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Introduction by the Organisers

The workshop Free Probability Theory, organised by Philippe Biane (Paris), Roland
Speicher (Kingston), and Dan Voiculescu (Berkeley) was held March 27th–April
2nd, 2005. This meeting was well attended with over 50 participants with broad ge-
ographic representation from Austria, Canada, Denmark, France, Germany, Hun-
gary, Japan, Netherlands, Poland, USA.

This workshop was sponsored by a project of the European Union which allowed
us to invite in addition to established researchers also a couple of young people
who were interested in learning about free probability.
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Free probability theory is a line of research which parallels aspects of classical
probability, in a non-commutative context where tensor products are replaced by
free products, and independent random variables are replaced by free random
variables. It grew out from attempts to solve some longstanding problems about
von Neumann algebras of free groups. In the almost twenty years since its creation,
free probability has become a subject in its own right, with connections to several
other parts of mathematics: operator algebras, the theory of random matrices,
classical probability and the theory of large deviations, algebraic combinatorics,
topology. Free probability also has connections with applied mathematics (wireless
communication) and some mathematical models in theoretical physics.

The Oberwolfach workshop on free probability brought together a very strong
group of mathematicians representing the current directions of development in the
area. The diversity of the particants and the ample free time left in the programme
stimulated a lot of fruitful discussions, laying the seed for many new collaborations.

The programme consisted of 13 lectures of 50 minutes, supplemented by 13
shorter contributions of 30 minutes. Because of the various backgrounds of the
participants much emphasis was put on making the lectures accessible to a broad
audience; most of them provided a survey on the background as well as highlighting
some recent developments in connection with free probability. Instead of trying
to summarize all these developments we will let the following abstracts speak for
themselves.
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Abstracts

Multilinear Function Series and Transforms in Free Probability
Theory

Ken Dykema

In this talk, the R– and S–transforms of random variables over a general Banach
algebra B were described. Given a random variable a in a B–valued Banach
noncommutative probability space (A,E), consider the B–valued analytic function

Φa(b) =

∞∑

n=0

E(a(ba)n) = E(a(1 − ba)−1), (b ∈ B, ‖b‖ < ‖a‖−1).

Then the R–transform of Φa is the B–valued analytic function RΦa
defined by

C
〈−1〉
Φa

(b) = (1 + bRΦa
(b))−1b

where C
〈−1〉
Φa

is the inverse with respect to composition of the function

CΦa
(b) = b+ bΦa(b)b.

Then for x, y ∈ A free with respect to B, it was proved by Voiculescu [9] that the
R–transform linearizes additive free convolution, namely,

RΦx+y
= RΦx

+ RΦy
.

The scalar–valued case (when B = C) was earlier proved by Voiculescu in [7].
The case of general B (not necessarily a Banach algebra) was treated also by
Voiculescu in [9], and was given a beautiful combinatorial description by Speicher
in [5] and [6].

The situation for multiplicative free convolution was also described. For a a
random variable in a B–valued Banach noncommutative probability space (A,E),
with B a general banach algebra, and assuming E(a) is invertible, we define the
S–transform of Φa to be the B–valued analytic function SΦa

defined by

D
〈−1〉
Φa

(b) = b(1 + b)−1 SΦa
(b),

where D
〈−1〉
Φa

is the inverse with respect to composition of the function

DΦa
(b) = bF(b).

We described the new result [2], that the S–transform satisfies a twisted multi-
plicativity property with respect to freeness, namely

(1) SΦxy
(b) = SΦy

(b) SΦx
(b̃)

where
b̃ = (SΦy

(b))−1 bSΦy
(b)

is b conjugated by the inverse of SΦy
(b), assuming x and y are free in (A,E) and

E(x) and E(y) are invertible. The proof of this result was outlined, based on certain
annihilation and creation operators on an analogue of full Fock space over B. The
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scalar–valued case (when B = C) was treated by Voiculescu in [8], and the case for
B a commutative Banach algebra was treated by Aagaard [1]; in both these cases,
twisted mutliplicativity (1) reduces to plain multiplicativity. Also, Voiculescu’s
result treats random variables in any noncommutative probability space over C,
which is not necessarily Banach. In [4], Uffe Haagerup gave alternative proofs of
Voiculescu’s result [8] on the scalar–valued S–transform. Both Aagaard’s proof [1]
for B commutative and our proof [2] for a general Banach algebra B are inspired
by Haagerup’s proofs, but by different ones.

By the T–transform, we mean the inverse with respect to multiplication of
the S–transform. The T–transform turns out to be more cannonical than the
S–transform.

In order to handle general algebras B (not necessarily Banach algebras) over an
arbitrary field K and in order to treat all moments of B–valued random variables
(not only the symmetric ones), we describe the algebra Mul[[B]] of formal multi-
linear function series over B, which was introduced in [3]. Elements of Mul[[B]]

are sequences α = (α0, α1, α2, . . .) where α0 belongs to B (or to the unitization of
B, if B lacks an identity element) and where αn : B× · · · × B → B is a multilinear
function from the n–fold product of B into B, where linearity is over K. The op-
eration of formal multiplication makes Mul[[B]] into an algebra, and we define the
operation of formal composition, which behaves analogously to usual composition.
If B = K = C, then Mul[[B]] is the algebra of formal power series in one variable
with complex coefficients, with the familiar operations.

Given a random variable a in a noncommutative probability space (A,E) over
B, the distribution series of a is defined to be the formal multilinear funcition series

Φ̃a ∈ Mul[[B]] given by Φ̃a,0 = E(a), and Φ̃a,n(b1, . . . , bn) = E(ab1ab2a · · ·bna).
The unsymmetrized R– and T–transforms of a are the elements of Mul[[B]] defined
using formulas entirely analogous to those defining the usual R– and T–transforms,
but in the context of Mul[[B]]. We describe additivity and twisted multiplicativity
results [3] for the unsymmetrized R– and T–transforms, that are entirely analo-
gous to the corresponding properties of the usual R– and T–transforms. The main
difference is that while the usual R– and T–transforms capture information about
only the symmetric moments of a random variable, the unsymmetrized versions
capture all moments.

The final topic covered in the talk was the partially ordered set of noncrossing
linked partitions, which was introduced in [3]. This plays a role for multiplication
of noncommutative random variables similar to the role of the lattice of noncrossing
partitions in Speicher’s treatment of the R–transform [5], [6]. It was used in order
to prove the twisted multiplicativity property of the unsymmetrized T–transform.

References
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Quantum Permutation Groups and Free Probability

Teodor Banica

(joint work with Julien Bichon)

This is a presentation of joint work with Julien Bichon [3].
A quantum group is an abstract object, dual to a Hopf algebra. Finite quantum

groups are those which are dual to finite dimensional Hopf algebras.
A surprising fact, first noticed by Wang in [13], is that the quantum group

corresponding to the Hopf algebra C∗(Z2 ∗ Z2) has a faithful action on the set
{1, 2, 3, 4}. This quantum group, which is of course not finite, is a so-called quantum
permutation group.

In general, a quantum permutation group G is described by a special type of
Hopf C∗-algebra A, according to the heuristic formula A = C(G). See [2], [13].

The simplest case is when A is commutative. Here G is a subgroup of the
symmetric group Sn. This situation is studied by using finite group techniques.

In general A is not commutative, and infinite dimensional. In this case G is
a non-classical, non-finite compact quantum group. There is no analogue of a
Lie algebra in this situation, but several representation theory methods, due to
Woronowicz, are available ([14], [15]).

A useful point of view comes from the heuristic formula A = C∗(Γ). Here Γ is
a discrete quantum group, obtained as a kind of Pontrjagin dual of G. Number of
discrete group techniques are known to apply to this situation. See e.g. [10], [11].

The aim of this work is to bring into the picture some free probability techniques.
The starting point is the classical formula G(X . . . X) = G(X) ×w G(Xn) for

usual symmetry groups. Here X is a finite connected graph, Xn is a set having
n elements, X . . . X is the disjoint union of n copies of X, and ×w is a wreath
product. A series of free quantum analogues and generalisations, started in [6]
and continued here, leads to a general formula of type A(X ∗ Y) = A(X) ∗w A(Y).
Here X, Y are colored graphs, and ∗w is a free wreath product.
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The corepresentation theory of free wreath products is worked out in two par-
ticular situations in [2], [6]. Our key remark here is that a formula of type

µ(A ∗w B) = µ(A) � µ(B)

holds in both cases, where µ is the associated spectral measure. We conjecture
that this formula holds in general, and under mild assumptions on A and B.

This is to be related to a planar algebra formula of type µ(P∗Q) = µ(P)�µ(Q),
known to Bisch and Jones ([7]). In fact, a general formula of type A(X ∗ Y) =
A(X)∗wA(Y), with colored graphs replaced by planar algebras, would be equivalent
to the conjecture.

Of particular interest is the case B = A(Xn). Here the conjecture, together
with Voiculescu’s S-transform technique ([12]) reduces computation of µ(X) with
X homogeneous to that of µ(X) with X connected and homogeneous. For n = 2

the conjecture is actually a theorem, and, as an application, we compute µ for the
graph which looks like 2 rectangles. This completes previous classification work
for graphs having at most 8 vertices ([1], [2]).
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Orthogonal Polynomials and Fluctuations of Random Matrices

James Mingo

(joint work with Timothy Kusalik, Roland Speicher)

Wishart matrices arose in the estimation of covariance matrices in multivariate
statistics. Besides the Gaussian random matrices they constitute the most impor-
tant random matrix ensemble. They can be described as follows. Let GM,N be a
M×N matrix whose entries are independent complex Gaussian random variables
with mean 0 and complex variance 1/N. Let XN = G∗

M,NGM,N; XN is a complex
Wishart matrix (of parameter c = M/N).

The fundamental quantities of interest for random matrix ensembles are the
asymptotic eigenvalue distribution and the fluctuations around this asymptotics.
In the case of Wishart matrices, the large N limit of the eigenvalue distribution
was found in 1967 by Marchenko and Pastur and is now named after them. The
question of fluctuations was addressed for the first time by Jonsson [jon] in 1982
and recently by Cabanal-Duvillard [cd] in 2001 in a more detailed manner.

For many random matrices Y the family of random variables {Tr(Yn)}n becomes
asymptotically Gaussian, as the size N of the matrices goes to infinity. The fun-
damental quantities mentioned above consist then in understanding the limit of
the expectation and of the covariance of these Gaussian random variables. For the
latter one would in particular like to diagonalize it. Whereas the expectation (i.e.,
the eigenvalue distribution) depends on the considered ensemble, the covariance
(i.e., the fluctuations) seem to be much more universal. There are quite large
classes of random matrices which show the same fluctuations. The most impor-
tant class is the one which is represented by the Gaussian random matrices. Its
fluctuations are diagonalized by the Chebyshev polynomials, see Johansson [joh].

In the case of the Wishart matrices the asymptotic Gaussianity of the traces
was shown by Jonsson; the explicit form of the covariance, however, was revealed
only recently by Cabanal-Duvillard [cd]. He found polynomials {Γn}n, which
were shown to be shifted Chebyshev polynomials, such that the random variables
{Tr(Γn(X)}n are asymptotically Gaussian and independent in the large N limit;
that is the polynomials {Γn}n diagonalize asymptotically the covariance. Cabanal-
Duvillard’s approach relies heavily on stochastic calculus. In [kms] we gave a
combinatorial proof of his results which rested on a combinatorial interpretation
of the polynomials Γn. This combinatorial approach allowed very canonically an
extension of Cabanal-Duvillard’s results to a family of independent Wishart ma-
trices, yielding our main result.

Theorem Let {Γn}n be the shifted Chebyshev polynomials of the first kind as
considered by Cabanal-Duvillard and let {Πn}n be the orthogonal polynomials of
the Marchenko-Pastur distribution (which are shifted Chebyshev polynomials of
the second kind). Let X1, . . . , Xp be independent Wishart matrices and consider
in addition to Tr(Γn(Xi)) also, for k ≥ 2, the collection of random variables
Tr(Πm1

(Xi1) · · ·Πmk
(Xik)), where the Wishart matrices which appear must be
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cyclically alternating, i.e., i1 6= i2 6= i3 6= · · · 6= ik 6= i1. These latter traces
depend only on the equivalence class of (i1, . . . , ik) and (m1, . . .mk) under cyclic
permutation. Assuming that we have chosen one representative from each equiva-
lence class, the random variables

{Tr(Γn(Xi))} ∪ {Tr(Πm1
(Xi1) · · ·Πmk

(Xik))}

are asymptotically independent and Gaussian.
The main motivation for our investigations comes from our belief that the theory

of free probability provides the right tools and concepts for attacking questions
on fluctuations of random matrices – in particular, for multi-matrix models. Even
though “freeness” did not appear explicitly in [kms], our methods and results are
very much related to our investigations around “second order freeness” in [ms].
The present paper can, in particular, be seen as a complementary treatment of
some of the questions treated in [ms].

Our starting point is the paper of Mingo-Nica [mn], where a genus expansion
in terms of permutations was provided for the cumulants of the random variables
Tr(Xn). Since cumulants of different orders have different leading contributions in
N, this has as a direct consequence the asymptotic Gaussianity of these traces. The
main problem left is to understand and diagonalize the covariance. Also in [mn],
it was shown that the covariance of the random variables {Tr(Xn)}n has asymp-
totically a very nice combinatorial interpretation, namely it is given by counting
a class of planar diagrams which were called non-crossing annular permutations.
More precisely, if we denote by κ2(A,B) the covariance of two random variables A
and B and if c is the asymptotic ratio of M and N for our Wishart matrices, we
have

lim
N→∞

κ2(Tr(Xm),Tr(Xn)) =
∑

π∈SNC(m,n)

c#(π),

where SNC(m,n) denotes the set of non-crossing (m,n)-annular permutations,
i.e., permutations on m + n points which connect m points on one circle with n
points on another circle in a planar or non-crossing way. In the above formula we
are summing over all non-crossing (m,n)-annular permutations and each block of
such a permutation contributes a multiplicative factor c.

In this pictorial description Tr(Xm) corresponds to the sum over non-crossing
half-permutations on one circle with m points and Tr(Xn) corresponds to a sum
over non-crossing half-permutations on another circle with n points. The limit of
κ2(Tr(Xm),Tr(Xn)) corresponds to pairing the half-permutations for Tr(Xm) with
the half-permutations for Tr(Xn). The pairing between two half-permutations is
given by glueing them together in all possible planar ways.

Finally, we would like to point out that our circular half-permutations are, after
a small redrawing, the diagrams used by V. F. R. Jones [j, §5] to create a basis
for the irreducible representations of the annular Temperly-Lieb algebras.
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Ann. I. H. Poincaré (B), Probabilités et Statistiques, 37 (2001) 373 - 402.



Free Probability Theory 837

[j] V. F. R. Jones, The annular structure of subfactors, L’Enseignement Mathematique, to
appear, math.OA/0105071

[joh] K. Johansson, On Fluctuations of Eigenvalues of Random Hermitian Matrices, Duke Math.
J., 91 ( 1998), 151 - 204.

[jon] D. Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix, J. Mult.
Anal., 12 (1982), 1-38.

[kms] T. Kusalik, J. A. Mingo, and R. Speicher, Orthogonal Polynomials and Fluctuations of
Random Matrices, preprint, March 2005, math.OA/0503169

[mn] J. Mingo and A. Nica, Annular non-crossing permutations and partitions, and second-order
asymptotics for random matrices, Inter. Math. Res. Notices, 2004, no 28, 1413 - 1460.

[ms] J. Mingo and R. Speicher, Second order freeness and fluctuations of random matrices: I.
Gaussian and Wishart matrices and cyclic Fock spaces, Preprint, 2004, math.OA/0405191.

Combinatorial Aspects of Matrix Models

Alice Guionnet

In this talk, we discuss the approach of physicists to matrix models and related
combinatorics and apply it to free probability, summarizing a joint work with E.
Maurel. More precisely, let µN be the law of the GUE, that is the law of an N×N
Hermitian matrix with entries which are independent centered complex Gaussian
variables with covariance (N)−1 above the diagonal and centered real Gaussian
variables with covariance N−1 on the diagonal;

µN(dA) =
1

ZN
1A∈HN

e− N
2

tr(A2)dA.

Let C〈X1, · · · , Xm〉 be the set of polynomials in m non commutative variables.
We equip C〈X1, · · · , Xm〉 with the involution ∗ so that for all choices of n ∈ N,
ik ∈ {1, · · · ,m}, k ∈ {1, · · · , n}, all z ∈ C,

(zXi1 · · ·Xin) = z̄Xin · · ·Xi1
Let V = Vt =

∑n
i=1 ti(qi + q∗i ) for monomial functions qi ∈ C〈X1, · · · , Xm〉 and

real parameters t = (t1, · · · , tn). Then, it is widely used in physics (see e.g. [2]
for a nice review) that

FN(t) =
1

N2
log

∫
e−N tr(Vt(A1,··· ,Am))dµN(A1) · · ·dµN(B)

expands, when the real parameters ti are small enough, into an enumeration of
colored maps. This expansion is formal; for instance, it can be proved by Wick
formula that

(1) (−1)k1+···+knD(k1, · · · , kn, 0) = lim
N→∞

∂k1

t1
· · ·∂kn

tn
FN(V)|t=0

enumerates some planar maps.
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Rectangular Random Matrices, Freeness with Amalgamation, and
Free Entropy

Florent Benaych-Georges

We characterize asymptotic collective behaviour of rectangular random matrices,
the sizes of which tend to infinity at different rates: we prove that independent
rectangular random matrices, when embedded in a space of larger square matrices,
are asymptoticaly free with amalgamation over a commutative finite dimensional
subalgebra D (under an hypothesis of unitary invariance).

It allows us to define a “rectangular free convolution” �λ: for everyλ ≥ 0, for
all µ, ν symetric probability measures, µ �λ ν is the symetrization of the limit,
when the dimensions go to infinity in a ratio λ, of spectral distribution of the
absolute value of M + N, where M,N are independant random matrices, whose
distributions are invariant under the action of unitary groups, and such that the
symetrization of the limit spectral distribution of the absolute value of M (resp.
N) is to µ (resp. ν).

This convonlution is linearized by cumulants. It allows us to investigate the
related notion of infinite divisiblity, which appears to be closely related the classical
infinite divisibility.

Then we consider elements of a finite von Neumann algebra containing D, which
have kernel and range projection in D. We associate them a free entropy with the
microstates approach, and a free Fisher’s information with the conjugate variables
approach. Both give rise to optimization problems whose solutions involve freeness
with amalgamation over D.

It could be a first proposition for the study of operators between different Hilbert
spaces with the tools of free probability. As an application, we prove a result of
freeness with amalgamation between the two parts of the polar decomposition of
R-diagonal elements with non trivial kernel.
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Applications of L2 Cohomology to Free Entropy Dimension

Dimitri Shlyakhtenko

We use connections between free entropy theory and the theory of L2 cohomology
to derive two statements in free probability theory. First, we give a counterexample
to the semi-continuity question of free entropy dimension, posed by Voiculescu in
[Voi94]. We give a reformulation of the question, which avoids the counterexample,
while (if true) still implying the non-isomorphism of free group factors. Second, we
prove that whenever an self-adjoint n-tuple X1, . . . , Xn, n ≥ 2 generates a diffuse
hyperfinite II1 factor, then there is no dual system to X1, . . . , Xn.

In [CS], we found a connection between L2 cohomology [Ati76, CG86, Lüc02]
and free probability theory (more precisely, free entropy theory)

[VDN92, Voi98, Voi94, Voi96]. This connection is exemplified by the inequality
δ∗(X1, . . . , Xn) ≤ ∆(X1, . . . , Xn), where X1, . . . , Xn is an n tuple of self-adjoint
elements in a tracial von Neumann algebra (M,τ), δ∗ is the non-microstates free
entropy dimension [Voi98, Shl04], while ∆ is a quantity that appears in L2 coho-
mology. More precisely,

∆(X1, . . . , Xn) = n − dimM⊗̄M cl V(X1, . . . , Xn), where

V(X1, . . . , Xn) = {(T1, . . . , Tn) ∈ FRn :
∑

[Ti, Xi] = 0} ⊂ HSn,

cl refers to the closure in the Hilbert-Schmidt topology, and FR and HS stand
respectively for the M,M-bimodules of finite-rank and Hilbert-Schmidt operators
on L2(M,τ) with the bimodule action given by (m⊗ n) · T = Jm∗J T Jn∗J.
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In the case that X1, . . . , Xn generate the group algebra of a discrete group Γ

(which we take with its natural trace), ∆(X1, . . . , Xn) = β
(2)

1 (Γ) − β
(2)

0 (Γ) + 1,

where β
(2)

j are the L2 Betti numbers of Γ , i.e. dimensions of its L2 cohomology
groups.

In the case of groups, the connection with free entropy dimension is much
tighter; in [MS], we proved (under the above assumptions that X1, . . . , Xn generate
CΓ) that

δ∗(X1, . . . , Xn) = ∆(X1, . . . , Xn) = β
(2)

1 (Γ) − β
(2)

0 + 1.

The connection between ∆ and δ∗ can be direct (as we have just seen), but
it can also be used as an inspiration to transport results from the theory of L2

cohomology to that of free entropy dimension.
Using the well-known properties of Murray-von Neumann dimension, it is easy

to construct a counterexample to semicontinuity of ∆(X
(k)

1 , . . . , X
(k)
n ), where

X
(k)

j ∈ M and X
(k)

j → Xj strongly. The same counterexample works for free

entropy dimension δ0 and its variants δ, δ∗ [Shl05]:
Let a, b be the canonical generators of a free group on two generators. Let

X
(k)

1 = a2, X
(k)

2 = b2, X
(k)

3 = ab, X
(k)

4 = a. Then X
(k)

j → Xj where X1 = a2,

X2 = b2, X3 = ab and X4 = 0. Since X1, . . . , X4 generate a free group on

3 generators, while X
(k)

1 , . . . , X
(k)

4 generate a free group on two generators, we

conclude that 2 = lim infk δ(X
(k)

1 , . . . , X
(k)

4 ) � δ(X1, . . . , X4) = 3.

Our second application concerns the question of existence of “dual systems”
in the sense of Voiculescu [Voi98]. If X1, . . . , Xn are as above, one says that
D1, . . . , Dn ∈ B(L2(M)) are a dual system to X1, . . . , Xn, if one has

[Dj, Xk] = δjkP1, 1 ≤ j, k ≤ n,
where P1 denotes the rank-one projection onto 1 ∈ L2(M). One has the following
implications:

dual system exists ⇒ Φ∗(X1, . . . , Xn) <∞ ⇒ χ∗(X1, . . . , Xn)

⇒ δ∗(X1, . . . , Xn) = n ⇒ ∆(X1, . . . , Xn) = n.

By analogy with the situation for groups [Lüc98], one expects that

∆(X1, . . . , Xn) = 1

under some amenability assumptions. This would have as consequence the non-
existence of a dual system in the amenable case. While the bound on ∆ is out of
reach at present, we prove that if X1, . . . , Xn generate the hyperfinite II1 factor,
then a dual system cannot exist.

We sketch the argument (which goes through under an additional technical
assumption).

Step 1. There exists operators T1, . . . , Tn ∈ M⊗̄Mo so that
∑

[Ti, Xi] = 0

while Tr(T1P1) 6= 0. Indeed, assume that this is not possible. Then if we let
W = {(T1, . . . , Tn) ∈ M⊗̄Mo :

∑
[Ti, Xi] = 0}, we obtain that (P1, 0, . . . , 0) ⊥ W.
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On the other hand, since for any H ∈ HS, and any (T1, . . . , Tn) ∈ HSn satisfying∑
[Ti, Xi] = 0, ∑

i

Tr([H,Xi]Ti) = Tr(H
∑

[Xi, Ti]) = 0,

we find that W⊥ = cl{([H,X1], . . . , [H,Xn]) : H ∈ HS}. Thus its Murray-von Neu-
mann dimension over M ¯⊗Mo equal to 1 (since the map H 7→
([H,X1], . . . , [H,Xn]) has no kernel). But if (P1, 0, . . . , 0) ∈ W⊥, it follows that
W⊥ = HS ⊕ 0 ⊕ · · · ⊕ 0, which is clearly not possible (as it would imply that an
arbitrary H ∈ HS commutes with X2, . . . , Xn, which implies that they are scalar,
contradicting the assumption that X1, . . . , Xn generate a II1 factor).

Step 2. There exists a non-normal state Υ : M⊗̄Mo → C satisfying Υ((x⊗ 1−

1⊗ xo)T) = 0 for all x ∈M and T ∈M⊗̄Mo, and such that for any finite tensor∑
ai⊗bi ∈M⊗Mo,Υ(

∑
ai⊗bi) = Tr(

∑
θai,bi

), where θai,bi
is the finite-rank

operator corresponding to ai ⊗ bi ∈ M ⊗Mo ⊂ L2(M) ⊗ L2(M)o = FR(L2(M)).
Indeed, the state Υ0(

∑
ai ⊗ bi) = 〈∑aiJb

o
i J 1, 1〉 satisfies the necessary as-

sumptions on C∗(M, JMJ) ⊂ B(L2(M)). Since M is hyperfinite, C∗(M, JMJ) =

M ⊗min M
o ⊂ M⊗̄Mo [Con76]. Thus the state Υ0 is defined on M ⊗min M

o

and admits by the Hahn-Banach theorem a (non-normal) extension Υ to M⊗̄Mo,
satisfying the desired properties.

Step 3. Assume now that a dual system D1, . . . , Dn exists. Let T1, . . . , Tn ∈
M⊗̄Mo ⊂ HS be as in Step 1, so that

∑
[Ti, Xi] = 0, Tr(T1P1) 6= 0. We make the

technical assumption that TiD1 ∈M⊗̄Mo, i = 1, . . . , n. Then

Tr(T1P1) = Tr(
∑

Ti[D1, Xi]) = Υ(
∑

Ti[D1, Xi])

= Υ(
∑

TiD1Xi − TiXiD1)

(here we identify M⊗̄Mo with a subset of HS). Note that since T1P1 = (1 ⊗
τ)(T1) ∈M⊗̄Mo and [D1, Xi] = 0 for i ≥ 2, we have that Ti[D1, Xi] ∈M⊗̄Mo for
each i, so that we can indeed apply Υ. Since TiD1 ∈M⊗̄Mo by assumption, so is
TiD1Xi and hence also TiXiD1. Thus

0 6=
∑

Υ(TiD1Xi) − Υ(TiXiD1)

=
∑

Υ(XiTiD1) − Υ(TiXiD1) − Υ(XiTiD1 − TiD1Xi)

= Υ(
∑

[Xi, Ti]D) −
∑

Υ((Xi ⊗ 1 − 1⊗ Xoi ) · ξi),
where ξi = TiD1 regarded as an element of M⊗̄Mo, and · denotes the multipli-
cation of M⊗̄Mo. Since

∑
[Ti, Xi] = 0, the term Υ(

∑
[Xi, Ti]D) is zero. But the

properties of Υ imply that Υ((Xi⊗ 1− 1 otimesXoi )ξi) = 0. We have thus arrived
at a contradiction.
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The Microstates Free Entropy Dimension of a DT-Operator is 2

Kenley Jung

(joint work with Ken Dykema, Dimitri Shlyakhtenko)

We show that any one of the DT-operators introduced by Ken Dykema and Uffe
Haagerup has microstates free entropy dimension exactly equal to 2. This is joint
work with Ken Dykema and Dimitri Shlyakhtenko.

Finite Free Entropy and Free Group Factors

Nathaniel Brown

My talk concerned the resolution of a specific question raised by Dimitri Shlyakht-
enko: Is it true that a set of noncommutative random variables with finite free
entropy necessarily generate a free group factor? (For an excellent survey of
Voiculescu’s free entropy theory we refer to [4].) This question was motivated
by the seminal work of Gaboriau who showed that an equivalence relation is the
free product of hyperfinite equivalence relations if and only if there exists a gen-
erating set of minimal support. (See [2] for a precise statement.)

Though there was hope for an affirmative answer to Shlyakhtenko’s question it
turns out that counterexamples exist and the obstruction lies in some technical
approximation properties of operator algebras. The main result is as follows.
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Theorem: There exist noncommutative random variables X1, . . . , Xn with the
property that χ(X1, . . . , Xn) > −∞ but M = W∗(X1, . . . , Xn) is not isomorphic to
any (not necessarily unital) subalgebra of a free group factor.

The construction of the counterexamples is fairly easy to describe. We begin
with a discrete, residually finite group Γ which has Kazhdan’s property T (e.g.
SL(3,Z)). Let Y1, . . . , Yn be a set of self-adjoint generators of N0 = L(Γ) (the von
Neumann algebra generated by the left regular representation). Inside N0 ∗ L(Fn)

consider the n-tuple of self-adjoints

Yε = {Y1 + εS1, . . . , Yn + εSn},

where Si ∈ L(Fn) are free semicircular elements, and let Nε = W∗(Yε) be the
von Neumann algebra generated by these elements. A result of Voiculescu (cf. [5,
Theorem 3.9]) says that the free entropy of Yε is finite for all ε > 0. However, it
turns out that for all sufficiently small ε the von Neumann algebras Nε are not
embeddable into free group factors.

An outline of the reasoning is as follows. Assume the contrary. Since free group
factors enjoy the Haagerup approximation property (cf. [3]) it would follow that
each Nε has this property. One then shows that this property passes to limits, in a
suitable sense, and hence N0 = L(Γ) would also have the Haagerup approximation
property. But a result of Connes-Jones asserts that this is impossible for property
T groups (cf. [1]) and hence we get our contradiction. The details can be found in
our preprint entitled “Finite free entropy and free group factors.”

After my lecture, Shlyakhtenko asked whether finite free entropy plus the Haage-
rup approximation property would be enough to ensure that one was looking at
a free group factor. This question remains open and would be a nice project for
future research.
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Integration on Compact Groups and Applications

Benoit Collins

We explain how to solve the problem of computing arbitrary moments of Haar
measures on compact goups and mention some applications. This note is based
on papers [5].

Let G ⊂ Md be a compact Lie group viewed as a group of matrices. The matrix
structure provides a natural coordinate system on G and we are interested in the
family of functions eij : G → C defined by eij : Md 3 m 7→ mij which to a matrix
assign one of its entries. We call polynomials in (eij) polynomial functions on G.
We wish to compute the integrals of polynomial functions in (eij, eij) on compact
Lie groups with respect to the Haar measure µG on G, i.e. the integrals of the
form

(1)

∫

G

Ui1j1 · · ·UinjnUi ′1j ′1 · · ·Ui ′
n ′
j ′
n ′
dµG(U).

We call such integrals moments of the group G.
Let Sn be the permutation group over the integers [1, n]. For σ ∈ Sn, let |σ| :=

n − #cycles(σ) in in its product cycle decomposition. The map (σ, τ) → |τσ−1|

is a distance on Sn, invariant by left and right translation.
We denote by C[Sn] the algebra of the symmetric group. Its canonical basis is

{δσ, σ ∈ Sn} and the multiplication is δσδτ = δστ. The neutral element of Sn (the
identity permutation) is denoted by e.

Theorem. [[2]]

• Let n ≤ d. One has, for the unitary group:
∫

Ud

Ui1j1 · · ·UinjnUi ′1j ′1 · · ·Ui ′nj ′ndµU(U) =

∑

σ,τ∈Sn

δi1i ′σ(1)
. . . δini ′σ(n)

δj1j ′τ(1)
. . . δjnj ′τ(n)

Wgu(d, στ−1)

where Wgu(d, σ) = 1
n!2

∑
λ`n

χλ(e)2χλ(σ)

sλ,d(1)
; χλ are the characters of the

symmetric group, and sλ,d are the Schur polynomials. In particular,
Wgu(d, ·) is central.

• Let Φu =
∑
σ∈Sn

δσd
n−|σ| and Wgu =

∑
σ∈Sn

δσWg(d, σ). One has, in

C[Sn]: ΦWg = δe.

Let B2n be the set of pairings of the set [1, 2q] into q pairs. Let p, p ′ be
two pairs of B2n. We call loops(p, p ′) the number of blocks of the partition
generated by p and p ′. It is less than n and equals n iff p = p ′. The function
(p, p ′) → n − loops(p1, p2) is a distance on B2n.

Consider the endomorphismΦo of C[B2n] given by p → ∑
p ′∈B2n

p ′d−n−d(p,p ′).
For given n, this map is invertible for d large enough.

Let Wgo : p → ∑
p ′∈ p

′Wgo(d, p, p
′) be the peudo-inverse of Φo. In the

orthogonal group case, Theorem becomes
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Theorem. [5] One has
∫

Od

Ui1j1 · · ·Ui2nj2n
dµO(U) =

∑

p,p ′∈B2n

δp,iδp ′,jWgo(d, p, p
′)

where δp,i =
∏
k δik,p(ik) and Wgo : p → ∑

p ′∈B2n
p ′Wgo(d, p, p

′) is the pseudo-

inverse of Φo : p → ∑
p ′∈B2n

p ′d−n−d(p,p ′). The endomorphism Φo is invertible
iff d ≥ n.

Let σ, τ ∈ Sn. A path P between σ and τ is a finite sequence σ = σ0 6= σ1 6=
. . . 6= σk = τ. The (infinite) family of such paths is denoted by PS(σ, τ). By
definition, the length of P is l(P) = |σ0σ

−1
1 | + . . . + |σk−1σ

−1
k |. For p, p ′ ∈ B2n it

is possible similarly to define PB(p, p ′) and a length function.

Theorem. For d ≥ n, one has: Wgu(d, στ−1) =
∑
P∈PS(σ,τ)(−d)

−l(P), and

Wgu(d, p, p ′) =
∑
P∈PB(p,p ′)(−d)

−l(P).

1. Applications

The main application of this result is to the asymptotic behaviour of random
matrices. The following theorem is the key tool.

Theorem. • For any n, let cn =
(
2n
n

)
/n. One has

(2) Wgu((1, . . . , n), d) =d→∞
(−1)n−1cn

(d− n+ 1)(d − n + 2) . . . (d + n − 1)

• Let σ = σ1 t σ2. Then Wgu(d, σ) =d→∞ Wg(σ1)Wg(d, σ2)(1 + 0(d−2)).
Let p, p ′ ∈ B2q and assume that they can be written as p = p1 t p2 and
p ′ = p ′

1 t p ′
2, where p1, p

′
1 are pairings of B2k, k < q. Then

Wgo(d, p, p
′) =d→∞ Wgo(d, p1, p

′
1)Wgo(d, p2, p

′
2)(1 + 0(d−2)).

• Let p, p ′ ∈ B2n and assume that they generate a partition with blocks of
length 2k1 ≥ 2k2 ≥ . . .. On the other hand, let σ ∈ Sn be a permutation
with cycles of length k1 ≥ k2 ≥ . . .. Then Wgo =d→∞ Wgu → (1 +

o(d−1))

With theorems 1 and , it is possible to give a mathematical meaning to the-
oretical physics assertions that large families of matrix integrals and partitions
functions converge. In addition, one can reprove under weaker hypotheses almost
sure convergence results of Voiculescu (cf for example [1]).

Trying to understand better the signed enumeration of paths of Theorem ,
and in particular being able to interpret combinatorially the coefficients of the
development in d−1 of functions Wg (as a number enumerating a combinatorial
structure related to the endpoints of the path) is a challenging problem that would
have many important applications if a nice interpretation was found.
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The Polynomial Method: From Theory to a “Free Calculator”

Raj Rao

(joint work with Alan Edelman)

In infinite random matrix theory (RMT), the limiting level density of a large class
of random matrices can, in principle, be obtained by applying either resolvent or
free probability based theorems. These theorems are often formulated explicitly
in terms of either the limiting level density [1, 2] or the R and S transforms [3, 4]
of free probability. This has hindered the applicability of these theorems in many
practical situations where the limiting level density or the R and S transforms
cannot be explicitly determined. The free commutator of Nica and Speicher [5]
is a prominent example in free probability where this observation is particularly
true. We propose a method that overcomes these hurdles.

We introduce bivariate polynomials of the form Luv =
∑
j

∑
k cjku

jvk, where
u and v are an appropriately chosen pair of variables implicitly defined such that
Luv(u, v) = 0. We demonstrate that resolvent and free probability based theorems
can be interpreted as simple transformations of these bivariate polynomials. We
use this observation to argue that these polynomials are a more natural mathe-
matical object to work with than the explicit transforms or densities.

We then combine known theorems with new random matrix transformations,
derived using the bivariate polynomial framework, to extend the class of ran-
dom matrices for which the limiting level density and the limiting moments can
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be determined analytically. The mathematical principles that lie at the core of
this polynomial method [6] lend themselves to a surprisingly simple computational
realization as well. We use this to implement a ‘free calculator’ which allows re-
searchers to truly begin to harness the power of infinite RMT and obtain concrete
answers to their random matrix questions.

This is joint work with Alan Edelman (M.I.T.)
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Finite Free Cumulants and Moments of Unitary/Orthogonal Matrices

Alan Edelman

(joint work with N. Raj Rao, Plamen Koev)

Free probability has concentrated on the n → ∞ limit of random matrix theory.
The current viewpoint is that this is an alternative to the n = 1 classical proba-
bility. Finite random matrix theory, however, allows for finite n as well, but with
the addition of the parameter β which takes on the values 1, 2, 4 for real, complex,
quaternion respectively, but can take on a continuum of values without serious
difficulty.

In finite random matrix theory, a matrix model has joint eigenvalue density

c
∏

i<j

|xi − xj|
β

∏

i

(w(xi))

where w(x) is a weight function, typically a classical weight function such as
Hermite (exp(−x2/2)), Laguerre (xα exp(−x)), Jacobi ((1−x)α1 (1+x)α2 ), or Fourier
( 1 on |z| = 1).

For the Hermite, Laguerre, Jacobi cases, the univariate densities are the normal
distribution, chi-distribution, and beta distributions of classical probability [3]. In
linear algebra, the matrix problems are connected with the symmetric eigenvalue
problem, the singular value decomposition (svd), and the generalized singular value
decomposition (gsvd). The names that we prefer are the ones based on orthogonal
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polynomial theory, as they seem to be a more consistent naming convention [4].
In free probability we have the free semi-circle, free Poisson, and free products of
projections.

In the finite case, if we seek a computational procedure for finite free cumulants
such as described by Capitaine and Casalis [1] ultimately we need to compute
moments of unitary or orthogonal matrices under Haar measure.

For β = 1, 2 this may be expressed with the Weingarten formula as in the work
of Collins[2].

For general β this is possible using the property of Jack polynomials

E [Jκ(Q
′AQB)] =

Jκ(A)Jκ(B)

Jκ(I)
.

This begs the question of what we mean by this measure for general β. One
feels it is the wrong question to look to extend real, complex, quaternion because
these are the only three division algebras. Rather it is right to extend “RANDOM”
real, complex, and quaternion. We propose one approach is to use axiomatically
the properties of (x + x ′)/2 (always a real Gaussian), x ∗ x ′ (a χ2β variable) and

the Pythagorean addition formula ax+ by ≈
√
a2 + b2 ∗ z.

This is joint work with N. Raj Rao (M.I.T.) and Plamen Koev (M.I.T.)
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A Free Analogue of Brillinger’s Formula

Franz Lehner

Brillinger’s formula expresses classical cumulants in terms of cumulants of condi-
tioned cumulants:

κn(X1, X2, . . . , Xn) =
∑

π∈Πn

κ|π|(κ|πj|(Xi : i ∈ πj|F) : j = 1, . . . , |π|)

where the summation runs over the lattice Πn of set partitions and the condi-
tioned cumulants κn(X1, . . . , Xn|F) are random variables measurable on some
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sub-σ-algebra F which are defined analogously to the usual cumulants by Möbius
inversion on the partition lattice

κπ(X1, X2, . . . , Xn|F) =
∑

σ≤π
Eσ(X1, X2, . . . , Xn|F)µ(π, 1̂n)

replacing expectations by conditional expectations. We propose a free analog of
this formula. As expected, the lattice of all set partitions is replaced by the lattice
of noncrossing partitions, however the notion of “cumulants of cumulants” needs to
be defined appropriately: Let (A, φ) be a noncommutative probability space and
ψ : A → B a conditional expectation onto some subalgebra such that φ = φ ◦ ψ.
Then the free analog of conditioned cumulants are Speicher’s B-valued noncrossing
cumulants

Cψn (X1, X2, . . . , Xn) =
∑

π∈NCn

ψπ(X1, X2, . . . , Xn)µNC(π, 1̂n)

where now µNC is the Möbius function on the lattice of noncrossing partitions. If
we define for noncrossing partitions σ ≥ π the partitioned expectations of cumu-
lants as

φσ ◦ Cψπ (X1, . . . , Xn) =
∏

S∈σ
φ(

∏

B∈π
B⊆S

Cψ(Xi : i ∈ B))

and
Cσ ◦ Cψπ (X1, . . . , Xn) =

∑

π≤ρ≤σ
φρ ◦ Cψπ (X1, . . . , Xn)µNC(ρ, σ)

then we have the following analog of Brillinger’s formula

Cn(X1, X2, . . . , Xn) =
∑

π∈NCn

C1̂n
◦Cψπ (X1, X2, . . . , Xn)

As an application one can give a purely combinatorial proof of a recent character-
ization of freeness due to Nica, Shlyakhtenko and Speicher.

Invariant Subspaces for Operators in a General II1-Factor

Uffe Haagerup

(joint work with Hanne Schultz)

The main result is, that if T is an operator in a general II1-factor M, then for
every Borel set B ⊂ C, there is a unique closed T -invariant subspace K = K(T, B)

affiliated with M, such that with respect to the decomposition H = K⊕K⊥, T has
the form

T =

(
T11 T12
0 T22

)

where the Brown measures of T11 and T12 are concentrated on B and C\B

respectively. Moreover, K is T -hyperinvariant. In particular if the Brown measure
of T is not a Dirac measure, then T has a non-trivial hyperinvariant closed subspace.
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The results extend the results in my unpublished MSRI notes from 2001, where
Connes’ embedding property was assumed.

Free Levy Processes

Marek Bozejko

(joint work with Wlotek Bryc)

The talk presented is on joint work with Wlotek Bryc. The free Meixner-Levy
laws arise as the distributions of orthogonal polynomials with constant coefficient
recursions. We show that these are the laws of the free pairs of random variables
which have linear regressions and quadratic conditional variances when conditioned
with respect to their sum. We apply this result to describe free Levy processes
with quadratic conditional variences, and to prove a converse implication related
to asymptotic freeness of random Wishart matrices.

Brown Measures of Sets of Commuting Operators in a II1 Factor

Hanne Schultz

(joint work with Uffe Haagerup)

In recent work by U. Haagerup and the speaker it was shown that for any operator
T in a II1 factorM and for any Borel set B in the complex plane there is a maximal
T -invariant socalled spectral subspace KT (B) affiliated with M such that the Brown
measure of T |KT (B) is concentrated on B. Moreover, KT (B) is T -hyperinvariant (i.e.
S-invariant for every S in T ′). This enables us to prove the existence of a Brown
measure for any finite set T = (T1, ..., Tn) of commuting operators in M. The
Brown measure µT is a probability measure on Cn with certain nice properties.
We also show that exactly as in the case of a single operator, one can associate to
every Borel set in Cn a T1−, ..., Tn-invariant spectral subspace.

Interval Partitions, Hopf Algebras, and the Inversion of Power Series

Michael Anshelevich

(joint work with Edward G. Effros, Mihai Popa)

For power series with non-commuting coefficients (which commute with the vari-
ables), the composition operation is not associative. Moreover, if one looks at
n-tuples of power series in n non-commuting variables, the left and the right com-
positional inverses exist but are different. It is not hard to prove recursively that
they can be written as sums over labeled trees. The vertices of trees are labeled
by elements of {1, 2, . . . , n}, and for each vertex x, Y(x) = fiu1,...,up

, where i is



Free Probability Theory 851

the label of x and u1, . . . , up are the labels of its progeny. Then the coefficient of
zu1

. . . zup
in the i’th component of the left inverse to F is

∑

T∈Ti
u1,...,up

(−1)`(T)Y(x1)Y(x2) . . . Y(xk).

Here, Tiu1,...,up
are the proper trees with the root label ed i and the leaves labeled

u1, . . . , up, `(T) is the number of levels of the tree, and

x1 � x2 � . . .� xk

are the vertices of the tree T ordered according to the breadth-first ordering. It is
similarly easy to show recursively that for the right inverse, the coefficients are

∑

T∈Ri
u1,...,up

(−1)v(T)Y(y1)Y(y2) . . . Y(yk),

where Riu1,...,up
are the reduced trees, v(T) is the number of non-leaf vertices of

the tree, and

y1 � y2 � . . . � yk

are the vertices of the tree T ordered according to the depth-first ordering.

A systematic way to prove these formulas, remove the redundancies they contain,
and exhibit the relationship between them, is to use Hopf algebras. Specifically, the
algebra of such power series under composition is closely related to the incidence
algebra of colored interval partitions, which we define and investigate. We show
that the left and right compositional inverses for power series can be obtained
from the antipode S of this Hopf algebra, and its inverse S−1 (note that S2 6=
I). More surprisingly, the inverses are directly related to the antipodes of two
transformations of the interval partitions Hopf algebra, which we call the left and
the right Lagrange Hopf algebras. As a consequence, we obtain the (reduced trees,
depth-first ordering) and (all trees, breadth-first ordering) expansions for both
inverses, thus explicitly describing the relationship between them. Moreover, the
breadth-first expansion is a particular case of the general Hopf algebra “geometric
series” expansion for the antipode.

For commutative power series, a direct combinatorial argument of Haiman and
Schmitt shows that in the sum over all trees, the contributions of non-reduced
trees cancel. In our non-commutative case, a more complicated argument is nec-
essary. First, we show that the expansion over all trees can be replaced with the
expansion over only order-reduced simple trees. Second, we show that such trees
are in fact in one-to-one correspondence with the reduced trees, and the correspon-
dence moreover transforms the breadth-first ordering into the reverse depth-first
ordering. In this way, the desired reduced tree expansion is obtained from the
general Hopf algebra antipode formalism.

The cancelation result above is reminiscent of Zimmermann’s formula in pertur-
bative quantum field theory, and of the results of Connes and Kreimer on the
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Hopf algebra of rooted trees. Our results on the “free Faà di Bruno algebra” sug-
gest that similar simplifications may occur in the non-commutative version of the
Connes-Kreimer algebra.
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Introduction to L2-Betti Numbers and Their Relation to Free
Probability

Thomas Schick

In this talk we present an introduction to the theory of L2-Betti numbers. This
theory has been developed over the last 30 years by a number of mathematicians.
In the talk we put a particular emphasis on the connections with free probability
theory

A basic definition of L2-Betti numbers is given for a finite CW-complex X, using
the cellular chain complex of the universal covering and the group von Neumann
algebra Lπ of the fundamental group π together with its canonical trace. In this
approach, one constructs the combinatorial Laplacians ∆p, and the von Neumann
dimensions of their kernels are the L2-Betti numbers.

This displays the first connection to free probability: both use as underlying
theory tracial von Neumann algebras and their properties in a crucial way.

In particular, the construction can be applied to the classifying space BG of
a discrete group G, provided it has a model which is a finite CW-complex, this
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way defining the L2-Betti numbers of a group b
(2)
p (G) := b

(2)
p (BG). An obvious

drawback here is that not all groups admit such a classifying space. The definition
of L2-Betti numbers can be extended to arbitrary spaces, either by an approxima-
tion method due to Cheeger-Gromov [2] or by Lück’s systematic extension of the
dimension function coming from the trace to arbitrary modules (in the algebraic
sense) over Lπ [10].

The latter approach is used by Connes and Shlyakhtenko [3] to define L2-Betti
numbers for tracial algebras, in particular von Neumann algebras. For the group
algebra, they give back the L2-Betti numbers of the group. In general, the calcula-
tion of these invariants remains one of the big problems. If the L2-Betti numbers
of Lπ coincide with the ones of π, it would follow in particular that the different
free group factors are all non-isomorphic.

The construction of [3] is inspired by Gaboriau’s definition of L2-Betti numbers
for measurable equivalence relations [6], where Gaboriau proved in particular that
the L2-Betti numbers of a group depend only on the measure equivalence class of
the group. Continuing the development started in [3], Mineyev and Shlyakhtenko
establish in [12] the following deep connection between free probability and L2-
Betti numbers. For self adjoint generators X1, . . . , Xn of the group algebra C[π],

Voiculescu’s non-microstates free entropy δ∗(X1, . . . , Xn) coincides with b
(2)

1 (π) −

b
(2)

0 (π) + 1.
Explicit calculations of L2-invariants are usually quite hard, because they re-

quire a detailed understanding of the spectrum of the combinatorial Laplacians.
However, using the methods of free probability and e.g. the R-transform, in spe-
cial situations, in particular for free groups, such calculations can be carried out;
compare e.g. [17] or [13].

The talk also addresses applications of L2-Betti numbers to algebra. In partic-
ular, we have the following conjecture (often called the Atiyah conjecture about
L2-Betti numbers): If Γ is a torsion-free group, then all L2-Betti numbers of finite
CW-complexes with fundamental group Γ are integers. This conjecture is known
to be true for large classes of groups, compare e.g. [5, 8, 9, 14, 15, 16]. It implies
the zero divisor conjecture for group rings: if Γ is torsion-free and satisfies the
Atiyah conjecture, then Q[Γ ] does not contain non-trivial zero divisors. For some
groups, the route via L2-Betti numbers provides the only known way to prove this
conjecture.

Open questions
The study of L2-Betti numbers is still a wide open field with many interesting

and important questions. In relation to the chosen subjects of the talk, let me
mention only the following:

(1) A very strong generalization of the Atiyah conjecture (to groups with tor-
sion) has been disproved [7]. Find an example of an L2-Betti number of
a finite CW-complex which is not rational (compare the candidate con-
structed in [4]). Prove or disprove the Atiyah conjecture for torsion-free
groups.
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(2) Find ways to calculate the L2-Betti numbers of Connes and Shlyakhtenko
for von Neumann algebras.

(3) The calculations of Mineyev and Shlyakhtenko [12] depend on certain ap-
proximation properties of L2 1-coboundaries by L∞-coboundaries. A finer
understanding of these approximation properties, and more precise esti-
mates in this contexts, should be established at least under additional
geometric conditions on the group (like negative curvature). This should
allow to carry out further calculations of L2-Betti numbers of groups, in
particular in relation to invariants coming from free probability.

(4) In particular, it would be important to extend such approximation results
to higher degrees (from degree zero and one). Unfortunately, it seems to
be completely open how this could be achieved.

(5) Extend the relation between L2-invariants and free probability to other
(refined) invariants, in particular to the Novikov-Shubin invariants of a
group.

The literature on the subject is vast. Instead of listing the earlier literature
(before 2002) we refer to the extensive bibliography of the monograph [11], which
also gives a detailed introduction and a comprehensive account of the status of the
theory until then.
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Combinatorial Fock Spaces and Non-Commutative Gaussian Processes

Hans Maassen

(joint work with Mădălin Guţă)

This talk reports on collaboration with Mădălin Guţă, forming part of the latter’s
Ph. D. work [1, 2, 3, 4].
It concerns the use of Joyal’s notion [5, 6] of a combinatorial species in order to
construct Fock spaces and Gaussian processes (or ‘generalised white noise’). A
combinatorial species F sends any finite set U to a set F[U] of ‘F-structures on U’
and a bijection σ : U → V to another bijection F[σ] : F[U] → F[V ], transporting the
F-structure from U to V . It leads to an endofunctor FF of the category of Hilbert
spaces and contractions by the definitions

FF(H) : =

∞⊕

n=0

1

n!
l2sym

(
F[n] → H⊗n) ,

FF(T) : ψ 7→ (T ⊗ T ⊗ · · · ⊗ T)ψ ,
where H is any complex Hilbert space, and T any contraction between Hilbert
spaces. In the first line the symmetrisation is with respect to the double action of
Sn on the right: on H⊗n in the natural way and on F[n] via F[σ], σ ∈ Sn. The
functor FF is second quantisation on the Hilbert space level.
The introduction of a ‘trimming rule’ on the structures of F leads to an annihilation
operator a on FF(H). The Gaussian process to be constructed is then

ω(f) := a(f) + a(f)∗ , (f ∈ H).

If F[∅] is a singleton, and l2(F[∅]) ⊂ FF(H) is spanned by the unit vector Ω, then

〈Ω,ω(f1) · · ·ω(fn)Ω〉 =
∑

π∈P2[n]

t(π)
∏

(i,j)∈π
〈fi, fj〉

for some function t on the pair partitions of the set n := {0, 1, . . . , n− 1}.
By a suitable generalisation of the notions of ‘species’ and ‘trimming rule’ all
positive definite functions t, i.e. all Gaussian processes, can be obtained.
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Deformation of C∗-algebras on Generators and Relations

Palle Jorgensen

(joint work with Daniil P. Proskurin and Yurĭı S. Samŏılenko)

In his talk, Jorgensen summarized a recent joint result [JPS05] with Daniil P.
Proskurin and Yurĭı S. Samŏılenko in which they consider C∗-algebras on genera-
tors and relations, and their q-deformations. For a particular case of the Bożejko–
Speicher q-relations, they show that the isomorphism interval J is maximal, but
only in the case of two generators.

By an isomorphism interval J we mean an interval J of real values q centered
at q = 0 in which we have C∗-isomorphism of all the C∗-algebras A(q) z on the
q-commutation relations.

For fixed q in the open interval (−1, 1), the C∗-algebra A(q) on the q-commu-
tation relations was introduced by Bożejko and Speicher in [BoSp94] where they
also studied the Fock representation of A(q). Their results on the Fock represen-
tation were motivated by free probability, and they were extended by a number of
authors, among them Dykema and Nica [DyNi93].

Jorgensen started to work on the C∗-algebras A(q) with Werner and Schmitt
[JoWe94, JSW94a, JSW94b] in the early 1990’s, at which time they also intro-
duced a number of related and more general C∗-algebras on generators and rela-
tions. These classes of C∗-algebras include, among others, the q-deformations of
Woronowicz and other authors; see, e.g., [PuWo89]. In his joint work with Werner
and Schmitt, Jorgensen showed that for the various classes of A(q)-C∗-algebras,
i.e., when the relations are fixed, there is an open interval J of positive length,
centered at q = 0, for which the C∗-algebras A(q) are all isomorphic to the case
q = 0. For the Bożejko–Speicher q-relations, we showed that this interval is of the
form (−a, a) with a =

√
2 − 1. In this case for q = 0, A(0) is in fact

the familiar Cuntz–Toeplitz C∗-algebra. The Jorgensen–Schmitt–Werner iso-
morphism theorems for a variety of more general C∗-algebras are based on a Ba-
nach fixed-point principle. That is, our isomorphism is obtained as an application
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of the Banach fixed-point principle to a certain non-linear contractive transforma-
tion. The contractivity here refers to a C∗-norm. The size of our isomorphism in-
terval for a particular application A(q) depends on some suitable a priori estimate

for the resulting Banach-contractivity constant. Hence, the number a =
√
2 − 1.

In our new result [JPS05] with Daniil P. Proskurin and Yurĭı S. Samŏılenko, we
extend this: We show that if there are two generators then C∗-isomorphism holds
in the whole interval (−1, 1), i.e., a = 1. Or stated differently, the isomorphism
interval is maximal. Unfortunately, we have not been able to extend our result
for the interval (−1, 1) to more than two generators. The two endpoints of the
maximal interval may be shown to correspond to the relations of the fermions and
respectively the bosons from particle physics.
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Free Talagrand Inequality

Yoshimichi Ueda

(joint work with Fumio Hiai)

This is a brief summary with additional comment of the talk I gave in the con-
ference “Free Probability Theory,” Mar.27–Apr.2, 2005, at Oberwolfach. The
materials are mainly taken from a recent joint work with Fumio Hiai [9].

1. Transportation Cost Inequalities in Free Probability Theory

Transportation cost inequalities estimate the 2-Wasserstein metric W2 by the
square root of relative entropy H for a given pair of probabilistic distributions,
and it was Talagrand [11] who first obtained such a kind of inequality in 1996.
In free probability theory, Biane and Voiculescu [2] introduced the free analog
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of Wasserstein metrics Wp, 1 ≤ p < ∞, and obtained a natural free analog of
Talagrand’s inequality in the 1-dimensional case, that is,

(BV) W2(X, S) ≤
√
2

(
−χ(X) +

1

2
τ(X2) +

1

2
log 2π

)

for any (bounded) self-adjoint random variable X, where S is a standard semicircu-

lar element with distribution 1
2π

√
4 − λ2dλ supported on [−2, 2]. Then, Hiai, Petz

and I [7] strengthened it to an expected setup but still in the 1-dimensional case.
Quite recently, Hiai and I [9] took up the first step towards the desired multivariate
case, and obtained a natural multivariate free analog of Talagrand’s inequality or
other words a multivariate generalization of the inequality (BV), that is,

(HU) W2 ((X1, . . . , Xn), (S1, . . . , Sn))

≤

√√√√2
(

−χ(X1, . . . , Xn) +
1

2

n∑

k=1

τ(X2k) +
n

2
log 2π

)

for any n-tuple (X1, . . . , Xn) of (bounded) self-adjoint random variables, where
(S1, . . . , Sn) is the standard semicirclar system, i.e, the n-tuple of freely indepen-
dent standard semicircular elements. The inequality we actually obtained in [9] is
slightly more general than the above (HU), that is, the above inequality (HU) is
still valid with replacing the multiple constant 2 appeared in the square root by a
suitable one even when the standard semicircular system (S1, . . . , Sn) is replaced
by any n-tuple of freely independent self-adjoint random variables with suitable
convexity condition. We also obtained its unitary version. I refer the interested
reader to the original article [9] for those details.

2. Method – Random Matrix Approximation

Unlike in [2] the main technical ingredient in both [7] and [9] is the use of so-
called random matrix approximation, which means the following pattern: For a
given non-commutative random variable, a suitable sequence of random matrices
indexed by their matrix sizes is chosen in such a way that its scaling limit realizes
the given non-commutative random variable in distribution, and then a result in
usual (i.e., classical or commutative) probability theory is shown to “converge”
to its right free analog. This pattern was initially from Voiculescu’s asymptotic
freeness result for several independent self-adjoint Gaussian random matrices (see
[12]), and first used by Voiculescu himself [13] to seek for a free analog of Shan-
non’s entropy for single random variables. Then, Biane [1] used the pattern to
obtain a free analog of logarithmic Sobolev inequality for single self-adjoint ran-
dom variables or measures, and slightly after that Hiai, Petz and I [7][8] (also see
[6]) systematically used it to strengthen Biane-Voiculecu’s free transportation cost
inequality (BV) and obtain the unitary versions of free transportation cost and
free logarithmic Sobolev inequalities. Here, I should emphasize that Hiai, Mizuo
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and Petz’s previous work [5] on perturbation theory for free entropy in the 1-
dimensional case was of considerable importance behind the works [7][8]. Finally,
Ledoux [10] combined the pattern with the so-called Hamilton-Jacobi technique
and unified free transportation cost and free logarithmic Sobolev inequalities from
free Brunn-Minkowski inequality in the 1-dimensional case. Those works we men-
tioned so far all treat only the 1-dimensional case, and if the pattern was applied
to the multivariate case, one would need to handle matrix integrals with general
interaction potentials. Matrix integrals with general intraction potentials are quite
difficult objects and there are very few results known at the present moment so
that it is natural to think that the pattern cannot be easily applied to the multi-
variate case. However, we found that the pattern is indeed applicable to getting
free transportation cost inequalities with respect to freely independent n-tuples of
random variables, see the original article [9] for details.

3. Results related to Free Entropy-like Quantity

Hiai [4] introduced a free analog of pressure function as a certain scaling limit
of matrix integrals with multivariable interaction potentials, whose definition ap-
parently came from his joint work [5] with Mizuo and Petz. Following an idea
in statistical mechanics Hiai also introduced a free entropy-like quantity for non-
commutative distributions as the Legendre transform of the free analog of pres-
sure function, which is different from Voiculescu’s free entropy in general, but they
coincide for single random variables, freely independent families and R-diagonal
pairs. In [9], we also obtained the same free Talagrand’s inequality with replacing
Voiculescu’s (microstates) free entropy χ by the free entropy-like quantity under
an additional “equilibrium” condition so that it is far from the expected one.
However, the inequality implies, for example, a phase transition result for the free
entropy-like quantity, which is non-trivial because the free entropy-like quantity
involves matrix integrals with multivariate interaction potentials. There are many
questions about the quantity, but all of those seem to be difficult to fix at the
present moment. I refer the interested reader to the original article for the precise
statements as well as the detailed proofs.

4. Additional Remark

This section is devoted to part of works in progress with Hiai. In the conference,
Ledoux, Biane and some others asked me whether or not our proof of multivariate
free Talagrand’s inequality can be applied even when the standard semicircular
system (S1, . . . , Sn) is replaced by a more general non-commutative distribution
like those treated in [3]. Concerning it, I would like to give the following comment:
Let Q be a “potential” polynomial in self-adjoint indeterminates X1, . . . , Xn, and
assume that Q gives the well-defined probability measure on (MN(C)sa)

n

λ
Q
N(dA1, . . . , dAn) :=

1

ZN(Q)
exp (−TrN(Q(A1, . . . , An))) dA1 · · ·dAn
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for each dimension N. Then, define the tracial distribution λ̂
Q
N on the non-

commutative polynomials C〈X1, . . . , Xn〉 in self-adjoint indeterminates X1, . . . , Xn
by

λ̂
Q
N(P) :=

∫

(MN(C)sa)n

1

N
TrN (P(A1, . . . , An)) λ

Q
N(dA1, . . . , dAn)

for P ∈ C〈X1, . . . , Xn〉. Also, we define the restricted probability measure λQN,R on
(MN(C)saR )

n associated with cut-off constant R > 0 by

λ
Q
N,R(dA1, . . . , dAn) :=

1

ZN,R(Q)
exp (−NTrN(Q(A1, . . . , An)) dA1 · · ·dAn,

and the corresponding tracial distribution λ̂QN,R on C〈X1, . . . , Xn〉 (extended to

that on the C∗-algebra A(n)

R := C[−R, R]Fn with Xk(t) = t in the kth free compo-
nent C[−R, R]) by

λ̂
Q
N,R(P) :=

∫

(MN(C)sa
R )

n

1

N
TrN(P(A1, . . . , An))λ

Q
N,R(dA1, . . . , dAn)

for P ∈ C〈X1, . . . , Xn〉. We now suppose that

(1) τQ(P) := limN→∞ λ̂
Q
N(P) exists and is finite for each P ∈ C〈X1, . . . , Xn〉;

(2) Z(Q) := limN→∞
1
N2 logZN(Q) + n

2
logN exists and is finite;

(3) (A1, . . . , An) 7→ TrN (Q(A1, . . . , An))− ρ
2
‖(A1, . . . , An)‖22 is convex for all

dimensions N with a fixed constant ρ > 0;
(4) (a “compact support” condition) there is a RQ > 0 so that every R ≥ RQ

satisfies that

lim
n→∞

λ
Q
N

(
(MN(C)saR )

n)
= 1, τQ(P) = lim

N→∞
λ̂
Q
N,R(P), P ∈ C〈X1, . . . , Xn〉.

(Remark that λ
Q
N((MN(C)saR )n) = ZN,R(Q)/ZN(Q), which implies that

limN→∞
1
N2ZN,R(Q) + n

2
logN = Z(Q).) The potential polynomials Q treated

by Guionnet and Maurel-Segala [3] seem to satisfy those properties (1),(2) and
(4). Those four properties gurantee that the method in [9] works for τQ, and we
can indeed prove that

W2(τ, τQ) ≤
√
2

ρ
(−χ(τ) + τ(Q) + Z(Q))

for every tracial state τ on A(n)

R with R ≥ RQ, where χ(τ) is defined via the GNS

representation of A(n)

R associated with τ. More on this will be discussed elsewhere.
In closing, I thank Professor Michael Ledoux for useful discussions, and also thank
Professor Alice Guionnet for her wonderful talk on [3] in the conference, both of
which gave a motivation to us.
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A Log-Fourier Interpretation of the R-Transform and Related
Assymptotics of the Spherical Integrals

Mylene Maida

(joint work with Alice Guionnet)

If we want to understand the interaction between random matrices, a fundamental
object to look at is the spherical integral

IN(AN, BN) = EU eN tr(ANUBNU
∗),

where AN and BN are two diagonal matrices and EU denotes the expectation un-
der the Haar measure on the orthogonal group ON or the unitary group UN. In
other words, we take two matrices with specified spectral measures that we put in
generic position with respect to each other.
In our work, we got interested in the regime when one of the matrices, say AN
is of fixed rank, independent of N. In the rank one case, for example, IN can be
viewed as the Laplace (or Fourier) transform of the upper left corner of BN in
generic position. In [5], we got the following result
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Theorem If θ, the unique non zero eigenvalue of AN, is small enough, for
BN whose spectral radius is uniformly bounded and with spectral measure
converging to µ,

1

N
log IN(AN, BN) =

1

N
log EU eNθ(UBNU

∗)11

−−−−→
N→∞

1

2

∫2θ

0

Rµ(u)du =: Iµ(θ),

where EU is the Haar measure on ON1 and Rµ denotes the R-transform of
the limiting measure µ.

If the result above was not a surprise to us (it was conjectured by physi-
cists in [4] and B. Collins in [2] could show the convergence of the coefficients
of the series, so that we knew that the primitive of the R-transform was
a good candidate to be the limit), more surprising was the fact that, as
θ becomes large enough, the limit involves not only the limiting mesure
µ but also the limit λmax of the largest eigenvalue of BN (the complete
asymptotics in rank one are given by Theorem 6 in [5]). Heuristically, this

can be justified as follows : eNθ(UBNU
∗)11 can be expressed in terms of the

first column vector U1 of the orthogonal (or unitary) matrix U. Under the
Haar measure, all components o f this vector like to be of the same order
1/

√
N whereas, if θ is positive, it tries to put more weight on components

corresponding to larger eigenvalues of BN. If θ is small, its attraction is not
so strong and all eigenvalues, that is the limiting measure µ, are involved
in the limit whereas when θ becomes larger, the column vector U1 tends
to align with the eigenvector corresponding to λmax, which now appears at
the limit.
Going on with this heuristics, we know that a finite number of column
vectors of a Haar distributed orthogonal (or unitary) matrix in generic po-
sition are “almost” independent, what allowed us to show that as long as
the eigenvalues of AN, that we denote θi, are small enough and the rank
of AN remains small in comparison with

√
N, the limit of the spherical

integral in higher rank behaves like a sum of Iµ(θi).
Of course, if these eigenvalues θi become larger, the column vectors ten
d to align with the eigenvectors corresponding to large eigenvalues of BN
and can no longer be considered in generic position so that additivity no
longer holds. We are now working with J. Najim and S. Péché to establish
complete asymptotics in higher rank and to show the following

1Similar resu lts, with different constants, hold in the unitary case
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Conjecture If AN is of rank M, the limit of 1/N log IN(AN, BN) involves
µ the limiting spectral measure of BN and (at mos t) its M largest limiting
eigenvalues.
Partial results in this direction can be found in [3]. Note that this work was
motivated by the problem of finding the deviations of the largest eigenvalues
of a Wigner matrix perturbed by a finite rank deterministic matrix (cf. [9]).

Other natural questions arising from the above result is to wonder wheth-
er we can find similar matrix models for other interesting functionals such
that the R-transform with several variables (in particular for R-diagonal
elements) or the S-transform. What would be the suitable matrix integrals
to consider ?

On the other side, if instead of considering (see [7] for notations)

0F0(ANUBNU
∗) = etr(ANUBNU

∗),

we would consider integrals of the full family of hypergeometric functions

pFq, would it give (and under which assumptions) interesting functionals
as a limit ?

Acknowledgements: I would like to thank F. Benaych-Georges, B. Col-
lins and A. Edelman for (hopefully) fruitful discussions and suggestions
after this talk.
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Analysis and Arithmetic of Free Convolutions

Friedrich Götze

(joint work with Gennadii Chistyakov)

Definition of free convolutions. Free convolution of probability measures (p-
measures) has been introduced by D. Voiculescu [7], [8] (for compactly supported
measures) by means of the algebraic concept of freeness of subalgebras of von
Neumann algebras. Denote by M the family of all Borel p-measures on the real
line R. Let µ1 ∗ µ2 denote the classical convolution of µ1, µ2 ∈ M. By µ1 � µ2
we denote the free (additive) convolution of µ1 and µ2 introduced by Voiculescu
and extended by Maassen [6] and finally by Bercovici and Voiculescu [1] to all
measures in M as described as follows.

For µ ∈ M let Fµ denote the reciprocal Cauchy transform 1/(
∞∫

−∞

µ(dt)

z−t
, z ∈

C+, which maps the the open complex upper plane C+ into itself, hence it is a
function of Nevanlinna type. The class F of such reciprocal Cauchy transforms
coincides with the subclass of Nevanlinna functions such that F(z)/z → 1 as z → ∞
nontangentially to ∞ (i.e., such that |<z|/=z stays bounded). As a consequence
the inverse function of Fµ(z) exists, and is well defined on a subset of C+, which

depends on µ. The socalled Voiculescu transform of µ, that is ϕµ(z) = F
(−1)
µ (z)−z

characterizes µ uniquely. The free convolution may be thus analytically defined
via the equation

ϕµ1�µ2
(z) = ϕµ1

(z) +ϕµ2
(z),

valid on the common domain of definition of ϕµj
(z), j = 1, 2 only. Obviously this

definition may restrict the domain of for n-fold convolutions of non identical mea-
sures µj, j = 1, . . . , n very sharply, which leads to serious problems in investigating
classical limit theorems using this definition.

We propose the following alternative analytic approach to the definition of ad-
ditive free convolutions µ1 � µ2 based on properties of the Nevanlinna functions
Fµ1

(z) and Fµ2
(z) and the following result:

Theorem. There exist unique Nevanlinna functions Z1(z) and Z2(z) of class
F such that, for z ∈ C+,

(1) z = Z1(z) + Z2(z) − Fµ1
(Z1(z)) and Fµ1

(Z1(z)) = Fµ2
(Z2(z)),

where Fµ1
(Z1(z)) is in F again. Thus there exists a p-measure µ1 � µ2 with

Fµ1
(Z1(z)) = Fµ1�µ2

(z).
The definition (1) coincides with previous definitions, but does not restrict

the class of p-measures, nor restricts the domain of its characterizing functions
in a measure dependent way. It allows for an obvious extension to the case of
multiplicative convolutions on R+ and the circle (see [4]).

Khintchine theorems for free convolutions.
We shall call µ1 ∈ M a factor of µ ∈ M if there exists µ2 ∈ M such that

µ = µ1�µ2. The obvious Dirac factors δa, a ∈ R and µ�δ−a are called improper,
and a p-measure µ which is not a Dirac measure is called indecomposable if it has
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improper factors only otherwise decomposable. With infinite divisibility defined as
for the classical convolution ∗ we prove the following result.

Theorem. Any µ of (M,�) may be classified as follows. Either

• µ is indecomposable,
• µ is decomposable (possibly infinitely divisible) and has an indecomposable

factor,
• µ is infinitely divisible and has no indecomposable factors.

(This class will be denoted by I0.)

Here, any µ ∈ M with indecomposable factors may be decomposed (non uniquely)
as µ = µ0 � µ1 � µ2 � . . . , where µ0 ∈ I0 and µ1, µ2, . . . denotes a finite or
denumerable sequence of indecomposabl p-measures. Furthermore,

• the class I0 consists of Dirac-measures only
• measures with finite number of support points are indecomposable
• idecomposable measures are dense in the weak topology in M.

These results extend to multiplicative convolutions, where measures with a prime
number of support points are indecomposable.

Furthermore, we extend limit results by Bercovici and Pata [2] from the case
of identical measures to the non identical case. Let µnk be a triangular scheme of
infinitesimal p-measures and denote shifted measure by

µ̂nk((−∞, u)) := µnk((−∞, u + ank)),

where ank :=
∫

(−τ,τ)
uµnk(du) with finite arbitrary but fixed τ > 0. Then

Theorem.
i) The family of limit measures of sequences δan

� µn1 � µn2 � · · · � µnkn

coincides with the family of �-infinitely divisible measures.
ii) There exist constants an such that δan

�µn1 �µn2 � · · ·�µnkn
converges

weakly if, and only if, νn converges weakly to some finite nonnegative measure ν,

where νn, for any Borel set S, νn(S) :=
∑kn

k=1

∫
S

u2

1+u2 µ̂nk(du). iii) All admissible

an are of the form an = αn−α+o(1), where α is an arbitrary finite number and

αn =
∑kn

k=1

(
ank +

∫
R

u
1+u2 µ̂nk(du)

)
.

iv) Furthermore, all possible limit measures µ ∈ M have a Voiculescu transform
of type φµ = (α, ν), that means

φµ(z) = α+

∫

R

1 + uz

z− u
ν(du), z ∈ C+,

where α is a real number and ν is a finite nonnegative measure ν, on R.
Note that statement i) of the theorem is due to Bercovici and Pata [3].
In view of the complete analogue to the classical limit theorems, we extend

this socalled as Bercovici-Pata bijection [2] to the case of non identical measures
µnj, j = 1, . . . , kn. Recall that the Lévy-Khintchine formula for characteristic
functions ϕ(t;µ) =

∫
R
eitu µ(du), t ∈ R, of an ∗-infinitely divisible measure
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µ ∈ M has the form

ϕ(t;µ) = exp{fµ(t)} = exp
{
iαt+

∫

R

(
eitu − 1 −

itu

1 + u2

)1 + u2

u2
ν(du)

}
, t ∈ R,

where α is a real number, ν is a finite nonnegative Borel measure on R, and
(eitu − 1− itu/(1+ u2))(1+ u2)/u2 is defined as −t2/2 when u = 0. Since there
is a one-to-one correspondence between the functions fµ(t) and (α, ν), we shall
write fµ = (α, ν).

Theorem. Let µnk be as above. There exist constants an such that the se-
quence δan

� µn1 � µn2 � · · · � µnkn
converges weakly to µ� ∈ M such that

φµ� = (α, ν) if and only if the sequence δan
∗ µn1 ∗ µn2 ∗ · · · ∗ µnkn

converges
weakly to µ∗ ∈ M such that fµ∗ = (α, ν).

Rate of Convergence in the CLT. Letmk(µ) :=
∫
ukµ(du) denote moments

and let µn((−∞, x]) := µ((−∞, x√n]) denote the rescaled measure µ. Assume
m1(µ) = 0,m2(µ) = 1 and m4(µ) < ∞. Denote µn�

n = µn � · · · � µn (n times).
Our analytic approach to free convolution allows us to show the following bound.

Theorem. The Kolmogrov distance beween µn�
n to Wigner semicircle dis-

tribution w (with density 1
2π

√
(4 − x2)+, where a+ = max{a, 0}) is bounded as

follows

∆(µn�
n , w) ≤ c |m3(µ)| + (m4(µ))1/2

n1/2
,

where c > 0 is an absolute constant. The rate n−1/2 is sharp.
For additional results about free convolutions and limit theorems for non iden-

tical measures we refer to the preprints [4],[5].
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The limit shape of Young diagrams for Weyl groups of type B

Akihito Hora

Let S(n) and Yn denote the symmetric group of degree n and the Young diagrams
of size n respectively. Considering irreducible decomposition of a representation of
S(n), we get a probability on Yn. This gives rise to a statistical ensemble of Young
diagrams. Its asymptotic behavior as n → ∞ under appropriate scaling has good
analogy and connection to the similar problems in random matrix theory, which
lead us to the free probability world.

Let us recall the simplest case of the regular representation of S(n). χλ denotes
the irreducible character corresponding to λ ∈ Yn. Set χ̃λ = χλ/ dim λ. The
decomposition of the normalized regular character

δe =
∑

λ∈Yn

Pn(λ)χ̃λ , Pn(λ) =
dim2 λ

n!

yields the Plancherel measure Pn on Yn.
An analytic description of Young diagrams due to Vershik-Kerov is quite useful

for discussing their scaling limit. Regarded as functions on R, Young diagrams
are embedded into the space of continuous diagrams. Furthermore a probabil-
ity mω on R is assigned to any continuous diagram ω and called the transition
measure of ω. Vershik-Kerov [8] and Logan-Shepp [6] showed that, if we look at
irreducible decomposition of the regular representation of S(n) in 1/

√
n-scaling,

we see concentration at the limit shape Ω:

Ω(x) =

{
2
π
(xarcsinx

2
+
√
4 − x2) (|x| ≤ 2)

|x| (|x| > 2).

As a weak law of large numbers, the result is stated as

lim
n→∞

Pn
({
λ ∈ Yn

∣∣ sup
x∈R

|λ
√
n(x) −Ω(x)| ≥ ε

})
= 0 (ε > 0),

where we set λ
√
n(x) = λ(

√
nx)/

√
n for λ = λ(x). Note that the transition measure

mΩ is the standard semicircle distribution.
Such a concentration phenomenon in other representations of S(n) is extensively

studied by Biane [1], [2]. Analysis around the limit shape with a smaller scale
can be formulated as appropriate central limit theorem. Kerov [5], Hora [3] and
Ivanov-Olshanski [4] showed Gaussian fluctuation for the Plancherel measure of

S(n). Recently Śniady found that Gaussian fluctuation is valid for a wide variety

of representations of S(n). See Śniady’s report in the present volume.
In this report, we discuss the above concentration phenomenon for Weyl groups

of type B. Set Wn = (Z/2Z)n o S(n). The irreducible representations of Wn

are parametrized by pairs of Young diagrams: {(λ, µ)|λ ∈ Ym, µ ∈ Yn−m;m =

0, 1, . . . , n}. More precisely, settingHn,m = (Z/2Z)no(S(m)×S(n−m)) and χm =

(0, · · · , 0, 1, · · · , 1) ∈ (Ẑ/2Z)n (m 0’s and n −m 1’s), we have the corresponding

irreducible representation U(λ,µ) to (λ, µ) as U(λ,µ) = IndWn

Hn,m
χmU

λ
�Uµ. Then
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ResWn

Wn−1
U(λ,µ) is decomposed in a multiplicity-free way. Analogously to S(n), the

Plancherel measure of Wn is defined by

δe =
∑

(λ,µ)

PBn(λ, µ)χ̃(λ,µ) , PBn(λ, µ) =
dim2(λ, µ)

2nn!
.

We can claim that (λ
√
n/2, µ

√
n/2) concentrates at (Ω,Ω) as n → ∞ in irreducible

decomposition of the regular representation of Wn. Namely we see the following
law of large numbers. Mk(m·) denotes the kth moment of the transition measure
m· (k ∈ N).

Theorem For any ε > 0 and k ∈ N,

lim
n→∞

PBn
({

(λ, µ)
∣∣M|Mk(m

λ
√

n/2)−Mk(mΩ)|∨|Mk(m
µ
√

n/2)−Mk(mΩ)| ≥ ε
})

= 0

holds.

The proof is based on a modification of asymptotic factorization argument due
to Biane. A central part consists of analysis on the moments of Jucys-Murphy
elements. Set δj = (0, · · · , 0, 1, 0, · · · , 0) ∈ (Z/2Z)n+1 (1 at the jth coordinate).
Following Ram [7], we consider the Jucys-Murphy element (of type B) in C[Wn+1]:

Jn = (1n + 1) + · · · + (nn + 1) + δ1δn+1(1n + 1) + · · · + δnδn+1(nn + 1) .

Since Jn commutes with δn+1, we can consider ‘joint distribution’ of Jn and δn+1.
En : C[Wn+1] −→ C[Wn] denotes the canonical conditional expectation. Look-
ing at the action of Jn and δn+1 onto the seminormal basis for each irreducible
component, we have

χ̃(λ,µ)
(
EnJknδ

l
n+1

)
=
1

2
Mk(mλ1/2) +

(−1)l

2
Mk(mµ1/2) (k, l ∈ N).

This equality plays a key role in our discussion.
Actually, as readers readily see, this report gives just a beginning part from

a viewpoint of vast extension of concentration and fluctuation to various wreath
product groups and their representations, which are to be rich fields in asymptotic
representation theory.
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Gaussian Fluctuations of Yound Diagrams: Connection to Random
Matrices

Piotr Sniady

1. What is the asymptotic theory of the representations of Sn?

Irreducible representations. Irreducible representations ρλ of the symmetric
group Sn are in a one-to-one correspondence with Young diagrams λ having n
boxes. An example of a Young diagram is presented on Figure 1.

Reducible representations. Every (reducible) representation ρ of Sn de-
fines the canonical probability measure on Young diagrams with n boxes, given as
follows. We decompose ρ as a direct sum of irreducible representations and the
probability of a Young diagram λ should be proportional to the total dimension
of the irreducible components of type [λ] in this decomposition. We are interested
in the statistical properties of a randomly chosen Young diagram.

Example of a problem. For an integer n ≥ 1 we consider a Young diagram ν

with a shape of a n×n square. A Young tableaux is a filling of this Young diagram
with numbers 1, . . . , n2 such that the numbers increase along the diagonals ↗, ↖
from the bottom to the top, cf Figure 2 (left). We can think that a Young diagram
is a pile of stones and the Young tableau is the order in which the stones are placed.

Let 0 < α < 1 be fixed; we remove from a randomly chosen Young tableaux all
boxes with numbers bigger than αn2, cf Figure 2 (right). What is the shape of
the resulting Young diagram λ with αn2 boxes, when n → ∞? In other words:
What was the shape of this pile of stones in the past [PR04]? This problem is
equivalent to the study of the restriction of representations : the random Young
diagram λ described above is distributed according to the canonical probability

Figure 1. Graphical representation (Russian style) of a Young
diagram λ = (4, 3, 1).
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Figure 2. On the left: example of a Young tableaux. On the
right: the Young diagram resulting from this tableaux by remov-
ing the half of the boxes with the biggest numbers.

measure associated to the restricted representation ρ = ρν
ySn2

S
αn2

. We will give an

answer to this problem (and to the lots of other problems) in Section 2.
Conclusions from the above example. In principle, for any question con-

cerning representations of Sn there is a well-known answer given by some combi-
natorial algorithm. However, when n → ∞, such combinatorial answers are too
complicated to be useful. We need more analytic methods! It was an idea of Kerov
[Ker93a] to associate to a Young diagram λ its transition measure µλ which is a
certain probability measure on R. When λ is random, µλ is a random probability
measure on R. The transition measure encodes the information about the shape
of the Young diagram in a very compact and efficient way and it can be defined
in many equivalent ways [Bia98].

2. The main result: Representations with approximate factorization
of characters

Below I will define a very large class of representations for which a lot of ques-
tions can be explicitly answered [Śni05].

Informal definition: We say that a sequence of representations (ρn) has
the property of approximate factorization of characters if for any permutations
π1, . . . , πl with disjoint supports the (normalized) character χρn

fulfills

χρn
(π1 · · ·πl) ≈ χρn

(π1) · · ·χρn
(πl),

where the approximate equality should hold for n → ∞ [Bia98].
More formal definition: permutations π1, . . . , πl commute hence we can

treat them as classical random variables and as the expected value we take the
normalized character χρn

. We require that the classical cumulant k(π1, . . . , πl)

converges quickly enough to zero [Śni05].
Law of large numbers [Bia98]: Let the sequence (ρn) be as above and let

(λn) be the corresponding sequence of random Young diagrams. Then the se-
quence of rescaled random Young diagrams ( 1√

n
λn) converges in probability to

some (generalized) Young diagram λ. The shape of this limit can be described by
the free probability theory.
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Central Limit Theorem: [Śni05]] The sequence of the fluctuations ( 1√
n
λn −

λ), after some additional rescaling, converges in distribution to a Gaussian process.
Lots of examples. In each of the cases below the sequence (ρn) has the

characters factorization property : when ρn is the left regular representation (the
corresponding measure on Young diagrams is the famous Plancherel measure; the
Gaussianity of fluctuations was proved for this case by Kerov [Ker93b, IO02]);
when ρn is the representation such that Sn is acting on (Cdn)⊗n by permuting
the factors (this representation appears in the Schur-Weyl duality); when ρn is an
irreducible representation. Many natural operations on representations preserve
the character factorization property, for example: tensor product, outer product,
induction and restriction.

We leave it as a simple exercise to the Reader to check that from the above
properties it follows that the example from Section 1 has the property of approx-
imate factorization of characters and hence the fluctuations of the shape of the
Young diagrams are Gaussian.

3. Analogy to random matrices

There are mysterious and deep connections between the random matrix theory
and the theory of representations of the symmetric groups. One of them is the
following one: if M is a hermitian matrix, we can encode its eigenvalues in its
spectral measure µM which is a probability measure on R. When M is a random
matrix, µM is a random probability measure on R. For many representations of
Sn one can find a random matrix M such that the properties of the transition
measure µλ of the corresponding random Young diagram are analogous to the
properties of the spectral measure µM.

For random matrices results concerning Gaussian fluctuations are proved by
the genus expansion: we express moments of traces of the random matrix in terms
of the cumulants of the entries which involves summation over certain partitions
and permutations. To each such summand we associate a two-dimensional surface.
The asymptotic behavior of a summand depends only on its topology.

We prove that the genus expansion can be applied for representations of Sn
as well [Śni04] (a different result concerning genus expansion was obtained by
Okounkov [Oko00]). It follows that the proof of Gaussian fluctuations for random

matrices works for Young diagrams as well [Śni05] .
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Cumulants for Random Matrices as Convolutions on the Symmetric
Group

Mireille Capitaine

(joint work with M. Casalis)

Voiculescu ([11]) and after that several authors (see [7] and references therein)
showed that large independent matrices provide an asymptotic model for free
random variables. Our intention is to show that free cumulants can be naturally
seen as the limiting value of scalar “cumulants of matrices”, which actually already
mostly satisfy some classical properties of free cumulants.

Let us introduce briefly some notations. Let Sn be the symmetric group on
{1, . . . , n} and π be a permutation in Sn; denoting by C(π) the set of all the
disjoint cycles of π and by γn(π) the number of cycles of π, we set for any n-tuple
B = (B1, B2, . . . , Bn) of N×N complex matrices

rπ(B) = rπ(B1, . . . , Bn) :=
∏

C∈C(π)

Tr


∏

j∈C
Bj




We call generalized moments with order n of a set X of random matrices any
expression E(rπ(X1, . . . , Xn)) where Xi ∈ X and π ∈ Sn. The definition of our
cumulant functions naturally arises from the writing of any mixed generalized
moment E(rπ(B1X1, . . . , BnXn)), where X and B are independent, as a convolu-
tion of the generalized moments of B by one function of X (in the spirit of the
results of [9] about the multiplication of free n-tuples). In one hand, when the
distribution of one tuple, X for example, is unitarily invariant (that is, for any uni-
tary matrix U, (X1, . . . , Xn) and (UX1U

∗, . . . , UXnU∗) are identically distributed),
the convolution occurs on the symmetric group Sn and involves the U-cumulant
function CU

X
defined on Sn. In the other hand, when the distribution of one tu-

ple is orthogonally invariant (that is, for any orthogonal matrix O, (X1, . . . , Xn)

and (OX1
tO, . . . , OXn

tO) are identically distributed), we establish such convolu-
tion formulas but on the symmetric group S2n and it requires an other cumulant
function, the O-cumulant function CO

X
, defined on S2n. Roughly speaking, our

cumulant f unctions CU
X

as well as CO
X

appear as the convolution of the general-
ized moments of X and the Weingarten function (defined in [4]). We make use of
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integration formulas on the unitary, respectively orthogonal, group given in [3] and
[4]. Note that, according to section 4 in [4], the same exposition could be carried
out if the distribution of one tuple is invariant under the action of the symplectic
group but we do not develop it there. Our work in the orthogonally invariance
case has been amply inspired by [5]. We will call cumulants of X, the collection
{CU

X
(π) (resp CO

X
(π));π single cycle of Sn, n ≤ N}. The most interesting proper-

ties of these cumulants is that they do vanish as soon as the involved matrices
are taken in two independent sets and therefore they do linearize the convolution.
These properties together with the convergence towards the free cumulants lead
us to adopt this terminology. Nevertheless, our cumulants fall outside the very
general setting of [6].
We point out the analogues in our matricial context of some results of A. Nica and
R. Speicher in [9] concerning conjugation with a circular element or compression
of a family of random variables by a projection which is free with the family. We
also explain how one can deduce asymptotic freeness from our matricial convol
ution relations.
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Monomorphisms of the Class of Infinitely Divisible Laws

Steen Thorbjornsen

(joint work with Ole Barndorff-Nielsen)

We introduce a mapping Γ from the class ID(∗) of infinitely divisble probability
laws on R into itself. The defining property of Γ is the relation

CΓ(µ)(u) = CΛ(µ)(iu), u ∈ (−∞, 0)
where C and C denote, respectively, the classical and free cumulant transforms,
and where Λ is the Bercovici-Pata bijection between ID(∗) and its free counterpart
ID(�). Via the above defining property, the mapping Γ inherits a number of
properties from Λ. Thus, Γ preserves the affine structure of ID(∗) (convolution,
dilation by constants and Dirac measure), and Γ is a homeomorphis with respect
to weak convergence. We present furthermore a stochastic representation of Γ ,
namely

Γ(µ) = L

{ ∫1

0

− log(1 − t)dXt

}
,

where Xt is a Levy process corresponding to µ. Finally we introduce a one-
parameter family of mappings Γα : ID(∗) → ID(∗), α ∈ [0, 1], which interpolates
between Γ and the identity mapping on ID(∗).

Reporter: Jonathan Novak
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