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Introduction by the Organisers

The workshop Mathematical Logic: Proof Theory, Type Theory and Construc-
tive Mathematics, was held March 20th–March 26th, 2005 and had several aims.

To promote interaction between traditional proof theory and a more structural
mathematical proof theory. It is hoped to encourage the application-oriented to
consider their tools more abstractedly and those with foundational leaning to focus
on possible applications. Questions of feasibility should play an essential role here.

To further develop constructive mathematics. For instance, there has been
recent progress in designing some central notions for a constructive treatment of
algebraic topology (like that of a scheme, in Peter Schuster’s Habilitationsschrift
2003). An essential tool is the so-called formal or point-free topology, developed
by Sambin, Coquand and others. Type theory offers some unifying concepts for a
useful dicussion of the notions involved.

To explore the relevance of classical mathematics to algorithms. Recent work
of Kohlenbach, Lombardi, Roy and others showed, in very different ways, that
mathematical proofs that use a priory highly non computational concepts, such
as Zorn’s lemma or compactness principles, may contain implicitely very interest-
ing computational information. For instance, recent work of Kohlenbach –using a
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modification of Gödel’s Dialectica interpretation– could extract not only algorith-
mic information but also new theorems, surprising to the expert (here in the field
of metric fixed point theory).

To understand in depth mathematical concepts in connection with algorithms
and proofs, and also to further develop the notion of a certificate, aimed at unifying
attempts to connect proof systems and computer algebra systems.

To develop connections between proof theory and computational complexity.
Specifically to understand the connections between the complexity of formal proofs,
computational complexity and descriptive complexity.

The variety of these aims is well reflected by the many talks given. As can
be seen from their abstracts, presented in chronological order, they cover a broad
range of topics — without losing their common theme, that is, mathematical logic
and the formal reasoning about proofs and computations.

In order to provide the participants with an overview of some of the recent
developments in some of the covered topics two invited lecture series were given.
Both highlighted applications of proof theory to other areas of mathematics. Ulrich
Kohlenbach presented proof mining as an area of applications of proof theory to
analysis; Thierry Coquand’s talk on infinite objects in constructive mathematics
showed applications of proof theory to algebra.
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Abstracts

Proof Mining: Applications of Proof Theory to Analysis

Ulrich Kohlenbach

In recent years (though influenced by papers of G. Kreisel going back to the
50’s as well as subsequent work by H. Luckhardt ([20]) and others, see [21]) an ap-
plied form of proof theory systematically evolved which sometimes is called “Proof
Mining” ([18], see also [1, 3, 2]).
A particularly fruitful area of applications of proof theory in mathematics has been
numerical and nonlinear functional analysis.
This 3-part course gives a survey on the logical foundations of this approach and
its applications in analysis.

The first part discusses various so-called proof interpretations (such as Gödel’s
functional interpretation and its monotone variants ([6]) and extensions) and de-
rives general meta-theorems on the extractability of effective uniform bounds from
ineffective proofs in the context of concrete Polish spaces X (such as C[0, 1]
or Lp for 1 ≤ p < ∞ etc.), compact Polish spaces K and continuous functions
between such spaces ([6, 8, 9]). “Uniform” here refers to the fact that the bounds
are guaranteed to be independent from parameters in K but only depend on given
representations of elements of X. We show that the various conditions involved
in these meta-theorems are all necessary and indicate their realm of applicability
([18]) including

(1) the extractability of rates of strong unicity (‘moduli of uniqueness’) from
uniqueness proofs in analysis,

(2) the extractability of rates of convergence from proofs of monotone conver-
gence.

In particular, we present new results in the context of best polynomial Chebycheff
and L1-approximations ([7, 17, 22]).

In the second part we develop extended meta-theorems ([13]) which guarantee
under quite general conditions the extractability of effective bounds which are even
independent from parameters in noncompact (but only metrically bounded) sub-
sets of general classes of axiomatically added abstract structures such as met-
ric spaces, hyperbolic spaces, CAT(0)-spaces, normed spaces, uniformly convex
and inner product spaces and various classes of functions between them (quasi-
nonexpansive, asymptotically and directionally nonexpansive as well as Lipschitz
continuous and uniformly continuous functions, among others). We also discuss
recent refinements ([5]) which only require weak local boundedness conditions on
certain terms (rather than the boundedness of whole substructures).

In the third part we apply the extended meta-theorems from the 2nd part to ob-
tain numerous new results in the area of metric fixed point theory ([4, 10, 11, 12,
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14, 15, 16, 19]). These results concern both new qualitative information (indepen-
dence from parameters) as well as new effective bounds on the asymptotic regular-
ity as well as convergence towards a fixed point for Krasnoselski-Mann iterations
of nonexpansive, directionally nonexpansive and asymptically quasi-nonexpansive
functions.
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A Prametrized Functional Interpretation

Paulo Oliva

We present a parametrised functional interpretation with two parameters. The
first parameter captures the degree of freedom in the interpretation of “negation”,
while the second expresses the amount of information about witnesses one is inter-
ested in. Instantiations of the parametrised interpretation give rise to well-known
functional interpretations, among these: Gödel’s original Dialectica interpretation,
Kreisel’s modified realisability and Kohlenbach’s monotone interpretations.

Strong Normalization for Applied Lambda Calculi

Ulrich Berger

We prove a general strong normalisation theorem for higher type rewrite systems
based on a strictly continuous domain-theoretic semantics. The result can be
stated as follows. If the underlying type theory is strongly normalising with respect
to β-conversion and all constants have a total value in the model, then every
typable term is strongly normalising with respect to β-conversion and rewriting.
The theorem applies to extensions of Gödel’s system T and system F by various
forms of bar recursion for which strong normalisation was hitherto unknown.

On Σ2-Theorems of Fragments of PA

Lev Beklemishev

We give some characterisations of Σ2-consequences of fragments of Peano Arith-
metic, PA. Consider the following inference rule, over elementary arithmetic with
terms for all Kalmar elementary functions.

∃m∀n ≥ m t(n + 1) ≤ t(n)

∃m∀n ≥ m t(n) = t(m)

where t(x) is a term with a free variable. We show that this rule axiomatises the
set of Σ2-consequences of the Σ1-induction schema, IΣ1. Non-nested applications
of the rule give an alternative axiomatisation of IΠ−

1 , parameter free induction
schema.
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We also show that

(1) Σ2-consequences of IΣn are axiomatisable by ωn = ωω...
ω
}

n iterated local

Σ2-reflection schema
(2) Σ2-consequences of PRA are axiomatisable by ω times iterated local Σ1-

reflection schema. Hence, IΣ1 and PRA have different Σ2-theorems.

Towards a Minimalistic Foundation of Constructive Mathematics

Giovanni Sambin

I claim that

(1) to develop mathematics in such a way that it can be formalised on a
computer

(2) to design a common core which can be understood as it is by all mathe-
maticians, whatever foundation they adopt

it is necessary to use an intensional type theory mTT, which is obtained form
Martin-Löf’s type theory by relaxing the equation Prop = Set. This ground type
theory mTT is needed for formalisation, and a “tool box” of extensional concepts
built on it is needed to do mathematics. The common core is obtained at this
level, by subtraction.

This approach involves two conceptual novelties:

• two different (but connected) levels of abstraction are necessary
• the common core cannot be the complete description of an intended se-

mantics

Cut Elimination in Set Theory

Gills Dowek

We define a notion of cut for all theories that can be expressed by a set of com-
putation rules, included arithmetic, the simple theory of types and set theory. We
then present two general theorems allowing to prove that some theory has the cut
elimination property:

(1) a theory has the cut elimination property if it has many valued model
whose truth values are reducibility candidates

(2) a theory has the cut elimination property if we can translate it in a theory
that has an ω-model.

Level-Two Recursion Schemes and Finite Automata

Klaus Aehlig

(joint work with Jolie G. de Miranda and C.-H. Luke Ong)

Since Rabin [4] showed the decidability of the monadic second order (MSO)
theory of the binary tree this result has been applied and to various mathematical
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structures. The interest arose in recent years in the context of verification of
infinite state systems [3].

Recently Knapik, Niwiński and Urzyczyn [2] showed that the MSO theory of any
infinite tree generated by a level-2 grammar satisfying a certain “safety” condition
is decidable. This result can be extended [1] in that the “safety” condition can be
dropped.

To do so, one first observes that MSO properties of trees can be represented
as the languages of appropriate tree automata. This allows to encode in a set of
fixed size the behaviour of a first-order λ-definable function with respect to a fixed
given MSO property.

By this observation a tree automaton can (non-deterministically) verify an
MSO-property of a tree while walking over a λ-tree defining it. Since the non-
emptiness problem for the languages of these automata is decidable the said de-
cidability result follows.
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Making Sense of Bounded Arithmetic: A Complexity Theorist’s Point
of View

Stephen A. Cook

This talk is based on my survey paper “Theories for Complexity Classes and their
Propositional Translations” which has just appeared in the collection edited by
Jan Kraj́ıček, published by Quaderni, see also chapters in my forthcoming book
with Phuong Nguyen “Introduction to Proof Complexity” on my web page.

Consider the sequence of complexty classes

(∗) AC0 ⊂ AC0(2) ⊂ TC0 ⊂ NC1 ⊂ L ⊂ P

where P is polynomial time. Our motivating question is “Given a combinatorial
principle, what is the least complexity class containing enough concepts to prove
the principle?” Examples of principles are

(1) The pigeonhole principle, for which the answer seems to be TC0, and
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(2) the matrix principle AB = U ⊃ BA = I, for which the answer is at most
P, but we conjecture lower down.

For each complexity class (∗) we define a minimal theory for which the Σ1
1-

definable functions are precisely the functions in the class. Each theory has the
same underlying language L2

A = [0, 1, +, ·, | |,∈,≤, =] in the two-sorted predicate
calculus, described by Zamella. Then one way to formalise our motivating question
is “What is the least such theory which proves the question.”

There are quantified propositional proof systems associated with each complex-
ity class (∗), and we explain a general method of translating the ΣB

1 theories of
each theory into polynomial size families of proofs in the associated theory.

Forcing with Random Variables

Jan Kraj́ıček

Proof complexity studies the time complexity of non-deterministic algorithms.
The main problem is the NP versus coNP problem, a question whether the com-
putational complexity class NP is closed under the complementation. Central
objects studied are propositional proof systems (non-deterministic algorithms for
accepting the set of propositional tautologies). Time lower bounds correspond
then to lengths-of-proofs lower bounds.

Bounded arithmetic is a generic name for a collection of first-order theories
of arithmetic linked to propositional proof systems (and to a variety of other
computational complexity topics). The qualification bounded refers to the fact
that the induction axiom is typically restricted to a subclass of bounded formulas.

The links between propositional proof systems and bounded arithmetic theories
have many facets but informally one can view them as two sides of the same thing:
The former is a non-uniform version of the latter. In particular, it is known that
proving lengths-of-proofs lower bounds for propositional proof systems is very
much related to proving independence results in bounded arithmetic. In fact,
proving such lower bounds is equivalent to constructing non-elementary extensions
of particular models of bounded arithmetic. This offers a very clean and coherent
framework for thinking about lengths-of-proofs lower bounds, a one that has been
quite successful in the past (let us mention just Ajtai’s [1] lower bound for the
pigeonhole principle in constant-depth Frege systems).

We describe a new method for constructing (extensions of) bounded arith-
metic models, and hence for proving independence results and lengths-of-proofs
lower bounds. The models are Boolean valued and are built from families of
random variables defined on (possibly on a subset of) {0, 1}n with non-standard
n, and sampled by functions of some restricted complexity. This is considered
inside an ℵ1-saturated non-standard model of true arithmetic. The relevant com-
plete Boolean algebra B is obtained from A := {A ∈ M | A ⊆ Ω} by taking a
quotient by the ideal I of sets of infinitesimal counting measure (as in the con-
struction of Loeb’s measure [5]). The truth value of an atomic sentence of the
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form R(α1, . . . , αk) (αi random variables from the family defining the model) is
{ω ∈ Ω | R(α1(ω), . . . , αk(ω))}/I. This is extended to all sentences using the
familiar rules going back to Boole [2] and Rasiowa-Sikorski [6].
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Equivalents of the Weak Multifunction Pigeonhole Principle

Chris Pollett

(joint work with Norman Danner)

I began the talk by presenting a recent result of Jeřábek [1] on the surjective
weak pigeonhole principle for p-time functions. Namely, that over the theory S 1

2

this principle is equivalent to the existence of a string which is hard for any circuit
of size nk. This shows that T 2

2 , a slightly stronger theory, can prove a predicate
exists which is hard for circuits of size nk. Kraj́ıček and Pudlák [2] have shown
if the injective weak pigeonhole principle for p-time functions is witnessable from
a class C satisfying PC = C then RSA is insecure against attacks from C. As the
multifunction weak pigeonhole principle implies both the injective and surjective
principles, it is natural to wonder if there is any circuit class such that the existence
of a hard string for this class is equivalent to the multifunction weak pigeonhole
principle for the analogous uniform class. We show that for R2

2 , a theory between
T 2

2 and S1
2 in strength, the multifunction weak pigeonhole principle for quasi-

log iterated p-time relations is equivalent to circuit lower bounds for quasi-log
iterated p-size circuits. Thus, we show if R2

2 could prove lower bounds for this
class of circuits, one can also show RSA is insecure against quasi-polynomial time
attacks.
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Topology in Constructive Set Theory (Background and Motivations)

Peter Aczel

Introduction

I started my talk by reviewing the classical Galois adjunction, Ω : Top → loc
left adjoint to Pt : Loc → Top between the category Top of topological spaces and
the category Loc of locales which associates with each space X the locale Ω(X)
of open subsets and with each locale A the space Pt(A) of its formal points. This
adjunction is Galois in the sense that it restricts to an equivalence between the
subcategories of sober topological spaces and spatial locales, where a topological
space is sober if it is isomorphic to Pt(A) for some locale A and a locale is spatial
if it is isomorphic to Ω(X) for some topological space X .

I then stated a theorem that gives a Galois adjunction in the constructive set
theory CZF between a category of standard ct-spaces and a category of standard
formal topologies. This result, when viewed in IZF, gives a Galois adjunction that
is equivalent to the classical Galois adjunction.

The rest of my talk was taken up with giving the background and motivations
for this work.

General Topology in Constructive Mathematics

Traditionally the main constructive interest in topological notions has been in
connection with constructive analysis, where attention has been restricted mostly
to separable metric spaces. An exception was the PhD thesis of Anne Troelstra,
[6], on Intuitionistic General Topology which takes the usual notion of a topology
of open sets as its starting point. Also Bishop, in his book, [3] introduced the
notion of a neighborhood space, which is essentially just a topological space given
by a set of basic open sets. But Bishop did not make significant use of this general
notion. Later Grayson, [4], developed further some general constructive topology
in the context of the impredicative set theory IZF.

Over the last 30 years or so there has been a growing interest in the point-free
approach to general topology. In this approach the focus is not on the points
of a topological space but on the algebraic structure of the lattice of open sets,
which forms a frame/locale. A frame is a sup semilattice with finite meets that
distribute over sups and a frame map preserves that structure. The category of
locales is just the opposite of the category of frames and frame maps. It has been
argued that in many respects the category of locales has nicer properties than the
category of topological spaces and moreover that these properties can be proved
more constructively than corresponding properties for the category of topological
spaces; e.g. with proofs that avoid AC.

It has been natural to consider the development of point-free topology in topos
mathematics; i.e. the brand of mathematics that generally holds in toposes with
a natural numbers object. Topos mathematics is based on intuitionistic logic and
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does not assume any choice principles, but is fully impredicative in that it has a
powerset operation.

Giovanni Sambin and Per Martin-Löf initiated the subject of formal topology,
[5], a treatment of point-free topology within the setting of Martin-Löf’s Intuition-
istic Type Theory. The aim has been to give a treatment of point-free topology
that avoids the impredicativity of topos mathematics. An alternative approach
with the same aim is to work in a system of constructive set theory such as CZF.
One advantage of working in constructive set theory to working in intuitionis-
tic type theory is that the mathematical developments can be carried out in a
more familiar set theoretical language. Another advantage is that CZF makes no
explicit choice assumptions while intuitionistic type theory, because it uses the
Curry-Howard correspondence to represent logical notions, has a type-theoretic
axiom of choice that implies relative dependent choices, an axiom that does not
generally hold in toposes.

The aim of my talk was to advocate a balanced approach to constructive gen-
eral topology in which both the point-set and point-free approaches are developed
and compared in a set-theoretical setting compatible with both Bishop style con-
structive mathematics and topos mathematics. Some steps in this direction have
been taken in [1]. There, among other topics I have obtained a version of the
classical Galois adjunction theorem. See also [2], which focuses on the topological
separation properties.

The Galois adjunction Theorem in CZF

In order to obtain a constructive Galois adjunction theorem it is necessary to
overcome a series of problems arising out of the fact that what are sets in an
impredicative context can sometimes only be given in CZF as classes that cannot
be proved to be sets. Let us call such classes here large classes. Often these large
classes can be proved to be small, i.e. sets, by assuming additional impredicative
axioms such as the powerset axiom.

To start with, there is the problem that the opens of any topological space
that has at least one point form a large class, so that the category of topological
spaces is superlarge; i.e. its objects are large-sized. It is possible to work with
superlarge categories even in CZF. Nevertheless this fact suggests a focus on the
category of Bishop’s neighborhood spaces, whose objects are small. The next
problem is that non-trivial frames/locales are large so that the category of locales
is superlarge. This suggests restricting to the category of set-presented locales,
these locales being essentially small. This category turns out to be equivalent to
the category of set-presented formal topologies. In fact the category of formal
topologies is equivalent to the, still superlarge, category of set-generated locales.
Now even if we restrict attention to the set-presented locales/formal topologies
we have another problem. In general the formal points of a set-presented locale
may form a large class. So if we want to have a topological space of such formal
points we need to have a notion of topological space which allows the points to
form a large class. This leads to the notion of a constructive topological space,
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abbreviated ct-space. A ct-space can have a large class of points, but as soon as
the powerset axiom is assumed, as in IZF, it becomes small; i.e. the class of points
becomes a set. The small ct-spaces are essentially just Bishop’s neighborhood
spaces. Unfortunately in order to construct a formal topology from a ct-space the
ct-space needs to satisfy an additional condition. When this extra condition holds
we call the ct-space a standard ct-space and finally we call a formal topology a
standard formal topology if the ct-space of its formal points is standard. All small
ct-spaces are standard. There is a weaker notion of quasi-small ct-space and such
ct-spaces are also all standard. We have now explained much of the motivation
behind the notions used in the statement of our constructive Galois adjunction
theorem.

Theorem: 1 (CZF).

(1) There is a Galois adjunction between the superlarge category of standard
ct-spaces and standard continuous maps and the category of standard for-
mal topologies and standard formal topology maps.

(2) The above Galois adjunction restricts to a Galois adjunction between the
category of quasi-small ct-spaces and the category of set-presentable formal
topologies and formal topology maps.

(3) The Galois adjunction further restricts to a Galois adjunction between the
category of regular small ct-spaces and continuous maps and the category
of regular set-presentable formal topologies and formal topology maps.

(4) Working in IZF, the Galois adjunctions in (1) and (2) are each equivalent
to the classical Galois adjunction between topological spaces and locales.

The notions of regular ct-space and regular formal topology are constructive
versions of the usual classical separation properties for topological spaces and
locales. For more details on this and other aspects of the theorem see [1, 2].
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The Disjunction Property for CZF

Michael Rathjen

While Constructive Zermelo-Fraenkel set theory, CZF, has gained the status of
a standard reference theory for developing constructive predicative mathematics,
surprisingly little is known about certain pleasing metamathematical properties
such as the disjunction and the numerical existence property which are often con-
sidered to be the hallmarks of intuitionistic theories.

The talk will present a self-validating semantics for CZF that combines exten-
sional Kleene realisability and truth. This realisability semantics will be put to
use in showing that CZF has the disjunction property and the numerical existence
property. CZF is also shown to be closed under Church’s rule. The same properties
remain for CZF plus the Regular Extension Axiom.

Realizability Models for CZF + ¬Pow

Thomas Streicher

Without restricting the metatheory (i.e., working in ZFC with countably many
strongly incaccesible cardinals) we construct a realisability model for CZF+¬Pow.
Let A be a partial combinatory algebra with |A| < Iω then VU = (WA ∈ U)A with
U = Mod(A) provides a model for CZF where the powerset axiom Pow fails. For
A = K1 (first Kleene algebra) it holds that in VMod(K1) all sets are subcountable,
i.e., can be enumerated by a subset of ω.

Alas, our models all validate the Separation axiom. If we could find natural
models for genuinely predicative type theory with a universe then this would give
rise to a model for CZF + ¬Pow + ¬Sep.

Cut Elimination in Provability Logic

Sara Negri

Following the method developed in Negri and von Plato (1998) and in Negri (2003),
we present a uniform Gentzen-style approach to the proof theory of a large family
of normal modal logics. The method covers all the modal logics characterized
by geometric conditions on their Kripke models. Each modal system is obtained
by adding in a modular way the rules for the accessibility relation to a basic
modal system. The resulting (labelled) sequent calculi have all the structural
rules–weakening, contraction, and cut–admissible.

A natural challenge is to extend the method to treat also Gödel-Löb provability
logic. After Solovay’s landmark paper (1976), that characterized axiomatically
the modal logic of arithmetical provability G (later called GL), a great effort was
directed to producing an adequate sequent calculus and proving cut elimination for
it. Semantic completeness proofs for Gentzen’s formulations for GL were provided
(Sambin and Valentini 1982, Avron 1984) but syntactic proofs of cut elimination
(Leivant 1981, Valentini 1983) turned out to be problematic (Moen 2001).
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Gödel-Löb provability logic is characterized by irreflexive, transitive, and Noe-
therian Kripke frames. The non-first-order frame condition of Noetherianity can-
not be encoded in the geometric rule scheme, but it becomes part of the charac-
terization of forcing for modal formulas

x  �A iff for all y, xRy and y  �A implies y  A

This meaning explanation justifies a left and right rule for �. The resulting se-
quent calculus derives the Löb axiom, has all the rules invertible, the necessitation,
weakening, and contraction rules admissible. Cut elimination is proved by induc-
tion on a triple parameter, given by the size of the cut formula, the range of the
label of the cut formula (i.e., the set of worlds accessible from it in the derivation)
and the sum of the heights of the premisses of cut.

A full proof is presented in Negri (2005).
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Majorisability Interpretations in Finite-Type Arithmetic

Fernando Ferreira

We introduce and discuss new notions of realisability and functional interpretation
in the framework of finite-type arithmetic. These notions are based on assignments
of formulas that systematically disregard decisions concerning disjunctions and
precise witnesses concerning existential statements. Instead, the new assignments
of formulas only care for majorants of the existential statements. The notion of
majorisability at play is the Howard-Bezem notion.

We state the soundness theorem for both notions. They both interpret a version
of choice, a version of independence of premises and the statement saying that
every functional is majorisable. From this it follows that both notions interpret
a very general bounded collection principle which includes the FAN theorem as a
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particular case (although only in an intensional version in the case of the functional
interpretation). It is a fact that the principle lead to classical inconsistencies.

In order to make the majorisability relations computationally empty in the case
of the functional interpretation, we must use intensional majorisability relations
governed (partly) by rules. The new functional interpretation interprets the so-
called bounded collection principle (which entails WKL) and the so-called bounded
universal disjunction principle (which entails LLPO – lesser limited principle of
omniscience).

The new interpretations shed, in my view, the monotone interpretations of
Ulrich Kohlenbach, even though they are conceptionally quite different.

Approximate Fixed Point Property in Product Spaces

Laurenţiu Leuştean

(joint work with Ulrich Kohlenbach)

We present another case study in the general program of proof mining in functional
analysis, or more specifically metric fixed-point theory. Thus, we are concerned
with the general theme of what is known about the existence of approximate fixed
points for nonexpansive mappings in product spaces.

A metric space (X, ρ) is said to have the approximate fixed point property
(AFPP) for nonexpansive mappings if any nonexpansive mapping T : X → X
has an approximate fixed point sequence; that is, a sequence (un)n∈N in X for
which limn ρ(un, T (un)) = 0.

If (X, ρ) and (Y, d) are metric spaces, we denote by (X ×Y )∞ the metric space
(X × Y, d∞), where the distance d∞ is defined in the usual way:

d∞((x, u), (y, v)) = max{ρ(x, y), d(u, v)}

for (x, u), (y, v) ∈ X × Y .
A basic question now becomes:
If (X, ρ), (Y, d) have the AFPP for nonexpansive mappings, then when does

(X × Y )∞ have the AFPP for nonexpansive mappings?
Esṕınola and Kirk [2] proved that the product space H = (K × M)∞ has the

AFPP for nonexpansive mappings whenever M is a metric space which has AFPP
for such mappings and K is a bounded convex closed subset of a Banach space.
Later, Kirk [5] extended this result to bounded convex closed subsets of spaces of
hyperbolic type.

In the first part of the talk, we present generalizations of these results to un-
bounded convex subsets (satisfying certain conditions) of hyperbolic spaces. We can
extend the results further, to families (Cu)u∈M of unbounded convex subsets of a
hyperbolic space (X, ρ, W ). All these are carried out in detail together with many
further generalizations in a forthcoming paper [9]. The key ingredient in obtaining
these generalizations is a quantitative version [8, Theorem 3.9] of a theorem due
to Borwein-Reich-Shafrir [1].
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The notion of hyperbolic space we use is that one introduced by Kohlenbach
[7], inspired by the related notions of convex metric space [13], space of hyperbolic
type [4], and hyperbolic space in the sense of Reich-Shafrir [10]. The class of
hyperbolic spaces contains all normed linear spaces and convex subsets thereof,
but also the open unit ball in complex Hilbert spaces with the hyperbolic metric
as well as Hadamard manifolds and CAT(0)-spaces in the sense of Gromov.

In the second part of the talk, we present ongoing work on the logical analysis of
the characterization of subsets of hyperbolic spaces having AFPP for nonexpansive
mappings obtained by Shafrir [11] using the notion of directionally bounded set.
Using logical tools as bar-recursion [12], monotone functional interpretations [6],
and general logical metatheorems [7, 3], we obtain a uniform version of directionally
bounded subsets and we can give a partial answer to an open problem raised by
Kirk [5].
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A Case Study in Proof Mining: An Effective Version of Kirk’s
Fixed-point Theorem for Asymptotic Contractions

Philipp Gerhardy

Using techniques of proof mining (as developed for example by Ulrich Kohlen-
bach) we analyse a very ineffective proof by W. A. Kirk for a fixedpoint theorem
for so-called asymptotic contractions. Kirk’s original proof uses an ultrapower
construction and contains no information about uniformities, nor any effective
rate of convergence (of the Picard iteration to the unique fixed point). Mainly by
enriching the input to the theorem (by making explicit the computational mean-
ing of the premises and the conclusion of the theorem) we obtain an elementary
proof of an almost fully effective version of Kirk’s fixed point theorem (where the
“almost fully effectiveness” is conjectures to be optimal), including a full rate of
convergence, if the convergence in monotone.

Infinite Objects in Constructive Mathematics: Applications of Proof
Theory to Algebra

Thierry Coquand

In this two part tutorial I give a survey of recent progress in constructive mathe-
matics, mainly in the filed of algebra and abstract functional analysis.

In the first part I introduce the basic idea, which is to represent an infinite
object by a logical theory that describes its observable properties. We can in this
way make sense for instance of basic results such as “the intersection of all prime
ideals is the set of nilpotent elements” which we cannot do if we represent näıvely
a prime ideal as a subset of the ring.

In the second part we apply this basic idea to some noetherian commutative
algebra. We give a concrete inductive definition of Krull dimension of a ring.
We explain then how to use this definition to simplify and improve breakthrough
results of Heitmann (1984) to get a non-noetherian version of Serre’s splitting-off
theorem and Forster-Swan theorem.

The Effect of Markov’s Principle on the Intuitionistic Continuum

Joan Rand Moschovakis

Let M be the minimal two-sorted extension of Heyting Arithmetic, with full in-
duction in the extended language, which was used e.g. by Kleene [1] to formalize
the theory of recursive partial functions of type 2. In addition to the defining equa-
tions for finitely many primitive recursive function constants, M has the function
existence (or “non-choice”) axiom schema

AC0! : ∀x∃!yA(x, y) → ∃α∀xA(x, α(x)),
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but no axiom of countable or dependent choice. Let T be M + BI1 + MP1, where
BI1 is Brouwer’s principle of bar induction in the form

BI1 : ∀α[∃xρ(α(x)) = 0∧∀x(ρ(α(x)) = 0∨∀sA(α(x)∗ 〈s〉) → A(α(x)))] → A(〈 〉)

and MP1 is Markov’s Principle in the form

MP1 : ∀α[¬∀x¬α(x) = 0 → ∃xα(x) = 0].

Then T proves:
(i) Every predicate A(x1, . . . , xn, α1, . . . , αm) without function quantifiers, in-

deed every (classically or constructively) ∆1
1 predicate, is classically decidable with

respect to its number variables; that is,

¬¬∀x1 . . .∀xn[A(x1, . . . , xn, α1, . . . , αm) ∨ ¬A(x1, . . . , xn, α1, . . . , αm)].

Hence ¬¬∃β∀x1 . . .∀xn[β(〈x0, . . . , xn〉) = 1 ↔ A(x1, . . . , xn, α1, . . . , αm)].
(ii) Every ∆0

1 predicate has a recursive characteristic function, and the graph
of every recursive function is ∆0

1 (both classically and constructively).
(iii) The constructive arithmetical hierarchy (with or without function parame-

ters) is proper.
Result (i) for arithmetical predicates is due to Robert Solovay (personal commu-

nication). A proof of Solovay’s result, and proofs of (ii), (iii), and (i) for classically
∆1

1 predicates, appear in [4] along with other hierarchy results in consistent ex-
tensions of intuitionistic analysis. Observe that in T, every constructively ∆1

1

predicate is also classically ∆1
1, since MP1 implies

[∃α∀xR(α(x), z) ↔ ∀β∃yQ(β(y), z)] → [¬¬∃α∀xR(α(x), z) ↔ ∀β¬¬∃yQ(β(y), z)]

if R(w, z) and Q(v, z) are quantifier-free. Results (ii) and (iii) use Kleene’s normal
form theorem; as an example, we sketch the proof of (iii).

Theorem. T proves Π0
n 6= ∆0

n+1 6= Σ0
n+1 and Σ0

n 6= ∆0
n+1 6= Π0

n+1 for n ∈ ω, so
the constructive arithmetical hierarchy (with or without function parameters) is
proper.

Proof. Since Π0
0 = Σ0

0 6= ∆0
1 by (ii), and Π0

n ∪ Σ0
n ⊆ ∆0

n+1 = Σ0
n+1 ∩ Π0

n+1, it

will suffice to show by induction on n that Σ0
n+1 6= ∆0

n+1 and Π0
n+1 6= ∆0

n+1.
Basis. n = 0. Kleene’s normal form theorem, proved in M (cf. [1]), gives

enumerating predicates

R1(x, y, α) ≡ ∃zT (x, y, α(z)) and P1(x, y, α) ≡ ∀z¬T (x, y, α(z))

for Σ0
1(y, α) and Π0

1(y, α) respectively, where T (x, y, w) is quantifier-free. M proves

(∗)1 ∀α∀x∀y[¬¬R1(x, y, α) ↔ ¬P1(x, y, α)],

so T proves that R1(x, x, α) is not Π0
1 and P1(x, x, α) is not Σ0

1.
Induction Step. By the induction hypothesis with the normal form theorem,

there are predicates

Rn+1(x, y, α) ≡ ∃zC(x, y, z, α) and Pn+1(x, y, α) ≡ ∀zD(x, y, z, α)
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which enumerate (provably in M) Σ0
n+1(y, α) and Π0

n+1(y, α) respectively, such
that T proves

(∗)n ∀α∀x∀y∀z[¬¬D(x, y, z, α) ↔ ¬C(x, y, z, α)].

Fix α. By (i), T proves

¬¬∃ζ∃η∀x∀y∀z[(ζ((x, y, z)) = 0 ↔ C(x, y, z, α))∧(η((x, y, z)) = 0 ↔ D(x, y, z, α))]

so ¬¬∀x∀y∀z[D(x, y, z, α) ↔ ¬C(x, y, z, α)] by (∗)n, and hence

(∗)n+1 ∀α∀x∀y[¬¬Rn+1(x, y, α) ↔ ¬Pn+1(x, y, α)].

Thus Rn+1(x, x, α) is not Π0
n+1 and Pn+1(x, x, α) is not Σ0

n+1.

By [3], Kleene and Vesley’s theory FIM of intuitionistic analysis (a nonclas-
sical extension of M + BI1 including Brouwer’s principle of continuous choice,
from which the countable axiom of choice follows) is consistent with ∀α¬¬GR(α).
Results (i)-(iii) imply that the consistent extension FIM + MP1 of T proves
¬∀α¬¬GR(α). Both T and FIM + MP1, like other theories considered in [4],
satisfy Kleene’s recursive instantiation rule: If ∃αB(α) is a closed theorem of the
theory, so is ∃α[GR(α) ∧ B(α)] where GR(α) expresses “α is recursive.” Thus
Markov’s Principle increases the classical (but not the constructive) content of the
intuitionistic continuum.

Kleene’s example in [2], of a recursive fan in which every recursive branch
(but not every branch) is finite, shows that the recursive sequences are an inad-
equate basis for intuitionistic analysis. Markov’s Principle helps to explain this
fact without implying the constructive existence of nonrecursive sequences. From
this point of view, results (i)-(iii) could be considered reasonably strong evidence
for Markov’s Principle.
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Classifying Dini’s Theorem

Peter Schuster

(joint work with Josef Berger)

Dini’s theorem says that compactness of the domain, a metric space, ensures the
uniform convergence of every simply convergent monotone sequence of real–valued
continuous functions whose limit is continuous. We show that Dini’s theorem is
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equivalent to Brouwer’s fan theorem for detachable bars, the classical contraposi-
tive of weak König’s lemma.

The programme of reverse mathematics founded by Friedman and Simpson [7]
seems to lack a classification of Dini’s theorem, which we now undertake within
the informal constructive reverse mathematics put forward by Ishihara [5, 6]. In
particular, we work over the constructive mathematics initiated by Bishop [1, 2].

We follow Bishop’s choice of definitions for compactness and continuity: a met-
ric space is compact precisely when it is totally bounded and complete; a contin-
uous mapping on a compact metric space is a uniformly continuous one; a metric
space is locally compact if and only if every bounded subset is contained in a
compact one; a continuous mapping on a locally compact metric space is one that
is uniformly continuous on every compact subset.

Throughout this note, let X be a locally compact metric space. We consider
the conclusion of Dini’s theorem as the following property of X .

DTX : If a monotone sequence (fn) of continuous functions fn : X → R

converges simply to a continuous function f : X → R, then (fn) converges
uniformly to f .

So Dini’s theorem says that if X is compact, then DTX holds. One arrives at
equivalents of DTX if one assumes that f = 0, or if ‘monotone’ is replaced by
‘decreasing’.

As usual, let {0, 1}N denote the set of infinite binary sequences α, β, . . . , and
let {0, 1}∗ stand for the set of finite binary sequences. The n–th finite initial
segment of some α is αn = (α (0) , . . . , α (n − 1)), including the case n = 0 of the
empty sequence. It is well–known that {0, 1}N is a compact metric space under

the metric d (α, β) = inf{2−n : αn = βn}. For a more detailed treatment of all
this we refer to [4, 8].

A subset B of {0, 1}∗ is detachable if u ∈ B is a decidable predicate of u ∈
{0, 1}∗; that B is a bar if for every α ∈ {0, 1}N there is n ∈ N with αn ∈ B; and
that B is a uniform bar if there exists N ∈ N such that for every α ∈ {0, 1}N there
is n ≤ N with αn ∈ B.

We can now formulate Brouwer’s fan theorem for detachable bars.

FT: Every detachable bar is uniform.

The classical contrapositive of FT is weak König’s lemma (WKL) in the terminol-
ogy of [7].

Theorem 1. The following items are equivalent: DT{0,1}N ; DTX for all compact
metric spaces X; DT[0,1]; FT.

In particular, Dini’s theorem is a classical equivalent of WKL. We anyway hold
WKL for conceptually less appropriate than FT to classify uniformity theorems
such as Dini’s.

The idea underlying our proof that DT[0,1] implies FT is taken from the re-
cursive counterexample to Dini’s theorem which Bridges ascribes to Richman [3];
further proof ingredients stem from [4]. The complete version of this paper will
appear in Notre Dame J. Formal Logic.
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An epsilon Substitution Method with Finite Sets

Gigori Mints

(joint work with Henry Towsner)

Consider an extension of the ordinary epsilon language by finite two-sided sets
S = {n1, ..., nk; m1, ..., mℓ}, where ni belong to S, mj do not belong to S. Extend
the definition of a computation with an epsilon substitution so that it is stable
with respect to such terms. It is possible to prove termination of the correspond-
ing epsilon substitution process for the theory of jump hierarchies. A definition
suitable for ID1 is still to be found.

Skolemization in Intuitionistic Logic

Rosalie Iemhoff

Classical Skolemization, the method that for a given formula produces a formula
without strong quantifiers that is equi-derivable with the original one, does not
hold for intuitionistic logic. We show that in the presence of an existence predicate
one can define an alternative form of Skolemization for intuitionistic logic that has
many of the nice properties that classical Skolemization has. The method covers
strong existential quantifiers, and hence leads to a Herbrand theorem for intuition-
istic logic for formulas in which all strong quantifiers are existential. Whether there
is a reasonable Skolemization method that covers all formulas we do not know.
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Categories of Interpretation

Albert Visser

We introduce categories of interpretations. These categories have various uses.
They are a tool for conceptual analysis; they serve to define various notions of
equality of theories; they allow us to make distinctions between kinds of interpre-
tations.

We show how these categories can be used as a framework to study Tarski’s The-
orem on the Undefinability of Truth. We employ this framework for an easy proof
that ZF is not bi-interpretable with extensions of Arithmetic (in the arithmetical
language).

Implicit Characterizations

Isabel Oitavem

In this talk, we give an implicit characterization of the class of functions com-
putable in polynomial space by deterministic Turing machines — Pspace. This
is a characterization in the vein of the Bellantoni-Cook characterization of the
polytime functions, Ptime, given in [2]. The main difference between these two
characterizations is the formulation of the recursion scheme. To reach Pspace

one introduces pointers (also called path information) in the recursion scheme.
Complexity classes which can be described in terms of parallel computations are
often characterized implicitly using recursion schemes with parameter substitu-
tion. This is the case of alternating logtime, alternating poly-logtime, NC and, in
a three-sorted context, Pspace — see [1], [4] and [5]. Our work strengthens the
idea that recursion with (full) parameter substitution is not necessarily needed to
characterize parallel classes of complexity.

We work in an algebraic context. Therefore, we start discussing recursion
schemes over free algebras. For each free algebra A, we define a term system
TA = COMP/RECA{A-constructors, A-destructors, A-conditional, projections}.
This means that TA is the closure of a set of initial function terms under compo-
sition and “the” recursion induced by the constructors of the algebra A. Notice
that if f(x) is defined by word-recursion on x — let us say f(ci) = g(ci) if ci is a
nullary constructor and f(cix) = h(cix, f(x)) if ci is a unary constructor — then
all subwords of x which appear along the recursion process are uniquely identified
by their lengths. In a tree algebra context we will have a tree-recursion. A subtree
w of the recursion input x, encountered during such a recursion, could be located
anywhere in x. The value of w itself does not uniquely identify which subtree
is under consideration. To uniquely identify the subtree being considered at the
current stage of the recursion, one also requires some “path information”.

Here the starting free algebra is the tree algebra generated by ǫ, ⋆0 and ⋆1 of
arity 0, 2 and 2 respectively. When we restrict ourselves to balanced symmetric
terms, we obtain a part of the algebra above which we denote by TW. π(ǫ) = ǫ
and π(x ⋆i x) = Si(π(x)), for i ∈ {0, 1}, defines a bijection between TW and W
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— where W is the word algebra generated by ǫ, S0 and S1 of arity 0, 1 and 1
respectively. Thus, informally, TW can be seen as the algebra W together with a
tree structure.

We define a term system, TTW, as described above. Since TW is a part of a
tree algebra, one includes pointers in the recursion scheme RECTW. At this point
we switch to a sorted context. Following notation introduced by Bellantoni and
Cook in [2], we define the input-sorted version of the term system TTW and we
denote it by STTW. We prove that STTW characterizes the Pspace functions. To
establish the upper bound one proves a bounding lemma similar to the one proved
for Ptime in [2]. The difference is that here the proof must take into account the
presence of the pointers in the recursion scheme. In this talk we focus on the lower
bound. One knows, [3], that a function f (over W) is in Pspace if, and only if,
f is bitwise computable by an alternating Turing machine (ATM) in polynomial
time, and |f(w)| is polynomial in |w|. We simulate ATMs working in polynomial
time by STTW terms.
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Bounded Arithmetic, Definable Functions and Dynamic Ordinals

Arnold Beckmann

Gentzen’s consistency proof for Peano Arithmetic (PA) can be used to compute the
proof theoretic ordinal of PA, i.e., the amount of transfinite induction needed to
prove the consistency of PA. As we know since Gentzen, the proof theoretic ordinal
of PA is ε0. Proof theoretic ordinals usually also characterise in a suitable way
the provable recursive functions and the order types of the provable well-founded
wellorderings of the underlying theory.

Bounded arithmetic is a restriction of PA introduced by Samuel Buss in 1986
which is related to the polynomial time hierarchy. Questions about complexity
classes like the “P versus NP” problem find their correspondence in the frame-
work of bounded arithmetic. A suitable adaption of proof theoretic ordinals to
the setting of bounded arithmetic is given by dynamic ordinals. In this talk I
described what is known about the relationship between bounded arithmetic the-
ories, definable functions, propositional proofs and dynamic ordinals. Especially,
I explained why dynamic ordinals intrinsically characterise definable functions.
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Domain-Theoretic Construction of Inverse Functions

Dirk Pattinson

We give an effective construction of a local inverse of a C1-function f : O ⊂ Rn →
Rn with detf ′(x0) 6= 0. By exhibiting a domain (in the sense of Dana Scott) by
effective manipulations of C1-functions, the proof hinges on Kleene’s fixedpoint
theorem and in particular allows for arbitrary accurate computation of the deriv-
ative of the inverse.

On the Proof Theory of Type Two Functionals

Thomas Strahm

In this talk, I discuss various aspects relating to the proof theory of type two func-
tionals in the framework of Feferman-style applicative theories; the latter form the
operational core of explicit mathematics ([1]). The systems we consider range in
strength from rather strong subsystems of analysis to theories of feasible strength.

I will start reviewing work of Feferman, Jäger, and Strahm on the proof-
theoretic analysis of the non-constructive µ-operator ([2, 3, 4]), and Jäger and
Strahm on the proof theory of the Suslin operator ([5]). The upshot is that systems
based on the µ-operator and Suslin operator can be measured in proof-theoretic
terms by subsystems of second order arithmetic based on ∆1

1 and ∆1
2 comprehen-

sion, respectively.
In more recent joint work with Steiner ([7, 8]), the above two functionals have

been analyzed in the context of Schlüter’s combinatory algebra for the primitive
recursive functions ([6]). This weakening of the applicative basis results in a drastic
decrease in proof-theoretic strength. More precisely, the two considered functionals
have the respective strength of arithmetical and Π1

1 comprehension.
In the last part of the talk, I will discuss the question of provability of type two

functionals in weak applicative frameworks, thereby addressing the topic of type
two feasibility ([9, 10]). In particular, a natural proof-theoretic characterization of
the Melhorn-Cook-Urquhart basic feasible functionals will be discussed.
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[2] Feferman, S., and Jäger, G. Systems of explicit mathematics with non-constructive µ-
operator. Part I. Annals of Pure and Applied Logic 65, 3 (1993), 243–263.
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Partiality via Coinductive Types

Tarmo Uustalu

(joint work with Thorsten Altenkirch, Venanzio Capretta)

I discuss a type-theoretically motivated approach to partiality due to non-ter-
mination. The approach is based on coinductive types and quotients and treats
partiality as a monadic effect in the sense of E. Moggi. Looping is directly sup-
ported by the appropriate monad, fixpoints are supported in a more indirect fash-
ion. I also discuss a systematic way of combining the monad with monads of other
effects.

Monadic Stabilization for Operationalized Second-Order Classical
Logic with Disjunction and Permutative Conversions

Ralph Matthes

Parigot’s second-order λµ-calculus [7] is an operationalization of second-order clas-
sical logic – based on reductio ad absurdum, i. e., indirect proofs. An important
feature of this system is the avoidance of falsity ⊥ in the formulation of the fact
that every formula A is stable, i. e., that ∀X.¬¬X → X should be provable, with
¬A shorthand for A → ⊥. This is achieved by the use of µ-variables a, b, . . . which
are considered to assume the negation of their type. If a of type A is applied to the
term t of type A, this yields the “named term” a t that morally has type ⊥, but is
only marked as being such a term. Indirect proof is represented by µ-abstraction:
µa.r with r a named term receives the type A of a. A may be a compound type,
hence further elimination rules may be applied. And the operational rules (called
µ-reductions) describe that the indirect proof may be used at the resulting type
instead of A. For this, Parigot uses a special kind of substitution that replaces
subterms of the form a t for any t by some term – typically of the form b (t s) for
some term s.

A formulation of operationalized classical logic that makes full use of ⊥ and
only needs usual substitution has been given by Rehof and Sørensen [8]. Even this
more liberal formulation and even its second-order version has been embedded by
Joly [2] into the intuitionistic subsystem (System F ) where one reduction step of
the source system is translated into at least one step of the target system – thus
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inheriting strong normalization from that of the target system. However, this em-
bedding certainly fails to extend to the corresponding systems that also include
disjunction with their appropriate permutative/commuting conversions (without
those additional conversions, disjunction would just be second-order definable).
And the µ-reduction for disjunction oversteps our intuition that stability for com-
pound formulas is reduced to stability for subformulas. In the case of disjunction
elimination, we use the principle of indirect proof for the uncontrolled target type
of that elimination in the µ-reduct.

For the systems without disjunction, the author has previously [3, 5] given a
new embedding of λµ-calculus into its intuitionistic subsystem that is not based
on a double negation but on stabilization ♯ that can impredicatively be defined by

♯A := ∀X. (A → X) → (¬¬X → X) → X,

which can also be conceived as the least fixed point of the non-strictly positive op-
eration X 7→ A+¬¬X . For this embedding to simulate reduction steps, Parigot’s
refinement turned out to be crucial.

Unlike that iterative stabilization, monadic stabilization is now introduced. The
classical part of the system is encapsulated in a monad, again called ♯. In the
Curry-style typing system, this comes with the following three new constructs:

Γ ⊢ t : A

Γ ⊢ emb t : ♯A

Γ ⊢ t : ¬¬♯A

Γ ⊢ stab t : ♯A

Γ ⊢ r : ♯A Γ, x : A ⊢ s : ♯C

Γ ⊢ bind(r, x. s) : ♯C
,

out of which only the second one is not standard. The known monad rules are
bind(emb t, x. s) −→ s[x := t] and the usual permutative/commuting conversion
bind(bind(r, x. s), y. t) −→ bind(r, x. bind(s, y. t)), which will be needed in order
to simulate the permutative conversion of disjunction in the embedding to come.
The essentially new rule is the stability rule for this stable monad:

bind(stab t, x. s) −→ stab

(

λy. t(λz. y bind(z, x. s))
)

.

An important feature of this new system, called M♯, is its adherence to the intro-
duction/elimination dichotomy of natural deduction – unlike the rule of indirect
proof (as shown above for λµ-calculus) that may introduce formulas with arbi-
trary root symbol. This allows a modular termination proof of M♯ that is better
structured and conceptually easier than for classical natural deduction (see for
comparison [4]). The embedding −′ into M♯ is defined like Kolmogorov’s transla-
tion on formulas, but with ♯ in place of double negation. The compositional term
translation is then determined. It is important that a µ-variable a of type A is
translated into a variable of type ¬A′ and that there is no negation that has to be
translated.

It has to be stressed that this translation does not erase reduction steps (as
those based on double negation unfortunately do, see the report in [6]) and that
it can accomodate positive fixed points (in source and target system). In order
to treat the second-order quantifier properly, the systems have to be put into
typing à la Church (also a necessity sometimes overlooked) which causes several
technical burdens. Finally, one should remark that ♯A := 1 + A would certainly
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give an implementation of a monad (as observed in [1]), but that its stability is
the problem we encapsulate in our abstract stable monad.
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Phase Transitions in Logic and Ramsey Theory

Andreas Weiermann

We present recent results on classifying natural independent statements for first
order Peano arithmetic (and related systems) and we will survey surprising con-
nections between this area of logic and other fields in mathematics, like analytic
combinatorics and Ramsey theory.

To this end we consider combinatorial assertions, like Friedman, Paris Harring-
ton or Kanamori McAloon style principles, and parameterize these with respect
to a number-theoretic function. If this parameter function is bounded by a func-
tion of slow growth then the resulting assertion remains provable in the system
under consideration but when the parameter function exceeds in growth a critical
threshold then the resulting assertion, although still true, becomes unprovable.

The fine structure analysis of phase transitions yields applications to some clas-
sical open problems in mathematics. In particalur we will discuss how the as-
ymptotic of the standard Ramsey function for triples and two or three colors (a
classical Erdoes problem) is affected by the possible independence of a certain
Paris Harrington principle.
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Towards a More Algebraic Treatment of Ordinal Notation Systems

Anton Setzer

We reconsider some simple ordinal notation systems of predicative strength. Then
we look at the abstract structure behind it and develop form this the notion of an
ordinal system, an underlying structure common to most ordinal notation systems,
the author has studied. Then we show that ID1 shows that all PA-provable ordinal
systems are well-ordered, adhere PA-provable means that the property of being
an ordinal system can be shown in Peano Arithmetic. The well-ordering proof
is relatively short since one doesn’t have to deal with the exact details of the
ordinal notation system but can concentrate on its abstract properties. Formally
we introduce some simple constructions for forming well-orderings using 0, 1, N,
+, · and exponentiation. Using this one can develop easily an ordinal notation
system up to ε0 and show that PA proves transfinite induction over it, written as

OS(λX.A[X]). Then we show how to develop ordinal systems OS(λX.NX + X···X),
and that the limit of these ordinals reaches the Bachmann-Howard Ordinal |ID1|.
This shows that the supremum of the ordertypes of PA-provable ordinal systems
and as well of PRA provable ordinal systems is the Bachmann-Howard ordinal.
Extensions have been developed up to |KPM| and are in development up to |KP+
Π3 − Refl|.

Monotone Inductive Definitions and the Consistency of New
Foundations

Sergei Tupailo

New Foundations, NF, is a system of set theory named after Quine’s 1937 article
“New foundations for mathematical logic”, where it was introduced. It was meant
as a foundations of mathematics, alternative to Zermelo-Fraenkel set theory ZF
and others. Obvious advantages of NF are that it’s very easily formulated and
many mathematical notions can be expressed in NF in a much more “natural” way
than in ZF. However, in spite of efforts by many researches and many brilliant
results, NF is still not known to be consistent relative to any theory in which we
have reasonable confidence.

We investigate a possibility of reducing the Consis(NF) problem to consistency
of various extensions of Jensen’s NFU, “NF with Urelements”, which is known
to be consistent due to Jensen 1969. Extensions of NFU by different “large
cardinal axioms” and their consistency strength have been studied by R. Jensen,
S. Feferman, M. Boffa, R. Holmes, R. Solovay. Specifically, we describe a surprising
connection between the Monotone Inductive Definitions principle and consistency
of New Foundations.

Reporter: Klaus Aehlig
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