
Mathematisches Forschungsinstitut Oberwolfach

Report No. 9/2005

Mini-Workshop: Mathematical Methods and Models of
Continuum Biomechanics

Organised by
Ray W. Ogden (Glasgow)

Giuseppe Saccomandi (Lecce)

February 20th – February 26th, 2005

Abstract. The workshop Mathematical Methods and Models of Continuum
Biomechanics focused on skills and tools providing a rational approach for
integrating data that reductionist and molecular approaches in modern bio-
logical and medical science has recently provided. The workshop has provided
contributions that brought together experts from the (bio-)mechanics and ap-
plied mathematics communities in order to highlight the mathematical needs
and challenges especially in the fields of soft tissues and DNA mechanics.

Mathematics Subject Classification (2000): 74L15, 76Z05, 92C10, 92C35, 92D20.

Introduction by the Organisers

It is well known that biomechanics is rapidly becoming a classical field of ap-
plication of mathematics. Several recently established societies and journals are
devoted to this subject and increasingly many conferences are being organized with
biomechanics as the central theme. However, continuum biomechanics remains to
attract the attentions of significant numbers of mathematicians. Biomechanics has
contributed much to understanding of human health and to disease and injury and
their treatment, but has yet to reach its full potential as a consistent contributor
to the improvement of health-care delivery. Because of the inherent complexities
of the microstructure and biomechanical behaviour of biological cells and tissues,
there is a need for new theoretical frameworks to guide the design and interpreta-
tion of new classes of experiments. Because of continued advances in experimental
technology and the associated rapid increase in information on molecular and cel-
lular contributions to the behaviour at tissue and organ levels, there is a pressing
need for mathematical models to synthesize and predict observations across mul-
tiple length and time scales. And because of the complex geometries and loading
conditions, there is a need for new computational approaches for the solution of
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boundary- and initial-value problems of clinical, industrial and academic impor-
tance.

The investigations of particular interest in this framework are those that quan-
tify the mechanical environment in which cells and matrix function in health, dis-
ease or injury, identify and quantify mechano-sensitive responses and their mech-
anisms, detail interrelations between the mechanical and biological processes such
as growth, remodelling, adaptation and repair, and report discoveries that advance
therapeutic and diagnostic procedures. For these investigations to be successful
there is need for a strong mathematical background that differs from that in clas-
sical biomathematics.

First of all because, as noted in the 1998 Bioengineering Consortium (BECON)
Report of the US National Institutes of Health,

The success of reductionist and molecular approaches in modern medical science
has led to an explosion of information, but progress in integrating information has
lagged. Mathematical models provide a rational approach for integrating this ocean
of data, as well as providing deep insight into biological processes.

Second, because there are new challenges for such mathematical models that
require review and revision of the axiomatic framework underpinning the usual
analytical and computational models based on solid mechanics, fluid mechanics
and thermo-mechanics, and their interactions. This means that there is a need to
develop also new mathematical models.

The workshop Mathematical Methods and Models of Continuum Biomechanics,
organized by Ray W. Ogden (Glasgow) and Giuseppe Saccomandi (Lecce) and
held February 21st–26th, 2005, focused on this timely subject with contributions
that brought together experts from the (bio-)mechanics and applied mathematics
communities in order to highlight the mathematical needs and challenges in the
field.

The topics addressed were:
mathematical modelling and computational issues in soft tissue me-

chanics with particular reference to growth and remodelling – this is a
fundamental topic where there is the need for a new generation of mathematical
tools for describing deformation as the mass and material properties change;

mathematical models and methods in cardiovascular systems – here the
computational effort is striking, mainly for the study of blood flow in large arteries
and in fluid-structure interaction problems; interesting mathematical problems
come from associated multi-scale analysis and optimal control;

mathematical issues on the modelling of DNA - here the aim is to apply
rigorous mathematical approaches and efficient computational algorithms in the
development and application of models in order to understand the basic physical
properties of DNA as a function of its base sequence; these properties are generally
believed to be key to the biological function of DNA, but the mechanisms are not
well understood.

The meeting was attended by 14 participants, a nice blend of researchers with
various backgrounds. The program consisted of 14 talks and several informal
discussions that benefited enormously from the unique academic atmosphere at
the Oberwolfach Institute.
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Abstracts

Mathematical models of lipid membranes

Paolo Biscari

(joint work with Fulvio Bisi, Silvia Maria Canevese, Gaetano Napoli, Riccardo
Rosso)

Lipid membranes are aggregates of amphiphilic molecules, which consist of a hy-
drophilic head and one or more hydrophobic tails. Living in an aqueous envi-
ronment, these molecules tend to form bilayers where the hydrophobic parts are
hidden by the hydrophilic ones, and so their contact with water is reduced. A
further reduction is obtained when the bilayer closes itself to form a vesicle, which
is modelled as a compact, two-dimensional surface.

We will first survey the classical results concerning the analysis of the elastic
energy functional which determines the equilibrium vesicle shapes when both their
area and enclosed volume are fixed [1, 2] . Proteins, thought of as rigid bodies, are
usually modelled as small cones. When embedded in a lipid bilayer, they modify
the membrane configuration by fixing the direction of the surface normal at the
contact points [3].

In the two-dimensional approximation, where the membrane shape is modelled
by a closed curve, we determine the exact equilibrium shape of the membrane in
the presence of one or more proteins [4]. The excess of elastic energy induced by
the proteins gives rise to a mediated interaction between them [5]. The interaction
may be either attractive or repulsive, depending on the protein shape and relative
distance [6, 7].

In the three-dimensional case, however, the panorama changes. The enclosed-
volume constraint induces a double-infinity of stationarity shapes [8]. Moreover,
a boundary layer analysis proves that the shape perturbations induced by the
proteins are strongly localized and decay within a characteristic length-scale of the
order of the protein diameter. Asymptotic methods allow to derive the analytical
shape of the perturbation [9].
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Flaw tolerant nanoscale and hierarchical structures of biological

materials

Huajian Gao

One of the most exciting challenges to materials science in the 21st century is the
development of multi-functional and hierarchical materials systems. Nanotechnol-
ogy promises to enable mankind to eventually design materials using a bottom-up
approach by tailor-designing microstructures from atomic scale and up. Before
these objectives can be realized, some important questions need to be addressed.
How can a hierarchical material be designed in a systematic way to achieve a par-
ticular set of properties? How to bridge different levels of structural hierarchy?
What is the criterion to choose the characteristic length scales for all hierarchical
levels? What is the theoretical basis for bottom-up design of materials? Moti-
vated by the above questions, we have performed a series of studies (see papers
cited below and references therein) of the mechanical properties of the nanostruc-
tures of hard biological tissues like bone and shells. These studies have led to
a concept called flaw tolerance which is defined as a state of material in which
pre-existing cracks do not propagate even as the material is stretched to failure
near its limiting strength. In this process, the material around the crack fails not
by crack propagation, but by uniform rupture at the limiting strength. This con-
cept provides a nice analogy between known concepts and phenomena in fracture
mechanics and robust designs of nanoscale and hierarchical structures of biological
materials. Biological materials are known to have complex hierarchical structures
over many length scales. While sea shells exhibit 2 to 3 levels of lamellar structure,
bone has been categorized into having 7 levels of hierarchy. Although the higher
levels of structural hierarchy show great complexity and variations in different bi-
ological materials, it is interesting to observe that nature exhibits a convergent
evolution at the nanostructure level in that the smallest building blocks of biolog-
ical materials are generally designed at the nanoscale with nanometer sized hard
inclusions embedded in a soft protein matrix. In tooth enamel, this nanostructure
consists of needle-like (15-20nm thick and 1000nm long) crystals embedded in a
relatively small volume fraction of a soft protein matrix. In dentin and bone, the
corresponding nanostructure consists of plate-like (2-4 nm thick and up to 100 nm
long) crystals embedded in a collagen-rich protein matrix, with the volume ratio of
mineral to matrix on the order of 1:2. The elementary structure of nacre is made
of plate-like crystals (200-500 nm thick and a few micrometers long) with a very
small amount of soft matrix in between. All of the biological nanostructures share
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the common feature of hard inclusions with a very large aspect ratio arranged in
a parallel staggered pattern in a soft matrix. Similar design principles have also
been used in the cell walls of wood made of hard cellulose fibrils embedded in a soft
hemicellulose-lignin matrix. In the past, numerous studies have been carried out to
understand the high toughness of biological materials from various points of view.
Recent investigations in our research group have also addressed the questions of
why the elementary structure of biocomposites is designed at the nanometer length
scale and how the toughness and other mechanical properties are related to the
nanostructure. However, up to now there is still a lack of understanding of the
general design principles for the structural hierarchy of biological materials. As a
first step toward understanding the basic design principles of nature, we note that
biological materials like bone must be able to survive crack-like flaws of many size
scales in order to successfully perform their designated mechanical and biological
functions. The self-sensing, self-adapting and self-repairing capabilities of bone
require not only a dynamical network of blood vessels for supply of nutrient, but
also constant removal and replacement of old and damaged materials with fresh
and healthy materials. The fact that all these processes should occur at the same
time while an animal is conducting its normal activities indicates that biological
materials must be designed to tolerate crack-like flaws of many size scales. We
have found it useful to adopt the concept of flaw tolerance as a basic principle in
understanding the nanostructure of biological systems. On the one hand, the con-
cept of flaw tolerance can be related to the concepts of notch insensitivity, fracture
size effects and large scale yielding or bridging in fracture mechanics; on the other
hand, it can also be related to the theory of evolution which states that surviv-
ability (in this case against mechanical flaws) is a key to propagation of animal
species. In this way, the concept of flaw tolerance provides an important analogy
between the known concepts and phenomena in fracture mechanics and new effort
on failure mechanisms of nanostructures and biological systems. In the state of
flaw tolerance, pre-existing crack-like flaws do not propagate and do not partici-
pate in the failure process. This view has formed a central theme in our recent
studies on the protein-mineral nanostructure of bone as well as the mechanics of
hierarchical adhesion systems of gecko. In various biological systems, it has been
shown that, as the characteristic size of the critical structural link is reduced to
below a critical size, a class of elastic solutions emerge with the interesting feature
of uniform stress distribution even in the vicinity of a crack. The idea of flaw
tolerance has been used to explain the nanometer sizes of mineral crystals in bone
and of the adhesive nanoprotrusions of gecko. In a flaw tolerant biological system,
failure occurs not by propagation of a pre-existing crack, but by uniform rupture
at the limiting strength of the material. The concept of flaw tolerance emphasizes
the intrinsic capability of a material to tolerate crack-like flaws of all sizes. Since
the crack size and geometry is not explicitly considered, this concept is particu-
larly useful in the study of hierarchical materials where a mixing of flaw geometry
with multiple characteristic sizes of the structural hierarchies would greatly com-
plicate the problem. A dimensionless number, called the flaw tolerance number
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in analogy with the Reynolds number in fluid mechanics, has been introduced to
characterize the transition from Griffith fracture to flaw tolerance state as the size
of material is reduced to below a critical length scale. It has been estimated that
the critical length for flaw tolerance can vary from near atomic scale for materials
like diamond with high Young’s modulus and more perfect atomic structures to a
few hundred nanometers for biominerals which have relatively low Young’s mod-
ulus with less perfect lattice structure and less pure chemical constituents. Flaw
tolerance corresponds to optimizing strength taken into consideration of poten-
tial crack-like flaws. For homogeneous materials, there is always a critical length
scale which is usually on the order of nanometer length scales for brittle materials
and on the order of micrometer length scales for ductile materials like metals. Is
it possible to design materials that can tolerate crack-like flaws at macroscopic
scales without size limit? Can we design materials of any macroscopic size which
still remains capable of tolerating all internal crack-like flaws? To answer these
questions in a qualitative way, we have made use of the concept of flaw tolerance to
demonstrate the enormous potential of hierarchical material design by considering
a hierarchical material with self-similar structures mimicking the nanostructure
of bone. This ”fractal bone” exhibits a similar microstructure at all hierarchical
levels consisting of a staggered hard phase embedded in a soft matrix; the hard
phase provides the structural rigidity while the soft phase absorbs and dissipates
fracture energy. Simplified analytical models are adopted to evaluate the stiffness,
strength and fracture energy at each level of structural hierarchy based on prop-
erties from the substructure one level below. The characteristic size of the hard
phase at each hierarchical level is determined based on the principle of flaw. It
is shown that this bottom-up designed material can tolerate crack-like flaws of all
sizes, from nanoscale up to macroscopic scales with no size limit.
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Elastic growth and instability in soft tissues

Alain Goriely

(joint work with Martine Ben Amar)

Growth in elastic materials can produce stress either through incompatibility
of growth or by interaction with the surrounding medium. The central question
addressed by the authors is whether the stress induced through growth is sufficient
to induce shape instability in the growing medium. Related questions are whether
growth plays a role in physiological conditions to help stabilize and regulated me-
chanical loads and how macroscopic properties of tissues and plants are inherited
through the growth process.

At the biomechanical level, soft-tissues with possibly large strains and nonlinear
anisotropic behavior are best represented by hyperelastic materials and modeled
within the theory of finite elasticity in which their response to stress is determined
by a strain energy function [1]. The modeling of such functions for tissues with
given symmetries represents an important and active field of study [2, 3]. Growth
can be modeled by a multiplicative decomposition of the deformation gradient
due to Rodriguez et. al. [4] similar to the one found in elasto-plasticity [5]. The
deformation tensor is assumed to be a product of a growth tensor describing the
local evolution of a mass element with no geometric or external constraint and an
elastic response of the material describing the strain necessary to ensure integrity
and compatibility of the material. This theory of material growth and its various
generalizations have been applied successfully to the modeling of many physio-
logical systems such as arteries, cartilage, muscle fibers, heart tissues and solid
tumors [1]. The growth tensor can be coupled to the strain and stress fields, the
material position in the medium, the density of nutrients, or the concentration
of morphogens. Of particular interest for the present study, is the problem of
differential growth where growth depends on the position inside the tissue. Differ-
ential growth is known to be of fundamental importance in development where it
is responsible for shape formation [6].

To gain better insight in growth-induced instabilities, the growth of an elastic
shell loaded with hydrostatic pressure or embedded in an elastic medium has been
studied. Three cases have been considered: (i) a constant but anisotropic growth
respecting the spherical symmetry, (ii), the radially differential growth of a shrink-
ing sphere and (iii) the case of a growing shell embedded in an elastic medium.
The residual stress arising from the incompatibility of growth and the contact
stress arising from the interaction with the surrounding medium are computed
with respect to growth and geometric parameters and critical values for instability
are obtained. Depending on these parameters, different modes of instability can
be obtained. These results have been presented in two articles by the authors [7]
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Pulmonary airway closure – a large-displacement fluid-structure

interaction problem

Matthias Heil

(joint work with Andrew Hazel and Joseph P. White)

The gas-conducting airways of the lung are flexible tubes lined with a thin liquid
film. The film is susceptible to a capillary instability, analogous to the classical
Plateau–Rayleigh instability, provided that the length of the airway is greater than
the circumference of the air-liquid interface. The instability causes an initially-
uniform film to develop a series of axisymmetric peaks and troughs. The fluid
pressure is low in the regions of increased film height, the lobes, and the compres-
sive load on the airway walls is locally elevated in these regions.

We develop an idealised model of the liquid-lined pulmonary airways and study
their behaviour using a fully-coupled, three-dimensional finite-element method.
The deformations of the airway wall are modelled using Kirchhoff–Love, thin-shell
theory and the dynamics of the liquid film are described by the Navier–Stokes
equations.

Our simulations to show that, if the surface tension of the liquid is sufficiently
high, relative to the bending stiffness of the tube, the altered loading induced by
the primary axisymmetric instability can lead to a secondary, non-axisymmetric,
buckling instability of the elastic airway wall. Under certain conditions, the sub-
sequent evolution of the system leads to complete occlusion of the gas core by the
liquid — airway closure. Furthermore, we demonstrate that non-axisymmetric
instabilities allow the occurrence of airway closure at fluid volumes that are too
small to form occluding liquid bridges in an axisymmetric geometry. A typical
example of our simulations is shown in Figure 1.
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Figure 1. An initially-uniform liquid film undergoes an axisym-
metric capillary instability causing fluid to drain into a lobe. The
additional compressive load in the region of the lobe causes the
elastic tube to buckle non-axisymmetrically and, ultimately leads
to airway closure. Time increases from left to right and the liquid
is shown as a shaded volume. In the simulation, symmetry con-
ditions are imposed at both ends of the tube and hence only one
half of the developing lobe is shown.

Constitutive restriction on swelling

Jacques Marie Huyghe

Swelling of saturated porous media is associated either with affinity between the
porous solid and the fluid or with ionisation of the porous solid compensated by
an opposite ionisation of the fluid. Constitutive restriction are formulated for an
elastic ionised porous solid saturated with an aqueous solution of a monovalent
salt and subject to finite deformation. Unlike other authors dealing with saturated
porous media [2, 3, 5, 4] equipresence is strictly adhered to. The full constitutive
description is contained in (1) a free energy of the mixture and (2) a frictional ma-
trix. The independent constitutive variables are the Green strain, the Lagrangian
velocities of the fluid, cations and anions relative to the solid, and the composition
of the mixture. The entropy inequality requires that the free energy of the mixture
does not depend on the relative velocities. This is a very important result that is
true for elastic saturated porous media in general, and was missed by [2, 3]. In-
stead, Bowen assumes the partial free energies not to depend on relative velocities,
without justification. From our analysis, it appears that the total free energy , the
total stress of the mixture and the electrochemical potentials of the fluid, cations
and anions cannot be dependent from the relative velocities, which is consistent
with an assumption of Biot [1]. The reason why the result was missed by other
mixture theorists is that they used an Eulerian description for solid, while we are
using a Lagrangian description. We do not see any arguments to assume the partial
free energies are independent from the relative velocities as assumed by Bowen [3]
in eq. 3.1. The chemical expansion stress used by other swelling theories [4] is not
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consistent with the constitutive restrictions derived by us. The electrostatic inter-
actions between the charges are included through an electroneutrality condition.
Unlike Lai et al. [4], we introduce the electroneutrality condition into the entropy
inequality through a Lagrange multiplier which is physically interpreted as an
electrical potential [6, 8]. Streaming and diffusion potentials, streaming and diffu-
sion currents, electro-osmosis, electrophoresis, chemical osmosis, Donnan osmosis,
Donnan exclusion and Donnan potentials are some of the physical phenomena
typically described. The model is experimentally validated for intervertebral disc
tissue [7] as well as for hydrogel [9]. It is implemented into a 3D finite deformation
FE model by van Loon et al. [11] and finds applications in wellbore stability [10],
bone remodelling [12], skin research [13] and cellular physiology [14].
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Modelling and simulation of biological growth phenomena

Ellen Kuhl

(joint work with Grieta Himpel, Andreas Menzel, Paul Steinmann)

This contribution aims at discussing different strategies to model and simulate
growth phenomena typically encountered in hard and soft tissues. Roughly speak-
ing, existing models for growth, or rather changes in mass, can be classified in
two basic categories: models based on changes in density and models based on
changes in volume. While the former are typically characterized through a mere
constitutive coupling between growth and deformation, the latter rather introduce
a kinematic coupling.

The first class of models dates back to the early work of Cowin and Hegedus [1]
and is sometimes referred to as theory of adaptive elasticity. Based on the thermo-
dynamics of open systems, it was primarily designed for density growth at constant
volume characteristic for open pored hard tissues such as bones, see also [4].

The second class of models was pioneered by Rodriguez, Hoger and Mc Cul-
loch [7]. Motivated by the development of multiplicative plasticity, they introduce
an incompatible growth configuration and perform a multiplicative decomposition
of the deformation gradient into a growth part and an elastic part. Models of
this second class, which nicely capture volume growth at constant density, are
predominantly designed for growth in soft tissues, see [3], [2].

In addition to changes in mass, we also address the aspect of remodelling, i.e.
the reorientation of fibers in anisotropic biological tissues as illustrated in [5, 6].

We present a systematic comparison of the individual approaches and illustrate
how the different strategies can be combined in a single unique framework. Nu-
merical examples illustrate the basic features of density growth, volume growth
and fiber reorientation in the context of hard and soft tissue mechanics.
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Helices

John H. Maddocks

(joint work with N. Choäıeb, A. Goriely)

It is shown that a uniform and hyperelastic, but otherwise arbitrary, non-linear
Cosserat rod has helices as the centerline of equilibrium configurations. For
anisotropic rods, and for each of the local two-parameter family of helical center-
lines corresponding to changes in the radius and pitch, there are a discrete number,
greater than or equal to two, of possible orientations of the cross-section at equilib-
rium. The possible orientations are characterized by a pair of finite-dimensional,
dual variational principle involving point-wise values of the strain-energy density
and its conjugate function. For sufficiently short helical segments, members of the
two parameter family in this variational principle are stable in the sense that they
are local minima of the total elastic energy for the corresponding boundary value
problem. This theoretical problem has practical applications in different fields
such has structural mechanics, civile engineering, biochemistry and biology. De-
tailed discussion of the implication of such problem in the study of the supercoiled
structure of DNA is provided.
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Why a Mixed Hybrid Formulation for Four-Component Modelling of

Cartilaginous Tissues?

Kamyar Malakpoor

(joint work with E.F. Kaasschieter, J.M.R. Huyghe)

Swelling and shrinking behavior of cartilaginous tissues (like intervertebral disk)
can be modelled by a four-component mixture theory in which a deformable and
charged porous medium is saturated with a fluid with dissolved ions [1]. This the-
ory results in a coupled system of non-linear parabolic partial differential equations
together with an algebraic constraint for electro-neutrality.

There are two major phases of cartilaginous tissue. A fluid phase containing
liquid and electrolytes (cations and anions) and a solid phase containing collagen
fibers and protoeglycans. The tissue can shrink only by expelling water and can
swell only by attracting water. Mixture theory can be used to model of these
phenomena in the framework of thermodynamics. The linear elastic solid matrix
and the fluid are assumed to be intrinsically incompressible.

For the sake of local mass conservation a mixed variational formulation seems to
be a good choice for the numerical algorithm. The solid displacement, fluid flow,
ion fluxes and electro-chemical potentials are chosen to be the primitive variables.
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One of the requirements for the stability of the method is that the divergences of
the fluxes must be in L2. In fact, this condition states that the normal compo-
nents of fluxes are continuous across the inter-element boundaries. In our model
this condition is not satisfied for the ion fluxes. The reason is that the ion fluxes
may have jumps over inter-element boundaries and therefore cannot have the re-
quired regularity. To prevent this problem we consider hybridization of the mixed
formulation. This will introduce Lagrange multipliers to relax the continuity re-
quirement for the fluxes across the internal edges.
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Fibre reorientation for transversely isotropic and orthotropic tissue

adaptation

Andreas Menzel

(joint work with Ellen Kuhl)

Biological tissues posses various sub-structures on different length scales. Conse-
quently, the macroscopic behaviour of these materials is highly anisotropic. The
self-organisation of biological tissues or rather deformation induced evolution of
representative underlying sub-structures are of cardinal interest for the modelling
of, e.g., hip implants, wound healing, balloon angioplasty, tissue engineering, etc.
To give an example, connective tissue is criss-crossed by collagen which bears most
of the applied stress. These collagen fibres adapt with respect to the dominant
loading directions.

From a macroscopic point of view the framework of fibre reinforced materials al-
lows combination with isotropic growth theories based on open system mechanics.
The proposed phenomenological model is based on the introduction of structural
tensors as key (internal) variables. Apparently, these fields conveniently enable
the description of anisotropic response. For a review on theoretical and numerical
issues on the evolution of structural tensors embedded into a general framework
for finite inelasticity see [6]. Based on these additional structural arguments,
anisotropic remodelling is addressed via appropriate evolution equations for the
underlying fibre directions and diameters while volumetric remodelling is realized
by the evolution of the density field. The fibre direction evolution might either
be based on an alignment with respect to appropriate stress fields, as for instance
applied in [1, 2], or according to suitable deformation tensors. The latter approach
has been developed within an open system continuum growth theory in [4, 5] and
is also adopted for an anisotropic chain model in [3]. The advocated theoretical
reorientation framework is mainly motivated by the contributions [8, 7]. Con-
ceptually speaking, the structural tensors evolve in a (viscous) time dependent
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manner so that stress and strain fields finally commute. This property renders the
strain energy to be a critical point at a given deformation tensor. Unlike classi-
cal engineering materials, however, living bio-materials tend to strengthen rather
than degrade in response to loading. Accordingly, at its critical value, the strain
energy can either take a local minimum as in traditional mechanics or even a local
maximum.

Until now, reorientation models have been developed for transversely isotropic
materials based on one single fibre family. In this contribution, the approach
advocated in [4] has been extended to orthotropic response. Two mechanically
different fibre families are incorporated and assumed to remain orthogonal during
the entire deformation process. Consequently, both vector fields follow one and
the same proper orthogonal reorientation. The computation of this transformation
is performed in four steps:

(i) construction of a rotation tensor in terms of the principal strain direc-
tions and an orthonormal frame with respect to the fibre families

(ii) computation of the corresponding rotation angle and axis

(iii) scaling of the (pseudo) rotation vector which serves as an ansatz for the
angular velocity vector of both fibre families

(iv) integration over time and computation of the actual fibre orientations

The developed algorithm nicely fits into standard numerical tools like for in-
stance nonlinear finite element codes. Several (open) problems might constitute
related future research:

(a) elaboration of different reorientation models which, in the present con-
text, addresses different arrangements of the orthonormal frames in (i)

(b) coupling with residual/initial stresses and/or strains

(c) stability analysis

(d) elaborations on critical points of the strain energy where principal strain
directions do not coincide with the two fibre families

(e) elaborations on universal relations for orthotropic materials

(f) elaborations on the time scale of adaptation

(g) comparison with experiments
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Twisted rod theory applied to the supercoling of DNA

Sébastien Neukirch

We use an elastic rod model with contact to study the extension versus rotation
diagrams of single supercoiled DNA molecules. We reproduce quantitatively the
supercoiling response of overtwisted DNA and, using experimental data, we obtain
an estimate of the effective supercoiling radius and of the twist rigidity of B-DNA.
We find that the twist rigidity of DNA seems to vary widely with the nature and
concentration of the salt buffer in which it is immersed.

Primarily the DNA molecule simply is the carrier of our genetic code. But in
order to understand how a 2 m long string of DNA can fit into a 10 µm nucleus,
one has to also consider its mechanical properties, namely the fact that the DNA
double helix is a long and thin elastic filament that can wrap around itself or other
structures. These mechanical properties will in general depend on the sequence
of base pairs (bp) of which the molecule is made. Nevertheless the behavior of
long molecules, i.e. more than a hundred bp, is well described by coarse-grained
models such as twisted rods elasticity.

In the magnetic tweezer experiment [1] a single DNA molecule is anchored
on a glass surface at one end, and glued to a magnetic bead at the other end.
The molecule is pulled and twisted with the help of a magnet that acts on the
bead. Experiments are carried under constant force. The end-to-end distance
z of the DNA molecule, which is measured thanks to a microscope, is recorded
together with the number of turns, n, made on the bead. Then under gradually
increased rotation, the extension z decreases with the number of turns, n, put in
and eventually the molecule starts to wrap around itself. Geometrically speaking,
the DNA molecule is coiling around itself in a helical way. Since the molecule is
already a double helix, we refer to this as supercoiling. Each helical wave of the
super helix is called a plectoneme.

We present an elastic model that includes self-contact but leaves out thermal
fluctuations. Our point is that, in the regime where plectonemes are formed, the
relevant physical information is already present in our zero-temperature elastic rod
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model with hard-wall contact. The model enables us to extract from experimental
data the supercoiling radius as well as the ratio of the bending rigidity to the twist
rigidity of the molecule.
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Arterial tissue mechanics and stress-induced growth

Ray Ogden

(joint work with Anna Guillou)

In this talk we first outlined the structural properties of arterial wall tissue, with
particular reference to the collagen fibre constituents that endow the material with
a strongly anisotropic character. Relevant stress-strain experimental data that il-
lustrate the nonlinearly elastic response of the material were also highlighted along
with the important role of residual stress. Background and detailed references can
be found in [1, 2]. The equations of nonlinear elasticity that form the basis for con-
structing material models were then discussed and results for a particular choice of
constitutive law applied to extension and inflation of a thick-walled circular cylin-
drical tube were obtained to illustrate the predictions of the model. Particular
reference to the influence of residual stress on the stress distribution through the
tube wall at normal physiological pressures was a feature of the work. A method
of taking the distribution of collagen fibre directions into account on the basis of
a ‘generalized structure tensor’ was also discussed briefly.

In the second half of the talk, based on the recent work by Guillou and Ogden
[3], we introduced a general theory of growth that takes account of the interaction
between growth (changing mass) in soft tissue and mechanical stress. For this
purpose the modifications of the usual mass and momentum balance equations of
continuum mechanics required to accommodate changing mass were highlighted.
A new form of constitutive law based on a free energy that depends on density,
density gradient, the total deformation gradient (relative to a fixed reference con-
figuration), structure tensors and residual stress was then discussed along with a
general form of growth law.

A general elastic/growth boundary-value problem was then formulated, which,
in principle, allows both the changing density and the deformation to be calculated
for any given form on constitutive law for the stress and growth. It also enables
the residual stress (and the evolving unloaded configuration) associated with the
growth to be determined. The theory was then applied to an artery wall under
hypertensive stress in order to illustrate the change in wall thickness due to growth
using a very simple example.
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Recent insights in the mathematics and mechanics of rubber-like and

biological materials

Giuseppe Saccomandi

The aim of the present talk is to show that some of the techniques and methods
that have been developed to model the mechanical behavior of natural rubber
and elastomers may be used successfully to understand biological materials. For
example, rubber-like materials and a large class of biological materials exhibit
a significant stiffening or hardening in their stress-strain curves at large strains.
Considerable progress has been made recently in the phenomenological modelling
of this effect within the context of isotropic and anisotropic hyperelasticity. In par-
ticular, constitutive models reflecting limiting chain extensibility may be successful
used to generalize in a 3−D setting one dimensional molecular models as the freely
jointed chain and the worm-like-chain. These phenomenological models may be
generated on using a modification of a systematic scheme proposed by Rivlin and
Signorini. This generalization is obtained by considering an approximation based
on rational functions instead polynomials. This more general setting allows to
have a control on the various constitutive parameters introduced to avoid difficul-
ties that may be arise in the fitting of experimental data. Moreover, we show that
this approach is successful not only to describe data in simple tension experiments,
but also to describe more complex effects as Mullin’s effect and this on the basis of
the mechanism of network alteration. Network alteration is fundamental to study
the ageing of biological tissues. In such a way it is possible to have a more deep
understanding of the constitutive issues related to the mathematical modelling to
the mechanical properties of biological materials at both the microscopic scale (in
the case of proteins such as elastin, collagen or DNA) and the macroscopic scale
(in the case of tissues such as arterial walls).

The present research is supported by the PRIN2004 project Modelli Matematici
per la Dinamica del DNA.
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Numerical studies of nonlinear lattice models for DNA dynamics

Ivonne Sgura

(joint work with Giuseppe Saccomandi)

In the process of DNA replication, transient opening of base pairs and its prop-
agation can be modelled as a solitary wave moving along the strands. To give
motion equations when a strand is represented as a lattice of N particles, the anal-
ogy with a mechanical system that allows soliton solutions has been proposed by
many authors (see e.g. [7]).

In this talk we focus on some special solitons with compact support, called
compactons, whose existence has been proved in nonlinear dispersive PDEs [5, 6].
The non smooth interface of compactons and nonlinearities of the equations present
significant theoretical and numerical challenges. In fact, compactons are usually
weak solutions of PDEs and exact compact solutions of lattice models seem to be
rare and instable. By the numerical approximation of several examples on lattices
[1, 2, 4], we emphasize that to have reliable information on the evolution of compact
structures in physical systems is necessary to use a numerical method (e.g. [3])
preserving conservation laws (as energy) and also to check other quantities (as
moments) related to the qualitative behavior of the solution.

The present research is supported by the PRIN2004 project Modelli Matematici
per la Dinamica del DNA.
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Minimal modelling of DNA thermal and mechanical instabilities

Nikos Theodorakopoulos

The thermal and mechanical instabilities of double-stranded DNA (commonly
known as “thermal melting” or “thermal denaturation” and “mechanical unzip-
ping”, respectively) share many of the properties of ordinary thermodynamic phase
transitions; accordingly, they can be described in terms of a simple lattice model,
which treats DNA at a mesoscopic level, assigning a single degree of freedom to
describe the state of each base pair. The dynamics of base pair separation can be
formulated in terms of a one-dimensional Hamiltonian which incorporates (i) the
tendency of neighboring base pairs to be in a similar state (stacking interaction)
and (ii) the local potential which describes hydrogen bonding that tends to bind
each base pair. Typically this is represented by the Peyrard-Bishop-Dauxois[1]
Hamiltonian

(1) H =
M
∑

n=0

[

p2
n

2
+ W (yn, yn+1) + V (yn)

]

which describes the transverse dynamics of M base pairs of unit reduced mass
coupled to their nearest neighbors via a nonlinear spring W (yn, yn+1) = [1 +
ρe−α(yn+1+yn)](yn+1 − yn)2/(2R) of range 1/α. The on-site potential is of the
Morse type, i.e. V (y) = (e−y − 1)2.

The equilibrium statistical mechanics of the model is described by the partition
function whose nontrivial, configurational part is given by

(2) Z =

∫

dy1

∫

dy2 · · ·

∫

dyMK(y1, y2)K(y2, y3) · · ·K(yM−1, yM )

where K(x, y) = e−W (x,y)/T−V (x)/T and T is the temperature. It can be shown
that in the thermodynamic limit M → ∞ the free energy per site f = −T lnZ/M
is equal to the smallest eigenvalue ǫ0 of the integral eigenvalue equation

(3)

∫

∞

−∞

K̃(x, y)φν (y) = e−ǫν/T φν(x)

where the symmetrized kernel K̃(x, y) = [K(x, y)K(y, x)]1/2 is not of the Hilbert-
Schmidt type. As a result, the integral equation (3) is singular, and the usual
statements about non-degeneracy of the eigenvalue spectrum cannot be made. It
is exactly this property which makes the type of Hamiltonian (1) relevant to true
thermodynamic singularities in one spatial dimension.

In the absence of exact results on the possible non-analyticities of the spectrum
of (3) the following approaches have been shown to be fruitful:
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Figure 1. Finite-size scaling of the gap between the two lowest eigen-

values of (3).

A. finite-size scaling [3]: The integral in (3) has been approximated by Gauss-
Hermite quadratures. This allows the integral equation to be viewed as a limiting
sequence of symmetric matrix eigenvalue problems. It is then possible to follow
the eigenvalue spectrum, and in particular the gap ∆ǫ between lowest and next-
to-lowest eigenvalues as a function of temperature, for a variety of Gauss-Hermite
grids. As the number N of grid points grows, so does the effective transverse size
of the system L ∼ 2N +1. The analysis suggests that, as L → ∞, the gap vanishes
at a particular temperature Tc. Moreover, the values of the gap at finite L (cf.
Fig. 1) exhibit finite-size scaling behavior of the type

(4) ∆ǫ(L, T ) = L−2fG (L|t|) ,

where t = (T − Tc)/Tc, fG(0) = const, fG(x) ∝ x2 if x >> 1, and as a result,
∆ǫ∞(t) ∝ |t|ν with ν = 2. Further details on the finite-size scaling behavior of the
thermodynamic properties of the model have been reported in [3].

B. Local equilibria and their stability properties [4]: The equilibria

{y
(α)
n } of (1) can be obtained from a two-dimensional map which, in the case

of ρ = 0, is of the form

p
(α)
n+1 = p(α)

n + RV ′(y(α)
n )

y
(α)
n+1 = y(α)

n + p
(α)
n+1 ; n = 0, 1, · · · , M(5)

and has a single hyperbolic fixed point (FP) at (p(0) = y(0) = 0). Fig. 2 shows the
stable equilibria obtained under fixed transverse length boundary conditions, i.e.
y0 = 0, yM+1 = L = 80, and their total energies. These exact nonlinear structures
can be thought of as domain walls (DWs), “interpolating” from bound to unbound
phase.
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Figure 2. The 8 stable equilibria corresponding to M = 28, y0 = 0,

yM+1 = L = 80. Inset: total energies for both stable (filled squares)

and unstable (open circles) equilibria. The continuous curve corre-

sponds to a theoretical estimate.

It is possible to calculate the total energy and entropy which correspond to the
global minimum under conditions y0 = 0, yM+1 = L = 80, and subtract them
from the corresponding energy and entropy, respectively, which correspond to the
hyperbolic FP. The resulting free energy difference is - to lowest order in a low
temperature expansion - of the form

(6) ∆G ∝ [2 − Tσ(R)]L ,

where σ(R) reflects the differences between the frequency spectra of bound phase
(optical phonons around the FP) and unbound phase (acoustical phonons around
the flat top of the Morse potential). Eq. (6) suggests that at a temperature 2/σ
spontaneous unzipping (thermal denaturation) occurs as the free energies of FP
and and DW of minimal energy become equal. The above estimate of the critical
temperature can be improved[4]; lowest-order perturbation theory gives a result
which differs by less than 1% from the one obtained by finite-size scaling.

The picture which emerges from (A) and (B) above is consistent with the gen-
eral argument by Landau which prohibits macroscopic coexistence of two phases
at any T 6= 0 in 1D-systems, provided that the energy E of the interface (DW)
between the two phases is finite, by showing that the system splits into a macro-
scopic number MTe−E/Tof domains. The argument does not apply to the class
of systems discussed here, where energies and entropies of the DW are of order L,
the maximum transverse displacement. It turns out that this is exactly the form
of pathology needed to produce a phase transition in 1D.
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