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Introduction by the Organisers

In different areas of mathematics and computer science significant progress has
been achieved with respect to geometric modeling, the processing of detailed sur-
face models and geometric methods in morphological image processing. In contrast
to classical tools in approximation theory such as spline curves and surfaces these
new approaches rely on methods from the calculus of variations and geometric
evolution problems. As examples we would like to mention here:

- Variational methods in image and surface processing such as active contour
models, Mumford-Shah type functionals,

- image and surface denoising based on geometric evolution problems,
- physical modeling of surfaces based on shell models,
- the restoration of images and surfaces using higher order variational for-

mulations with curvature dependent energy integrants.
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Recently it has become clear that even though the applications areas differ signif-
icantly the methodological overlap is enormous. E. g. currently Willmore flow is
one of the hot topics in geometric analysis and at the same time it turned out to
be an adequate approach for the restoration of destroyed surfaces. Simultaneously
the Willmore energy is a fundamental building block in variational methods of
morphological image processing. Indeed as for surfaces it can be used for restora-
tion and the disocclusion of images. Furthermore, it enters important fairness
criteria in geometry processing and the generation of C1 smooth surface models.

The progress in this new, active and already very successful research field has
its roots in originally completely different disciplines of mathematics and computer
science. Hence, an exchange of different methodologies and a joining of activities is
very promising. This was the intention of the mini workshop. To achieve this goal
researchers from completely different areas of mathematics and mathematically
oriented computer science were invited to share their point of view and their recent
achievements with others. The intention of this mini-workshop was to initiate
stronger exchange, to encourage the exploration of synergies and the building of
bridges between the different disciplines and the different types of approaches for
closely related research fields. In particular we intended to bring together people
from

• geometric analysis related to second and fourth order problems,
• numerical geometric analysis for geometric variational problems and geo-

metric gradient flows,
• geometric approximation theory in particular subdivision and spline sur-

faces,
• engineering applications of geometric variational problems,
• variational problems in computer graphics,
• image processing and in particular morphological methods in this field.

Let us unroll one of these synergy fields:

- Tools in surface modeling are at the same time tools in morphological im-
age processing. Indeed image morphology can be regarded as the set of
all level sets and thus morphological processing of images coincides with
the geometric processing of the level sets. Vice versa, image processing
methods are of increasing importance and success in surface processing
applications. Image edges and image textures find their counterparts in
edge structures on surfaces and the color and structure textures on com-
plicated geometries.

- Neither explicit nor implicit methods have been able to establish as the
approved standard in geometric processing. On the one hand explicit
methods directly operate on triangular grids as a wide spread standard
for the representation of discrete surfaces and enable extremely detailed
models, not beatable by implicit - even sparse - surface models. On the
other hand implicit surface representations by level sets are more flexi-
ble. They allow weaker notions of solutions which in particular enable
topological chances.
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- Practical algorithms can be derived via a discretization of variational for-
mulations of continuous models making use of the general finite element
procedure. Or one directly asks for discrete counterparts of geometric
quantities. The latter approach is usually based on invariance principles
and qualitative properties to be reproduced from the continuous setting.
The notion of discrete curvatures is a good example for this. These dif-
ferent discretization approaches were compared and we were aiming to
stimulate progress making use of synergy.

- The numerical analysis of the geometric evolution problems discusses ade-
quate discretizations and concerns about convergence and stability issues.
Recent results in this direction were presented and underline the practical
usability of these methods. Here close relations between models for para-
metric surfaces, graph surfaces and implicit surface representation have
been exploited.

- Various approaches to treat free discontinuity problems in image and sur-
face processing have been proposed. Level set methods and phase field
models were discussed and compared during the workshop.

- The construction of higher order methods for the approximation of surfaces
and for the solution of partial differential equations on surfaces have been
proposed. In particular subdivision techniques and so called WEB splines
were presented. Subdivision surfaces proved in particular very useful in
computer graphics and turned out to be applicable for the discretization
of fourth order shell models. On the other hand tensor product B-splines
- which are one of the established standards in industrial surface modeling
- can be modified using appropriate weighting functions to be applicable
on general domains and surfaces with complicated boundaries. Again the
usability of such approximation schemes for different applications such as
shell models for surfaces and the discretization of deformations in image
matching were discussed.

The organizers contributed introductory talks into the different fields to stim-
ulate discussion and interaction.

In parallel to this mini workshop another mini workshop on fluid interfaces
took place. Together with the organizers of the latter workshop we arranged for
several joined talks on the common interest field of geometric evolution problems
by participants of both workshops. This interplay turned out to be very fruitful
and inspiring.

One Thursday evening we had a longer evening talk on a new approach for the
discretization of fluid motion given by Peter Schröder.
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Abstracts

Shell Computations

Peter Schröder

(joint work with Fehmi Cirak, Mathieu Desbrun, Eitan Grinspun, Anil Hirani,
Michael Ortiz)

The physical behavior of thin flexible structures such as car hoods, leaves, or felt
hats can be modeled with the so-called thin-shell equations. Assuming that the
thickness is far smaller than the local curvature radius the Kirchhoff-Love theory
gives a stored energy density function for the deformation from the rest to the
deformed configuration which depends only on the surface and its first and second
fundamental form (see for example [1]). Consequently a fourth order non-linear
PDE must be solved to evolve the surface shape under some set of given loads.
In a finite element treatment this requires shape functions which have square
integrable curvatures. More commonly this is referred to as the need to have C1

shape functions. In a classical finite element framework this could be resolved by
using hermite bases over each triangle. In this case the corners of the triangle
carry not only position constraints but also tangent and curvature information to
ensure that the individual elements meet with C1 continuity. Such elements are
possible, but they are of high polynomial order which tends to lead to oscillations
in practice. They are also exceedingly cumbersome to implement and lead to
a formulation with degrees of freedom beyond the usual displacements. These
additional degrees of freedom (capturing the tangent and curvature constraints at
vertices) do not possess a natural physical interpretation leading to difficulties in
setting them correctly to achieve a well defined solution.

All these difficulties can be overcome if the surface is modeled with subdivision
basis functions [10, 8, 9]. Subdivision generalizes knot insertion ideas from classical
splines to the arbitrary topology surface setting. The degrees of freedom are
the control points of a subdivision surface (equivalently the coefficients of the
underlying basis functions). In the case of splines it is well known that a given
spline can be written as a linear combination of translates and dilates of itself. This
refinement relation is the key to subdivision. A given surface can be written as a
linear combination of basis functions each weighted by an appropriate coefficient.
Applying the refinement relation to each basis function results in a new set of
coefficients with respect to basis functions which are dilated (but of the same type).
Considering only the coefficients and the resulting operation on these one sees that
the refinement relation is realized through a topological refinement operation of the
control mesh with the new control points being given as finite linear combinations
(according to the refinement relation) of old control point. In the limit of this
refinement process the basis functions themselves are recovered. In the case of thin-
shell simulation one may express all the necessary stiffness integrals in terms of
evaluations of the subdivision surface (as well as its partial derivatives up to order
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two) at quadrature points. The smoothness of subdivision surfaces is sufficient to
justify their use in a finite element treatment of the thin-shell equations [7].

Because subdivision surfaces are very attractive for geometric modeling using
the underlying basis functions in a thin-shell treatment leads to an integrated
modeling and simulation environment without the need to mesh a given geometry
only to make it accessible for finite element analysis [2].

When using the subdivision element method a new issue arises, however. Tra-
ditional approaches towards adaptive computations, such as element refinement
are not applicable anymore. This is so because the basis functions whose support
overlaps a given domain triangle are non-local: they include the three corners as
well as all vertices reachable by traversing one mesh edge (the so-called 1-ring
of a triangle). While this results in no conceptual difficulties (local stiffness ma-
trices are not three by three anymore but somewhat larger), it makes it so that
a given triangle cannot be split in isolation. Instead one must take a different
approach to adaptive computations: instead of splitting elements one must refine
basis functions [5, 6]. A function which is refineable by definition allows for this.
The underling mesh plays only a supporting role in the implementation of such
a method and serves only to resolve the necessary quadratures. Procedures to
manage the basis functions are simple expression which in essence manage the
associated index sets. Such operations are efficiently supported by modern data
structures. Additionally, the necessary functions for (un-)refinement as well as
managing the tesselations of the overlaps of the corresponding supports are quite
short and easily verifiable, leading to a straightforward implementation.

In summary the subdivision element method allows for a unified treatment
of geometric modeling and thin-shell (or other) physical simulation all the while
supporting adaptive refinement in a natural and efficient way.

These ideas were first explored in 2000 and have since been applied to many
different settings with great success (see the talk of Fehmi Cirak in these same
proceedings). Since then we have pursued an entirely different approach to the
simulation of thin-shells by reconsidering the very foundations of the formulation of
stored energy functions for surfaces in an entirely discrete setting. This approach
is based on discrete differential geometry [3].

Here one asks what measures can be evaluated on a simplicial mesh. An old
theorem of Hadwiger’s asserts that the space of rigid motion invariant additive
measures of convex bodies which are continuous (in the Haussdorff sense as a
sequence of convex sets converges to a limit set) is spanned by the Minkowski
functionals (or equivalently Cauchy Quermaß integrals). For a triangle mesh this
implies that a stored energy function can only depend on length, area, and di-
hedral angles (between neighboring triangles). An approach to the simulation of
discrete shells based on these observations was proposed by Grinspun et al. [4].
The advantage of these methods is their simplicity since they do not rely on smooth
basis functions anymore but instead use a given triangulation of a surface directly.
While this approach works very well in practice as yet little is known about ques-
tions such as accuracy and convergence. Analysing these questions is subject of
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ongoing research and first results indicate that the method is consistent and con-
verges in the limit of finer and finer triangulations (subject to standard aspect ratio
requirements) to the desired continuous quantities (integrals of first and second
fundamental forms).
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Surface Representations of Higher Order – A Survey

Ulrich Reif

Surfaces can be represented either in parametric or in implicit form. While both
approaches have their pros and cons, parametrized models are the method of
choice in many applications, like FE analysis of shells or industrial modeling of
surfaces. Here, we focus on parametrized models of higher order, meaning that
we exclude piecewise linear geometry, which is widespread in Computer Graphics
and standard FE methods.

Within the variety of smooth parametrizations of surfaces, a basic distinction
is between adapted and trimmed representations. Adapted representations use a
tessellation of the given domain which typically makes the boundary of the surface
at least locally a parameter line. Among these methods, we find the following:

• Macro elements. Here, an appropriately refined standard triangulation
of the domain is used to define a space of piecewise polynomial splines.
In 2d, certain Ck-constructions are available [1], while in 3d, no general
principles beyond C1 have been found yet. Macro elements are used in
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FE-simulations, where higher regularity or superior rates of convergence
are requested.

• Singular parametrization. Here, the partitioning of the domain is al-
most regular in the sense that there are only few extraordinary vertices. At
these vertices, where parametric smoothness conditions seem to be too re-
strictive, singularities in the parametrization are employed to circumvent
the notorious compatibility problems. Additional non-linear constraints
have to be imposed to guarantee the geometrical smoothness of the sur-
faces [2]. So far, the concept of singular parametrization has not found
universal acceptance in applications.

• Geometric continuity. Starting from a similar topology as in the pre-
ceding case, smooth surfaces are constructed by relaxing the parametric
smoothness conditions. Geometric smoothness conditions refer to the idea
that at common edges of neighboring patches not transversal derivatives,
but geometric quantities (normal vector, principal curvatures and direc-
tions, etc.) are required to coincide [3]. In applications, also the concept
of geometric continuity plays a minor role.

• Subdivision. Subdivision surfaces solve the problems at extraordinary
vertices by iterative refinement. The algorithms are simple, and the gen-
erated surfaces are visually smooth, though not C2 everywhere [4]. While
subdivision surfaces have become a standard in Computer Graphics, they
are rarely used in industrial applications, so far. A possible explanation
for that situation are small-scale shape artifacts, which can be observed
for all subdivision algorithms currently in use.

Trimmed representations use a periodic grid to define the surface. Boundaries are
incorporated by simply restricting the surface to the desired domain. Trimmed
tensor product NURBS have become a standard in the industrial modeling of sur-
faces. The main problems related with this approach concern fitting of boundary
data, and stability of spline bases. Recently, the concept of web-splines was intro-
duced to account for these problems [5]. By using a weight function, homogeneous
boundary conditions can be incorporated, while an extension procedure removes
instability. web-splines are geared to FE-applications, but can also be used for
geometric modeling.
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Image Processing
?
= Surface Processing

Martin Rumpf

(joint work with U. Diewald, G. Dziuk, M. Droske, N. Litke, O. Nemitz, P.
Schröder)

In surface and in image processing methods based on partial differential equations
and variational approaches are widespread. The talk underlines the huge overlap of
these two disciplines. It is shown that morphological methods in image processing
naturally involve concepts from differential geometry and can be understood as
a processing of the entity of level sets of the image intensity map. On the other
hand surfaces are often considered in an implicit description to allow for a flexible
manipulation. Furthermore, it is demonstrated that image processing methodology
can directly be applied to the processing of surfaces via their parameter maps and
surface describing functions on these parameterizations. In particular we derive
variational problems and geometric evolutions problems for image and surface
fairing, restoration and matching.

In addition, we present a general approach for the formulation of geometric
evolution problems in level set representation. This allows the easy translation of
many surface processing methods into the image processing environment.

1. Surface and image smoothing

Frequently due to the data acquisition images or surfaces are characterized by
significant noise. We aim for a smoothing with a simultaneous enhancement of im-
portant features such as edges or corners. Based on the definition of an anisotropic
surface energy we consider the corresponding anisotropic mean curvature motion
as a feature sensitive smoothing process. A scale of successively smoothed repre-
sentations is generated, where time is considered as the scale parameter.

2. Surface and image restoration

In surface restoration usually a damaged region of the surface has to be replaced
by a surface patch which restores the region in a suitable way. In particular one
aims for C1 continuity at the patch boundary. The Willmore energy is consid-
ered to measure fairness and appropriate boundary conditions enable to ensure
continuity of the normal field. The corresponding L2 gradient flow as the actual
restoration process leads to a fourthed order partial differential equations.

3. Morphological image matching

A variational method to non rigid registration of multi-modal image data is
presented. A suitable deformation will be determined via the minimization of
a morphological, i.e., contrast invariant, matching functional along with an ap-
propriate regularization energy. As already discussed above the morphology of
images can be described by the entity of level sets of the image and hence by
its Gauss map. A class of morphological matching functionals is presented which
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measures the defect of the template Gauss map in the deformed state with respect
to the deformed Gauss map of the reference image. The problem is regularized by
considering a nonlinear elastic regularization energy.

4. Matching surfaces via image matching on parameter domains

We present a new variational method for matching surfaces. Instead of matching
two surfaces via a non-rigid deformation directly in IR3, we apply well established
matching methods from image processing in the parameter domains of the sur-
faces. A matching energy is introduced which may depend on curvature, feature
demarcations or surface textures, and a regularization energy controls length and
area changes in the induced deformation between the two surfaces. The metric on
both surfaces is properly incorporated into the formulation of the energy. This ap-
proach reduces all computations to the 2D setting while accounting for the original
geometries.

5. Level set formulation of geometric evolution problems

A general approach for the integration of geometric gradient flows over level sets
ensembles is presented. It enables to derive a variational formulation for the level
set formulation of various second and fourth order evolution problems. Starting
from single embedded surfaces and the corresponding gradient flow, energy and
metric are generalized to sets of level set surfaces using the co-area formula and
the identification of normal velocities and variations of the level set function in
time via the level set equation.

Suppose a general energy e[M] :=
∫

M
f da on surfaces M and a metric gM(·, ·)

on normal variations of the surfaces are given. Now, we consider the gradient flow
for a surface M with respect to the energy e[M]:

∂tx = −gradgM
e[M]

That is, we assume the speed of propagation of the surface M in normal direction
to be the representation of normal variations of the energy e[·]. Let us assume that
we simultaneously want to evolve all level sets Mc of a given level set function φ.
We denote by l[φ] := {Mc[φ] | c ∈ IR} the ensemble of all level sets of a function
φ. At first, we take into account the co-area formula and define a global energy

E[φ] :=

∫

IR

e[Mc]dc =

∫

Ω

‖∇φ‖f dx ,

where, we set e[Mc] = 0 if Mc = ∅. Now, we identify a function φ with the
corresponding level set ensemble l[φ] and regard it as an element of the manifold
L := {l[φ] |φ : Ω → IR} of all level set ensembles on a domain Ω. This manifold
carries a trivial linear structure, because we so far do not impose any constraints.
A variation of the level set function φ induces a variation of the level sets Mc in
the level set ensemble l[φ]. Thus, a tangent vector s := ∂tφ on L can be identified
with a motion velocity v of the corresponding level sets Mc. Actually, it is the
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classical level set equation, which quantifies this identification:

s+ ‖∇φ‖ v = 0 .

Now, we are able to define the metric gL on L via integration of the metric gMc

defined on normal variations of a single level set surface over all level sets. We
suppose a metric

gM(v1, v2) :=

∫

M

µM(v1, v2) da

to be given, where µM(·, ·) is the density of this metric. By definition the metric
gL operates on tangent vectors s1, s2, which are variations of a level set function
φ. Based on our above observation they correspond to normal velocities of the
level sets. Thus, we obtain

gL(s1, s2) :=

∫

IR

gMc
(v1, v2) dc =

∫

Ω

µMφ

(

s1
‖∇φ‖

,
s2

‖∇φ‖

)

‖∇φ‖ dx

for two tangent vectors s1, s2 on L with corresponding normal velocities v1 =
− s1

‖∇φ‖ , v2 = − s2

‖∇φ‖ . Here, for the actual integration over all level sets Mc we have

again applied the co-area formula. Now, we are able to rewrite the simultaneous
gradient flow of all level sets in terms of the level set function: ∂tφ = −grad gL

E[φ].
Finally, we obtain as a level formulation of our geometric gradient flow

∫

Ω

µMφ

(

∂tφ

‖∇φ‖
,

ϑ

‖∇φ‖

)

‖∇φ‖dx = −
d

dδ
E[φ+ δϑ]

∣

∣

∣

∣

δ=0

for all functions ϑ ∈ C∞
0 (Ω).
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Discrete geometric evolution problems

Gerhard Dziuk

Geometric Flows. Transient geometric partial differential equations are used in a
wide range of applications. They appear in discrete surface modeling problems
such as smoothing of noisy surfaces, surface restauration and image segmentation
[1, 2]. Geometric evolution equations appear in physical models such as phase
transitions and motion of grain boundaries. Last but not least the motion of
surfaces under geometric flows is interesting by itself.

A general form of the geometric evolution of a twodimensional surface Γ is given
by the law

V = f(·, ν,H,K,∆ΓH),

where V is the normal velocity of Γ with normal ν, mean curvatureH = κ1+κ2 and
Gauß curvature K = κ1κ2. ∆Γ denotes the Laplace-Beltrami operator. The main
geometric flow problems are Mean Curvature Flow, Willmore Flow and Surface
Diffusion. The methods of analysis, discretization and numerical analysis depend
on the mathematical model for the surface: parametric model, implicit model or
graph. Analysis and numerical analysis of level set methods are closely related to
those for graphs.

The second order model problem for a geometric flow problem is Mean Curva-
ture Flow. It is an L2(Γ)-gradient flow for isotropic surface area: V = −H . It
leads to the intrinsic heat equation

xt − ∆Γx = 0

for a parametrisation x = x(p, t) with p ∈ M where M is a suitable parameter
surface. H−1(Γ)-gradient flow for area leads to isotropic Surface Diffusion V =
∆ΓH . Willmore Flow is defined as the L2(Γ)-gradient flow for the classical bending
energy, the Willmore functional W = 1

2

∫

Γ
H2. Here, V = ∆ΓH − 2HK + 1

2H
3.

For parametrized surfaces the intrinsic parabolic plate equation is

xt + ∆2
Γx+ (2|∇Γν|

2 −
1

2
|∆Γx|

2)∆Γx = 0,

where for twodimensional surfaces |∇Γν|2 = H2 − 2K. A typical sixth order
parabolic geometric PDE is obtained as the H−1(Γ)-gradient flow of the energy
E =

∫

Γ
γ(ν) + δ

2

∫

Γ
H2 with a small parameter δ > 0 and with an anisotropy

function γ. For applications in image processing as well as in physical models
anisotropic energies play an important role.

Discretization of Geometric Flows. For a survey we refer to [4] and [6]. All geomet-
ric flows lead to highly nonlinear degenerate parabolic PDEs for which discretiza-
tion is a quite subtle task. The discretization heavily depends on the mathematical
model for the surface/interface which is chosen. For mean curvature flow there is
a satisfactory analysis and numerical analysis for several surface representations.
For the fourth order flows the numerical analysis just has begun, [5].
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The discretization of parametric models is based on a discretization of the
Laplace-Beltrami operator ∆Γ introduced in [7, 8]. This together with the differen-
tial geometric fact that Hν = −∆Γid on the surface Γ leads to a weak formulation
of the mean curvature vector:

〈Hν,ϕ〉 =

∫

Γ

∇Γid · ∇Γϕ

for test functions ϕ. Also higher order geometric flows can be treated with this
ansatz - see [9] for parametric Willmore Flow. The main feature of this method
is that it is not necessary to have pointwise mean curvature vectors but that it
is sufficient to have a discrete formulation of curvature as a functional on H1(Γ).
Time discretization is done semi-implicitly. These schemes lead to linear systems
in each time step which can be solved by a conjugate gradient method efficiently.

For implicit surface models (level set models) finite element methods again use
a weak form of curvature and a semi-implicit time discretization. Convergence
results for graphs are contained in [3]. For a complete survey over the field we
refer to [4, 6].
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Numerical analysis for the Willmore flow of graphs

Klaus Deckelnick

(joint work with Gerhard Dziuk)

The Willmore flow problem consists in finding a family of smooth, oriented surfaces
Γ(t) ⊂ R

3 0 ≤ t < T , which satisfy

(1) V = ∆ΓH +
1

2
H3 − 2HK on Γ(t).

Here V is the normal velocity and H = κ1 + κ2, K = κ1κ2 denote mean and
Gauss curvature respectively. The law (1) can be interpreted as the L2–gradient
flow of the Willmore functional W (Γ) = 1

2

∫

Γ
H2dA, which, apart from being of

geometric interest, occurs in models for the bending energy of thin elastic plates
or membranes. In the case of closed compact surfaces, results on the existence and
uniqueness of solutions to (1) have been obtained in in [11], [6], [7], while [8], [10]
present numerical approaches. Surfaces satisfying suitable boundary conditions
occur e.g. in problems from surface restoration, [1].
Let us assume that the surfaces Γ(t) are graphs over some base domain Ω ⊂ R

2,

i.e. Γ(t) = {(x, u(x, t)) |x ∈ Ω}. Abbreviating Q =
√

1 + |∇u|2, we can translate
the evolution law (1) into a PDE for the height function u, namely

(2) ut = −Q∇ · (E(∇u)∇(QH)) +
1

2
Q∇ ·

(

H2

Q
∇u

)

in Ω × (0, T ),

where

E(p)ij :=
1

√

1 + |p|2

(

δij −
pipj

1 + |p|2

)

, i, j = 1, 2, p ∈ R
2.

We prescribe the boundary and initial conditions

u = g, H = 0 on ∂Ω × (0, T ),(3)

u(·, 0) = u0 in Ω.(4)

Eqn. (2) is a highly nonlinear parabolic equation of fourth order for u. However, it
has (after division by Q) a nice divergence structure in which the Gauss curvature
K no longer appears. Introducing w = −QH (cf. [5]) as a new variable one derives
the following variational formulation of (2):

∫

Ω

utϕ

Q
+

∫

Ω

E(∇u)∇w · ∇ϕ+
1

2

∫

Ω

w2

Q3
∇u · ∇ϕ = 0 ∀ϕ ∈ H1

0 (Ω)

∫

Ω

wζ

Q
−

∫

Ω

∇u · ∇ζ

Q
= 0 ∀ζ ∈ H1

0 (Ω),

where the second relation follows from the fact that w = −QH = −Q∇·
(

∇u
Q

)

. This

variational formulation can now easily be used in order to discretize the problem
in space. Suppose that Th is a quasiuniform family of triangulations (allowing
curved elements on the boundary) of Ω, Xh the space of linear finite elements and
Xh0 := Xh ∩ H1

0 (Ω). Then the semi–discrete problem consists in finding a pair
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(uh(t), wh(t)), 0 ≤ t ≤ T , such that uh(t) − Ihg ∈ Xh0, wh(t) ∈ Xh0, uh(0) = u0
h

and
∫

Ω

uhtϕh

Qh

+

∫

Ω

E(∇uh)∇wh · ∇ϕh +
1

2

∫

Ω

w2
h

Q3
h

∇uh · ∇ϕh = 0 ∀ϕh ∈ Xh0

∫

Ω

whζh
Qh

−

∫

Ω

∇uh · ∇ζh
Qh

= 0 ∀ζh ∈ Xh0.

Here Ih is the usual Lagrange interpolation operator and u0
h ∈ Xh a suitable ap-

proximation of u0. Our main result are the following quasioptimal error estimates:

Theorem: Suppose that (2)–(4) has a smooth solution on the interval [0, T ]. Then

sup
0≤t≤T

‖(u− uh, w − wh)(t)‖ +
(

∫ T

0

‖ut − uht‖
2dt

)
1
2

≤ ch2| log h|2

sup
0≤t≤T

‖∇(u− uh)(t)‖ +
(

∫ T

0

‖∇(w − wh)‖2dt
)

1
2

≤ ch.

The proof is presented in [4] and is built on the basic energy estimate for Willmore
flow. Further ingredients are suitably chosen interpolation operators and a careful
use of geometric quantities (see [2], [3] for corresponding techniques and results in
the case of mean curvature flow).
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A Sharp Diffuse Interface Tracking Method for Approximating

Evolving Interfaces

Charlie Elliott

This survey talk concerned the use of phase field models in approximating interface
evolution involving curvature. The classical model is the Allen-Cahn equation,[1],

ǫφt − ǫ∆φ+
1

ǫ
W ′(φ) = CW g

where φ is a phase field function whose zero level set approximates a surface which
evolves according to forced motion by mean curvature, V = −H + g where V is
the normal velocity, H is the mean curvature and g is a prescribed forcing. The
homogeneous free energy W (·) is symmetric with two equal minima at ±1. The
canonical smooth double well energy is W (r) := (r2 − 1)2/4. The Allen-Cahn
equation is gradient flow for the Cahn-Hilliard functional

∫

Ω

(ǫ|∇φ|2/2 +W ′(φ)/ǫ− CW gφ)

The phase field function has the profile φ(x, t) = ψ(d(x, t)/ǫ), up to an error
of O(ǫ), across the interface where ψ(r) = tanh(r). Using the double obstacle
potential, [3, 4, 6, 21],

W (φ) =

{

1
2 (1 − φ2) for |φ| ≤ 1
∞ for |φ| > 1

instead leads to the profile ψ(r) = sin(r) for |r| ≤ π/2 and ψ(r) = sign(r)
for |r| ≥ π/2. The double obstacle potential has the advantage of requiring the
calculation of the phase field function only in the sharply defined diffuse interface.
When combined with the adaptive refinement and coarsening of a finite element
mesh yielding a fine mesh in the narrow O(ǫ) sharply defined diffuse interface
this forms the basis of the sharp diffuse interface tracking method, [10, 11, 19, 14,
2]. The numerical analysis of the Allen-Cahn equation and the computation of
curvature interface motion in general is considered in [7, 20, 9, 8].

The approach can be generalized to kinetic and gradient anisotropy together
with advection of the interface. For example the anisotropic Allen-Cahn equation

ǫβ(∇φ)φt − ǫ∇ ·DA(∇φ) − ǫq.∇φ+W ′(φ)/ǫ = CW g

with

A(p) =
1

2
(γ(p))2, p ∈ R

n+1

approximates

β(ν)

γ(ν)
V = −Hγ + q.ν + g
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where ν is the outward pointing unit normal to the surface, Hγ is the anisotropic
curvature associated with the energy density γ(ν), β(ν) is an anisotropic kinetic
mobility and q is an advection velocity, [12, 13, 17].

The fourth order surface diffusion flow V = ∆ΓHγ (with ∆Γ denoting the
Laplace-Beltrami operator for the surface Γ) may be approximated by the fourth
order Cahn-Hilliard equation with degenerate mobility, [3, 5, 2]. The phase field
approach may also be used for Willmore flow, [18].

Coupling the Navier-Stokes and Cahn-Hilliard equations yields a phase field
model for free surface flow for viscous fluids incorporating surface tension at the
interface between the fluids, [16]
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B-Splines as Finite Elements

Bernhard Mößner

(joint work with Ulrich Reif)

B-splines have optimal approximation order with a minimal number of degrees
of freedom. Therefore using B-splines seems a natural choice in Finite Element
applications. On the other hand, there are two problems: Dirichlet boundary
conditions and stability.

Weight extended B-splines (web-splines), developed by Höllig, Reif and Wipper
[2] solve these problems. To satisfy homogeneous boundary conditions, all basis
functions are multiplied with a so called weight function w. This idea was already
used in [4] to use polynomials as basis functions on an arbitrary bounded domain.

To obtain a stable basis, is to identify those B-splines, which are responsible
for the instability. A B-spline bi is called an inner B-spline, if there exists a cell
Q ⊆ supp bi, which lies completely inside the domain Ω ⊆ R

d. All other B-
splines, which intersect Ω, are called outer B-splines. The outer B-splines can
cause instability. The idea is to link these outer B-splines to inner B-splines:

Bi := bi +
∑

j∈Ii

eijbj

This new basis is stable. It remains to determine the coefficients eij , such that
this new basis has the same approximation order as splines. Therefore the basis
functions must have the following properties:

• local support
• representation of polynomials

Both properties can by easily achieved. Let n be the order of the B-splines. To
get local support, for an outer B-spline bj a nearest inner cell Q is determined. On
Q there are nd inner B-splines bi, i = i1, . . . , ind , which are not zero. The outer
B-spline bj is linked to all these inner B-splines, i.e. eij = 0 for all i 6= i1, . . . , ind .
The inner B-splines bi restricted to Q form a basis of the space of polynomials
on Q. Consider a fixed inner B-Splines bi. The polynom p(i) defined by bi on Q
can be extended to Ω. This polynomial can be represented by the B-splines, i.e.

p(i) =
∑

k p
(i)
k bk. Now eij is exactly the coefficient of bj in this representation, i.e.

eij = p
(i)
j .
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The potential of the method is illustrated by solving the Helmholtz eigenvalue
problem. This is joint work with A. Richter (TU Darmstadt) [5]. The eigenvalues
are to be computed for a statistical analysis of a quantum mechanical experiment.

Besides many favorable properties, web-spline spaces have the drawback that,
because of the extension, they are not nested. Surprisingly there is an easier way
to get a stable basis: The B-splines are normalized. In the second part of the talk,
this new idea, which substantially extends standard results on the stability of B-
splines, is investigated. By the normalization nearly all B-splines from a stable
basis. The exceptions are B-splines, which intersect the boundary only a small
part, but no boundary knot of the support of this B-spline lies inside Ω. To deal
with these exceptional B-splines, three possible solutions are presented and briefly
discussed.

First numerical results on the Stokes equation conclude the talk.
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A Level Set Based Adaptive Finite Element Algorithm for Image

Segmentation

Michael Fried

We present an adaptive finite element algorithm for segmentation with denoising
of multichannel images. It is based on a level set formulation of the Mumford–
Shah approach proposed by Chan and Vese in [1], [2], [3]. The aim is to find
homogeneous regions Ωi and their boundaries Γ inside a given, possibly noisy
image g : Ω → [0, 1]Nc and a piecewise smooth approximation u to g such, that
u is smooth inside the segments Ωi but may (and usually will) jump across the
boundary Γ. The Mumford–Shah approach to the segmentation problem is to
minimize the following functional (compare [5])

FMS(u,Γ) =

∫

Ω

1

Nc

Nc
∑

k=1

(gk − uk)2 +

∫

Ω\Γ

1

Nc

Nc
∑

k=1

λk|∇uk|
2 + µ|Γ|.

Here, the first term assures that the channels uk of u approximate the corre-
sponding channels gk of the given image g, the second term, the smoothness term,
revers to the denoising properties of the approximation u, while the last term µ|Γ|



550 Oberwolfach Report 10/2005

requires Γ to be as short as possible. In what follows, we restrict the maximal
number of different segments Ωi to be N = 2M , which means that there may be
still some edges of g inside the segments. Hence, due to the heat equation like dif-
fusion of the classical Mumford–Shah method, this ’interior’ edges will be blurred
and eventually lost. To avoid this, we slightly change the functional FMS to

FTV (u,Γ) =

∫

Ω

1

Nc

Nc
∑

k=1

(gk − uk)2 +

∫

Ω\Γ

1

Nc

Nc
∑

k=1

λk|∇uk| + µ|Γ|,

which leads to a TV like denoising inside the segments, hence is able to keep more
details and edges while it is still denoising. The presented algorithm is able to
switch between both methods such allowing a direct comparison of them and an
easy adaption of the denoising properties to the actual given situation.

Following the approach of Chan and Vese, we represent the segments Ωi by M
level set functions Φ = (φM−1, . . . , φ0):

Ωi :=
{

x ∈ Ω | Πi(Φ(x)) = 1
}

,

using the indicator functions

Πi(Φ(x)) =
∏

j∈I(i)

H(φj(x))
∏

j∈I(i)

(1 −H(φj(x))),

where the products are taken over the index set I(i) consisting of all the indices
j ∈ {0, . . . ,M − 1} where the jth digit of i in binary representations equals 1,
respectively over its complement I(i) and H(z) denotes the Heaviside function.

Replacing the length term |Γ| by |Γ| =
∑M−1

j=0

∫

Ω

|∇H(φj)|, the functionals we are

dealing with are now

F (Φ) =

N−1
∑

i=0

∫

Ω

1

Nc

Nc
∑

k=1

[

(gk − ui
k)2 + λk|∇u

i
k|

p
]

Πi(Φ) + µ

M−1
∑

j=0

∫

Ω

|∇H(φj)|.

We assume here for fixed Φ (i. e. for fixed segments Ωi) u to be given as the solution
of the Poisson equation on the segments Ωi (in case of p = 2), respectively the
corresponding pde for p = 1. In order to proceed, we regularize the functional,
replacing H(z) by Hρ(z) = 1

2 + 1
π

arctan( z
ρ
) for ρ > 0, wherever it appears in

F (Φ). The steepest descent for the regularized functional Fρ(Φ) leads to a system
of coupled evolution equations for the level set functions Φl, l = 0, . . . ,M − 1:
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∂tφl

δρ(φl)
− µ∇ ·

∇φl

|∇φl|
=

N−1
∑

i=0

fl(u
i,∇ui)Πi

l,ρ(Φ) in Ω × (0, T ],

δρ(φl)

|∇φl|

∂φl

∂ν
= 0 on ∂Ω × (0, T ],

φl(·, 0) = φl 0(·) in Ω

where fl(u
i,∇ui) = (−1)(1−al(i))

Nc

Nc
∑

k=1

[

(gk − ui
k)2 + λk|∇ui

k|
p
]

with sign, depending

on l and i, and Πi
l,ρ(Φ) =

∏

j∈I(i)\{l}

Hρ(φj)
∏

j∈I(i)\{l}

(1 −Hρ(φj)).

For the special situation of the Minimal Partition Problem of gray-scale images ,
which is included in the above formulation, and under some additional assump-
tions, a solution Φ of the evolution problem is known. For t → ∞, it behaves

like c t
1
3 with sign depending on the initially given level set function Φ as well as

on the given image g and immediately develops discontinuities wherever g jumps.
Numerical experiments show this behavior also in the general case.

To develop an algorithm for the evolution problem, we regularize once more,
this time replacing ‖∇φl‖ by Qε(∇φl) :=

√

ε2 + |∇φl|2, ε ∈ (0, 1). Discretization
is done by piecewise linear finite elements on a conforming simplicial triangulation
in space and a semi– implicit scheme in time: ∀ϕh ∈ Xh

1

τ

∫

Ω

φm
h,l − φm−1

h,l

δρ(φ
m−1
h,l )

ϕh + µ

∫

Ω

∇φm
h,l

Qε(∇φ
m−1
h,l )

· ∇ϕh

=

∫

Ω

N−1
∑

i=0

fl(u
i,∇ui)Πi

l,ρ(Φ
m−1
h )ϕh

Given the level set functions Φ and thus the segments Ωi, we compute ui also
using a finite element discretization for Poisson’s equation on Ωi (respectively the
corresponding pde in case of p = 1) and extending ui to Ω \ Ωi via solving an
additional Laplace problem. This extension is needed, as the product Πi

l,ρ(Φ
m−1
h )

does not vanish on all of Ω.
Several numerical results including a test for convergence to the mentioned

known solution, minimal partition of 3D images and a comparison of the denoising
qualities of both approaches (p = 1, p = 2) were presented. Figure 1 shows the
segmentation and the resulting approximation u of a RGB image g obtained for
p = 2 using the Mumford–Shah like method.



552 Oberwolfach Report 10/2005

Figure 1. segmentation of a RGB image, original with bound-
aries (left), piecewise smooth approximation (right)
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The interdependency of segmentation and image matching: a coupled

free discontinuity approach

Marc Droske

(joint work with Martin Rumpf, Wolfgang Ring)

It is evident that the fundamental tasks of segmentation, image matching (regis-
tration) and image restoration depend on each other. The richness of available
information about the local image structure influences the quality and robustness
of feature extraction. Many simple feature extraction techniques are however an
unstable and ambiguous processes. In the case of multichannel data, this ambigu-
ity is somewhat reduced. Let us suppose, that we have an exact registration of an
MR and a CT image of the same patient available. In that case, ambiguous edges
in the MR image, e. g., along the boundary of a bone structure might be clearly
detectable in the other image. Hence, in the same fashion as feature detection in
color images, the detection of features in the MR-CT pair is much more robust.

Another way of feature detection is segmentation. It is most often also based
on some kind of feature detector, which allows to devise external forces which
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attract the contour towards dominant edges. In contrast to pure feature extrac-
tion,additional forces depending on the curve itself (internal forces) play an im-
portant rôle, for instance controlling the length or the curvature of the contour.

Segmentation can be performed by minimizing the Mumford-Shah functional

EMS(u,Γ) =

∫

Ω

(u − u0)
2dx+

µ

2

∫

Ω\Γ

‖∇u‖2 dµ+ νH d−1(Γ).

by an optimization over a space of contour sets and an appropriate set of images.
Conversely, imagine two images that are not yet registered, but that a precise

segmentation of a particular object is available. The alignment of such segments
is not hard to achieve. What remains is to perform a registration which already
receives valuable hints about the position of certain features.

In order to rule out the interdependency we consider a combined approach,
which exploits complementary feature information and is hence significantly more
robust than solving the feature detection and the alignment of feature sets sepa-
rately. We aim at the minimization of

ẼMS(Γ,φ, uR, uT ) =
1

2

∫

Ω

(uR − uR,0)
2 dµ+

µ

2

∫

Ω\Γ

‖∇uR‖
2 dµ+

ν

2
H

d−1(Γ)

+
1

2

∫

Ω

(uT − uT,0)
2 dµ+

µ

2

∫

Ω\Γφ

‖∇uT‖
2 dµ+

ν

2
H

d−1(Γφ).

We have derived a level set algorithm for the solution of this coupled free dis-
continuity problem and first restrict ourselves to edge sets which are the union
of finitely many Jordan-curves. In this case, the feature set can be viewed as
the boundary of detected segments, which are mapped to similar segment bound-
aries in the second image. For a large class of images, this is a very suitable and
convenient approach, since images can often be decomposed into a finite set of
independent objects.

In a shape optimization framework, we would start with an initial feature set
and evolve it according to a regularized energy minimization method. The curve
may be elegantly described and propagated by the level set approach of Osher and
Sethian. Hintermüller & Ring have derived a level set based Newton-type
regularized optimization algorithm for minimizing the Mumford-Shah [4] func-
tional. That work is the algorithmical basis for our joint free discontinuity problem
for registration. The details of the combined matching algorithm can be found in
[3].

As an alternative to the level set algorithm we introduce a corresponding phase-
field approach. Let us consider the approximation, that has been proposed by
Ambrosio&Tortorelli in [1]. They have shown the Γ-convergence of an elliptic
approximation Eǫ to the Mumford-Shah functional.

We suggest an coupled phase-field formulation by again introducing an auxiliary
variable v, describing the singularity set ST of the image uT , but at the same time
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uR reference uT template uT ◦ φ result

Figure 1. Image registration by the phase field Mumford-Shah
approach of CT and MR slices of a human vertebra. Bottom

row: The left image shows the initial misfit by overlaying uR,0

and uT,0 (green), while the image in the right shows the alignment
of uT,0 ◦ φ (yellow) in comparison with uR,0.

v ◦φ should energetically describe the edge set SR in the image uR. A correspond-
ing energy formulation is then given by the minimization of (see Figure 1)

EATreg,ǫ[uR, uT , v,φ] :=
1

2

∫

Ω

{

(uR − uR,0)
2 + (uT − uT,0)

2
}

dµ

+
µ

2

∫

Ω

{

(v2 ◦ φ + kǫ)‖∇uR‖
2 + (v2 + kǫ)‖∇uT ‖

2
}

dµ

+
ν

2

∫

Ω

{

ǫ‖∇v‖2 +
1

4ǫ
(v − 1)2

}

dµ.
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Interactive High-Quality Shape Modeling

Leif Kobbelt

(joint work with Mario Botsch)

In this talk, I’m presenting recent results on how interactive shape modeling
functionality can be achieved for complex geometric objects represented by high-
resolution polygonal (triangle) meshes. We target at application scenarios where a
detailed 3D model is given by some per-process (e.g. 3D scanning or CAD system
export) and some user- controlled global freeform deformations should be applied.
This scenario is quite natural in numerical simulation and conceptual design ap-
plications where variants of a base-geometry have to be generated in an efficient
manner without building physical prototypes or using complicated CAD systems.

In principle there are two major approaches to shape modeling: surface-based
and volumetric. In surface-based approaches the deformation is computed with
respect to a parametrization over a 2-dimensional domain while in volumetric
approaches the surrounding 3-dimensional space is deformed.

We present a surface-based freeform modeling framework for unstructured tri-
angle meshes which is based on constraint shape optimization. The goal is to
simplify the user interaction even for quite complex freeform or multiresolution
modifications. The user first sets various boundary constraints to define a custom
tailored (abstract) basis function which is adjusted to a given design task. The
actual modification is then controlled by moving one single 9-dof manipulator ob-
ject. The technique can handle arbitrary support regions and piecewise boundary
conditions with smoothness ranging continuously from C0 to C2. To more nat-
urally adapt the modification to the shape of the support region, the deformed
surface can be tuned to bend with anisotropic stiffness. We are able to achieve
real-time response in an interactive design session even for complex meshes by
precomputing a set of scalar-valued basis functions that correspond to the degrees
of freedom of the manipulator by which the user controls the modification.

These surface-based methods for interactive freeform editing of high resolution
3D models are very powerful, but at the same time require a certain minimum
tessellation or sampling quality in order to guarantee sufficient robustness. In
contrast to this, space deformation techniques do not depend on the underlying
surface representation and hence are affected neither by its complexity nor by its
quality aspects. However, while analogously to surface-based methods high quality
deformations can be derived from variational optimization, the major drawback
lies in the computation and evaluation, which is considerably more expensive for
volumetric space deformations.
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To compensate this drawback, we present a new technique which allows us to
use triharmonic radial basis functions for real-time freeform shape editing. An
incremental least-squares method enables us to approximately solve the involved
linear systems in a robust and efficient manner and by precomputing a special set
of deformation basis functions we are able to significantly reduce the per-frame
costs. Moreover, evaluating the resulting linear basis functions on the GPU finally
allows us to deform highly complex polygon meshes or point-based models at a
rate of 25M vertices or 13M splats per second, respectively.

I will show examples where these modeling techniques were applied in the con-
text of an industrial evaluation. This will demonstrate the flexibility of the under-
lying modeling metaphor according to which the user intuitively controls a local-
ized global deformation of the polygon mesh by prescribing boundary constraints
to a shape optimization problem.
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The Subdivision Element Framework for Thin Shell Mechanics

Fehmi Cirak

We introduce a new paradigm for thin-shell finite-element analysis based on the
use of subdivision surfaces for: i) describing the geometry of the shell in its unde-
formed configuration, and ii) generating smooth interpolated displacement fields
possessing bounded energy within the framework of the Kirchhoff-Love theory of
thin shells. The particular subdivision strategy adopted here is Loop’s scheme,
with extensions such as required to account for creases and displacement bound-
ary conditions. The displacement fields obtained by subdivision are in H2 and,
consequently, have a finite Kirchhoff-Love energy. The displacement field of the
shell is interpolated from nodal displacements only. In particular, no nodal ro-
tations are used in the interpolation. The interpolation scheme induced by sub-
division is nonlocal, i. e., the displacement field over one element depend on the
nodal displacements of the element nodes and all nodes of immediately neighbor-
ing elements. However, the use of subdivision surfaces ensures that all the local
displacement fields combine conformingly to define one single limit surface.

One sample application of the subdivision element framework is showcased in
Figure 1. The simulation corresponds to the deployment of an initially-flat airbag
made of an elastic fabric with a compressed gas inflator. Important features of
the airbag deployment process can be observed in these snapshots, including the
high-frequency wrinkling modes of the airbag fabric and the shock reflections of
the gas on the deforming airbag walls. The ability of the developed framework to
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(a) 4.25 ms (b) 8.16 ms

(c) 12.13 ms (d) 18.02 ms

Figure 1. Coupled thin shell-fluid simulation of airbag deploy-
ment. The airbag fabric is modeled using subdivision thin-shells
and the inflowing gas is modeled using a gas dynamics solver. The
coupling is performed using the level sets and the ”ghost-fluid”
technique (see [5] for details). Snapshots show the deformed mem-
brane configurations and density iso-contours of the enclosed fluid.

capture these complex features of the coupled interaction between the flow and
the highly flexible airbag fabric is noteworthy.
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Capillarity and calibrability of sets in crystalline mean curvature flow

Maurizio Paolini

In this talk we would like to point out an interesting connection between the
capillarity problem in a cylindrical domain in presence of microgravity [4] and the
bending phenomenon for crystalline mean curvature flow [1].

1. Capillarity problem

Let Ω = F × (−M,M) with a bounded cross section F ⊆ R2, we seek the equi-
librium configuration of a contained fluid with volume constraint and tangential
contact with the boundary, and such that the occupied volume A is the subgraph
of some function u : F → R, i.e. A = {(x, y) ∈ Ω : y < u(x)}. By applying
standard variational techniques the solution, if it exists, will have constant mean
curvature, say λ, for the graph of u.

Setting ξ(x) = νx (the x component of the upward unit normal to the graph of u
at (x, u(x))), obviously |ξ| ≤ 1 in F and it coincides with the exterior normal to ∂F
at the boundary of F . Moreover div ξ is the mean curvature of the graph of u and
hence is constant. By integrating over F we then also readily get λ = |∂F |/|F |.

Existence of a vector field ξ with such properties is precisely the definition of
calibrability for F .

2. Crystalline anisotropy

Anisotropy is introduced by means of a function ϕ : R3 → R+ that satisfies
the usual properties of a norm: positivity, positive homogeneity and convexity.
Associated to ϕ we define the dual norm ϕo(ξ⋆) = maxξ∈Wϕ

ξ · ξ⋆ and introduce
the unit balls Wϕ = {ϕ(ξ) ≤ 1} (Wulff shape) and Fϕ = {ξ : ϕo(ξ) ≤ 1} (Frank
diagram).

We say that ϕ is regular when Wϕ is smooth and strictly convex; ϕ is crystalline
is Wϕ is a polyhedron. Other choices are possible, and of particular interest is the
case when Wϕ is a cylinder circumscribed to the unit sphere.

For a regular anisotropy we introduce the nonlinear duality mapping
T o : R3 → R3 defined by T o(ξ) = ϕo(ξ)∇ξϕ

o(ξ), which provides also a one
to one mapping of the Frank diagram onto the Wulff shape; it is strictly monotone
and positively homogeneous of degree one. For a crystalline anisotropy T o can still
be defined in a natural way, but becomes a multivalued maximal monotone graph:
for example it will typically map a vertex of the Frank diagram onto a whole face
of the Wulff shape.

Given a surface Σ = ∂A we now introduce the Cahn-Hoffmann vector field nϕ,
which will play the role of the euclidean normal ν in this anisotropic setting, for
any x ∈ Σ we let nϕ = T o(νϕ) where νϕ = ν

ϕo(ν) is a rescaled version of the

eucidean normal.
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We can finally define the anisotropic mean curvature as κϕ = div nϕ, and we say
that a time dependent surface Σ(t) = ∂A(t) flows by anisotropic mean curvature if
the (vector) velocity is given by V = −κϕnϕ or equivalently if the normal velocity
is Vν = −ϕo(ν)κϕ.

In the crystalline case however the definition of nϕ is not unique since we now
only have an inclusion nϕ ∈ T o(νϕ) so that nϕ itself must be treated as an un-
known.

An admissible surface is a faceted surface such that all faces (say F ) are parallel
to some facet of the Wulff shape (say f). Quite often an admissible surface will
just evolve staying admissible, with all faces translating parallel to themselves with
velocity given by a simple low that depends unambiguously upon F and f [9], but
unfortunately this is not always the case. In Figure 1 you can see an example of
bending phenomenon: the anisotropy is described by an hexagonal prism as Wϕ

and the initial (admissible) surface is defined by taking the Wulff shape and just
lifting the top face of a sufficiently large amount. During evolution the front and
back faces will develop a bended region near the top, as described in [1], [2], [3],
[10].

WϕA(0) A(t)

Figure 1. Bending example: initial admissible surface (left),
Wulff shape and expected evolution with bending (right).

It turns out that bending of faces is controlled by an anisotropic version of the
calibrability conditions known for the capillarity problem [2], [3], [5].

A numerical approximation of crystalline mean curvature flow can be obtained
as described in [7] and [8] by first approximating the sharp interface using an
anisotropic version of the Allen-Cahn equation and then enforcing the dynamic
mesh method of [6]. It turns out that bending of facets is automatically reproduced
by this discretization method without the need of special treatment.

A particularly interesting choice for the anisotropy consists in taking the Wulff
shape Wϕ as the cylinder circumscribed to the unit sphere, this is neither regular
nor crystalline. A typical evolution will develop horizontal plateaus (say F ) that
move vertically with velocity |∂F |/|F | as long as they are calibrable in the isotropic
sense that we stated at the beginning. On the contrary, if F is not calibrable it will
bend in regions where its boundary has large curvature and the velocity vector field
is exactly the same as under the so-called total variation flow in which, formally,
the vertical velocity of the surface is given by the local curvature of the horizontal
level line. The two evolution laws however differ on smooth parts of Σ and on
vertical walls.
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On Geometric Variational Models for Inpainting Surface Holes

Gloria Haro

(joint work with Vicent Caselles, Guillermo Sapiro and Joan Verdera)

Inpainting is a term used in art to denote the modification of images (painting,
photographs, etc) in a form that can not be detected by an ordinary observer. It
normally refers to the filling-in of regions of missing information or the replacement
of regions by a different kind of information. This is a very important topic in
image processing, with applications including image coding and wireless image
transmission (e.g., recovering lost blocks), special effects (e.g., removal of objects),
and image restoration (e.g., scratch removal). The basic idea behind the computer
algorithms that have been proposed in the literature is to fill-in these regions with
available information from their surroundings. Several names have been used for
this filling-in operation, including disocclusion in [2, 7], or inpainting in [3].

It turns out that images are not the only kind of data where there is a need for
digital inpainting. Surfaces obtained from range scanners often have holes, regions
where the 3D model is incomplete. The main cause of holes are occlusions, but
these can also be due to low reflectance, constraints in the scanner placement,
or simply lack of sufficient coverage of the object by the scanner. The reader is
directed to the pioneering work in surface inpainting of [6] for an excellent and
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detailed description of the nature of holes in scanning statues and for a literature
review in the subject.

Geometric approaches for filling-in surface holes are introduced and studied in
this talk. The basic idea is to represent the surface of interest in implicit form,
and fill-in the holes with a scalar, or systems of, geometric partial differential
equations, often derived from optimization principles.

The first algorithm here proposed is an adaptation of the variational formulation
for image inpainting presented in [1, 2] to the problem of surface hole filling. As
in [6], the use of volumetric data (that is, the surface is represented as the zero
level-set of a function) brings us topological freedom. In contrast with [6], we use
a system of coupled anisotropic (geometric) partial differential equations designed
to smoothly continue the isophotes of the embedding function, and therefore the
surface of interest (as the zero level isophote). These equations are based on the
geometric characteristics of the known surface (e.g., the curvatures), and as [6],
are applied only at the holes and a neighborhood of them (being these equation
anisotropic and geometry based, they lead to a slightly slower algorithm than the
one reported in [6], as expected with geometric flows). A preliminary version of
this (first) model was presented in [8]. We formalize this and improve it here with
an automatic initialization method. This initialization is based on the computation
of a conical neighborhood F of the known part of the surface, call it S, where the
distance function is uniquely attained. Thereby we can define the signed distance
function ds and then ∇ds is the extension of the unit normal to S to a neighborhood
of it. This construction also helps us to label both parts of the surface as interior
and exterior, and this is useful in this first method.

We also develop additional curvature based hole surface inpainting methods.
The first of them is based on a variational model which integrates the Laplacian
of a distance function (i.e., a function which satisfies |∇D| = 1, and D = ds in
the conical neighborhood F), in a open set containing the hole. Recall that the
Laplacian of the distance function gives the mean curvature of its level sets. We
also use a similar functional but with the square of the Laplacian instead of its
absolute value, this is related to the work in [5] where the authors use the Willmore
flow. The second method is more heuristic and is based on the diffusion of a
function ω which represents mean curvature of level sets of an underlying implicit
function. Then, the function u with the prescribed curvature ω is computed solving

the PDE: ut = |∇u|
(

div
(

∇u
|∇u|

)

− ω
)

.
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Finally, we also present simpler methods based on the Laplace equation and
the so-called AMLE model [4], which permit to reconstruct a function which is
distance-like near the known part of the surface and whose zero level set can be
interpreted as the reconstructed surface. If our interest is just to find a smooth
reconstruction, this approach may be sufficient. If one wants a reconstruction
which is based on minimizing mean curvature, it can serve as an initialization.

The theoretical and computational framework, as well as examples with syn-
thetic and real data, are presented in this talk.
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