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Introduction by the Organisers

Since its inception in the early seventies, the study of Enveloping Algebras
has undergone a significant and continuous evolution and moreover has inspired a
wide variety of developments in many areas of mathematics including Ring Theory,
Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras.

As indicated above, one of the main goals behind this meeting was to bring
together a group of participants with a wide range of interests in and around the
geometric and the combinatorial side of the representation theory of Lie groups
and algebras. We strongly believe that such an approach to representation theory,
in particular interaction between geometry and representation theory, will open
up new avenues of thought and lead to progress in a number of areas.

This diversity was well reflected in the expertize represented by the conference
participants, as well as in the wide range of topics covered. They may broadly be
summarized under the following three headings:
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(1) The study of the structure and representation theory through
a) Slodowy slices and the Joseph ideal, b) Equivalence of categories of rep-
resentations and certain geometric counterparts, c) Hall algebras, Quotient
schemes and canonical bases, d) Richardson elements and birationality
questions, e) free Lie algebras and current algebras, f) Dirac cohomology,
g) L-functions and representation theory, h) Gelfand-Zeitlin theory

(2) Combinatorial Aspects of Lie Systems particularly through
a) Saturation problems and Buildings, b) Affine and double Affine Hecke
algebras, Cherednik algebras, c) Solvable lattice models

(3) Geometric Structures including
a) Representation theoretic methods in enumerative geometry, b) Multi-
plicity free symplectic reduction, c) Monodromy actions of braid groups,
d) Associated varieties for Lie super algebras, e) affine Grassmannians, f)
Schubert varieties and Demazure modules

The single most important development reported in this conference seems to us to
be the generalization of the categorical Satake isomorphism to quantum groups at
roots of unity, which allows to bring in a whole lot of new geometry into representa-
tion theory. It seems likely that it will lead to the proofs of some open conjectures
of Lusztig. We were particularly happy to have quite a few very strong younger
participants and some highly promising postdocs. We tried to accomodate young
postdocs, as much as feasible, to present their work by devoting one afternoon to
their (shorter) talks.
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Singularities at the boundary of the crown domain . . . . . . . . . . . . . . . . . . . . . 727

Markus Reineke
On the primitive spectrum of a free (Lie) algebra . . . . . . . . . . . . . . . . . . . . . . 730

Michael Kapovich (joint with John J. Millson)
A generalization of the saturation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Anthony Joseph
Brylinski-Kostant Filtrations and Graded Injectivity . . . . . . . . . . . . . . . . . . . 735

Michael Finkelberg (joint with Roman Bezrukavnikov, Victor Ginzburg)
Cherednik algebras and Hilbert schemes in characteristic p . . . . . . . . . . . . . 736

Alexander Braverman (joint with Michael Finkelberg, Dennis Gaitsgory
and others)
Kashiwara’s crystals, semi-infinite Schubert varieties and enumerative
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Bertram Kostant (joint with Nolan Wallach)
Gelfand–Zeitlin theory from the perspective of classical mathematics . . . . . 741
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Abstracts

Singularities at the boundary of the crown domain

Eric Opdam

(joint work with Bernhard Krötz)

1. The crown Ξ of a Riemannian symmetric space

The crown or Akhiezer-Gindikin domain [1] Ξ of a Riemannian symmetric space
X = G/K of noncompact type is the maximal domain in XC containing X = G.x0

(where x0 = e.KC denotes the base point of XC) such that G acts properly on Ξ. It
has the following explicit description. Let g = k + p be the Cartan decomposition
of g with respect to the maximal compact subgroup K, and choose a maximal
abelian subspace a ⊂ p. Let Σ := Σ(g, a) ⊂ a∗ denote the restricted root system.
Then

(1) Ξ = G exp(iπΩ/2).x0 ⊂ XC,

where Ω ⊂ a is given by

(2) Ω = {Y ∈ a | |α(Y )| < 1, ∀α ∈ Σ}.

The complex crown has been subject to active research activities recently (see [1],
[3], [5], [6], [7], [8], [9] and references therein).

The crown has the following remarkable universal holomorphic extension prop-
erty for any admissible spherical representation (H,π) of G ([7], Prop. 4.1). Let
v ∈ H denote a (normalized) spherical vector. Then the orbit map

X ∋ x = gK → vx := π(g)v ∈ H

has a holomorphic extension to Ξ. For a generic irreducible spherical admissible
representation, the norm of vx will blow up everywhere along the boundary ∂(Ξ)
of Ξ (see [8]). Hence Ξ is a Stein domain (see [8], and the references therein).

In this talk we will discuss the nature of the singularities of the function x →
‖vx‖2 on Ξ when x ∈ Ξ approaches a so-called “distinguished” point of ∂(Ξ) (see
below).

The original motivation to consider this problem is a method to estimate triple
products of Maass forms on a locally symmetric space of the form Γ\X by analytic
continuation of representations. This method works quite well when X has rank
1 ([12], [2], [7]). At present it is not clear how to extend this method of analytic
continuation to the theory of Maass forms in higher rank cases. Nonetheless, we
believe that the estimates which we have obtained are of independent interest.
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2. The distinguished boundary of Ξ

For the sake of simplicity we will assume from now on that g is simple. The
set of closed G-orbits in the closure Ξ of Ξ ⊂ XC is equal to G exp(iπΩ/2).x0. By
definition the distinguished boundary ∂d(Ξ) ⊂ ∂(Ξ) consists of the union of the
closed G-orbits G.t.x0 where t = exp(iπω/2) with ω ∈ ∂Ω an extremal point of
the closed convex set Ω. Hence there are only finitely many G-orbits in ∂dΞ.

The distinguished boundary is of special interest since bounded continuous func-
tions on Ξ which restrict to holomorphic functions on Ξ will assume their maxi-
mum in ∂d(Ξ) (see [5]). For this reason we restrict our attention to the singular
behaviour of vx at the distinguished boundary points.

The first result we will describe in this talk is a unified description of ∂d(Ξ) ⊂
∂(Ξ) of Ξ (also see [5]). Choose positive roots Σ+ and let Σl ⊂ Σ denote the
reduced root subsystem of inmultiplicable roots. Observe that Ω = ∪w∈Ww(C),
where C is the fundamental alcove of the affine Weyl groupW a whose affine Dynkin
diagramDa is the affine extension of the Dynkin diagram of Σl. Therefore in order
to describe ∂d(Ξ) it suffices to decide which of the extremal points ω 6= 0 of the
alcove C are also extremal in Ω.

Theorem 1. We have ∂d(Ξ) = ∪ωG. exp(iπω/2).x0 where ω runs over the set of
nonzero extremal points of C with the property that the subgraph of Da obtained
by deleting the vertex of Da which corresponds to ω is connected.

Corollary 1. If ω is a minuscule fundamental co-weight then the correspond-
ing orbit G.t.x0 is distinguished. We call the union of such orbits the minuscule
boundary ∂m(Ξ) ⊂ ∂d(Ξ).

3. Lower estimates

Let λ ∈ a∗ and let (H,πλ) denote the spherical unitary minimal principal series,
with normalized spherical vector vλ. A fundamental fact which is at the basis of
all our estimates for ‖vxλ‖

2 is the doubling formula for spherical functions ([7], Th.
4.2), which states that for t ∈ exp(iπΩ/2) := TΩ and x = t.x0,

(3) ‖vxλ‖
2 = φλ(t

2.x0)

where φλ is the (holomorphic extension of the) spherical function φλ(g.x0) :=
〈vλ, π(g)vλ〉 on X . In particular, we see that the restriction of φλ to A.x0 has a
holomorphic continuation to AT 2

Ω.x0. By studying the Harish-Chandra integral
representation of φλ one obtains:

Theorem 2. Let t = exp(iπω/2) be an extremal boundary point of TΩ, and put
tǫ = exp(iπ(1− ǫ)ω/2). Let G′ denote the centralizer in G of t4 ∈ AC. Then there
exist constants ǫ0 ∈ (0, 1) and R > 0, C > 0 such that

(4) φλ(t
2
ǫ .x0) ≥ Cǫ

(dimG−dimG′)/4 max
w∈W

eπλ(wω)(1−Rǫ)

for all λ ∈ a∗, and for all ǫ ∈ (0, ǫ0).
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4. Upper estimates

The system of differential equations for the restriction of the zonal spherical
function φλ to AC.x0 has regular singularities at the collection of hyperplanes
a2α = 1. Let t = exp(iπω/2) ∈ ∂(TΩ) where ω is extremal in Ω, and let tǫ =
exp(iπωǫ/2).x0 where C ∋ ǫ→ ωǫ − ω is linear and such that t2αǫ 6= 1 if ǫ is in the
punctured unit disc. We may and will assume that ω, ω1 ∈ C.

There exists a singular expansion of the following form for φλ:

(5) φλ(t
2
ǫ .x0) =

∑

i

ǫni(pi,0(log(ǫ)) + pi,1(log(ǫ))ǫ+ . . . )

where the sum over i is finite, the exponents ni ∈ C are distinct modulo Z, and
the pi,j are polynomials of bounded degree. We would like to compute the leading
exponent nXω in this expansion, and also the degree of the coefficient pnX

ω ,0
of this

leading term.
The method we employ is based on Dunkl-Cherednik theory and the theory

of hypergeometric functions for root systems (see e.g. [4], [11]). By this theory,
the system of differential equations on AC.x0 allows a flat deformation for which
the root multiplicities of X are complex parameters. The local monodromy of
this system at t2.x0 factors through a Hecke algebra of type Wω , the Weyl group
generated by the affine reflections which fix ω. This makes it possible to compute
the exponents at t2.x0 as in [10].

It turns out that 2nXω ∈ Z for each ω as above. To each ω we can attach an
irreducible representation τ = τω of Wω such that for all X with fixed restricted
root system Σ,

(6) nXω ≤ nτ (m
X) := b(τ)−

1

2

∑

α∈Σω,+

mX
α (1−

χτ (sα)

degτ
),

where b(τ) denotes the harmonic birthday degree of τ , and where mX denotes the
root multiplicity function of X . The method also gives an estimate on the degree
of the logarithmic term in the leading term of singular expansion, but we will not
discuss that here. We conjecture that the inequality nXω ≤ nτ (m

X) is an equality
for generic λ ∈ a∗

C
.

The representation τ = τω is determined by the remark that τ ⊗ det equals
the truncated induction of det from the subgroup W f

ω ⊂ Wω generated by the
reflections of W which fix ω. Therefore it is an easy matter to compute nτ (m

X)
explicitly in all cases.
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[8] B. Krötz and R.J. Stanton, Holomorphic extensions of representations: (II) geometry and
harmonic analysis, to appear in GAFA.

[9] T. Matsuki, Stein extensions of Riemann symmetric spaces and some generalization, J. Lie
Theory 13 (2003), no. 2, 565–572.

[10] E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter
group, Compositio Math. 85 (1993), pp. 333–373.

[11] , Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups, MSJ
Memoirs 8, Mathematical Society of Japan (2000).

[12] P. Sarnak, Integrals of products of eigenfunctions, IMRN 6 (1994), 251–260.

On the primitive spectrum of a free (Lie) algebra

Markus Reineke

1. The primitive spectrum

Let k be an algebraically closed field, and let A = k〈x1, . . . , xm〉 be the free alge-
bra in m generators, which can also be viewed as the enveloping algebra U(L(m)) of
the free Lie algebra in m generators. We consider the primitive spectrum Prim(A),
which is the set of annihilators of irreducible representations of A with its natural
(Jacobson) topology. In particular, we consider for each d ∈ N the set Primd(A)
of annihilators of d-dimensional irreducible representations of A.

It was proven by M. Artin [1] that Primd(A) ⊂ Prim(A) is a locally closed subset,
and its induced topology is the Zariski topology for a natural structure of a smooth
irreducible k-variety of dimension (m − 1)d2 + 1. To construct this variety, note

that Primd(A) is in bijection with the set of isomorphism classes of d-dimensional

irreducible representations of A. In this latter realization, Primd(A) can be em-
bedded as an open subset of the quotient variety Md(k)

m//PGLd(k) of the space
of m-tuples of d × d-matrices by the action of PGLd(k) via simultaneous conju-
gation. Namely, this open subset is induced by matrix tuples without a common
non-trivial invariant subspace.

The aim of the ongoing project which was reported on is to compute global topo-
logical invariants of Primd(A). Three results in this direction are given in the
following.
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2. Counting rational points

In the case where k is an algebraic closure of a finite field Fq, the set of Fq-

rational points of the k-variety Primd(A) can be identified with the set of absolutely
irreducible d-dimensional representations of A, i.e. those representations S for
which the base extension k ⊗Fq

S is still irreducible.

Theorem 1. There exist recursively defined polynomials a
(m)
d (t) ∈ Z[t] such that,

for all finite fields Fq, the value a
(m)
d (q) equals the number of Fq-rational points

of Primd(A).

The recursive formula for these polynomials is: a
(m)
d (t) =

(1− t)


(t(m−1)(d

2)
∑

λ∈Λd

(−1)l(λ)

(
l(λ)

µ1(λ), µ2(λ), . . .

) l(λ)∏

i=1

tm(λi+1
2 )

(tλi − 1) . . . (t− 1)

−
∑ ∏

i,j,k

1

ξijk!
(
k∏

l=1

(1− tlj))−ξijk

∏

i,j

(1
j

∑
r|j µ( jr )a

(m)
i (tr)∑

k ξijk

)
(
∑

k

ξijk)!


 .

In this formula, the second sum is over all functions ξ : N3
+ → N such that∑

i,j,k ijkξijk = d and ξ 6= δd,1,1. Moreover, Λd = {partitions of d}, l(λ)=length

of λ, µm(λ)=multiplicity of m in λ and µ=Möbius function.

Example: We have a
(m)
1 (t) = tm, a

(m)
2 (t) = t2m (tm−1)(tm−1−1)

t2−1 and a
(m)
3 (t) =

t3m+1 (tm − 1)(t2m−2 − 1)(t3m−2 + t2m−2 − tm − 2tm−1 − tm−2 + t+ 1)

(t3 − 1)(t2 − 1)
.

The nature of these polynomials remains mysterious (see however the following
section for a special value). The proof is rather indirect: the above recursion is
derived from an identity in the Hall algebra [4] of A.

3. Euler characteristic

There is an obvious action of the group k∗ on Primd(A), which in fact admits

a geometric quotient PPrimd(A).

Theorem 2. We have a
(m)
d (1) = 0 and

a
(m)
d (t)

t− 1

∣∣∣∣∣
t=1

= χc(PPrimd(A)) =
1

d

∑

r|d

µ(
d

r
)mr.

Here, χc denotes Euler characteristic in ℓ-adic cohomology with compact sup-
port. Note that the number on the right hand side equals the number of primitive
necklaces with d beads of m colours.

This theorem is proven by first generalizing the statement to moduli spaces of
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irreducible representations of quivers, and calculating the Euler characteristic by
localization techniques and induction over all quivers.

No structural interpretation of this result is available at the moment; it should be
noted that, by the PBW theorem, the formula in the theorem also describes the
dimension of the degree d-part of the free Lie algebra L(m) [3].

4. Hilbert schemes

We consider a variant of the space Primd(A), which is more accessible to co-

homology computations (see [2] for the following results). Denote by Hilbd(A)
the set of left ideals I ⊂ A such that dimk(A/I) = d. Again, one can see that
this can be given the structure of a smooth, irreducible k-variety of dimension
(m − 1)d2 + d by identifying left ideals with pairs consisting of a representation

and a cyclic vector. This interpretation also allows to view Hilbd(A) as a partial

compactification of a projective bundle over Primd(A).
Theorem 3.

(1) The variety Hilbd(A) admits a cell decomposition, whose cells are naturally
parametrized by m-ary trees with d nodes.

(2) The generating function of Betti numbers

ζ(q, t) :=
∞∑

d=0

q(m−1)(d
2)

∑

i

dimHi(Hilbd(A))q−i/2td

is the unique solution in Q[q][[t]] to the algebraic q-difference equation

ζ(q, t) = 1 + t
∏m−1
i=0 ζ(q, qit).

(3) Defining a discrete random variable Xd by

P(Xd = i) =
dimH(m−1)d(d−1)/2−2i(Hilbd(A))

χ(Hilbd(A))
,

the sequence
√

8
m(m−1)d

− 3
2Xd converges to a limit distribution, namely the

Airy distribution [5].

It would be very interesting to have a structural interpretation for the last result
in terms of an object naturally associated to A.
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A generalization of the saturation theorem

Michael Kapovich

(joint work with John J. Millson)

The goal of this talk is to prove a generalization of the following result known as
the Saturation Theorem by A. Knutson and T. Tao [9]:

Theorem 1. Suppose that α, β, γ are dominant weights of SL(n,C) such that
α+β+ γ belongs to the root lattice Q(R) of SL(n,C) and there exists N ≥ 1 such
that

(VNα ⊗ VNβ ⊗ VNγ)
SL(n,C) 6= 0.

Then

(Vα ⊗ Vβ ⊗ Vγ)
SL(n,C) 6= 0.

An alternative proof of this theorem was given in [2].

Slightly more geometrically one can restate their result as follows:

There exists a convex homogeneous polyhedral cone
D3 ⊂ ∆3 such that (α, β, γ) ∈ D3 is a point in P (R)3 with α + β + γ ∈ Q(R) if
and only if

(Vα ⊗ Vβ ⊗ Vγ)
SL(n,C) 6= 0.

Here Vλ is the irreducible finite-dimensional representation of SL(n,C) with
the highest weight λ and ∆ is the positive Weyl chamber.

Our goal is to generalize this result to the case of complex reductive Lie groups
other than SL(n,C).

Let G be a split reductive algebraic group over Z, Q(R∨) ⊂ L ⊂ P (R∨) be its
cocharacter lattice, W the Weyl group, ∆ the Weyl chamber, αi’s simple roots, θ
the highest root

θ =
ℓ∑

i=1

miαi

and kR = LCM(m1, ...,mℓ) is the saturation factor. Let G∨ be the Langlands
dual of G, G∨ := G(C).

Theorem 2 (M. Kapovich, J.J. Millson, [5]). There exists a convex homogeneous
polyhedral cone D3 ⊂ ∆3 depending only on W such that for k = kR:

(α, β, γ) ∈ D3 ∩ L
3 with α+ β + γ ∈ Q(R∨)

if and only if

(Vkα ⊗ Vkβ ⊗ Vkγ)
G∨

6= 0.

Equivalently, if Lα → Oα, Lβ → Oβ , Lγ → Oγ denote the line bundles over
flag-manifolds corresponding to α, β, γ, and the Mumford quotient

Oα ×Oβ ×Oγ//G
∨
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is nonempty, then there are nonzero G∨-invariants of degree ≤ kR in

H0(Oα ×Oβ ×Oγ , Lα ⊗ Lβ ⊗ Lγ).

We have examples which show that in Theorem 2 multiplication by k = 2 is
needed for all non-simply-laced groups.

For Aℓ type root system we get kR = 1 and hence Knutson-Tao theorem as a
special case.

Conjecture: In Theorem 2 one can take k = 1 for simply laced groups and
k = 2 in the non-simply laced case.

Despite of the algebraic appearance of Theorem 2, its proof is mostly geometric.
Below is a geometric interpretation of the polyhedral cone D3 which appears in
Theorem 2.

Let K be field with a nonarchimedean discrete valuation, X the Bruhat-Tits
building associated with G := G(K). Let (A,W ) denote the affine apartment and
affine Weyl group of G, ∆ ⊂ A a Weyl chamber of the linear part Wo of W which
we identify with the stabilizer of a tip o of ∆.

We get ∆-valued distance function d∆(x, y) between points x, y ∈ A by project-
ing the vector xy = ot to ∆. Since any two points in X belong to an apartment,
we obtain a ∆-valued distance function on X .

Definition. D3 = D3(X) is the collection of triples (α, β, γ) ∈ ∆3 such that
there exists an (oriented) geodesic triangle τ ⊂ X with the ∆-side lengths α, β, γ.

Theorem 3 (M. Kapovich, B. Leeb, J.J. Millson, [6], [7], [8]). 1. D3(X) is a
convex polyhedral convex cone in ∆3.
2. D3(X) depends only on the (finite) Weyl group Wo and nothing else.
3. The system of generalized triangle inequalities inequalities defining D3(X) can
be computed in terms of the “Schubert calculus”.
4. If α+β+γ ∈ Q(R∨) and α, β, γ ∈ P (R∨) then we can assume that the triangle
τ has vertices at vertices of X.

Part 3 was also established by Berenstein and Sjamaar in [1].

The easier direction in Theorem 2 does not involve multiplication by kR. The
following result was first established in [8], other proofs can be found in [4] and
[5]:

Theorem 4. If

(Vα ⊗ Vβ ⊗ Vγ)
G∨

6= 0

then (α, β, γ) ∈ D3(X) and, moreover, there exists a triangle τ in X with special
vertices.

The opposite direction converting triangles to tensors is much harder. The key
tool for this is Littelmann’s path model. Suppose that τ̃ = [x, y, z] ⊂ X is a
geodesic triangle with the ∆-side lengths α, β, γ.

We assume that al vertices of τ̃ are special points of X and projectτ̃ to a broken
triangle τ ⊂ ∆ via a retraction X → ∆. The broken triangle τ has two geodesic
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sides with ∆-length α, γ and one broken side p whose ∆-length is β. We show that
p partly satisfies the axioms of an LS path from [10], however in general it does
not satisfy the unit distance condition. This is analogous to some of the results of
[3].

We then replace the geodesic side [y, z] in τ̃ with a PL path p̃ contained in the

1-skeleton of an apartment in X . We project the resulting polygon P̃ to P ⊂ ∆
and use the multiplication by kR to ensure that:

(a) All vertices of a kP are special.
(b) Therefore, the image of the path p̃ satisfies a generalized LS condition which

in turn suffices to find a fixed vector in the triple tensor product.
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Brylinski-Kostant Filtrations and Graded Injectivity

Anthony Joseph

Let g = n ⊕ h ⊕ n− be a triangular decomposition of a complex semisimple Lie
algebra. Set b = n ⊕ h, b− = h ⊕ n−. Choose e ∈ n, h ∈ h, f ∈ n− such
that (e, h, f) is a principal tds. For all weights µ, ν, let V (µ) denote the simple
finite dimensional U(g) module with extreme weight µ and V (µ)ν its subspace of
weight ν. The (left) Brylinski-Kostant (or simply, BK) filtration of V (µ) is defined
through FmV (µ)ν = {a ∈ V (µ)ν | em+1a = 0}. It defines a q-character chqV (µ)
which refines the Weyl character. Inspired by the work of Kostant concerning
generalized exponents, Brylinski calculated the coefficient of eν in chqV (µ) for all
ν dominant, using notably a geometric result of Broer. It turned out that this was
just Lusztig’s q-analogue (for that part) of ch V (µ). In [JLZ] a rather complicated
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though purely algebraic proof was given and furthermore chqV (µ) was completely
determined. This method also depended on Broer’s result; which was later refined
[J1] to show that Fh(HomU(b)(U(g), S(g/b) ⊗ C−χ)) is injective in the opposed
O category. (Here Fh means taking the h locally finite part of the module in
question.)

The present work gives two simplifications to the above proofs. We also note
that V (µ) admits a right BK filtration which outside sl(2) is different to the left
one. It leads to a q-character ch′qV (µ) which coincides with chqV (µ) for sl(3) but
is generally different to chqV (µ).

Let δM(χ) denote the O dual of the Verma module with highest weight χ.
Since M(χ) identifies with U(n−), its O dual admits a U(n) bimodule structure
compatible with the action of h. Let π denote the set of simple roots. Let xα
(resp. α∨) denote the root vector (resp. coroot) corresponding to α and set

V (µ)⋆ = {a ∈ δM(0) | xα
∨(µ)+1
α a = 0, ∀α ∈ π}.

Let V (µ)⋆ν denote the subspace of V (µ)⋆ of weight ν and Cχ the one dimensional
b module of weight χ.

A key observation of the present work [HJ] is that V (µ)⋆ identifies as a right
U(b) module with V (−µ)∗ ⊗ C−µ. Let v−µ ∈ V (−µ) be an extreme vector of
weight −µ. Then for µ, χ dominant it is shown that the map γ 7→ γ(v−µ)(1) is an
isomorphism of HomU(g)(V (µ)∗, HomU(b)(U(g), δM(−χ))) onto V (µ)⋆−µ+χ⊗C−χ
compatible with the right BK filtration on V ⋆−µ+χ and on δM(−χ). To recover
Brylinski’s result we note that gr δM(−χ) identifies with S(g/b)⊗C−χ and use the
above mentioned injectivity. In [J2] we deduce the latter result by only dimension
shifting and a combinatorial property of weights [J2]. (The latter unfortunately
does not extend to the parabolic case.)
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Cherednik algebras and Hilbert schemes in characteristic p

Michael Finkelberg

(joint work with Roman Bezrukavnikov, Victor Ginzburg)

Let c ∈ Q be a rational number, and H1,c(An−1) the rational Cherednik algebra
of type An−1 with parameters t = 1 and c that has been considered in [7] (over
the ground field of complex numbers).
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For all primes p ≫ n, we can reduce c modulo p. Thus, c becomes an element
of the finite field Fp. We let F = Fp be an algebraic closure of Fp, and let Hc :=

H1,c(An−1,Fp) be the Cherednik algebra, viewed as an algebra over Fp. Unlike the
case of characteristic zero, the algebra Hc has a large center, called the p-center.
The spectrum of the p-center is isomorphic to [(A2)n/Sn]

(1), the Frobenius twist
of the n-th symmetric power of the plane A2.

We consider Hilbn A2, the Hilbert scheme (over Fp) of n points in the plane, see
e.g. [10]. There is a canonical Hilbert-Chow map Υ : Hilbn A2 → (A2)n/Sn that
induces an algebra isomorphism

(1) Γ(Hilbn A2, O) ∼= F
[
(A2)n/Sn

]
.

Let Hilb(1) denote the Frobenius twist of Hilbn A2, a scheme isomorphic to Hilbn A2

and equipped with a canonical Frobenius morphism Fr : Hilbn A2 → Hilb(1) . We

introduce an Azumaya algebra Hc on Hilb(1) of degree n! · pn (recall that an
Azumaya algebra has degree r if each of its geometric fibers is isomorphic to the
algebra of r×r-matrices). For all sufficiently large primes p, we construct a natural
algebra isomorphism (a version of the Harish-Chandra isomorphism from [7])

(2) Γ(Hilb(1), Hc)
∼−→ Hc.

The restriction of this isomorphism to the subalgebra Γ(Hilb(1),O) yields, via (1),

the above mentioned isomorphism between the algebra F
[(

(A2)n/Sn
)(1)

]
and the

p-center.
More generally, for any c ∈ F, not necessarily an element of Fp, there is an

Azumaya algebra on the Calogero-Moser space with parameter cp − c such that
an analogue of isomorphism (2) holds for the Calogero-Moser space instead of the
Hilbert scheme. This case is somewhat less interesting since the Calogero-Moser
space is affine while the Hilbert scheme is not.

The main idea used in the construction of isomorphism (2) is to compare Naka-
jima’s description of Hilbn A2 by means of Hamiltonian reduction, see [10], with a
refined version of the construction introduced in [7] describing the spherical sub-
algebra of Hc as a quantum Hamiltonian reduction of an algebra of differential
operators.

We introduce the following set of rational numbers

(3) Qgood = {c ∈ Q : c ≥ 0 & c 6∈
1

2
+ Z}.

One of our main results reads
Theorem 1. Fix c ∈ Qgood. Then, there exists a constant d = d(c) such that for
all primes p > d(c), the functor RΓ : Db(Hc- Mod)→ Db(Hc- Mod) is a triangu-
lated equivalence between the bounded derived categories of sheaves of coherent
Hc-modules and finitely generated Hc-modules, respectively, whose inverse is the

localisation functor M 7→ Hc
L

⊗Hc
M.

Moreover, we have Hi(Hilb(1),Hc) = 0, ∀i > 0.
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Now, fix ξ ∈ [(A2)n/Sn]
(1), a point in the Frobenius twist of (A2)n/Sn. We

write Hilb
(1)
ξ = Υ−1(ξ) for the corresponding fiber of the Frobenius twist of the

Hilbert-Chow map, and let Ĥilb
(1)

ξ = Υ̂−1(ξ) denote its formal neighborhood, the

completion of Hilb(1) along the subscheme Hilb
(1)
ξ .

The theorem below, based on a similar result in [4], says that the Azumaya
algebra Hc splits on the formal neighborhood of each fiber of the Hilbert-Chow
map, that is, we have the following result:

Theorem 2. For each ξ ∈ [(A2)n/Sn]
(1), there exists a vector bundle Vξ on Ĥilb

(1)

ξ

such that one has

Hc|dHilb
(1)

ξ

∼= (EndVξ)
opp.

Note that the splitting bundle is not unique; it is only determined up to twisting
by an invertible sheaf.

Given ξ as above, let mξ be the corresponding maximal ideal in the p-center of

Hc. Let Ĥc,ξ, resp. Ĥc,ξ = Hc|dHilb
(1)

ξ

, be the mξ-adic completion of Hc, resp. of Hc.

We write Db(Ĥc,ξ- Mod), resp. Db(Ĥc,ξ-Mod), for the bounded derived category

of finitely-generated complete topological Ĥc,ξ-modules, resp. Ĥc,ξ-modules. On

the other hand, let Db(Coh(Ĥilb
(1)

ξ )) be the bounded derived category of coherent

sheaves on the formal scheme Ĥilb
(1)

ξ .

Fix c ∈ Qgood. Then, for all primes p > d(c), Theorems 1,2 imply the following

Corollary 1. The category Db(Ĥc,ξ-Mod) is equivalent to Db(Coh(Ĥilb
(1)

ξ )).

Now let ξ = 0 be the zero point in [(A2)n/Sn]
(1). The fiber Hilb

(1)
0 is isomorphic

to the (Frobenius twist of the) punctual Hilbert scheme. This is a projective variety
with a natural Gm × Gm-action induced from the standard Gm × Gm-action on
A2 by dilating the coordinate axes.

The cohomology vanishing in Theorem 2 implies that the vector bundle V0 is
rigid, i.e., we have Ext1(V0,V0) = 0. From this, one deduces that the vector
bundle V0 can be equipped with a Gm × Gm-equivariant structure. This equi-
variant structure induces a Z2-grading on (a dense subalgebra of) the algebra

Hom(V0,V0) = Γ(Ĥilb
(1)

0 ,Hc), that is, of the algebra Ĥc,0.
Recall further, see [2], that the algebra Hc contains a canonical sl2-triple. Let

h ∈ Hc denote the semisimple element of that triple. We obtain

Corollary 2. The algebra Ĥc,0 contains a canonical dense Z2-graded subalgebra
⊕k,l∈Z Hk,l such that, for any u ∈ Hk,l, we have h · u− u · h = (k − l) · u.

The category of Z2-graded modules over that subalgebra may be thought of as

a ‘mixed version’ of the category Ĥc,0- Mod, cf. [1, Definition 4.3.1].
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Let F[Sn] denote the group algebra of the Symmetric group on n letters. Write
Irr(Sn) for the set of isomorphism classes of simple F[Sn]-modules. This set is
labelled by partitions of n, since by our assumptions char F > n. In particular,
we have the trivial 1-dimensional representation triv, and the sign representation
sign.

Let H := F[[A2n]]#Sn be the cross-product of Sn with k[[A2n]], the algebra of
formal power series in 2n variables acted on by Sn in a natural way. We con-
sider Db(H-Mod), the bounded derived category of (finitely-generated) complete

topological H-modules.
Given a simple k[Sn]-module τ , write τ

H
for the corresponding H-module ob-

tained by pullback via the natural projection H = F[[A2n]]#Sn → F[Sn], f ⋊w 7→
f(0) · w. Similarly, let Lτ denote the corresponding simple highest weight Hc-
module, the unique simple quotient of the standard Hc-module associated with τ ,
see [6],[2].

The results of Bridgeland-King-Reid [5] and Haiman [9], see also [4], provide an
equivalence of categories

BKR : Db(Coh(Hilb A2)) ∼−→ Db(k[A2n]#Sn-Mod), F 7→ RΓ(Hilb A2, P
L

⊗ F),

where P denotes the Procesi bundle, the ‘unusual’ tautological rank n! vector
bundle on Hilb A2 considered in [9]. Restricting this equivalence to the completion
of the zero fiber of the Hilbert-Chow map, and composing with the equivalence of
Corollary 1, one obtains the following composite equivalence

(4) Db(Ĥc,0- Mod) ∼−→ Db(Coh(Ĥilb
(1)

0 )) ∼−→ Db(H-Mod).

We recall that the equivalence of Corollary 1 involves a choice of splitting bundle
V0. This choice may be specified by the following

Conjecture 1. a) One can choose the splitting bundle V0 in such a way that

Γ(Hilb
(1)
0 ,V0(−1)) = Lsign.

b) With this choice of V0, the composite equivalence in (4) preserves the natural

t-structures, in particular, induces an equivalence Ĥc,0- Mod ∼−→ H- Mod, of abelian
categories, such that Lτ goes to τ

H
, for any simple Sn-module τ .

At the moment we are able to show, using Morita equivalences established in
[8], that the above Conjecture holds for c = 0, 1, 2, . . . . We can also prove that if

Conjecture 1 holds for c = 1
n + k, k = 1, 2, . . . , then Γ(Hilb

(1)
0 ,V0⊗BKR−1(triv

H
))

is an Hc-module obtained by reducing modulo p the unique finite dimensional ir-
reducible Hc-module constructed in [3] in case of characteristic zero. In particular,

for c = 1
n , we expect that Γ(Hilb

(1)
0 ,V0 ⊗BKR−1(triv

H
)) is a 1-dimensional vector

space that supports the trivial representation of the group Sn ⊂ Hc.
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Kashiwara’s crystals, semi-infinite Schubert varieties and enumerative
geometry

Alexander Braverman

(joint work with Michael Finkelberg, Dennis Gaitsgory and others)

Let g be a symmetrizable Kac-Moody Lie algebra over C which we shall assume
to be of either finite or affine type. Let also X denote the flag variety of g; this is
a scheme of not necessarily finite type. We also set Λ to be the coroot lattice of g

and Λ+ ⊂ Λ to be the sub-semigroup of positive coroots.
Given θ ∈ Λ+ one may consider the space Mθ classifying algebraic maps

P1 → X of degree θ and sending ∞ ∈ P1 to some fixed point x ∈ X (we shall
refer to this space as the space of based maps). The main purpose of this talk is
to exhibit some connections between the geometry ofMθ’s and the combinatorics
(and some representation theory) of the Lie algebra g∨ (this is the ”Langlands
dual” Lie algebra; by the definition its Cartan matrix is trnasposed to that of g)
and exhibit some application of such constructions to certain questions of enumer-
ative geometry. Here are some more specific examples of such connections.

Let Aθ denote the space of all ”colored” divisors of the form
∑
θizi where θi ∈

Λ+ and zi ∈ C such that
∑
θi = θ. We construct a natural map πθ :Mθ → Aθ.

In [3] we show that the set of irreducible components of ∪θπ
−1
θ (θ · 0) has a natural

structure of a crystal for the Lie algebra g∨; in this way we recover geometrically
the canonical crystal B(∞) (modelling in some sense the Verma module for g∨).
While doing this one is forced to introduce certain (partial) compactification of
Mθ (and also its prabolic analogs). When g is of finite type it is called the Drin-
feld compactification; it was studied extensively in [4] and [6]. In the affine case it
is closely related to the Uhlenbeck compactification of moduli spaces of principal
bundles on P2. In the finite case the singularities of these compactifications are
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supposed to model the singularities of the (not yet well-defined) semi-infinite Schu-
bert varieties. The local intersection cohomology of these varieties is described in
[6], [4] and [3]; it is again described in terms of the Lie algebra g∨. This is used
in [1] and [2] in order to give a representation-theoretic explanation of the results
of Givental-Kim about quantum cohomology of flag varieties as well as to prove a
conjecture of Nekrasov about partition functions of N=2 SUSY gauge theory.
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Gelfand–Zeitlin theory from the perspective of classical mathematics

Bertram Kostant

(joint work with Nolan Wallach)

Let M(n), for any positive integer n, denote the Lie (and associative) algebra of
all complex n×n complex matrices. Let P (n) be the graded commutative algebra
of all polynomial functions on M(n). The symmetric algebra over M(n), as one
knows, is a Poisson algebra. Using the bilinear form (x, y) = −tr xy on M(n) this
may be carried over to P (n), defining on P (n) the structure of a Poisson algebra
and hence the structure of a Poisson manifold on M(n). Consequently to each
p ∈ P (n) there is associated a holomorphic vector field ξp on M(n) such that

ξp q = [p, q]

where q ∈ P (n) and [p, q] is Poisson bracket.
For any positive integer k put d(k) = k(k+1)/2 and let Ik be the set {1, . . . , k}.

If m ∈ In we will regardM(m) (upper left-hand m×m corner) as a Lie subalgebra
of M(n). As a “classical mechanics” analogue to the Gelfand–Zeitlin commutative
subalgebra of the universal enveloping algebra of M(n), let J(n) be the subalgebra
of P (n) generated by P (m)Gl(m) for all m ∈ In. Then

J(n) = P (1)Gl(1) ⊗ · · · × P (n)Gl(n)



742 Oberwolfach Report 13/2005

In addition J(n) is a Poisson commutative polynomial subalgebra of P (n) with
d(n) generators. In fact we can write J(n) = C[p1, . . . , pd(n)] where, for x ∈M(n),
pi(x), i ∈ Id(n), “run over” the elementary symmetric functions of the roots of the
characteristic polynomial of xm, m ∈ In. Here and throughout, xm ∈ M(m) is
the upper left m×m minor of x. The algebraic morphism

(1) Φn : M(n)→ Cd(n) where Φn(x) = (p1(x), . . . , pd(n)(x))

plays a major role in this paper. Let be be the d(n)-dimensional affine space of all
x ∈M(n) of the form

(2) x =




a1 1 a1 2 · · · a1n−1 a1n

1 a2 2 · · · a2n−1 a2n

0 1 · · · a3n−1 a3n

...
...

. . .
...

...
0 0 · · · 1 ann




where ai j ∈ C are arbitrary. Elements x ∈ M(n) of the form (2) are called Hes-
senberg matrices. As a generalization of classical facts about companion matrices
we prove

Theorem 1. The restriction

(3) be → Cd(n)

of the map Φn is an algebraic isomorphism.

The real and imaginary parts of a complex number define a lexicographical
order in C. For any x ∈ M(n) and m ∈ In let Ex(m) = {µ1m(x), . . . , µmm(x)}
be the (increasing) ordered m-tuple of eigenvalues of xm, with the multiplicity as
roots of the characteristic polynomial. As a corollary of Theorem 1 one has the
following independence (with respect to m) of the eigenvalue sequences Ex(m).

Theorem 2. For all m ∈ In let E(m) = {µ1m, . . . , µmm} be an arbitrary m-
tuple with values in C. Then there exists a unique x ∈ be such that E(m) = Ex(m),
up to ordering, for all m ∈ In.

For any c ∈ Cd(n) letMc(n) = Φ−1
n (c) be the “fiber” of Φn over c. If x, y ∈M(n)

then x and y lie in the same fiber if and only if Ex(m) = Ey(m) for all m ∈ In.

Remark 3. Theorem 1 implies that Φn is surjective and asserts that be is a
cross-section of Φn. That is, to any c ∈ Cd(n) the intersection Mc(n) ∩ be consists
of exactly one matrix.

0.2. One of the main results of the present paper, Part I, of a two part paper,
concern the properties, of a complex analytic abelian groupA of dimension d(n−1)
which operates on M(n). One has

Theorem 4. The algebra J(n) is a maximal Poisson commutative subalgebra
of P (n). Furthermore the vector field ξp, for any p ∈ J(n), is globally integrable
on M(n), defining an analytic action of C on M(n). Moreover the fiber Mc(n) is
stable under this action, for any c ∈ Cd(n).
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If p(i), i ∈ Id(n) is any choice of generators of J(n) then the span of ξp(i) , i ∈
Id(n), is a commutative d(n−1)-dimensional Lie algebra a of analytic vector fields
on M(n). The Lie algebra a integrates to an action of a complex analytic group
A ∼= Cd(n−1) on M(n). In a sense A is very extensive enlargement of a group, for
the case where R replaces C, introduced in § 4 of [6]. However no diagonalizability,
compactness, or eigenvalue interlacing is required for the existence of A. In the
complex setting the second statement of Theorem 4 and the existence of the action
of A can be deduced from an iteration of Theorem 4.1 in [12]. The proof given
in the present paper is independent of the theory supporting Theorem 4.1 in [12]
and, among other things, leads to an explicit description of an arbitrary orbit A ·x
is terms the adjoint action of n − 1 abelian groups defined by x ∈ M(n). (see
Theorem 5) below.

For any x ∈ M(n) and m ∈ In let Zx,m ⊂ M(m) be the (obviously commu-
tative) associative subalgebra generated by xm and the identity of M(m). Let
Gx,m ⊂ Gl(m) be the commutative algebraic subgroup of Gl(n) corresponding
to Zx,m when the latter is regarded as a Lie algebra. The orbits of A are described
in

Theorem 5. Let x ∈ M(n). Consider the following morphism of nonsingular
irreducible affine varieties

(5) Gx,1 × · · · ×Gx,n−1 →M(n)

where for g(m) ∈ Gx,m, m ∈ In−1,

(6) (g(1), . . . , g(n− 1)) 7→ Ad (g(1) · · · g(n− 1))(x)

Then the image of (5) is exactly the A-orbit A · x.
If x ∈M(n) then dimA · x ≤ d(n− 1). We are particularly interested in orbits

of maximal dimension d(n − 1). We will now say that x is strongly regular if
(dpi)x, i ∈ Id(n), are linearly independent.

Theorem 6. Let x ∈M(n). Then the following conditions are equivalent.

(a) x is strongly regular

(b) A · x is an orbit of maximal dimension, d(n− 1)

(c) dimZx,m = m, ∀m ∈ In, and Zx,m ∩ Zx,m+1 = 0, ∀m ∈ In−1

Let M sreg(n) ⊂ M(n) be the Zariski open set of all strongly regular matrices.
Note that M sreg(n) is not empty since in fact be ⊂ M sreg(n). Theorem 5 for the
case where x ∈M sreg(n) is especially nice.

Theorem 7. Let x ∈M sreg(n). Then the morphism (5) is an algebraic isomor-
phism onto its image, the maximal orbit A · x. In particular A · x is a nonsingular
variety and as such

(7) A · x ∼= Gx,1 × · · · ×Gx,n−1

Let x ∈ M(n). Motivated by the Jacobi matrices which arise in the theory of
orthogonal polynomials on R, we will say that x satisfies the eigenvalue disjointness
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condition if, for any m ∈ In, the eigenvalues of xm have multiplicity one (so that
xm is regular semisimple in M(m)) and, as a set, Ex(m) ∩ Ex(m + 1) = ∅ for
any m ∈ In−1. Let MΩ(n) be the dense Zariski open set of such x ∈ M(n). One
readily has that MΩ(n) = Φ−1

n (Ω(n)) where Ω(n) is a dense Zariski open set in
Cd(n).

Theorem 8. One has MΩ(n) ⊂ M sreg(n). In fact if c ∈ Ω(n) then the entire
fiber Mc(n) is a single maximal A-orbit. Moreover if c ∈ Ω(n) and x ∈ Mc(n)
then Gx,m is a maximal (complex) torus in Gl(m), for any m ∈ In−1, so that
Mc(n) = A · x is a closed nonsingular subvariety of M(n) and as such

(8) Mc(n) ∼= (C×)d(n−1)

We apply the results above to establish, with an explicit dual coordinate system,
a commutative analogue of the Gelfand-Kirillov theorem for M(n). The function
field F (n) of M(n) has a natural Poisson structure and an exact analogue would be
to show that F (n) is isomorphic to the function field of a n(n−1)-dimensional phase
space over a Poisson central rational function field in n variables. Instead we show
that this the case for a Galois extension, F (n, e), of F (n). A immediate candidate
for “half” the coordinate system would be the functions pi, i ∈ Id(n). However
it soon becomes clear that one it is much more appropriate to use the eigenvalue
functions of the xm, m ∈ In, rather than elementary symmetric functions (pi) in
these eigenvalues. However one cannot consistently and globally define eigenvalue
functions ri on MΩ(n). However this can be done on a covering variety MΩ(n, e)
of MΩ(n). The covering map

πn : MΩ(n, e)→MΩ(n)

is a finite étale morphism admitting Σn, isomorphic to the direct product of the
symmetric groups Sm, m ∈ In, as deck transformations. Poisson bracket lifts to
the affine ring O(MΩ(n, e)) of MΩ(n, e) and to the function field F (n, e) (a Galois
extension of F (n) with Galois group Σn) of MΩ(n, e).

The Poisson vector fields ξri
on MΩ(n, e) integrate and generate a complex

algebraic torus, Ar
∼= (C×)d(n−1) which operates algebraically on MΩ(n, e)) and in

fact if MΩ(n, e, b) is the πn inverse image of be,Ω = be ∩MΩ(n) in MΩ(n, e), then
the map

Ar ×MΩ(n, e, b)→MΩ(n, e), (b, y) 7→ b · y

is an algebraic isomorphism. The natural coordinate system on Ar then carries
over to MΩ(n, e) defining functions sj ∈ O(MΩ(n, e)), j ∈ Id(n−1), when they
are normalized so that, for all j, sj is the constant 1 on MΩ(n, e, b). Poisson
commutativity [si, sj ] = 0 follows from a “Lagrangian” property of be established
in [11].
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Theorem 9. The image of the map

(9) MΩ(n, e)→ Cn
2

, z 7→ (r1(z), . . . , rd(n)(z), s1(z), . . . , sd(n−1)(z))

is a Zariski open set Y in Cn
2

and (9) is an algebraic isomorphism of MΩ(n, e)
with Y . Furthermore one has the following Poisson commutation relations:

(10)

(1) [ri, rj ] = 0, i, j ∈ Id(n)

(2) [ri, sj] = δi j sj , i ∈ Id(n), j ∈ Id(n−1)

(3) [si, sj ] = 0, i, j ∈ Id(n−1)

Noting that si vanishes nowhere on MΩ(n, e) one has r(i) ∈ O(MΩ(n, e)) for
i ∈ Id(n−1) where r(i) = ri/si. Replacing ri by r(i) in (2) one has the more familiar
phase space commutation relation [r(i), sj] = δi j . As a corollary of Theorem 9 one
has the following commutative analogue of the Gelfand-Kirillov theorem.

Theorem 10. One has a rational function field

(11) F (n, e) = C(r1, . . . rd(n), s1, . . . , sd(n−1))
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Dirac cohomology for Harish-Chandra modules

Pavle Pandžić

(joint work with Jing-Song Huang, David Renard)

Let G be a connected real reductive Lie group with a Cartan involution Θ and
a maximal compact subgroup K = GΘ. Let g0 = k0 ⊕ p0 be the corresponding
Cartan decomposition of the Lie algebra g0 of G, and write g = k ⊕ p for the
complexifications. The conjugation of g with respect to g0 is denoted by X 7→ X̄ .
Let B be a nondegenerate invariant symmetric bilinear form on g.

Let r be a reductive subalgebra of g such that B is nondegenerate on r. Then
B is also nondegenerate on s = r⊥, and there is an orthogonal decomposition
g = r ⊕ s. Examples of r include k and a Levi subalgebra l of any parabolic
subalgebra of g.

Let C(s) denote the Clifford algebra of s with respect to B. This algebra is
generated by an orthonormal basis Zi of s, with relations Z2

i = 1 and ZiZj =
−ZjZi if i 6= j. Kostant’s cubic Dirac operator [Ko2] is the element

D = D(g, r) =
∑

i

Zi ⊗ Zi −
1

2
⊗

∑

i<j<k

B([Zi, Zj], Zk)ZiZjZk

of U(g) ⊗ C(s), where U(g) denotes the universal enveloping algebra of g. It is
easy to see that D is independent of the choice of the orthonormal basis Zi and
r-invariant for the adjoint action of r on both factors of U(g)⊗ C(s).

The adjoint action of r on s defines a map r → so(s), where so(s) consists of
skew symmetric matrices in the basis Zi. On the other hand, so(s) embeds into
C(s) via Eij−Eji 7→

1
2ZiZj, where Eij denotes the matrix with all entries 0 except

the ij entry which is 1. The composition of these maps, α : r → C(s), defines an
embedding ∆ : r →֒ U(g)⊗ C(s) via ∆(X) = X ⊗ 1 + 1⊗ α(X). We denote ∆(r)
by r∆, the universal enveloping algebra of r∆ by U(r∆), and the center of U(r∆)
by Z(r∆).

Two main structural results related to the above setting are:

D2 = Ωg ⊗ 1− Ωr∆ + (||ρg||
2 − ||ρr||

2);(1)

z ∈ Z(g) ⇒ z ⊗ 1 = ζ(z) +Da+ aD,(2)

where Ωg and Ωr∆ denote the Casimir elements of Z(g) respectively Z(r∆), ρg and
ρr are the half sums of positive roots for g respectively r, ζ(z) is in Z(r∆), and
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a is some r-invariant element of U(g) ⊗ C(s). The equation (1) was first proved
in [P] for r = k; the general result is in [Ko2]. A slightly weaker version of (2)
was conjectured by Vogan [V1] for r = k and subsequently proved in [HP1]. The
result for general r as above is in [Ko3], and there are further generalizations in
the setting of noncommutative equivariant cohomology [AM], [Ku].

Vogan’s reason for conjecturing (2) was the following. LetX be a (g,K)-module
and let S be a spin module for C(s). The Dirac operatorD then acts on X⊗S, and
the Dirac cohomology of X is the r-module HD(X) = ker(D)

/
(im(D) ∩ ker(D)).

Then if HD(X) 6= 0 has r-infinitesimal character χ, it follows from (2) and the
explicit knowledge of ζ that X has g-infinitesimal character χ. To make sense of
this statement, let h ⊃ t be Cartan subalgebras of g respectively r, and consider
t∗ ⊂ h∗ by extending functionals on t by 0 on t⊥.

The motivation for studying representations with nonzero Dirac cohomology (in
r = k case) comes from the fact that among them there are many interesting unitary
representations. Among these are the discrete series representations, which were
constructed using Dirac operators ([P], [AS]), but also some not so well understood
representations.

In the following, let q = l ⊕ u be a θ-stable parabolic subalgebra of g. Then
r = l and s = u ⊕ ū are as above, and if we pick a basis ui of u with dual basis
u∗i = −θūi ∈ ū, we can write

D =


∑

i

u∗i ⊗ ui −
1

4
⊗

∑

i,j

[u∗i , u
∗
j ]uiuj


+


∑

i

ui ⊗ u
∗
i −

1

4
⊗

∑

i,j

[ui, uj ]u
∗
iu
∗
j


 .

Let C and C− denote the summands in the above formula. One checks that
C− induces the u-homology differential on X ⊗ S = X ⊗

∧
u (up to a constant

factor -2). Moreover, upon identifying X⊗
∧

u with HomC(
∧

ū, X), C induces the
ū-cohomology differential on this space.

If X is finite-dimensional, then HD(X) = kerD = kerD2 = kerC ∩ kerC−

can serve as a set of harmonic representatives for u-homology and ū-cohomology.
This was essentially shown in [Ko1], since the spin Laplacean used there is 2D2.
One should note here that there is a Hermitian inner product on X ⊗ S making
D self-adjoint, and that HD(X) equals H ·(ū, X) ∼= H·(u, X) up to a ρ-shift ρ(ū)
coming from comparing the spin and adjoint actions of l on S.

In [V2], Vogan asked if a similar result can be obtained for an irreducible unitary
module X . The purpose of our paper [HPR] is to give a positive answer to this
question in certain special cases. We use a positive definite Hermitian form on
X ⊗ S given as the tensor product of the given form on X with the form on S
obtained by extending the form −B(X, θȲ ) on u using the determinant.

Case 1. Suppose l = k; in particular, the pair (g, k) must be Hermitian. Then the
adjoint of C is C−, hence D is skew self-adjoint. Moreover, X⊗S decomposes as a
direct sum of eigenspaces for D2. It follows that kerD2 = kerD = kerC ∩kerC−,
that kerC± is the orthogonal of imC∓, and that X ⊗ S = kerD⊕ imC ⊕ imC−,
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kerC = kerD⊕ imC and kerC− = kerD⊕ imC−, which implies the desired result
in this case.

Case 2. Suppose l ⊂ k. In particular, the pair g and k must have equal rank. In
this case we can write D(g, l) = D(g, k) + ∆D(k, l), where ∆ : U(k) ⊗ C(s ∩ k) →
U(g) ⊗ C(s) is obtained from ∆ : k → U(g ⊗ p) mentioned earlier. The sum-
mands in this decomposition anticommute, hence D(g, l)2 = D(g, k)2 + ∆D(k, l)2.
This operator is not necessarily positive definite, but the related operator � =
−D(g, k)2 + ∆D(k, l)2 is. Using some easy linear algebra of anticommuting opera-
tors, we first conclude

Theorem 1. The cohomology of D(g, l) on X ⊗ S is equal to the cohomology of
∆D(k, l) acting on the cohomology of D(g, k) on X ⊗S(p) tensored with S(s∩ k).

One would like to similarly decompose C(g, l) as C(g, k)+∆C(k, l), and C−(g, l)
as C−(g, k)+∆C−(k, l), but this does not work in general, as some terms belonging
to C respectively C− get switched by ∆. The switched terms are zero when the
pair (g, k) is Hermitian. In this case, we can obtain a Hodge decomposition with
ker� as the set of harmonic representatives for ū-cohomology and u-homology.
Then we can pass to Dirac cohomology and finally obtain

Theorem 2. Let (g, k) be a Hermitian pair and let q = l⊕u be a θ-stable parabolic
subalgebra of g with l ⊂ k and u ⊃ p+. Then the Dirac cohomology of a unitary
(g,K)-module X with respect to D(g, l) is up to a modular twist by ρ(ū) equal to
ū-cohomology of X or to u-homology of X.

Even when they are “equal”, the Dirac cohomology and the corresponding nilpo-
tent Lie algebra cohomology still differ. Namely, the Dirac cohomology does not
have a Z-grading, only a Z2-grading. On the other hand, the Dirac cohomology
does not depend on the choice of u inside of s = l⊥. Finally, the two kinds of
cohomology have different homological properties.

Let us also mention that the statement of Theorem 2 holds for the discrete
series representations, even if (g, k) is not Hermitian. On the other hand, for a
Levi subalgebra of a parabolic in g = sp(4,C) corresponding to a short noncompact
root, one can calculate that the Dirac cohomology of the even Weil representation
of sp(4,R) with respect to D(g, l) is strictly larger than the ū-cohomology, which
is still equal to the u-homology.
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Enveloping algebras of Slodowy slices and the Joseph ideal

Alexander Premet

Let k be an algebraically closed field of characteristic 0 and let G be a simple
algebraic group over k. Let g = LieG and let (e, h, f) be an sl2-triple in g. Let
( · , · ) be the G-invariant bilinear form on g with (e, f) = 1 and define χ = χe ∈ g∗

by setting χ(x) = (e, x) for all x ∈ g. Let Oχ denote the coadjoint orbit of χ.
Let Hχ be the enveloping algebra of the Slodowy slice Se; see [7], [4], [2].

Recall that Hχ = Endg (Qχ)op where Qχ is a generalised Gelfand–Graev mod-
ule for U(g) associated with the sl2-triple (e, h, f). The module Qχ is induced
from a one-dimensional module kχ over a nilpotent subalgebra mχ of g such that
dimmχ = 1

2 dimOχ. The subalgebra mχ is (adh)-stable, all weights of adh on mχ

are negative, and χ vanishes on the derived subalgebra of mχ. The action of mχ

on kχ = k1χ is given by x(1χ) = χ(x)1χ for all x ∈ mχ.
Let zχ denote the stabiliser of χ in g. Let x1, . . . , xr be a basis of zχ such that

[h, xi] = nixi for some ni ∈ Z+. By [7, Theorem 4.6] to each basis vector xi one
can attach an element Θxi

∈ Hχ in such a way that the monomials Θi1
x1

Θi2
x2
· · ·Θir

xr

with (i1, i2, . . . , ir) ∈ Zr+ form a basis of Hχ over k. We say that the monomial

Θa1
x1

Θa2
x2
· · ·Θar

xr
has Kazhdan degree

∑r
i=1 ai(ni + 2) and denote by Hk

χ the span

of all monomials as above of Kazhdan degree ≤ k. Then {Hk
χ | k ∈ Z+} is an

increasing filtration of the algebra Hχ; see [7, (4.6)]. The corresponding graded
algebra grHχ is a polynomial algebra in grΘx1 , grΘx2 , . . . , grΘxr

which identifies
naturally with the coordinate ring of the special transverse slice Se = e+ Ker ad f
endowed with its Slodowy grading. We prove that there exists an associative
k[t]-algebra Hχ free as a module over k[t] and such that

Hχ/(t− λ)Hχ ∼=

{
Hχ if λ 6= 0,
U(zχ) if λ = 0

as k-algebras. Thus Hχ is a deformation of the universal enveloping algebra U(zχ).

For χ = (e, · ) we let Cχ denote the category of all g-modules on which x−χ(x)
acts locally nilpotently for all x ∈ mχ. Given a g-module M we set

Wh(M) := {m ∈M |x.m = χ(x)m (∀x ∈ mχ)}.
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It should be mentioned here that the algebra Hχ acts on Wh(M) via a canoni-

cal isomorphism Hχ
∼=

(
U(g)/Nχ

)ad mχ
where Nχ denotes the left ideal of U(g)

generated by all x − χ(x) with x ∈ mχ. In the Appendix to [7], Skryabin proved
that the functors V  Qχ ⊗Hχ

V and M  Wh(M) are mutually inverse equiv-
alences between the category of all Hχ-modules and the category Cχ; see also [4,
Theorem 6.1].

Skryabin’s equivalence implies that for any irreducible Hχ-module V the anni-
hilator AnnU(g)(Qχ⊗Hχ

V ) is a primitive ideal of U(g). By a classical result of Lie
Theory, the associated variety VA(I) of any primitive ideal I of U(g) is the closure
of a nilpotent orbit in g∗. Generalising a classical result of Kostant on Whittaker
modules we show that for any irreducible Hχ-module V the associated variety of
AnnU(g)(Qχ⊗Hχ

V ) contains the coadjoint orbit Oχ. In the most interesting case
where V is a finite dimensional irreducible Hχ-module we prove that

VA
(
AnnU(g)(Qχ ⊗Hχ

V )
)

= Oχ and Dim(Qχ ⊗Hχ
V ) =

1

2
dimOχ

where Dim(M) is the Gelfand–Kirillov dimension of a finitely generated U(g)-
module M . In particular, this implies that for any irreducible finite dimensional
Hχ-module V the irreducible U(g)-module Qχ ⊗Hχ

V is holonomic.

Let h be a Cartan subalgebra of g, and let Φ be the root system of g relative to
h. Let Π = {α1, . . . , αℓ} be a basis of simple roots in Φ, and let Φ+ be the positive
system of Φ relative to Π. If g is not of type A or C, there is a unique long root in
Π linked with the lowest root −α̃ on the extended Dynkin diagram of g; we call
it β. For g of type An and Cn we let β = αn. Choose root vectors eβ , e−β ∈ g

corresponding to roots β and −β such that (eβ , [eβ, e−β ], e−β) is an sl2-triple and
put hβ = [eβ , e−β].

We investigate the algebra Hχ in the case where (e, h, f) = (eβ, hβ , e−β). Then
Oχ = Omin, the minimal nonzero nilpotent orbit in g∗. We let H denote the
minimal nilpotent algebraHχ. One of our main objectives is to give a presentation
of H by generators and relations.

The action of the inner derivation adh gives g a short Z-grading

g = g(−2)⊕ g(−1)⊕ g(0)⊕ g(1)⊕ g(2), g(i) = {x ∈ g | [h, x] = ix}

with g(1)⊕ g(2) and g(−1)⊕ g(−2) being Heisenberg Lie algebras. One knows of
course that g(±2) is spanned by e±β , that zχ(i) = g(i) for i = 1, 2, and that zχ(0)
coincides with the image of the Lie algebra homomorphism

♯ : g(0) −→ g(0), x 7→ x−
1

2
(x, h)h

whose kernel kh is a central ideal of g(0). The graded component g(−1) has a basis
z1, . . . , zs, zs+1, . . . , z2s such that the zi’s with 1 ≤ i ≤ s (resp. s+ 1 ≤ i ≤ 2s) are
root vectors for h corresponding to negative (resp. positive) roots, and

[zi, zj ] = [zi+s, zj+s] = 0, [zi+s, zj ] = δijf, (1 ≤ i, j ≤ s).
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Moreover, in the present case we can choose mχ to be the span of f and the zi’s
with s+ 1 ≤ i ≤ 2s, an abelian subalgebra of g of dimension s+ 1 = 1

2 dimOmin.
We set z∗i := zi+s for 1 ≤ i ≤ s and z∗i := −zi−s for s+ 1 ≤ i ≤ 2s.

Let C denote the Casimir element of U(g) corresponding to the bilinear form
( · , · ). This form is nondegenerate on zχ(0), hence we can find bases {ai} and {bi}
of zχ(0) such that (ai, bj) = δij . Set ΘCas :=

∑
i Θai

Θbi
, a central element of the

associative subalgebra of H generated by the Lie algebra Θ(zχ(0)). We can regard
C as a central element of H .

By a well-known result of Joseph, outside type A the universal enveloping al-
gebra U(g) contains a unique completely prime primitive ideal whose associated
variety is Omin; see [5]. This ideal, often denoted J0, is known as the Joseph ideal
of U(g).

Theorem 1. The algebra H is generated by the Casimir element C and the sub-
spaces Θ(zχ(i)) for i = 0, 1, subject to the following relations:

(i) [Θx,Θy] = Θ[x,y] for all x, y ∈ zχ(0);

(ii) [Θx,Θu] = Θ[x,u] for all x ∈ zχ(0) and u ∈ zχ(1);

(iii) C is central in H;

(iv) [Θu,Θv] = 1
2 (f, [u, v])

(
C −ΘCas − c0

)

+ 1
2

∑2s
i=1

(
Θ[u,zi]♯ Θ[v,z∗i ]♯ + Θ[v,z∗i ]♯ Θ[u,zi]♯

)

for all u, v ∈ zχ(1), where c0 is a constant depending on g.

If g is not of type A then c0 is the eigenvalue of C on the primitive quotient

U(g)/J0. If g is of type An, n ≥ 2, then c0 = −n(n+1)
4 . If g is of type A1 then

H = k[C].

We study highest weight modules for the algebra H . Let Φe =
{α ∈ Φ |α(h) = 0 or 1}, and put Φ±e = Φe ∩ Φ± where Φ− = −Φ+. For i = 0, 1
put Φ±e,i = {α ∈ Φ±e |α(h) = i}. Note that zχ is spanned by he := h∩g(0)♯, by root

vectors eα with α ∈ Φe, and by e. Let h1, . . . , hl−1 be a basis of he, and let n±(i) be
the span of all eα with α ∈ Φ±e,i. Clearly, n+(0) and n−(0) are maximal nilpotent

subalgebras of g(0)♯. Let {x1, . . . , xt} and {y1, . . . , yt} be bases of n+(0) and n−(0)
consisting of root vectors for h. For 1 ≤ i ≤ s let γi (resp. γ∗i ) denote the root of
zi (resp. z∗i ), and put ui = [e, zi], u

∗
i = [e, z∗i ]. Then {u1, . . . , us, u

∗
1, . . . , u

∗
s} is a

k-basis of zχ(1).
Given λ ∈ h∗e and c ∈ k we denote by Jλ,c the linear span in H of all

t∏

i=1

Θli
yi
·
s∏

i=1

Θmi
ui
·
ℓ−1∏

i=1

(
Θhi
− λ(hi)

)ni · (C − c)nℓ ·
s∏

i=1

Θri

u∗

i
·
t∏

i=1

Θqi
xi

with
∑ℓ
i=1 ni+

∑t
i=1 ri+

∑s
i=1 qi > 0. Using Theorem 1 we show that Jλ,c is a left

ideal of H . We call the H-module ZH(λ, c) := H/Jλ,c the Verma module of level c
corresponding to λ. We show that ZH(λ, c) contains a unique maximal submodule
which we denote Zmax

H (λ, c). Thus to every (λ, c) ∈ h∗e × k there corresponds an
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irreducible highest weight H-module LH(λ, c) := ZH(λ, c)/Zmax
H (λ, c). It is fairly

easy to show that LH(λ, c) ∼= LH(λ′, c′) if and only if (λ, c) = (λ′, c′) and that any
irreducible finite dimensional H-module is isomorphic to exactly one of LH(λ, c)
with λ satisfying a natural integrality condition.

To determine the composition multiplicities of the Verma modules ZH(λ, c) we
link them with g-modules obtained by parabolic induction from Whittaker modules
for sl(2). Let sβ = eβ ⊕ khβ ⊕ kfβ and put

pβ := sβ + h +
∑

α∈Φ+ eα, nβ :=
∑
α∈Φ+\{β} keα, s̃β := he ⊕ sβ .

Let Cβ = ef+fe+ 1
2h

2 = 2ef+ 1
2h

2−h, a central element of U (̃sβ). Given λ ∈ h∗e
and c ∈ k we denote by Iβ(λ, c) the left ideal of U(pβ) generated by f−1, Cβ−c, all
h−λ(h) with h ∈ he, and all eγ with γ ∈ Φ+ \{β}. Let Y (λ, c) := U(pβ)/Iβ(λ, c),
a pβ-module with the trivial action of nβ. Regarded as an sβ-module, Y (λ, c) is
isomorphic to a Whittaker module for sl(2, k). Now define

M(λ, c) := U(g)⊗U(pβ) Y (λ, c).

Recall that each z∗i with i ≤ s is a root vector corresponding to γ∗i = −β−γi ∈ Φ+.
Let δ = 1

2 (γ∗1 + · · ·+ γ∗s ) and ρ = 1
2

∑
α∈Φ+ α. Since the restriction of ( · , · ) to he

is nondegenerate, for any η ∈ h∗e there is a unique tη ∈ he such that ϕ = (tη, · ).
Hence ( · , · ) induces a bilinear form on h∗e via (µ, ν) := (tµ, tν) for all µ, ν ∈ h∗e .
Given a linear function ϕ ∈ h∗ we denote by ϕ̄ the restriction of ϕ to he.

Theorem 2. Each g-module M(λ, c) is an object of the category Cχ. Furthermore,
Wh(M(λ, c)) ∼= ZH(λ+ δ̄, c+ (λ+ 2ρ̄, λ)) as H-modules.

Combined with Skryabin’s equivalence and the main results of Miličić–Soergel
[6] and Backelin [1], Theorem 2 shows that the composition multiplicities of the
Verma modules ZH(λ, c) can be computed with the help of certain parabolic
Kazhdan-Lusztig polynomials. This confirms in the minimal nilpotent case the
Kazhdan-Lusztig conjecture for finite W-algebras formulated by De Voss and
van Driel in [3].
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Invariants on multiplicity free symplectic representations

Friedrich Knop

Let G be a connected reductive group (everything over C). We reported on an
ongoing project to study Hamiltonian G-actions on symplectic varieties.

More precisely, let X be a smooth G-variety equipped with a G-invariant closed
non-degenerate 2-form ω. The action is called Hamiltonian if it admits a moment
map, i.e., a G-equivariant morphism m : X → g∗ (with g = LieG) such that

ω(ξ, ηx) = 〈m∗(ξ), η〉 for all x ∈ X, ξ ∈ Tx(X), η ∈ g.

For x ∈ X let A = gx be the tangent space of the G-orbit through x. Then ω
induces a non-degenerate symplectic form on Σx := A⊥/(A∩A⊥), the symplectic
slice at x. Then an equivariant Darboux theorem in the following form holds:

Theorem 1 ([4], 5.1). Let X be an affine Hamiltonian G-variety and Gx ⊆ X
a closed orbit. Then a formal neighborhood of Gx in X is uniquely determined
by the triple (H,Σ, a) where H = Gx is the isotropy group of X, Σ = Σx is the
symplectic slice at x, and a = m(x) ∈ g∗.

In the talk, I focused on the case when H = G and a = 0, i.e., when x is
a fixed point of G and the symplectic slice becomes a local model for the action.
Therefore, let from now on X be a finite dimensional representation of G, equipped
with a G-invariant symplectic form ω.

In that case one has a non-commutative deformation: let W(X) be the algebra
with generators X and relations xy − yx = ω(x, y) for all x, y ∈ X . This is the
Weyl algebra attached to X . The group G acts on it and we can consider the
invariant algebra W(X)G.

Definition 1. The symplectic representation is called multiplicity free if W(X)G

is commutative.

If U is any G-module then X = U ⊕X∗ is a symplectic representation. More-
over, the Weyl algebra W(X) can be identified with the ring D(U) of polynomial
coefficient differential operators on U . Moreover, D(U)G is commutative if and
only if the ring of polynomial functions O(U) is multiplicity free as a G-module.
This explains the terminology.

In the case at hand, the moment map is very concrete: let x ∈ X and η ∈ g.
Then 〈m(x), η〉 = 1

2ω(ηx, x). Then X is multiplicity free if “most” invariants are
pull-backs of invariants on g∗:

Theorem 2 ([5]). The symplectic representation X is multiplicity free if and only
if O(X)G is a finite over the ring of pull-backs m∗O(g∗)G.

Our main result says that multiplicity free symplectic representations are very
nice from an invariant theoretic point of view:

Theorem 3 ([5]). Every multiplicity free symplectic representation is cofree, i.e.,
the ring of invariants is a polynomial ring and the whole ring of functions is a free
module over the ring of invariants.
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This was previously known when X is of the form U ⊕ U∗, i.e., when X is a
cotangent bundle (see [2] or [3]). The technique is again to produce sufficiently
many “finite” sections of the quotient map. The main technical tool is a symplectic
generalization of the local structure theorem of Brion-Luna-Vust [1].

This local structure theorem yields also a very simple algorithm for deciding
the multiplicity freeness of a given symplectic representations. Subsequently, we
were able to completely classify all multiplicity free symplectic representations in
[6]. The following seven cases are arguably the most interesting ones since these
are the only series where the dimension of the ring of invariants is unbounded:

(1) G = Sp(2m)× SO(p), X = C2m ⊗ Cp.
(2) G = Sp(2m)× SO(p), X = (C2m ⊗ Cp)⊕ C2m.
(3) G = GL(m)×GL(n), X = U ⊕ U∗ with U = Cm ⊗ Cn.
(4) G = GL(m)×GL(n), X = U ⊕ U∗ with U = Cm ⊗ Cn ⊕ Cn.
(5) G = GL(n), X = U ⊕ U∗ with U = S2Cn.

(6) G = GL(n), X = U ⊕ U∗ with U =
∧2

Cn.

(7) G = GL(n), X = U ⊕ U∗ with U =
∧2

Cn ⊕ Cn.

Note that cases (1) and (3) are precisely Howe’s dual pairs. Cases (3), (5), and
(6) are related to certain symmetric spaces of hermitian type.

References

[1] M. Brion, D. Luna, Th. Vust, Espaces homogènes sphériques, Invent. Math. 84 (1986),
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Crystal structure on rigged configurations

Anne Schilling

There are (at least) two main approaches for solving solvable lattice models or spin
chain systems: the Bethe Ansatz [3] and the corner transfer matrix method [2].

In his 1931 paper [3], Bethe solved the Heisenberg spin chain based on the string
hypothesis which asserts that the eigenvalues of the Hamiltonian form certain
strings in the complex plane as the size of the system tends to infinity. The Bethe
Ansatz has been applied to many further models proving completeness of the Bethe
vectors. The eigenvalues and eigenvectors of the Hamiltonian are indexed by rigged
configuration. However, numerical studies indicate that the string hypothesis is
not always true [1].
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The corner transfer matrix (CTM) method was introduced by Baxter and labels
the eigenvectors by one-dimensional lattice paths. It turns out that these lattice
paths have a natural interpretation in terms of Kashiwara’s crystal base theory [7],
namely as highest weight crystal elements in a tensor product of finite-dimensional
crystals.

Even though neither the Bethe Ansatz nor the corner transfer matrix method
are mathematically rigorous, they suggest that there should be a bijection between
the two index sets, namely rigged configurations on the one hand and highest
weight crystal elements on the other hand. This is schematically indicated in the
following figure.

Configurations
      Rigged

Solvable Lattice
       Models

Highest Weight
    Crystals

Ansatz
 Bethe

     Bijection

CTM

For the special case when the spin chain is defined on Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ VµL
,

where Vµi
is the irreducible Gl(n) representation indexed by the partition (µi)

for µi ∈ N, a bijection between rigged configurations and semi-standard Young
tableaux was given by Kerov, Kirillov and Reshetikhin [10, 11]. This bijection
was proven and extended to the case when the µi are any sequence of rectangles
in [12]. The bijection has many amazing properties. For example it takes the
cocharge statistics cc defined on rigged configurations to the energy statistics D
defined on crystals. Let λ be a partition and B = Bµ1 ⊗Bµ2 ⊗ · · · ⊗BµL

a tensor
product of crystals where Bµi

is the crystal associated with Vµi
. Denoting the

set of rigged configurations of weight λ by RC(B, λ) and the set of highest weight
crystals by P(B, λ), we have the following theorem.

Theorem 1 ([12]). There is a bijection Φ : P(B, λ)→ RC(B, λ) such that D(b) =
cc(Φ(b)) for all b ∈ P(B, λ).

In particular, the bijection implies the following identity

(1) XB,λ(q) :=
∑

b∈P(B,λ)

qD(b) =
∑

(ν,J)∈RC(B,λ)

qcc(ν,J) =: MB,λ(q).

Since the sets in (1) are finite, these are polynomials in q. When all µi are single row
partition, these polynomials are none other than the Kostka–Foulkes polynomials.
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The generating function MB,λ(q) of rigged configurations leads fermionic for-
mulas. Fermionic formulas are explicit expressions for the partition function of the
underlying physical models which reflect the particle structure. For more details
regarding the background of fermionic formulas see [8, 9, 6].

On the crystal side, the highest weight crystals are only the tip of the ice-
berg. Underneath each highest weight crystal element sits a whole structure of
elements given by a crystal graph. A natural question that arises is whether one
can also extend the rigged configuration side and define a crystal structure on
rigged configurations. In this talk we discussed the answer to this question based
on unrestricted crystal paths P(B, λ) and an extension of rigged configuration
RC(B, λ) as defined in [4]. All details will appear in a forthcoming paper [5].
These results have application to the Bailey lemma, supernomial coefficients, and
box-ball systems.
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Quasi–Coxeter algebras, Dynkin diagram cohomology and quantum
Weyl groups

Valerio Toledano Laredo

I will begin by reviewing the construction of a flat connection ∇ on the Car-
tan subalgebra of a complex, simple Lie algebra g with simple poles on the root
hyperplanes and values in any finite-dimensional g–module V [4, 5, 6]. This con-
nection, which was obtained in joint work with J. Millson, is a generalisation of
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the (genus 0) Knizhnik–Zamolodchikov equations to configuration spaces of other
Lie types and of Cherednik’s rational Dunkl operators for the Weyl group W of g.
Its monodromy gives a one–parameter family of representations of the generalised
braid group BW of type W deforming the action of the (Tits extension of) W on
V .

I will then explain how the work of Drinfeld and Kohno on the KZ connection
leads one to conjecture that the monodromy of∇ is described by Lusztig’s quantum
Weyl group operators and sketch the recent proof of this conjecture [7]. One
of its key ingredients is the novel notion of quasi–Coxeter algebras, which are
to Brieskorn and Saito’s Artin groups what Drinfeld’s quasi–triangular, quasi–
bialgebras are to the classical braid groups. Time permitting, I will motivate
their definition by using De Concini and Procesi’s compactifications of hyperplane
complements which yields, in the case of the Coxeter arrangement of type An−1,
the moduli spaceM0,n+1 of stable, n+ 1–marked curves of genus zero [2, 3].

I will also describe the semi–classical analogue of this conjecture which, through
the work of Boalch [1], relates the De Concini–Kac–Procesi action of BW on the
Poisson–Lie group G∗ to the isomonodromic deformation of G–connections on the
punctured disk having a pole of order 2 at the origin.
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Quantum Groups, the loop Grassmannian, and the Springer resolution

Victor Ginzburg

(joint work with Sergey Arkhipov, Roman Bezrukavnikov)

We establish equivalences of the following three triangulated categories:

Dquantum(g) ←→ DG
coherent(Ñ ) ←→ Dperverse(Gr).

Here, Dquantum(g) is the derived category of the principal block of finite dimen-
sional representations of the quantized enveloping algebra (at an odd root of unity)

of a complex semisimple Lie algebra g; the category DG
coherent(Ñ ) is defined in

terms of coherent sheaves on the cotangent bundle on the (finite dimensional)
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flag manifold for G (= semisimple group with Lie algebra g), and the category
Dperverse(Gr) is the derived category of perverse sheaves on the Grassmannian
Gr associated with the loop group LG∨, where G∨ is the Langlands dual group,
smooth along the Schubert stratification.

The equivalence between Dquantum(g) and DG
coherent(Ñ ) is an ‘enhancement’ of

the known expression (due to Ginzburg-Kumar) for quantum group cohomology in

terms of nilpotent variety. The equivalence betweenDperverse(Gr) andDG
coherent(Ñ )

can be viewed as a ‘categorification’ of the isomorphism between two completely
different geometric realizations of the (fundamental polynomial representation of
the) affine Hecke algebra that has played a key role in the proof of the Deligne-
Langlands-Lusztig conjecture. One realization is in terms of locally constant func-
tions on the flag manifold of a p-adic reductive group, while the other is in terms
of equivariant K-theory of a complex (Steinberg) variety for the dual group.

The composite of the two equivalences above yields an equivalence between
abelian categories of quantum group representations and perverse sheaves. A
similar equivalence at an even root of unity can be deduced, following Lusztig
program, from earlier deep results of Kazhdan-Lusztig and Kashiwara-Tanisaki.
Our approach is independent of these results and is totally different (it does not
rely on representation theory of Kac-Moody algebras). It also gives way to prov-
ing Humphreys’ conjectures on tilting Uq(g)-modules, as will be explained in a
separate paper.

Richardson elements and birationality questions

Karin Baur

(joint work with Nolan Wallach)

Let G be a semisimple connected, simply-connected algebraic group over C,
fix T ⊂ B ⊂ G a maximal torus resp. a Borel subgroup. Let P be a parabolic
subgroup of G with Levi decomposition P = M ·N (Levi factor times the corre-
sponding unipotent radical). We denote the Lie algebras with the corresponding
gothic letters (with h = LieT , p = m⊕ n).

A fundamental theorem of Richardson states that the action of P on the Lie
algebra of U has always a dense orbit, called the orbit of Richardson elements. In
terms of the Lie algebras: there exists an element x ∈ n such that [p, x] = n.

We recall that for P there exists H ∈ h such that ad(H) has integral eigen-
values on g, giving g = ⊕j∈Zgj with p = ⊕j≥0gj , m = g0 and n = ⊕j>0gj , the
corresponding nilradical.
Motivation 1: Vanishing Theorem of Lynch.

To any x ∈ g1 corresponds a character of the opposite nilradical n = ⊕j<0gj :
ψ = ψx : n→ C via Y 7→ iB(x, Y ) where B is the Killing form.

Let V be any g− module. We define an action of n on V by πψ(Y )(v) =
Y v − ψ(Y )v (Y ∈ n, v ∈ V ) and denote this n-module by V ⊗C−ψ. Assume that
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for each v ∈ V there exists k = k(v) such that πψ(Y )kv = 0 for all Y ∈ n. Then
the following holds:
Theorem (Lynch [6]).

If x is a Richardson element we have Hi(n, V ⊗ C−ψ) = 0 for all i > 0.

Motivation 2: Multiplicity one for Whittaker vectors.
With subscript R we denote the real forms of the groups, Lie algebras. To

x ∈ (g1)R there corresponds a unitary character χ : NR → S1 via χ(expY ) =

eiB(x,Y ) (Y ∈ nR). Set I∞(σ) := {C∞ functions of IndGR

PR
(σ)} (with the C∞-

topology) where (σ,Hσ) is a finite dimensional irreducible representation of PR.
Let Whχ(I

∞(σ)) be the space of continuous linear maps T on I∞(σ) satisfying
T (π(n))f = χ(n)−1T (f), Whχ(I

∞(σ)) is called the space of generalized Whittaker
vectors1. Then the following holds:
Theorem (Wallach [8]).

If the associated moment map mP : T ∗(G/P )→ g∗ is birational onto its image
and if furthermore x is a Richardson element, we have

dimWhχ(I∞(σ)) = dimHσ.

These two results explain why it is important to understand parabolic subgroups
P for which there exists a Richardson element in g1 and such that Px = Gx (which
is equivalent to the birationality of the induced moment map mP onto its image).

An important tool in understanding the stabilizersGx, Px is a “normal form” for
Richardson elements (in g1). We give a Richardson element x ∈ g1 with minimal
support in R+ (the positive roots of g). Minimal in the sense that supp(x) has as
few roots as possible. E.g. if P = B then supp(x) consists of all simple roots. For
more general parabolic subalgebras, the support of a general Richardson element
contains all roots of g1, so is far from being minimal.

We say that the support supp(x) is a simple system of roots if for any two
α, β ∈ supp(x), α− β is not in R+ \R+

M , (i.e. is not a root of the subsystem given
by supp(x)). In the optimal case, supp(x) is a simple system of roots.

The Heisenberg parabolic subalgebra of C2 is an example where there exists a
Richardson element x in g1 (take for instance x = xα1) but where Px 6= Gx. On
the other hand, any parabolic subgroup of GLn satisfies Px = Gx (x Richardson)
since in that case, Gx is connected. But the parabolic subalgebra of sl5 where the
simple roots of the Levi factor are α1 and α4 has no Richardson element in g1.

A theorem of Broer says that if the simple roots of the Levi factor M are
pairwise orthogonal and short, then the induced moment map is birational onto
its image Gn. Furthermore, Gn is normal [3].

Let us recall what is already known:

(i) There exist classifications of parabolic subalgebras in simple Lie algebras
such that there is a Richardson element in g1. Cf. [2], [5] and [6].

(ii) In his paper [7], Hesselink has given a formula for |Gx/Px| for nilpotent x
in the classical case (in terms of the partition of x).

1π is the G action by right multiplication, (π(g)f)(x) = f(xg)
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We now present the main class of parabolic subalgebras that have a Richardson
element in g1 and such that Px = Gx for Richardson elements. To do so, we
introduce the following notion:

Let p = ⊕j≥0gj be a parabolic subalgebra, where the grading on g is given by
H ∈ h. We say that p (or P ) is given by an sl2-triple if there exists a nonzero
x ∈ g1 such that the sl2-triple of x is {x, 2H, y} (for some y ∈ g). Note that in that
case, x is a Richardson element for p. In this case we also get the birationality of
the moment map:
Theorem (cf. [7] for the classical case).

Let P ⊂ G be a parabolic subgroup of G. If p is given by an sl2-triple then
Gx = Px.

The natural question we can ask here is the following:
Question:

If there is a Richardson element x ∈ g1 and if Px = Gx does it follow that P is
given by an sl2-triple?

The answer is no for type An, yes for types Bn, Cn, G2, F4, mostly yes for Dn. Con-
jecturally, in case G = En, all P with a Richardson element in g1 satisfy Gx = Px
(x Richardson). For En there are such P that are not given by an sl2-triple.

Normal forms of Richardson elements.
Now we describe the normal forms of Richardson elements. We start with type

An which can already be found [4]. A parabolic subgroup P is given by a dimension
vector d1, . . . , dr of the block lengths of the standard Levi factor. One can show
that p has a Richardson element in g1 if and only if d1 ≤ · · · ≤ ds ≥ · · · ≥ dr
(unimodality of (d)). Furthermore, p is given by an sl2-triple if and only if d
is unimodal and di = dr+1−i for all i (symmetry of (d)). So the set of parabolic
subalgebras given by an sl2-triple is much smaller than the ones with a Richardson
element x in g1 and Px = Gx (which is no restriction in type An).

The first graded part g1 consists of the sequence of blocks gi,i+1 of size di×di+1

on the first superdiagonal. We construct a Richardson element x(d) by choosing
an identity matrix of size di × di in the upper left corner of gi,i+1 and zeroes else,
as in the first picture below. The support of x(d) forms a simple system of roots2.
It is of the form (GLλs

)× · · · × (GLλ1) where λ is the dual of the partition given
by {d1, . . . , dr}.

Here we illustrate the normal forms for Richardson element for the dimension
vectors d = (2, 3, 1) for sl6, and d = (3, 4, 3) for sp10 resp. for so6 (To define the
other classical groups we use the form given by the skew diagonal matrix Jn resp.
by the matrix having Jn in the upper right corner and −Jn in the lower left corner
for the special orthogonal resp. the symplectic group). Explicit descriptions of the

2i.e. if α and β are roots of the S := suppX(d) then α − β is not a root of S
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construction can be found in [1] (also for exceptional Lie algebras).




· · 1 0 0
· · 0 1 0

· · · 1
· · · 0
· · · 0

·







· · · 1
· · · 1 0
· · · 0 1

· · · · −1 0
· · · · 0 −1
· · · ·
· · · · −1

· · ·
· · ·
· · ·







· 1 0 0 1
· · · · −1
· · · · 0
· · · · 0
· · · · −1

·




These examples illustrate the phenomenon that roughly speaking for the symplec-
tic Lie algebras, the Richardson element uses small identity matrices of size ⌊di/2⌋
resp. ⌈di/2⌉ in the upper left resp. lower right corner. For the orthogonal Lie
algebras, they are often both of size ⌈di/2⌉.
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Tensor product structure of affine Demazure modules and limit
constructions

Ghislain Fourier

(joint work with Peter Littelmann)

Let g be a simple complex Lie algebra, we denote by ĝ the untwisted affine Kac–
Moody algebra associated to the extended Dynkin diagram of g. Let Λ0 be the
fundamental weight of ĝ corresponding to the additional node of the extended
Dynkin diagram. Let P∨ be the coweight lattice of g. An element λ∨ in the
coroot lattice, can be viewed as an element of the affine Weyl group W aff , and
one can associate to λ∨ the Demazure submodule Vλ∨(Λ) of V (Λ), Λ dominant,
integral for Lhg. Actually, this construction generalizes to arbitrary λ∨ ∈ P∨ in

the following way: one can write λ∨ as wσ ∈ W̃ aff in the extended affine Weyl
group, where w ∈ W aff and σ corresponds to an automorphism of the Dynkin
diagram of ĝ. Denote by Vλ∨ (Λ) the Demazure submodule Vw(σΛ).
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If λ∨ is a dominant coweight, then the Demazure module V−λ∨(mΛ0) is in fact
a g–module, and it is interesting to study its structure as g–module. We write
V −λ∨(mΛ0) for the Demazure module viewed as a g–module.

A first reduction step is the following theorem describing the Demazure module
as a tensor product. Such a decomposition formula for Demazure modules was
first observed by Sanderson in the affine rank two case. We provide a description
of the Demazure module as a tensor product of modules of the same type, but for
“smaller coweights”. More precisely, let λ∨ be a dominant coweight and suppose
we are given a decomposition λ∨ = λ∨1 +λ∨2 + . . .+λ∨r of λ∨ as a sum of dominant
coweights. The theorem is a generalization of a result by Magyar, who proved this
statement in the case m = 1 and under the additional assumption that all the λ∨i
are minuscule fundamental weights, and the decomposition formulas by the Kyoto
school where in the framework of perfect crystals for classical groups many cases
have been discussed.

Theorem 1. For all m ≥ 1, we have an isomorphism of g–representations between
the Demazure module V −λ∨(mΛ0) and the tensor product of Demazure modules:

V −λ∨(mΛ0) ≃ V −λ∨

1
(mΛ0)⊗ V −λ∨

2
(mΛ0)⊗ · · · ⊗ V −λ∨

r
(mΛ0).

Of course, to analyse the structure of V −λ∨(mΛ0) as a g–module, the sim-
plest way is to take a decomposition of λ∨ as a sum of fundamental coweights
λ∨ =

∑
biω
∨
i . So by Theorem 1, it remains to describe the structure of the

V −ω∨

i
(mΛ0) as a g–module. We give such a description in our article for all fun-

damental coweights for the classical groups. For the exceptional groups we give
the decomposition in the cases interesting for the limit constructions considered
later.
There is a very interesting conjectural connection with certain U ′q(ĝ)–modules,

called Kirillov-Reshetikhin modules. Here U ′q(ĝ) denotes the quantized affine al-
gebra without derivation.

Let c∨k = ak

a∨
k

and l ∈ N. Let W (lc∨kωk) be the Kirillov-Reshitikhin–module

associated to the weight lc∨kωk. It is conjectured that the W (lc∨kωk) admits a
crystal bases (moreover it is a perfect crystal) and that the crystal is isomorphic
to the crystal of a Demazure module, after omitting the 0–arrows in both crystals.

Chari, Kleber and the Kyoto school have calculated for classical Lie-algebras
and some fundamental coweights for non-classical Lie-algebras the decomposition
of the Kirillov–Reshetikhin module W (lc∨kωk)) into irreducible Uq(g)–modules.
By comparing the Uq(g)–structure of the Kirillov–Reshetikhin module W (lc∨kωk))
with our list of Demazure modules, we conclude:

Corollary 2. In classical case (and for the non-classical case calculated by our-
selves) the Demazure module (V −ω∨,q(mΛ0)) and the Kirillov–Reshetikhin module
W (lc∨kωk

∗) are, as Uq(g)–modules, isomorphic.

Let Λ be an arbitrary dominant integral weight for ĝ. The ĝ–module V (Λ) is
the direct limit of the Demazure-modules V−Nλ∨(Λ) for some dominant, integral,
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nonzero coweight of g. We give a construction of the g–module V (Λ) as a direct
limit of tensor products of Demazure modules. This has been done before in
the case of classical Lie-algebras by the Kyoto school via the theory of perfect
crystals. In addition they have also considered some special weights in the case of
non-classical groups. For G2, such a construction has been given by Yamane. For
the Lie algebras of type E6 and E7 a construction (only for the case Λ = Λ0) was
given by Magyar using the path model.

We provide such a direct limit construction for arbitrary simple Lie algebras g.
Let Λ be a dominant, integral weight for ĝ, then we can write Λ = rΛ0 + λ with
λ dominant, integral for g.

Let W be the g-module W := V −θ∨(rΛ0), where θ is the highest root of g,
we showed that W contains a unique one-dimensional submodule. Fix w 6= 0 a
g-invariant vector in W . Let V (λ) be the irreducible g-module with highest weight
λ and define the g-module V∞λ,r to be the direct limit of:

V∞λ,r : V (λ) →֒ W ⊗ V (λ) →֒W ⊗W ⊗ V (λ) →֒W ⊗W ⊗W ⊗ V (λ) →֒ . . .

where the inclusions are always given by taking a vector u to its tensor product
u 7→ w ⊗ u with the fixed g-invariant vector in W .

Theorem 3. For any integral dominant weight Λ of ĝ, Λ = rΛ0+λ, the g-modules
V∞λ,r and V (Λ) are isomorphic.

Remark 1. The choice of W is convenient because it avoids case by case con-
siderations. But, in fact, one could choose any other module W = V−µ∨(rΛ0)

⊗m,
where V−µ∨(rΛ0) is the Demazure module for a dominant integral coweight µ∨

and m is such that V−µ∨(rΛ0)
⊗m contains a one-dimensional submodule.

References

[1] V. Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Internat.
Math. Res. Notices 2001, no.12, 629-654.

[2] G. Fourier and P. Littelmann, Tensor product decomposition of affine Demazure modules
and limit construction, preprint 2005

[3] G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Z. Tsuboi, Paths, crystals and fermi-
onic formula, MathPhys Odyssey 2001-Integrable Models and Beyond In Hormor of Barry
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A note on characters of tilting modules

Oleksandr Khomenko

Let K be an algebraically closed field of characteristic p > 0 and let G be a semi-
simple split connected simply connected algebraic group over K. Fix a maximal
torus T in G and a Borel subgroup B ⊂ G containing T . LetR ⊂ R+ = −R(B, T )
be the root system of G and the subset of positive roots, and let h be the coxeter
number of G.

An important topic in the representation theory of algebraic groups is the study
of simple modules L(λ) over split semi-simple reductive algebraic groups over
fields of prime characteristic. A formula (or rather an algorithm) for computing
the above multiplicities was conjectured by Lusztig. In [1] Lusztig’s conjecture
is proved for p ≫ 0. However at the moment, it is not known whether Lusztig
conjecture holds in a given characteristic or not.

An important special case of the discussed problem was considered by Soergel
in [2]. He introduced a category O which is a subquotient category of G-mod,
so called “regular subquotient around the Steinberg point”. This category carries
the information about the multiplicities [H0(st + xρ) : L(st + yρ)] for x, y ∈ W
where W is the Weyl group of G, ρ is half the sum of positive roots of R, and
st = (p−1)ρ is the Steinberg weight. If p > h then the validity of Lusztig conjecture
over K in this case follows from the decomposition theorem for certain intersection
cohomology sheaves on flag varieties with coefficients in K (at the moment this
theorem is available only for char K≫ 0).

Soergel’s construction can not be directly applied to study simple and tilting
modules which are “near” the wall of the dominant chamber. Here we report on the
further investigation of Soergel’s “regular subquotient”O in a slightly more general
context. First, we enable taking subquotients around arbitrary point λ ∈ X(T )
(in particular on the walls of the dominant chamber). Second, we study not only
rational representations of G but also representations of Frobenius kernels Gr.
Following Soergel we define subquotient categories OA,λ for λ ∈ X(T ) and A is
either the algebra of distributions Dist(G) on G or on Dist(Gr) supported in the
neutral element. First we present the following

Theorem 1. Assume that p > 2h is such that the decomposition theorem holds
for intersection cohomology sheaves with coefficients in K on complex Schubert
varieties associated to Langland dual group of G. Let λ ∈ X(T ) be such that λ+ ρ
is dominant, Ws = StabWp

λ, and Wp = {w ∈ Ws | w(λ + ρ) is non-dominant}.

Then the Grothendieck group of the category ODist(G),λ is equal to the Grothendieck
group of the regular block in the parabolic subcategory Op of Bernstein-Gelfand-
Gelfand category O for a semi-simple complex finite dimensional Lie algebra f with
Weyl group Ws and parabolic subalgebra p ⊂ f corresponding to Wp ⊂Ws.

The above theorem provides some information about characters of tilting mod-
ules for G. Let q ∈ C be a primitive p-th root of 1 and Uq be the quantum group
associated to Lie(G).



Enveloping Algebras and Geometric Representation Theory 765

Theorem 2. Let p be as in Theorem 1, and λ ∈ X(T ) be dominant. The character
of the tilting G-module with highest weight λ coincides with the character of the
tilting Uq-module with highest weight λ modulo the characters of tilting Uq-modules
with highest weights in facette whose closure do not intersect the closure of the
facette containing λ.

Note that the characters of tilting Uq-modules are known by [1, 3].
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An application of free Lie algebras to current algebras

Jacob Greenstein

(joint work with Vyjayanthi Chari)

Let a be a Lie algebra satisfying a = [a, a]. Then a acts naturally on its free
Lie algebra F (a). Let F = a ⊕ F (a) be the semi-direct product of Lie algebras
corresponding to that action. We use a “graded version” of the canonical Lie
algebra homomorphism τ : F (a)→ a to construct a surjective homomorphism τ [t]
of graded Lie algebras of F onto the current algebra a[t] = a⊗C[t], thus obtaining
a new realization of the current algebra.

We use this realization to describe the set of isomorphism classes of a[t]-module
structures extending a given a-module structure. On the other hand, this real-
ization allows one to associate to an a[t]-module V a two-sided ideal I(V ) in the
tensor algebra T (a), which is invariant under the natural action of a on T (a) and
contains the kernel of τ [t]. Conversely, such an ideal I corresponds to a canonical
a[t]-module structure on T (a)/I arising from the left multiplication.

Similarly, any a[t]-module M satisfying (x ⊗ t2)M = 0 for all x ∈ a gives rise
to an a-invariant ideal I(M) in the symmetric algebra S(a) and to any a-invariant
ideal I in S(a) corresponds a canonical a ⊗ C[t]/(t2)-module structure on S(a)/I
arising from multiplication. In particular, for a = g simple and finite dimensional,
this shows that the ring of regular functions on a G-invariant variety in g∗ always
admits a g[t]-module structure. Since classical limits of Kirillov-Reshetikhin g[t]-
modules ([2]) are actually g⊗C[t]/(t2)-modules for g of classical types ([1]), they
can be obtained using our construction. Also, for any self-dual g-module V , a

construction of Kostant ([3]) gives a homomorphism of g-modules g →
∧2

V ,
which allows us to define a g[t]-module structure on

∧∗ V . Classical limits of
fundamental Kirillov-Reshetikhin modules for g of type Dn can be obtained this
way.
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Equivariant sheaves and Lie superalgebras

Vera Serganova

(joint work with M. Duflo)

We suggest a notion of associated variety for a module over a Lie superalgebra.
This is a superanalogue of an associated variety for Harish-Chandra modules.
Associated varieties have many interesting applications in classical representation
theory (see, for example, [2, 3, 4]).

An associated variety for a Lie superalgebra is a subvariety of a cone X ⊂ g1 of
self-commuting odd elements. This cone X was studied by Caroline Gruson, see
[5, 1, 6]. She used geometric properties of X to obtain important results about
cohomology of Lie superalgebras.

Let g = g0 ⊕ g1 be a finite-dimensional Lie superalgebra, G0 denote a simply-
connected connected Lie group with Lie algebra g0. Let

X = {x ∈ g1 | [x, x] = 0} .

It is clear that X is a G0-invariant Zariski closed cone in g1. Let M be a g-module.
For each x ∈ X put Mx = Kerx/xM and define

XM = {x ∈ X |Mx 6= 0} .

We call XM the associated variety of M . If M is a finite-dimensional g-module,
then XM is a Zariski closed G0-invariant subvariety. The following properties of
XM are easy to check

(1) If M = U (g)⊗U(g0) M0 for some g0-module M0, then XM = {0};
(2) If M is trivial, then XM = X ;
(3) For any g-modules M and N , one has XM⊕N = XM ∪XN ;
(4) For any g-modules M and N , one has XM⊗N ⊂ XM ;
(5) For any finite-dimensional g-module M , XM∗ = XM ;
(6) For any x ∈ X , sdim M =sdim Mx.

Let OX denote the structure sheaf of X . Then OX ⊗M is the sheaf of sections
of a trivial vector bundle with fiber isomorphic to M . Let ∂ : OX ⊗M → OX ⊗M
be the map defined by

∂ϕ (x) = xϕ (x)
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for any x ∈ X , ϕ ∈ OX ⊗M . Clearly ∂2 = 0 and the cohomology M of ∂ is a
quasi-coherent sheaf on X . If M is finite-dimensional, then M is coherent.

For any x ∈ X denote by Ox the local ring of x, by Ix the maximal ideal. Then
the fiber Mx is the the cohomology of ∂ : Ox ⊗M → Ox ⊗M . The evaluation
map jx : Ox ⊗M →M satisfies jx ◦ ∂ = x ◦ jx. Hence we have the maps

jx : Ker ∂ → Kerx, jx : Im ∂ → xM.

One can easily check that the latter map is surjective. Therefore jx induces the
map j̄x :Mx →Mx, and Im j̄x ∼=Mx/IxMx.

Lemma 1. Let M be a finite-dimensional g-module. The support of M is con-
tained in XM . The map j̄x is surjective for a generic point x ∈ X. In particular,
if XM = X, then suppM = X.

Corollary 1. Let x ∈ X be a generic point, then in some neighborhood U of x,
the sheafMU coincides with the sheaf of sections of a vector bundle with fiber Mx.

Let F be the category of finite-dimensional g-modules semisimple over g0. The
latter condition is automatic if g0 is semisimple.

Theorem 1. Assume that g0 is a reductive Lie algebra and elements of X span
g1. Then M ∈ F is projective iff XM = {0}.

Let g be a contragredient finite-dimensional Lie superalgebra with indecompos-
able Cartan matrix, i.e. g is isomorphic to one from the following list: sl (m|n) if
m 6= n, gl (n|n), osp (m|2n), D (α), F4 or G3. Let S denote the family of sets of
linearly independent mutually orthogonal isotropic roots of g and Sk denote the
family of such k-element subsets. The Weyl group W acts on S and Sk in the
natural way.

Theorem 2. There are finitely many G0-orbits on X. These orbits are in one-to
one correspondence with W -orbits in S.

An element x ∈ X has rank k if its G0-orbit corresponds to a W -orbit in Sk.
The maximal number of isotropic mutually orthogonal linearly independent

roots is called the defect of g. This notion was introduced in [7]. One can see that
the defect of g is equal to the dimension of maximal isotropic subspace in h∗. All
exceptional Lie superalgebras has defect 1. The defect of sl (m|n) is min (m,n),
the defect osp (2l+ 1|2n) and osp (2l|2n) is min (l, n). One can check that the rank
of any element x ∈ X is not greater than the defect of g.

Theorem 3. Let d be the defect of g. Then the irreducible components of X
are in bijection with W -orbits on Sd. If all odd roots of g are isotropic, then the

dimension of each component equals dim g1

2 = |∆1|
2 .

Let Z denote the center of the universal enveloping algebra U (g). Define the
Harish-Chandra homomorphism as for Lie algebras. Then every weight λ ∈ h∗

defines a central character χλ : Z → C. The degree of atypicality of χ = χλ is
k if the maximal set of isotropic linearly independent mutually orthogonal roots
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orthogonal to λ+ ρ has k elements. (Here ρ is the half sum of positive even roots
minus the half-sum of positive odd roots.)

Theorem 4. Let g be a contragredient simple Lie superalgebra, M be a g-module
which admits a central character χ, the degree of atypicality of χ be equal to k. Let
Xk be the set of all elements of rank k. Then XM ⊂ X̄k.

Theorem 5. Let g = gl (m|n) or sl (m|n), M be an irreducible finite-dimensional
g-module which has a central character with degree of atypicality k. Then XM =
X̄k.

Now we discuss properties of the fiber Mx over a point x ∈ XM . Let Cg (x) be
the centralizer of x ∈ X , then by definition gx = Cg (x) / [x, g].

Lemma 2. The subspace [x, g] is an ideal in Cg (x). Let m⊥ denote the orthogonal

complement to m with respect to the invariant form on g. Then [x, g]⊥ = Cg (x).

Lemma 3. Mx is a Cg (x)-module trivial over [x, g].

Theorem 6. Let M admit a central character with degree of atypicality k, and
x ∈ Xk. Then gx-module Mx admits a typical central character. In particular, if
Mx is finite dimensional, it is semi-simple over gx, and therefore over Cg (x).

The properties of Mx allow one to say something about the superdimension and
supercharacter of M . First, observe that sdim Mx =sdim M . Therefore

Lemma 4. If XM 6= X, then sdim M = 0. In particular, if a finite-dimensional
module M admits a central character whose degree of atypicality is less than the
defect of g, then sdim M = 0.

Now let M be a finite-dimensional g-module and h ∈ h. Write

chM (h) = strM
(
eh

)
.

Obviously, chM is a W -invariant analytic function on h. We can write the Taylor
series for chM at h = 0

chM (h) =
∞∑

i=0

pi (h) ,

where pi (h) is a homogeneous polynomial of degree i on h. The order of chM at
zero is by definition the minimal i such that pi 6≡ 0.

Theorem 7. Assume that all odd roots of g are isotropic. Let M be a finite-
dimensional g-module, s be the codimension of XM in X. The order of chM at
zero is greater or equal than s. Moreover, the polynomial ps (h) in the Taylor series
for chM is determined uniquely up to proportionality.
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Elliptic curves and canonical bases

Olivier Schiffmann

(joint work with I. Burban)

One of the oldest and still most fundamental objects in representation theory and
combinatorics is the ring of symmetric (Laurent) polynomials

Λ = C[x±1
1 , x±1

2 , . . .]S∞ := Lim
←−

C[x±1
1 , . . . , x±1

r ]Sr .

This ring is well-known to admit numerous algebraic and geometric realizations,
but one of the historically first constructions, which dates back to the work of
Steinitz in 1900, later completed by P. Hall, is in terms of what is now called the
classical Hall algebra H (see [Mac] , Chapter III ). This algebra has a defining ba-
sis consisting of isomorphism classes of abelian q-groups (for a fixed prime power
q), and the structure constants are defined by counting extensions between such
abelian groups. In fact, these structure constants are polynomials in q, and we
may thus consider H as a C[q±1]-algebra. The main theorem of Steinitz and Hall
provides an isomorphism H ≃ Λ+

q = C[q±1][x1, x2, . . .]
S∞ . Under this isomor-

phism, the natural basis of H (resp. the natural scalar product) is mapped to the
basis of Hall-Littlewood polynomials (resp. the Hall-Littlewood scalar product).
In addition, Zelevinsky [Z] endowed Λ+

q with a structure of a (cocommutative)

Hopf algebra, and the whole algebra Λq = Λ⊗ C[q±1] may be recovered from Λ+
q

by the Drinfeld double procedure. The corresponding Hopf algebra structure is
also naturally intrinsically defined in the Hall algebra.

The definition of the Hall algebra admits a geometric version, in which one con-
siders an algebra U of GL(r)-equivariant perverse sheaves on the nilpotent cones
Nr ⊂ gl(r), for all r. The algebras U and H are then related by Grothendieck’s
faisceaux-fonctions correspondence. This construction has the advantage of yield-
ing, by application of the above correspondence to simple perverse sheaves, a
“canonical basis” of H satisfying some strong positivity and integrality properties.
This “canonical basis” is in fact none other than the basis of Schur functions.
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The aim of the present work is to initiate a similar approach for the ring of
diagonal symmetric polynomials

R = C[x±1
1 , x±1

2 , . . . , y±1
1 y±1

2 , . . .]S∞ := Lim
←−

C[x±1
1 , x±1

2 , . . . , y±1
1 , y±1

2 . . .]Sr ,

(where S∞ acts simultaneously on the variables xi and yi) based on the category
of coherent sheaves on an elliptic curve.

The category of abelian q-groups is equivalent to the category of nilpotent
representations over the finite field Fq of the Jordan quiver, i.e the quiver with
one vertex and one loop. More generally, Ringel [R] considered the Hall algebra

of an arbitrary quiver ~Q and showed that it contained the positive part U+
q (g) of

the quantized enveloping algebra of the Kac-Moody algebra associated to ~Q. In
a similar direction, Kapranov [Ka1] studied a natural subalgebra U+

E of the Hall
algebra HE of the category Coh(E), for a smooth projective curve E defined over
a finite field. When E = P1, the algebra U+

E is isomorphic to the positive part
of the quantum loop algebra Uq(Lsl2), and in higher genus, Kapranov defined a

surjective map from a certain algebra U+
E (defined by generators and relations)

to U+
E . Unfortunately, this map has a large kernel, and it is not known how to

describe it explicitly.
We study the Hall algebra U+

E in details when E is an elliptic curve, defined
over Fq. We show that the structure constants for this algebra are polynomials in

q±1 and τ±1 where τ, τ−1 are the Frobenius eigenvalues on H1(E ,Ql), and hence
it may be considered as a C[q±1, τ±1]-algebra. It turns out that U+

E is a (flat)
deformation of the ring of diagonal symmetric functions

R+ := C[x±1
1 , x±1

2 , . . . , y1, y2, . . .]
S∞ .

This ring has recently attracted a lot of attention, due in particular to its inti-
mate relation to Macdonald polynomials and double affine Hecke algebras. We
describe explictly this deformed (Hopf) algebra by generators and relations. To
obtain a more symmetric and canonical object, we consider the Drinfeld dou-
ble UE of U+

E , which is now a deformation of C[x±1
1 , x±1

2 , . . . , y±1
1 y±1

2 , . . .]S∞ .
This deformation is neither commutative, nor cocommutative. However, we prove
that the group of autoequivalences of the derived category Db(Coh(E)) naturally
acts by algebra automorphisms of UE , yielding an action of the universal cover

S̃L(2,Z) of SL(2,Z) on UE . In addition, there is a natural “monomial” basis of
U+
E (resp. of UE) indexed by the collection of (finite) convex paths in the region

(Z2)+ = {(p, q) ∈ Z2 | p ≥ 1 or p = 0, q ≥ 1} (resp. in Z2). In fact, there is one
such basis of UE for any line L in Z2, and these bases are interchanged by the

S̃L(2,Z)-action.

In addition to determining the algebra structure of the Hall algebra U+
E , it is

natural to seek a geometric version of U+
E . We are thus led to consider an algebra

A+
E of perverse sheaves on the moduli space (stack) Coh(E) parametrizing all

coherent sheaves on E . We describe in details all simple perverse sheaves occuring
in this construction (which is reminiscent of Lusztig’s construction in the context of
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quiver representations [L]), and prove that the faisceaux-fonction correspondence
relates the algebras A+

E and U+
E . In particular, this provides us with a canonical

basis for the algebra U+
E .
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Periods, Subconvexity of L-functions and Representation Theory

Joseph Bernstein

(joint work with Andre Reznikov)

Let H denote the upper half plane equipped with the standard Riemannian
metric of constant curvature −1. We denote by dv the associated volume element
and by ∆ the corresponding Laplace-Beltrami operator on H.

Fix a discrete group Γ of motions of H and consider the Riemann surface Y =
Γ\H. For simplicity we assume that Y is compact.

Consider the spectral decomposition of the operator ∆ in the space L2(Y, dv)
of functions on Y . It is known that the operator ∆ is non-negative and has purely
discrete spectrum; we will denote by 0 = µ0 < µ1 ≤ µ2 ≤ ... the eigenvalues of ∆.
For these eigenvalues we always use a natural from representation-theoretic point

of view parameterization µi =
1−λ2

i

4 , where λi ∈ C. We denote by φi = φλi
the

corresponding eigenfunctions (normalized to have L2-norm one).
In the theory of automorphic forms, the functions φλi

are called automorphic
functions or Maass forms (after H. Maass). The study of Maass forms plays an
important role in analytic number theory.

Triple products. In my talk I consider the following problem. We fix two
Maass forms φ = φτ and φ′ = φτ ′ as above and consider the coefficients defined
by the triple period:

ci =

∫

Y

φφ′φidv,

as the φi run over an orthonormal basis of Maass forms. We would like to estimate
the coefficients ci in terms of parameters |λi| when i tends to ∞.

Let me explain why this problem is interesting. The bounds on the coefficient
ci are related to bounds on automorphic L-functions. Namely, in many cases it is
proven that

|ci|
2 = G(λi) · L(λi),
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where G is some rational expression in ordinary Euler Γ-functions and L is es-
sentially the value at the critical point 1/2 of the triple automorphic L-function
L(s;φτ ⊗ φτ ′ ⊗ φi) (see details in [1]). Thus the estimates of periods ci lead to
estimates of L-functions (this idea comes from Selberg’s work [2]). Since these
L-functions play absolutely central role in number theory any new method of an-
alyzing them is very interesting.

The first non-trivial observation is that the coefficients ci have exponential
decay in |λi| as i→∞. Namely, as we have shown in [1], it is natural to introduce
normalized coefficients

di = γ(λi)|ci|
2

Here γ(λ) is given by an explicit rational expression in terms of the standard Euler
Γ-function (see [1]) and, for purely imaginary λ, it has an asymptotic γ(λ) ∼
β|λ|2 exp(π2 |λ|) when |λ| → ∞ with some explicit β > 0. It turns out that the
normalized coefficients di have at most polynomial growth in |λi|, and hence the
coefficients ci decay exponentially. This is consistent with the general experience
from the analytic theory of automorphic L-functions.

In fact, in [1] we proved the following mean value bound
∑

|λi|≤T

di ≤ AT
2

According to Weyl’s law the number of terms in this sum is of order CT 2. So this
formula says that on average the coefficients di are bounded by some constant.

More precisely, let us fix an interval I ⊂ R around point T and consider the
finite set of all Maass forms φi with parameter |λi| inside this interval. Then the
average value of coefficients di in this set is bounded by a constant provided the
interval I is long enough (i.e., of the size ≈ T ).

Note that the best individual bound which we can get from this formula is
di ≤ A|λi|2. For Hecke-Maass forms this bound corresponds to the convexity
bound for the corresponding L-function.

In my talk I outline the proof of the following bound.

Theorem 1. There exist effectively computable constants B, b > 0 such that, for
an arbitrary T > 1 we have the following bound

∑

|λi|∈IT

di ≤ BT
5/3 ,

where IT is the interval of size bT 1/3 centered at T .

Note that this theorem gives an individual bound di ≤ B|λi|5/3 (for |λi| > 1).
This leads to the following subconvexity bound for the triple L-function

Corollary 2. Let φ and φ′ be fixed Hecke-Maass cusp forms. For any ǫ > 0, there
exists Cǫ > 0 such that the bound

L( 1
2 , φ⊗ φ

′ ⊗ φλi
) ≤ Cǫ|λi|

5/3+ǫ

holds for any Hecke-Maass form φλi
.
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The convexity bound for the triple L-function corresponds to similar bound
with the exponent 5/3 replaced by 2.

We note that the above bound is the first subconvexity bound for an L-function
of degree 8. All previous subconvexity results were obtained for L-functions of
degree at most 4.

We can formulate the following natural conjecture: For any ǫ > 0 we have
di ≪ |λi|ǫ .

Our proof follows the method described in [1]. It is based on the detailed
analysis of representation spaces of representations of the principal series of the
group G = PGL(2,Z). We can make very explicit computations for these spaces
since they can be realized as a classical space of smooth functions on the unit
circle. As a result the computation of some quantities we need can be performed
using stationary phase method. It is difficult to generalize these computations to
groups of higher rank. In fact it is quite difficult to make similar computations
even for representations of discrete series of the group G = PGL(2,Z) since we do
not have classical model for these representations.
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