of nonisomorphic
indecomposable direct summands. Any tilting module over H can be regarded as
a tilting object in C.

A cluster-tilted algebra is an algebra of the form EndC(T )op where T is a tilting
object in C; it is easy to see that H itself is cluster-tilted. Suppose that T is an
almost complete tilting object in C. Then in [6] it is shown that there are precisely
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two ways in which T can be completed to a tilting object, giving rise to tilting
objects T = T ⊕M and T ′ = T ⊕M ′. Let A = End(T )op and B = End(T )opp.
In [4] it is shown that, in this situation,

modA

add(S)
≃ modB

add(S′)
,

where S and S′ are certain simple modules over A and B respectively. Thus it
is natural to define B as an algebra “cluster-tilted” from A at the vertex corre-
sponding to M . APR-tilting is a special case of this construction. For exam-
ple, the quiver of the algebra cluster-tilted from the path algebra of the quiver
in Figure 1(a) at the vertex 2 is shown in Figure 1(b), with relations given by
ab = bc = ca = 0.

1 2 3
• • •// //

1 2

3

• •

•

c
oo

b

!!B
BB

BBa
==|||||

Figure 1. Cluster-tilting in type A3
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Cluster tilting II

Aslak B. Buan

(joint work with Robert J. Marsh and Idun Reiten)

This talk was part two in a series, where the first part was given by Robert
Marsh. This part is mainly based on results of [2], a paper motivated by the
interplay between the recent development of the theory of cluster algebras defined
by Fomin and Zelevinsky in [4] (see [5] for an introduction) and the subsequent
theory of cluster categories and cluster-tilted algebras [3, 1]. Our main results
can be considered to be interpretations within cluster categories of the essential
concepts in the theory of cluster algebras.

1. Matrix mutation

Given a skew-symmetric integer n × n-matrix B = (bij), and an index k ∈
{1, . . . , n}, let a mutation in direction k denote the following operation

b′ij =

{
−bij if k = i or k = j,

bij +
|bik|bkj+bik|bkj |

2 otherwise.

One can associate with B a quiver QB with n vertices and with bij arrows
from i to j if bij > 0. It is clear that QB will have no loops and no oriented
cycles of length two. In fact, the skew-symmetric integer matrices are in one-
one correspondence with quivers with these properties. So mutation induces an
operation on such quivers.

2. Matrix mutation via quiver representations

Let H = KQ be a hereditary algebra which is the path algebra of a quiver Q for
some algebraically closed field K. Given a cluster-tilted algebra Γ = EndCH

(T )op,
with T = T1 ∐ · · · ∐ Tn a direct sum of n nonisomorphic indecomposable objects
Ti in CH , there is a unique indecomposable object T ∗i 6≃ Ti in CH , such that we get
a tilting object T ′ by replacing Ti by T ∗i . Our main result is to obtain a formula
for passing from the quiver of Γ = EndC(T )op to the quiver of Γ′ = EndC(T

′)op,
not involving any information on relations. In fact, we show that this formula
coincides with the formula for matrix mutation in direction i.

3. Cluster algebras

This has a nice interpretation in the case of cluster algebras. A cluster alge-
bra (without coefficients) is defined via a choice of a free generating set x =
{x1, . . . , xn} in the field F of rational polynomials over Q and a skew-symmetriz-
able integer matrix B indexed by the elements of x. The pair (x,B), called a
seed, determines the cluster algebra as a subring of F . More specifically, for each
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i = 1, . . . , n, a new seed µi(x,B) = (x′, B′) is obtained by replacing xi in x by
xi
′ ∈ F , where xi

′ is obtained by a so called exchange multiplication rule and
B′ is obtained from B by applying so called matrix mutation at row/column i.
Mutation in any direction is also defined for the new seed, and by iterating this
process one obtains a countable number of seeds. For a seed (x,B), the set x is
called a cluster, and the elements in x are called cluster variables. The desired
subring of F is by definition generated by the cluster variables. Given a finite
quiver Q with no oriented cycles, one can define on the one hand a cluster algebra
A, and on the other hand the cluster category C of kQ.

It was shown in [3] that in case Q is a Dynkin quiver, the cluster variables of
A correspond to the indecomposable objects of C, and that this correspondence
induces a correspondence between the clusters and the tilting objects in C. This
was also conjectured to generalize to arbitrary quivers, except that in this case
the exceptional objects should correspond to the cluster variables. Combining this
with the results of [2], one obtains for finite type a precise interpretation of cluster
algebras in terms of tilting theory in cluster categories. In [2] there is also an
interpretation beyond finite type.
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The prime ideal spectrum of a tensor triangulated category

Henning Krause

(joint work with Aslak B. Buan and Øyvind Solberg)

Given a triangulated category, it is an interesting challenge to classify all thick
subcategories. In my talk, I presented some recent work of Paul Balmer [1]. He
defines a prime ideal spectrum for each tensor triangulated category and assigns
to each object its support. This idea leads to a complete classification of all thick
tensor ideals. The model for such a classification is Thomason’s classification of
thick tensor ideals for the category of perfect complexes on a scheme [3].

Balmer’s classification provides an extremely elegant and conceptual explana-
tion of various existing classifications. This includes the classification of thick
tensor ideals for the category of perfect complexes on a scheme [Hopkins, Neeman,
Thomason] and a similar classification for the stable category of representations
of a finite group [Benson, Carlson, Rickard].
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It turns out that Balmer’s idea can be extended to obtain classifications of ideals
in various settings. This should be relevant in representation theory, in particular
when one studies the support varieties of representations.

The general set-up for the classification of ideals in terms of the prime ideal
spectrum is the following: We consider an ideal lattice, that is, a partially ordered
set L = (L,≤), together with an associative multiplication L× L→ L, such that
the following holds.

(L1) The poset L is a complete lattice, that is
∨

a∈A

a := supA and
∧

a∈A

a := inf A

exist in L for every subset A ⊆ L.
(L2) The lattice L is compactly generated, that is, every element in L is the

supremum of compact elements.
(L3) We have for all a, b, c ∈ L

a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.
(L4) The product of two compact elements is again compact.

For example, the thick tensor ideals in a small tensor triangulated category form
such an ideal lattice. The compact elements are precisely the finitely generated
ideals.

Call p ∈ L prime if ab ≤ p implies a ≤ p or b ≤ p for all a, b ∈ L. An element
q ∈ L is semi-prime if aa ≤ q implies a ≤ q for all a ∈ L. Let SpecL denote the
set of all primes in L. For a ∈ L, let

U(a) = {p ∈ SpecL | a ≤ p} and supp(a) = {p ∈ SpecL | a 6≤ p}.
The subsets of SpecL of the form U(a) for some compact a ∈ L are closed under
forming finite intersections and finite unions; they form the basis of a topology on
SpecL.

Theorem. The assignments

L ∋ a 7→ supp(a) =
⋃

b≤a
b compact

supp(b) and SpecL ⊇ Y 7→
∨

supp(b)⊆Y
b compact

b

induce mutually inverse and inclusion preserving bijections between

(1) the set of all semi-prime elements in L, and
(2) the set of all subsets Y ⊆ SpecL of the form Y =

⋃
i∈Ω Yi with quasi-

compact open complement SpecL \ Yi for all i ∈ Ω.

To give an example, take a commutative noetherian ring R and let L(R) denote
the lattice of thick tensor ideals of the category of perfect complexes over R. Note
that in this case all elements in L(R) are semi-prime. Using the description of
L(R) due to Hopkins and Neeman, one can show that SpecL(R) is homeomorphic
to the prime ideal spectrum of R, endowed with the usual Zariski topology.

This example, as well as many more, are beautifully explained in Balmer’s work
[1]. What seems to be new is the general approach via ideal lattices. It covers



342 Oberwolfach Report 6/2005

for instance equally well the related classification of Serre subcategories of the
category of finitely generated modules over a commutative noetherian ring.
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Cohen-Macaulay modules and virtually Gorenstein algebras

Apostolos Beligiannis

Let Λ be an Artin algebra. We denote by Mod-Λ the category of all right Λ-
modules and by mod-Λ the full subcategory of finitely generated modules. We
let CM(Mod-Λ) be the category of Cohen-Macaulay modules which is defined as
the maximal subcategory of Mod-Λ which contains the projectives as an Ext-
injective cogenerator. Following [3] we let P≺∝

Λ be the subcategory of modules of
virtually finite projective dimension which is defined as the right Ext-orthogonal
subcategory of CM(Mod-Λ). The full subcategories CoCM(Mod-Λ) of CoCohen-
Macaulay modules and I≺∝

Λ of modules of virtually finite injective dimension are
defined dually. Note that CM(Mod-Λ), resp. CoCM(Mod-Λ), is an exact Frobenius
definable subcategory of Mod-Λ and its stable category modulo projectives, resp.
injectives, is a monogenic compactly generated triangulated category. Also the
subcategories P≺∝

Λ and I≺∝
Λ are resolving and coresolving subcategories of Mod-Λ

and there exist cotorsion pairs
(
CM(Mod-Λ),P≺∝

Λ

)
and

(
I≺∝

Λ ,CoCM(Mod-Λ)
)

in

Mod-Λ. Λ is called virtually Gorenstein if P≺∝
Λ = I≺∝

Λ , see [3].
In this talk I shall report on some recent results, extracted from [2] and [3], on

Cohen-Macaulay modules and virtually Gorenstein algebras. We study the virtual
Gorensteinness property by using the above cotorsion pairs in the module category
Mod-Λ and the induced torsion pairs in the stable category of Mod-Λ modulo pro-
jectives or injectives. The class of virtually Gorenstein algebras, which provides a
common generalization of Gorenstein algebras and algebras of finite representation
or Cohen-Macaulay type, on the one hand is closed under various operations and
on the other hand has rich homological structure and satisfies several represen-
tation/torsion theoretic finiteness conditions. In this context we characterize the
virtually Gorenstein algebras in terms of finitely generated modules by showing,
among other equivalent conditions, that Λ is virtually Gorenstein if and only if
the class of finitely generated Λ-modules of virtually finite projective dimension
(which coincides with the class of finitely generated Λ-modules of virtually finite
injective dimension) is contravariantly finite, or equivalently covariantly finite in
mod-Λ. Moreover, we show that virtually Gorenstein algebras enjoy the following
properties, referring to [2], [3] for more details:
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(1) The virtual Gorensteinness property is left-right symmetric.
(2) The class of virtually Gorenstein algebras is closed under derived equiva-

lences and stable equivalences of Morita type.
(3) If the Artin algebra Λ is virtually Gorenstein, then:

(a) The full subcategories CM(Mod-Λ) and CoCM(Mod-Λ) are functori-
ally finite in Mod-Λ, and their full subcategories of finitely generated
modules are functorially finite in mod-Λ with free Grothendieck group
of finite rank.

(b) The full subcategory P≺∝
Λ = I≺∝

Λ is thick, definable and functorially
finite in Mod-Λ, and its full subcategory of finitely generated modules
is thick and functorially finite in mod-Λ, hence it has Auslander-
Reiten sequences, with free Grothendieck group of finite rank.

(c) The full subcategories CM(Mod-Λ), CoCM(Mod-Λ), P≺∝
Λ and I≺∝

Λ

are completely determined by their intersection with the finitely gen-
erated modules (as their closure under filtered colimits).

(d) The subcategory of compact objects of the compactly generated tri-
angulated category of Cohen-Macaulay modules modulo projectives
admits a Serre functor and therefore has Auslander-Reiten triangles.

In addition, virtual Gorensteinness provides a useful tool for the study of the
Gorenstein Symmetry Conjecture and modified versions of the Telescope Conjec-
ture for module or stable categories. Recall that the former asserts that Λ is
Gorenstein provided it has finite right or left self-injective dimension [1], and a
generalized version of the latter asserts that any torsion pair of finite type, in the
sense of [3], in a suitable “homotopy” category C is generated in a certain sense by
compact objects induced from C, see [4], [5], [6]. For instance, we show that Λ is
virtually Gorenstein if and only if the monogenic compactly generated triangulated
category of Cohen-Macaulay modules modulo projectives is smashing if and only if
all of its compact objects are induced from finitely generated modules. Moreover,
in the context of the above conjectures we show (in particular) the following:

• The Gorenstein Symmetry Conjecture holds for any virtually Gorenstein
algebra.
• The Telescope Conjecture holds in the stable category modulo projectives

for the torsion pair induced by the Cohen-Macaulay modules over a vir-
tually Gorenstein algebra.

In particular, both conjectures hold for any algebra lying in the derived equiv-
alence class or the stable equivalence class (of Morita type) of an algebra of finite
representation or Cohen-Macaulay type.

As it is clear from the above that the class of virtually Gorenstein algebras is
rather large, since it contains on the one hand algebras or finite global dimension
and self-injective algebras or, more generally, Gorenstein algebras, and on the
other hand algebras of finite representation or Cohen-Macaulay type. This gives
the motivation for the following:

Problem: Find an Artin algebra which is not virtually Gorenstein.
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Free divisors in representation varieties of quivers

Ragnar-Olaf Buchweitz

1. Let K be an algebraically closed field of characteristic zero. A formal power
series f ∈ S = K[[z1, ..., zN ]] is a free divisor if there exists a discriminant matrix
A for f , that is, a N ×N–matrix over S that satisfies:

detA = f and

(
∂f

∂z1
, ...,

∂f

∂zN

)
· A ≡ 0 mod f .

If f is square free, an equivalent description can be obtained through logarithmic
vector fields along the hypersurface f = 0. These are those derivations D on S
with D(log f) = D(f)/f ∈ S. By Saito’s criterion, f is a free divisor, iff the S–
module ΘS(− log f) of all such is free of rank N (and that explains the name. . . )
Equivalently, theJacobian ideal describing the singular locus of f = 0 is a maximal
Cohen–Macaulay module on that hypersurface. All these characterizations imply
that f is “highly singular”. Indeed, it is already rare for a polynomial or power
series to be representable as a determinant in a nontrivial way.

2. This concept of free divisors was first isolated by K. Saito [6] in the context
of discriminants in versal deformations of isolated hypersurface singularities and
includes the classical discriminants of polynomials in one variable. It was shown
by Teissier (isolated complete intersection singularities; see [4]), van Straten (some
classes of curve singularities [9]), Damon et al. (bifurcation sets of versal unfold-
ings; see [1] for a survey), Buchweitz–Ebeling (Gorenstein surface singularities in
5–space; in preparation), Buchweitz (Hilbert scheme of a smooth surface; in prepa-
ration) and various others that discriminants in versal deformations are often (but
not always) free divisors. Another rich source of free divisors are free (hyperplane)
arrangements, and the survey [5] is a good starting point.

3. Here we identify the discriminants in representation varieties of certain real
Schur roots of quivers as yet another source of such free divisors that are even



Representation Theory of Finite-Dimensional Algebras 345

linear, that is, the discriminant matrix has only linear entries. (Together with
D. Mond we are currently investigating further such examples and variations
thereof.) The key point is to interpret representation varieties as versal defor-
mations of quiver representations.

4. To be explicit, fix a finite connected quiver Q = (Q0, Q1) without oriented cy-
cles, d ∈ (N>0)

Q0 a sincere real Schur root of Q. With tα ∈ Q0 the tail of an arrow
α ∈ Q1 and hα ∈ Q0 its head, the representation variety Rep(Q,d) is the affine K–

space of families of matrices
∏

α∈Q1
HomK

(
Kd(tα),Kd(hα)

) ∼= A
P

α∈Q1
d(hα)·d(tα)

K .

Its dimension is δ :=
∑

α∈Q1
d(hα)d(tα) = −1 +

∑
i∈Q0

d(i)2. The ring of poly-

nomial functions on Rep(Q,d) is written R = K[X(α), α ∈ Q1], where each

X(α) = (xrs(α))s=1,...,tα
r=1,...,hα is a matrix of indeterminates. The representation vari-

ety carries the universal d–dimensional representation M of Q, a (right) module
over the path algebra RQ on Q with coefficients in R, and Rep(Q,d) constitutes
a versal deformation of the Q–representation M(p) at each of its points p.

5. The group GL(d) =
∏

i∈Q0
GL(d(i)) acts on Rep(Q,d) through (Ai)i∈Q0 ∗

(Xα)α∈Q1 := (AhαXαA
−1
tα )α∈Q1 , and the orbits correspond to the isomorphism

classes of d–dimensional representations of Q over K. The action factors through
the projective linear group PGL(d) = GL(d)/K∗. As d is a real Schur root,
there is a (unique) open dense orbit and, by [3], its complement is the union of
n − 1 distinct components of codimension one, where n = |Q0| is the number
of vertices of Q. The polynomials f1, ..., fn−1 ∈ R defining these components
are algebraically independent and span the ring of semi-invariants RSL(d), with
SL(d) = {(Ai)i∈Q0 ∈ GL(d) | ∏

i detAi = 1} the corresponding special linear
group. They can be obtained explicitly as shown by Schofield [7], Schofield–Van
den Bergh [8], and Derksen–Weyman [2].

6. With ΘR = DerK(R) ∼= R⊗KRep(Q,d) ∼=
∏

α∈Q1
R⊗KHomK

(
Kd(tα),Kd(hα)

)

the module of derivations of R or vector fields on Rep(Q,d), the group action yields
a homomorphism of K–Lie algebras pgl(d) → ΘR, [(Ai)i∈Q0 ] 7→ (AhαX(α) −
X(α)Atα)α∈Q1 , that extends to an R–linear map ϕ : R ⊗K pgl(d) → ΘR, with

cokernel equal to Ext1RQ(M,M). The projection ΘR → Ext1RQ(M,M) is the
Kodaira–Spencer map for Rep(Q,d) as a versal deformation, and the support of
Ext1RQ(M,M) is its discriminant, the locus of non-rigid representations.

7. As d is a real Schur root, ϕ is injective, with source and target of ϕ free R–
modules of the same rank. Moreover, the image of ϕ is a sub K–Lie algebra of
ΘR(− log f), the Lie algebra of logarithmic vector fields along the discriminant
f = f1 · · · fn−1, that is, the complement of the open orbit. In case of equality, (the
Taylor series of) f is a free divisor (at each point) and its discriminant matrix, the
matrix of ϕ, has only linear entries. This provides for families of examples of such
linear free divisors and exhibits at the same time yet another special property of
the hypersurfaces bounding the open orbit. We may summarize the results thus.
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Theorem. With notation as explained above, one has

(1) (Basic facts) The determinant of ϕ is a homogeneous semi-invariant
polynomial of degree δ and of weight

∏
i∈Q0

(det GL(di))
in(i)−out(i), where

in(i) is the in–degree and out(i) is the out–degree of the vertex i. It has the
form detϕ = (a unit) · fa1

1 · · · f
an−1

n−1 , with aν the dimension of the space of
self extensions of the generic module over the component fν = 0.

(2) (Openness of Versality or Voigt’s Lemma) A component fν = 0
contains itself an open dense orbit, if, and only if, aν = 1.

(3) (Saito’s Criterion) If each aν = 1, then f is a linear free divisor.

Condition (3) is, in particular, satisfied if Rep(Q,d) is union of only finitely many
orbits, for example, if the quiver Q is of finite representation type.

A simple example may suffice to illustrate the result.

Example. Let ∆ν , for ν = 1, . . . , n − 1, be the maximal minors of a generic
(n− 2)× (n− 1)–matrix. The product f = ∆1 · · ·∆n−1 is then such a free divisor
that arises as a discriminant in a suitable representation variety of a quiver with
n vertices.

Exercise: Write down the discriminant matrix and verify that f is a linear free
divisor! What are possible quivers Q and dimension vectors d for this example?
Hint: For n = 4, the Dynkin quiver Q = D4, in any orientation, and the dimension

vector d =

(
1

1 2 1

)
, will do.
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Rigid Cohen-Macaulay modules over a three dimensional Gorenstein
ring

Yuji Yoshino

1. Main theorem

Let k be an algebraically closed field of characteristic zero, and let S = k[[x, y, z]]
be a formal power series ring in three variables x, y and z. The cyclic group
G = Z/3Z of order 3 acts linearly on S in such a way that

xσ = ζx, yσ = ζy, zσ = ζz,

where σ is a generator of G and ζ ∈ k is a primitive cubic root of unity. We denote
by R the invariant subring of S by this action of G. It is easy to see that

R = k[[{monomials of degree three in x, y, z}]],
which is often called (the completion of) the Veronese subring of degree three. It is
known and is easy to prove that R is a Gorenstein complete local normal domain
that has an isolated singularity.

The action of G gives a G-graded structure on S such as

S = S0 ⊕ S1 ⊕ S2,

where each Sj is the R-module of semi-invariants that is defined as

Sj = {f ∈ S | fσ = ζjf}.
Note that S0 = R. It is known that Sj (0 ≦ j ≦ 2) are maximal Cohen-Macaulay
modules over R, and in particular they are reflexive R-modules of rank one, whose
classes form the divisor class group of R;

Cl(R) = {[S0], [S1], [S2]}.
In particular, any maximal Cohen-Macaulay module of rank one over R is isomor-
phic to one of Sj (0 ≦ j ≦ 2).

It is not difficult to see that the category CM(R) of maximal Cohen-Macaulay
modules over R is of wild representation type. Actually, one can construct a family
of nonisomorphic classes of indecomposable maximal Cohen-Macaulay modules
over R in relation with the representations of the following quiver.

Q =

(
−→• −→ •−→

)

In this talk I am interested in rigid maximal Cohen-Macaulay modules that are
defined as follows:

Definition. An R-module M is called rigid if Ext1R(M,M) = 0. And we denote
the full subcategory of modR consisting of all rigid maximal Cohen-Macaulay
modules by C.
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By computation, the modules Sj (0 ≦ j ≦ 2) and any of their syzygies and
any of their cosyzygies are rigid (and indecomposable). Our main theorem is the
following:

Theorem. Let S be a sequence of indecomposable rigid maximal Cohen-Macaulay
modules defined as follows:

S = (· · · ,Ω−2S1, Ω−2S2, Ω−1S1, Ω−1S2, S1, S2, Ω1S1, Ω1S2, Ω2S1, Ω2S2, · · · ).
Then any object in C is isomorphic to a module of the following form:

P a ⊕Qb ⊕Rc,

where a, b, c are nonnegative integers and {P,Q} is a pair of two adjacent modules
in the sequence S.

2. Outline of Proof

The proof of the theorem is divided into the following four steps.

2.1. First Step (Approximation).
Let E be the full subcategory of modR consisting of modules M which can be

embedded in an exact sequence of the following type:

(∗) 0 −−−−→ Sn
1 −−−−→ Sm

2 ⊕Rℓ −−−−→ M −−−−→ 0

If M ∈ E , then the sequence (∗) gives a right addRS-approximation of M that is,
of course, right minimal.

Claim 1. Let M be an indecomposable object in C. Suppose that M is isomorphic
neither to S1 nor Ω−1S2. Then M belongs to E.

The claim means that Ind(C) = Ind(C ∩ E) ∪ {S1,Ω
−1S2}.

2.2. Second Step (Rigidity).

Claim 2. Let M and M ′ be objects in C ∩ E. Suppose there are exact sequences:

0 −−−−→ Sn
1

f−−−−→ Sm
2 ⊕Rℓ −−−−→ M −−−−→ 0,

0 −−−−→ Sn′

1
f ′

−−−−→ Sm′

2 ⊕Rℓ′ −−−−→ M ′ −−−−→ 0.

If n = n′ and m = m′, then M and M ′ are stably isomorphic to each other.

2.3. Third Step (Tate-Vogel cohomology).
The Tate-Vogel cohomology for maximal Cohen-Macaulay modules is defined

as follows:

Ěxt
i

R(M,N) = HomR(ΩiM,N),

for any i ∈ Z and M,N ∈ CM(R). We define

ei
j(M) = dimk Ěxt

i

R(Sj ,M)

for any i ∈ Z, j ∈ G and M ∈ CM(R).
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Claim 3. Let M be an object in C ∩ E, and suppose there is an exact sequence:

0 −−−−→ Sn
1 −−−−→ Sm

2 ⊕Rℓ −−−−→ M −−−−→ 0.

Then n = e11(M) and m = e02(M).

Now we define a mapping e from the isomorphism classes of modules in C ∩ E
to nonnegative integral vectors Z2

≧0
by

e(M) = (e11(M), e02(M)).

Note that it follows from Claim 2 that the mapping

e : C ∩ E/ ∼= −→ Z2
≧0

is an injection. Hence, to classify the objects in C ∩ E , it is enough to determine
the image of the mapping e.

Remark. Note that the Auslander-Reiten-Serre duality says that

Ext3R(Ěxt
i

R(M,N), R) ∼= Ěxt
2−i

R (N,M),

for any i ∈ Z and M,N ∈ CM(R). Therefore, the triangulated category CM(R) is
2-Calabi-Yau.

2.4. Fourth Step (Root system).
Let H be the set of nonnegative integral vectors (x, y) with x2 − 3xy + y2 ≧ 1:

H = {(x, y) ∈ Z2
≧0 | x2 − 3xy + y2 ≧ 1}

It is easy to see that H = H+ ∪H− where

H+ = {(x, y) ∈ Z2
≧0 | 2x− (3 +

√
5)y ≧ 0},

H− = {(x, y) ∈ Z2
≧0 | 2x− (3 −

√
5)y ≦ 0},

each of which is a semigroup. We can prove the following claim.

Claim 4. The image of the mapping e : C ∩ E → Z2
≧0

is exactly H.

The main theorem follows from this claim with a little observation.
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Modules with injective cohomology

David Benson

(joint work with John Greenlees)

Let G be a finite group, and let k be an algebraically closed field of charac-
teristic p. Then the cohomology ring H∗(G, k) = Ext∗kG(k, k) is a Noether-
ian graded commutative k-algebra, so we can form the maximal ideal spectrum
VG = max specH∗(G, k). This is a closed homogeneous affine variety, and was
studied extensively by Quillen [6, 7]. If M is a finitely generated kG-module then
there is a ring homomorphism

H∗(G, k)
M⊗k−−−−−→ Ext∗kG(M,M),

and the support variety VG(M) is defined to be the subvariety of VG determined
by the kernel of this homomorphism. Support varieties have been investigated
extensively by Carlson and others.

If p is a homogeneous prime ideal in H∗(G, k) corresponding to a closed homo-
geneous irreducible subvariety V of VG, then there is a kappa module κp = κV ,
introduced by Benson, Carlson and Rickard [1], with the following properties:

(i) V ⊆ VG(M) ⇐⇒ κV ⊗k M is not projective,
(ii) κV is idempotent, in the sense that κV ⊗k κV ∼= κV ⊕ (projective), and
(iii) κV is usually not finite dimensional.

The modules κV were used by Benson, Carlson and Rickard in [1] to develop
a theory of varieties for infinitely generated kG-modules. Instead of associating a
single variety to M , we associate a collection of subvarieties of VG:

VG(M) = {V ⊆ VG | κV ⊗k M is not projective}.
For example, VG(κV ) = {V }. One of the most important properties of this variety
theory is the tensor product formula

VG(M ⊗k N) = VG(M) ∩ VG(N).

This, together with the statement that VG(M) = ∅ if and only if M is projective,
are what make the variety theory useful.

The purpose of the joint work with Greenlees was to determine the cohomology
of these modules κV . It turns out that it is more sensible to ask about Tate coho-
mology. The answer, together with some consequences, is given by the following
theorem.

Theorem (Benson and Greenlees [2]).

(i) The Tate cohomology of the kappa modules is given by

Ĥ∗(G, κV ) ∼= Ip[d].

Here, Ip denotes the injective hull of H∗(G, k)/p in the category of graded
modules over H∗(G, k), and d is the dimension of the variety V (i.e., the
Krull dimension of H∗(G, k)/p).
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(ii) The kappa modules are the representing objects for the Matlis dual of Tate
cohomology:

HomkG(M,κV ) ∼= HomH∗(G,k)(Ĥ
∗(G,M), Ip[d]);

these representing objects were investigated in [3].
(iii) The modules κV are pure injective—there are no phantom maps into them.

(iv) Ex̂t
∗

kG(κV , κV ) ∼= H∗(G, k)
∧

p = lim
←−
n

H∗(G, k)/pn.

The extraordinary thing about the theorem is that its proof involves translating
to the context of modules over E∞ ring spectra and solving the problem there.
The context is as follows. Let BG be the classifying space of G, so that ΩBG ≃ G.
The Rothenberg–Steenrod construction gives for any space X a quasiisomorphism
between the differential graded algebras R EndC∗(ΩX)(k) and C∗(X ; k). In par-
ticular, for a finite group G this gives R EndkG(k) ≃ C∗(BG; k). Writing R for
R EndkG(k) and C for C∗(BG; k), the following diagram of categories and functors
explains the route we took:

Mod(kG) //

&&NNNNNNNNNNN
D(kG)

R HomkG(k,−)
//

��

D(Rop)
−⊗L

Rkoo ≃ // D(C)

StMod(kG)

Here, D(kG) stands for the derived category of all chain complexes of kG-modules.
Similarly, D(Rop) is the derived category obtained from the homotopy category
of differential graded right R-modules by inverting quasi-isomorphisms. Since
R ≃ Rop, this is equivalent to the derived category formed from the differential
graded left R-modules. We regard C (or rather, the Eilenberg–MacLane spectrum
of C) as an E∞ ring spectrum; here, E∞ means “commutative and associative up
to all higher homotopies.” This allows us, for example, to take two objects A and
B in D(C) and regard A ⊗L

C B as another object in D(C), just as we can regard
the tensor product of two modules over a commutative ring as another module
over the same ring. For this purpose, it is essential to be working in a category of
spectra in which the smash product is commutative and associative up to coherent
natural isomorphism, and not just up to all higher homotopies; there are nowadays
a number a candidates for such a category, and we chose to work in the framework
of Elmendorf, Kř́ıž, Mandell and May [5].

Another construction requiring the E∞ structure is localization at a prime ideal
in the homotopy. Since π∗C = H−∗(G, k), we can form the localization Cp, and
then use tensor products to apply a stable Koszul type construction with respect
to a homogeneous system of parameters in p. This construction gives the image
in D(C) of a suitable lift to D(kG) of the kappa module κp in StMod(kG). This
construction can therefore be regarded as a sort of local cohomology object in
D(C) for the prime p. The statement that its cohomology is injective is a sort of
Gorenstein duality for Cp.
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The statement that C is Gorenstein in the appropriate sense appeared in the
work of Dwyer, Greenlees and Iyengar [4]. The usual proof that localization at a
prime ideal of a Gorenstein ring gives a Gorenstein ring no longer works in this
context, because it relies on the characterization of Gorenstein via finite injective
dimension, which doesn’t make much sense in this context. So proving that Cp
is Gorenstein went via a different route. We applied Grothendieck duality with
respect to a normalization coming from an embedding of G in SU(n), and proved
the corresponding dual statement.

To summarize, the proof involves translating the original problem from modular
representation theory into the language of modules over an E∞ ring spectrum from
algebraic topology, and then using methods from commutative algebra to solve the
problem there. The level of machinery involved is formidable, but the hope is that
other problems in modular representation theory will succumb to a similar route.
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Quantum cluster algebras

Andrei Zelevinsky

Cluster algebras were introduced and studied by S. Fomin and A. Zelevinsky in
[3, 5, 1]. This is a family of commutative rings designed to serve as an algebraic
framework for the theory of total positivity and canonical bases in semisimple
groups and their quantum analogs. Here we report on a joint work with A. Beren-
stein [2], where we introduce and study quantum deformations of cluster algebras.

We start by recalling the definition of cluster algebras (of geometric type). Let
m and n be two positive integers with m ≥ n. Let F be the field of rational
functions over Q in m independent (commuting) variables.

Definition 1. A seed in F is a pair (x̃, B̃), where

• x̃ = {x1, . . . , xm} is a free (i.e., algebraically independent) generating set
for F .
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• B̃ is an m×n integer matrix with rows labeled by [1,m] = {1, . . . ,m} and
columns labeled by an n-element subset ex ⊂ [1,m], such that, for some
positive integers dj (j ∈ ex), we have dibij = −djbji for all i, j ∈ ex.

The subset x = {xj : j ∈ ex} ⊂ x̃ (resp. c = x̃ − x) is called the cluster (resp.

the coefficient set) of a seed (x̃, B̃). The seeds are defined up to a relabeling of
elements of x̃ together with the corresponding relabeling of rows and columns of
B̃.

Definition 2. Let (x̃, B̃) be a seed in F . For any k ∈ ex, the seed mutation in

direction k transforms (x̃, B̃) into a seed (x̃′, B̃′) given by:

• x̃′ = x̃−{xk}∪{x′k}, where x′k ∈ F is determined by the exchange relation

(1) x′k = x−1
k (

∏

i∈[1,m]
bik>0

xbik

i +
∏

i∈[1,m]
bik<0

x−bik

i ) .

• The entries of B̃′ are given by

(2) b′ij =




−bij if i = k or j = k;

bij +
|bik|bkj + bik|bkj |

2
otherwise.

The seed mutations generate an equivalence relation: we say that two seeds
(x̃, B̃) and (x̃′, B̃′) are mutation-equivalent if (x̃′, B̃′) can be obtained from (x̃, B̃)
by a sequence of seed mutations.

Fix a mutation-equivalence class S of seeds. Let X ⊂ F denote the union
of clusters, and c the common coefficient set of all seeds from S. The cluster
algebra A(S) associated with S is the Z[c±1]-subalgebra of F generated by X .

We now define a family of q-deformations of A(S). The following setup is a
simplified version of that in [2]. The main idea is to deform each extended cluster

x̃ to a quasi-commuting family X̃ = {X1, . . . , Xm} satisfying

(3) XiXj = qλijXjXi

for some skew-symmetric integer m × m matrix Λ = (λij). Let Fq denote the

skew-field of fractions of the ring Z[q±1/2, X1, . . . , Xm], where X1, . . . , Xm are
algebraically independent variables satisfying (3). For any a = (a1, . . . , am) ∈ Zm,
we set

(4) Xa = q
1
2

P
i>j λijaiajXa1

1 · · ·Xam
m .

Definition 3. A free generating set for Fq is a subset {Y1, . . . , Ym} ⊂ Fq of the

following form: Yj = ϕ(Xcj), where ϕ is a Q(q±1/2)-linear automorphism of Fq,
and {c1, . . . , cm} is a basis of the lattice Zm.

Note that the subset {Y1, . . . , Ym} can be used instead of {X1, . . . , Xm} in the
definition of the ambient field Fq, with the matrix Λ replaced by CT ΛC, where C
is the matrix with columns c1, . . . , cm.



354 Oberwolfach Report 6/2005

Definition 4. A quantum seed in Fq is a pair (X̃, B̃), where

• X̃ = {X1, . . . , Xm} is a free generating set for Fq.

• B̃ is a m×n integer matrix with rows labeled by [1,m] and columns labeled
by an n-element subset ex ⊂ [1,m], which is compatible with the matrix Λ
given by (3), in the following sense: for some positive integers dj (j ∈ ex),
we have

(5)
m∑

k=1

bkjλki = δijdj (j ∈ ex, i ∈ [1,m]) .

As in Definition 1, the quantum seeds are defined up to a relabeling of elements
of X̃ together with the corresponding relabeling of rows and columns of B̃.

Note that (5) implies that dibij = −djbji for all i, j ∈ ex, i.e., B̃ is as in
Definition 1.

Example. Let m = 2n, ex = [1, n], and let B̃ be of the form

B̃ =

(
B
I

)
,

where I is the identity n× n matrix. Here B is an arbitrary integer n× n matrix
satisfying dibij = −djbji for some positive integers d1, . . . , dn: in other words, B
is skew-symmetrizable, that is, DB is skew-symmetric, where D is the diagonal
matrix with diagonal entries d1, . . . , dn. An easy calculation shows that the skew-
symmetric matrices Λ compatible with B̃ in the sense of (5) are those of the form

(6) Λ =

(
Λ0 −D − Λ0B

D −BT Λ0 −DB +BT Λ0B

)
,

where Λ0 is an arbitrary skew-symmetric integer n× n matrix.

Definition 5. Let (X̃, B̃) be a quantum seed in Fq. For any k ∈ ex, the quantum

seed mutation in direction k transforms (X̃, B̃) into a quantum seed (X̃′, B̃′) given
by:

• X̃′ = X̃− {Xk} ∪ {X ′k}, where X ′k ∈ Fq is given by

(7) X ′k = X
−ek+

P
bik>0 bikei + X

−ek−
P

bik<0 bikei ,

where the terms on the right are defined via (4), and {e1, . . . , em} is the
standard basis in Zm.
• The matrix entries of B̃′ are given by (2).

The fact that (X̃′, B̃′) is a quantum seed is not automatic: for the proof see [2,
Proposition 4.7].

Based on definitions (4) and (5), one defines the quantum cluster algebra associ-
ated with a mutation-equivalence class of quantum seeds, in exactly the same way
as the ordinary cluster algebra. It is shown in [2] that practically all the structural
results on cluster algebras obtained in [3, 5, 1] extend to the quantum setting.
This includes the Laurent phenomenon obtained in [3, 4, 1] and the classification
of cluster algebras of finite type given in [5].
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Maximal orthogonal subcategories of triangulated categories satisfying
Serre duality

Osamu Iyama

1. Motivation

The classical Auslander correspondence gives a bijection between the set of Morita-
equivalence classes of representation-finite finite-dimensional algebras Λ and that
of finite-dimensional algebras Γ with gl. dimΓ ≤ 2 and dom. dim Γ ≥ 2. Our
motivation comes from a higher dimensional generalization [5] of the Auslander
correspondence in Theorem 1.2.

Definition 1.1. Let T be a triangulated category (resp. a full subcategory of
abelian category) and n ≥ 0. For a functorially finite full subcategory C of T, put

C⊥n := {X ∈ T | Exti(C, X) = 0 for any i (0 < i ≤ n)},
⊥nC := {X ∈ T | Exti(X,C) = 0 for any i (0 < i ≤ n)}.

We call C a maximal n-orthogonal subcategory of T if C = C⊥n = ⊥nC holds
[4].

By definition, T is a unique maximal 0-orthogonal subcategory of T.

Theorem 1.2. For any n ≥ 1, there exists a bijection between the set of equiv-
alence classes of maximal (n − 1)-orthogonal subcategories C of mod Λ with ad-
ditive generators M and finite-dimensional algebras Λ, and the set of Morita-
equivalence classes of finite-dimensional algebras Γ with gl. dimΓ ≤ n + 1 and
dom. dimΓ ≥ n+ 1. It is given by C 7→ Γ := EndΛ(M).

Important examples of maximal orthogonal subcategories appear in the work
of Buan-Marsh-Reineke-Reiten-Todorov on cluster categories [1], that of Geiß-
Leclerc-Schröer on preprojective algebras [3], and in considerations of invariant
subrings of finite subgroups G of GLd(k) (see [4]). Let us find some kind of
higher dimensional analogy of Auslander-Reiten theory by considering maximal
orthogonal subcategories.
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2. Triangulated categories

In this section, let T be a triangulated category with a Serre functor S, and C a
maximal (n− 1)-orthogonal subcategory of T.

Theorem 2.1 ([6]). (1) Sn := S ◦ [−n] gives an autoequivalence of C.
(2) C has “Auslander-Reiten (n+ 2)-angles”, i.e. any X ∈ C has a complex

SnX
fn−→ Cn−1

fn−1−→ · · · f1−→ C0
f0−→ X

which is obtained by glueing triangles Xi+1 −→ Ci
fi−→ Xi −→ Xi+1[1],

0 ≤ i < n, with X0 = X, Xn = SnX, Ci ∈ C and the following sequences
are exact.

C(−, SnX)
·fn−→ C(−, Cn−1)

·fn−1−→ · · · ·f1−→ C(−, C0)
·f0−→ JC(−, X) −→ 0

C(X,−)
f0·−→ C(C0,−)

f1·−→ · · · fn−1·−→ C(Cn−1,−)
fn·−→ JC(SnX,−) −→ 0

It is quite interesting to study the relationship among all maximal (n − 1)-
orthogonal subcategories of T. In the rest of this section, assume that T is n-
Calabi-Yau, i.e. Sn = 1. For example, if Λ is a d-dimensional symmetric order,
then CMΛ is (d− 1)-Calabi-Yau.

Definition 2.2. Assume that C satisfies the strict no-loop condition, i.e. for any

X ∈ indC, X /∈ add
⊕n−1

i=1 Ci holds in Theorem 2.1, (2). Define a full subcategory
µX,i(C) of T by

indµX,i(C) := (indC\{X}) ∪ {Xi} (X ∈ indC, i ∈ Z/nZ)

where Xi is the term of the triangle in Theorem 2.1, (2). This can be regarded as
a higher dimensional generalization of the Fomin-Zelevinsky mutation in [1] and
[3].

Theorem 2.3 ([6]). Assume that C satisfies the strict no-loop condition. For any
X ∈ indC, {µX,i(C) | i ∈ Z/nZ} is the set of all maximal (n − 1)-orthogonal
subcategories of T containing indC\{X}.
2.4. It is an interesting question when transitivity holds in T, i.e. the set of all
maximal (n − 1)-orthogonal subcategories of T is transitive under the action of
mutations defined in Definition 2.2. It is known that transitivity holds for cluster
categories T [1], and T = CM Λ for the Veronese subring Λ of degree 3 of k[[x, y, z]]
(see [8]).

3. Derived equivalence

It is suggestive to relate our question in 2.4 to Van den Bergh’s generalization
[7] of the Bondal-Orlov conjecture [2] in algebraic geometry, which asserts that
all (commutative or non-commutative) crepant resolutions of a normal Gorenstein
domain have the same derived category. Let us generalize the concept of Van den
Bergh’s non-commutative crepant resolutions [7] of commutative normal Goren-
stein domains to our situation.
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3.1. Let Λ be an R-order which is an isolated singularity. We call M ∈ CM Λ
a NCC resolution of Λ if Λ ⊕ HomR(Λ, R) ∈ addM and Γ := EndΛ(M) is an
R-order with gl. dimΓ = d. We have the remarkable relationship below between
NCC resolutions and maximal (d− 2)-orthogonal subcategories [5].

Proposition. Let d ≥ 2. Then M ∈ CM Λ is a NCC resolution of Λ if and only
if addM is a maximal (d− 2)-orthogonal subcategory of CM Λ.

3.2. We conjecture that the endomorphism rings EndΛ(M) are derived equivalent
for all maximal (n−1)-orthogonal subcategories addM of CM Λ. This is an analogy
of the Bondal-Orlov and Van den Bergh conjecture by 3.1, and true for n = 2.

Theorem ([5]). Let Ci = addMi be a maximal 1-orthogonal subcategory of CM Λ
and Γi := EndΛ(Mi), i = 1, 2. Then Γ1 and Γ2 are derived equivalent.

Corollary 3.3 ([5, 6]). All NCC resolutions of Λ are derived equivalent if

(1) d ≤ 3, or
(2) Λ is a symmetric order and transitivity holds in CMΛ (2.4).
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A construction of maximal 1-orthogonal modules for preprojective
algebras

Christof Geiß

(joint work with Bernard Leclerc and Jan Schröer)

For a Dynkin quiver Q = (Q0, Q1, t, h) we consider its double Q̄, which is obtained
from Q by adding an extra arrow a∗ : h(a)→ t(a) for each arrow a : t(a)→ h(a) in
Q1. The preprojective algebra Λ = kQ̄/〈∑a∈Q1

[a, a∗]〉 is in this situation a finite
dimensional, selfinjective algebra.

Let F : Λ̃→ Λ be the universal covering of Λ. Consider moreover an embedding

J : ΓQ → Λ̃ where ΓQ is the Auslander algebra of kQ. To be precise, we should
replace here our algebras by locally bounded categories, and consider contravariant
functors instead of right modules.
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Consider now I ′Q = Homk(ΓQ, k) as a right ΓQ-module and define the Λ-module

IQ := FλJ
·(IQ). Here, Fλ : mod- Λ̃ → mod-Λ is the usual push down functor

associated to F and J · : mod- ΓQ → mod- Λ̃ is the “extension by 0” associated to
J . Clearly, IQ is a direct sum of |ΠQ| pairwise non-isomorphic indecomposable
summands, where ΠQ is the set of positive roots associated to Q.

We can describe EQ = EndΛ(IQ) as a quiver with relations: The quiver ĀQ of
EndΛ(IQ) is obtained from the Auslander-Reiten quiver AQ of kQ by inserting an
additional arrow ρx : x→ τx for each non-projective vertex x of AQ. The relations
are the usual mesh relations for AQ and, moreover, for each arrow β : x→ y with
y not a projective vertex there is a relation τ(β)ρx − ρyβ (interpret this as ρyβ if
x is projective). In other words, precisely for each arrow α : u→ v in ĀQ with not
both u and v injective there is a homogeneous relation of length 2 from v to u.

Now, a slightly tricky calculation shows that

(1) dimk EQQ = qQ(dim IQ),

where qQ is the quadratic form associated to Q.

Remarks. (1) For X ∈ mod- Λ let v = dimX. If we denote by x the corre-
sponding point in the preprojective variety Λv, one has

dimExt1Λ(X,X) = 2 codimΛv
(Glv ·x) = 2(dimEndΛ(X)− qQ(v)).

We conclude from (1) that IQ is rigid, i.e. Ext1Λ(IQ, IQ) = 0.
(2) In [4] it was shown that |ΠQ| is an upper bound for the number of pairwise

non-isomorphic direct summands of a rigid module. As we have seen for
IQ, this upper bound is reached. We call such modules complete rigid.

(3) In [3] we show that if there exists a complete rigid module T such that the
quiver of EndΛ(T ) has no loops, then each complete rigid module is even
maximal 1-orthogonal in the sense of Iyama [5].

(4) Let now k = C and N be a maximal unipotent subgroup of a simple (com-
plex) Lie group of type |Q|. It follows from [1] that the coordinate ring
C[N ] has the structure of an (upper) cluster algebra. The exchange matrix
for the initial seed constructed there can be codified in a quiver which coin-
cides with the quiver of our EQ (for a proper reduced word for the longest
element in the corresponding Weyl group).

References

[1] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat
cells. Duke Math. J. 126 (2005), No. 1, 1-52.
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Resolutions over Koszul algebras and a question of D. Happel

Edward L. Green

(joint work with Ragnar-Olaf Buchweitz, Dag Madsen and Øyvind Solberg)

Suppose that Λ is a finite dimensional K-algebra where K is a field. We denote
the n-th Hochschild cohomology group of Λ by HHn(Λ). In [5], Dieter Happel
asked: If HHn(Λ) = 0 for sufficiently large n, then is the global dimension of Λ
finite? Using the quantum exterior algebra in two variables as an example, we
give a negative answer to the question [2]. It should be noted that L. Avramov
and S. Iyengar [1] show that if Λ is a commutative finite dimensional K-algebra,
then Happel’s question has an affirmative answer.

We now give the example. Let Λq = K 〈x, y〉 /(x2, y2, xy + qyx) where K 〈x, y〉
is the free associative algebra in two variables and q ∈ K. We have the following
facts. For all q ∈ K, the dimension of Λq is 4 and the global dimension of Λq is
infinite. If q 6= 0 then Λq is a self-injective Koszul algebra with Koszul dual being
the quantum affine plane K 〈x, y〉 /(yx− qxy). We note that a minimal projective
resolution of K, as a right Λq-module, is

· · · −→ Λ4
q

0
BB@

x y 0 0
0 qx y 0
0 0 q2x 0

1
CCA

−−−−−−−−−−−−−−−−→ Λ3
q

0
@ x y 0

0 qx y

1
A

−−−−−−−−−−−−→ Λ2
q

“
x y

”

−−−−−−−→ Λq −→ K −→ 0.

Using this resolution, we are able to find a minimal projective Λe
q-resolution

of Λq, where Λe
q is the enveloping algebra Λop

q ⊗K Λq. We use this resolution to
calculate the Hochschild cohomology groups.

We prove the following result.

Theorem. Let Λq = K 〈x, y〉 /(x2, y2, xy + qyx) such that q is not a root of
unity in K. Then the Hochschild cohomology ring, HH∗(Λq) is isomorphic to
K[z]/(z2)×K ∧∗(u0, u1) as graded algebras where z has degree one, u0 and u1 are
of degree 1 and ∧∗(u0, u1) denotes the exterior algebra in two variables.

From this theorem, we see that dimK(HH0(Λq)) = 2 = dimK(HH1(Λq)),

dimK(HH2(Λq)) = 1, and HHn(Λq) = 0 for n ≥ 3. Thus, each Λq, q not a
root of unity in K, provides a counterexample to Happel’s question.

If q is a root of unity in K, then the Hochschild cohomology ring for Λq, in all
characteristics, is also completely described in [2]. In particular, it follows that
in this case, HHn(Λq) 6= 0 for an infinite number of n’s. On the other hand, by
appropriate choices of the root of unity q, it is shown that there can be arbitrarily
large gaps where the Hochschild cohomology vanishes.

The story of the Hochschild homology groups of the Λq is different. Y. Han [4]
shows that for any q, HHn(Λq) 6= 0 for all n.

The main technique to describe the Hochschild cohomology rings is to find a
minimal projective Λe

q-resolution of Λq. It turns out that the basic requirement in
finding such resolutions is that Λq is a Koszul algebra for q 6= 0. The techniques
we employ generalize to arbitrary Koszul algebras and can be found in [3].
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Local Ext-limitations do not exist

Sverre O. Smalø

In this talk it was shown that for k a field and the four dimensional algebra
Λ = k〈x, y〉/〈x2, y2, xy+qyx〉 when qn 6= 1, 0 for all n, there exist a two dimensional
module M and a family of two dimensional modules Mi, i = 1, 2, . . . , such that
dimk Exti

Λ(M,Mj) = 1 for i = 0, j and j+ 1 and zero otherwise. This is probably
the easiest example giving a negative answer to a question raised by Maurice
Auslander.
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Double Poisson algebras

Michel Van den Bergh

Let k be a field. If Q is a finite quiver and Q̄ is its associated double quiver, then
kQ̄/[kQ̄, kQ̄] is equipped with a natural Lie bracket {−,−}, the so-called necklace
bracket [1, 5, 6].

The necklace bracket has a connection with representation spaces as follows. Let
α be a dimension vector. Then Rep(Q̄, α) is the cotangent bundle of Rep(Q,α),
and as such it comes equipped with a classical Poisson bracket. The trace map

Tr : kQ̄/[kQ̄, kQ̄]→ O(Rep(Q,α))Gl(α)

is a Lie algebra homomorphism.
This theory is somewhat unsatisfying since

• As kQ̄/[kQ̄, kQ̄] has no algebra structure, it cannot itself be regarded as
a kind of (non-commutative) Poisson algebra.
• The above trace map only explains the Poisson bracket between invariant

functions on Rep(Q,α).
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To solve these problems we introduce the notion of a double Poisson structure on
a non-commutative algebra A [7]. This is by definition a bilinear map

{{−,−}} : A⊗A→ A⊗A
satisfying suitable analogues of the axioms of a Poisson algebra. If A is a double
Poisson algebra then A/[A,A] carries an induced Lie bracket {−,−} and further-
more all representation spaces of A carry an induced Poisson bracket.

We show that kQ̄ has a natural double Poisson structure whose associated Lie
bracket is the necklace bracket and which induces the standard Poisson structure
on Rep(Q̄, α).

The algebra DA of double poly-vector fields associated to A is defined as
TA Der(A,A ⊗ A) [2]. This definition can be motivated by showing that the ele-
ments of DA induce poly-vector fields on all representation spaces. We show that
DA has a natural (super) double Poisson structure which induces the Schouten
bracket on all representation spaces. If A is quasi-free, then a double Poisson
bracket on A can be described as an element P of (DA/[DA,DA])2 such that
{P, P} = 0.

For more information on non-commutative Poisson geometry, and in particular
an application to the multiplicative preprojective algebras recently introduced by
Crawley-Boevey and Shaw [4], see [7]. For a related approach see [3].
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Microscopy of simple representations

Markus Reineke

Let Q = (Q0, Q1) be a finite quiver, and let d ∈ NQ0 be a dimension vector. A
year ago I proved:

Theorem 1. There exists a polynomial aQ
d (t) ∈ Z[t] such that, for any finite field

k, the evaluation aQ
d (|k|) equals the number of isomorphism classes of absolutely

simple representations S of kQ of dimension vector d (i.e. k ⊗k S is a simple

representation of kQ).
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Computer experiments show that the nature of these polynomials is rather
mysterious. However, a special value has a simple interpretation:

Theorem 2. If dim d > 1, the polynomial aQ
d (t) has a zero at t = 1, and

aQ
d

(t)

t−1

∣∣∣
t=1

equals the number of cyclic equivalence classes of primitive cycles in Q of weight
d.

A cycle ω in Q is of weight d if it passes di times through each vertex i ∈ Q0.
It is called primitive if it is not a proper power of another cycle. The equivalence
relation is cyclic rotation of paths.

The proof works as follows:
Step 1: Let Rd(Q) =

⊕
(α:i→j)∈Q1

Hom(Cdi ,Cdj ) be the variety of complex

representations of Q of dimension vector d, on which the algebraic group Gd :=∏
i∈Q0

GLdi
(C) acts by base change. The projective space PRd(Q) contains an

open subset U corresponding to the simple representations, which admits a geo-
metric quotient PMd(Q) := U/Gd, a smooth, but non-projective complex variety.

By Theorem 1 and some properties of ℓ-adic cohomology, the value
aQ

d
(t)

t−1

∣∣∣
t=1

equals

the Euler characteristic in cohomology with compact support χc(PMd(Q)). This
reduces the theorem to a topological statement.

Step 2: The Borel localization formula in equivariant cohomology gives the fol-
lowing: given a torus action on a complex variety, the Euler characteristic χc is
preserved under passage to the fixed point set. Here we have an action of the
torus TQ = (C∗)Q1 on Rd(Q) by rescaling of arrows, which passes to an action on
PMd(Q). It thus suffices to compute (the Euler characteristic of) PMd(Q)Tq .

Step 3: Given an indivisible vector λ ∈ NQ1, define a quiver Qλ (an almost
universal abelian covering of Q) with set of vertices Q0 × ZQ1/Zλ and arrows
(α, µ) : (i, µ) → (j, µ + eα) for all (α : i → j) ∈ Q1 and all µ ∈ ZQ1/Zλ. Given

d ∈ NQ0, consider dimension vectors d̃ ∈ N(Qλ)0 such that
∑

µ d̃i,µ = di for all
i ∈ Q0.

Proposition. The fixed point set PMd(Q)TQ is isomorphic to the disjoint union⋃
λ, ed PMed(Qλ) running over all λ and d̃ as above.

By additivity of Euler characteristic and Step 2, χc(PMd(Q)) equals the sum∑
λ, ed χc(PMed(Qλ)).

Step 4: The theorem can now be proved by induction on |Q0|, assuming in each
step w.l.o.g. that supp(d) = Q and that Q is connected. The reduction process

ends with quivers Q such that either PMd(Q) = ∅, or Q is an Ãn-quiver with
cyclic orientation, and di = 1 for all i ∈ I, in which case PMd(Q) is a single point,
thus of Euler characteristic 1. To count how many times this quiver is produced
in the reduction process, its arrows have to be labelled (up to cyclic permutation)
by arrows of the original quiver Q which form a primitive cycle. This proves
Theorem 2.
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This principle of proof may be called microscopy for two reasons: on the
one hand, the iterated application of localization ”zooms” into the moduli space
PMd(Q) of simple representations. On the other hand, simples belonging to the
fixed point set PMd(Q)TQ possess an inner structure (they lift to a simple repre-
sentation of some Qλ), so the proof also ”looks at simples under a microscope”.

Auslander-Reiten sequences, locally free sheaves and Chebysheff
polynomials

Dan Zacharia

Let R be the exterior algebra in n + 1 variables, and let S denote the symmet-
ric algebra in n + 1 variables. It is well known that R is a selfinjective Koszul
algebra and S is its Koszul dual. By KR and KS we denote the categories of
linear R-modules (S-modules respectively) where the morphisms are the degree
zero homomorphisms. The Koszul duality can be then used to obtain mutually
inverse dualities between the category of linear R-modules and that of the linear
S-modules:

KR

E ** KS

F

jj

By coh(Pn) we denote the category of coherent sheaves over the projective n-

space, and if M is a finitely generated graded S-module, we set M̃ ∈ coh(Pn)
to be its sheafification. A theorem of Avramov and Eisenbud [1] states that for
every finitely generated graded S-module M, there exists an integer k such that
the shifted truncation M≥k[−k] = Mk ⊕Mk+1 ⊕ . . . [−k] is a linear S-module.
This means that every indecomposable coherent sheaf F , is the sheafification of
the graded shift of some linear R-module, and using the Koszul duality we can

write F ∼= ˜E(M)[i] for some linear R-module M and some integer i.
The main ingredient is the following theorem from [2]:

Theorem 1. Let M be an indecomposable linear nonfree R-module. Then there
exists an exact sequence 0 → A → B → M → 0 that is an Auslander-Reiten
sequence in KR. Moreover the Loewy length of A is precisely 2.

It turns out that if we denote by J the radical of R, then the module M/J2M is
indecomposable, and the induced sequence 0 → A → B/J2B → M/J2M → 0 is
an Auslander-Reiten sequence in the category gr0R/J

2 of graded R/J2-modules
generated in degree zero. Since the algebra R/J2 is stably equivalent to the gener-
alized Kronecker algebra we can use this algebra to describe the Auslander-Reiten
quiver of KR:

Theorem 2. Let R denote the exterior algebra in n+1 variables, where n > 1. The
A-R quiver of KR has a connected component that coincides with the preinjective
component of gr0R/J

2, a component consisting only of the module R, and all the
remaining connected components are quivers of the type N−A∞.
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We can use now the Koszul duality and Serre’s theorem to show that certain
subcategories of the category of coherent sheaves over the projective n-space have
one sided Auslander-Reiten sequences, and describe the shapes of their Auslander-
Reiten quivers. First, for each integer i, denote by KS [i] the graded shifts of

the category of linear S-modules and by K̃S [i] their sheafifications. We have the
following:

Theorem 3. For each integer i, the category K̃S [i] has left Auslander-Reiten

sequences, that is, given an indecomposable coherent sheaf F in K̃S [i], there exist
an exact sequence

0→ F → B → C → 0

that is almost split in K̃S [i]. Moreover, the Auslander-Reiten quiver of the subcat-

egory K̃S [i] of coh(Pn), where n > 1, has one preprojective component, and the
remaining components are all quivers of the type NA∞.

We can use the fact that every coherent sheaf is the sheafification of a linear
S-module, to compute the rank of a locally free sheaf. Namely, if F is locally free,

then we can write F = Ẽ(M) for some linear R-module M , and then we have
rkF =

∑p
i=0(−1)i dimMi where the Mi are the graded pieces of M. Using the

Koszul duality we can prove that if a component of the Auslander-Reiten quiver

of some K̃S [i] contains a locally free sheaf, then all the sheaves in that component
are locally free. Then it is easy to show that each sheaf lying in the preprojective

component of one of the K̃S [i] is locally free. We have the following:

Proposition. Let F0,F1,F2 . . . be the locally free sheaves lying in the preprojective

component of the subcategory K̃S [i] of coh(Pn). Denote by

Tk(x) =

[k/2]∑

m=0

(−1)m

(
k −m
m

)
(2x)k−2m

the Chebysheff polynomials of the second kind. Then for each k ≥ 1, we have

rkFk = Tk(
n+ 1

2
)− Tk−1(

n+ 1

2
).

In addition, if n > 1, then for each k, rkFk+1 > rkFk.

It is a long standing problem to determine whether there are indecomposable
locally free sheaves of small ranks over Pn. In this regard we have the following
theorem.

Theorem 4. Let n > 1. For each integer i, each A-R component of K̃S [i] contains
at most one locally free sheaf of rank less than n. Moreover, in each component
the ranks increase exponentially.
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On the finitistic dimension conjecture

Changchang Xi

1. Introduction

Given an artin algebra A, the finitistic dimension of A is defined to be the supre-
mum of the projective dimensions of the finitely generated left A-modules of finite
projective dimension. The famous finitistic dimension conjecture says that
for any artin algebra A the finitistic dimension of A is finite. This conjecture was
proposed 45 years ago and still remains open, and has been related to at least five
other homological conjectures (see the last 6 conjectures of the total 13 conjectures
in the book [4]):

Strong Nakayama conjecture [7]: If M is a non-zero module over an artin
algebra A, then there is an integer n ≥ 0 such that ExtnA(M,A) 6= 0.

Generalized Nakayama conjecture [2]: If 0 → AA → I0 → I1 → . . . is
a minimal injective resolution of an artin algebra A, then any indecomposable
injective is a direct summand of some Ij . Equivalently, if M is a finitely generated

A-module such that add(A) ⊆ add(M) and Exti
A(M,M) = 0 for all i ≥ 1, then

M is projective.
Nakayama conjecture [15]: If all Ij in a minimal injective resolution of an

artin algebra A, say 0 → AA → I0 → I1 → . . ., are projective, then A is self-
injective.

Gorenstein symmetry conjecture: Let A be an artin algebra. If the injec-
tive dimension of AA is finite, then the injective dimension of AA is finite.

In general, all the above conjectures are still open. They have the following well-
known relationship: The finitistic dimension conjecture =⇒ the strong Nakayama
conjecture =⇒ the generalized Nakayama conjecture =⇒ the Nakayama conjec-
ture. And, the finitistic dimension conjecture =⇒ the Gorenstein symmetry con-
jecture.

In this talk I shall report on some new developments attacking the finitistic
dimension conjecture. Our idea to approach the conjecture is to use a chain of
subalgebras with certain radical conditions. Let us introduce the following notion:
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Definition. (1) Given an artin algebra A, we say that the left representation
distance of A, denoted by lrep. dis(A), is the minimum of the lengths of
chains of subalgebras A = A0 ⊆ A1 ⊆ · · · ⊆ As such that rad(Ai) is a left
ideal in Ai+1 for all i and that As is representation-finite. Here we have
denoted the Jacobson radical of A by rad(A).

(2) A homomorphism f : B −→ A between two algebras A and B is said to
be radical-full if rad(A) = rad(BA).

Note that the left representation distance of an artin algebra is always finite
by [19] and invariant under Morita equivalences. Every surjective homomorphism
is radical-full. Note that if B is a subalgebra of an artin algebra A, the inclusion
map being radical-full does not imply that rad(B) is a left ideal in A.

2. Main results

In this section we shall summarize some new results in the recent papers [19, 20].
For some known results on finitistic dimension conjecture we refer to [3, 9, 10, 8,
11, 16] and many other papers. (I apologize that I could not display all literature
here.)

Our main results are the following.

Theorem 1. Let A be an artin algebra.

(1) If lrep. dis(A) ≤ 2, then the finitistic dimension conjecture is true for A.
(2) Let B be a subalgebra of A such that rad(B) is a left ideal of A and that

the inclusion map is radical-full. If the global dimension of A is at most
4, then the finitistic dimension conjecture is true for B.

We may also use a chain of factor algebras to bound the finitistic dimension.
In this direction, we have the following result.

Theorem 2. Let A be an artin algebra, and let I and J be two ideals in A
with IJ rad(A) = 0. If A/I and A/J are representation-finite, then the finitistic
dimension conjecture is true for A.

The proofs of Theorem 1 and Theorem 2 are based on the following lemmas.

Lemma 1. Suppose B is a subalgebra of A such that rad(B) is a left ideal in
A. Then, for any B-module X and integer i ≥ 2, there is a projective A-module
Q and an A-module Z such that Ωi

B(X) ≃ ΩA(Z) ⊕ Q as A-modules, where ΩB

stands for the first syzygy over the algebra B.

Lemma 2 ([11]). For any artin algebra A there is a function Ψ from the finitely
generated A-modules to the non-negative integers such that

(1) Ψ(M) = proj. dim(M) if M has finite projective dimension.
(2) For any natural number n, Ψ(

⊕n
j=1M) = Ψ(M).

(3) For any A-modules X and Y , Ψ(X) ≤ Ψ(X ⊕ Y ).
(4) If 0 → X → Y → Z → 0 is an exact sequence in A-mod such that the

projective dimension of Z is finite, then Ψ(Z) ≤ Ψ(X ⊕ Y ) + 1.
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Based on the above results, there are many elementary questions, for example,
if the left representation distance of A is 3, could we prove the finitistic dimension
conjecture for A? For more information and the details of the proofs of the above
main results we refer to the papers [19, 20]. Preprints can be downloaded from
http:/math.bnu.edu.cn/∼ccxi/.

The research work is supported by the CFKSTIP(704004) and the Doctor Pro-
gram Foundation, Ministry of Education of China; and the NSF of China.
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dimension. Adv. Math. 185 (2004), no. 1, 159–177
[9] E. L. Green, E. Kirkman and J. Kuzmanovich, Finitistic dimensions of finite-dimensional

monomial algebras. J. Algebra 136 (1991), no. 1, 37–50.
[10] E. L. Green and B.Zimmermann-Huisgen, Finitistic dimension of artin rings with vanishing

radical cube. Math. Z. 206 (1991), 505–526.
[11] K. Igusa and G. Todorov, On the finitistic global dimension conjecture for artin algebras.

Preprint, (2002), 1–4.
[12] K. Igusa and D. Zacharia, Syzygy pairs in a monomial algebra. Proc. Amer. Math. Soc. 108

(1990), 601–604.
[13] O. Iyama, Finiteness of representation dimension. Proc. Amer. Math. Soc. 131 (2003), no.

4, 1011–1014.
[14] Y. M. Liu and C. C. Xi , Constructions of stable equivalences of Morita type

for finite dimensional algebras II. Math. Z. (to appear). Preprint is available at
http://math.bnu.edu.cn/∼ccxi/Papers/Articles/mstable2.pdf/

[15] T. Nakayama, On algebras with complete homology. Abh. Math. Sem. Univ. Hamburg 22

(1958), 300–307.
[16] Y. Wang, A note on the finitistic dimension conjecture. Comm. in Algebra 22 (1994), no.

7, 2525–2528.

[17] A. Wiedemann, Integral versions of Nakayama and finitistic dimension conjectures. J. Al-
gebra 170 (1994), no.2, 388–399.

[18] C. C. Xi, On the representation dimension of finite dimensional algebras. J. Algebra 226

(2000), 332–346.
[19] C. C. Xi, On the finitistic dimension conjecture I: related to representation-finite algebras. J.

Pure and Appl. Alg. 193 (2004) 287-305. Erratum to “On the finitistic dimension conjecture
I: related to representation-finite algebras. J. Pure and Appl. Alg. 193 (2004) 287–305”.
Preprint is available at http://math.bnu.edu.cn/∼ccxi/Papers/Articles/correctumnew.pdf/.



368 Oberwolfach Report 6/2005

[20] C. C. Xi, On the finitistic dimension conjecture II: related to finite
global dimension. Adv. in Math. (to appear), Preprint is available at
http://math.bnu.edu.cn/∼ccxi/Papers/Articles/finchain.pdf/.

[21] C. C. Xi, Representation dimension and quasi-hereditary algebras. Adv. in Math. 168

(2002), 193–212.
[22] K. Yamagata, Frobenius Algebras. In: Handbook of Algebra. Vol.1 (1996), 841–887.

Stable cohomology over local rings

Luchezar L. Avramov

(joint work with Oana Veliche)

In the mid-1980s Pierre Vogel introduced a cohomology theory that associates

to each pair (M,N) of modules over an associative ring A groups Êxt
n

A(M,N)
defined for every n ∈ Z, which vanish when either M or N has finite projective
dimension. The first published account is in [5], and different constructions were
independently found by Benson and Carlson [2] and by Mislin [8]. Kropholler’s
survey [6, §4] contains background and details. Known as stable cohomology, this
theory contains as a special case Tate’s cohomology theory for modules over a

finite group G (namely, Êxt
n

ZG(Z, N) = Ĥ(G,N), where ZG is the group ring), as
well as its extension by Buchweitz [3] to two-sided noetherian Gorenstein rings.

Little is known about the meaning or the properties of stable cohomology out-
side of the original context of group representations. One reason for that may be
the fact that the stable groups, and the multiplicative structures they support, are
not readily amenable to computations through classical techniques.

We develop new approaches to their computation and present applications to
commutative algebra. For the rest of this text, R denotes a commutative local ring
with residue field k. Historical precedents indicate that considerable ring theoretic
information on R is reflected in the homological behavior of k, so we focus on the
stable cohomology of that module.

The classical Auslander-Buchsbaum-Serre theorem characterizes regular local
rings as the local rings of finite global dimension. In particular, when R is regular

all functors Êxt
n

R(−,−) are trivial. We prove a strong converse:

1. If Êxt
n

R(k, k) = 0 for a single n ∈ Z, then R is regular.

When R is Gorenstein and M is finitely generated, Êxt
n

R(M,N) can be com-
puted from a complete resolution ofM , which is a complex of finite free R-modules.

It follows that if N is finitely generated as well, then so is Êxt
n

R(M,N) for each
n ∈ Z. No characterization of Gorenstein rings is known in terms of the numbers
rankk ExtnR(k, k), so the next result comes as a surprise:

2. If rankk Êxt
n

R(k, k) <∞ for a single n ∈ Z, then R is Gorenstein.

The statements above concern R-module structures, but their proofs use the

fact that E = ExtR(k, k) and S = ÊxtR(k, k) are graded k-algebras, linked by a
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canonical homomorphism ι : E → S. The structure of E has been the subject of
numerous investigations. The structure of S is a major topic of the talk.

When R is regular, 1. yields S = 0. Martsinkovsky [7] proved that for singular
rings ι is injective. We reprove this as part of the next result, where Σ denotes
the translation functor and E acts canonically on I = Homk(E , k). This theorem
leads to an effective procedure for checking the finiteness condition in 2.

3. If R is singular, then there is an exact sequence

0 −→ E ι−−→ S −→
∞∐

i=d−1

(Σ−iI)µi+1 −→ 0

of graded left E-modules, where d = depthR and µi = rankk Exti
R(k,R).

One measure of the singularity of R is provided by a non-negative number,
codepthR = edimR − depthR, where edimR denotes the minimal number of
generators of m and depthR the depth of the ring. One has codepthR = 0 precisely
when R is regular. The condition codepthR ≤ 1 characterizes hypersurface rings.
Their stable cohomology algebra, determined by Buchweitz [3], satisfies:

4. When R is a hypersurface, S = E [ϑ−1], where ϑ ∈ E2 is a central non-zero-
divisor and E/(ϑ) is an exterior algebra on edimR generators of degree 1.

Except for the special case of group algebras of finite abelian groups, little is
known about the structure of S for local rings R having codepthR ≥ 2.

Our results on the subject involve the number

depth E = inf{n ∈ Z | ExtnE(k, E) 6= 0}.
Clearly, one always has depth E ≥ 0. When R is regular, the k-algebra E is finite
dimensional, so depth E = 0. The converse also holds, but this time for a non-
trivial reason. Indeed, a fundamental structure theorem, due to Milnor and Moore,
André, and Sjödin, shows that E is the universal enveloping algebra of a graded Lie
algebra πR. If R is singular, then π2

R 6= 0, so the Poincaré-Birkhoff-Witt theorem
implies depth E ≥ 1; see [1] for details on πR. Félix et al. [4] pioneered the use of
depth E in the study of the structure of E . We show that this invariant provides
also a lot of information on the structure of the k-algebra S.

To describe the structure of S we use the subset

N = {τ ∈ S | E> iτ = 0 for some i ≥ 0} .
For instance, if codimR = 1, then 4. shows that depth E = 1 and N = 0. From
the next result a completely different picture emerges ‘in general’.

5. If R is a Gorenstein ring and one of the following conditions holds:

(a) depth E ≥ 2; or
(b) codepthR ≥ 2, and E> 1 contains a central non-zero-divisor,

then N is a two-sided ideal of S, such that

S = ι(E) ⊕N and N 2 = 0 .
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The theorem applies in many cases. For example, we prove that (a) holds when
R is Gorenstein and codimR = 3; when R has minimal multiplicity; when R is a
localization of a graded Gorenstein Koszul algebra; or when R is a tensor product
of singular Gorenstein algebras over a field. Condition (b) is known to apply to
all complete intersection rings R with codepthR ≥ 2.

However, there exist examples of Gorenstein rings for which depth E = 1 and
E> 1 does not contain non-zero central elements. The structure of their stable
cohomology algebra is not known at present.

Our results on the structure of the stable cohomology algebra S = ÊxtR(k, k)
for a Gorenstein ring R are similar to—and partly motivated by—results of Benson

and Carlson [2] on the structure of the Tate cohomology algebra Ĥ(G, k) for a finite
group G. The similarity is rather unexpected, as the cohomology algebra H(G, k)
is always noetherian, while the absolute cohomology algebra E = ExtR(k, k) is
noetherian precisely when R is complete intersection.

The structure of the algebra S when R is not Gorenstein is the subject of work
in progress. We have found out that in some cases S can be described in terms of
ι(E) and N , as in 5., but that fundamentally new phenomena also occur.
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An equivalence between the homotopy categories of projectives and of
injectives

Srikanth Iyengar

(joint work with Henning Krause)

Let R be a commutative noetherian ring with a dualizing complex D; thus D is a
bounded complex of injective R-modules, with H(D) finitely generated, and the
natural morphism R → HomR(D,D) is a homology isomorphism. The starting
point of the work described in this talk was the realization that K(ProjR) and
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K(InjR), the homotopy categories of complexes of projective and injective R-
modules, respectively, are equivalent. This equivalence comes about as follows: D
consists of injective modules and, R being noetherian, direct sums of injectives are
injective, so D ⊗R − defines a functor from K(ProjR) to K(InjR). This functor
factors through K(FlatR), the homotopy category of flat R-modules, and provides
the lower row in the following diagram:

K(ProjR)
π=inc

// K(FlatR)
πroo

D⊗R−
// K(InjR)

HomR(D,−)oo

The triangulated structures on the homotopy categories are preserved by π and
D⊗R−. The functors in the upper row of the diagram are the corresponding right
adjoints; πr exists because π preserves coproducts and K(ProjR) is compactly
generated; the latter property was discovered by Jørgensen [3]. Then one has:

Theorem 1. The functor D ⊗R − : K(ProjR) → K(InjR) is an equivalence of
triangulated categories, with quasi-inverse πr ◦HomR(D,−).

This equivalence is closely related to, and may be viewed as an extension of,
Grothendieck’s duality theorem for Df (R), the derived category of complexes
whose homology is bounded and finitely generated. To see this connection one has
to consider the commutative diagram of functors:

Kc(ProjR)
D⊗R− // Kc(InjR)

Df (R)
��
≃P

RHomR(−,D) // Df (R)
��

≃ Q

where the top row consists of the compact objects in K(ProjR) and K(InjR),
respectively. The functor P is the composition of HomR(−, R) : K(ProjR) →
K(R) with the canonical functor K(R) → D(R); it is a theorem of Jørgensen [3]
that P is an equivalence of categories. The functor Q is induced by K(R)→ D(R),
and Krause [4] proves that it is an equivalence. Given these descriptions it is
not hard to verify that D ⊗R − preserves compactness; this explains the top
row of the diagram. Now, Theorem 1 implies that the D ⊗R − restricts to an
equivalence between compact objects, so the diagram above implies RHomR(−, D)
is an equivalence; this is one form of the duality theorem; cf. Hartshorne [2].
Conversely, given that RHomR(−, D) is an equivalence, it follows that the top
row of the diagram is an equivalence; this is the crux of the proof of Theorem 1.

We develop Theorem 1 in two directions. The first one deals with the differ-
ence between Kac(ProjR), the category of acyclic complexes in K(ProjR), and
Ktac(ProjR), its subcategory of totally acyclic complexes. We consider also the
injective counterparts. The main new result in this context is summarized in:

Theorem 2. The quotient triangulated categories Kac(ProjR)/Ktac(ProjR) and
Kac(InjR)/Ktac(InjR) are compactly generated. The compact objects in each of
these categories are equivalent to Thick(R,D)/Thick(R), up to direct factors.
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The quotient Thick(R,D)/Thick(R) is a subcategory of Df (R)/Thick(R), the
stable category of R. Since D has finite projective dimension if and only if R
is Gorenstein, we deduce: R is Gorenstein if and only if every acyclic complex
of projectives is totally acyclic, if and only if every acyclic complex of injectives
is totally acyclic. An interesting feature of Theorem 2 is, that it draws our at-
tention to the (monogenic) category Thick(R,D)/Thick(R) as a measure of the
failure of a ring R from being Gorenstein. Its role is thus analogous to that of
the full stable category with regards to regularity: Df (R)/Thick(R) is trivial if
and only if R is regular. This observation, and others of this ilk, suggest that
Thick(R,D)/Thick(R) is an object worth investigating.

Next we turn to the functors induced on D(R) by the ones in Theorem 1.
This involves two different realizations of the derived category as a subcategory
of K(R), both obtained from the localization functor K(R) → D(R): one by
restricting it to K-proj(R) the subcategory of K-projective complexes, and the
other by restricting it to K-inj(R), the subcategory of K-injective complexes.
The inclusion K-proj(R) ⊆ K(ProjR) admits a right adjoint p, the inclusion
K-inj(R) ⊆ K(ProjR) admits a left adjoint i, and one obtains a diagram

K(ProjR)

p

��

D⊗R−

≃ // K(InjR)

i

��

πr◦HomR(D,−)oo

K-proj(R)

OO

G

// K-inj(R)

OO

Foo

where G is i ◦ (D ⊗R −) restricted to K-proj(R), and F is p ◦ πr ◦ HomR(D,−)
restricted to K-inj(R). It follows that (G,F) is an adjoint pair of functors. However,
the equivalence in the upper row of the diagram does not imply an equivalence in
the lower one. Indeed, using Theorem 1, we prove:

The natural morphism X → FG(X) is an isomorphism if and only if the map-
ping cone of the morphism (D ⊗R X)→ i(D ⊗R X) is totally acyclic.

The point being that the mapping cones of resolutions are, in general, only
acyclic. Complexes in K-inj(R) for which the morphism GF(Y ) → Y is an iso-
morphism can be characterized in a similar fashion. This is the key observation
that allows us to describe the subcategories of K-proj(R) and K-inj(R) where the
functors G and F restrict to equivalences. A further extension of these results,
when translated to the derived category, reads:

Theorem 3. A complex X of R-modules has finite G-projective dimension if and
only if the morphism X → RHomR(D,D ⊗L

R X) in D(R) is an isomorphism and
H(D ⊗L

R X) is bounded on the left.

This theorem, together with its counterpart for G-injective dimensions, recovers
recent results of Christensen, Frankild, and Holm [1], who arrived at them from
another route. In the talk I focused on commutative rings. However, the results
carry over, with suitable modifications in the statements and with nearly identical
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proofs, to non-commutative rings that possess dualizing complexes. The details
are given in our article, which we intend to post on the Math arXiv shortly; I am
writing this on 26th February, 2005.
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Algebras derived equivalent to self-injective algebras

Jeremy Rickard

This talk describes some work from the recent PhD thesis of my student Salah
Al-Nofayee. [1]

Recall that two algebras A and B over a field k are said to be derived equivalent
if the derived categories D(A −Mod) and D(B −Mod) of the module categories
of A and B are equivalent as triangulated categories.

Many properties are preserved under derived equivalence. Here is one example
that we proved some time ago.

Theorem 1 ([2], Corollary 5.3). A finite-dimensional algebra derived equivalent
to a symmetric algebra is itself symmetric.

In fact, there is a rather more satisfactory proof than the one that appears
there, as symmetric algebras can be characterized by properties of their derived
categories.

Theorem 2 ([3], Corollary 3.2). A finite dimensional algebra A is symmetric
if and only if the vector spaces Hom(P,M) and Hom(M,P ) are naturally dual
whenever M and P are objects of D(A −Mod) such that M is isomorphic to a
bounded complex of finitely generated modules and P is perfect (i.e., isomorphic
to a bounded complex of finitely generated projective modules).

For some time, the corresponding statement for self-injective algebras has been
open. Recently, in his PhD thesis, it was proved by Salah Al-Nofayee.

Theorem 3 (Al-Nofayee, [1]). A finite-dimensional algebra derived equivalent to
a self-injective algebra is itself self-injective.

The proof uses a result of Saoŕın and Zimmermann-Huisgen on rigidity of tilt-
ing complexes [4], stating that for a given finite sequence {Pi, i ∈ Z} of finitely
generated projective modules for a finite dimensional algebra, there are, up to
isomorphism, only a finite number of tilting complexes of the form

· · · → P1 → P0 → P−1 → . . . .
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In fact, Saoŕın and Zimmermann-Huisgen prove this for algebras over an alge-
braically closed field, but it is easy to deduce from this the statement for general
fields.

Using this result, one can show that if T is a tilting complex for a self-injective
algebra A, then there is some power νt

A of the Nakayama functor νA =? ⊗A DA
for which

νt
A(T ) ∼= T.

This implies that if B is derived equivalent to A, and therefore isomorphic to the
endomorphism algebra of some tilting complex for A, then some power (LνB)t

of the left derived functor of the Nakayama functor takes projective modules to
projective modules. From this one can prove by reverse induction on t that this is
true for all powers of LνB, and in particular, an injective cogenerator νB(B) = DB
is projective, and so B is self-injective.

Unfortunately there seems to be no simple property of the derived category
that characterizes the self-injective algebras, as there is in the case of symmetric
algebras.

With the help of this theorem, Al-Nofayee also generalized a theorem [3, Theo-
rem 5.1] that characterizes the sets of objects in the derived category of a symmet-
ric algebra that correspond to the simple modules under some derived equivalence.
For a self-injective algebra, his necessary and sufficient conditions for such a set
{X1, . . . , Xn} of objects of Db(A−mod) are:

• Hom(Xi, Xj [t]) = 0 for all 1 ≤ i, j ≤ n and t < 0.
• Hom(Xi, Xj) = 0 for i 6= j, and End(Xi) is a division ring for every i.
• X1, . . . , Xn generate Db(A−mod) as a triangulated category.
• The set {X1, . . . , Xn} is closed (up to isomorphism) under the Nakayama

functor νA.

The last condition is automatic for symmetric algebras, since then the Nakayama
functor is isomorphic to the identity functor, but for non-symmetric algebras there
are simple examples that show that the first three conditions are not sufficient.
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The Gabriel-Serre category, the Tate-Vogel category, and Koszul
duality

Alex Martsinkovsky

(joint work with Roberto Mart́ınez-Villa)

The BGG correspondence [1] establishes an equivalence

gr(∧•V n+1) ≃ Db(coh(Pn))

between the stable category of finitely generated graded modules over the exterior
algebra on n + 1 letters and the bounded derived category of coherent sheaves
on the n-dimensional projective space. Using Koszul duality, this result can be
significantly generalized [2]. In this paper, we provide a more transparent and less
technically involved proof of that result. Our approach is based on Koszul duality
and universal constructions.

Let Λ be a finite-dimensional graded algebra such that Λ1 is a semisimple Λ0-
module. The Yoneda algebra of Λ will be denoted Γ. It is naturally graded by
the cohomological degree. Let gr(Λ) be the category of finitely generated graded
Λ-modules. Our first goal is to produce, for an arbitrary M ∈ gr(Λ), a complex
of finitely generated projective graded Γ-modules. This was done in [2]. We shall
now review that construction. Starting with the multiplication map Λ1⊗Λ0 Mn →
Mn+1 and applying the functor D(−) := HomΛ0(−,Λ0), we have a homomorphism
of Γ0-modules D(Mn+1)→ D(Mn)⊗Γ0 Γ1. To this map, we can apply the functors
−⊗Γ0 Γl, which results, for each n, in a degree zero homomorphism of graded Γ-
modules

dn+1 : D(M)−n−1 ⊗Γ0 Γ→ D(M)−n ⊗Γ0 Γ[1].

Lemma. d2 = 0.

Thus the above construction yields a (linear) complex of projectives in gr(Γ).
In fact, the construction is functorial and we have a contravariant functor

λ : gr(Λ)→ LCPb(gr(Γ)),

where the target is the category of bounded linear complexes of finitely generated
projective graded Γ-modules.

Proposition. If Λ is quadratic, then λ is a duality. If λ is Koszul, then M is (a
shift of) a Koszul module if and only if λ(M) is exact at the non-minimal degrees
(i. e., λ(M) is a (shifted) projective graded resolution of the Γ-module Koszul-dual
to M).

Composing λ with the tautological functor LCPb(gr(Γ))→ Db(gr(Γ)), we have
a functor

γ : gr(Λ)→ Db(gr(Γ)).

Taking the Verdier quotient of the target category by the subcategory of all com-
plexes isomorphic to finite complexes of graded modules of finite length and iden-
tifying the result with the bounded derived category Db(Qgr (Γ)) of finitely gen-
erated graded Γ-modules modulo modules of finite length, we have a composite
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functor

π : Db(gr(Γ))→ Db(Qgr (Γ)).

If M ∈ gr(Λ) is projective, then λ(M) is semisimple and πγ(M) is a zero object
in Db(Qgr (Γ)). Therefore the composition πγ factors through the stable cate-
gory gr(Λ). On that category, the syzygy operation Ω becomes an endofunctor.
Applying πγ to the short exact sequence 0 → ΩM → P → M → 0, where P is
projective, we see that πγ(ΩM) ≃ πγ(M)[−1]. In other words, πγ “inverts” Ω
and therefore factors, in a unique way, through the Tate-Vogel category v(gr(Λ)).1

The above observations are codified in the following commutative diagram:

gr(Λ)
γ //

��

Db(gr(Γ))

π

��

((RRRRRRRRRRRRR

gr(Λ)

))R
R

R
RR

R
R

R

��

Db(gr(Γ))/ffl(gr(Γ))

vvlllllllllllll

v(gr(Λ))
θ //______ Db(Qgr (Γ))

We can now state our main result.

Theorem. Suppose Λ is a finite-dimensional Koszul algebra such that Λ1 is a
semisimple Λ0-module and the Yoneda algebra Γ is noetherian. Then the functor
θ is a (contravariant) equivalence of triangulated categories.

If Λ is an exterior algebra, then we recover the BGG correspondence.
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Graded and Koszul categories

Roberto Mart́ınez-Villa

(joint work with Øyvind Solberg)

1. Graded categories

Let K be a field, and let C be an additive K-category. We say C is graded
if for each pair of objects, C and D we have a decomposition HomC(C,D) =⊕

i∈Z
HomC(C,D)i as Z-graded K-vector spaces and if f is in HomC(C,C

′)i and
g is in HomC(C

′, D)j , then gf is in HomC(C,D)i+j . In particular, the identity
maps are in degree zero.

Examples. (1) Let Λ =
⊕

i≥0 Λi be a positively graded K-algebra. Denote

by Gr(Λ)0 the category of graded modules and degree zero maps, and
by Gr(Λ) the category of graded modules and maps HomGr(Λ)(M,N) =⊕

i∈Z
HomGr(Λ)0(M,N [i]). Then Gr(Λ) is a graded

(2) Let C be an additive K-category and denote by radC the radical of C. Then
the associated graded category Agr(C) has the same objects as C and maps

HomAgr(C)(C,D) =
⊕

i≥0 radi(C,D)/ radi+1(C,D).

(3) Let C be an abelian K-category with enough projective (injective) objects.
The Yoneda or Ext-category E(C) has the same objects as C and maps

HomE(C)(A,B) =
⊕

k≥0 Extk
C(A,B).

2. Functors between graded K-categories

Let C and D be two graded K-categories. A contravariant functor F : C → D is
a functor of graded categories if it is a functor such that it induces a degree zero
homomorphism of K-vector spaces F : HomC(C,D)→ HomD(F (C), F (D)).

Example. Let C be a graded K-category. For an object C in C the representable
functors HomC(C,−) : C → Gr(K) and HomC(−, C) : Cop → Gr(K) are functors
of graded categories.

Denote by Gr(C)0 the category with objects the functors of graded categories
F : Cop → Gr(K) and morphisms the natural transformations η : F → G with each
ηC : F (C)→ G(C) a degree zero morphism. This is an abelian category.

Let Gr(C) be the category with the same objects as Gr(C)0 and maps
HomGr(C)(F,G) =

⊕
i∈Z

HomGr(C)0(F,G [i]). The category Gr(C) is a graded K-
category.

3. Weakly Koszul and Koszul categories

Let C be a graded K-category. We say that C is generated in degree zero and
one, if it is positively graded, that is: HomC(C,D) =

⊕
i≥0 HomC(C,D)i and

for any triple of objects A, B and C and for i, j ≥ 0 the maps HomC(A,C)i ×
HomC(C,B)j → HomC(A,B)i+j given by (f, g) 7→ gf are onto.
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Definition 1. A functor F in Gr(C)0 is a Koszul functor if there exists an exact
sequence of graded functors and degree zero maps

· · · → HomC(−, Ck)[−k]→ · · · → HomC(−, C2)[−2]

→ HomC(−, C1)[−1]→ HomC(−, C0)→ F → 0

Definition 2. Let C be a Krull-Schmidt category, then the simple functors Cop →
ModK are of the form SC = HomC(−, C)/ rad(−, C) with C indecomposable.

Assume that C is graded and generated in degrees zero and one, then it is Koszul
if every graded simple object SC : Cop → Gr(K) is Koszul.

Definition 3. Let C be a Krull-Schmidt K-category (not necessarily graded).

(1) A functor F : Cop → ModK is weakly Koszul if it has a minimal projective
resolution · · · → Pk → Pk−1 → · · · → P1 → P0 → F → 0 with Pi finitely
generated and radi+1(Pj)∩Ωj+1(G) = radi(Ωj+1(G)) for j ≥ 0 and i ≥ 1.

(2) If every simple functor in mod(C) is weakly Koszul, then C is weakly Koszul.

The results for weakly Koszul algebras obtained in [4, 5] extend to weakly
Koszul categories.

4. Applications of Koszul categories to the representation theory
of finite dimensional algebras

Let Λ be a finite dimensional K-algebra, and denote by ind Λ the category of
indecomposable finitely generated modules. The category Agr(ind Λ) has the same

objects as ind Λ and maps HomAgr(indΛ)(X,Y ) =
⊕

i≥0 radi(X,Y )/ radi+1(X,Y ).
The objects in ind Λ decompose as a disjoint union ∪σ∈ΣCσ, where Cσ are

Auslander-Reiten components. The category Agr(ind Λ) is a disjoint union
∪σ∈ΣAgr(Cσ) of categories. Hence, Gr(Agr(ind Λ)) =

∏
σ∈Σ Gr(Agr(Cσ)). The

categories Gr(Agr(ind Λ)) and each Gr(Agr(Cσ)) have global dimension 2.
We obtain generalizations of results given by the first author and results related

to the hereditary categories with Serre duality studied by D. Happel, H. Lenzing,
I. Reiten and M. Van den Bergh.

Theorem 1. (a) The category ind Λ is weakly Koszul.
(b) The category Agr(ind Λ) is Koszul, in particular each Agr(Cσ) is Koszul.
(c) Denote by Fin(Agr(Cσ)) the full subcategory of Gr(Agr(Cσ)) of all functors

whose minimal projective resolutions consist of finitely generated projective
functors. Then for each F in Fin(Agr(Cσ)) there exists a subfunctor G of
F such that some shift G[i] is Koszul and F/G is of finite length.

(d) Any simple SC with C indecomposable non-projective satisfies the Goren-
stein condition, that is;
(i) Hom(SC ,HomAgr(Cσ)(−, X [n])) = 0 for all X and n.

(ii) Ext1Gr(Agr(Cσ))(SC ,HomAgr(Cσ)(−, X [n])) = 0 for all X and n.

(iii) Ext2Gr(Agr(Cσ))(SC ,HomAgr(Cσ)(−, X [n])) = SτC [n + 2](X), where

SτC = HomAgr(Cσ)(τC,−)/ rad(τC,−) and τC is the Auslander-
Reiten translation of C.
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Theorem 2. Let C be a regular Auslander-Reiten component of a finite dimen-
sional algebra Λ and E(S(C)) the associated Ext-category. Then the following
statements are true.

(a) E(S(C)) is a Frobenius category of radical cube zero.

(b) The categories E(S(C))/ socE(S(C)) and Cop/ rad2 are equivalent and
Gr(Cop/ rad2) is stably equivalent to Gr(S), where Gr(S) decomposes as a
product of sections Gr(S) =

∏
j Gr(Sj)×Gr(Sop

j ) and each Sj is a hered-

itary category such that Sj and Si have the same quiver Q but Sj and Sop
j

have opposite quivers.
(c) If the quiver Q of Sj is finite, then Sj is of infinite representation type.

Theorem 3. Let C be a regular Auslander-Reiten component of a finite dimen-
sional algebra Λ. Assume the quiver Q of the sections Sj of E(S(C)) is infinite
and is not of type A∞, D∞, or A∞∞.

(a) Then any finitely presented functor F in gr(Agr(C)) is either of finite length
or it has infinite Gelfand-Krillov dimension.

(b) The category of finitely presented functors gr(Agr(C)) is not noetherian.
(c) If E(S(C)) has sections of type A∞, D∞ or A∞∞, then it is noetherian of

Gelfand-Krillov dimension 2.

Our last theorem is the following.

Theorem 4. Let C be a regular Auslander-Reiten component of a finite dimen-
sional algebra Λ. Assume that E(S(C)) has sections of type A∞, D∞ or A∞∞. Then
the quotient category of the finitely presented functors modulo the functors of finite
length, Qgr(Agr(C)), is hereditary and noetherian with Serre duality.

If the sections of E(S(C)) are not infinite of type A∞, D∞ or A∞∞, then
Qgr(Agr(C)) is not noetherian.
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A remark by M. C. R. Butler on subgroup embeddings

Markus Schmidmeier

An object in the submodule category S(Λ) is a pair M = (M0;M1) which consists
of a finitely generated Λ-module M0 together with a Λ-submodule M1 of M0. A
morphism f : M → N in S(Λ) is given by a Λ-linear map f : M0 → N0 which
preserves the submodules, that is, f(M1) ⊆ N1 holds. In this abstract, Λ usually
will be a commutative local uniserial ring; we will call Λ uniserial for short. The
radical factor field will be denoted by k and t will be a radical generator (thus
Λ/〈t〉 = k).

We have two special cases in mind: In the first case, Λ is the ring Z/〈pn〉 where
p is a prime. Then we are dealing with the category of all possible embeddings of
a subgroup in a pn-bounded finite abelian group. The classification problem for
the objects in S(Z/〈pn〉) was raised by Birkhoff [1] in 1934. In the second case,
Λ is the factor ring k[T ]/〈T n〉 of the polynomial ring one variable T over the field
k. Then we consider the possible invariant subspaces of a nilpotent operator: The
objects in S(k[T ]/〈T n〉) may be written as triples (V, φ, U), where V is a k-space,
φ : V → V is a k-linear transformation with φn = 0 and U is a subspace of V with
φ(U) ⊆ U .

The type t(B) of a finite length Λ-module B is the partition µ = (µ1, . . . , µt)

such that B ∼=
⊕t

i=1 Λ/〈tµi〉. Thus the pair (t(B); t(A)) is an isomorphism invari-
ant of a submodule embedding (B;A). Birkhoff showed that the number of isomor-
phism classes of subgroup embeddings (B;A) ∈ S(Z/〈p6〉) with t(B) = (6, 4, 2)
and t(A) = (4, 2) tends to infinity with p; namely, for each value 0 < λ < p, the
following embeddings are pairwise nonisomorphic. The group B is generated by
elements x, y, z of order p6, p4, p2, respectively, and the subgroup Aλ is given by
the generators p2x+ py + z and p2y + pλz of order p4 and p2, as pictured below.(A� �� � ��..........................................................� (C� �� � �� � ��......................................................................................................................................................................�

Is this family (B;Aλ) of pairwise nonisomorphic subgroup embeddings the first
family which occurs? We know from [2] that the category S(Z/〈p5〉) has finite
type, and hence in Birkhoff’s example the exponent of the big group, which is p6,
is minimal. However, the exponent of the subgroup, which is p4, is not minimal,
as the above examples of embeddings (D;Cλ) in S(Z/〈p7〉) shows, where this
exponent is p3.

For Λ a uniserial ring of length n, and m ≤ n, let Sm(Λ) be the full subcategory
of S(Λ) of all pairs (B;A) where tmA = 0. For each pair (n,m) where m ≤ n,
the representation type of the category Sm(k[T ]/〈T n〉) has been determined in [5],
see also [4] for several finite cases. Recall that the categories S3(k[T ]/〈T 6〉) and
S2(k[T ]/〈T 7〉) have finite type, in fact, all categories of type S2(k[T ]/〈T n〉) are
representation finite. It follows that in case Λ = k[T ]/〈T n〉, the above two families
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are minimal in the following sense: If we fix the exponent of the submodule (or the
big module) then the exponent of the big module (the submodule, respectively,)
is as small as possible.

In the classical case where Λ = Z/〈pn〉, the results in [5] per se do not answer
the question whether or not the above two families are minimal. This is the point
of Butler’s remark. In fact, it is not surprising that the special case Λ = k[T ]/〈T n〉
is better understood, since in this case many powerful techniques are available (in
particular covering theory). In the following we describe two example classes where
the representation theory is independent of the underlying commutative uniserial
ring Λ. Our last theorem can be used to answer the question in the positive.

Controlled wildness
Let A be an additive category and C a class of objects (or a full subcategory) in A.
Given objects A,A′ in A, we will write Hom(A,A′)C for the set of maps A → A′

which factor through a (finite) direct sum of objects in C. Here we attach to C the
ideal 〈C〉 in A generated by the identity morphisms of the objects in C. The same
convention will apply to a single object C in A: We denote by Hom(A,A′)C the set
of maps A→ A′ which factor through a (finite) direct sum of copies of C. Given an
ideal I of A, we write A/I for the corresponding factor category, as usual. It has
the same objects asA and for any two objects A,A′ ofA, the group HomA/I(A,A

′)
is defined as HomA(A,A′)/I(A,A′). In particular, the categoryA/〈C〉 has the same
objects as A and HomA/〈C〉(A,A

′) = HomA(A,A′)/Hom(A,A′)C .

Definition. We say that A is controlled k-wild provided there are full subcate-
gories C ⊆ B ⊆ A such that B/〈C〉 is equivalent to mod k〈X,Y 〉 where k〈X,Y 〉 is
the free k-algebra in two generators. We will call C the control class, and in case
C is given by a single object C then this object C will be the control object.

Theorem 1. ([3, Theorem 2]) Let Λ be a uniserial ring of length n ≥ 7 and let
k be its radical factor. Then the category S4(Λ) is controlled k-wild.

Auslander-Reiten quivers in the representation finite case
For P a (finite) poset, let subΛ P denote the category of Λ-linear subspace repre-
sentations of P . For example, if P is the one point poset then subΛ P = S(Λ). We
construct Auslander-Reiten sequences which are not split exact in each component.

Notation. ForX a Λ-module and S a subset of P denote byXS the representation
which has the space X in each component labelled by a point in S and which is
zero otherwise.

Suppose that 0 → X → Y → Z → 0 is an Auslander-Reiten sequence in
mod Λ and i ∈ P and let X → E be the injective envelope for X . Then there is
an Auslander-Reiten sequence in the category subΛ P of the following type.

(∗) 0→ X≤i ⊕ E 6≤i → Y =i ⊕X<i ⊕ E 6≤i ⊕ Z>i → Z≥i → 0.

This sequence is split exact in each component different from the i-th.

Lemma. Each other Auslander-Reiten sequence 0→ A→ B → C → 0 in subΛ P
is split exact in each component, that is, for each i ∈ P, Bi = Ai ⊕ Ci holds.



382 Oberwolfach Report 6/2005

Corollary. If Λ is a uniserial ring then the type detects:

• projective modules in subΛ P and their radicals,
• injective modules in subΛ P and the end term of their source maps, and
• starting terms and end terms of AR-sequences in subΛ P of type (∗).

Theorem 2. Suppose Λ,∆ are commutative uniserial rings of the same length, C
and D are connected components of their Auslander-Reiten quiver and K and L
are slices in C and D, respectively. Suppose

(1) K and L are isomorphic as graphs,
(2) their points correspond to objects of the same type and
(3) certain objects in K are determined uniquely by their type.

Then the connected components C and D are isomorphic as graphs and condition
(2) holds for all points.

Example. Let P be the chain of three points and Λ any uniserial ring of length
2. We obtain the following Auslander-Reiten quiver. In fact, the AR-sequences
starting at a module with simple total space are exactly the sequences of type (∗);
these sequences form a slice.
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On the derived category of coherent sheaves on an irreducible
projective curve of arithmetic genus one

Igor Burban

(joint work with Bernd Kreußler)

In my talk based on a joint work with B. Kreußler I am going to discuss vari-
ous properties of the bounded derived category of coherent sheaves on a singular
Weierstrass cubic curve.

Singular Weierstrass curves are irreducible one-dimensional Calabi-Yau mani-
folds and the study of their derived category is important from the point of view
of the homological mirror symmetry [6], applications to F-theory [5] and to the
theory of the Yang-Baxter equation [7].

A classification of the indecomposable objects of the derived category of co-
herent sheaves on a smooth elliptic curve follows from the classification of vector
bundles of Atiyah [1]. The main difference in the case of a singular Weierstrass
curve is that the homological dimension of the category of coherent sheaves is in-
finite, and hence there are indecomposable complexes with an arbitrary number
of non-zero cohomologies, see [3]. In the singular case there are indecomposable
vector bundles and torsion free sheaves which are not semi-stable and there are
indecomposable sheaves which are neither torsion sheaves nor torsion free sheaves.
The indecomposable objects of the derived category of a nodal cubic curve were
described in [3], in [4] the Fourier-Mukai transform on Weierstrass curves was
studied. One of the goals of my talk is to compare common features and to point
out main differences between the derived category of a smooth and a singular
Weierstrass cubic curve.

Let E be a a Calabi-Yau curve, i.e. a curve with trivial canonical bundle ωE = O
and let E be a spherical object of Db(CohE), i.e. a perfect complex such that

Hom(E , E [i]) =

{
k if i = 0, 1
0 otherwise.

It was shown by Polishchuk [7] that one can associate to a pair (E, E) a solution
of the classical Yang-Baxter equation over the Lie algebra g = sl(n). Motivated
by this application the following two conjectures were posed [7]:

(1) Let E be a Calabi-Yau curve, E be a spherical object, then there exists
F ∈ Aut(Db(CohE)) such that E = F(OE);

(2) The group Aut(Db(CohE)) is generated by Aut(E), Pic0(E) and tubular
mutations.

I use the technique of Harder-Narasimhan filtrations in triangulated categories
[2] to prove these conjectures in the case of Weierstrass cubic curves.
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Parabolic group actions and tilting modules

Lutz Hille

1. Parabolic group actions

Let k be an algebraically closed field and V0 = {0} ⊂ V1 ⊂ V2 ⊂ . . . Vt−1 ⊂ Vt

be a flag of finite dimensional vector spaces with di := dimVi − dim Vi−1. The
stabiliser of this flag is a parabolic subgroup in GL(Vt) denoted by P (d). It is also
the group of invertible elements in EndkAt

(
⊕
P (i)di), where the modules P (i) are

the indecomposable projective modules over the path algebra kAt of a directed
quiver of type At. Let further I be a subset in {(i, j) | 1 ≤ i < j ≤ t} so that
for all (i, j) in I also (i, j + 1), for j < t, and (i − 1, j), for i > 1, are both in I.
The set I can be seen as a root ideal in the positive roots of the root system of
type At or simply as a subset closed under taking right and upper neighbours. To
such a subset we associate a function h : {1, . . . , t} −→ {0, . . . , t − 1} defined by
h(j) := max{i | (i, j) ∈ I} if such an i exists and h(j) = 0 otherwise. Using this
notation we can define the group P (d) and several Lie algebras in P (d).

P (d) := {f ∈ Aut(Vt) | f(Vi) ⊆ Vi}
pu(d) := {f ∈ End(Vt) | f(Vi) ⊆ Vi−1}

n(I, d) := {f ∈ End(Vt) | f(Vi) ⊆ Vh(i)}
pu(d)(l) := {f ∈ End(Vt) | f(Vi) ⊆ Vi−1−l}

Main Question: When does P (d) act with a dense orbit on n(I, d) and pu(d)(l)?

Example 1. a) By a classical result of Richardson, it is well-known that
P (d) acts always with a dense orbit on pu(d).

b) Let I be the set generated by {(1, 2), (3, 4), (5, 6)} and d = (1, 1, 1, 1, 1, 1),
where t = 6, then P (d) does not act wit a dense orbit on n(I, d).

c) Let l = 1, t = 9 and d = (2, 1, 2, 2, 1, 2, 2, 1, 2), then P (d) ⊂ GL15 does not
act with a dense orbit on pu(d)(1).
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The aim of the talk is to present an equivalent problem to the questions above for
the existence of certain modules without self extensions over certain subalgebras
of the Auslander algebra of k[T ]/T t. Moreover, we present several partial results
concerning the question above.

2. Subalgebras of the Auslander algebra of k[T ]/T t

To the ideals defined above one can associate certain subquotient algebras of the
Auslander algebra of k[T ]/T t. We denote by At the algebra End(

⊕t
i=1 k[T ]/T i)

(it is the Auslander algebra of k[T ]/T t). The quiver of this algebra consists of t
vertices and arrows αi (corresponding to the inclusion of k[T ]/T i into k[T ]/T i+1)
and of arrows βi (corresponding to the projection of k[T ]/T i+1 onto k[T ]/T i.
The subquotient algebras A(I) and At,l corresponding to the ideals n(I, d) and

pu(d)(l) have arrows αi and γj consisting of certain compositions of the arrows βi:
the algebra At,l has arrows αi (starting in i and ending in i+1) for i = 1, . . . , t−1
and arrows γj (starting in j+ l+ 1 and ending in i) for j = 1, . . . , t− 1− l defined
as γj := βjβj+1 . . . βj+l. The algebra A(I) has arrows αi (starting in i and ending
in i + 1) for i = 1, . . . , t − 1 and arrows γj (starting in h(j) and ending in j) for
all pairs (h(j), j) in I with (h(j) + 1, j + 1) ∈ I) defined as γj := βjβj+1 . . . βh(j)

(see [1] for details).
Note that the constructions coincide in the special cases when I = {(i, j) | 1 ≤

i < j − l ≤ t− l}.
Theorem 2.1. The algebras A(I) are quasi-hereditary and the category of ∆–good
modules coincides with the set of all modules M satisfying one of the following
equivalent conditions

a) the maps M(αi) are injective,
b) the projective dimension of M is at most 1, and
c) the restriction of M to the subalgebra generated by αi (it is the path algebra

of a directed quiver of type At) is projective.

It is proven in [6, 2] that the orbits for the P (d) action are in bijection with the
isomorphism classes of modules over the corresponding algebra A(I).

3. Richardson’s result and tilting modules
(joint work with T. Brüstle, C. M. Ringel, and G. Röhrle)

Richardson’s result (see Example 1,a), [7]) implies that for each dimension vector
e with ei − ei−1 ≥ 0 there exists precisely one good module M(e) of dimension
vector e without self extensions (it is not indecomposable in general). We construct
this module explicitly (so we also construct all indecomposable modules without
self extensions explicitly). Moreover, we can use an analogous construction to get
so called standard modules over the algebra At,l and also over the algebra A(I),
which also do not have self extensions. For l = 1 and t ≥ 6 there exist modules
without self extensions which are not standard (see Example 2).

Let P be the largest indecomposable finite dimensional projective At–module
(it is the projective cover of the simple module S(t)). Note that P has all finite
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dimensional indecomposable projective modules P (i) as a submodule, they are
generated by one element say p(i) in P . Let A = {a1, . . . , ar} for 1 ≤ a1 < a2 <
. . . < ar ≤ t be an ordered set of natural numbers. For each such set A we define
a unique submodule ∆(A) of P which is ∆–good as the module generated by the
elements αai−i(p(i)) (where αai−i denotes the composition of ai − i arrows αi, so
that αai−i(p(i)) makes sense).

Theorem 3.1. An indecomposable ∆–good module without self extensions is iso-
morphic to ∆(A) for some subset A. Each basic tilting module (note that a module
of projective dimension at most one is already ∆–filtered) is isomorphic to the di-

rect sum
⊕t

i=1 ∆(σ(1), . . . , σ(i)) for some element σ in the symmetric group St.

4. A reduction theorem

The classification of all pairs (I, d), so that P (d) acts with a dense orbit on pu(I, d)
seems to be more difficult than the classification of all pairs (t, l), so that P (d)
acts with a dense orbit on pu(d)(l). In this part we claim, that both classifications
are equivalent. One direction is obvious, so we concentrate on the non-obvious
one. We show two results. First, if we allow d to have entries 0, then one can
show, that pu(I, d) is isomorphic (together with the group action) to some pu(d)(l)

(where d is a certain dimension vector obtained from d by filling in some zeros) by
[5], Theorem 1.4.2. Using [5], Theorem 1.4.1 we can even replace d by a dimension
vector d without an entry zero, so that P (d) acts with a dense orbit on pu(d)(l)

precisely when P (d) acts with a dense orbit on pu(d)(l).

5. Actions of the Borel subgroup
(joint work with S. Goodwin)

In this section we consider the special case, when di ≤ 1 (for simplicity we allow
di = 0, instead of working with the subset I, however, both approaches are equiva-

lent by Section 4). If we consider an ideal b
(1)
u ⊆ n ⊆ bu, then we can ask whether

B acts with a dense orbit (it corresponds to a good module over At,1 without self
extensions and dimension vector e with ei − ei−1 ≤ 1) and whether this orbit is
indecomposable (it corresponds to an indecomposable good module). A dimen-
sion vector d as above consists of certain strings of entries 1 of some length, say
a0, . . . , ar with ai > 0. The strings not in the beginning and the end are called
intermediate, so the length of the intermediate strings is a1, . . . , ar−1.

Theorem 5.1. Let d be a dimension vector with di ≤ 1. Then B acts with a
dense orbit on pu(d)(1) precisely when one of the following conditions is satisfied:

a) if di = 1 for some i, then di−1 = 0 and di+1 = 0 (d is standard) or
b) there is at most one intermediate string of entries 1 of even length.

The orbit above is indecomposable precisely when d is either standard or there
exists precisely one intermediate string of even length.



Representation Theory of Finite-Dimensional Algebras 387

Example 2.

a) The dimension vector in Example 1,b) is (1, 0, 1, 1, 0, 1, 1, 0, 1), so it is the
minimal dimension vector d, so that B does not act with a dense orbit on
pu(d)(1).

b) The minimal non-standard dimension vector, so that B acts with a dense
orbit and the orbit is indecomposable is (1, 0, 1, 1, 0, 1).
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Block representation type for groups and Lie algebras

Rolf Farnsteiner

(joint work with Andrzej Skowroński and Detlef Voigt)

Group Algebras. Let k be an algebraically closed field of characteristic p > 0.
Throughout, all algebras and modules are assumed to be finite dimensional. An
associative k-algebra Λ decomposes into a direct sum Λ = B1 ⊕ B2 ⊕ · · · ⊕ Bs of
two-sided ideals, that are indecomposable associative k-algebras. The relevance
of this block decomposition for representation theory was first observed by Brauer
and Nesbitt in their study of non-semisimple group algebras of finite groups.

Because of these historical origins, results on group algebras have often served
as a paradigm for other classes of algebras, such as reduced enveloping algebras of
restricted Lie algebras or distribution algebras of infinitesimal group schemes. In
my talk, I will compare the representation theories of finite groups and restricted
Lie algebras, focusing on the notion of representation type. In retrospect, most
phenomena characteristic of infinitesimal group schemes already occur at the level
of restricted Lie algebras [2, 3, 4].

Let me begin by collecting some of the methods and results from the modular
representation theory of finite groups. We fix a finite group G, and recall that the
unique block B0(G) ⊂ k[G] containing the trivial k[G]-module k is the principal
block.
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Mackey Decomposition. If H ⊂ G is a subgroup and M is an H-module, then

k[G]⊗k[H] M |H ∼=
⊕

HgH

k[H ]⊗k[H∩gHg−1 ] M
g.

In particular, M is always a direct summand of the restriction of the induced
module. Mackey’s result leads to the important notion of the defect: Each block
B ⊂ k[G] gives rise to a p-subgroup DB ⊂ G that measures the complexity of B.
Since the defect group of B0(G) is a Sylow-p-subgroup, it is the most complicated
block of k[G].

The aforementioned facts together with Brauer correspondence imply that repre-
sentation type behaves well under passage from the principal block to other blocks,
or from a group to a subgroup.

Reduced Enveloping Algebras. Let (g, [ , ]) be a Lie algebra, B ⊂ g a basis.
If for every element x ∈ B the p-th power of the inner derivation adx : g −→
g ; y 7→ [x, y] is again inner, then a theorem by Jacobson ensures the existence
of a map [p] : g −→ g ; x 7→ x[p] that enjoys the basic properties of the p-power
operator of an associative algebra. In particular, we have

(adx)p = adx[p] ∀ x ∈ g.

The pair (g, [p]) is then referred to as a restricted Lie algebra.
In the 1970’s Kac and Weisfeiler noticed that much of the representation theory

of g, or equivalently that of its universal enveloping algebra U(g), is captured by
an algebraic family of (Uχ(g))χ∈g∗ of associative algebras of dimension pdim g. The
study of this family has since been one of the focal points in the representation
theory of modular Lie algebras. By definition, we have Uχ(g) := U(g)/Iχ, where

Iχ := ({xp − x[p] − χ(x)p1 ; x ∈ g}). The algebra Uχ(g) is a Frobenius algebra,
though in general not symmetric. Contrary to finite groups, the Cartan matrix
of Uχ(g) may be singular. The example of the Steinberg module shows that one
cannot expect to have good control of the composition of induction and restriction
in the sense of Mackey. By analogy with finite groups, special attention is given
to the principal block B0(g) ⊂ U0(g). In a similar vein, the algebra U0(g), being
located at the generic point of the family, is thought of as the most complicated
member of the family.

To this date, the most promising replacement of a defect appears to be given by
Carlson’s concepts of support varieties and rank varieties, that were transferred
to our context by Friedlander-Parshall [7]. Let Vg := {x ∈ g ; x[p] = 0} be the
nullcone of g. Given a Uχ(g)-module M the rank variety Vg(M) is defined via

Vg(M) := {x ∈ Vg ; M |Uχ|kx
(kx) is not free} ∪ {0}.

If B ⊂ Uχ(g) is a block with simple modules S1, . . . , Sn, then we put

VB :=

n⋃

i=1

Vg(Si) ⊂ Vg.
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This is our replacement of a defect. Again, VB ⊂ VB0(g) = Vg, so that B0(g) has
the largest defect.

Facts. Let B ⊂ Uχ(g) be a block.
(1) B is representation-finite if and only if dimVB ≤ 1.
(2) If B is tame (and representation-infinite), then dimVB = 2.

From now on we assume that p ≥ 3. In the early eighties, Drozd, Rudakov and
Fischer independently showed that B0(sl(2)) is Morita equivalent to the trivial
extension of the Kronecker algebra. It turns out that for Lie algebras g = Lie(G)
of algebraic groups, all tame blocks of U0(g) are of this type [1].

Examples. We consider the Lie algebra g := sl(2) ⊕ kz, where [z, sl(2)] = (0).
Using the standard basis {e, h, f} ⊂ sl(2), we introduce two p-maps on g:

(1) The algebra sl(2)n is defined via e[p] = 0 ; h[p] = h ; f [p] = z ; z[p] = 0.
(2) The algebra sl(2)s is defined via e[p] = 0 ; h[p] = h+ z ; f [p] = 0 ; z[p] = 0.

Let C(g) := {x ∈ g ; [x, g] = (0)} be the center of g. By general theory, we have
a “Fitting decomposition”

(∗) C(g) = t⊕ u

of C(g) into its toral and unipotent parts. Here is a recognition criterion for
tameness:

Theorem ([2]). Let g be a restricted Lie algebra.
(1) Then B0(g) is tame if and only if g/C(g)[p] ∼= sl(2), sl(2)s.
(2) If B0(g) is tame and C(g) is unipotent or toral, then U0(g) is tame.

In particular, the block B0(sl(2)n) is wild, while the algebra U0(sl(2)s) is tame.
Moreover, h := ke⊕kz is a p-subalgebra of⊂ sl(2)s with U0(h) ∼= k[X,Y ]/(Xp, Y p).
Thus, U0(h) ⊂ U0(sl(2)s) is wild, while U0(sl(2)s) is tame.

Using rank varieties and schemes of tori one first shows that g/C(g) ∼= sl(2),
with u ⊂ C(g) being generated by one element [5, 6]. Let P be a principal
indecomposable U0(g)-module, B ⊂ U0(g) the block belonging to P , and set HP :=

Rad(P )/Rad3(P ).

Proposition 1 ([2]). The block B is tame if and only if HP is decomposable.

Filtrations by Verma modules and Auslander-Reiten Theory then yield the list of
decomposable hearts. Let me illustrate one technical aspect. By general theory,
the central extension g is given by a p-semilinear map ψ : sl(2) −→ C(g). The
decomposition (∗) of C(g) provides a p-semilinear map ψt : sl(2) −→ t. One then
has

U0(g) ∼=
⊕

γ∈X(t)

Uχγ
(g/t),

where X(t) is the character group of t, and χγ(x+u)p = γ(ψt(x)) ∀ x ∈ sl(2), u ∈
u.

The map ψ also gives rise to a p-semilinear form ψ̂ : sl(2) −→ C(g)/C(g)[p] ⊂ k.
For χ ∈ sl(2)∗ ⊂ g∗, we define

d(ψ, χ) := dimVsl(2) ∩ ker ψ̂ ∩ kerχ.
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A linear form χ ∈ sl(2)∗ is nilpotent if it corresponds via the Cartan-Killing form
to a nonzero nilpotent element of sl(2).

Proposition 2 ([2]). Let g be a central extension of sl(2) with ψ̂ 6= 0.
(1) If C(g) is unipotent, χ is nilpotent, and d(ψ, χ) 6= 0, then Uχ(g) is wild.
(2) If d(ψ, χγ) 6= 0 for some nilpotent χγ, then U0(g) possesses a wild block.

Examples. (1) Let χ ∈ sl(2)∗s be defined via χ(e) = 0 = χ(h) ; χ(f) = 1 ; χ(z) = 0.
Then U0(sl(2)s) is tame, while Uχ(sl(2)s) is wild.

(2) Let g := sl(2)⊕ kz ⊕ kt, [kz ⊕ kt, g] = (0), e[p] = 0 ; h[p] = h+ z ; f [p] =
t ; z[p] = 0 ; t[p] = t. Then B0(g) is tame, while U0(g) is wild.
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Infinitesimal deformations of derived categories

Bernhard Keller

(joint work with Christof Geiß)

According to Kontsevich-Soibelman [3, section 2.1], cf. also [1], the shifted Hoch-
schild complex C(A,A)[1] of a differential graded algebra A over a field of char-
acteristic 0 is the ‘moduli space of A∞-categories’. We propose to interpret this
statement to the effect that the differential graded Lie algebra C(A,A)[1] should
control the deformations of the derived Morita class [8] [2] [9] of A, or, in more
sloppy terms, the deformations of the derived category DA. In particular, one ex-
pects a canonical bijection between the second Hochschild cohomology HH2(A,A)
and the equivalence classes of infinitesimal deformations of DA. We show that
such a bijection does indeed exist in many cases, notably if A itself has right
bounded homology. In the general case, we obtain a bijection between the equiva-
lence classes of Morita deformations of A and the 2-cocycles which act nilpotently
in the graded endomorphism ring of each perfect object over A. Our proof starts
from the observation that a Hochschild 2-cocycle c naturally gives rise to a defor-
mation Ac[ε] of A in the category of curved A∞-algebras and that the (flat) derived
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category of Ac[ε] admits a compact generator: the lift to Ac[ε] of the cone over
the graded endomorphism of the free module A induced by c. The links of these
results with Lowen-Van den Bergh’s deformation theory for abelian categories [6]
[7] [5] [4] remain to be elucidated.
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Reducing cohomology by split pairs

Steffen König

(joint work with Luca Diracca)

In order to compare cohomology in two abelian categories, and in particular to
show non-vanishing of certain cohomology, the following situation is studied:

Let A and B be two additive categories. A pair (F,G) of additive functors
F : A → B and G : B → A is a split pair of functors (between A and B) if the
composition F ◦ G is an autoequivalence of the category B. If the categories are
equipped with exact structures, and if the two functors are exact with respect to
these exact structures, the split pair is called an exact split pair of functors (between
A and B).

An exact split pair on abelian level induces a split pair on derived level; hence
cohomology can be compared.

Easy examples of exact split pairs (A,B) are:
Split quotients: B is a split quotient of A, if B is a subring of A (via an

embedding ε sending the unit of B to that of A) and there exists a surjective
homomorphism π : A→ B, such that the composition π ◦ ε is the identity on B.

Morita equivalences.
Corner rings eAe, provided Ae is projective over eAe.
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A more general class of examples is the following:
Let A be a ring, e an idempotent, and B a split quotient of eAe (viewed as a

subring of eAe). Then we call B a corner split quotient if there is a left A- and
right eAe-module S, which is projective as a right B-module (via the embedding of
B into eAe) and which satisfies eS ≃ B as left B-modules.

Up to composition with certain Morita equivalences, every exact split pair be-
tween module categories is a corner split quotient.

Applications include a proof of some cases of the strong no loops conjecture,
and results relating Brauer algebras with various symmetric groups in the context
of [2].
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Special evening session: Calabi-Yau phenomena

On 10 February, 2005, a special session on Calabi-Yau phenomena was organised.
Besides the talks of Helmut Lenzing on weighted projective spaces of Calabi-

Yau type, of Ragnar-Olaf Buchweitz presenting a theorem by Bogomolov–Tian–
Todorov and a simplification of the proof by Z. Ran, and of Christof Geiß on
a generalisation of triangulated categories (so called 4-angulated categories) and
their Calabi-Yau dimensions, the following three talks were given:

Calabi-Yau varieties and reflexive polytopes

Lutz Hille

1. Calabi-Yau varieties in Pn

Let k be the field of complex numbers and Pn the projective n-space over k. The
anticanonical sheaf ω−1 is isomorphic to O(n + 1), and we can identify a global
section in ω−1 with a homogeneous polynomial of degree n+1 in the n+1 variables
x0, . . . , xn.

a) Let n = 2, then a generic polynomial f of degree 3 defines an elliptic curve
E in P2.

b) Let n = 3, then a generic polynomial of degree 4 defines a K3-surface in
P4.

c) Let n = 4, then a generic polynomial of degree 5 defines a 3–dimensional
Calabi-Yau variety in P5.



Representation Theory of Finite-Dimensional Algebras 393

All these varieties X are Calabi-Yau varieties (see definition below), in particu-
lar, ωX ≃ O (the canonical sheaf is trivial) and the Serre duality is of the form

Extl(F ,G) ≃ Extn−l(G,F)∗.
We can also (using the action of the torus kn on Pn) identify the space of

polynomials of degree n with all formal linear combinations of elements in a lattice
polytope ∆(n). (The elements in ∆(n) correspond to a torus invariant basis of the
space of homogeneous polynomials of degree n+ 1 in n+ 1 variables, for the torus
action (λ1, . . . , λn)(x0, x1, . . . , xn) := (x0, λ1x1, . . . , λnxn) this basis consists just
of the monomials.) So we get

∆(n) := {a ∈ Zn+1 |
∑

i=1

ai = n+ 1, ai ≥ 0},

a simplex in the lattice Zn+1. This is a polytope which has precisely one inner
lattice point (a lattice point not on the boundary of ∆(n)), it is (1, 1, . . . , 1).

On the projective n–space, there exists a sequence of line bundles O,O(1), . . . ,

O(n) without any self extensions (Extl
Pn(O(i),O(j)) = 0 for all 0 ≤ i, j ≤ n and

all l) generating the derived category of coherent sheaves on Pn. Classical results
on the derived category of coherent sheaves on Pn allow us to describe it using
derived categories of modules over the endomorphism ring of

⊕n
i=0O(i).

2. Calabi-Yau varieties

Definition. A Calabi-Yau variety X is a smooth projective variety satisfying

(1) ωX ≃ O (the canonical sheaf is trivial), and

(2) Hl(X ;OX) = 0 for all 1 ≤ l ≤ dimX − 1.

The definition above can be generalised, sometimes one only wants X to be
complete, and in dimension greater or equal to 4, one often allows some mild
singularities. Calabi-Yau varieties can be constructed in Fano varieties, we explain
the construction in more detail below.

Example.

a) Let X ⊂ Pn be a hyper surface defined by a generic homogeneous polyno-
mial of degree n+ 1 (as in section 1), then X is a Calabi-Yau variety.

b) Let F be a smooth Fano variety satisfying Hl(F ;OF ) = 0 for all 1 ≤
l ≤ dimX. Take a generic element f in H0(F ;ω−1

F ), then the hyper
surface X defined by f is a Calabi-Yau variety. Condition 1) follows from
the adjunction formula and condition 2) from the long exact cohomology
sequence applied to

0 −→ ωF −→ OF −→ OX −→ 0.

To find Calabi-Yau varieties, we need to find Fano varieties F satisfying the
condition Hl(F,OF ) = 0 for all 1 ≤ l ≤ dimX . The conditions on F can be
chosen weaker at several places. E. g., it is sufficient that F has only isolated
singularities (a generic section does not meet these singularities), and one can

also take partial resolutions F̃ of singular Fano varieties F satisfying ω eF ≃ O eF .
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There exists a large class of those varieties that can be constructed using so-called
reflexive polytopes, the class of toric (possibly singular) Fano varieties (see [5]).

3. Reflexive polytopes

Definition. Let M be a lattice in MR ≃ Rn. A lattice polytope ∆ in MR is the
convex hull in MR of a finite number of lattice points (that is points in M). We
assume dim∆ = n and 0 be an interior lattice point of ∆. The polytope ∆ is
reflexive if its dual polytope

∆◦ := {n ∈M∗R | n(m) ≥ −1 ∀m ∈ ∆}
is also a lattice polytope. A lattice polytope is smooth if for each vertex v the
cone spanned by ∆ − v (we shift the polytope so that v becomes the zero point
and consider the cone with apex in 0 generated by the shifted elements in ∆) is
generated by a Z–basis of MR.

To each lattice polytope ∆ one can associate a toric variety F∆. If ∆ is smooth,
then F∆ is smooth, and if ∆ is reflexive, then F∆ is a Fano variety. Conversely,
each toric Fano variety also comes from a reflexive polytope, the sections in ω−1

F

form a reflexive polytope (similar to the example in section 1).
Let ∆ be a lattice polytope. We define a cone C(∆) as the cone with apex in

0 generated by ∆ × {1} ⊂ MR × R. The lattice points C(∆)Z in C(∆) form a
semi-group, and we consider the semi-group ring S(∆) of C(∆)Z. It is a graded
ring, the degree comes from the additional element, so deg(x, a) := a for x ∈ a∆.
Then we define the projective algebraic variety F∆ as Proj(S(∆)). This variety
is of dimension n, and it comes with an action of an n–dimensional algebraic
torus T ≃ kn, the torus acts with a dense orbit. If we consider the T –action on
H0(F∆,OF∆(1)) (where OF∆(1) is taken with respect to the given embedding in
PN , where N is the number of lattice points in ∆), then the T –invariant points
form the lattice points of the n–dimensional lattice polytope ∆.

We conclude this section with an overview of the classification of reflexive poly-
topes.

n = 1: There exists precisely one reflexive simplex, it is the convex hull of −1 and
1 in R.

n = 2: It is an exercise to classify them, there exist precisely 16 reflexive polytopes
and 5 of them are smooth. These five smooth ones correspond to the five
toric del Pezzo surfaces: P2, P1 × P1, and the blow up of P2 in one, two
or three points (the three points must not lie on a common line).

n = 3: A classification of the smooth reflexive polytopes can be found in [10],
there exist 18. They can be classified using certain double weighted tri-
angulations of the plane. The classification of all reflexive polytopes is
done by a computer, the algorithm can be found in [8], there exist 4, 319
of them (see [11]).

n = 4: The classification of 4–dimensional smooth reflexive polytopes was done
by Batyrev in [5], there exist 124 of them. The classification of all reflexive
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polytopes is mainly a problem on hard disc space (as one of the authors
told me), there exist 473, 800, 776 of them (see [9, 11]).

For reflexive simplices the classification is much simpler and consists essentially of
the classification of so-called weight systems. These weight systems also appear
for weighted projective spaces in the sense of Baer, Geigle and Lenzing ([3]).

4. Quivers and reflexive polytopes

Surprisingly, one can construct some reflexive polytopes using quivers, however
the class of these polytopes is not very large (see [1, 6]). On the other hand, a
smooth reflexive polytope constructed from a quiver comes always with a sequence
of line bundles without any self extension (see [1]). There exist also several other
approaches to construct exceptional sequences of line bundles on toric varieties. It
is an open problem (see [2, 7]) whether there exists on any smooth toric variety a
full strong exceptional sequence of line bundles, (similar to the one on Pn). This
problem is even open for toric surfaces.
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Introduction to super potentials

Michel Van den Bergh

Boundary conditions for open strings (branes) form a triangulated category. In the
B-model, this triangulated category is the derived category A of coherent sheaves
over a Calabi-Yau manifold [6].

It is often useful to consider triangulated subcategories B ⊂ A which are derived
equivalent to Db(f.l.A) where A is the (completed) path algebra of a quiver with
relations. These are the so-called quiver gauge theories (see e.g. [4]).

A standard example is given by the derived category of the canonical bundle on
P2. This is a non-compact Calabi-Yau. The derived category of sheaves supported
on the zero section is equivalent to Db(k[[x, y, z]] ∗ (Z/3Z)) (see [5]).

It seems therefore interesting to be able to construct A such that Db(f.l.A) is
Calabi-Yau. Physicists have a construction of such A in terms of so-called super
potentials. It is not clear exactly when this construction works, but if it works,
then the resulting algebra is Calabi-Yau of dimension 3.

For notational simplicity ,we will explain the construction in the case that A
has only one simple module. The general case is entirely similar.

Put F = k〈〈x1, . . . , xn〉〉. For a general monomial a ∈ F , we define the circular
derivative of a with respect to xi as

◦∂a

∂xi
=

∑

a=uxiv

vu.

The circular derivative extends to a linear map

◦∂

∂xi
: F/[F, F ]→ F.

The ordinary partial derivative of a with respect to xi is defined as

∂a

∂xi
=

∑

a=uxiv

u⊗ v.

This extends to a linear map

∂

∂xi
: F → F ⊗ F.

It is convenient to write
∂2a

∂xi∂xj
=

∂

∂xj

◦∂a

∂xi
,

and it is easy to check that

∂2a

∂xi∂xj
= τ

∂2a

∂xj∂xi
,

where τ(p⊗ q) = q ⊗ p.
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A super potential is an element w ∈ F/[F, F ] containing only monomials of
degree ≥ 3. Put

A = F/I,

where I is the twosided ideal topologically generated by

ri =
◦∂w

∂xi
.

Put dxi = xi ⊗ 1− 1⊗ xi. We consider the following complex of A-bimodules.

0→ Ae (·dxi·)i−−−−−→ (Ae)n

“
· ∂2w

∂xj∂xi
·
”

ij−−−−−−−−→ (Ae)n (·dxj·)j−−−−−→ Ae → A→ 0

Here Ae is A⊗̂A equipped with its outer bimodule structure. If this complex is
exact then it represents a resolution of A as an A-bimodule.

Furthermore, from the fact that the resolution is self-dual, one may deduce,
using standard homological algebra, that Db(f.l.A) is indeed Calabi-Yau.

Remark. I haven’t checked the details, but it seems not unlikely that the above
construction is reversible and that a 3-dimensional Calabi-Yau algebra A is always
given by a super potential.

Remark. Super potentials form an (infinite dimensional) affine space. This is
reminiscent of the smoothness of the moduli-spaces of compact Calabi-Yau mani-
folds (Tian, Bogomolov, Ran, and Kawamata). See the talk by Ragnar Buchweitz
during this evening seminar.

Unfortunately, the construction does not always work (take the zero super po-
tential). For a generic super potential, one would expect that the construction
works if there are enough variables (or arrows in the quiver case), but this is
entirely speculative. The following non-example was communicated to me by
Berenstein.

• •

•
w = xyz

z
oo

y

!!B
BB

BBx
==|||||

In this case, it is easy to see that the resulting algebra is self-injective, but not
Calabi-Yau.

Cases that are completely understood are, when there are either three or two
variables and the degree of w is 3 or 4 respectively. This follows from the classifi-
cation of 3-dimensional Artin-Schelter regular algebras [1, 2, 3].
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Abelian varieties

Amnon Neeman

In representation theory one is interested in Calabi–Yau triangulated categories.
These few lectures were an attempt to survey the classical analogue in algebraic
geometry and complex analysis. In this abstract I treat the case of abelian varieties.
Much more detail on everything I say may be found in [2, 3].

For the sake of definiteness, we begin with the definitions.

Definition 1. A Calabi–Yau manifold is a connected, compact, complex manifold
with trivial sheaf of top differential forms.

In other words a connected, compact, complex manifold X of dimension g will
be Calabi–Yau if the sheaf Ωg

X has a nowhere vanishing holomorphic section. We
recall

Theorem 1 (Serre Duality). Let X be a connected, compact, complex manifold of
dimension g. If D is the bounded derived category of chain complexes of coherent
analytic sheaves on X, then there is a natural isomorphism

Hom
D

(A,B)
∗ ≃ Hom

D

(
B,A⊗ Ωg

X [g]
)
.

In the language of [1] the category D has a Serre functor S, given by the formula

S(−) = (−)⊗ Ωg
X [g].

D is a Calabi–Yau triangulated category if and only if Ωg
X ≃ OX , that is if and only

if the manifold X is Calabi–Yau. The dimension of the Calabi–Yau triangulated
category D agrees with the complex dimension of the manifold X . One very
classical case of this is complex tori. We recall the definition

Definition 2. A complex torus is a connected, compact, complex Lie group.

We note that every complex torus is automatically Calabi–Yau. The point is
that the line bundle Ωg

X has a unique trivialisation by a left invariant g–form.
Take any non–vanishing g–form at the identity, and extend it (uniquely) to a left
invariant g–form on all of X .

Let us say a little more about connected, compact, complex Lie groups. We
observe

Theorem 2. Any connected, compact, complex Lie group is commutative.
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Proof. The result is well–known but we include a proof. Let X be a connected,
compact, complex Lie group. Consider the map

f : X ×X −→ X

given by

f(x, y) = xyx−1y−1.

If e ∈ X is the identity, then f(e, y) = e for all y ∈ X . Now let V ⊂ X be a small
ball around e. Then f−1V must contain an open set of the form U ×X , with U
an open neighbourhood of the identity e ∈ X . For any u ∈ U , the map f induces
a holomorphic map from the compact manifold {u} × X to the ball V , and any
such map is constant. But then

f(u, y) = f(u, e) = e;

that is, f sends all of U ×X to the singleton e. Now analytic continuation tells
us that f collapses all of X ×X to e. �

It follows that the Lie algebra of X is commutative; it is just the trivial Lie
algebra Cg. Furthermore, the exponential map Cg −→ X is a group homomor-
phism, which is locally a diffeomorphism. The image is an open subgroup of the
connected group X , and hence the exponential map is surjective. This means that
X is isomorphic to a quotient group Cg/Λ, where Λ is a discrete closed subgroup
of Cg. Since X is compact, Λ must be a lattice. That is the natural map

R⊗Z Λ −→ Cg

is an isomorphism. We summarise:

Theorem 3. Any connected, compact, complex Lie group is Cg/Λ, where Λ ⊂ Cg

is a lattice.

Remark 1. Theorem 3 justifies the terminology of Definition 2. By Theorem 3
a connected, compact, complex Lie group is Cg/Λ, which is nothing other than a
2g–dimensional real torus with a complex structure. Hence, we call these complex
tori.

Now we come to the question of how many different complex tori are there. The
answer is clear. Two complex tori Cg/Λ and Cg/Λ′ will agree if there is a linear
transformation in GL(g,C) taking Λ to Λ′. If we choose a basis for Λ, we can
always, up to a linear transformation in GL(g,C), assume that g elements of this
basis are the standard basis vectors for Cg. Our freedom in varying Λ amounts
to the freedom in selecting the other g basis vectors. The space of choices is an

open subset of {Cg}g = Cg2

. There are g2 “degrees of freedom” in choosing a
g–dimensional complex torus.

Definition 3. A complex torus is called an abelian variety if it can be given the
structure of an algebraic variety. Equivalently, this means it can be embedded as
a complex analytic submanifold of projective space.
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How many complex tori are abelian varieties? One classical way to answer the
problem is using Theta functions. We briefly explain.

If X admits an embedding into projective space, then it must have a line bundle
on it, with plenty of sections. Pulling back the line bundle by the exponential map
Cg −→ X , we get a holomorphic line bundle on Cg, but all such bundles are trivial.
The sections of the line bundle on X pull back to sections of the trivial bundle
(that is, functions) on Cg, with certain periodicity properties. These functions
have been studied classically as Theta functions.

Without giving much detail, Theta functions are constructed as infinite sums. If
z ∈ Cg and Ω is a symmetric g×g matrix over C with a positive definite imaginary
part, we can form the sum

Θ(Ω, z) =
∑

n∈Zg

expπi
(

tnΩn+ 2 tnz
)

If we fix Ω and view this as a function in z, we get one of our sections of holomorphic
line bundles on Cg. The point we want to make is that, as we vary the parameter
Ω over the symmetric g×g matrices, the dimension of the parameter space is only
g(g+1)/2. There is only a g(g+1)/2–dimensional space of g–dimensional abelian
varieties. Therefore, most complex tori do not admit the structure of algebraic
varieties.

The physics literature is divided on whether abelian varieties should be admitted
as Calabi–Yau manifolds. From the point of representation of quivers, some of
the most interesting examples come from elliptic curves, which are 1–dimensional
abelian varieties. Undoubtedly, the quiver theoretic statements one can make
about the categories of sheaves over elliptic curves (equivariant with respect to
the action of suitable automorphisms) all generalise to higher dimensional abelian
varieties.

An elliptic curve admits an involution, which is nothing other than the map
taking x ∈ X to −x ∈ X . Much has been made of the quiver representations
giving the category of equivariant sheaves on X . There is no reason why this
should not generalise to higher dimension.

If σ : X −→ X is the involution taking x ∈ X to −x ∈ X , one can study the
variety X/σ. If X is a curve, then X/σ is nothing other than P1, in particular
X/σ is smooth. In higher dimensions X/σ is singular. But the singularities of
X/σ are not too bad and are well understood. For example, if X is a surface
(that is, 2–dimensional), then X/σ has exactly 16 singular points. A minimal
resolution of these 16 points gives an Enriques surface. It is not quite Calabi–Yau,

but almost. The sheaf Ωg
X is not trivial, but {Ωg

X}
2

= Ωg
X ⊗Ωg

X is. That is, there

is an isomorphism {Ωg
X}

2 ≃ OX . In other words, the Serre functor

S(−) = (−)⊗ Ωg
X [g].

is not a shift, but

S2(−) = (−)⊗ {Ωg
X}

2
[2g]

is a shift.



Representation Theory of Finite-Dimensional Algebras 401

References

[1] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstruc-
tions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337.

[2] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathe-
matics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, 1970.

[3] D. Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston
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Universitätsstr. 25
33615 Bielefeld

Prof. Dr. Christof Geiss

christof@math.unam.mx

Instituto de Matematicas
U.N.A.M.
Circuito Exterior
Ciudad Universitaria
04510 Mexico, D.F.
MEXICO

Prof. Dr. Edward L. Green

green@math.vt.edu

Department of Mathematics
Virginia Polytechnic Institute and
State University
Blacksburg, VA 24061-0123
USA

Prof. Dr. Dieter Happel

happel@mathematik.tu-chemnitz.de

Fakultät für Mathematik
TU Chemnitz
09107 Chemnitz

Dr. Lutz Hille

hille@math.uni-hamburg.de

Fachbereich Mathematik
Universität Hamburg
20141 Hamburg

Dr. Angela Holtmann

aholtman@mathematik.uni-bielefeld.de

Fakultät für Mathematik
Universität Bielefeld
Universitätsstr. 25
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