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Introduction by the Organisers

The Discrete Geometry workshop was attended by 53 participants from a wide
range of geographic regions, many of them young researchers (some supported by
a grant from the European Union). The morning sessions consisted of survey talks
providing an overview of recent developments in Discrete Geometry:

• Extremal problems concerning convex lattice polygons. (Imre Bárány)
• Universally optimal configurations of points on spheres. (Henry Cohn)
• Polytopes, Lie algebras, computing. (Jesús A. De Loera)
• On incidences in Euclidean spaces. (György Elekes)
• Few-distance sets in d-dimensional normed spaces. (Zoltán Füredi)
• On norm maximization in geometric clustering. (Peter Gritzmann)
• Abstract regular polytopes: recent developments. (Peter McMullen)
• Counting crossing-free configurations in the plane. (Micha Sharir)
• Geometry in additive combinatorics. (József Solymosi)
• Rigid components: geometric problems, combinatorial solutions. (Ileana

Streinu)
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• Forbidden patterns. (János Pach)
• Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M.

Ziegler)
• What is known about unit cubes? (Chuanming Zong)

There were 16 shorter talks in the afternoon, an open problem session chaired
by Jesús De Loera, and two special sessions: on geometric transversal theory
(organized by Eli Goodman) and on a new release of the geometric software Cin-
derella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the
progress the field provided in recent years, on the other hand, they also showed how
many basic (and seemingly simple) questions are still far from being resolved. The
program left enough time to use the stimulating atmosphere of the Oberwolfach
facilities for fruitful interaction between the participants.
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Abstracts

Siegel’s Lemma w. r. t. Maximum Norm and Sum–Distinct Sets

Iskander Aliev

Let ‖ · ‖ denote the maximum norm. We show that for any non–zero vector
a ∈ Z

n, n ≥ 5, there exist linearly independent vectors x1, . . . ,xn−1 ∈ Z
n such

that xia = 0, i = 1, . . . , n − 1 and

0 < ‖x1‖ · · · ‖xn−1‖ <
‖a‖
σn

, σn =
2

π

∫ ∞

0

(
sin t

t

)n

dt .

This result implies a new lower bound on the greatest element of a sum–distinct
set of positive integers (Erdös–Moser problem). The main tool is the Busemann
theorem from convex geometry.

References

[1] I. Aliev, Siegel’s Lemma w. r. t. Maximum Norm and Sum–Distinct Sets, submitted.

Minimum Spanning Trees in the Unit Disk

Christoph Ambühl

The aim of this talk is to sketch a proof of the following theorem.

Theorem 1. Let S be a set of points from the unit disk around the origin, with
the additional property that the origin is in S. Let e1, e2, . . . , e|S|−1 be the edges
of the Euclidean minimum spanning tree of S. Then

µ(S) :=

|S|−1
∑

i=1

|ei|2 ≤ 6.

There is a long history of upper bounds on µ(S). Already in 1968, Gilbert

and Pollack [5] gave a upper bound of 8π/
√

3. In 1989, Steele gave a bound
of 16 based on space filling curves [8]. The problem recently became very pop-
ular in the context of wireless networks. It is used to give an upper bound on
the approximation ratio of an algorithm to compute energy efficient broadcast
trees in wireless networks. In [9], Wan, Cǎlinescu, Li, and Frieder claimed that
µ(S) ≤ 12. Unfortunately, there is a small error in their paper. The correct
analysis only yields µ(S) ≤ 12.15, as stated by Klasing, Navarra, Papadopoulos,
and Perennes in [6]. Independently, Clementi, Crescenzi, Penna, Rossi, and Vocca
showed µ(S) ≤ 20 [3]. Recently, Flammini, Klasing, Navarra, and Perennes [4]
showed µ(S) ≤ 7.6. Even more recently, Navarra proved µ(S) ≤ 6.33 [7]. In this
talk, we sketch a proof of µ(S) ≤ 6 [1]. This matches the lower bound given in [3]
and [9].
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Our proof is influenced by the method used in [5, 9, 3]. It works as follows. The
cost of each edge e of the MST is represented by a geometric shape. In the case of
[5] and [9], so-called diamonds where used for this purpose. Diamonds consist of
two isosceles triangles with an angle of 120◦. The area of a diamond for an edge e
with length |e| is λ · |e|2, with λ =

√
3/6. Therefore, µ(S) can be expressed as 1/λ

times the total area generated by the diamonds. Diamonds are considered being
open sets. It can be shown that the diamonds do not intersect if one puts them
along the edges of an MST with one triangle on each side of the edges. Using this
property, one can show that the largest area that can be covered by the diamonds
is 12.15λ. Therefore one can conclude µ(S) ≤ 12.15λ/λ = 12.15.

Among the shapes that do not intersect, diamonds seem to be the best possible
geometric shape for this kind of analysis. For a better bound, we need to use larger
shapes and we need to deal with the intersections of these shapes accurately. The
shapes used for our new bound are pairs of equilateral triangles, one on each side
of the edge as depicted in Figure 1 on the left. The equilateral triangles intersect
heavily, and therefore the analysis becomes much more involved.
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Figure 1. The total area of the equilateral triangles on the left
is bounded by the hatched area in the middle. The point set that
maximizes the hatched area is shown on the right.

A high level description of the proof of our bound is the following. Consider a
point set S with n points. Hence, the MST will have n − 1 edges and therefore,
there will be 2(n − 1) equilateral triangles representing the cost of the MST. Let
M be the total area generated by these triangles.

In order to obtain an upper bound on M , let c be the number of edges of the
convex hull of S. By triangulating S, we obtain a planar graph G with 2(n−1)−c
triangles. Hence, if we add c equilateral triangles along the convex hull of S as
depicted in the center of Figure 1, the number of triangles becomes 2(n − 1),
which is equal to the number of triangles involved in M . Let A be the total area
of the triangles within the convex hull of S plus the c additional triangles along
the convex hull, as depicted in the center of Figure 1.

It can be shown that M ≤ A. To get an intuitive understanding of this fact,
consider a point set S obtained from the triangular grid for which all edges of the
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triangulation of its convex hull have the same length. In this case, all triangles
that are involved in M and A are congruent. Furthermore, since their number is
equal, it holds M = A. Intuitively, if the edges of the triangulation have different
lengths, M will be smaller compared to A since the MST will be composed mainly
of small edges.

Having M ≤ A at hand, one can then show that A is maximized by the point
set shown on the right of Figure 1, which directly leads to the bound µ(S) ≤ 6.
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Unbounded number of geometric permutations for families of
translates in R

3.

Andrei Asinowski

(joint work with Meir Katchalski)

Let F = {A1, A2, . . . , An} be a finite family of n pairwise disjoint convex sets in
R

d. A line l is a transversal of F if it intersects all the members of F . Each
non-directed transversal intersects the members of F in an order which can be
described by a pair of permutations of {1, 2, . . . , n} which are reverses of each
other. Such a pair is called a geometric permutation.
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There are several results concerning the maximal number of geometric permu-
tations for families of n disjoint convex sets in R

d. Some results deal with families
with the restriction that the members of the family are disjoint translates of a con-
vex set. Katchalski, Lewis and Liu proved [3, 4] that for such families in R

2, the
maximal number of geometric permutations is 3. They also conjectured [4] that
for each natural d, there is a constant upper bound on the number of geometric

permutations for such families in R
d (the conjectured upper bound was (d+1)!

2 ).

However, the only known upper bound in R
d is O(nd−1) (follows from [6]). A

constant upper bound is known in a special case: for families of congruent balls in
R

d [5] (improved in [1]; the bound is 2 when n > 9).
We refute the mentioned above conjecture, showing the following:
For each n ∈ N, n > 1, there exists a convex set X = X(n) in R

3 and a family
F = F(n) of 2n disjoint translates of X that admits at least n + 1 geometric
permutations.

The proof is by construction of an example of such a family. The construction
uses the hyperbolic paraboloid Σ = {(x, y, z) ∈ R

3 : z = xy}. The idea is to take
first a family of disjoint sets that have, or nearly have, the desired transversal
properties, but are not translates of each other, and then to append them one to
another in order to obtain translates, preserving their disjointness and transversal
properties (the same idea was used in a construction due to Holmsen and Matoušek
[2]).

A brief description of our construction follows.

Points, lines and the set X
Denote by Σ the hyperbolic paraboloid Σ = {(x, y, z) ∈ R

3 : z = xy}. For each
i ∈ {0, 1, . . . , n}, let λi be the plane y = i, and let li be the line λi∩Σ = {(x, y, z) :
y = i, z = xi}.

For each m ∈ {1, 2, . . . , n}, define four points on Σ as follows:
Pm,1 = (2mn2, m − 1, 2mn2 · (m − 1)),
Pm,2 = (2mn2 + 1, m, (2mn2 + 1) · m);
Qm,1 = (2mn2, m, 2mn2 · m),
Qm,2 = (2mn2 + 1, m − 1, (2mn2 + 1) · (m − 1)).

Let am be the segment that contains Pm,1 and Pm,2 with endpoints in the planes
λ0 and λn, and let bm be the segment that contains Qm,1 and Qm,2 with endpoints
in the planes λ0 and λn. Figure 1 shows ai’s and bi’s for n = 3 (In this figure, the
solid parts of the segments are above Σ, and the dashed are below it. Note that
the figure is not drawn to scale: in fact, the segments are much further apart).

Now define two sets XL and XU . Each of them is a polygonal line:
XL = ã1 ∪ ã2 ∪ · · · ∪ ãn, XU = b̃1 ∪ b̃2 ∪ · · · ∪ b̃n, where each ãm is a translate of
am, and each b̃i is a translate of bi, so that:

• the lowest point of ã1 is (0, 0, 0), and for each m ∈ {2, 3, . . . n} the lowest
point of ãm coincides with the highest point of ãm−1;

• the highest point of b̃1 is (0, n2, HL +H +HU ) (where HL and HU are the
z-heights of XL and XU respectively, and H is a large positive number),
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Figure 1. The segments ai and bi, for n = 3.

UX

LX

Figure 2. The set X for n = 3: the bold polygonal lines are XL

and XU ; X is their convex hull.

and for each m ∈ {2, 3, . . . n} the highest point of b̃m coincides with the

lowest point of b̃m−1.

Let X = conv(XL ∪ XU ) (see Figure 2; XU is situated high above XL).

The family F of disjoint translates of X
For each m ∈ {1, 2, . . . , n}, define Am to be a translate of X with ãm translated

to am, and Bm to be a translate of X with b̃m translated to bm.
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Define F = {A1, B1, A2, B2, A3, B3, . . . , An, Bn}. It can be checked that the
members of F are pairwise disjoint, that the lines l0, l1, . . . , ln are transversals of
F , and that these lines induce the following geometric permutations on F :

l0 : (A1, B1, A2, B2, A3, B3, . . . , An, Bn)
l1 : (B1, A1, A2, B2, A3, B3, . . . , An, Bn)
l2 : (B1, A1, B2, A2, A3, B3, . . . , An, Bn)
l3 : (B1, A1, B2, A2, B3, A3, . . . , An, Bn)

. . .
ln : (B1, A1, B2, A2, B3, A3, . . . , Bn, An).

Thus F is a family of 2n disjoint translates of the convex set X that has the
n + 1 geometric permutations listed above.

To summarize, the maximal number of geometric permutations for families of
n disjoint translates of a convex set in R

3 is O(n2) (by [6]) and Ω(n) (by our
construction). The problem of narrowing this gap remains open.
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Extremal problems concerning convex lattice polygons

Imre Bárány

(joint work with Maria Prodromou)

In this survey-type talk, four extremal problems on convex lattice polygons were
discussed.

(1) which convex lattice n-gon has the smallest area?
(2) which convex lattice n-gon has the smallest lattice width?
(3) given a norm in R

2, which convex lattice n-gon has the shortest perimeter?
The answer to (1) is that the minimal area is about c · n3, where the value of

the constant c is about 0.0186067. It is also nown the minimiser has very oblong
shape. Details can be found in [2].

The answer to (2) is that the minimiser has lattice width bn/2c. The proof of
this is very simple and is left to the reader.
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The solution to the third problem is based on the fact that for even n the
minimiser is almost unique: if B is the unit ball of the given norm, we let rB be
smallest blown-up copy B that contains n primitive vectors. These n vectors come
in pairs +p,−p so their sum is zero. Consequently there is a convex lattice n-gon
having exactly these primitive vector as edges. Extending this construction to the
n is odd case causes some difficulties. Details can be found in a forthcoming paper
by M. Prodromou [4].

In this extended abstract I describe the fourth extremal problem more thor-
oughly. Let K ⊂ R

2 be a convex body and let Zt = 1
t Z

2 be a shrunken copy of the
usual integer lattice, t is large. Write P(K, t) for the set of all convex Zt-lattice
polygons that are contained in K. The size of P(K, t) is known asymptotically
(cf. [1] or [6] or [5]):

log |P(K, t)| = 3 3

√

ζ(3)

4ζ(2)
A(K)t2/3(1 + o(1)),

where A(K) is the supremum of AP (S), the affine perimeter of S ⊂ K, with the
supremum taken over all convex subsets of K. It is also known (cf. [1]) that
there is a unique convex K0 ⊂ K such that AP (K0) = A(K). Moreover, the
overwhelming majority of the elements of P(K, t) are very close to K0 as t → ∞.
In other words, P(K, t) has a “limit shape” as t → ∞.

The fourth extremal problem is the following: Determine

m(K, t) = max{n : P(K, t) contains an n − gon}.
The answer is as follows:

Theorem 1. With the above notation

lim
t→∞

t−2/3m(K, t) =
3

(2π)2/3
A(K).

Moreover, we also proved that the maximisers have a limit shape, actually the
same limit shape as P(K, t). Namely, if Qt ∈ P(K, t) is a maximiser for m(K, t),
then the Hausdorff distance of Qt and K0 tends to zero as t tends to infinity.
The proof is based on a combination of arguments from number theory, or rather
geometry of numbers, and convex geometry. Details can be found in [3].

An interesting by-product of the proof is a novel characterisation of the mapping
K → K0. Write K for the set of all convex bodies in R

2, and C for those K ∈ K
whose centre of gravity coincides with the origin. Also, define F : K → K by
F (K) = K0.

Let ρ(u) = ρC(u) be the radial function of C in direction u where u ∈ S1 is a
unit vector, and for K ∈ K, let R(u) = RK(u) be the radius of curvature at the
point on the boundary of K where the outer unit normal is u.

The condition that C ∈ C has its centre of gravity at the origin is equivalent to
∫

S1

ρ3
C(u)du = 0
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where underlining means vector integration. With this condition in mind, Min-
kowski’s classical theorem states that for every C ∈ C there is a convex body,
C∗ ∈ K say, such that for every unit vector u

RC∗(u) = ρ3
C(u),

and this convex body C∗ is unique, apart from translations. Using this one can
prove the following result:

Theorem 2. For every K ∈ K there is a unique C ∈ C such that F (K) is a
translated copy of C∗. Moreover, every C ∈ C satisfies F (C∗) = C∗.
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Ball-Polytopes

Karoly Bezdek

A ball-polytope is an intersection of finitely many unit balls in Euclidean space.
The talk surveyed several of their basic combinatorial and metric properties includ-
ing a version of the Caratheodory theorem and the corresponding Euler-Poincare
formula. As it turns out the underlying so-called 1-convexity and unit-circle are
,,distance” (which is in fact, not a metric in a well-controlled way) play important
rofes. Based on this then we discussed the following rather well-known problems
for the class of ball-polytopes:

• isoperimetric inequalities for circle-polygons;
• illumination problem (it was shown that every ball-polyhedron with gen-

erating unit spheres whose center-center distance are less than I can be
illuminated by 6 point-sources);

• ball-polyhedra with symmetric sections (here we proved within the class
of ball-polyhedra the still unsolved/open conjecture of the speaker (1997)
according to which a convex body in R

3 is a solid of revolution or an
ellipsoid if and only if all planar sections of i are axially symmetric);

• in connection with the Helly-numbers of unit spheres in R
n we disproved

a conjecture of Maehara (1989) for all n > 4.
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A lower bound for Lebesgue’s universal cover problem

Peter Brass

(joint work with Mehrbod Sharifi)

The universal cover problem was first stated 1914 in a personal communication
by Lebesgue to Pál [1]; Lebesgue asked for the minimum area of a convex set U
in the plane such that for each set C of diameter 1 there is a congruent copy C ′

contained in U . So U is a universal cover for the family of sets of diameter 1,
under congruence, and we wish to determine the minimum area of a convex set
with that property.

This problem became a prototype for many similar universal cover problems,
where possible parameters include the family of sets to be covered (e.g., in Moser’s
worm problem, the curves of length one), the allowed transformations (congruence
or translation), the size measure to be minimized (area, perimeter, diameter, mean
width), and whether the cover is assumed to be convex (see [11] section 11.4 for a
survey). In this talk, we stick to Lebesgue’s original version.

An easy example of a universal cover for sets of diameter 1 is the circle of radius
1√
3
; Jung [2] proved that the smallest ball that contains all sets of diameter 1 is

the ball circumscribed to the equilateral simplex of diameter 1 (a different proof
for the planar case was also given by Jung [3]). This circle has area π

3 ≈ 1.047.
The unit square is a smaller universal cover, and it is also a universal cover even
under translation.

Pál constructed a sequence of better and better universal covers in his paper [1],
culminating in his truncated hexagon, a regular hexagon circumscribed to the unit
circle, with two corners cut off; this universal cover has the area 0.8454. Further
universal covers were constructed by Sprague [4], Duff [5] (nonconvex), and Hansen
[6, 7, 8]; also Eggleston [9] observed that the set obtained as union of a Reuleaux
triangle of diameter 1 and a circle of diameter 1, when the triangle vertices are
antipodal points of the circle, is a universal cover. But all progress was small,
and after Sprague [4] almost infinitesimal, the smallest currently known universal
cover has area 0.844.

As lower bound, Pál [1] observed that any set that contains congruent copies
of all sets of diameter 1 must contain at least congruent copies of the circle and
equilateral triangle of diameter 1; if the set is additionally convex, the area is at
least the minimum area of the convex hull of a circle and a triangle of diameter 1.
Pál shows that this minimum is reached when circle and triangle are concentric;

that set has area π
8 +

√
3

4 ≈ 0.8257. This lower bound could be improved if one
could add further sets of diameter 1 to this family, for which the area of the convex
hull is minimized. This was already observed by Pál, but he found unsurmountable
difficulties in extending his method from two sets (disc and triangle) to three sets.
This step was finally taken by Elekes [10], more than seventy years later, when
Elekes showed that the smallest convex hull of a circle, and all regular 3i-gons, all
of diameter 1, is reached if all these sets are concentric and equally aligned; this
raised the lower bound to ≈ 0.8271.
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The improvement was comparatively small since the next set included in this
sample, the regular 9-gon, is already very near a circle, and the improvement
decreases fast with the number of vertices. It would have been much more efficient
if one could have taken circle, equilateral triangle, and regular fivegon, of diameter
1; but the analytic methods do not extend to this situation. It is the result of
this talk to use instead computational methods to bound the minimum area of the
convex hull of a circle, triangle, and fivegon, as a lower bound for the minimum
area of a universal cover for sets of diameter 1.

Theorem: A convex set in the plane that contains a congruent copy of each set
of diameter one has area at least 0.832.

The placement of triangle, fivegon and circle that gives the smallest convex hull
we know of appears quite irregular, certainly the three sets are not concentric,
which was crucial for the proofs by Pál [1] and Elekes [10]. This suggests that the
analytic methods for finding the minimizing position are not applicable anymore.

Our method is in principle quite standard, we provide an initial bound for the
space of possible placements, and then subdivide it in cells. For each cell, we
compute a lower bound for the area, and subdivide the cell if the lower bound
is not good enough, until we have checked our claimed lower bound for all cells.
But the lower bound must be a quite strong lower bound, since the search space
of possible placements of the three sets is five-dimensional (the circle is fixed, the
triangle might be rotated to be axis-aligned, only the five-gon has three degrees
of freedom), and near the minimum we need an error less than 0.1%. At that
resolution, five-dimensional space is already enormously large, and adding another
set would raise the dimension of the search space to eight and make our approach
again infeasible.

The same method could of course be used for all similar universal cover prob-
lems, but for each different problem we need a new local bound, and this method is
of course not suitable to find the exact value. So it is only reasonable in situations
when we do not have a conjecture for the optimal arrangement.
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Universally optimal configurations of points on spheres

Henry Cohn

(joint work with Abhinav Kumar)

What is the best way to distribute N points on the unit sphere Sn−1 in R
n? One

way to make this notion precise is spherical codes : how large can the minimal
distance between the points be? A more general approach is potential energy
minimization. Given a potential function f : (0, 4] → R, define the energy Ef (C)
of a configuration C ⊂ Sn−1 by

Ef (C) =
∑

x,y∈C, x6=y

f
(
|x − y|2

)
.

One seeks the configuration with |C| = N that minimizes this quantity. Maxi-
mizing the minimal angle occurs as a degenerate case by taking f(r) = 1/rs with
s → ∞ (the asymptotics of Ef (C) are determined by the minimal angle).

In most cases the optimal configuration depends on the choice of potential func-
tion f , but not always. For example, it is not hard to convince oneself intuitively
that when N = n + 1 the regular simplex should be optimal for all reasonable
choices of f .

Definition 1. A configuration C ⊂ Sn−1 is universally optimal if Ef (C′) ≥ Ef (C)
whenever C′ ⊂ Sn−1 satisfies |C′| = |C| and f is completely monotonic (in other
words, f ∈ C∞((0, 4]) and (−1)kf (k)(x) ≥ 0 for each k ≥ 0 and x ∈ (0, 4]).

This definition is more natural than it may appear: the condition for k = 1
simply means the force law is repulsive (as makes sense for energy minimization),
the convexity condition with k = 2 is very plausible, and the conditions with k ≥ 3
are the natural continuation.

We prove that all the configurations listed in Table 1 are universally optimal.
The first five configurations are the vertices of certain regular polytopes (specif-
ically, those regular polytopes whose faces are simplices; no other regular poly-
topes are universally optimal [CCEK]). The next seven cases are derived from the
E8 root lattice in R

8 and the Leech lattice in R
24. The 240-point and 196560-

point configurations are the minimal (nonzero) vectors in those lattices. In sphere
packing terms, these are the kissing configurations , the points of tangency in the
corresponding sphere packings. Each arrangement with the label “kissing” is the
kissing configuration of the arrangement above it: each configuration yields a
sphere packing in spherical geometry by centering an identical spherical cap at
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n N M Inner Products Name

2 N N − 1 cos(2πj/N) for 1 ≤ j ≤
⌊

N
2

⌋
N -gon

n n + 1 2 −1/n simplex
n 2n 3 −1, 0 cross polytope

3 12 5 −1,±1/
√

5 icosahedron

4 120 11 −1,±1/2, 0, (±1±
√

5)/4 600-cell
8 240 7 −1,±1/2, 0 E8 roots
7 56 5 −1,±1/3 kissing
6 27 4 −1/2, 1/4 kissing/Schläfli
5 16 3 −3/5, 1/5 kissing
24 196560 11 −1,±1/2,±1/4, 0 Leech lattice
23 4600 7 −1,±1/3, 0 kissing
22 891 5 −1/2,−1/8, 1/4 kissing
23 552 5 −1,±1/5 [DGS], Ex. 8.3
22 275 4 −1/4, 1/6 [DGS], Ex. 8.3
21 162 3 −2/7, 1/7 [DGS], Ex. 9.2
22 100 3 −4/11, 1/11 [DGS], Ex. 9.2

q q3+1
q+1 (q + 1)(q3 + 1) 3 −1/q, 1/q2 [CGS]

Table 1. The known sharp configurations, together with the 600-cell.

each point, with radius as large as possible without making their interiors over-
lap. The points of tangency on a given cap form a spherical code in a space of
one fewer dimension. (In general different points in a packing can have different
kissing configurations, but that does not occur here. See Chapter 14 of [CS] for
the details of these configurations.)

The last line of the table describes a remarkable family of sharp configurations
from [CGS]. The parameter q must be a prime power. When q = 2 this arrange-
ment is the 27-point configuration in R

6, but for q > 2 it is different from all the
other entries in the table.

More generally we can prove universal optimality for any sharp configuration
(those listed in Table 1 are all sharp, except for the 600-cell):

Definition 2. A finite subset of the unit sphere is a sharp configuration if it is a
spherical M -design, there are m inner products that occur between distinct points
in it, and M ≥ 2m− 1− δ, where δ = 1 if the configuration is antipodal and δ = 0
otherwise.

Recall that a spherical M -design is a finite subset of the sphere such that every
polynomial on R

n of total degree at most M has the same average over the design
as over the entire sphere.

Theorem 3. Let C be a sharp configuration or the vertices of a regular 600-cell.
Then C is universally optimal.



Discrete Geometry 941

This theorem generalizes a theorem of Levenshtein [L1], which says that all
sharp configurations are optimal spherical codes. It is proved using linear program-
ming bounds for potential energy minimization, which were introduced by Yudin
[Y] and developed by Kolushov and Yudin [KY1, KY2] and Andreev [An1, An2]

Table 1 coincides with the list of known cases in which the linear programming
bounds for spherical codes are sharp; the list comes from [L2, p. 621], except
for the 600-cell, which was dealt with in [An3] and [E]. We conjecture that our
techniques apply to a configuration if and only if the linear programming bounds
for spherical codes prove a sharp bound for it.

One can set up analogous linear programming bounds for potential energy min-
imization in Euclidean space (along the lines of [CE]). We conjecture that they
prove universal optimality for the hexagonal lattice in R

2, the E8 root lattice in
R

8, and the Leech lattice in R
24. See [CK] for details.
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The realizability of graphs

Robert Connelly

(joint work with Maria Belk)

A graph G is d-realizable if, for each configuration of its vertices in E
N , there exists

another corresponding configuration in E
d with the same edge lengths. A graph

G is 1-realizable if and only if it is a forest. A graph G is 2-realizable if and only
if it is a partial 2-tree, i.e. a subgraph of the 2-sum of triangles. The k-sum of two
graphs is obtained by taking disjoint copies of each and identifying them along
corresponding copies of the complete graph Kk. The main result of our work is
to show that a graph is 3-realizable if and only if it does not have K5 or the edge
graph of the octahedron as a minor. A graph H is a minor of the graph G if H can
be obtained by a sequence of operations identifying an edge (with its endpoints)
to a point or deleting an edge.

On application of this work is related to the ‘molecule problem”. This is the
problem, where one is given positive scalar weights on the edges of a graph G, and
one looks for a configuration in E

d which has edge lengths equal to weights. The
class of 3-realizable graphs, identified above, is such that this molecule problem
can be solved with a polynomial time implimentation, essentially. It is possible
to find a configuration numerically in some, possibly high dimensional Euclidean
space E

N , and then use the algorithms of our work to ‘push down” the realization
into E

3 keeping edge lengths of G fixed. If G does not have K5 or the edge graph
of the octahedron as a minor, then there is a realization in at least E

4, or higher,
that cannot be re-realized in E

3.
The 3-realizable graphs are obtained as the 3-sum, or lower, of partial 3-trees

and two other graphs V8 and C5 × C2. The graph V8 is obtained by taking the
cycle of length 8, and connecting opposite vertices with edges. The graph C5 ×C2

is obtained by taking two cycles of length 4 and connecting corresponding vertices
by edges. For partial 3-trees the idea is to fold each of the summands down
into the lower dimensional space. However, for V8 and C5 × C2 the task is more
complicated. Roughly the idea is to strech certain pairs of vertices until the rest
of the graph is forced to lie in E

3, and is the work of M. Belk.

Polytopes, Lie Algebras, Computing

Jesús A. De Loera

(joint work with Tyrrell B. McAllister)

Given highest weights λ, µ, and ν for a finite dimensional complex semisimple
Lie algebra, we denote by Cν

λµ the multiplicity of the irreducible representation Vν

in the tensor product of Vλ and Vµ; that is, we write

(1) Vλ ⊗ Vµ =
⊕

ν

Cν
λµVν .
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In general, the numbers Cν
λµ are called Clebsch–Gordan coefficients. In the specific

case of type Ar Lie algebras, the values Cν
λµ defined in equation (1) are called

Littlewood–Richardson coefficients. When we are specifically discussing the type
Ar case, we will adhere to convention and write cν

λµ for Cν
λµ.

The concrete computation of Clebsch–Gordan coefficients (sometimes known
as the Clebsch–Gordan problem [5]) has attracted a lot of attention from not only
representation theorists, but also from physicists, who employ them in the study
of quantum mechanics (e.g. [3, 12]). The importance of these coefficients is also
evidenced by their widespread appearance in other fields of mathematics besides
representation theory. For example, the Littlewood–Richardson coefficients appear
in combinatorics via symmetric functions and in enumerative algebraic geometry
via Schubert varieties and Grassmannians (see for instance [10, 6]). More re-
cently, Clebsch–Gordan coefficients are playing an important role on the study
of P vs. NP (see [8]). Very recently, Narayanan has proved that the computa-
tions of Clebsch–Gordan coefficients is in general #P -complete [9]. Here are our
contributions:
(1) We combine the lattice point enumeration algorithm of Barvinok [1] with
polyhedral tools due to Knutson and Tao [4] and Berenstein and Zelevinsky [2]
in the polyhedral realization of Clebsch–Gordan coefficients to produce a new
algorithm for computing these coefficients. We can prove:

Theorem 1. For fixed rank r, if g is a complex semisimple Lie algebra of rank r,
then one can compute Clebsch–Gordan coefficients for g in time polynomial in the
input size of the defining weights.

Moreover, as a consequence of the polynomiality of linear programming and
the proof of the saturation property of Lie Algebras of type Ar, deciding whether
cν
λµ = 0 can be done in polynomial time, even when the rank is not fixed.

This settles a conjecture of Mulmuley and Sohoni [8]
(2) We implemented the algorithm for types Ar, Br, Cr , and Dr (the so-called
“classical” Lie Algebras) using the software packages LattE and Maple. In many
instances, our implementation performs faster than standard methods, such as
those implemented in the software LiE. Our software is freely available at http:

//math.ucdavis.edu/~tmcal.
(3) Via computer experiments, we explored general properties satisfied by the
Clebsch–Gordan coefficients for the classical Lie algebras under the operation of
stretching of multiplicities: By stretching of multiplicities we refer to the function
e : Z>0 → Z>0 defined by e(n) = Cnν

nλ,nµ.
It follows from the definitions of the BZ-polytopes that, given any highest

weights λ, µ, ν of a semisimple Lie algebra, Cnν
nλ,nµ = e(n) is a quasi-polynomial

in n. Indeed, e(n) is, in polyhedral language, the Ehrhart quasi-polynomial of the
corresponding BZ-polytope.

We can prove the following theorem:
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Theorem 2. (Stretching Conjecture) Given highest weights λ, µ, ν of a Lie algebra
of type Ar, Br, Cr, or Dr, then

Cnν
nλ,nµ =







f0(n) if n ≡ 0 mod 2,
...

f1(n) if n ≡ 1 mod 2

Moreover we conjecture, supported on our experiments:

Conjecture 3. The coefficients of each polynomial fi are all nonnegative.
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On incidences in Euclidean spaces

György Elekes

The talk gave a short survey of certain incidence questions with emphasis on
incidence bounds in three and higher dimensions [1], [2]. Relations to planar
incidence problems (involving parabolas or circles, see [3], [4]) were also mentioned.
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Orthogonal Surfaces

Stefan Felsner

(joint work with Sarah Kappes)

Let IRd be equipped with the dominance order:

x 6 y ⇐⇒ xi 6 yi for i = 1, .., d

Let V ⊂ IRd be a finite antichain in the dominance order. The orthogonal surface

SV generated by V is the boundary of the filter

I>

V =
{
y ∈ IRd : ∃x ∈ V with y > x

}

generated by V .

Example.

• The left figure shows an orthogonal 1-surface, i.e., an orthogonal surface in
two dimensions.

• The middle figure shows a suspended and generic orthogonal 2-surface in three
dimensions. Suspended means that there are special suspension vectors

si = (0, .., 0, M, 0, ..0) ∈ V

such that 0 < xi
j < M for all the other elements of V . Generic means that

the non-suspension vectors in V have pairwise different coordinates.

• The right figure shows a 2-surface which shows all kinds of ‘unfriendly’ fea-
tures.

Orthogonal surfaces are related to various mathematical fields:

• Study of discrete production sets in mathematical economics, (Scarf).
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• Resolutions of monomial ideals, (Miller, Sturmfels)

• Connections with order dimension.

• Planar graphs and Schnyder woods.

The most remarkable result in the theory of orthogonal surfaces goes back to
Scarf [5].

Theorem. Generic suspended orthogonal surfaces in IRd induce simplicial com-
plexes which are face complexes of simplicial d-polytopes (minus one facet).

One question motivated by this result is to find criteria to distinguish between
simplicial d-polytopes which are induced by an orthogonal surface and those which
are not.

The strongest availabe tools to answer this kind of question are of order theoret-
ical nature. Investigations of order dimension imply that a neighbourly 4-polytope
with more than 13 vertices is not realizable by an orthogonal 3-surface. Moreover,
the number of edges of 4-polytopes with n vertices which are realizable by an
orthogonal 3-surface is known to be 3

8n2 + o(n), see [1]. We prove a counting
criterion for realizability. This edge-facet criterion allows to classify 2344 of the
2957 non-realizable triangulations of a 3-ball (i.e., 4-sphere with a removed facet)
on 9 vertices as non-realizable. (Thanks to Frank Lutz, who provided us with the
data set of triangulated 4-spheres).

We also address the question of generalizations of Scarf’s theorem to non-generic
surfaces. In 3-dimensions such a generalization is known, see [4] and [3]. For higher
dimensions we are in search for a set of conditions which is less restrictive than
genericity and but still allows such a generalization.

A point p on the surface SV is called a generated point if there is a G ⊂ V such
that p =

∨

v∈Gv . A surface is called non-degenerate if all minimal generating sets
of every generated point have the same size.

The characteristic points of a surface SV are the points where d-different ‘flats’
of the surface meet. In the non-degenerate case, we can give a more combinatorial
definition for characteristic points: Point p is characteristic iff it is generated and
for every generating set Gp of p and every v ∈ Gp, there is a minimal generating
set G′

p ⊆ Gp that contains v. It turns out that in this case the minimal generating
sets for characteristic points are the bases of a matroid.

A non-degenerate surface SV is rigid if any two characteristic points with min-
imal generating sets of the same size are incomparable in the dominance order.

In the 3-dimensional case the dominance order on the characteristic points of a
rigid surface is the face lattice of a 3-polytope (minus one facet).

In higher dimensions the dominance order on the characteristic points of a rigid
surface has some features in common with the face lattice of a polytope. However,
there are examples which show that it need not even be a lattice.
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Few-distance sets in d-dimensional normed spaces

Zoltán Füredi

Let N be a normed space, N := (Rd, ‖.‖). Frequently we use upper index to
indicate dimension so we write Nd. Ed denotes the d-dimensional Eucledian space,
`d
∞ the maximum norm, as usual.

A set P ⊂ Rd in the normed space N is called a k-distance set if

|{‖x− y‖N : x,y ∈ P,x 6= y}| 6 k.

In the case k = 1 the set P is equidistant. Let f(Nd, k) := max size of a k-
distance set in the d-dimensional normed space N . Considering the lattice points
{0, 1, 2, . . . , k}d one gets f(`d

∞, 1) > (k + 1)d. On the other hand, it is known that
f(Nd, k) 6 2kd, independently of the norm. (Petty 1971 for k = 1, 5d for k = 2
by Einhorn and Schoenberg 1966, and Swanepoel 1999 for all k). It is conjectured
that the upper bound can be decreased to (k + 1)d, and it was proved for d = 2
and 3.

Unit distance sets. Groemer showed f(Nd, 1) 6 2d − 1 unless N = `d
∞. It is

conjectured that this can be further improved for smooth, strictly convex norms.
However, in [2] such a norm is constructed with f(N d) > 1.05d (This was improved
by Talata to 2d/2, see in Böröczky’s book 2004).

It is easy to see that f(Ed, 1) = d + 1, and it is conjectured that f(`d
1) = 2d

(Kusner 1983). The unitvectors ±ei give the extremal configuration. This was
proved for for d = 3 (Bandelt, Chepoi and Laurent 1998) and for d = 4 (Koolen,
Laurent and Schrijver 2000). The best upper bound is due to Alon and Pudlák
(2003): if p > 1 odd integer then ∃cp > 0 with f(`d

p) 6 cpd log d. In general thy

showed that f(`d
p) 6 cpd

(2d+2)/(2d−1) for all p > 1.

Lower bounds. It is conjectured that f(Nd, 1) > d+1 for all N . Dexter (2000)
showed that this is true if N is “almost” Euclidean, and Brass (1999) gave a

lower bound tending to infinity: f(Nd) > c
(

log d
log log d

)1/3

. For 1 < p < 2 one has

f(`d
p) > d + 1 for d > d0(p) (Swanepoel 2004, also see: C. Smyth 2005).
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Euclidean plane and space. There are many excellent results on f(E2, k)
and f(E3, k). Erdős (1946) conjectures that the

√
n ×√

n lattice gives the mini-
mum number of distinct distances for n-sets in plane, i.e., f(E2, k) = O(k

√
log k),

and similarly, the n1/3 × n1/3 × n1/3 lattice minimizes f(E3, k), i.e., f(E3, k) =
O(k3/2 log log k).

The best upper bound due to Katz and Tardos 2004, f(E2, k) = O(k1.157...),
and Aronov, Pach, Sharir and Tardos 2004: f(E3, k) 6 k141/77+ε.

Euclidean k-distance sets. Obviously, f(E2, 2) = 5 (regular pentagon), and
f(E3, 2) = 6 (octahedron by Croft 1962). Blokhuis (1984) slightly improving a
result of Larman, Rogers and Seidel (1977) showed f(Ed, 2) 6 1

2 (d + 1)(d + 2).

The 0-1 vectors of weight two in Rd+1 give a lower bound f(Ed, 2) > 1
2d(d + 1).

In general the best known upper bound, f(Ed, k) 6
(
d+k

k

)
, is due to Blokhuis

(1981) and independently Bannai, Bannai and Stanton (1983).

k-dependent sets

A set P ⊂ Rd in the normed space N is called a k-dependent if ∀X ⊂ P ,

|X | = k determines less than
(
k
2

)
distances.

For example, for k = 3, every triangle is isosceles. Let g(N d, k) denote the maxi-

mum size of such a set. {1, . . . ,
(
k
2

)
}d shows

g(`d
∞, k) >

(
k

2

)d

. (1)

Our aim is to prove that ∃ c dependent only on d, k such that g(N d, k) 6 c,
independently on the norm. We show,

g(Nd, k) 6

(
1

2
(k − 1)(k2 − 2k + 6)

)c3dd log d

. (2)

also (in the case k = 3) If every triple from P ⊂ Rd form an isosceles triangle in
the normed space Nd, then

|P | = g(Nd, 3) 6 3c3dd log d. (3)

Sidon sets, the case d = 1. There is only one norm for dimension 1.
A set of reals X is called a Sidon set (or B2-sequence) if

a + b = c + d

has only trivial solutions in X (i.e., {a, b} = {c, d}). In other words, for distinct
elements x1, x2, x3, x4 ∈ X , we have x1 − x2 6= x3 − x4 and x1 − x2 6= x2 − x3.
Let s(k) := max{m : |P | = m, reals, and ∀ Sidon subset X ⊂ P one has |X | < k}.
(I.e., s(k) = g(N1, k)). By (1) we have s(k) >

(
k
2

)
. It was proved by Komlós,

Sulyok and Szemerédi (1975) that there exists a c > 0 such that s(k) < ck2.
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Thin cones. To prove (2) we need a notion introduced in [4]. A cone C ⊂ Rd

in the normed space N is called thin if

x,y ∈ C \ {0} implies ‖x + y‖ > ‖x‖, ‖y‖.
It is easy to see [4] that C is thin if

diam (C ∩ ∂B(0, 1)) < 1, (4)

where B is the unit ball of the normed space.
Following the latest randomized proof of the Erdős-Rogers (1962) covering the-

orem, i.e., using Lovász Local Lemma as in Füredi and Kang (2003 one can show
that
Theorem 1. For any Nd and r < 1 the unit ball B can be covered by m open
balls of radius r such that no point of the space is covered by more than cd log d
times and

m < c′
(

1 +
1

r

)d

d log d,

where c, c′ are positive constants independent from d, r and N . �

Substituting r = 1/2 this implies that one can cover the whole space by at most

cd log d3d (5)

thin cones. Let Θ(Nd) denote the minimum size of a thin cone covering, i.e.,
Θ(Nd) denote the minimum number m such that ∃C1, . . . , Cm thin convex cones
with ∪Ci = Rd.

Increasing sets. An ordered set X = {x1, . . . ,xt} in Nd form an increasing

point set, if

‖xβ − xγ‖ 6 ‖xα − xδ‖
holds for any 1 6 α 6 β < γ 6 δ 6 t. Moreover, equality can hold only if α = β
and γ = δ.

For example, if the vectors pi − pj (i > j) all belong to the same thin cone C.
One can see that an increasing set of size

1

2
(k − 1)(k2 − 2k + 6) (6)

cannot be k-dependent. Let t := t(Nd, k) be the largest integer such that the
normed space Nd contains an increasing t-set without k independent points.

Main result. We need the following classical theorem on graph coloring. Any
directed graph which contains no directed (simple) path of length `, ` > 1, is `-
colorable (proved independently Gallai 1968, Hasse 1965, Roy 1967, Vitaver 1962).
Using this one obtains that

Theorem 2. g(Nd, k) 6 t(Nd, k)Θ(N).

Finally, (5) and (6) yield (2). �
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Introducing New Software Tools in Polyhedral Computation

Komei Fukuda

(joint work with Anders Jensen and Christophe Weibel)

There are quite a number of mathematical computations can be formulated in one
way or another as problems on certain convex polyhedra in some vector space R

d.
For example, computation of the Voronoi diagram and the Delaunay triangulation
for a given set of points in R

d can be reduced to the representation conversion
(between V-representation and H-representation) for convex polyhedra in R

d+1

and various software packages for the conversion are available, see [2].
On the other hand, there are many fundamental problems in polyhedral com-

putation that are not yet sufficiently understood in terms of their (worst-case,
average) complexities, the existence of efficient algorithms, relations to other prob-
lems, etc. These problems include (variants of ) the problems of computing the
Minkowski addition of several convex polytopes, the volume of a convex polytope,
projections of a convex polytope, and recognizing the convexity of the union of sev-
eral convex polytopes. Note that the complexity of a problem depends very much
on how input and output are specified (e.g. V-representation or H-representation)
and thus there are many variants. Also, some problems can be efficiently solved if
we restrict our attention to a special class of polytopes.

Although we are very far from having a “complete” set of polyhedral compu-
tation software tools, there are more and more software tools available. We are
pleased to announce the availability of two new software packages with unique
functionalities that reflect some recent progresses in polyhedral computation.

(1) Minksum [6] is a program to compute the V-representation (i.e. the set of
vertices) of the Minkowski addition of several convex polytopes given by
their V-representation in R

d. It is an implementation in C++ language
of the reverse search algorithm [1] whose time complexity is polynomially
bounded by the sizes of input and output.

(2) Gfan [5] is a program to list all reduced Gröbner bases of a general poly-
nomial ideal given by a set of generating polynomials in n-variables. It is
an implementation in C++ language of the reverse search algorithm [4].

Both packages use GMP (GNU multi-precision library) and the exact LP solver
of cddlib [3]. They are both licensed under GPL (GNU Public License).



Discrete Geometry 951

References

[1] K. Fukuda. From the zonotope construction to the Minkowski addition of convex polytopes.
Journal of Symbolic Computation, 38(4):1261–1272, 2004.

[2] K. Fukuda. Polyhedral computation FAQ, 2004. Both html and ps versions available from
http://www.ifor.math.ethz.ch/˜fukuda/fukuda.html.

[3] K. Fukuda. cdd, cddplus and cddlib homepage. Technical report,
Swiss Federal Institute of Technology, Lausanne and Zurich, 2005.

http://www.ifor.math.ethz.ch/˜fukuda/cdd home/index.html.
[4] K. Fukuda, A. Jensen, and R. Thomas. Computing Gröbner fans. Technical report. In
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Double-permutation sequences and geometric transversals

Jacob E. Goodman

(joint work with Richard Pollack)

Approximately twenty-five years ago [5], the authors introduced a combinatorial
encoding of planar point configurations designed to open problems on configura-
tions to purely combinatorial investigation. This encoding, which assigned to each
planar configuration of n points a circular sequence of permutations of 1, . . . , n,
has been used in a number of papers since then, in dual form (as an encoding
of line arrangements) as well as in primal form; because the same object encodes
pseudoline arrangements as well, it has also been used to derive results on pseu-
doline arrangements. For a survey of results obtained by this technique, see, e.g.,
[4]. (Recent applications include [9] and [10].)

In recent work [6], we have extended the encoding of point configurations by
circular sequences of permutations to an encoding of planar families of disjoint
compact convex sets by circular sequences of what we call “double permutations.”
It turns out that this new encoding applies as well to a more general class of ob-
jects: families of compact connected sets in the plane with a specified arrangement
of pairwise tangent and pairwise separating pseudolines, and thereby permits us
to extend results known for convex sets to these more general objects. In par-
ticular, we use the double-permutation sequence encoding to prove the theorem
of Edelsbrunner and Sharir [3] that a collection of n mutually disjoint compact
convex sets in the plane has no more than 2n − 2 “geometric permutations,” and
thereby establish this result in greater generality as well.

In brief, the new encoding works as follows. Given a planar family C =
{C1, . . . , Cn} of mutually disjoint compact convex sets, we project the sets onto a
directed line L and denote the endpoints of each projected set Ci by i, i′, accord-
ing to their order on L. This gives, in general, a permutation of the 2n indices
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1, . . . , n, 1′, . . . , n′. We then rotate L counterclockwise, and record the circular se-
quence consisting of all the “double permutations” of 1, . . . , n that arise in this way.
(Notice that if the convex sets are points, this encoding reduces to the encoding
by circular sequences of permutations.)

It turns out that this simple-minded encoding is strong enough to capture all
of the features of the family C that are essential in determining the (partial and
complete) transversals that C possesses, and that it extends in a natural way to
the case where the sets Ci are merely connected, provided we specify — for each
pair of sets — four pairwise tangent pseudolines and a separating pseudoline that
together are compatible in a single arrangement (every two meet just once and
cross there).

Our main application of this new encoding is

Theorem. Suppose C = {C1, . . . , Cn} is a family of compact connected sets in the
affine plane, each pair Ci, Cj separated by a pseudoline Lij and provided with a set
of pairwise tangent pseudolines, two internal and two external. Suppose further
that these 5

(
n
2

)
pseudolines form an arrangement A = AT ∪ AS (AT being the

tangents, AS the separators). Then (C,A) has no more than 2n − 2 geometric
permutations.

Here, by a geometric permutation of (C,A), we mean an ordering of the sets
C1, . . . , Cn such that there exists a pseudoline L compatible with A meeting them
in that order (and its reverse).

This result generalizes the Edelsbrunner-Sharir theorem in several ways. For
one thing, we replace convex sets with connected sets, and their pairwise tan-
gent lines with pairwise tangent pseudolines. Moreover, we don’t have to assume
that all of the pseudolines inducing different geometric permutations are together
compatible in a single arrangement (with this assumption the result would follow
by paraphrasing the original Edelsbrunner-Sharir proof in a “topological plane”
containing the entire pseudoline arrangement, whose existence is guaranteed by a
result of [8]), but merely that each one separately is compatible with the arrange-
ment of tangents and separators.

The proof proceeds by rephrasing a number of geometric properties of our fam-
ily of connected sets and pseudolinear tangents in combinatorial terms, thereby
establishing combinatorial properties of our double-permutation sequences, and
then using a purely combinatorial argument on the sequences themselves.

We also define the notion of an “allowable sequence of double permutations,”
discuss some of its combinatorial properties, and pose several questions concerning
these sequences.

For recent surveys in geometric transversal theory, see [2, 7, 11, 12]; for recent
work on pseudoline arrangements, see [1, Chap. 6] and [4].
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[2] J. Eckhoff. Helly, Radon, and Carathéodory type theorems. In P. M. Gruber and J. M. Wills,
editors, Handbook of Convex Geometry, Volume A, North-Holland, Amsterdam, 1993, pages
389–448.

[3] H. Edelsbrunner and M. Sharir. The maximum number of ways to stab n convex noninster-
secting sets in the plane is 2n − 2. Discrete Comp. Geom. 5 (1990), 35–42.

[4] J. E. Goodman. Pseudoline arrangements. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry , 2nd edition, CRC Press, Boca Raton,
2004, pages 97–128.

[5] J. E. Goodman and R. Pollack. On the combinatorial classification of nondegenerate con-
figurations in the plane. J. Combin. Theory, Ser. A 29 (1980), 220–235.

[6] J. E. Goodman and R. Pollack. The combinatorial encoding of disjoint convex sets in the
plane, and a generalization of the Edelsbrunner-Sharir transversal theorem. 2004, to appear.

[7] J. E. Goodman, R. Pollack, and R. Wenger. Geometric transversal theory. In J. Pach,
editor, New Trends in Discrete and Computational Geometry , Volume 10 of Algor. Combin.,
Springer-Verlag, Berlin, 1993, pages 163–198.

[8] J. E. Goodman, R. Pollack, R. Wenger, and T. Zamfirescu. Arrangements and topological
planes. Amer. Math. Monthly, 101 (1994), 866–878.

[9] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl. Convex quadrilaterals and k-sets. In
J. Pach, editor, Towards a Theory of Geometric Graphs, Contemp. Math. 342, Amer. Math.
Soc., Providence, 2004, pages 139–148.

[10] J. Pach and R. Pinchasi. On the number of balanced lines. Discrete Comput. Geom. 25
(2001), 611–628.

[11] R. Wenger. Progress in geometric transversal theory. In B. Chazelle, J. E. Goodman, and
R. Pollack, editors, Advances in Discrete and Computational Geometry, Volume 223 of
Contemp. Math., Amer. Math. Soc., Providence, 1999, pages 375–393.

[12] R. Wenger. Helly-type theorems and geometric transversals. In J. E. Goodman and J.
O’Rourke, editors, Handbook of Discrete and Computational Geometry , 2nd edition, CRC
Press, Boca Raton, 2004, pages 73–96.

On Norm Maximization in Geometric Clustering

Peter Gritzmann

(joint work with Andreas Brieden and Christoph Metzger)

In geometric clustering points of some finite point set in some Minkowski space
have to be grouped together according to some balancing constraints so as to
optimize some objective function. The prime example of a real-world clustering
problem that motivated our study is that of a lend-lease initiative for the consoli-
dation of farmland. In fact, in many regions farmers cultivate a number of small
lots that are distributed over a wider area. This leads to high overhead costs and
economically prohibits use of high tech machinery hence results in a non-favorable
cost-structure of production. The classical form of land consolidation is typically
too expensive and too rigid, whence consolidation based on lend-lease agreements
has been suggested. Of course, the underlying mathematical clustering problem is
NP-hard even in the most simple cases.

We give and analyze a new norm maximization model for geometric clustering
where in effect the centers of gravity of the clusters are pushed apart. With
respect to the effective intrinsic dimension this model compares favourably with
other possible formulations of the task.
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The most efficient problem adjusted approach for solving the underlying convex
maximization problem is based on the use of Minkowski spaces whose unit balls
stems from the dual of a cartesian products of permutahedra. It is shown how
these unit balls themselves can be tightly approximated by Hardamard matrix
based polytopes with only linearly many facets. The facet normals are then used
as objective function vectors for a polynomial-time linear programming approxi-
mation algorithm. We derive a worst case bound for the approximation error but
also report on the practical performance of this method for land consolidation in
some typical regions in Northern Bavaria, Germany.

On a separation problem by Tverberg

Andreas Holmsen

It was shown by Tverberg [3] that for every positive integer k there exists a minimal
positive integer s(k) such that for any collection of at least s(k) nonempty convex
sets in the plane with pairwise disjoint relative interiors, there is a (1, k)-separation,
i.e. a closed half-plane that contains at least 1 of the sets, while the complementary
closed half-plane contains at least k of the remaining sets. Hope and Katchalski
[2] gave the bounds 3k − 1 6 s(k) 6 12(k − 1). We discuss this problem and the
recent extension of allowable sequences by Goodman and Pollack [1].
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On geometric graph Ramsey numbers

Gyula Károlyi

(joint work with Vera Rosta)

For any finite sequence G1, G2, . . . , Gt of simple graphs, R(G1, G2, . . . , Gt) denotes
the smallest integer r with the property that whenever the edges of a complete
graph on at least r vertices are partitioned into t colour classes C1, C2, . . . , Ct,
there is an integer 1 ≤ i ≤ t such that Ci contains a subgraph isomorphic to Gi.
Such a subgraph will be referred to as a monochromatic subgraph in the ith colour.

In the special case, when each Gi is a complete graph on some ki vertices,
we will simply write R(k1, k2, . . . , kt) for R(G1, G2, . . . , Gt). In general, if Gi

has ki vertices, then the existence of R(G1, G2, . . . , Gt) follows directly from that
of R(k1, k2, . . . , kt), the latter was first observed and applied to formal logic by
Ramsey [9]. For more on Ramsey theory in general, we refer to the monograph [3]
and the collection of survey articles [8].
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A geometric graph is a graph drawn in the plane so that every vertex corresponds
to a point, and every edge is a closed straight-line segment connecting two vertices
but not passing through a third. The

(
n
2

)
segments determined by n points in

the plane, no three of which are collinear, form a complete geometric graph with n
vertices. A geometric graph is convex if its vertices correspond to those of a convex
polygon. Further, we say that a subgraph of a geometric graph is non-crossing, if
no two of its edges have an interior point in common.

For a sequence of graphs G1, G2, . . . , Gt, the geometric Ramsey number that
we denote by Rg(G1, G2, . . . , Gt) is defined as the smallest integer r with the
property that whenever the edges of a complete geometric graph on at least r
vertices are partitioned into t colour classes, the ith colour class contains a non-
crossing copy of Gi, for some 1 ≤ i ≤ t. The number Rc(G1, G2, . . . , Gt) denotes
the corresponding number if we restrict our attention to convex geometric graphs
only. These concepts have been introduced by Károlyi, Pach and Tóth in [5] and
further explored in [6] and [7].

These numbers exist if and only if each graph Gi is outerplanar, that is, can
be obtained as a subgraph of a triangulated cycle (convex n-gon triangulated by
non-crossing diagonals). The necessity of the condition is obvious, whereas the ‘if
part’ is implied by the following theorem, based on a result of Gritzmann et al.
[4].

Theorem 1. Let, for each 1 ≤ i ≤ t, Gi denote an outerplanar graph on ki

vertices. Then

R(G1, . . . , Gt) ≤ Rc(G1, . . . , Gt) ≤ Rg(G1, . . . , Gt) ≤ R(k1, . . . , kt).

We denote by Pk a path of k vertices, by Ck a cycle of k vertices and by Dk a
cycle of k vertices triangulated from a point. In addition, M2k = kP2 will stand
for any perfect matching on 2k vertices.
Results on geometric Ramsey numbers for paths and cycles were found by Károlyi
et al. [6] and they were extended in [7]. For example, if k ≥ 3, then

2k − 3 = Rc(Pk , Pk) ≤ Rg(Pk , Pk) = O(k3/2).

Moreover, if k and l are integers larger than 2, then

(k − 1)(l − 1) + 1 = Rc(Ck, Pl) ≤ Rg(Ck, Pl) ≤ Rg(Dk, Dl)

≤ (k − 1)(l − 2) + (k − 2)(l − 1) + 2.

Here we prove that in the case k = 3 the upper bound is sharp:

Theorem 2. For any integer l ≥ 3,

Rc(C3, Cl) = Rg(C3, Cl) = Rg(D3, Dl) = 3l − 3.

It is proved in [2] that

R(k1P2, k2P2, . . . , ktP2) =
t∑

i=1

ki + max
1≤i≤t

ki − t + 1.

This results, in the case t = 2 has been extended to geometric graphs as follows
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Theorem 3 ([5]).

Rc(M2k, M2`) = Rg(M2k, M2`) = R(M2k, M2`) = k + ` + max{k, `}− 1.

It implies the following general upper bound for

R(t)
g (M2k) = Rg(M2k, . . . , M2k

︸ ︷︷ ︸

t times

).

Theorem 4.

(1) R(t)
g (M2k) ≤







3t
2 k − 3t

2 + 2 for t even,

3t+1
2 k − 3t+1

2 + 2 for t odd.

In particular, Rg(M2k, M2k, M2k) ≤ 5k−3 and Rg(M2k, M2k, M2k, M2k) ≤ 6k−4.
We can prove that the latter bound is sharp:

Theorem 5. Rc(M2k, M2k, M2k, M2k) = Rg(M2k, M2k, M2k, M2k) = 6k − 4.

Combining this result with the obvious inequality

R(t+1)
c (M2k) ≥ R(t)

c (M2k) + (k − 1)

we obtain the following general lower bound:

Theorem 6. If t ≥ 4 and k are positive integers, then R
(t)
c (M2k) ≥ (t + 2)k − t.

In [1], Araujo et al. studied the chromatic number of some geometric Kneser
graphs. For example, given n points in convex position in the plane, let Gn be the
graph whose vertices are the

(
n
2

)
line segments determined by the points, two such

vertices connected by an edge in Gn if and only if the corresponding line segments
are disjoint.

Theorem 7 ([1]).

2
⌊n + 1

3

⌋

− 1 ≤ χ(Gn) ≤ min
{

n − 2, n − log n

2

}

.

In this result, the lower bound is derived as a consequence of Theorem 3. Note that
any improvement upon the upper bound in Theorem 4, even when Rg is replaced
by Rc, would have an impact on the lower bound in the above theorem.
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Abstract regular polytopes: recent developments

Peter McMullen

This talk reported on some developments on abstract regular polytopes since the
publication of the monograph [4]; for the most part, papers in the bibliography
of [4] are not cited individually here. Since these developments have largely been
concerned with realizations of polytopes ([4, Chapter 5] gives the background
here), for the purposes of the talk, a geometric viewpoint was adopted. A regular
polytope P is to be identified with its symmetry group G = G(P ), which is of the
form G = 〈R0, . . . , Rn−1〉, where the Rj are reflexions (isometries of period 2) of
the ambient space E, which (initially) is taken to be spherical or euclidean; these
satisfy RjRk = RkRj if |j − k| > 2 and, further, the intersection property

〈Ri | i ∈ I〉 ∩ 〈Ri | i ∈ J〉 = 〈Ri | i ∈ I ∩ J〉
for all I, J ⊆ {0, . . . , n− 1}. It is convenient to identify Rj with its mirror of fixed
points {x ∈ E | xRj = x}. For geometric reasons, the period pj of Rj−1Rj is at
least 3 for each j = 1, . . . , n−1; then {p1, . . . , pn−1} is the Schläfli type of P . This
number n is called the rank of P , and is denoted by rankP ; then P is referred to
as an n-polytope.

The geometric structure of P is as follows: the initial vertex is a point v ∈
R1 ∩ · · · ∩Rn−1, the Wythoff space (and v /∈ R0 to avoid degeneracy); recursively,
the initial j-face is Fj := {Fj−1G | G ∈ 〈R0, . . . , Rj−1〉}, and the general faces
are the images of the initial faces under G. These form a poset under iterated
membership. It is assumed that the vertex-set V := vG spans E (as a sphere or
euclidean space), in which case the dimension of P is defined to be dim P := dim E;
moreover, if V is finite, then E is a sphere, while if V is infinite, then E is a
euclidean space and V is discrete.

In a space of a fixed dimension, the classification proceeds in two stages. First,
the possible dimension vectors (dim R0, . . . , dim Rn−1) are determined. Second,
within each class (of dimension vectors) the individual polytopes are identified.
There are various restrictions on these and on dim P .

• dim P > rankP − 1 (= n − 1);
• dim Rj > j for j = 0, . . . , n − 2 and dim Rn−1 > n − 2.

If dim P = rankP − 1, then P is said to be of full rank. In this case

• dim Rj = j or n − 2 for j = 0, . . . , n − 2 and dim Rn−1 = n − 2.
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When P is finite, it is customary to think of its ambient sphere as embedded
in the euclidean space of one higher dimension; in this case, all the dimensions
occurring above should be raised by one. Moreover, infinite polytopes are called
apeirotopes.

The first case considered was that of the regular polytopes and apeirotopes of
full rank; for fuller details, see [2]. The following table gives their numbers in each
dimension.

dimension polytopes apeirotopes

0 1 -
1 1 1
2 ∞ 6
3 18 8
4 34 18

> 5 6 8

A few comments on the constructions are appropriate; too much detail would not
be. If X is a finite set in a euclidean space E, let R(X) denote the group generated
by the reflexions (inversions) in the points of X . Then R(X) is discrete if and
only if X is rational, meaning that the points of X have rational coordinates with
respect to some affine basis. A polytope P is rational if its vertices are; if G(P ) =
〈R1, . . . , Rn〉, then the apeirotope apeir P has G(apeir P ) = 〈R0, R1, . . . , Rn〉,
where R0 = {v}, with v the initial vertex of P (so that v ∈ (R2 ∩ · · · ∩ Rn) \ R1).

Again in the finite case, by assumption, R0 ∩ · · · ∩ Rn−1 = {o}, so that, if the
reflexion R0 is a line reflexion), then −R0 = (−I)R0 is a hyperplane reflexion; this
replacement yields another finite group. More generally, if Kk := Rk ∩ · · · ∩Rn−1,
then the operation κjk is defined by

(R0, . . . , Rn−1) 7→ (R0, . . . , Rj−1, RjKk, Rj+1, . . . , Rn−1).

The case j = k is most important, and leads to the interchange of the two possible
dimensions of Rk; however, a finite group need not result. The operation π :=
κn−3,n−1 generalizes the usual Petrie operation; it cannot be applied if pn−3 is
odd.

It turns out that each of the regular polytopes and apeirotopes of full rank
(except some of those obtained by the “apeir” construction) can be derived from
a classical one (whose group is a hyperplane reflexion group) by means of these
various operations. A striking feature is that all three Petrie-Coxeter apeirohedra
{4, 6 |4}, {6, 4 |4} and {6, 6 |3} of [1] occur as 3-faces of 5-apeirotopes in E

4. In-
deed, the second occurs twice; the first is also a 3-face of an (n + 1)-apeirotope in
E

n for each n > 3.
Next considered are the 4-dimensional finite regular polyhedra; here, [3] is fol-

lowed. The possible dimension vectors are:

• (1, 3, 3), (2, 3, 3);
• (3, 2, 3), (2, 2, 3), (1, 2, 3);
• (2, 3, 2);
• (2, 2, 2).
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The groupings indicate polyhedra related by κ0 and π. The first family consists of
those polyhedra which are – roughly speaking – liftings of ordinary polyhedra in E

3.
The second (and its relatives) and third are obtained by applying automorphisms
(at least one of which must be outer) to hyperplane reflexion groups represented
by diagrams – possibly with fractional marks – which admit suitable symmetries.
Those in the class (3, 2, 3) include ones described by Coxeter in [1]. Curiously, the
only groups to occur in the second and third groups are extensions (by involutory
outer automorphisms) of products Dr × Dr of dihedral groups, and the group
[3, 4, 3] of the 24-cell.

The class (2, 2, 2) is anomalous. A group of this kind is a subgroup of the
rotation group SO4, and polyhedra with such groups occur in two enantiomorphic
(mirror image) forms. The approach here is through quaternions; indeed, some of
the groups are not related to reflexion (Coxeter) groups either as subgroups or as
extensions.

Something briefly should be said about chiral polytopes. Roughly speaking,
such an n-polytope P has only rotational symmetries: its group is of the form
G(P ) = 〈S1, . . . , Sn−1〉, where SjSj+1 · · ·Sk has period 2 for j < k, and the
obvious analogue of the intersection property holds. It was shown in [2] that a
(strictly) chiral polytope cannot be of full rank. Thus the first non-trivial case is
that of chiral apeirohedra in E

3. These have been classified by Schulte in [5, 6],
and fall into two families, one with finite and the other with infinite 2-faces.
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Rigidity and the lower bound theorem for doubly Cohen-Macaulay
complexes

Eran Nevo

We prove that for d > 3, the 1-skeleton of any (d − 1)-dimensional doubly Co-
hen Macaulay (abbreviated 2-CM) complex is generically d-rigid. This implies the
following two corollaries (see Kalai [6] and Lee [7] respectively): Barnette’s lower
bound inequalities for boundary complexes of simplicial polytopes ([3], [2]) hold
for every 2-CM complex (of dimension > 2). Moreover, the initial part (go, g1, g2)
of the g-vector of a 2-CM complex (of dimension > 3) is an M -sequence. It was
conjectured by Björner and Swartz [10] that the entire g-vector of a 2-CM complex
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is an M -sequence.

The g-theorem gives a complete characterization of the f -vectors of boundary
complexes of simplicial polytopes. It was conjectured by McMullen in 1970 and
proved by Billera and Lee [4] (sufficiency) and by Stanley [9] (necessity) in 1980. A
major open problem in f -vector theory is the g-conjecture, which asserts that this
characterization holds for all homology spheres. The open part of this conjecture
is to show that the g-vector of every homology sphere is an M -sequence, i.e. it is
the f -vector of some order ideal of monomials.

Definition 1. A simplicial complex K is 2−CM if it is Cohen-Macaulay and for
every vertex v ∈ K, K − v is Cohen-Macaulay of the same dimension as K (over
a fixed field k).

K − v is the simplicial complex {T ∈ K : v /∈ T}. By a theorem of Reisner [8],
a simplicial complex L is Cohen-Macaulay iff for every face T ∈ L (including the

empty set) and every i < dim(LkL(T )), H̃i(LkL(T ); k) = 0 where LkL(T ) = {S ∈
L : T ∩ S = ∅, T ∪ S ∈ L} and H̃i(M ; k) is the reduced i-th homology of M over
k. This is the formulation which we use in the proof of Theorem 7.
Based on the fact that homology spheres are 2-CM and that the g-vector of some
other classes of 2-CM complexes is known to be an M -sequence (e.g. [10]), Björner
and Swartz recently suspected that

Conjecture 2. ([10], a weakening of Problem 4.2.) The g-vector of any 2-CM
complex is an M -sequence.

We prove a first step in this direction, namely:

Theorem 3. Let K be a (d−1)-dimensional 2-CM simplicial complex (over some
field) where d > 4. Then (go(K), g1(K), g2(K)) is an M -sequence.

This theorem follows from the following theorem, combined with an interpre-
tation of rigidity in terms of the face ring (Stanley-Reisner ring), due (implicitly)
to Lee [7].

Theorem 4. Let K be a (d−1)-dimensional 2-CM simplicial complex (over some
field) where d > 3. Then K has a generically d-rigid 1-skeleton.

Kalai [6] was the first to notice that if a (d− 1)-dimensional simplicial complex
(d > 3) has a generically d-rigid 1-skeleton then it satisfies Barnette’s lower bound
inequalities. Applying this observation to Theorem 4 implies

Corollary 5. Let K be a (d − 1)-dimensional 2-CM simplicial complex where
d > 3. Then for all 0 6 i 6 d − 1 fi(K) > fi(n, d) where fi(n, d) is the number
of i-faces in a (equivalently every) stacked d-polytope on n vertices. (Explicitly,

fd−1(n, d) = (d−1)n−(d+1)(d−2) and fi(n, d) =
(

d
k

)
n−
(
d+1
k+1

)
k for 1 6 i 6 d−2.)

�

Theorem 4 is proved by decomposing K into a union of minimal (d − 1)-cycle
complexes (Fogelsanger’s notion [5]). Each of these pieces has a generically d-rigid
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1-skeleton ([5]), and the decomposition is such that gluing the pieces together
results in a complex with a generically d-rigid 1-skeleton. The gluing lemma that
we use is due to Asimov and Roth [1]. The decomposition is detailed in Theorem
7.

Let us recall the concept of minimal cycles. Fix a field k (or more gener-
ally, an abelian group) and consider the formal chain complex on a ground set
[n], C = (⊕{kT : T ⊆ [n]}, ∂), where ∂(1T ) =

∑

t∈T sign(t, T )T \ {t} and

sign(t, T ) = (−1)|{s∈T :s<t}|. Define subchain, minimal d−cycle and minimal d−
cycle complex as follows: c′ =

∑{bT T : T ⊆ [n], |T | = d + 1} is a subchain of
a d-chain c =

∑{aT T : T ⊆ [n], |T | = d + 1} iff for every such T bT = aT or
bT = 0. A d-chain c is a d− cycle if ∂(c) = 0, and is a minimal d− cycle if its only
subchains which are cycles are c and 0. A simplicial complex K which is spanned
by the support of a minimal d − cycle is called a minimal d − cycle complex
(over k), i.e. K = {S : ∃T S ⊆ T, aT 6= 0} for some minimal d-cycle c as above.
For example, triangulations of connected manifolds without boundary are minimal
cycle complexes - fix k = Z2 and let the cycle be the sum of all facets.

Theorem 6. (Fogelsanger [5]) For d > 3, every minimal (d − 1)-cycle complex
has a generically d-rigid 1-skeleton.

We are now ready to decompose a 2-CM simplicial complex:

Theorem 7. Let K be a d-dimensional 2-CM simplicial complex over a field k
(d > 1). Then there exists a decomposition K = ∪m

i=1Si such that each Si is
a minimal d-cycle complex over k and for every i > 1 Si ∩ (∪j<iSj) contains a
d-face.

Moreover, for each i0 ∈ [m] the Si’s can be reordered by a permutation σ : [m] →
[m] such that σ−1(1) = i0 and for every i > 1 Sσ−1(i) ∩ (∪j<iSσ−1(j)) contains a
d-face.

This theorem is proved by induction on the dimension of K. Note that a graph
is 2-CM iff it is 2-connected. The base of the induction, where K is a graph, easily
follows from a theorem of Whitney [11] which asserts that a graph is 2-connected
iff it has an open ear decomposition.

Problem 8. Can the Si’s in Theorem 7 be taken to be homology spheres?

I would like to thank my advisor Gil Kalai, Anders Björner and Ed Swartz for
helpful discussions. This research was done during the author’s stay at Institut
Mittag-Leffler, supported by the ACE network.
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Forbidden patterns

János Pach

(joint work with Gábor Tardos)

At most how many edges (hyperedges, nonzero entries, characters) can a graph
(hypergraph, zero-one matrix, string) have if it does not contain a fixed forbidden
pattern? Turán-type extremal graph theory, Erdős–Ko–Rado-type extremal set
theory, Ramsey theory, the theory of Davenport–Schinzel sequences, etc. have
been developed to address questions of this kind. They produced a number of
results that found important applications in discrete and computational geometry.

In the present talk, we discuss an extension of extremal graph theory to ordered
graphs, i.e., to graphs whose vertex set is linearly ordered. In the most interesting
cases, the forbidden ordered graphs are bipartite, and the basic problem can be
reformulated as an extremal problem for zero-one matrices avoiding a certain sub-
matrix P . We disprove a general conjecture of Füredi and Hajnal [3] related to the
latter problem, by exhibiting a forbidden submatrix P , for which the maximum
number of ones in an n × n zero-one matrix avoiding P is much larger than the
solution of the same problem with the difference that the order of the rows and
columns can be arbitrarily changed. However, we conjecture that these functions
must be close to each other for adjacency matrices P of acyclic graphs. We verify
this conjecture in a few special cases.

We call a sequence C = (p0, p1, . . . , p2k) of positions in a matrix P an orthogonal
cycle if p0 = p2k and the positions p2i and p2i+1 belong to the same row, while the
positions p2i+1 and p2i+2 belong to the same column, for every 0 ≤ i < k. If the
entry of P in positions pi is 1 for all 0 ≤ i ≤ 2k, then C is said to be an orthogonal
cycle of P . Given a position p = (i, j) of the matrix P and an orthogonal cycle
C = (p0, p1, . . . , p2k), define C(i, j) to be the number of times that the possibly
self-intersecting polygon p0p1 . . . p2k encircles (in the counter-clockwise direction)
a point p′ = (i + 1/2, j + 1/2) of the plane. (Here we interpret the position (i, j)
in a matrix as the point (i, j) or the Euclidean plane.) An orthogonal cycle is said
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to be positive if C(i, j) ≥ 0 for every pair (i, j) and C(i, j) is strictly positive for
at least one such pair. We prove that the maximum number of ones in an n × n
zero-one matrix containing no positive orthogonal cycle is O(n4/3). The order of
magnitude of this bound cannot be improved.

Our results lead to a new proof of the celebrated theorem of Spencer, Szemerédi,
and Trotter [5] stating that the number of times that the unit distance can occur
among n points in the plane is O(n4/3). This is the first proof that does not use
any tool other than a forbidden pattern argument. We present another geometric
application, where the forbidden pattern P is the adjacency matrix of an acyclic
graph. A hippodrome is a c × d rectangle with two semicircles of diameter d
attached to its sides of length d. Improving a result of Efrat and Sharir [2], we
show that the number of “free” placements of a convex n-gon in general position
in a hippodrome H such that simultaneously three vertices of the polygon lie on
the boundary of H , is O(n). This result is related to the Planar Segment-Center
Problem.
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Bounding the volume of facet-empty lattice tetrahedra

Julian Pfeifle

(joint work with Han Duong, Christian Haase, Bruce Reznick)

A lattice polytope is empty if it contains no lattice points except for its vertices.
Already in 1957, Reeve [10] noticed that empty three-dimensional lattice simplices
may have unbounded volume. In 1982, Zaks, Perles & Wills [12] constructed a
family of d-dimensional lattice simplices, each member of which contains k lattice
points in total and has the rather large volume

k + 1

d!
22d−1−1 .

In the following year, Hensley [4] proved that the volume of any d-dimensional
lattice polytope containing k ≥ 1 lattice points in its interior is bounded by a
constant that depends only on d and k. By sharpening Hensley’s basic diophantine
approximation lemma, Lagarias & Ziegler [6] in 1991 improved his bound and
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showed that the maximal volume V (d, k) of a d-dimensional lattice polytope with
k interior lattice points is bounded by

V (d, k) ≤ k
(
7(k + 1)

)d2d+1

,

which for d = 3 reads

V (3, k) ≤ k
(
7(k + 1)

)48
.

This bound was further sharpened by Pikhurko [8], who was able to prove an
upper bound with only a linear dependence on k:

V (d, k) ≤ (8d)d · 15d·22d+1 · k ,

V (3, k) ≤ 243 · 15384 k .

A facet-empty or clean lattice polytope is a lattice polytope whose only lattice
points on the boundary are its vertices. In our talk we focused on the special class
of facet-empty k-point lattice tetrahedra, which contain exactly k+4 lattice points,
k of them in the relative interior. It is known [10], [11] that via unimodular trans-
formations any facet-empty lattice tetrahedron may be brought into the normal
form

Ta,b,n = conv
{
(0, 0, 0), (1, 0, 0), (0, 1, 0), (a, b, n)

}
,

where (a, b, n) = (0, 0, 1), or n ≥ 2, 0 ≤ a, b ≤ n − 1, and gcd(a, n) = gcd(b, n) =
gcd(1 − a − b, n) = 1. Note that volTa,b,n = n.

We sketched a proof of the following theorem, which significantly improves
Pikhurko’s bound for this special family of 3-dimensional lattice polytopes:

Theorem 1. The maximal (normalized) volume of a clean lattice tetrahedron ∆
with k ≥ 1 interior lattice points is

vol∆ ≤ 12k + 8 .

This bound is attained by the family of clean k-point lattice tetrahedra
{
T3,6k+1,12k+8 : k ≥ 1

}
.

The overall structure of the proof is as follows. We first show that the number k
of interior lattice points of ∆ equals the number of times that the sum

f(z) =

⌊
(a + b − 1)z

n

⌋

−
⌊

az

n

⌋

−
⌊

bz

n

⌋

equals 1, as z takes on integer values between 1 and n.
Next, we use that f(z) ∈ {0,±1} and f(n − z) = −f(z) for 1 ≤ z ≤ n − 1 to

express k as half the second moment of the sequence (f(z) : 1 ≤ z ≤ n − 1). This
second moment is then expressed using Dedekind sums s(a, n):

Proposition 2. Set c = 1− a− b mod n and let aa′ = bb′ = cc′ = 1 mod n. Then

1

2

n−1∑

z=1

f(z)2 =
n − 3

6
+

1

3n
−s(c, n)−s(a, n)−s(b, n)+s(a′b, n)+s(a′c, n)+s(b′c, n) .
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Remark 3. After obtaining this expression, we realized that we should have ex-
pected the appearance of Dedekind sums in this expression, because they appear in
a formula of Pommersheim [9] for the Ehrhart polynomial of lattice tetrahedra. In
fact, our derivation of Proposition 2 yields an elementary proof of this formula in
the case of facet-empty tetrahedra; in particular, we do not need to evaluate the
Todd class of the associated toric variety.

There are now at least two ways to complete the proof of the theorem. First,
we can express each Dedekind sum s(a, n) as essentially the sum of digits of the
negative-regular continued fraction expansion of n/(n − a); see [1], [5], [7], [9].

Proposition 4. Let n/(n−a) = b1−1/(b2−1/(· · ·−1/br)) be the negative-regular
continued fraction expansion of n/(n − a), where 0 ≤ a < n are coprime and we
require bi ≥ 2 for i = 1, 2, . . . , r. Moreover, define a′ ∈ �

by aa′ = 1 mod n and
0 ≤ a′ < n. Then

s(a, n) =
1

12

(
r∑

i=1

(
3 − bi

)
+

a + a′

n
− 2

)

.

We then use a detailed analysis of the behavior of digit sums of negative-regular
continued fraction expansions to bound k from below. This approach requires a
fairly substantial amount of case distinctions.

The other way of proving the theorem is not by passing to continued fractions,
but instead by bounding the individual Dedekind sums directly and controlling the
interaction between the six summands in Proposition 2. This alternative proof of
the theorem is still work in progress; we have reason to hope that it requires a
substantially smaller number of case distinctions.

It has been observed several times that s(a, n) changes drastically if a is close to
numbers of the form n ·c/d. The behaviour of Dedekind sums in the neighborhood
of such values was studied by Girstmair [2], [3], who introduced the notion of “F -
neighbors”. First, define a Farey point to be a real number of the form n · c/d,
where d is “small”; more precisely, 1 ≤ d ≤ √

n, 0 ≤ c ≤ d and gcd(c, d) = 1. (Note
that this c is different from the one used before.) The denominator d is called the
order of the Farey point. The F -neighbors of order d are all real numbers x such
that 0 ≤ x ≤ n and |x − n · c/d| ≤ √

n/d2, for some 0 ≤ c ≤ d with gcd(c, n) = 1.
An integer x ∈ [0, n] that is not an F -neighbor of order 1 ≤ d ≤ √

n is called an
ordinary integer.

Proposition 5. [3, Theorem 1 and Section 3]

(a) If n ≥ 15 and x ∈ [0, n] is an ordinary integer, then |s(x, n)| ≤ 1
4

√
n + 5

12 .
(b) Let x be a F -neighbor of order d, let n · c/d be the corresponding F -point,

and put q = xd − cn, so that |q| ≤ √
n/d. Then

s(x, n) =
n

12dq
+

1

12
E(d + |q| + 4) ,

where E denotes an error term such that |E(z)| ≤ z.

The next proposition is crucial for analyzing the sum from Proposition 2.
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Proposition 6. Let x = (cn + q)/d with gcd(c, d) = gcd(x, n) = 1 be a Farey
neighbor of order d to cn/d. Then for any 0 ≤ c′ < q relatively prime to q, there
exists a parametrization n = αs + β with α, β ∈ � and s ∈ 	 such that the
inverse x′ of x modulo n has the form x′ = (c′n + d)/q.

In particular, inverting x leaves the product dq invariant.

It turns out that we may assume all of the six first arguments {a, b, c, a′b, b′c, c′a}
of the Dedekind sums in Proposition 2 to be F -neighbors. Moreover, by the
estimates from Proposition 5 we only need to consider those 20 sets of arguments

such that the associated values diqi satisfy
∑6

i=1 1/(diqi) > 1. We leave the
completion of this argument for further study.
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On Geometric Graphs with no Pair of Parallel Edges

Rom Pinchasi

A geometric graph is a graph drawn in the plane with its vertices as points and
its edges as straight line segments connecting corresponding points. A topological
graph is defined similarly except that its edges are simple Jordan arcs connecting
corresponding points. Two edges in a geometric graph are said to be parallel, if
they are two opposite edges of a convex quadrilateral.

In [2, 3] Katchalski, Last, and Valtr prove a conjecture of Kupits and obtain
the following result:

Theorem 1. A geometric graph on n vertices with no pair of parallel edges has
at most 2n − 2 edges.
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In this talk we give two very simple proofs for Theorem 1. We also give a
strengthening of this result in the case where G does not contain a cycle of length
4. In the latter case we show that G has at most 3

2 (n − 1) edges.
In the first proof we show that any geometric graph with no pair of parallel

edges can be redrawn as a generalized thrackle, that is, a topological graph every
pair of whose edges meet an odd number of times. We then use results of Cairns
and Nikolayevsky ([1]) concerning such graphs. The second proof is self-contained
and relies on some purely combinatorial lemma.
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Cinderella.2 — an ε before release

Jürgen Richter-Gebert

(joint work with Ulrich Kortenkamp)

The interactive geometry software Cinderella [2] is an environment for doing con-
structions of elementary geometry on a computer. After a construction has been
generated by mouse interactions, the base elements can be moved and the de-
pendent elements follow accordingly. At first sight the task to implement such a
programm seems to be almost trivial from a mathematical point of view. However,
a closer look shows that the demand of contineous behavior of dependend objects
requires strategies from complex function theory that navigate on Riemann sur-
faces that are implicitely definded by a geometric construction (see [1]). Also
projective geometry is necessary to deal with elements at infinity appropriately.

The version of Cinderella that is available now since about 5 years was build
on these principles. Currently a new version of Cinderella is close to its final re-
lease. This new release significantly broadens the scope of the programm. Besides
the original focus on elementary (euclidean and non-euclidean) geometry also the
following topics are covered:

• advanced geometric primitive operations,
• transformation geometry,
• transformation groups,
• iterated function systems,
• simulation of scenarios in physics,
• internal and external scripting of the programm,
• interfaces to other programming languages,
• handdrawing recognition,
• advanced screen recording capabilities.
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Perspective view of an iterated function system generated by two similarities

In the following sections some of these new features are mentioned and sample
images are provided.

1. Transformations and transformation groups

Transformations can be defined by declaring preimages and images of a collec-
tion of points under the transformation. For instance a projective transformation
is defined by specifying four original points and four image points. It is possible
to define translations, similarities, affine transformations, projective transforma-
tions and Moebius transformations. Transformations can be combined to form
transformation groups. It is also possible to display the iterated function system
generated by a couple of transformations. All parameters of the transformations
can be varied continuously so that it is for instance possible to interactively explore
iterated function systems.

2. Physics Simulations

Cinderella.2 has the build-in functionality to simulate scenarios with point-
masses and forces. The physics environment is completely compatible with the
geometry part of the programm so that one can easily incorporate a geomet-
ric analysis of a simulation. Forces can be generated by force fields, by springs
or from short range particle interactions. The simulation engine is based on a
DormandPrince45-integrator that allows for fast and still reasonably exact calcu-
lations.

3. Scripting

A feature of particular interest is the possibility to control the behavior of a
construction by a script. The scripting language CindyScript is designed to have
a mimimum of syntactical overhead. It is a functional language and does not
require explicit typing. For input and output the facilities of Cinderella are used.
By this, one can create very complex functionality by only a few lines of code. The
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application range of the scripting language ranges from interactive enhancements
of geometric constructions via calculus and discrete geometry, to the automatic
analysis of physics simulations. The example on this page shows the complete
script to produce a Lindenmayer-System that generates a plant like structure on
the screen.
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The number of spanning trees in a planar graph

Günter Rote

(joint work with Ares Ribó, Xuerong Yong)

Theorem 1. (1) A planar graph with n vertices has at most 5.33333333 . . .n

spanning trees.
(2) A planar graph with n vertices and without a triangle has at most ( 4

8
√

e
)n <

3.529988n spanning trees.
(3) A three-connected planar graph with n vertices and without a face cycle of

length three or four has at most ( 3
√

36/e4/27)n < 2.847263n spanning trees.

Trace of a chaotic pendulum
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list(x):=(

gsave();

repeat(length(x),turtle(x_#));

grestore();

);

turtle(x):=(

(if(x=="F",foreward));

(if(x=="+",left));

(if(x=="-",right));

(if(x=="[",open));

(if(x=="]",close));

);

linecolor((0,0,0));

foreward:=(draw((0,0),(l,0));translate((l,0)));

left:=rotate(angle);

right:=rotate(-angle);

open:=gsave();

close:=grestore();

l=0.2;

angle=A.x/4;

n=4;

s="F";

repeat(n,s=replace(s,"F","F[+F]F[-F]F"));

rotate(pi/2);

list(s)

A

Linenmayer-System generated by a script

Lower bounds that complement parts (1) and (2) come from the triangular and
square grids [7], which have asymptotically ≈ 5.029545n and ≈ 3.209912n spanning

trees, respectively, see also [6, (2.17–2.19)]. (The exact values are exp
(

3
√

3
π (1− 1

52 +
1
72 − 1

112 + 1
132 −· · · )

)
and exp

(
4
π (1− 1

32 + 1
52 − 1

72 + 1
92 −· · · )

)
.) A large graph with

pentagonal faces with the regular structure shown on
the right is a candidate for the best construction in
case (3). The asymptotic number of trees of this ex-
ample can be calculated by the technique of Shrock
and Wu [6], but we haven’t done this.

Our motivation for studying this problem comes
from the task of realizing 3-dimensional polytopes with
(small) integral vertex coordinates. The combinatorial
structure of a 3-polytope is specified by a three-connected planar graph. Such a
graph always contains at least a triangular, a quadrilateral, or a pentagonal face;
this is the reason why we did not continue after part (3) of Theorem 1.

To construct a 3-polytope with a given combinatorial structure, we follow the
approach described in Richter-Gebert [5, Part IV]: we construct a planar equilib-
rium embedding for a specified self-stress and lift it to a polyhedral surface via
the Maxwell-Cremona correspondence. The analysis of the determinant of the lin-
ear system of equations which is used to define the equilibrium embedding leads
directly to the number of spanning trees of the graph, via the Matrix-Tree theorem.
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With the improved bounds of Theorem 1 and some additional technique for
graphs containing a quadrilateral face, we can improve the results of Richter-
Gebert as follows:

Theorem 2. (1) A 3-polytope P with n vertices can be realized with integral

coordinates of absolute value less than 212n2

(or more precisely, n10n 210n2

).
(2) If P contains a quadrilateral face, the bound is reduced to 156n.
(3) If the graph of P contains a triangle, the bound is reduced to 29n. �

In this abstract, we will only sketch the techniques for proving Theorem 1. Full
details can be found in [4]. The proof of part (1) is rather simple: we add edges
until we obtain a triangulated supergraph G; its dual graph G∗ is 3-regular and
has 2n−4 vertices. Applying the upper bound for regular (not necessarily planar)
graphs of McKay [3], and of Chung and Yau [1] yields our bound.

For parts (2) and (3) of Theorem 1, we introduce the Outgoing Arc Approach.
We choose an arbitrary root vertex r. In the directed graph obtained by replacing
every edge by two opposite directed arcs, we form a subset R of arcs by selecting
one outgoing arc uniformly at random for each vertex different from the root.

If R does not contain cycles, it forms a spanning tree. Each tree is generated in
exactly one way by this process. Multiplying the number of possibilities, which is
the product of the vertex degrees

∏

v∈V −{r}dv , by the “success probability” yields

the following expression for the number T of spanning trees:

Lemma 3.

T =
∏

v∈V −{r}
dv · Prob(R does not contain a cycle) �

From the product of vertex degrees
∏

dv and the arithmetic-geometric mean
inequality we already get an easy upper bound of 6n for the number of spanning
trees of planar graphs. We improve this by estimating the probability that some
cycle appears. The probability that a particular cycle c appears can be easily
calculated as the reciprocal of the product of the degrees. However, cycles do not
appear independently. Cycles are independent if they have disjoint vertex sets, and
hence we expect that “most” short cycles will be independent of each other. We
use Suen’s inequality for this case of controlled dependence. Suen’s inequality uses
the concept of a dependency graph. Let {Xi}i∈I be a family of random variables.
A dependency graph is a graph L with node set I such that if A and B are two
disjoint subsets of I with no edge between A and B, then the families {Xi}i∈A

and {Xi}i∈B are mutually independent. In particular, two variables Xi and Xj

are independent unless there is an edge in L between i and j. If there exists such
an edge, we write i ∼ j. Suen’s inequality is useful in cases in which there exists a
sparse dependency graph. The expected value of a random variable X is denoted
by EX . The following theorem is a special case of Suen’s inequality, see [2]:
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Theorem 4. Let Ii, i ∈ I, be a finite family of Bernoulli random variables with
success probability pi, having a dependency graph L. Let X =

∑

i Ii and λ = EX =
∑

i pi. Moreover, let ∆ = 1
2

∑

i

∑

j:i∼j E(IiIj) and ζ = maxi

∑

k∼i pk. Then

Prob(X = 0) 6 exp(−λ + ∆e2ζ).

In our case, the nodes of the dependency graph are all directed cycles in the
graph that avoid r. We connect two cycles by an edge if they share some vertex.
The independent choice of an outgoing arc for each vertex in R the ensures that
this dependency graph is valid for our model.

Two directed cycles c and c′ that share a vertex can never occur together in R,
because every vertex has only one outgoing arc in R. Hence, i ∼ j implies that
E(IiIj) = 0, which means that ∆ = 0 in Theorem 4. Therefore, we have

Prob(R does not contain a cycle) = Prob(X = 0) 6 exp(−λ),

where λ is the sum of probabilities for all directed cycles c that can appear in R:

(1) λ =
∑

c

(1/
∏

v∈c
dv) =

∑

(i,j)∈C2

1

didj
+

∑

(i,j,k)∈C3

2

didjdk
+

∑

(i,j,k,l)∈C4

2

didjdkdl
+ · · ·

Here Cb denotes the set of undirected cycles of length b that don’t contain r. To
prove an upper bound on

∏
dv · e−λ we truncate the sum (1) after C2. We let

the variable fij , with i 6 j, stand for the number of edges connecting a vertex of
degree i and a vertex of degree j. The logarithm of

∏
dv · e−λ can then be written

as a linear function in the variables fij :

Z =
∑

v∈V

ln dv −
∑

(i,j)∈E

1

didj
=
∑

i6j

fij

(
ln i

i
+

ln j

j
− 1

ij

)

We maximize Z under constraints that reflect the total number n of vertices and
the total number of edges in a planar graph (at most 3n):

(2)
∑

i6j

fij

(
1

i
+

1

j

)

= n, and
∑

i6j

fij 6 3n

The optimum Z = ln 6 − 1
12 with eZ ≈ 5.5203 is achieved when f66 = 3n and all

other fij = 0. However, this bound for part (1) is not as strong as the easy bound
that comes from the dual graph. If we replace the edge bound 3n in (2) by 2n and
5n/3, respectively, we obtain parts (2) and (3) of Theorem 1. The corresponding
optimal solutions are f44 = 2n (corresponding to the square grid), and f33 = n/3,
f34 = 4n/3 (corresponding to the grid graph with pentagonal faces shown on the
first page). Planarity enters this proof only via the bound on the number of edges.

As a next step, one can include in the sum (1) larger cycles C3, C4, and C5. If we
consider only face cycles and introduce corresponding variables fijk , fijkl, fijklm

for the number of faces with vertices of degree i, j, k, l, m, calculations indicate
that this would reduce the bound in part (2) of Theorem 1 to 3.5026. (In this
case, no cycles of length 3 appear.) However, this appears quite complicated to



Discrete Geometry 973

prove. Also, it appears that one cannot beat the current bound for part (1) with
this technique, even if longer and longer cycles are included.
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Cubical Polytopes and Spheres

Thilo Schröder

(joint work with Michael Joswig)

We derive a non-recursive combinatorial description of the cubical spheres con-
structed by Babson, Billera, and Chan [2]. This enables us to deduce many
interesting properties of these spheres, for example neighborliness and (non)-
polytopality. (For detailed study and references we refer the reader to [4].) The
ingredients needed for this construction are the mirror complex, the cubical fissure
and BBC sequences.

1. Ingredients

The mirror complex was first described by Coxeter [3] in terms of reflection
groups. It is a cubical complex that may be constructed for any simplicial complex.
It reflects some of the properties of the simplicial complex, for example:

• if the simplicial complex is k-neighborly, then the mirror complex is (k+1)-
neighborly, and

• if the simplicial complex is a (d − 1)-sphere, then the mirror complex is a
cubical d-manifold.

The cubical fissure is a technique to construct new cubical complex from a given
one by choosing a subcomplex an then introducing a fissure along (prism over) its
boundary.

We introduce BBC sequences, special sequences of simplicial balls. These arise
naturally from vertex orderings of simplicial polytopes, as used by Babson, Billera,
and Chan, and are closely related to spheres that are directly obtainable in the
sense of Altshuler [1].
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2. Cubical Spheres

Using these ingredients, Babson, Billera, and Chan inductively constructed cu-
bical d-spheres from BBC sequences of simplicial (d−1)-balls. Since neighborliness
is one of the properties preserved by mirroring, they were able to prove the exis-
tence of neighborly cubical spheres.

2.1. Combinatorial Description. Following the inductive construction of Bab-
son, Billera, and Chan, we derive a purely combinatorial description of the cubical
spheres constructed from a BBC sequence of simplicial balls. The cubical sphere is
explicitly given as a subcomplex of a cube depending only on the faces of the BBC
sequence. This representation is close to the Cubical Gale Evenness Condition of
Joswig and Ziegler [5]. We show that the boundary of the neighborly cubical poly-
topes constructed by Joswig and Ziegler [5] are isomorphic to neighborly cubical
spheres constructed from particular vertex orderings of cyclic polytopes.

With this combinatorial description we prove that if the cubical sphere con-
structed from a BBC sequence is polytopal, then all the boundary spheres of the
BBC sequence must be polytopal as well. This allows us to construct an explicit
example of a non-polytopal neighborly cubical 5-sphere. It can also be shown,
using entirely different techniques, that if the BBC sequence arises from a vertex
ordering of a simplicial polytope, then the cubical sphere constructed from this
sequence is polytopal [9].

In dimension less than five, all the cubical spheres constructed from BBC se-
quences are polytopes, since they are built from simplicial balls of dimension less or
equal two. These simplicial balls are pulling triangulations of directly obtainable
1- or 2-spheres, which are polytopes according to Altshuler.

2.2. Polyhedral Surfaces. The above results yield a new proof for the realiz-
ability of some of the equivelar surface of type M4,q realized by McMullen, Schulz,
and Wills [6, 7]. Surfaces of type Mp,q consist of p-gons, where each vertex has
degree q. The quad-surfaces of type M4,q with n = 2k vertices (k > 3) were
already mentioned by Coxeter [3] and Ringel [8] and are particularly interesting
because of their ‘unusually high genus’ O(n log n) as pointed out by McMullen,
Schulz, and Wills.

The mirror complex of the boundary of a q-gon Q is a quad surface S with
vertex degree q, since the link of a vertex of the mirror complex corresponds to
the simplicial complex Q. To realize this surface, we consider a BBC sequence
T constructed from a (q − 1)-gon. With our combinatorial description we show
that the mirror complex of a pulling triangulation of a q-gon is contained in the
cubical sphere constructed from T . The dimension of the sphere is three and
it is isomorphic to the boundary of a 4-dimensional neighborly cubical polytope
of Joswig and Ziegler. The Schlegel diagram of this polytope is a 3-dimensional
cubical complex which contains the cubical surface S.
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On lattice sphere packings and coverings

Achill Schürmann

(joint work with Mathieu Dutour and Frank Vallentin)

Classical problems in the geometry of numbers are the determination of most
economical lattice sphere packings and coverings in Euclidean d-space R

d. We re-
port on some recent progress in the study of covering and (simultaneous) packing–
covering lattices: We found some new best known low dimensional lattices and
have promising new approaches using symmetry. Moreover, we report on the suc-
cessful application of a new technique to prove the local optimality of lattices, as
for example the Leech lattice.

A lattice L is a discrete subgroup of R
d. We may assume that L has full rank

d and is spanned by a basis A ∈ GLd(R), that is, L = AZ
d. The determinant

det(L) = | det(A)| of L is at the same time the volume of the Dirichlet-Voronoi
polytope (DV-cell) DV(L) =

{
x ∈ R

d : |x| 6 |x − y| for all y ∈ L
}
. The inradius

of DV(L) is called the packing radius of L, denoted by λ(L), and its circumradius
is the covering radius of L, denoted by µ(L). The covering density of L is

Θ(L) =
µ(L)d

det(L)
· κd

where κd denotes the volume of the d-dimensional unit ball. The (simultaneous)
packing-covering constant of L is defined by

γ(L) =
µ(L)

λ(L)
.
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Problem (lattice covering problem). For d > 1 determine Θd = minL Θ(L)
and lattices L of rank d attaining it.

Problem (lattice packing-covering problem). For d > 1 determine γd =
minL γ(L) and lattices L of rank d attaining it.

Both problems have been solved for dimensions d 6 5 only. We refer to [7] for
a detailed overview about the two problems.

Both problems can be reduced to finitely many convex optimization problems.
The main mathematical tool needed for an algorithmic solution is a reduction the-
ory developed by Voronoi (see [11]), in which lattices are categorized according to
their DV-cell: Assume a basis A of L and an associated positive definite quadratic
form (PQF) Q[x] = |Ax|2 = x

tAtAx are given. Then the DV-cell of Q is the
polytope

DV(Q) =
{
x ∈ R

d : Q[x] 6 Q[x − y] for all y ∈ Z
d
}

.

Each vertex c of DV(Q) corresponds to a Delone polytope P = conv{0, v1, . . . , vm}
with vi ∈ Z

d and Q[c − v] minimal among integral points v, if and only if v is
one of the vertices of P . Two PQFs (and corresponding lattices) are said to be of
the same L-type, if the star of Delone polytopes with vertex at the origin 0 is the
same. The Delone star defines a Delone subdivision of R

d, by translating it by all
vectors of Z

d.
Voronoi’s theory allows in principle an enumeration of all L-types. Due to a

combinatorial explosion this is currently practically impossible in dimensions d >

6. Nevertheless, given a fixed L-type it follows from theorems of Barnes and Dick-
son [2] and Ryshkov [6] that among lattices of the given L-type there exists a unique
lattice (up to orthogonal transformations) minimizing the covering density and a
unique minimum of the packing-covering constant. In the first case the problem
can be formulated as a determinant maximization problem (see [10]), in the second
case we have to solve a semidefinite program. Using the software MAXDET by
Wu, Vanderberghe and Boyd (http://www.stanford.edu/~boyd/MAXDET.html)
we were not only able to verify all of the known results in dimension d 6 5, we
heuristically found new best known lattices for the lattice covering and the lat-
tice packing-covering problem in dimension 6. The interpretation of these results
helped us to discover new best known lattice coverings in dimension 7 and 8 as
well.

In dimensions above 8 not only the number of L-types explodes, but also the
size of the input and the dimension of the convex optimization problems become
intractable. With a new equivariant approach we introduce in [4] we hope to
overcome these difficulties and to find new record breaking lattices in dimensions
up to 8 and beyond. The key idea is to fix a finite matrix group G and to restrict
the search to a Bravais space

B(G) =
{
Q ∈ Sd

>0 : gtQg = Q for all g ∈ G
}
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of G within the space of PQFs Sd
>0. Here we have a natural extension of Voronoi’s

reduction theory with respect to the action of the normalizer

NZ(G) =
{
h ∈ GLd(Z) : h−1Gh = G

}

on B(G). With the new theory we hope to find new best known covering lattices
whose automorphism group has a low dimensional Bravais space. A similar gen-
eralization of Voronois reduction theory by perfect forms has been described by
Martinet, Bergé and Sigrist in [5].

Inspired by the experimental success, we have developed a technique (see [8],
[9]) that allows to compute local lower bounds for the covering density and the
packing covering constant. With it, we were able to prove the following theorem
(see [8]) on the local optimality of the highly symmetric 24-dimensional Leech
lattice (see [3]). “Locally optimal” in this context means that choosing a fixed
base, sufficiently small perturbations of it (unless they are dilations or orthogonal
transformations) yield lattices with a larger covering density or packing-covering
constant respectively.

Theorem 1. The Leech lattice is a locally optimal covering lattice and a locally
optimal packing covering lattice.

Note that the Leech lattice gives a first known example of a locally optimal
covering lattice whose Delone subdivision is not a triangulation, which was an
open question before. It may surprise at first that a similar bound is not attained
by the root lattice E8. In fact, the E8 lattice is even far from being a local
minimum.

Theorem 2. Let QE8
be a PQF associated to the root lattice E8 and let Q be a

quadratic form such that the Delone subdivision of Qλ = QE8
+ λQ is a triangu-

lation for all sufficiently small λ > 0. Then the covering density of E8 is strictly
larger than the covering density of a lattice associated to Qλ, for all sufficiently
small λ > 0.

A generic Q satisfies the condition of the Theorem. Thus instead of a local
optimum we may speak of a local pessimum as suggested by Peter McMullen
during the talk. Similar is true for the root lattice D4 and we would like to know
if it is true for the Coxeter-Todd lattice in dimension 12 and the Barnes-Wall
lattice in dimension 16. For the packing-covering problem it currently remains
open whether or not E8 gives a local or even global minimum as conjectured by
Zong in [12].

Concluding we must say that the lattice covering problem is far from being
understood. This is even more the case for the sphere covering problem in general
without the restriction to lattices. The following are major open challenges:

• Prove that the bcc-lattice (A∗
3) gives a least dense covering in R

3.
• Prove that the Leech lattice gives a least dense (lattice) covering in R

24.
• Find a dimension d and a non-lattice covering that is less dense than any

lattice covering in its dimension.
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Counting Crossing-Free Configurations in the Plane

Micha Sharir

(joint work with Emo Welzl)

Let P be a set of n points in the plane in general position. We consider various
classes of crossing-free geometric graphs on P (i.e., they have P as their vertex
set, and edges are drawn as crossing-free straight segments), such as matchings,
spanning cycles, crossing-free partitions (these are partitions of the set, so that the
convex hulls of the individual parts are disjoint), and spanning trees. We obtain
improved upper bounds for the maximum possible number of graphs in each of
these families, as a function of n. Specifically, we show that the maximum number
of prefect matchings is at most 10.52n; the maximum number of partial match-
ings is at most 10.92n; the maximum number of crossing-free partitions is at most
12.92n; the maximum number of spanning cycles is at most 78.2n; and the max-
imum number of spanning trees is at most 296n. Unlike previous upper bounds,
all of which essentially depend on bounds for the number of triangulations of P ,
our approach directly establishes an upper bound on the number of matchings,
independently of any assumed triangulation, and then uses this bound to derive
all other mentioned upper bounds.
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Geometry in Additive Combinatorics

József Solymosi

One of the central problems in additive combinatorics is to describe the structure
of sets with small sumsets. The sumset of a set A is denoted by A + A, where

A + A = {a + b|a, b ∈ A}.
If the sumset is very small, |A + A| 6 C|A|, where C is a constant, then the
structure of A is similar to an arithmetic progression. Freiman’s theorem [3] says
that A is a c−dense subset of a d−dimensional generalized arithmetic progression,
where d and c depend on C only. (For the notations and details about Freiman’s
theorem we refer to Nathanson’s book [4].) In particular, one can show that A
contains long arithmetic progressions [1]. For larger but not very large sumsets,
when

|A| � |A + A| 6 |A|1+ε,

Freiman’s theorems gives no valuable information and it is not true in general, that
A would even contain an arithmetic progression of length three. On the other hand
one can show that A contains a special subset with a ”nice” additive structure.

Definition 1. We say that Bd is an affine cube of reals with dimension d, if there
are real numbers x0, x1, . . . , xd, such that

Bd =

{

x0 +
∑

i∈I

xi

∣
∣
∣
∣
I ⊂ [1, 2, . . . , d]

}

.

Affine cubes of integers were introduced by Hilbert [2], who proved that for any
partition of the integers into finitely many classes, one class will always contain
arbitrary large affine cubes of integers. His result was extended to various direc-
tions, the most famous are Schur’s theorem [5] and van der Waerden’s Theorem
[6]. Here we prove the following.

Theorem 1. For every d there is a δ > 0 and a threshold n0 = n0(d) such that
for any set of reals, A, if |A+A| 6 |A|1+δ and |A| > n0, then A contains an affine
cube with dimension d.

In the second part of the talk we will see more examples, how geometry can help
to visualize problems from number theory.
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Figure 1. If the sumset is small, then the Cartesian product,
A × A, can be covered by using only a few lines of slope −1.
Select one, which covers the most points of the Cartesian product.
Consider the points lying on this line and the smaller Cartesian
product defined by these points. Repeat the process, until the
most popular line with slope −1 contains only one point of the last
Cartesian product. Going back from this point along the nested
Cartesian products we get a binary tree. It is easy to check that
the projection of the tree onto the horizontal (or vertical) line
determines an affine cube in A.
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Rigid Components: Geometric Problems, Combinatorial Solutions

Ileana Streinu

The rigidity of bar-and-joint frameworks in dimension 2 and body-and-bar,
body-and-hinge frameworks in arbitrary dimensions is characterized generically by
graphs satisfying a certain sparsity condition (cf. well-known theorems of Laman
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[4], Lovasz and Yemini [5] and Recski [7], resp. Tay [11]). When such structures
are under-constrained, we are interested in detecting their maximal rigid substruc-
tures (rigid components) efficiently. Applications include understanding flexibility
of large molecules (such as proteins near the native state), computing rigid com-
ponents in pseudo-triangulation mechanisms and deciding when 3D polyhedra
constructed from flat rigid faces connected by some hinges are rigid or flexible. In
this last case, hinges are along the edges of the polyhedron, but some of them may
be broken.

The class of (multi)-graphs capturing the generic rigidity of these frameworks
can be extended in the most general way to a matroidal structure by the concept
of tight (k, l)-sparse graphs. A multi-graph (possibly, with loops) G on n vertices
is (k, l)-sparse, for fixed k and l, 0 6 l < 2k, if every subset of n′ 6 n vertices
spans at most kn′ − l edges. G is tight if, in addition, has exactly kn − l edges.
Special cases include k-arborescences (edge-disjoint unions of k spanning trees),
which are the tight (k, k)-sparse graphs by a theorem of Tutte [12] and Nash-
Williams [6], and their generalization to (k, l)-arborescences by Haas [2]: graphs
which become k-arborescences by the addition of any l edges (these are tight and
(k, k + l)-sparse).

In [8], we characterize (k, l)-sparse graphs via a family of simple, elegant and
efficient algorithms called the (k, l)-pebble games. In [9], we give a full analysis of
their O(n2) running time (including the necessary data structures). A (k, l)-pebble
game induces a special orientation of a tight (k, l)-sparse graph: every vertex has
out-degree at most k, and exactly l out-edges are missing from the total of kn
edges, which would be the count if all vertices had k-out-degree.

As additional applications, we use the pebble games for computing components
(maximal tight subgraphs) in sparse graphs, to obtain inductive (Henneberg) con-
structions, and, when l = k, edge-disjoint tree decompositions. Finally, we derive
an O(n2)-time pebble-game-based algorithm for computing a Henneberg sequence
of a Laman graph, which doesn’t rely on tree decompositions. This provides an
alternative to a recent algorithm of Bereg [1] for the same problem, and improves
from O(n3) to O(n2) an algorithm of Haas et al. [3] for embedding planar Laman
graphs as pseudo-triangulations.

A special case of the problem of finding rigid components has been considered
in [10]. In this case, the special geometry of the embedding makes possible a linear
time algorithm.
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Variants of the Crossing Number Problem

László A. Székely

1. Biplanar crossing numbers

We assume that the Reader is familiar with drawings of graphs and with crossing
numbers. We will denote the crossing number of the graph G by cr(G). The survey
papers [6], [8] or [12] contain the definitions not shown here.

Owens [5] introduced the biplanar crossing number of a graph G. A biplanar
drawing of a graph G means drawings of two subgraphs, G1 and G2, of G, on two
disjoint planes under the usual rules for drawings for crossing numbers, such that
G1 ∪ G2 = G. The biplanar crossing number cr2(G) is the minimum of cr(G1) +
cr(G2) over all biplanar drawings of G. Owens had motivation from electrical
engineering. One can naturally extend the definition to k-planar drawings and
k-planar crossing numbers of graphs. Czabarka, Sýkora, Székely and Vrťo in [2]
started the systematic study of the biplanar crossing number. They determined
cr2(K5,q) and made conjectures for the biplanar crossing number of several families
of complete bipartite graphs. However, there is no conjecture yet for the biplanar
crossing number of all complete bipartite graphs, i.e. a “biplanar Zarankiewicz
conjecture”. A surprising and so far unexplained phenomenon is that the exact
or conjectured biplanar crossing number of complete bipartite graphs with even
number of edges seems to be always realizable with isomorphic G1 and G2. (In
such cases one drawing suffices to produce to biplanar drawing, just labeling is
needed twice.)

Unfortunately, for the biplanar crossing number most of the powerful lower
bound techniques for crossing number, like bisection width and graph embedding,
fail. The counting method and lower bounds based on the number of edges, of
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course, work. However, we are not aware of any “structural” lower bound improv-
ing on them. The only step in this direction is Spencer’s [10] result on the biplanar
crossing number of random graphs.

In a sequel to [2], [11], we show using a randomized algorithm, that for all
graphs G,

(1) cr2(G) 6
3

8
cr(G).

We also point out that one cannot give a good upper bound for cr(G) in terms
of cr2(G), since there are graphs G of order n and size m, with crossing number
cr(G) = Θ(m2) (i.e. as large as possible) and biplanar crossing number cr2(G) =
Θ(m3/n2) (i.e. as small as possible), for any m = m(n), where m/n exceeds a
certain absolute constant. We do not know what is the smallest constant (in place
of 3/8), with which (1) is still true.

In [11] we use (1) to estimate the thickness of a graph G from above (roughly
speaking) by cr2(G).406.

2. An optimality criterion

I have found the following optimality criterion in [12] and [13]:
Let us be given a touching-free drawing D of the simple graph G, in which

any two edges cross at most once, and adjacent edges (edges with an endpoint in
common) do not cross. Let us associate with every edge e = {x, y} ∈ E(G) an
arbitrary vertex set Ae ⊆ V (G) \ {x, y}. If the edges e and f are non-adjacent,
then we define the parity of this edge pair as 0 or 1 according to

(2) par(e, f) = |e ∩ Af | + |f ∩ Ae| modulo 2.

If non-adjacent edges e, f cross in D, then we write e×D f , otherwise write e||Df .
Theorem. Using the notation above, the condition that for all choices of the sets
Ae the inequality

(3)
∑

par(e,f)=1
e×Df

1 6
∑

par(e,f)=1
e||Df

1

holds, implies that D realizes CR(G). Checking the condition with brute force
requires exponential time. Are there graphs for which such a criterion can be
verified with more theoretical tools? The Zarankiewicz’ drawing of the complete
bipartite graph may be a candidate. (Sergiu Norine has found an optimality
criterion for complete bipartite graphs, which seems to be different.)

3. Outerplanar crossing numbers

The concept of the outerplanar (in alternative terminology, convex or one-page)
crossing number was pioneered by Paul Kainen. The convex crossing number
problem requires the placement of the vertices on a circle and edges are drawn in
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straight line segments. Shahrokhi, Sýkora, Székely, and Vrťo [9] showed that for
the outerplanar crossing number CR∗(G) we have

(4) CR∗(G) = O([CR(G) +
∑

v

d2
v] log n).

Since the crossing number is less or equal the rectilinear crossing number, and
the rectilinear crossing number is less or equal the outerplanar crossing number,
we have that notwithstanding the examples of Bienstock and Dean [1], in “non-
degenerate” cases there is at most a log n times multiplicative gap between the
crossing number and the rectilinear crossing number. It is worth noting that the
estimate in (4) is tight for an n×n grid [9]. This example is kind of degenerate since
the error term dominates the RHS. However, many examples of dense graphs have
been found where CR∗(G) = Θ(CR(G) log n) in a follow-up paper of Czabarka,
Sýkora, Székely and Vrťo, [3].

This result is interesting for the following reason. When estimating variants
of the crossing number, sometimes logarithmic factors creep in and we do not
know if those factors must be there or just results of some technical inconvenience.
A good example of it is the bisection width lower bound for the pair crossing
number, Kolman and Matoušek [4]. We exhibited in [3] a logarithmic factor which
is needed.

References

[1] D. Bienstock, N. Dean, Bounds for rectilinear crossing numbers, J. Graph Theory 17 (1991),
333–348.
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The unit-distance problem for convex sets

Pavel Valtr

In 1946 Erdős asked what is the minimum number, u(n), of unit segments (unit
distances) determined by a set of n points in the euclidean plane. The problem
motivated a lot of research, e.g. see [1] for a survey. Currently the best known
bounds on u(n) are:

Ω(n1+c/ log log n) ≤ u(n) ≤ O(n4/3).

The lower bound was proved already in the original paper of Erdős [2]. It is
attained by a properly scaled square lattice b√nc × b√nc and it is conjectured
to be essentially best possible. The original upper bound O(n3/2) of Erdős was
improved several times (e.g. see [1] for a survey). There are several proofs of the
current upper bound, the simplest and most elegant one is due to Székely [4].

In the talk we consider the unit-distance problem for translates of a convex
body. The distance of two non-empty closed sets C, D ⊂ Rd is defined by

d(C, D) = min
c∈C
d∈D

||c − d||.

Given a family of closed sets C1, . . . , Cn ⊂ Rd, let h(C1, . . . , Cn) denote the number
of pairs {Ci, Cj} with unit mutual distance, i.e. with d(Ci, Cj) = 1. Let td(n) be
the maximum h(C1, . . . , Cn), where we maximize over all families C1, . . . , Cn ⊂ Rd

of n pairwise disjoint translates of the same convex compact set in Rd. As noted
in [3],

ud(n) ≤ td(n),

where ud(n) is the d-dimensional version of the above unit-distance function u(n).

Theorem 1 (Erdős and Pach [3]). t2(n) = O(n4/3).

Conjecture 1 (Erdős and Pach [3]). There is an ε > 0 such that t2(n) = Ω(n1+ε).

In the talk we outline a construction verifying Conjecture 1. In fact, the as-
ymptotic bound in Theorem 1 is best possible:

Theorem 2.

t2(n) = Θ(n4/3).

Moreover, the translates in our construction are centrally symmetric. Thus,
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Theorem 3.
tsymm
2 (n) = Θ(n4/3),

where tsymm
d (n) is defined similarly as td(n), except that now the translates are

also required to be centrally symmetric.
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Projected polytopes, Gale diagrams, and polyhedral surfaces

Günter M. Ziegler

(joint work with Raman Sanyal and Thilo Schröder)

We report about a new construction scheme that yields interesting 4-dimensional
polytopes and polyhedral surfaces. The basic pattern is as follows:
1. Fix a combinatorial type of a high-dimensional simple polytope whose 2-

skeleton contains a high-genus surface that uses all the vertices.
2. Construct explicit matrices for a special “deformed” realization of the polytope.
3. Project it to R

4 such that all the faces of the surface realized in the boundary
complex “survive” the projection.

4. Determine the combinatorics (in particular, the f -vector) of the resulting 4-
polytope, in terms of Gale transforms.

5. Construct a Schlegel diagram to obtain a polyhedral surface realized in R
3.

In the lecture, we outlined two instances of this program. The first one concerns
the “projected products of polygons” presented in [7], whose construction has been
simplified and further analyzed by the current authors:
• For n ≥ 4 even and r ≥ 2, the product of n-gons (Cn)r ⊂ R

2r is a simple
2r-dimensional polytope with nr vertices and nr facets.

• A “deformed product realization” P 2r
n of (Cn)r is constructed in terms of ex-

plicit, lower block-triangular matrices A2r
n ∈ R

nr×2r. (The polytopes P 2r
n may

be seen as iterated rank 2 deformed products; our construction goes beyond
the “rank 1 deformed products” as discussed by Amenta & Ziegler [1].)

• Projection of P 2r
n to the last four coordinates yields 4-dimensional polytopes

π4(P
2r
n ). All the vertices and edges of P 2r

n , as well as all the n-gon 2-faces, are
“strictly preserved” by the projection.

• The construction of suitable matrices A2r
n , as well as the combinatorial de-

scription of the resulting 4-polytopes π4(P
2r
n ), is achieved in terms of Gale

diagrams: The rows of matrices A2r
n are obtained by perturbation of the rows

of a reduced matrix Ā2r
n ∈ R

2r×2r. Deletion of the last four columns of Ā2r
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results in a matrix ¯̄A2r
n ∈ R

2r×(2r−4) that is the Gale diagram of a pyramid
over an (2r − 1)-gon, given by a matrix G ∈ R

2r×3. The rows of A2r
n and their

positive dependencies, and thus the faces of π4(P
2r
n ), can be analyzed in terms

of lexicographic triangulations of this pyramid.
• The 4-polytopes π4(P

2r
n ) have unusual f -vectors: For n, r → ∞ the fatness

of these polytopes approaches 9. (This is the largest value currently known.
See [5] [6] for “fatness” and its role in the f -vector problem for 4-polytopes.)

• For n = 4, π4(P
2r
n ) is a neighborly cubical polytope, a cubical 4-polytope with

the graph of the 2r-cube. (These were first obtained by Joswig & Ziegler [2].)
• The Schlegel diagrams of the polytopes π4(P

2r
n ) yield geometric realizations

of equivelar polyhedral surfaces of type (4, 2r) in R
3, all of whose faces are

quadrilaterals and all of whose vertices have degree 2r. Thus we have a new
construction for a class of surfaces of “unusually high genus” g ∼ N log N on
N = nr vertices, as first obtained by McMullen, Schulz & Wills [4].

A second interesting instance for our construction scheme is as follows:
• For n ≥ 3, the totally wedged polytope W n+2 is obtained from an n-gon by

forming n successive wedges over facets that correspond to the edges of the
original polygon. This is a simple (n + 2)-dimensional polytope with 2n facets.
(It is dual to a wreath product I o Cn, as described by Joswig & Lutz [3].)

• The boundary complex of W n+2 contains an equivelar surface of type (n, 4)
consisting of n-gons, where each vertex has degree 4. For n = 2r this surface
is combinatorially dual to the (4, 2r)-surfaces discussed above.

• We describe a special “deformed” realization Qn+2 of W n+2 in R
n+2 in terms

of explicit matrices, designed such that all vertices and all the n-gon 2-faces
“survive” the projection π4 : R

n+2 → R
4 to the last four coordinates.

• The combinatorial structure of π4(Q
n+2) is again analyzed in terms of Gale

transforms.
• Construction of a Schlegel diagram for π4(Q

n+2) yields equivelar polyhedral
surfaces of type (n, 4) in R

3. (This is another family of surfaces of high genus,
first constructed by McMullen, Schulz & Wills [4].)
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What is known about unit cubes

Chuanming Zong

Unit cubes, from any point of view, are among the simplest and the most im-
portant objects in n-dimensional Euclidean space. In fact, they are not simple
at all. On the one hand, the known results about them have been achieved by
employing complicated machineries from Number Theory, Group Theory, Proba-
bility Theory, Matrix Theory, Hyperbolic Geometry, Combinatorics and etc.; On
the other hand, the answers for many basic problems about them are still missing.
In addition, the geometry of unit cubes does serve as a meeting point for several
applied subjects such as Design Theory, Coding Theory and etc. The purpose of
this talk is to figure out what is known about the unit cubes.

For convenience, let En denote the n-dimensional Euclidean space, let In denote
the unit cube {x ∈ En : |xi| ≤ 1

2} and let In denote the unit cube {x ∈ En : 0 ≤
xi ≤ 1}.

In this talk, we will discuss three problems: What is the maximum (or minimum)
area of a k-dimensional cross section of In? What is the maximum (or minimum)
area of a k-dimensional projection of In? What is the maximum volume γ(n, k)
of a k-dimensional simplex inscribed in an n-dimensional unit cube? and three
conjectures: Minkowski’s conjecture, Furtwängler’s conjecture, and Keller’s con-
jecture. Especially, we will emphasize the machineries from Probability Measures,
Brascamp-Lieb Inequality, Convex Geometry, Hyperbolic Geometry, Group The-
ory, and Graph Theory used to attack the problems and conjectures.

As examples, let us mention a couple of the main results:

Theorem 1. For any k-dimensional hyperplane Hk which contains the origin we
have

1 ≤ vk(In ∩ Hk) ≤ min
{(

n
k

) k

2 , 2
n−k

2

}

.

Theorem 2.

γ(n, k) ≤







1
k!2k

√
(k+1)k+1nk

kk if k is odd,

1
k!2k

√
(k+2)knk

(k+1)k−1 if k is even.

Theorem 3. There is a k-fold lattice tiling In + Λ of En which has no twin if
and only if

1. n = 4 and k is a multiple of a square of an
odd prime.

2. n = 5 and k = 3 or k ≥ 5.
3. n ≥ 6 and k ≥ 2.

Theorem 4. When n ≤ 6, Keller’s conjecture is right; When n ≥ 8, Keller’s
conjecture is false.
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