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Introduction by the Organisers

This workshop was concurrent with the workshop on Analytical and Numerical
Methods in Image and Surface Processing (see: Report No. 10/2005), and since
the participants interests overlapped several combined talks were organized. In
particular, we thank P. Schroder, U. Reif, G. Dziuk, C. Elliot, and F. Cirak, for
their contributions.

Currently there are three major techniques for tracking or characterizing in-
terfaces present in a CFD computation: (i) The level set method, (ii) Phase field
approximations, and (iii) Explicit parameterization using Lagrangian variables.
Each of these techniques, and various hybrids, were presented by the participants
to solve a variety of challenging CFD problems involving interfaces. Several trends
emerged during the workshop.

(1) The analysis of phase field algorithms is much more advanced than that
of the level set method (Elliot and Walkington).

(2) If the topology of the surface doesn’t change, Lagrangian methods pro-
vide very accurate descriptions of the complex motions and physics of
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the interfaces (see for example the Willmore flow by Dzuik). Many hy-
brid Eulerian/Lagrangian schemes were presented such as the immersed
interface method (Gastaldi), volume of fluid method (Picasso), ALE and
deforming mesh methods (Behr, Krahl, Mehnert, Ganesan).

The most detailed simulations presented at the workshop modeled hun-
dreds of interacting rigid particles (Turek). The pistons and orientations
of the particles were explicitly computed.

Progress has been made in the analysis of Lagrangian schemes to model
interfacial motion (Dzuik, Mehnert, Nobile) for problems where the inter-
face remains regular.

(3) Practical application of the level set technique appears to require frequent
reparameterization of the level set function, and in order to obtain a sharp
interface it is necessary to evaluate the Heavyside function of the level set
function. These modifications to the basic algorithm represent a significant
complication to the analysis of this class of methods. These complications
also appear to extend to the practical implementation; for example, both
Burman and Reusken evolve their interfaces using level sets, but explicitly
construct a parametrization of the interface at each time step.
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Abstracts

Free-surface Flow Modeling and Unstructured Space-time Meshes

Marek Behr

Free-surface flow simulations are an invaluable design and analysis tool in many
areas of engineering, including civil engineering, marine and coating industries,
and off-shore exploration. Two alternative computational approaches—interface-
tracking and interface-capturing—are commonly considered. While the interface-
capturing approach exhibits unmatched robustness for complex free-surface mo-
tion, i.e., merging and void formation, the interface-tracking approach is attrac-
tive due to its good mass conservation properties at low resolutions. Therefore,
expanding the reach of the interface-tracking methods is of considerable interest.
The fundamentals of our interface-tracking free-surface flow simulations—stabili-
zed discretizations of Navier-Stokes equations, space-time formulations on moving
grids, general mesh update mechanisms, and hydraulic structure applications—can
be found in [1, 2] and references contained therein. In this report, we concentrate
on an issue of temporally-refined graded space-time meshes.

In most space-time implementations to date, including the one used for the
applications presented in this workshop, the meshes for the space-time slabs are
simply extruded in the temporal direction from a spatial mesh, resulting in refer-
ence element domains that are always Cartesian products of spatial and temporal
domains. Such an approach is best described as semi-unstructured (unstructured
in space, structured in time) and does not leave the option of increasing temporal
refinement in specific portions of the domain. In such case, the space-time slab
exactly corresponds to a time step of a semi-discrete procedure.

Hughes and Hulbert [3] introduced the idea of adaptively-refined space-time
mesh for a 1D elastic rod problem, and discussed the potential of unstructured
space-time meshes as a more flexible and rigorous alternative to subcycling. Mau-
bach [4] used unstructured space-time meshes to solve 1D parabolic problems.
Idesman et al. [5] obtained the deformation history of a 2D viscoelastic plate by
using an adaptively-refined space-time mesh. A similar approach was used by
Sathe [6] to solve 2D parabolic problems. Yet, we are not aware of any tools that
can currently provide a conformal unstructured space-time mesh covering complex
domain for a 3D problem, which leads to a 4D space-time problem. We propose
here a simple and robust procedure to generate 3D or 4D simplex-based space-time
meshes.

Spatial Mesh As a starting point, we consider a spatial mesh in nsd dimensions,
generated using a standard 2D or 3D mesh generator. We restrict ourselves to
nsd-simplex-based meshes, i.e., triangular or tetrahedral.

Prism Formation Just like in traditional space-time implementation, the spatial
mesh is at first extruded in the time dimension to fill the space-time slab contained
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between time levels tn and tn+1. The extruded mesh is composed of prisms—6-
noded space-time elements for 2D problems and 8-noded space-time elements for
3D problems. These elements, referred to as 3d6n and 4d8n, respectively, and
illustrated in Figure 1(a), are the basis of the traditional space-time approach.
Note that the “faces” extending in the temporal dimension are non-simplical,
having 4 nodes for the 3d6n element, and 6 nodes for the 4d8n element. Our goal
is to subdivide these prism-type elements into simplex-type elements 3d4n and
4d5n, shown in Figure 1(b).

3d6n 4d8n

(a) prism-type space-time elements

3d4n 4d5n

(b) simplex-type space-time elements

Figure 1. Prism- and simplex-type space-time elements. Black
and white nodes correspond to tn and tn+1, respectively.

Temporal Refinement The initial space-time mesh contains just two nodes for
each of the nodes in the spatial mesh—e.g., in1 located at the bottom of the slab,
and in2 located at the top, shown in Figure 2(a). The temporal refinement is
accomplished by selectively adding one or more nodes along the line connecting
the original nodes, as shown in Figure 2(b).

in1

in2

kn1

kn2

jn1

jn2

(a) original

in1

in4

kn1

kn2

jn1

jn2 in3

in2

(b) refined

Figure 2. Temporal refinement of a 3d6n space-time prism.

Coordinate Perturbation The space-time faces of the prism-type elements will be
subsequently divided into nsd-simplices according to Delaunay criteria, indepen-
dently for each prism. Since, at least for a non-moving spatial mesh, these faces are
regular (rectangles for 2D and right prisms for 3D), the Delaunay mesh will not be
unique. Therefore, there is no guarantee that the direction of diagonal line (2D) or
diagonal triangle (3D) will be compatible across the neighboring space-time prisms
(see Figure 3(a)). A simple solution is to randomly perturb the time-coordinates
of some or all nodes, as illustrated in Figure 3(b). This perturbation, the same for
each prism sharing a particular node, ensures the uniqueness of Delaunay process,
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and guarantees compatibility of the nsd-simplices between the neighboring space-
time prisms. After the connectivity of the unstructured space-time mesh is estab-
lished, the time-coordinates can be restored to their original values. In practice,
the perturbation needs to be applied only to the space-time nodes corresponding
to times greater than tn.

(a) before (b) after

Figure 3. Perturbation of temporal coordinates of a 3d6n prism.

Delaunay Triangulation The Delaunay method of generating simplex tessellations,
although commonly used in 2D and 3D, is in principle applicable to any number
of dimensions. Freely available implementations of the n-dimensional Delaunay
algorithm are available, e.g., in the qhull [7] package. The Delaunay approach
can be applied here without constraints or modifications because each space-time
prism is convex.

Sliver Elimination The Delaunay approach, when applied to node sets where
more than nsd nodes may lie on a single plane (as is the case with non-simplical
space-time prism faces), usually produces sliver simplices shown in Figure 4. Al-
though the inner diagonal (marked d1) is unique due to the perturbation of time-
coordinates, an additional element defined by both d1 and d2 may be also pro-
duced. An additional test is needed to detect and remove generated elements
which have nearly-zero volume.

d1

d2

(a) sliver (b) final mesh

Figure 4. Sliver element elimination in a 3d6n space-time prism.

Connectivity Generation Having constructed connectivity information inside each
space-time prism, that a) incorporates new nodes placed between the slab-deli-
miting time levels, and b) is compatible between neighboring prisms, it is trivial
to convert it into a global connectivity information, that connects all the space-
time slab nodes in a network of (nsd +1)-simplex elements. Although this network
is difficult to visualize in 4D, the computer program that generates it is largely



472 Oberwolfach Report 8/2005

identical to the program that generates 3D space-time mesh from a 2D spatial
mesh, which can be validated using available visualization tools. The proposed
procedure has been applied to an externally-generated spatial triangular mesh
around a cylinder, specifying higher levels of temporal refinement in the vicinity
of the cylinder. Selected sections through the 3D space-time mesh so obtained are
shown in Figure 5.

Figure 5. Portion of a temporally-refined 3D space-time mesh
from 2D automatically-generated cylinder mesh.

Note that the same procedure is also applicable when the space-time mesh
corresponds to a deforming domain. The simplices should be generated based
on undeformed spatial mesh coordinates (assigning temporarily lower-level spatial
coordinates to the upper-level and the temporal-refinement nodes). The technique
does not extend however to situations where two different spatial meshes are to
be connected with an unstructured space-time mesh.
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A levelset finite element method for viscous free surface flow

Erik Burman

(joint work with Nicola Parolini)

In this communication we present some recent results on numerical procedures for
finite element levelset methods for free surface flow. Three topics will be covered
the first two of which represent joint work of the author with N. Parolini and is
published in [Parolini, 2004].

• Stabilization of the level set advection equation,
• reinitialization procedures,
• discretization of Stokes problems with discontinuous coefficients.

We consider the case of unsteady incompressible flow of two immiscible Newtonian
fluids. Let Ω be a domain divided in two subdomains Ω1 and Ω2 separated by an in-
terface Γ. In each of the two subdomains Ωi the flow is governed by the incompress-
ible Navier–Stokes equations. To track the free surface we propose a levelset ap-
proach following [Dervieux and Thomasset, 1980] and [Sussman et al., 1994]. The
evolution of the interface is obtained by solving an advection problem for a func-
tion φ such that φ < 0 in one fluid and φ > 0 in the other. The interface is given
by the zero levelset of φ. The discontinuous physical quantities density, ρ(x), and
viscosity, µ(x), may then be derived from φ: ρ(x) = H(φ) ρ1 + (1 − H(φ)) ρ2,
µ(x) = H(φ) µ1 + (1 − H(φ)) µ2, where H denotes the Heaviside function. The
Navier-Stokes equations are discretized with finite elements using the P1isoP2/P1

velocity/pressure pair. The advection equation is discretized on the P1isoP2 space
using a Galerkin method stabilized using subgrid viscosity.
Subgrid edge stabilization. In order to obtain a stable discretization of the
advection equation with a minimal perturbation of the mass conservation proper-
ties of the Galerkin scheme we introduce a localized edge oriented stabilization. It
was shown by Burman and Hansbo [Burman and Hansbo, 2003] that stabilization
using penalization of the jumps in the gradient over all interior edges of the mesh
yields a numerical scheme with optimal convergence properties for the transport
equation. Another method for transport equations was proposed by Guermond
in [Guermond, 1999] based on scale separation, so called subgrid viscosity. Here
we introduce an operator penalizing the jump of the gradient over element edges
only in the interior of the P1isoP2 macro elements. Using a norm equivalence
argument we show that the proposed operator can be cast in the framework given
in [Guermond, 1999] and hence optimal a priori error estimates are obtained.
Reinitialization of the levelset function. The distance function property
is not preserved under advection. In regions the level set function may become
too flat leading to loss of accuracy in the interface location or too steep requiring
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h No reinit. direct. reinit. local proj. + HJ
0.1 0.65 % 8.56 % 0.80 %
0.05 0.15 % 3.03 % 0.17 %
0.025 0.05 % 1.06 % 0.06 %

Table 1. Relative mass loss for a rising bubble problem at
t = 0.1, left without reinitialization, center using direct reini-
tialization, right using near field local projection and Hamilton-
Jacobi

discontinuity capturing (high-resolution) schemes to suppress numerical oscilla-
tions. To counter these effects one wishes to reinitialize the distance function
regularly. Given the interface position as a zero level set we reconstruct an ap-
proximate distance function in the finite element space. The approach we propose
is based on a separation of the domain in the near field, consisting of the set of
all elements containing the interface, and the far field. In the near field we use an
exact local reinitialization on each element followed by a projection on the finite
element space. In the far field any efficient reinitialization procedure is appropri-
ate.

Given φ0,h a piecewise linear levelset function defined on the interface subdo-

main Ωint = TΓ =
{

⋃N
i=1Ki : Ki ∈ T ,Ki ∩ Γ 6= 0

}

, an exact local reconstruction

of the distance is given by:

d(x)|Ki
=

φ0,h(x)

|∇φ0,h|Ki

, Ki ∈ TΓ.

To get an approximation of the levelset function we project the discontinuous func-
tion d(x) onto Vh(TΓ)

∫

TΓ

φh ψh dx =

∫

TΓ

d(x)ψh dx ∀ψh ∈ Vh(TΓ).

For this local reinitialization procedure we have proven optimal order convergence
of the error in the L2(Ωint)-norm provided the interface is sufficiently smooth.

In the far field one may then use any efficient method for solving the eikonal
equation such as the fast marching method or by solving a Hamilton-Jacobi equa-
tion. Numerical evidence shows that the proposed method is superior to some
other methods proposed in literature as illustrated in Table 1.
An unfitted finite element method for Stokes’ problem with discontin-
uous coefficients using Nitsche’s method. It is well known that the solu-
tion of multifluid flow can not be expected to have better global regularity than
u ∈ [H1(Ω)]d and p ∈ L2

0(Ω). This causes suboptimal convergence of any standard
finite element method unless the mesh is fitted to the interface. However in case
the interface is sufficiently regular, Γ ∈ C3 and dist(Γ, ∂Ω) > 0 one expects the
solution to be more regular in each subdomain. Typically u ∈ [H2(Ω1)∪H2(Ω2)]

d

and p ∈ H1(Ω1) ∪H1(Ω2). To exploit this property we introduce an unfitted fi-
nite element method inspired by [Hansbo and Hansbo, 2002] using techniques from
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discontinuous Galerkin methods. Consider the following Stokes problem with dis-
continuous viscosity. For simplicity we here neglect surface tension effects

−2µi∇ · ε(u) + ∇p = f in Ωi, i = 1, 2
∇ · u = 0 in Ω

u = 0 on ∂Ω,

We introduce two conforming triangulations T1 and T2 such that, T1∪T2 = Th(Ω),
T1 ∩ T2 = TΓ with the corresponding finite element spaces V i

h ={v ∈ [C0(Ωi)]
2 :

v|K ∈ [P 1(K)]d, ∀K ∈ Ti, v|∂Ω = 0}, Qi
h = {v ∈ L2

0(Ωi) : v|K ∈ P 0(K), ∀K ∈
Ti}, with , Vh = V 1

h ∪ V 2
h , Qh = Q1

h ∪ Q2
h. Let [x]e and {x}e denote the jump

and the average of quantity x over edge e. We then propose the following finite
element method: Find (uh, ph) ∈ Vh ×Qh such that

B[(uh, ph), (vh, qh)] + JΓ((uh, ph), (vh, qh)) + Jp(ph, qh) = (f, vh)Ω,

∀(vh, qh) ∈ Vh ×Qh,

where B[(u, p), (v, q)] =
∑2

i=1

(

(2µiε(u), ε(v))Ωi
−(p,∇·v)Ωi

−(q,∇·u)Ωi

)

, uh|Ωi
=

uh,i, ph|Ωi
= ph,i,

Jp(ph, qh) =
∑

i=1,2

∑

K∈Ti

∫

∂(K∩Ωi)\∂Ωi

hγp[ph][qh] ds.

The weak coupling takes the following form, if σ(uh, ph) · n = phn − 2µε(uh) · n
then

JΓ((uh, ph), (vh, qh)) =

∫

Γ

{σ(uh, ph) · n}[vh] + {σ(vh, qh) · n}[uh] ds

+

∫

Γ

γµh−1[uh][vh] ds+

∫

Γ

γ2

2
h[σ(uh, ph) · n] · [σ(vh, qh) · n] ds

For this formulation we prove a discrete inf-sup condition and optimal order error
estimates in the triple norm including the H1-norm of each subdomain and then
in the L2-norm using a duality argument.

References

[Burman and Hansbo, 2003] Burman, E. and Hansbo, P. (2003). Edge stabilization for Galerkin
approximations of convection-diffusion problems. Comput. Methods Appl. Mech. Engrg.,
193:1437–1453.

[Dervieux and Thomasset, 1980] Dervieux and Thomasset (1980). A finite element method for
the simulation of Rayleigh-Taylor instability, volume 771 of Lecture Notes in Mathematics.
Springer-Verlag.

[Guermond, 1999] Guermond, J. L. (1999). Stabilization of galerkin approximation of transport
equations by subgrid modeling. M2AN Math. Model. Numer. Anal., 33:1293–1316.

[Hansbo and Hansbo, 2002] Hansbo, A. and Hansbo, P. (2002). An unfitted finite element
method based on Nitsche’s method for elliptic interface problems. Computer Methods in
Mechanics and Engineering, 191(47–49):5537–5552.

[Parolini, 2004] Parolini, N. (2004). Computational fluid dynamics for naval engineer-
ing problems. Ecole Polytechnique Federale de Lausanne, These No 3138, 2004.
http://iacs.epfl.ch/∼parolini/these 3138 Parolini.pdf.



476 Oberwolfach Report 8/2005

[Sussman et al., 1994] Sussman, M., Smereka, P., and Osher, S. (1994). A level set approach for
computing solutions to incompressible two-phase flow. J. Comp. Phys., 114:146–159.

Droplet Deformation with Navier Slip and Free Boundaries by Finite
Elements

Sashikumaar Ganesan

(joint work with Lutz Tobiska)

For the numerical simulation of incompressible flows in fixed domains a large
number of advanced approaches are available. The situation changes if the fluid
domain is changing in time and the boundary or a part of it is a priori unknown
and has to be determined during the solution process. In recent years some tools,
like the ALE (Arbitrary Lagrangian Eulerian) method or the level set method
have been used to capture the movement of free surfaces in time. These type
of problems become more delicate if large deformations or surface tension effects
have to be taken into account. It turns out that nowadays the development of
robust and reliable algorithms for incompressible flows in moving domains is still
a challenging problem.

As an example for an incompressible flow simulation in which large deformations
and surface tension effects takes place we study the shape of a droplet impinging
and spreading on a solid surface. The fluid flow in the droplet Ω(t) ⊂ R2, t ∈ [0, T ]
is governed by the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u −∇ · σ(u, p) = f , ∇ · u = 0, in Ω(t),

the boundary conditions

τF · σ(u, p)νF = 0, νF · σ(u, p)νF = −
κ

We
on ΓF (t)

u · νS = 0, τs · σ(u, p)νs = −βu · τs on ΓS(t)

and the initial condition u(0) = (0,−1). Here u = (u1, u2) denotes the velocity, p
the pressure, t the time, κ the curvature, f = (0,−Fr−1) the body force and

σ(u, p) =
1

Re
(∇u + ∇uT ) − pI

the stress tensor. The Reynolds number Re, the Weber number We, and the
Froude number Fr are the dimensionless parameter of the problem.

Note that β → ∞ corresponds to the usual no-slip boundary condition, which
leads to a singularity at the wetting points where the free-surface and solid-surface
intersects. We prefer the Navier slip boundary condition because it is quite general
[4, 5, 10] for these type of problems and by choosing an appropriate value for the
slip coefficient β we can cover the whole range from applying almost no-slip up
to the free-slip condition. In our numerical computations we have chosen a slip
coefficient β ≥ 103.
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In the weak formulation of the problem, we replace the curvature term arising in
the boundary integral over the free surface by the Laplace-Beltrami operator [1, 7].
Integration by part allows to avoid the calculation of second derivatives and to
include a weak contact angle condition in the model. The time-dependent domain
has been handled by the ALE approach [8] resulting in an additional convective
term (w · ∇)u in the Navier-Stokes equation where w is the domain velocity.
We decompose the fluid domain into unstructured triangles and use the inf-sup
stable pair of finite elements [3] consisting of piecewise quadratic functions enriched
by cubic bubbles for the velocity components and piecewise linear discontinuous
functions for the pressure. The strongly A-stable second order fractional step ϑ
scheme [2, 9] has been used for the time discretization. In this time stepping scheme
a semi-implicit form of curvature term has been applied. We then solve in each
time step a Navier-Stokes problem for the velocity and pressure on a fixed domain
and update the boundary as Γn+1 = Γn + τnun+1. To find the displacements
of the inner nodes within the new domain a linear elasticity equation is solved.
Since the deformation of the domain is very large the mesh quality can be lost.
To avoid this an automatic remeshing procedure has been used and the velocity
and pressure fields are interpolated from the old domain.

The resulting algorithm has been implemented in the finite element package
MooNMD [6]. In first numerical tests the influence of the impact velocity and the
droplet diameter on the spreading length has been studied and compared with
experimental results. In these calculations a mass loss of less than three percent
has been observed.

This work was supported by Deutsche Forschungsgemeinschaft within in grad-
uate program Micro macro interactions in structured media and particle systems
(GK 828).
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A finite element approach to the immersed boundary method

Lucia Gastaldi

(joint work with Daniele Boffi, Luca Heltai)

Fluid-structure interaction systems often involve the resolution of the fluid dy-
namic equations on a moving (that is, time dependent) domain. The immersed
boundary method (IBM) was developed by Peskin (see [8, 9]) to study flow pat-
terns around heart valves. The immersed boundary method is designed to handle
a flexible boundary immersed in a fluid, hence it is particularly suited for bio-
logical fluid dynamic problems (see, e.g., [11, 7, 12, 6, 5]). The main idea of the
method consists in considering the structure as a part of the fluid where additional
forces are applied, and where additional mass may be localized. Therefore, instead
of separating the system in its two components coupled by interface conditions,
as it is conventionally done (see, e.g. [1, 10]), the incompressible Navier-Stokes
equations, with a nonuniform mass density and an applied elastic force density,
are used in order to describe the coupled motion of the hydroelastic system in a
unified way. The advantage of this method is that the fluid domain can have a
simple shape, so that structured grids can be used. On the other hand, the im-
mersed boundary is typically not aligned with the grid and it is represented using
Lagrangian variables, defined on a curvilinear mesh moving through the domain,
independent of the fluid domain mesh.

For the sake of simplicity, we consider the model problem of a viscous incom-
pressible fluid in a two-dimensional square domain Ω containing an immersed
massless elastic boundary in the form of a curve. We refer the interested reader
to [4] for a review of other applications.

To be more precise, for all t ∈ [0, T ], let Γt be a simple closed curve, the
configuration of which is given in a parametric form, X(s, t), 0 ≤ s ≤ L, X(0, t) =
X(L, t). The equations of motion of the system are

ρ
∂u

∂t
− µ∆u + u · ∇u + ∇ p = F in Ω × ]0, T [(1)

∇·u = 0 in Ω × ]0, T [(2)

F(x, t) =

∫ L

0

κ
∂2X(s, t)

∂s2
δ(x − X(s, t)) ds ∀x ∈ Ω, t ∈ ]0, T [(3)

∂X

∂t
(s, t) = u(X(s, t), t) ∀s ∈ [0, L], t ∈ ]0, T [(4)
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Here u is the fluid velocity and p is the fluid pressure. The problem is completely
described once we fix boundary and initial conditions:

u = 0 on ∂Ω × ]0, T [(5)

u(·, 0) = u0(·) on Ω(6)

X(s, 0) = X0(s) ∀s ∈ [0, L].(7)

We observe that the choice of F is made in such a way that the motion of the
boundary X is driven by its elastic energy (κ denotes the elasticity coefficient).
The main mathematical result that allows us to deal, in a variational way, with
the approximation of the Dirac mass appearing in (3), is the following lemma.

Lemma 1. Assume that, for all t ∈ [0, T ], the immersed boundary Γt is Lipschitz
continuous. Assume, moreover, that X is regular enough so that the right hand
side of (8) makes sense. Then for all t ∈ ]0, T [, the force density F(t), defined
formally in (3), is a distribution function belonging to H−1(Ω)2 defined as follows:
for all v ∈ H1

0 (Ω)

(8) H−1< F(t),v >H1

0

=

∫ L

0

κ
∂2X(s, t)

∂s2
· v(X(s, t)) ds ∀t ∈ [0, T ].

Lemma 1 allows to write the Navier-Stokes equations in their variational form
which is well suited to the finite element discretization. The well-posedness of the
problem composed by the variational form of the Navier-Stokes equations together
with (8), (4), (5), (6) and (7) has been discussed in [2] for a one dimensional model.

The original numerical approach to the IBM is based on finite differences for the
spatial discretization. This employs two independent grids, one for the Eulerian
variables in the fluid and the other for the Lagrangian variables associated with
the immersed boundary. The main difficulty in such spatial discretization consists
in the construction of a suitable regularization of the Dirac delta function which
is used to take into account the interaction equations, see [9]. Our approach to
the discretization of the IBM is completely based upon the finite element method.
Thanks to Lemma 1, we deal with the Dirac delta function, which is related to the
forces exerted by the immersed structure on the fluid and viceversa, in a variational
way. So that there is no need to construct a regularization of the delta function,
but its effect is taken into account by its action on the test functions.

Let us consider discrete space sequences Vh ⊂ H1
0 (Ω)d and Qh ⊂ L2

0(Ω) which
provide a stable approximation of the Stokes equations. The approximation of the
immersed curve is obtained by piecewise linear continuous vector valued functions
Sh. For the sake of simplicity we discard the nonlinear term in the Navier–Stokes
equations; numerical results for the fully nonlinear system are in progress. Then
we consider the following discrete problem: given u0h ∈ Vh and Xh 0 ∈ Sh, for all
t ∈ ]0, T [, find (uh(t), ph(t)) ∈ Vh ×Qh and Xh(t) ∈ Sh, such that

ρ
d

dt
(uh(t),v) + µ(∇uh(t),∇v) − (∇·v, ph(t)) =< Fh(t),v > ∀v ∈ Vh(9)

(∇·uh(t), q) = 0 ∀q ∈ Qh(10)
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with

(11) < Fh(t),v >=

m−1
∑

i=0

κ

(

∂Xh i+1

∂s
(t) −

∂Xh i

∂s
(t)

)

v(Xh i(t)) ∀v ∈ Vh

∂Xh i

∂t
(t) = uh(Xh i(t), t) ∀i = 0, 1, · · · ,m(12)

uh(x, 0) = u0h(x) ∀x ∈ Ω Xh i(0) = X0(si) ∀i = 1, · · · ,m.(13)

The following stability property for the solution of this problem holds true:

(14)
1

2

d

dt
||uh(t)||20 + µ||graduh(t)||20 +

κ

2

d

dt

∥

∥

∥

∥

∂Xh(t)

∂s

∥

∥

∥

∥

2

0

≤ 0.

The time discretization is based on the backward Euler method. In our problem,
the Navier-Stokes equations (9)-(10) are strongly coupled through the source term
(8) with the system of ordinary differential equations given by (12). Therefore, in
order to avoid the resolution of a fully nonlinear system of equations at each time
step, we adopt a natural modification of the backward Euler method. Then, our
scheme consists of two steps: given the approximation Xn

h of X at time n∆t, we

construct Fn+1
h and find the solution (un+1

h , pn+1
h ) to the Navier-Stokes equations;

then we move the immersed boundary, getting Xn+1
h . A conditioned stability

property can also be proved for the full time-space discretization.
We refer the interested reader to [2, 3, 4] for the derivation of our numeri-

cal schemes and for several experimental results confirming the robustness of the
scheme.
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Numerical Investigation of the Non-Isothermal Contact Angle

Rolf Krahl

(joint work with Eberhard Bänsch)

1. Introduction

It is known from experiments that thermal effects have a considerable impact
on the shape of a gas–liquid phase boundary and on the contact angle at it meets
a solid wall. Gerstmann et al. investigated in [5] the reorientation of a gas–liquid
phase boundary upon step reduction of gravity in the non-isothermal case. In this
scenario of a cold liquid meniscus spreading over a hot solid wall, the contact angle
was observed to become larger then in the isothermal case. In order to investigate
this phenomenon numerically, we focus on the effect of Marangoni convection on
the shape of the phase boundary. Therefore, we limit ourselves to the case where
no external body forces act on the fluid.

2. Numerical setup

Consider a circular cylinder, partly filled with liquid (see Fig. 1). We assume to
have no gravity. In the isothermal case, the shape of the gas–liquid phase boundary
will be spherical if the liquid is at rest. Now we assume the cylinder wall to be
split in two parts: the lower part and the bottom ΓC is cold, while the upper part
ΓH is heated. The gas–liquid phase boundary ΓS is assumed to be adiabatic. The
liquid is cold initially.

ΓC

ΓS
ΓH

ΓC
ΓA

Figure 1. Computational domain
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Figure 2. Shape of the free surface, isolines of temperature and
velocity field in the in the isothermal case (left) and in the case
of Marangoni convection (right).

The flow field in the liquid is governed by the incompressible Navier–Stokes
equations. We assume no-slip boundary conditions at the cylinder wall. At the
phase boundary the stress is prescribed. The free surface moves with the normal
component of the velocity. A static contact angle is imposed as a boundary con-
dition for the surface. For the heat transport, an advection-diffusion equation has
to be solved.

3. Numerical methods

A finite element method is used to solve the numerical problem. The structure
of the solver and the time discretization scheme is described in [1].

Key ingredient of the method for incorporating surface tension effects is the
proper treatment of the free capillary boundary. To this end, a variational for-
mulation for the curvature terms yields an accurate, dimensionally-independent
and simple-to-implement approximation. The solver uses a stable time discretiza-
tion, that is semi-implicit with respect to the treatment of the curvature terms.
This firstly allows one to choose the time step independently of the mesh size—as
opposed to common “explicit” treatments of the curvature terms—and secondly
decouples the computation of the geometry and the flow field. This approach has
proven to be both efficient and robust. For details see [2].

Applications of this method to some practical flow problems can be found for
instance in [2, 3, 4].

4. Results

In the non-isothermal case, a temperature gradient induces a Marangoni stress
at the phase boundary, exciting a flow in the liquid and a deformation of the free
surface (Fig. 2). The shape of the non-isothermal phase boundary is significantly
flattened near the center compared to the isothermal reference configuration (Fig.
3, left). The tangent to the surface at some given point meets the cylinder wall with
an higher angle then in the isothermal case (Fig. 3, center). While the curvature of
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Figure 3. Shape of the free surface (left). Angle of the tangent to
the free surface and the vertical cylinder wall (center). Curvature
of the free surface (right).

the free surface is constant in the isothermal configuration, in the non-isothermal
case it is much larger near the cylinder wall then in the center (Fig. 3, right). One
might assume that this strong variation in curvature within a small layer close to
the wall is hardly visible to the eye. This could explain why the contact angle in
the non-isothermal configuration appears to be larger then in the isothermal case,
although it was prescribed as a boundary condition with the same value in both
cases.
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Numerical simulation of the Rosensweig instability of ferrofluids in the
static and dynamic case

Gunar Matthies

(joint work with Olga Lavrova, Lutz Tobiska)

If a uniform magnetic field is applied perpendicular to a layer of a ferrofluid then a
spontaneous surface deformation occurs provided the field strength exceeds a crit-
ical value. This behaviour is called Rosensweig instability and was first observed
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by Cowley and Rosensweig [2]. It is caused by the interaction of gravitational, cap-
illary and magnetic forces. Additionally, in the transition from the undisturbed
surface to the fully developed pattern, hydrodynamic forces have to be taken into
consideration. Stability analysis of this phenomenon is often restricted to deter-
mine the critical magnetic field intensity in the case of small perturbations [5].

Our numerical simulation is based on the nonlinear system of coupled Maxwell
and Navier-Stokes equations together with the Young-Laplace equation, repre-
senting the force balance at the unknown free surface. We describe numerical
algorithms to handle both the static and the dynamic case. Simplified numerical
models for the static case have been already studied in [1, 3].

The Maxwell equations for a nonconducting fluid are given by

curl H = 0, div B = 0 in Ω

with the magnetic field strength H and the magnetic induction B satisfying the
constitutive relation

B =

{

µ0(M + H) in ΩF (t)

µ0H in Ω \ ΩF (t)

where M is the magnetisation, µ0 = 4π ·10−7Vs/Am is the permeability constant,
ΩF (t) is the subdomain occupied by the ferrofluid at time t. The magnetisation
M is assumed to be parallel to the magnetic field H and to follow the Langevin
law, i.e.,

M = MS

(

coth(γ|H|) −
1

γ|H|

)

H

|H|

with the saturation magnetisation MS , the Langevin parameter γ = 3χ0/MS , and
the initial susceptibility χ0. The hydrodynamical properties are described by the
time-dependent incompressible Navier-Stokes equations

̺(ut + (u · ∇)u = div σ(u, p,H) + f in ΩF (t), t > 0,

div u = 0 in ΩF (t), t > 0

where σ(u, p,H) is the stress tensor with

σij = η

(

∂ui

∂xj

∂uj

∂xi

)

−
(

p−
µ0

2
|H|2

)

δij +BiHj , i, j = 1, 2, 3.

Here, ̺ denotes the density, η the dynamic viscosity, u the velocity, and p the
pressure. Finally, we have the force balance at the free surface and the kinematic
condition

[|σn|] = αKn, u · n = VΓ on ΓF (t), t > 0

with the sum of the principal curvatures K, the coefficient of surface tension α,
the unit normal vector n, the normal velocity VΓ of the free surface ΓF .

The coupled problem is iteratively splitted into subproblems which depend on
whether the static or dynamic case is considered. In the static case we have u = 0
and the pressure p can be determined directly from the Navier-Stokes equations.
Thus, in this case we solve a 3D magnetostatic problem inside and outside of the
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fluid for a given ΩF and update ΩF by solving the 2D Young-Laplace equation for
the graph representing ΓF . In the dynamic case we incorporate the force balance
on ΓF (t), i.e. the Young-Laplace equation, in the flow calculation which leads to
the following iteration: Given ΩF (tn) we solve a 3D magnetostatic problem inside
and outside of the fluid, a 3D Navier-Stokes problem in a time-dependent domain
by the ALE (Arbitrary Lagrangian Eulerian) method, and use the information
u · n at ΓF (tn) to find the position for ΓF (tn+1).

For approximating the solutions finite element methods were applied. The
nonlinear subproblems were solved by a fixed-point iteration and the arising linear
systems of equations by multi-level algorithms, [4].

While theoretical results are available for the subproblems, like the Navier-
Stokes equations in a fixed domain, the magnetostatic problem and the Young-
Laplace equation, the mathematical analysis of the fully coupled problem is still
an ongoing challenge.

The numerical simulations show in both cases that accurate finite element so-
lutions for the peak shapes and heights can be obtained. Moreover, the critical
magnetic field for the onset of instability can be determined accurately. Damped
oscillations converging into the stationary limit can be observed if a supercritical
field is switched on suddenly.

This work was partly supported by the German Research Foundation (DFG-
FOR 301) and the State Sachsen-Anhalt.
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Convergence of a semidiscrete scheme for a model problem with a
capillary boundary condition

Jürgen Mehnert

We may think of a fluid in a container occupying the time dependent two
dimensional domain Ω(t) with a free boundary Γ(t) assumed to be a graph. The
rigid bottom of the container is denoted by ΓD. To avoid problems concerning
contact angles we consider periodic lateral boundary conditions.
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In general the motion of a fluid with a free boundary is described by the Navier–
Stokes equations with a capillary boundary condition. Let us focus on the problems
arising from the curvature in the capillary boundary condition caused by the sur-
face tension. At the same time we want to neglect the difficulties which are due to
the divergence free condition. Therefore, we simplify the Navier–Stokes equations
in order to obtain a model problem.

Thus, we are led to the following model problem. Find the time dependent
domain Ω(t) and the field variable u(·, t) : Ω(t) → IR2 such that

nΓ Γ

Ω

ΓD

(t)

(t)

ut − ∆u = f in Ω(t)

∂u/∂ν = κ ν on Γ(t)

v = u · ν on Γ(t)

u = 0 on ΓD

u(0) = u0 in Ω0 ,

where u0 denotes the initial value of u and Ω0 the initial domain. Moreover,
ν is the outer unit normal to the free boundary Γ(t), κ its curvature and v its
normal velocity. The external forces are denoted by f .

Following the same line as in [1] we introduce a semidiscrete scheme for the
model problem based on a finite element approximation using piecewise linear
functions and prove an optimal a priori error estimate for the field variable and
the free boundary, see [6].

There is only one previous paper concerning error estimates for this kind of
problems we are aware of. In [7] a stationary model free boundary problem is
introduced and an error estimate for the field variable and the free boundary is
proved. Unfortunately, there seems to be no possibility to extend these methods
to the instationary case.

The key idea in deriving our error estimate is to work with the geometric quanti-
ties of the problem. This idea is due to Deckelnick and Dziuk and was introduced
in [3], where error estimates for the mean curvature flow were proved. In the
meanwhile this technique was also applied to surface diffusion, see [2] and [5], and
to Willmore flow, see [4].

To extend the underlying method to the Navier–Stokes equations with a free
capillary boundary one needs an appropriate approximation of u which should
be divergence free and has the required approximation properties. In [8] such an
operator is introduced for the stationary problem.
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Added mass effect in the design of partitioned fluid structure
algorithms

Fabio Nobile

(joint work with Paola Cusin, Jean Frédéric Gerbeau)

We are interested in simulating the mechanical interaction between blood and ar-
terial wall. Typical geometries appearing in this application have a cylindrical
structure. Large arteries feature deformations up to 10% of the diameter, hence
relatively large deformations of the domain have to be accounted for in simula-
tions. We suppose the fluid to be Newtonian and we model it by the incompressible
Navier-Stokes equations in Arbitrary Lagrangian Eulerian formulation. The struc-
ture is described either by a 1D generalized string model [4] (for 2D simulations)
or by a nonlinear shell model in large displacements regime (for 3D simulations).
The coupling conditions enforce the continuity of velocities and stresses at the
interface between fluid and structure.

To simulate the interaction we focus on partitioned time marching algorithms,
that is, algorithms which solve sequentially the fluid and the structure subprob-
lems, thus allowing one to reuse existing computational codes. They can be of
explicit or implicit type: in the former case, the fluid and structure subproblems
are solved only once (or just few times) within each time step, yet they do not en-
sure exact balance of energy. In the latter case, conversely, a good energy balance
is achieved, yet at the price to solve a non-linear problem at each time step, often
demanding several subiterations between fluid and structure.

In our experience, explicit algorithms become unstable, irrespectively of the
time discretization parameter employed, under certain combinations of physical
parameters. In particular this occurs when the density of the structure becomes
too small with respect to the density of the fluid or when the aspect ratio of the
computational domain (length of the artery compared to its diameter) becomes
too large.

The aim of this work is to give a mathematical explanation of such phenomena,
by analyzing a simplified fluid structure model. More precisely, we consider the
coupling between an axisymmetric potential flow with a thin elastic tube deforming
only in the radial direction . Let Ω = {(z, r) ∈ R

2, 0 < z < L, 0 < r < R} be
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the 2D axisymmetric fluid domain and Σ = Ω̄ ∩ {r = R} the interface with the
structure. Denoting by (u, p) the fluid velocity and pressure and by η the structure
radial deformation, we consider the coupled problem

(1)



















ρf∂tu + ∇p = 0 in Ω

div u = 0 in Ω

ρshs∂
2
ttη + aη = p on Σ

u · n = ∂tη on Σ.

Here, ρf and ρs are the fluid and structure densities, respectively, a an elastic
coefficient and hs the structure thickness.

The fluid and structure subproblems have to be supplemented with initial condi-
tions and further boundary conditions on the remaining portions of the boundary.
In particular, on the “inflow” section (Γin = Ω̄ ∩ {z = 0}) and “outflow” section
(Γout = Ω̄ ∩ {z = L}) we prescribe a given pressure p̄ = p̄(t, z, r).

The fluid equations can be rewritten in terms of the pressure only as

(2)











△p = 0 in Ω

∂np = −ρf∂
2
ttη on Σ

p = p̄ on Γin ∩ Γout

We introduce, now, the added-mass operator MA : H−1/2(Σ) → H1/2(Σ) as

∀ξ ∈ H−1/2(Σ) MAξ = w|Σ, where











△w = 0 in Ω

w = 0 on Γin ∪ Γout

∂nw = ξ on Σ

The operator MA is the inverse of the standard Steklov-Poincarée operator and is
compact, self-adjoint and positive in L2(Σ). In particular, for a cylindrical geome-
try, its maximum eigenvalue µmax depends on the aspect ratio L/R of the domain
and asymptotically for L/R → ∞ is given by µmax ≈ 2L2/(π2R). With the aid
of the added-mass operator, the fluid-structure problems (1) can be rewritten as
a modified structure problem:

(3) (ρshsI + ρfMA)∂2
ttη + aη = pext on Σ,

where I is the identity operator and pext accounts for the non homogeneous bound-
ary conditions on Γin and Γout. In this model, the presence of the fluid appears
as an extra mass on the structure.

Model (3) (respectively (1)) being linear, it can be used to investigate the
stability of partitioned fluid-structure algorithms. As a prototype of an explicit
time marching scheme we consider the one obtained by discretizing the structure
equation in (1) with a leap-frog (explicit) scheme and the fluid part with the
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implicit Euler scheme :

(4)



































ρf
un − un−1

∆t
+ ∇pn = 0 in Ω

div un = 0 in Ω

ρshs
ηn+1 − 2ηn + ηn−1

∆t2
+ aηn = pn on Σ

un · n =
ηn − ηn−1

∆t
on Σ.

In [3] it is shown that this time discretization scheme becomes unconditionally
unstable under the condition

ρshs

ρfµmax
< 1.

Hence, the scheme becomes unstable if the density of the structure becomes too
small with respect to the density of the fluid or if the maximum eigenvalue of the
added mass operator (which depends on its turn on the aspect ration of the do-
main) becomes too large. This is in perfect agreement with our previous numerical
observations (see e.g. [2]).

We consider also the implicit version of (4), obtained by getting implicit the
discretization of the structure equation. In this case it can be easily shown that
the resulting fluid-structure scheme is unconditionally stable. Yet, at each time
step we have to solve a non-linear system. For its solution we first consider a
Dirichlet/Neumann subiteration strategy: given an initial guess η0 of the structure
displacement, for each k = 0, 1, . . . , we solve the fluid equations with imposed
velocity on the interface and get a solution (uk, pk), we solve the structure and
get η̃k+1, we relax the new solution ηk+1 = ωη̃k+1 + (1−ω)ηk and we iterate until
the difference between ηk+1 and ηk is small enough.

This algorithm converges only if the relaxation parameter ω is taken small
enough (see [3])

0 < ω <
2(ρshs + aδt2)

ρshs + ρfµmax + aδt2
.

This result, not surprisingly, tells us that for those values for which the explicit
algorithm is unstable, the implicit one need a relaxation parameter strictly smaller
than 1 to converge.

A similar analysis can be carried out for the dual approach (Neumann/Dirichlet
subiteration strategy) in which we solve the fluid equations with imposed pressure
and we compute the unbalanced force on the structure by evaluating the residual
of the structure equation. Details are given in [3].

Conclusions. The simple linear model (1) reproduces the instabilities ob-
served on more complex non-linear problems. In our opinion, this is a clear indi-
cation that the source of such instabilities has to be sought in the incompressibility
constraint of the fluid. Moreover, model (1) could be used as a tool to quickly
check the stability/convergence of other partitioned algorithms.
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Concerning applications in hemodynamics, with physiological values of the pa-
rameters, implicit fluid-structure algorithms should be used. Current research is
directed to find efficient strategies to solve the fully coupled fluid-structure prob-
lem appearing at each time-step. Among others we mention exact Newton or
quasi-Newton algorithms ([1, 6]) or non-linear domain decomposition strategies
combined with Aitken extrapolation ([5]). Alternatively, one could consider semi-
implicit partitioned algorithms in which the structure displacement is treated ex-
plicitly while the structure velocity is taken implicitly and coupled with the fluid
equations. An example of a stable algorithm of this type is given in [2].
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Numerical simulation of viscoelastic flows with complex surfaces in 3D

Marco Picasso

(joint work with Andrea Bonito, Philippe Clément)

A numerical model is presented for the simulation of viscoelastic flows with com-
plex free surfaces in three space dimensions. The mathematical formulation of
the model is similar to that of the volume of fluid method, but the numerical
procedures are different.

Following [1, 2, 3], a splitting method is used for the time discretization. The
prediction step consists in solving three advection problems, one for the volume
fraction of liquid, one for the velocity field, one for the extra-stress. The correction
step corresponds to solving an Oldroyd-B fluid flow problem without advection.

Two different grids are used for the space discretization. The three advection
problems are solved on a fixed, structured grid made out of small cubic cells, using
a forward Characteristics method. The Oldroyd-B problem without advection
is solved using continuous, piecewise linear stabilized finite elements on a fixed,
unstructured mesh of tetrahedra.

Efficient post-processing algorithms enhance the quality of the numerical solu-
tion. A hierarchical data structure reduces the memory requirements.
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Numerical results are presented for the stretching of a filament. Fingering
instabilities are obtained when the aspect ratio is large. Also, results pertaining
to jet buckling are reported.

Finally, a time dependent Oldroyd-B fluid flow problem without advection is
considered. As in [4] an implicit function theorem is used to prove existence of
a solution and convergence of the finite element method. A maximum regularity
property for the three-fields Stokes problem in Lq(Lr) spaces is used to prove
existence.
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Adaptive finite elements with high aspect ratio for the computation of
dendritic growth with convection

Marco Picasso

(joint work with Jacek Narski)

A solutal phase-field model for dendritic growth of an isothermal binary alloy is
considered. The liquid flow due to different solid and liquid densities is also taken
into account. The model then corresponds to coupling the phase-field equation,
the concentration equation and the compressible Navier-Stokes equations in the
liquid.

Following [1, 2, 3] an adaptive finite element method is used. The goal of
the adaptive algorithm is to produce a sequence of triangulations such that the
relative estimated error is close to a preset tolerance. Moreover, the error estimator
allows the triangles to have large aspect ratios whenever needed. The algorithm
is justified in [2] when convection in the liquid is absent.

Numerical results are reported for the hot tearing experiment. Negative pres-
sures are obtained, predicting the onset of microporosity.
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A Finite Element based Level Set Method for Two-Phase
Incompressible Flows

Arnold Reusken

We consider a domain Ω ⊂ R
3 which contains two different immiscible incompress-

ible newtonian phases (fluid-fluid or fluid-gas). The model problem is a liquid drop
contained in a surrounding fluid. The time-dependent domains which contain the
phases are denoted by Ω1 = Ω1(t) and Ω2 = Ω2(t) with Ω1 ∪ Ω2 = Ω. We assume
∂Ω1 ∩ ∂Ω = ∅. The interface between the two phases (∂Ω1 ∩ ∂Ω2) is denoted by
Γ = Γ(t). To model the forces at the interface we make the standard assumption
that the surface tension balances the jump of the normal stress on the interface,
i.e., we have a free boundary condition

[σn]Γ = τκn ,

with n = nΓ the unit normal at the interface (pointing from Ω1 in Ω2), τ the
surface tension coefficient (material parameter), κ the curvature of Γ and σ the
stress tensor

σ = −pI + µD(u), D(u) = ∇u + (∇u)T ,

with p = p(x, t) the pressure, u = u(x, t) the velocity vector and µ the viscosity.
We assume continuity of the velocity across the interface. In combination with
the conservation laws of mass and momentum this yields the following standard
model:







ρi

(

∂u

∂t + (u · ∇)u
)

= −∇p+ ρig + div(µiD(u)) in Ωi

div u = 0 in Ωi

for i = 1, 2

[σn]Γ = τκn, [u · n]Γ = 0 .

The vector g is a known external force (gravity). In addition we need initial
conditions for u(x, 0) and boundary conditions at ∂Ω. For simplicity we assume
homogeneous Dirichlet boundary conditions.

This model for a two-phase incompressible flow problem is often used in the
literature. The effect of the surface tension can be expressed in terms of a localized
force at the interface, cf. the so-called continuum surface force (CSF) model [7, 9].
This localized force is given by

fΓ = τκδΓnΓ .

Here δΓ is a Dirac δ-function with support on Γ. This localization approach
can be combined with the level set method for capturing the unknown interface.
Combination of the CSF approach with the level set method leads to the following
model for the two-phase problem in Ω × [0, T ]

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρ(φ)g + div(µ(φ)D(u)) + τκδΓnΓ(1)

div u = 0(2)

φt + u · ∇φ = 0(3)
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together with suitable initial and boundary conditions for u and φ. This is the
continuous problem that we use to model our two-phase problem. It is also used
in, for example, [9, 14, 15, 17, 18, 19, 20].
In this talk we present an overview of an method that has been developed and
implemented in the DROPS package for the efficient numerical simulation of this
model. The main characteristics of the method are the following:

• For capturing the interface between the two phases the level set method
is applied [9, 14, 13].

• The spatial discretization is based on a hierarchy of tetrahedral grids.
These grids are constructed in such a way that they are consistent (no
hanging nodes) and that the hierarchy of triangulations is stable. The
main ideas are taken from [5, 6, 3, 4, 12]. An important property is that
local refinement and coarsening are easy to realize.

• For discretization of velocity, pressure and the level set function we use con-
forming finite elements. An example (used in the numerical experiments)
is the Hood-Taylor P2 − P1 finite element pair for velocity and pressure
and piecewise quadratic P2 finite elements for the level set function.

• For the time discretization we apply a variant of the fractional step θ-
scheme, due to [8].

• In each time step discrete Stokes problems and a discrete nonlinear elliptic
system for the velocity unknowns must be solved. For the former we use
an inexact Uzawa method with a suitable multigrid preconditioner. The
latter problems are solved by a Picard iteration combined with a Krylov
subspace method.

• For numerical and algorithmic purposes it is advantageous to keep the level
set function close to a signed distance function during the time evolution.
To realize this a reparametrization technique is needed. We apply a variant
of the Fast Marching method [11, 16].

The above list can be extended by two model-specific points:

• The effect of surface tension is modeled by using the above-mentioned
continuum surface force technique [7, 9].

• For the treatment of the localized force term we apply a technique based
on a partial integration rule for the Laplace-Beltrami operator, cf. [1, 2,
10]. Due to this approach the second order derivatives coming from the
curvature can be eliminated.

We discuss certain aspects of our solver in more detail. Results of numerical
experiments for a three dimensional instationary two-phase fluid-fluid flow problem
are presented.
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Direct Simulation of the Motion of Particles in Viscous Flows

Stefan Turek

(joint work with Decheng Wan)

The motion of particles in an incompressible viscous fluid is widely found in
various processes such as foods containing particles, fluidization of catalyst beds,
separation process using cyclones, sedimentation, just to name a few. Direct nu-
merical simulation of the motion of particles in laminar fluids is a very challenging
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task. The particles are moved by Newton’s laws under the action of hydrody-
namic forces computed from the numerical solution of the incompressible Navier-
Stokes equations. On the other hand, the fluid field and domain are disturbed and
changed simultaneously due to the motion of particles. It is crucial that in the
practical cases in which there are often large number particles (greater than 10,000)
existing in fluids, the complex interaction between fluid and particles as well as
the collision between particles is a challenging task for any numerical scheme.

So far, such problems have motivated the development of numerous algorithms,
which can be broadly classified into two families. The first is a generalized ALE
standard Galerkin finite element method [1, 2] in which both the fluid and particle
equations of motion are incorporated into a single coupled variational equation.
The hydrodynamic forces and torques on the particles are eliminated in the formu-
lation. The computation is performed on an unstructured body-fitted grid, and an
arbitrary Lagrangian-Eulerian (ALE) moving mesh technique is adopted to deal
with the motion of the particles. In this scheme, the positions of the particles and
grid nodes are updated explicitly, while the velocities of the fluid and the solid
particles are determined implicitly. The second approach is based on the principle
of embedded or fictitious domains. Glowinski, Joseph and coauthors [3] developed
a distributed Lagrange multiplier (DLM)/fictitious domain method. In the DLM
method, the entire fluid-particle domain is assumed to be a fluid and then to con-
strain the particle domain to move with a rigid motion. The fluid-particle motion
is treated implicitly using a combined weak formulation in which the mutual forces
cancel. The DLM method is referred to as an implicit fictitious boundary approach
since there is no need to directly calculate the hydrodynamic forces exerted on the
particles. The obvious advantage of the implicit fictitious boundary approach is
that the computational time for the calculation of forces exerted on particles can
be saved. However, the implicit coupling of fluid-solid momentum equations slows
down the solution procedure, since it requires the solution of large systems of the
linear and nonlinear algebraic equations for the coupled variables of fluid and solid.

In [5, 6], we proposed a multigrid FEM-based explicit fictitious boundary meth-
od (FBM). In contrast to the implicit fictitious domain approach, the explicit ficti-
tious boundary approach is to solve fluid equations and solid equations separately.
The main point is that the forces exerted on particles can be calculated in a very
efficient way. The computational cost are practically independent of the number
of particles in the computational domain. The FBM is based on an unstructured
FEM background grid. The flow is computed by a multigrid finite element solver
and the solid particles are allowed to move freely through the computational mesh
which can be chosen independently from the particles of arbitrary shape, size and
number. The same fixed grid is also used to represent the location of the solid
particles by imposing the velocities on the nodes covered by the particles at any
time. The new positions and the new velocities of the particles are updated using
Newton’s law so that there is no need to remesh the domain. The interaction
between the fluid and the particles is taken into account by the FBM in which an
explicit volume based calculation for the hydrodynamic forces is integrated. Based
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on the boundary conditions applied at the interface between the particles and the
fluid which can be seen as an additional constraint to the governing Navier-Stokes
equations, the fluid domain can be extended into the whole domain which covers
both fluid and particle domains. It starts with a coarse mesh which may contain
already many of the geometrical fine-scale details, and employs a (rough) boundary
parametrization which sufficiently describes all large-scale structures with regard
to the boundary conditions. Then, all fine-scale features are treated as interior
objects such that the corresponding components in all matrices and vectors are
unknown degrees of freedom which are implicitly incorporated into all iterative
solution steps. For treating more than one particle, a collision model is needed
to prevent particles from interpenetrating each other. Collisions or near-collisions
between the particles present severe difficulties in direct simulations of particulate
flows. Even near-collisions can greatly increase the cost of a simulation, because in
order to simulate the particle-particle interaction mechanism in a direct manner,
the flow fields in the narrow gap between the converging particle surfaces must be
accurately resolved. For solving the problem, we describe a new repulsive force
model which cannot only handle to prevent the particles from getting too close to
each other, it can also deal with the case of particle overlapping when numerical
simulations bring the particles very close or even overlapping due to unavoidable
numerical trunaction error.

We present several cases of simulations as proposed benchmark configurations
to evaluate and to validate the accuracy and efficiency of the presented method by
a careful comparison between the results obtained by the presented method and a
standard body-fitted computation for two-dimensional flow around a circular body
in a channel. Flow with one rotating and moving particle is shown to validate
the calculations of angular velocity and translational velocities by the presented
multigrid FBM. The cases with two and many particles are given to check the
quality of the collision model and of the efficiency of the multigrid FBM for the
simulation of particulate flow with large numbers of particles. We also adopt the
multigrid FEM fictitious boundary method to simulate solid-liquid two phase flows
with huge number of moving particles in fluid. As an illustration, numerical results
of three big disks plunging into 2000 small particles, and sedimentation of 10,000
particles in a cavity are presented.

The main advantage of the multigrid FBM is that the solid particles, which
are allowed to have different shape and size, can move freely through the compu-
tational mesh for the fluid part which has not to change in time. The accuracy
for capturing the particles is only of first order which is important for the ex-
plicit calculation of the correct fluid forces acting on the particles, however, it can
be improved via special ‘grid deformation’ techniques to reach a local alignment
with the particle surfaces. The proposed volume-based integration for the calcu-
lations of the hydrodynamic forces acting on the moving particles is one of the
key ingredients of the multigrid FBM, and its high accuracy has been proven by
numerous comparisons between the presented results and corresponding reference
results from own computations or from literature: This new approach can be easily
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incorporated into (almost) all CFD codes without the need for additional (back-
ground) meshes for the particles or special interpolation procedures since it only
requires changes in the treatment of Dirichlet boundary conditions. The compar-
ison with more implicit scheme, for instance [3], is not yet clear, particularly with
respect to the total efficiency: Hence, it is absolutely necessary to design approx-
imate benchmarks for realistic particulate flows. Another advantage of this new
approach is that very different shapes and sizes of particles can be easily included;
even coalesence and breakup mechanisms are possible.

The newly modified collision model based on the models by Joseph, Glowinski
et al. [3, 4] with a new definition of a short range repulsive force cannot only
prevent the particles from getting too close to each other, it can also deal with the
case of overlapping when the numerical simulation brings the particles very close
or even leads to overlapping. Special data structures and time reducing techniques
for handling the calculation of large number of particles are described to enable the
multigrid FBM to efficiently solve for many particles. Therefore, one of the next
aims is to simulate in 2D up to 106 particles on a single PC/workstation while the
corresponding 3D module in FeatFlow will be based on a parallel implementation
for such a high number of particles. Furthermore, non-Newtonian and viscoelastic
fluids (see [3]) have to be tackled in future.
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Phase Field/Level Set Methods for Problems Involving Elasticity

Noel J. Walkington

1. Overview

Models of physical systems often contain implicitly defined surfaces separating
different phases, materials, etc. which may evolve over time. Phase field and level
set techniques can be used to represent such interfaces without explicitly parame-
terizing them. When the evolution of the free surfaces can be determined from
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“Eulerian” quantities (such as the curvature, flow velocity, etc.) phase field/level
set representations have lead to very general robust algorithms and numerical
codes to simulate these complex physical systems. This work considers how such
algorithms may be extended to model free surfaces, such as elastic membranes,
whose evolution depends additionally upon “Lagrangian” quantities, e.g. strain.

Currently there are no results on the existence and uniqueness for systems
of partial differential equations modeling flows transporting elastic components,
so analysis of algorithms to simulate these systems is not possible. However,
results are available for the simpler system modeling the flow of two immiscible,
incompressible Newtonian fluids, and convergence of numerical schemes for this
problem are considered.

2. Flow of Immiscible Fluids

The simplest example of a multicomponent flow is the motion of two immisci-
ble, incompressible Newtonian fluids. To model this problem it is convenient to
introduce a “phase function” φ such that

φ(x, t) =

{

+1/2 in fluid (1)
−1/2 in fluid (2)

The equations of motion in a domain Ω ⊂ R
d can then be written as

∫

Ω

ρ(φ) (vt + (v.∇)v) .w − p div(w) + µ(φ)D(v) ·D(w) =

∫

Ω

ρ(φ)f.w,

div(v) = 0, φt + v.∇φ = 0.

Here D(v) = (1/2)(∇v + (∇v)T ) is the symmetric part of the velocity gradient,
and the momentum equation is written in weak form to avoid explicit statement
of the force balance across the interface(s) between the fluids. The density ρ and
viscosity µ may take different values in each fluid:

ρ(φ) = (1/2 + φ)ρ1 + (1/2 − φ)ρ2, µ(φ) = (1/2 + φ)µ1 + (1/2 − φ)µ2.

Convergence of numerical approximations to this system of equations has been
established by the author. The key step is to develop a discrete version [3] of the
DiPerna Lions theory [1] for the convection equation satisfied by φ.

3. Flows Containing Membranes

The stresses in a membrane S(t) depend upon the deformation from a reference
configuration Sr ⊂ Ωr. The deformation is usually expressed using differential
geometry; however, for membranes transported in a fluid their deformation is
inherited from the global deformation χ : Ωr × [0, T ] → Ω of the fluid; that is,
S(t) = χ(Sr, t).

If x = χ(X, t), the deformation of the gradient of the fluid is F = [∂xi/∂Xα],
and

∫

Ω

(. . .)dx =

∫

Ωr

(. . .)J dX where J = det(F ).



Mini-Workshop: Interface Problems in Computational Fluid Dynamics 499

An application of the chain rule shows that F = F (x, t) evolves according to
Ft + (v.∇)F = (∇v)F.

3.1. Membrane Kinematics. If χs = χ|Sr
, then dχs : TSr → TS(t) is a linear

map, so there exists a unique 3 × 3 matrix Fs of rank 2 such that

dχsw = Fsw, w ∈ TSr.

A calculation shows that Fs = F (I −N ⊗N), where N = N(X) is the normal to
Sr. The matrix Fs carries the first fundamental form of the surface; in particular,

∫

S(t)

(. . .)da =

∫

Sr

(. . .)Js dA where Js = ι2(F
T
s Fs)

1/2.

Here ι2(F
T
s Fs) is the second invariant of the matrix FT

s Fs (since Fs has rank 2,
this is the product of the two non-zero eigenvalues of FT

s Fs).

3.2. Sharp interface Equations. If the membrane is hyperelastic, then the
stresses are determined from a strain energy function W : R

3×3 → R. The equa-
tions governing the motion hyperelastic membranes separating two incompressible
Newtonian fluids are then

∫

Ω

ρ(φ)v̇.w − p div(w) + µ(φ)D(v) ·D(w)

+

∫

S(t)

(1/Js)DW (Fs) · (∇w)Fs =

∫

Ω

ρ(φ)f.w,

div(v) = 0 φt + v.∇φ = 0,

Fst + (v.∇)Fs = (∇v)Fs on S(t).

The interface S(t) is implicitly defined as the jump set of φ.
A formal calculation shows that this system satisfies the classical energy esti-

mate,

d

dt

(
∫

Ω

(ρ(φ)/2)|v|2 +

∫

Sr

W (Fs)

)

+

∫

Ω

µ(φ)|D(v)|2 =

∫

Ω

ρ(φ)f.v.

3.3. Phase Field Approximations. The surface S(t) is implicitly defined to be
the jump set of φ. If φ has bounded variation then

∫

S(t)

(. . .)da =

∫

Ω

(. . .)|∇φ|dx;

that is, surface measure da is |∇φ|dx. For elastic membranes surface area in the
reference configuration may be calculated as

∫

Sr

(. . .)dA =

∫

S(t)

(. . .)(1/Js)da =

∫

Ω

(. . .)(1/J)|FT∇φ|dx.

Phase field approximations introduce a smooth approximation of φ which rapidly
changes from −1/2 to +1/2 across S(t). If δ = (1/J)|FT∇φ| then

δt + (v.∇)δ + div(v)δ = 0.
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The phase field approximation of the flow of two fluids separated by an elastic
membrane is then

∫

Ω

ρ(φ)v̇.w − p div(w) + µ(φ)D(v) ·D(w) +DW (Fs) · (∇w)Fsδ =

∫

Ω

ρ(φ)f.w,

div(v) = 0, φt + v.∇φ = 0,

Fst + (v.∇)Fs = (∇v)Fs, δt + (v.∇)δ = 0.

If reference configuration is taken to be the initial state, and if the membrane is
initially stress free, then the initial data for Fs and δ can be determined from the
initial value φ0 of φ as Fs = (I −N ⊗N), and δ = |∇φ0|, where N = ∇φ0/|∇φ0|.

The equations discussed above present many mathematical challenges; for ex-
ample

• The regularity of the velocity is guaranteed by the energy estimate is
v ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)]. If a surface is transported by such
a velocity field it is not clear that it remains sufficiently regular to define
surface measure etc.

• The system contain the equations of nonlinear elasticity and currently
there is no satisfactory existence and uniqueness theory for these equations.

Frequently the membrane is significantly stiffer than the fluid and in
this situation it is possible to develop a small strain theory for the above
system of equations using the ideas developed in [2]. While this eliminates
some problems others remain.
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