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of Algebraic Cobordism due to Marc Levine and Fabien Morel through the
lines of their original articles:
Inspired by the work of Quillen on complex cobordism, one first introduces
the notion of oriented cohomology theory on the category of smooth vari-
eties over a field k. Grothendieck’s method allows one to extend the theory

of Chern classes to such theories. When char(k) = 0, one proves the exis-
tence of a universal oriented cohomology theory X → Ω∗(X). Localisation
and homotopy invariance are then proved for this universal theory. For any
field k of characteristic 0 one can prove for algebraic cobordism the analogue
of a theorem of Quillen on complex cobordism: the cobordism ring of the
ground field is the Lazard ring L and for any smooth k-variety X, the alge-
braic cobordism ring Ω∗(X) is generated, as an L-module, by elements of non
negative degree. This implies Rost’s conjectured degree formula. One also
gives a relation between the Chow ring, the K0 of a smooth k-variety X and
Ω∗(X). The technical construction of pullbacks is the subject of two talks.
At the end one presents the state of advances on the conjectural isomorphism
between Levine-Morel construction of algebraic cobordism and the ”homo-
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Thom spectrum in the Morel-Voevodsky A1-stable homotopy category.
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Introduction by the Organisers

Over the years, many different types and flavors of cohomology theories for alge-
braic varieties have been constructed. Theories like étale cohomology or de Rham
cohomology provide algebraic versions of the topological theory of singular co-
homology. The Chow ring and algebraic K0 are other (partial) examples, more
directly tied to algebraic geometry.

The partial theory Kalg
0 was extended to a full theory with the advent of

Quillen’s higher algebraic K-theory. It took considerably longer for the Chow
ring to be extended to motivic cohomology. In the process of doing so, Voevodsky
developed his category of motives, and this construction was put in a more general
setting with the development by Morel-Voevodskyof of A1 homotopy theory. This
enabled a systematic construction of cohomology theories on algebraic varieties,
with algebraic K-theory and motivic cohomology being only two fundamental ex-
amples. These two cohomology theories have in common the existence of a good
theory of push-forward maps for projective morphisms. Not all cohomology theo-
ries have this structure, those that do are called oriented. In the Morel-Voevodsky
stable homotopy category, the universal oriented theory is represented by the P1-
spectrum MG`, an algebraic version of the classical Thom spectrum MU . The
corresponding cohomology theory MG`∗,∗ is called higher algebraic cobordism.

In an attempt to better understand the theory MG`∗,∗, Levine and Morel con-
structed a theory of algebraic cobordism Ω∗. This is (conjecturally) related to
MG`∗,∗ as the classical Chow ring CH∗ is to motivic cohomology and like CH∗,
Ω∗ has a purely algebro-geometric description. In addition to giving some insight
into MG`∗,∗, Ω∗ gives a simultaneous presentation of both CH∗ and K0, exhibit-
ing K0 as a deformation of CH∗. Ω∗ has also been used to give conceptually
simple proofs of various ”degree formulas” first formulated by Rost. These degree
formulas have been used in the study of Pfister quadrics and norm varieties, prop-
erties of which are used in the proofs of the Milnor conjecture and the Bloch-Kato
conjecture.

In this workshop, we describe aspects of the topological theory of complex
cobordism which are important for algebraic cobordism (Lectures 1-3) and give
the construction of Ω∗ and proofs of its fundamental properties (Lectures 4-7). In
lectures 8-11, we show how K0 and CH∗ are described by Ω∗, how Ω∗ recovers the
universal formal group law, give the proof the generalized degree formula for Ω∗

and use this to proof the degree formula for the Segre class. Additional applications
to Steenrod operations, further degree formulas and the use of these in the study
of quadrics and other varietes is given in lectures 12 and 13. Lectures 14 and 15
concern the construction of funtorial pull-backs in algebraic cobordism. The two
concluding lectures (16 and 17) give a quick sketch of the Morel-Voevodsky A1

stable homotopy category and describe what we know about MG` and its relation
to motivic cohomology and Ω∗.

The workshop Algebraic Cobordism,organised by Marc Levin (Boston) and Fa-
bien Morel (München) was held April 4th–April 8th, 2005. This meeting was well
attended with 55 participants.
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Abstracts

1. Introduction to Classical Cobordism

Alexander Nenashev

The objective of this lecture is to remind the audience of the main definitions,
tools, methods, and results of the cobordism theory of topological manifolds. We
consider in parallel three cases: smooth (C∞) manifolds with no extra structure
(the non-oriented case), with orientation, and with quasi-complex structure (see
[3, Ch.12] for comments). These will be denoted by (i), (ii), (iii) or by using the
respective group notation: O, SO, U ; the same applies to non-oriented, oriented,
and complex vector bundles. The main reference is [1].

1. Definition of the cobordism ring. Elementary computations. In each
of (i-iii), consider the set of diffeomorphism classes of closed manifolds of dimension
n with the structure in question. Call two such manifolds M and M ′ cobordant if
there exists an (n + 1)-dimensional compact N , endowed with a structure of the
same type, such that dN ∼= M ′q M̄ , where the bar refers to the reverse structure.
The set of cobordism classes, ΩO

n /ΩSO
n /ΩU

n respectively, becomes an abelian group
with the addition [M ] + [M ′] = [M qM ′] and −[M ] = [M̄ ]. Direct product of
closed manifolds makes Ωxxx

∗ = ⊕n≥0Ω
xxx
n a commutative ring with 1 = [pt]. We

obviously have:
(i) ΩO

0 = Z/2 (every element of ΩO
n is of order two since M = M̄ in this case,

whence 2[M ] = [M q M̄ ], which bounds the cylinder M × I), ΩO
1 = 0 since the

circle bounds, ΩO
2 = Z/2 generated by the Klein surface which does not bound

anything three-dimensional.
(ii) ΩSO

0 = Z (an oriented point is a point endowed with a plus or minus), ΩSO
1 = 0

since the circle bounds an oriented two-dimensional manifold, e.g. a disk (observe
that saying that S1 bounds a Moebius band proves ΩO

1 = 0 but does not work
here), ΩSO

2 = 0 since every closed oriented surface (a sphere with handles) bounds
an oriented 3-dimensional manifold; it is known but not elementary that ΩSO

3 = 0.
(iii) Here we only mention the obvious fact that ΩU

0 = Z.

2. Classifying spaces / Grassmannians. Let Gn(Rn+k) (resp. G̃n(Rn+k),
Gn(Cn+k)) denote the Grassmannian whose points are identified with the n-planes
in Rn+k (resp. oriented n-planes in Rn+k, complex n-planes in Cn+k), and let

Gn = colim Gn(Rn+k) (resp. G̃n, GC
n) denote the (resp. oriented, complex) infi-

nite Grassmannian of n-planes. These are also denoted BO(n), BSO(n), BU(n),
respectively. Denote γn, γ̃n, γn

C the canonical vector n-bundle on the correspond-
ing infinite Grassmannian, where n refers to the complex dimension in the latter
case.

Main Fact. For any paracompact space B, there is a one-to-one correspondence
(

homotopy classes
of maps B → Gn

)
↔

(
isomorphism classes of vector

bundles of rank n on B

)
[f : B → Gn] 7→ [f∗γn] ,
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and the same for oriented (resp. complex) vector bundles of rank n and maps to
BSO(n) (resp. BU(n)). For this reason BO(n) (resp. BSO(n), BU(n)) is referred
to as the classifying space for vector bundles (resp. oriented, complex) of rank n.

3. Characteristic classes. (i) To a non-oriented vector bundle ξ of rank n over
a paracompact base B one assigns its Stiefel-Whitney classes wi(ξ) ∈ H i(B; Z/2),
0 ≤ i ≤ n.
(ii) To a complex vector bundle ω/B of (complex) rank n one assigns its Chern
classes ci(ω) ∈ H2i(B; Z), 0 ≤ i ≤ n; cn(ω) = e(ωR), the Euler class of ω consid-
ered as a real oriented bundle.
(iii) To a real ξ/B of rank n one also assigns its Pontrjagin classes defined as
pi(ξ) = (−1)ic2i(ξ ⊗ C) ∈ H4i(B; Z), 0 ≤ i ≤ [n/2]. Though these are defined for
any real ξ, they are actually used for orientedbundles/cobordism.
The characteristic classes of each of the three types satisfy standard properties
including the product formula, e.g. c(ω ⊕ ω′) = c(ω)c(ω′), where c refers to the
total Chern class. (For pi(ξ) the formula is only true modulo 2-torsion). See
[1, Chs.4,14,15] for details. Characteristic classes are used to define invariants of
cobordism classes of manifolds known as

4. Characteristic numbers. Let I denote a partition of n, i.e., an unordered
representation n = i1 + . . . + ik, where all is ≥ 1 are integers.
(i) For a closed non-oriented manifold M of dimension n, let τM denote its tangent
bundle and wI (τM ) = wi1(τM )·. . .·wik

(τM ) ∈ Hn(M ; Z/2). The I-Stiefel-Whitney
number of M is wI (M) = 〈wI (τM ), [M ]〉 ∈ Z/2, where [M ] ∈ Hn(M ; Z/2) is the
fundamental class of M and 〈 , 〉 is the Kroneker index (cap product).
(ii) For an oriented M of dimension 4n, let pI(M) = 〈pI (τM ), [M ]〉 ∈ Z, the I-
Pontrjagin number of M . Here pI(τM ) ∈ H4n(M ; Z), [M ] ∈ H4n(M ; Z).
(iii) For a (true) complex manifold K of complex dimension n, let cI(K) =
〈cI(τK), [K]〉 ∈ Z. One has cn(K) = e(K), the Euler characteristics of K.
The following fact, due to Pontrjagin, admits a simple proof: if M and M ′ are
cobordant closed manifolds of dimension n, then wI (M) = wI (M

′) for all par-
titions I of n; see [1, Thm.4.9.]. The same is true in (ii-iii) with appropriate
changes.

5. Thom spaces/spectra. ([1, Ch.18]) For a vector bundle ξ with a Euclidean
metric, define the Thom space Th(ξ) = E(ξ)/A, where E(ξ) is the total space
of ξ and A = {v ∈ E | |v| ≥ 1}; t0 = A/A denotes the infinite point of Th(ξ).
There is an expilcit construction that assigns to every oriented vector bundle ξ
of rank k over a smooth oriented manifold B and every continuous f : Sn+k →
Th(ξ), a cobordism class in ΩSO

n (move f to make it transverse to the zero section
B and then take the intersection f(Sn+k) ∩ B). This yields a homomorphism
πn+k(Th(ξ), t0)→ ΩSO

n . Considering it for the canonical oriented bundle γ̃k over

G̃k, we state the following

Fundamental Theorem (Thom). For k > n + 1, πn+k(Th(γ̃k), t0) → ΩSO
n is

an isomorphism.
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One can define a spectrum MSO out of the spaces MSO(k) = Th(γ̃k); in the
non-oriented and complex cases we get the spectra MO and MU out of Th(γk)
and Th(γk

C). The above theorem holds in all the three cases and can be stated
shortly as ΩO

∗
∼= π∗(MO), ΩSO

∗
∼= π∗(MSO), ΩU

∗
∼= π∗(MU).

6. Computation of cobordism rings. All the three cobordism rings in question
are isomorphic to polynomial rings as follows:
(i) ΩO

∗
∼= Z/2[x2, x4, x5, . . .], where we have one variable xn in each degree n 6=

2r − 1. It is known that we can take x2k = [P2k
R ], while the odd degree generators

are given by more sophisticated varieties. In elementary terms: [M ] = [M ′] in ΩO
n

if and only if wI(M) = wI(M
′) for all partitions I of n (the ‘if’ part is hard and

due to Thom).
(ii) ΩSO

∗ /(2 − torsion) ∼= Z[x4, x8, x12, . . .]; [M ] = [M ′] in ΩSO
n if and only if

wI(M) = wI (M
′) and pI(M) = pI(M

′) for all partitions I of n ([5]).
(iii) ΩU

∗
∼= Z[x2, x4, x6, . . .], where one can put x2k = [Pk

C] if p = k + 1 is prime.
Two complex manifolds are cobordant if and only if their Chern numbers coincide.

7. Divisibility properties of characteristic numbers. (i)For a smooth com-
plex algebraic curve K of genus g we have c1(K) = e(K) = 2− 2g, hence c1(K) is
divisible by 2 for any such K.
If K is a non-singular algebraic hypersurface in Pn+1

C of degree d, then for its Segre
number sn we have sn(K) = d(n + 2− dn).(Recall that sn is in the same relation
to c1, . . . , cn as the polynomial tn1 + . . . + tnr to the symmetric functions σ1, . . . , σn

in the variables ti.) In particular, if Q is a smooth n-dimensional quadric, then
sn(Q) = 2(n + 2 − 2n). If in addition n = 2r − 1, then sn(Q) = 2(2r + 1 − 2n);
the fact that this number is divisible by two but not by four was important in
Voevodsky’s proof of Milnor conjecture.
(ii) Arithmetical properties of Pontrjagin numbers can be deduced from Hirze-
bruch’s signature formula. If M is a closed oriented manifold of dimension 4, then
its signature (the signature of the intersection index form on the middle homology)
is equal to p1(M)/3, which is an integer. We conclude that p1(M) is divisible by
3 for any 4-dimensional M .
For M of dimension 8 the signature is given by (7p2(M)− p2

1(M))/45, from which
we deduce that 7p2(M)− p2

1(M) is divisible by 45 for any 8-dimensional M . See
[1, Ch. 19].

References
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2. Quillen’s work on MU

Bernhard Hanke

The geometrically constructed unitary bordism functor defines a (generalized) ho-
mology theory on the category of CW-complexes. By way of the Pontrjagin-Thom
construction, this homology theory is represented by the unitary bordism spec-
trum MU . The associated cohomology theory, if evaluated on smooth manifolds,
also has a geometric description, due to Quillen. This is based on the existence
of push forward maps MU∗(X)→MU∗−d(Y ) for complex oriented proper maps
X → Y of relative dimension d between smooth manifolds. The cohomology the-
ory MU∗(−) is complex oriented (in the sense of Adams): There is a distinguished

class in M̃U
2
(CP∞) pulling back to the standard generator of M̃U

2
(CP 1). This

classis considered as a universal Euler class (alias first Chern class) for line bun-
dles. Using it, a theory of higher Chern classes can be developped along the usual
lines. Other examples of complex oriented theories are ordinary cohomology and
complex K-theory. However, MU∗(−) turns out to be the universal such theory:

Theorem 1. Let h∗ be an oriented commutative multiplicative cohomology theory.
Then there is a unique natural transformation

MU∗(−)→ h∗(−)

preserving Chern classes.

In contrast to the familiar formula

c(E ⊕ F ) = c(E) ∪ c(F )

calculating the total Chern class (in some complex oriented theory) of a Whitney
sum of two vector bundles, there is no such simple relation for the tensor product
of two bundles. However, based on the computation of MU ∗(CP∞ × CP∞) as
a power series ring over MU∗ in two indeterminates, Quillen observed that the
expression for the MU∗-theoretic first Chern class c1(L1 ⊗ L2) (where Li is the
tautological bundle on CP∞ pulled back via either of the two projections) leads
to a formal group law over MU∗. There is a universal graded formal group law,
supported by the Lazard ring L∗, and hence, we obtain an induced ring map

δ : L∗ →MU∗

carrying the universal formal group law to the one over MU ∗ constructed before.
The following is one of the main results in Quillen’s paper.

Theorem 2. The map δ is a ring isomorphism.

Surjectivity of this map is proven by a clever use of MU ∗-Steenrod operations
and leads to the conclusion that MU∗ is generatated as a ring by the coefficients
occuring in the formal group law over MU ∗. For showing injectivity, Quillen
considers the composition of δ with the Boardman (=Hurewicz) map

β : MU∗ → Z[t1, t2, . . .]
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(deg ti = −2i) and shows that the inverse of the map defined by the power series∑∞
i=0 tiT

i+1 is a logarithm of the image of the universal group law under β ◦ δ.
Theorem 2 and the calculation of L∗ (due to Lazard) imply that there is a ring
isomorphism

MU∗ ∼= Z[x1, x2, x3, . . .]

where deg xi = −2i.
Analogous results exist for unoriented bordism MO∗. For instance, we have

Theorem 3. MO∗ is a polynomial ring over Z/2 in indeterminates xi, where i
runs through all positive integers not of the form 2k − 1 and the degree of xi is
equal to −i.

References

[1] D.Quillen, Elementary proofs of some results in cobordism theory using Stennrod operations,
Advances in Mathematics 7 (1971), 29–59.

3. Oriented cohomology theories over a field.

Serge Yagunov

The purpose of this talk was to “transplant” topological definitions to the context
of algebraic geometry and give several motivating examples playing important
roles in the sequel.

1. Definition

Fix a base-field k and denote by Sch/k the category of separated schemes of
finite type over k and by Sm/k the full subcategory of smooth quasi-projective
k-schemes. Let R∗ be a category of commutative graded rings with unit. (We do
not assume the rings to be necessary graded commutative.)
A functor A : (Sm/k)op → R∗ is called additive if A(∅) = 0 and A(X q Y ) =
A(X)×A(Y ). We define oriented cohomology theories following Quillen’s paper [6]
( see also Levine–Morel [3]).

Definition 1. An oriented cohomology theory on Sm/k is given by:

(1) An additive functor A∗ : (Sm/k)op → R∗;
(2) For each projective morphism f : Y → X in Sm/k of relative dimen-

sion d, a homomorphism of graded A∗(X)-modules f∗ : A∗(Y )→ A∗+d(X)
called push-forward homomorphism or transfer.

A morphism of oriented cohomology theories is a natural transformation of func-
tors (Sm/k)op → R∗ which commutes with transfer maps.
These data should satisfy the axioms below.



890 Oberwolfach Report 16/2005

Axiom 1 (Functoriality). (idX)∗ = idA∗(X); for projective morphisms Z
g
→ Y

f
→

X in Sm/k, one has: (f ◦ g)∗ = f∗ ◦ g∗ : A∗(Z)→ A∗+d+e(X), where d and e are
relative dimensions of the morphisms f and g, respectively.

Axiom 2 (Transversal base-change). Let f and g be transverse morphisms and
the square

W
g′

//

f ′

��

Y

f

��
X g

// Z

is Cartesian in the category Sm/k.
Then g∗f∗ = f ′

∗(g
′)∗, provided that f (and therefore f ′) is projective.

Axiom 3 (Extended homotopy property). Let E → X be a vector bundle over
X ∈ Sm/k and let p : V → X be an E-torsor. Then p∗ : A∗(X) → A∗(V ) is an
isomorphism.

Axiom 4 (Projective bundle formula). Let E → X be a rank n vector bundle over
X ∈ Sm/k and P(E) = Proj(Symm∗(E)) be its projectivization. Let also s denote
the zero-section of the canonical line bundle over P(E) and 1 ∈ A0(P(E)) be the
multiplicative unit element. Set ξ = s∗s∗(1) ∈ A1(P(E)). Then A∗(P(E)) is a free
A∗(X)-module with basis (1, ξ, ξ2, . . . , ξn−1).

Corollary 1. If E is a trivial vector bundle then ξn = 0.

The projective bundle formula enables us to define, following Grothendieck [2],
Chern classes as the coefficients of the equation:

ξn − c1(E)ξn−1 + . . . + (−1)ncn(E) = 0.

It is often useful to consider the Chern polynomial:

ct(E) = tn − c1(E)tn−1 + . . . (−1)ncn(E).

The Chern classes satisfy the following natural properties:
1. Let L → X be a line bundle. Then c1(L) = s∗s∗(1) ∈ A1(X), where s : X → L
is the zero-section.
2. Functoriality. If E ∼= E′ are isomorphic vector bundles over X then ct(E) =
ct(E

′); for any morphism f : Y → X and any vector bundle E over X , one has:
f∗ct(E) = ct(f

∗(E)).
3. Additivity formula. For an exact sequence 0 → E ′′ → E → E′ → 0 of vector
bundles over X , one has: ct(E) = ct(E

′′)ct(E
′).

4. Vanishing property. cm(E) = 0 for m > rk(E).
These four properties uniquely define Chern classes.
In the opposite way (see [4]) starting from a theory supplied with an appropriate
“first Chern class structure”, it is possible to (uniquely) recover transfer structure
and check all the axioms above. Therefore, in the examples below we just sketch
the constructions of the first Chern classes and leave checking all the axioms as
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an exercise for the reader.
Following Quilen’s approach [6] (and unlike the axiomatic of Grothendieck) we do
not assume that c1(L⊗M) = c1(L)+c1(M). Similarly to the topological case but
with more technicalities [4], one can show that c1(L ⊗M) = Fω(c1(L), c1(M))
where Fω(U, V ) is a formal group law corresponding to the choice of an orien-
tation for the theory A. (Different orientations yield to automorphisms of the
corresponding formal group.)
All appearing formal power series actually become polynomials due to the follow-
ing fact:

Theorem 1. Chern classes are nilpotent.

2. Examples

1. Chow groups. We set Ap(X) = CHp(X). This is an orientable co-
homology theory with additive formal group Fω(U, V ) = U + V (such theories
called ordinary). The canonical choice of an orientation is given by the relation
c1(L(D)) = [D] ∈ CH1(X), where L(D) denotes the line bundle corresponding to
the divisor D. This theory is universal additive (at least in characteristic 0) in the
sense that for any theory A∗ with additive formal group law there exists a unique
morphism of oriented theories ΘA

CH : CH∗ → A∗.
2. Another example of an ordinary cohomology theory is the even part of étale
cohomology: Ap(X) = H2p

ét (X, µ⊗p
n ), where (n, Char k) = 1. For a line-bundle

L ∈ Pic(X) ∼= H1
ét(X, Gm) one sets: c1(L) = ∂(L) ∈ H2

ét(X, µn), where ∂ is the
differential corresponding to the short exact sequence of sheaves:

0→ µn → Gm
×n
→ Gm → 0.

3. For every smooth variety X ∈ Sm/k consider the group K0(X). Formally
adding the invertible Bott element β of degree -1 one gets the orientable coho-
mology theory with multiplicative group law Fω(U, V ) = U + V − βUV . To
obtain this formal group law one chooses the first Chern class for a line-bundle
L as c1(L) = (1 − [L∨])β−1. We call a theory with the multiplicative group law
U +V −bUV periodic if b is a unit in A∗(k). The theory K0[β, β−1] is the universal
multiplicative periodic theory.
4. Algebraic Cobordism. For this example we shall assume that our functor
A∗ is defined on the much wider category of T -spectra. Set Ap(X) = MG`2p,p(X),
where the algebraic cobordism theory MG` is represented by the T -spectrum MG`
(see [7]). The identical morphism of the spectrum MG` being restricted to its term
MG`(1) determines the morphism Σ∞

T MG`(1) → T ∧MG` of the T -suspension
spectrum of MG`(1) to the shifted spectrum of algebraic cobordism. This gives us
the canonical orienting element ẽ ∈MG`2,1(MG`(1)). Since the space MG`(1) is
the Thom space of the canonical line bundle L∞ over the infinite projective space
P∞, one has the morphisms:

MG`(1) ∼= Th(L∞)
π∞←− L∞

s
←− P∞,
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where s is the zero-section. We set e = s∗π∗
∞(ẽ) ∈MG`2,1(P∞). In order to check

that the orienting element e induces first Chern classes, it is sufficient to verify
that e restricted to P1 coincides (up to the sign) to σ(1), i.e. the suspension of
1 in the group MG`2,1(P1). The computation in [5] shows that e = −σ(1). This
construction of the Chern classes is in parallel to the topological one, given by
Conner and Floyd [1].
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4. Survey of basic properties of algebraic cobordism

Jörg Schürmann

Let Schk be the category of seperated schemes of finite type over the base field
k, with Smk the full subcategory of smooth schemes. Smooth morphism are by
definition quasi-projective. The following results are due to Levine and Morel
[2, 3].
An oriented Borel-Moore (weak) Homology theory A∗ on Schk or Smk associates
to X a graded group A∗(X), together with:

(1) A functorial pushdown f∗ : A∗(·) → A∗(·) for a projective morphism f ,
which is additive.

(2) A functorial pullback g∗ : A∗(·) → A∗+d(·) for a lci.- (or a smooth) mor-
phism g of relative dimension d.

(3) An exterior product × : Ai(·)×Aj(·)→ Ai+j(·× ·), which is commutative,
associative and with unit 1k ∈ A0(k).

(4) A base change property g∗f∗ = f ′
∗g

′∗ for transversal (i.e. tor-independent)
cartesian squares.

(5) f∗ and g∗ commute with exterior products.

Example 1. An universal example is given by the group M+
∗ (X) associated to

the semigroup of isomorphism classes of projective morphism f : Y → X with Y
smooth. Here addition is given by the disjoint union, with the grading induced by
the dimension of Y , and 1k = [idk]. These groups have an obvious projective
pushdown, smooth pullback and exterior product.
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Let us continue with the defining properties of an OBM(W )H :

(6) Extended homotopy property.
(7) Projective bundle formula. Here the first Chern class operator c̃1(L) of a

line bundle L→ X is defined in the case
OBMH: by c̃1(L) = i∗i∗, with i the zero section. For an OBMH on

Schk one assumes also a technical axiom CD.
OBMWH: by an additional datum, with c̃1(L) : A∗(X) → A∗−1(X).

It should only depend on the isomorphism class of L, with c̃1(·) com-
muting with each other and with pushdown, pullback and exterior
products. Finally c̃1(·) has to satisfy the axioms (Sect) and (FGL).

As the notion suggests, OBMH ⇒ OBMWH , and an OBM(W )H on Schk

induces one on Smk by restriction. Finally an OBMH on Smk is the same
as an oriented cohomology theory in the sense of the talk before. Here one uses
A∗(X) = Ad−∗(X), c̃1(L) = c1(L)· and c1(L) = c̃1(L)(1X) for X of pure dimension
d (together with additivity and 1X := const∗1k).

Example 2. G0(·)[β, β−1], with deg(β) = 1 and G0(·) the Grothendieck group
of coherent sheaves, and Chow groups CH∗(·) are OBMH on Schk. A complex
oriented (co)homology theory in topology induces an OBMWH on SchC, where
one uses the corresponding Borel-Moore homology in even degrees.

¿From now on we assume char(k) = 0, since resolution of singularities is used.

Theorem 1. There exists an universal OBMH on Schk, called algebraic cob-
dordism Ω∗(·) such that Ω∗(·) is also an universal OBM(W )H on Schk and on
Smk.

Moreover, its construction implies the

Theorem 2. (1) M+
∗ (X)→ Ω∗(X) is surjective for all schemes X.

(2) For i : Z ↪→ X a closed embedding with open complement j : U = X\Z →
X one has an exact localization sequence

Ω∗(Z)
i∗−→Ω∗(X)

j∗

−→Ω∗(U) −→ 0 .

(3) The ring homomorphism from the Lazard ring φΩ : L∗ = L−∗ → Ω−∗(k) =
Ω∗(k) classifying the formal group law FΩ of Ω∗(·) is an isomorphism.

The first two properties reflect the algebraic nature of Ω∗(·) (they also hold for
G0(·)[β, β−1] and CH∗(·)). The last property depends on the weak factorization
theorem. Its topological counterpart for complex cobordism ΩU

2∗(pt) is due to
Quillen [4]. It implies the

Corollary 2. (1) Let k ⊂ k′. Then can : Ω∗(k)→ Ω∗(k
′) is an isomorphism,

with can induced form the OBM(W )H: X 7→ Ω∗(X ×k k′).
(2) Let k = C. Then can : Ω∗(C) → ΩU

2∗(pt) is an isomorphism, with can
induced form the OBM(W )H: X 7→ ΩU

2∗(X(C)).
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Consider in the following cartesian diagram a projective morphism f on the smooth
scheme Y , which is transversal to the closed inclusion i:

Y0 ] Y1
//

��

X × {0, 1}

��
Y

f
// X × A1

Then f0 = f : Y0 → X and f1 = f : Y1 → X are called elementary corbordant,
and one gets an induced epimorphism M+

∗ (X)/{elem.cob.} → Ω∗(X). But this
is in general not injective, e.g. for X = k and ∗ = 1. If two smooth irreducible
projective curves are elementary cobordant, then they have the same arithmetic
genus.
Let A∗(·) be an OBM(W )H and φA : Ω∗(·)→ A∗(·) the classifying transformation
coming from the universal property. Let L∗ → A∗(k) classify the formal group
law of A∗(·). Since φA commutes with first Chern class operators and exterior
products, one gets an induced transformation of OBM(W )H :

φA : Ω∗(·)⊗L∗
A∗(k)→ A∗(·) .

Theorem 3. (1) φK : Ω∗(·)⊗L∗ Z[β, β−1]→ K0(·)[β, β−1] is an isomorphism
of OBMH on Smk. Here K0(·) ' G0(·) is the Grothendieck group of
coherent locally free sheaves.

(2) φCH : Ω∗(·)⊗L∗
Z→ CH∗(·) is an isomorphism of OBMH on Schk.

The first isomorphism is up to now not known for Schk, and its topological coun-
terpart is due to Conner-Floyd [1]. The second isomorphism depends once more
on the weak factorization theorem, and its topological counterpart is only true for
rational coefficients. The induced transformation

CH∗(·) ' Ω∗(·)⊗L∗
Z→ ΩU

2∗( · (C)) ⊗L∗
Z

for k = C is due to Totaro [5].
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5. The construction of algebraic cobordism

Franziska Heinloth

Summary: On the category of separated schemes of finite type over a base field
k (more generally, on each admissible subcategory) there is a universal oriented
Borel–Moore L∗–functor Ω∗ of geometric type, called algebraic cobordism.
An oriented Borel–Moore functor with products A∗ assigns to each separated
scheme of finite type over k (or each object of an admissible subcategory) a graded
group (in an additive way with respect to disjoint union). It has push–forwards for
proper morphisms, pull–backs for smooth equidimensional morphisms (increasing
degrees by the relative dimension) and first Chern class operators c̃1(L) (decreasing
degrees by one) for each line bundle L, together with an commutative associative
external product and a unit element 1 in the coefficients A∗(k) (which hence form
a commutative ring with unit), such that all these data are compatible.
An oriented Borel–Moore L–functor is an oriented Borel–Moore functor with prod-
ucts and a homomorphism of graded rings from L∗ to the coefficients, where L∗

denotes the Lazard ring with the homological grading.
For smooth irreducible Y we denote by 1Y the pull–back of 1 along the structure
morphism Y → Spec(k).
An oriented Borel–Moore L–functor A∗ is said to be of geometric type, if it satisfies
the following three axioms:

(Dim) If Y is smooth and irreducible, L1,. . . ,Lr are line bundles on Y with r >
dim Y , then c̃1(L1) ◦ · · · ◦ c̃1(Lr)(1Y ) = 0.

(Sect) If Y is smooth and irreducible and i : Z ↪→ Y is a smooth divisor, then
c̃1(OY (Z))(1Y ) = i∗(1Z).

(FGL) If Y is smooth and irreducible and L, M are line bundles on Y , then
c̃1(L ⊗M)(1Y ) = FA(c̃1(L), c̃1(M))(1Y ), where FA is the formal group
law induced by L∗ −→ A∗(k).

There is a universal oriented Borel–Moore functor with products Z∗:
Zd(X) is the free abelian group on isomorphism classes of cobordism cycles over
X (f : Y → X, L1, . . . , Lr), where f is projective, Y smooth and irreducible,
L1,. . . ,Lr are line bundles on Y and dim Y −r = d (r ≥ 0). Isomorphisms of cobor-
dism cycles are allowed to permute the line bundles. Push–forward is given by com-
position, pull–back by fiber product, and for a line bundle L on X the first Chern
class c̃1(L) maps the class [f : Y → X, L1, . . . , Lr] to [f : Y → X, L1, . . . , Lr, f

∗L].
The product structure is given by the product over k.
Ω∗ is then constructed from Z∗ by imposing the relations (Dim) and (Sect), ten-
soring with L∗ and finally imposing the relations (FGL).
A calculation using (FGL), (Sect) and (Dim) for O(1, 1) on Pn×Pm shows that the
images of the coefficients of the universal formal group law under L∗ → Ω∗(k) lie in
the subring generated by the classes of projective spaces and Milnor hypersurfaces.
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6. Localization for algebraic cobordism

Uwe Jannsen

Given the definition and formalism of algebraic cobordism as introduced in the
previous lecture, the aim of this talk was to explain the following result contained
in section 6 of [1]. Let k be a field.

Theorem 1. ([1] Theorem 6.7) Assume that k has characteristic 0 (or that res-
olution of singularities holds over k). Let X be a separated scheme of finite type
over k, let i : Z ↪→ X be a closed subscheme, and let j : U ↪→ X be the open
complement. Then one has an exact sequence

Ω∗(Z)
i∗−→Ω∗(X)

j∗

−→Ω∗(U) −→ 0 .

The proof uses the cycles class of a divisor with normal crossings. Let W be a
smooth quasiprojective variety over k, and let E =

∑m
i=1 Ei be a divisor with

normal crossings on W . This means that for any I ⊂ {1, . . . , m},

EI :=
⋂

i∈I

Ei

is a smooth variety of pure codimension |I |.

Lemma 1. (see [1] Lemma 5.4) For any ring R and any power series
F ∈ R[[u1, . . . , um]], there is a unique decomposition

F (u1, . . . , um) =
∑

I

uIFI (u1, . . . , um)

where the sum is over all subsets I ⊆ {1, . . . , m}, uI =
∏

i∈I ui, and where the
power series FI is such that only the ui with i ∈ I occur.

Example 1. For the universal formal group law in L[[u, v]] (L = Lazard ring) we
have

F (u, v) = u + v +
∑

i≥1,j≥1

aiju
ivj ,

so that F{1} = 1 = F{2} and F{1,2} =
∑

i≥1,j≥1 aiju
i−1vj−1.

Writing u+F v = F (u, v), [n] ·F u = u+F u+F . . .+F u (n times, for n ≥ 1), define
the power series in L[[u1, . . . , um]]

Gn1,...,nm(u1, . . . , um) := [n1] ·F u1 +F [n2] ·F u2 +F . . . +F [nm] ·F um ,

and thus power series Gn1,...,nm

I (u1, . . . , um) ∈ L[[u1, . . . , um]] for all I .
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Definition 1. ([1] Definition 5.6) For the divisor with normal crossings E =∑m
i=1 niEi define its class in Ω∗(|E|) (with |E| = ∪m

i=1Ei = support(E) as

[ E → |E| ] :=
∑

I 6=∅

[ EI ↪→ |E| , Gn1,...,nm

I (OW (E1)|EI
, . . . ,OW (Em)|EI

) ] .

Here we write [ Y → X , L1L2 . . . Lr ] := [ Y → X , L1, L2, . . . , Lr ] for a formal
product of line bundles, and extend this to polynomials/power series by linearity.
This class lifts the class of the line bundle OW (E) in Ω∗(W ):

Proposition 1. ([1] Proposition 5.9) With the inclusion i : |E| ↪→W one has

[ E →W ] := i∗[ E → |E| ] = [ idW ,OW (E) ] .

In particular, [ E →W ] = [ E ′ →W ] if OW (E) ∼= OW (E′).

The proof of the localization theorem is long and involved, using resolution of sin-
gularities in a crucial way. We give a sketch, keeping the notation of the theorem.
0) The property j∗i∗ = 0 is obvious, because Z ∩ U = ∅.
1) For showing the surjectivity of j∗ it is shown that already every cobordism cycle
[ f : Y → U , L1, . . . , Ln ] ∈ Z∗(U) (with Y smooth, f projective, and L1, . . . , Ln

line bundles on Y ), can be lifted to a cycle [ f̃ : Ỹ → X , L̃1, . . . , L̃n ] ∈ Z∗(X). In
fact, one can choose a factorization f : U ↪→ PN

U and a resolution of singularities

π : Ỹ → Y of the closure Y of Y in PN
X which is an isomorphism over Y . Then

f̃ = π ◦ f lifts f , and the line bundles Li can be extended to line bundles Ỹi on Ỹ .
2) Next one shows that the relations for cobordism can also be lifted from U to
X . For the relation (FGL), generated by differences

[Y → U, L1, . . . , Lr, L⊗M ]− [Y → U, L1, . . . , Lr, F (L, M)] ,

we only have to lift line bundles from Y to Ỹ , and there is no problem.

3) For the relation (Sect) one has to show that a generating element of 〈Sect〉(U),
i.e., a difference

z1 − z2 = [ Y → U , L1, . . . , Lr−1,OY (T ) ]− [ T → X , µ∗L1, . . . , µ
∗Lr−1 ] ,

where µ : T ↪→ Y is a smooth divisor, can be lifted to a similar difference
over X . Lifting z1 to a cycle [ Ỹ → X , L̃1, . . . , L̃r ] as in 1), by a further (em-

bedded) resolution one can achieve that the closure µ̃ : T̃ ↪→ Ỹ of T ↪→ Y

is again smooth. Then we may assume L̃r = OỸ (T̃ ), and so z̃1 − z̃2, with

z̃2 = [ T̃ → X , µ̃∗L̃1, . . . , µ̃
∗L̃r−1 ], lifts z1 − z2 and lies in 〈Sect〉(X).

4) For the relation (Dim) one has to lift every generating element in 〈Dim〉(U),
i.e.,

z = [Y → U, π∗M1, . . . , π
∗Mr, L1, . . . , Ls] ,

where π : Y → T is smooth, T is smooth and irreducible, and r > dim(T ). Let z̃
be an arbitrary lift as in 1). By steps 2) and 3) it then suffices to show
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Lemma 2. ([1] Lemma 6.6) The class of z̃ in Ω∗(X) lies in i∗Ω∗(Z).

In fact, we then may modify z̃ via (FGL) and (Sect) to get a lift in 〈Dim〉(X).
For the proof of this lemma we may assume, by pulling the situation back to
Ỹ , that Ỹ = X and Y = U . In other words, we already have π : U → T . By
taking a smooth projective compactification of T and further applying resolution of
singularities we may assume that π extends to a (not necessarily smooth) morphism

π̃ : X → T , and that we have a projective birational morphism µ : X̃ → X with
X̃ smooth, µ an isomorphism over U , and µ−1(Z) a divisor with strict normal

crossings on X̃. In this situation we have (cf. talk 14):

Proposition 2. ([1] Proposition 6.4) [ µ : X̃ → X ]− i∗[ id : X → X ] ∈ i∗Ω∗(Z).

By this result we may replace X by X̃ and Z by Z̃ (keeping U) to assume that X
is smooth and Z is a divisor with normal crossings. Let L′

i = π̃∗Mi for i = 1, . . . , r,
so that j∗L′

i = j∗Li for all i.

Lemma 3. ([1] Lemma 6.5) [ idX , L1, . . . , Lr ]− [ idX , L′
1, . . . , L

′
r ] ∈ i∗Ω∗(Z).

For the proof of this lemma we may assume r = 1 and omit the indices. The
assumption implies L′ ∼= L ⊗ OX(A) for a divisor A supported on Z, and by
writing A = A1 − A2 with effective divisors Ai we reduce to the case that A is
effective. By assumption on Z it is then a strict normal crossings divisor on X .
Now, by the relation (FGL) we then have (omit idX)

[ L′ ] = [ L⊗OX(A) ] = [ F (L,OX(A) ] = [ L ] + [ g(L,OX(A)),OX (A) ]

writing F (u, v) = u + g(u, v)v. So it suffices to show [OX(A) ] ∈ Im(i∗), but in
fact, by Proposition 1 this class is i∗[ A → |A| → Z ]. By this lemma, we may

assume, for the proof of Lemma 2, that we have already Li = π̃∗Mi for all i. We
now proceed by induction on dim(T ). If dim(T ) = 0 then we even have z = 0,
because every cobordism cycle with a trivial line bundle is 0. Let dim(T ) > 0.
Writing M1 = M ⊗N−1 with very ample M, N and using the relation (FGL) we
may assume that M1 is very ample and then, by Bertini, that M1 = OT (T1) for
a smooth divisor T1 ↪→ T . Let X ′ = π̃−1(T1) be the preimage of T1 in X . Then
X ′ = X1+A with effective divisors X1 and A, with supp(A) in Z and no component
of X1 having support in Z. Since U1 = U ∩X1 is smooth (π is smooth) and dense
in X1, we may, after replacing X by a resolution, assume that X1 is smooth.
Writing then L1 = π̃−1(M1) = OX(X ′) = OX(X1) ⊗ OX(A), we see as above
that it suffices to show that z = [ idX ,OX(X1), L2, . . . , Lr ] ∈ Im(i∗). But, by the
relation (Sect), this element is equal to (i1)∗(z1), with z1 = [ idX1

, i∗1L2, . . . , i
∗
1Lr ],

where i1 : X1 ↪→ T is the immersion. By induction, since dim(T1) < dim(T ), the
element z1 lies in the image of Ω∗(X1 \ U1). By applying (i1)∗ we get z ∈ Im(i∗)
and have proved the Lemma 2.
5) By step 4), the kernel of j∗ : Ω∗(X) → Ω∗(U) is generated by differences
α− α′ = [ f : Y → X , L1, . . . , Lr ]− [ f ′ : Y ′ → X , L′

1, . . . , L
′
r ] with α|U = α′|U .
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6) We thus have to show that a difference α− α′ as in step 5) lies in the image of
i∗. By resolution of singularities, the two morphisms f and f ′ can be covered by
morphisms Y ← Y ′′ → Y ′ with smooth Y ′′, which are the identity on U . Thus
we may assume there is a morphism µ : Y ′ → Y extending idU . Then we are left
with two cases:

1) [ idY ′ , L′
1, . . . , L

′
r ]− [ idY µ∗L1, . . . , µ

∗Lr ] , 2) [ Y = Y ]− [ Y ′ → Y ] .

But case 1) follows with Lemma 3, and case 2) with Lemma 1.
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7. Homotopy invariance property and projective bundle theorem

Ivan Panin

The main aim of the lecture is to sketch the proof of the homotopy invariance, of
the projective bundle and of the so called extended homotopy invariance property
of the algebraic cobordism functor of Levine-Morel. Let k be a field. We will
assume that char(k) = 0 for the lecture. The following transversality lemma will
be used below. Let i : Z ↪→ W be a smooth closed subvariety of a smooth
variety W . Then Ω∗(W ) is generated by standard cobordism cycles of the form
[f : Y → W ] with f transversal to i. With this Lemma in hand it is easy to prove
the surjectivity part of the homotopy invariance, that is the smooth pull-back map
p∗ : Ω∗(X) → Ω∗(X × A1) is surjective. The injectivity is proved with the use of
the first Chern class and the localization sequence. Thus for a finite type k-scheme
X the smooth pull-back p∗ : Ω∗(X) → Ω∗(X × AN ) is an isomorphism for all N .
This statement is a part of tools used to prove the projective bundle theorem,
which we are going to state right now. For a finite type k-scheme X and a rank
n + 1 vector bundle and the associated projective bundle of lines q : P(E)→ X in
E and the tautological line bundle O(−1) on P(E) denote O(1) the dual of O(−1)
and write ξ for the operator c̃1(O(1)). Set φj = ξj ◦ q∗ : Ω∗−n+j(X)→ Ω∗(P(E))
Then the homomorphism

n∑

j=0

φj :
n⊕

j=0

Ω∗−n+j(X)→ Ω∗(P(E))

is an isomorphism. The extended homotopy invariance property is deduced from
the projective bundle theorem.
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8. Universal property of K-theory

Joël Riou

If A is a ring and b an element of A, we can define a formal power series in two
variables F (X, Y ) = X+Y −bXY ; one can check that this series provides a formal
group law structure of dimension 1 on the ring A. If F is a formal group law, we
say that it is multiplicative if it is of the previous form, and if it is, we say that it
is periodic if b (which is uniquely determined) is invertible. We recall the fact that
the set of morphisms from the Lazard ring L to A is in bijection with formal group
law structures on A. As a result, we have a map L→ Z

[
β, β−1

]
corresponding to

F (X, Y ) = X + Y − βXY .
Let k be any field, we denote by Smk the category of smooth quasi-projective
k-schemes.

Definition 1. On Smk , an oriented Borel-Moore L-functor with products A? con-
sists of a graded L-module A?(X) for any X ∈ Smk with smooth pull-backs, projec-
tive push-forwards, external products and Chern operators c̃1(L) associated to line
bundles satisfying some reasonable properties. We then say that an oriented weak
cohomology theory is an oriented Borel-Moore L-functor with products satisfying
additional axioms: the projective bundle formula (PB), the extended homotopy
axiom (H) and the following axioms (Dim), (Sect) and (FGL).

If A? is an oriented Borel-Moore functor, we say that it satisfies the (Dim)
axiom if for any family of line bundles L1, . . . , Ln over X ∈ Smk , we have c̃1(L1)◦
· · · ◦ c̃1(Ln)(1X) = 0 if n > dim X , where 1X is the pull-back of 1 ∈ A0(k) by the
structural morphism of X . The (Sect) axiom says that if D is a smooth divisor in
X that is the zero locus of a section of a line bundle L on X then i?(1D) = c̃1(L)(1)
where i : D → X is the inclusion. Provided the (Dim) axiom is true, it makes sense
to require that if L and L′ are line bundles on X ∈ Smk , then

c̃1(L⊗ L′)(1X) = F (c̃1(L), c̃1(L
′))(1X)

where F ∈ A?(k)[[X, Y ]] is the formal power series associated to the formal group
law on A?(k) corresponding to the morphism L→ A?(k) which is part of the data,
this is the (FGL) axiom.
For any X ∈ Smk , we consider the Laurent polynomials with coefficients in
the Grothendieck K-group of algebraic vector bundles on X , we denote it by
K(X)

[
β, β−1

]
(we will only use K0-groups, so we drop the index). The ring

K(X)
[
β, β−1

]
is graded so that the cohomological degree of β is −1. One can

check that we get an oriented weak cohomology theory K(−)
[
β, β−1

]
on Smk , the

Chern operator c̃1(L) is the multiplication by the element c1(L) = (1− [L∨])β−1.
The formula for the first Chern class obviously implies that the formal group law
for this theory is given by the formal power series F (X, Y ) = X + Y − βXY , so
that this formal group law is multiplicative and periodic, the following theorem
states that it is the universal one:
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Theorem 1. Let k be any field. For any oriented weak cohomology theory A?

on Smk with multiplicative and periodic formal group law, there exists a unique
morphism of oriented weak cohomology theories:

chA : K(−)
[
β, β−1

]
→ A?(−)

Corollary 3. Let k be a field admitting the resolution of singularities. Then, for
any X ∈ Smk , the natural morphism is an isomorphism:

Ω?(X)⊗
L

Z
[
β, β−1

] ∼=
→ K(X)

[
β, β−1

]

Under the assumption of the corollary, the universal property of algebraic cobor-
dism, the fact that it satisfies the projective bundle formula and extended homo-
topy invariance and the previous theorem imply that the two theories considered
here are universal, and then canonically isomorphic.

Corollary 4 (Grothendieck’s Riemann-Roch). Let f : X → S be a projective
morphism between smooth k-schemes. Then we have a commutative diagram:

K(X)
ch //

f?

��

CH?(X)Q

x7−→f?(x.Td(TX)).Td(TS)−1

��
K(S)

ch // CH?(S)Q

where Td(TY ) denotes the Todd class of the tangent bundle of a smooth scheme Y
and ch the Chern character.

The proof of this corollary consists in defining a weak cohomology theory A?

such that A?(X) = CH?(X)Q

[
β, β−1

]
by twisting the additive formal group law

on Chow group to get a multiplicative one, this is achieved by keeping the same
smooth pull-backs as for Chow groups, the projective push-forwards are defined
using the formula given in the statement of the corollary; for this new theory, the
first Chern class of a line bundle X is cA

1 (L) = (1−exp(−[L]))β−1 where [L] is the
class of L in the Picard group of X , if we apply the theorem 1 to this theory, we
will get a map chA : K(−)

[
β, β−1

]
→ A? compatible with push-forwards, so we

only have to check that chA is the Chern character which is easy to do. The first

step in the proof of theorem 1 is to define a map chA : K(X)
[
β, β−1

]
→ A?(X)

for any smooth k-scheme X . If one uses the compatibility that chA should have
with Chern operators c̃1, one can prove that chA must be unique and finds a
candidate for chA. In the second step, one has to check that this chA is compatible
with all the data: smooth pull-backs, Chern operators c̃1, external products and
projective push-forwards; this is easy except for projective push-forwards. In the
third step, one checks the compatibility of chA with push-forwards, we can split this
in two cases: projections from projective spaces Pn

X → X and closed immersions
between smooth schemes. The case of projective spaces turns out to follow from
the following proposition:
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Proposition 1. Let k be a field and A? an oriented weak cohomology theory on
Smk with multiplicative formal group law (i.e. F (X, Y ) = X + Y − bXY , with
b ∈ A−1(k)). Let X be an object of Smk and E be a vector bundle of rank n + 1
on X. We denote by p : P(E) → X the projection from the projective bundle
associated to E. Then, in A−n(X), we have:

p?(1) = bn

The compatibility of chA with push-forwards associated to a closed immersion
is checked in the same manner than in Fulton’s book [1]: using the deformation to
the normal cone, one can reduce oneself to checking the compatibility for closed
immersions of the form s : X → P(E⊕OX) where E is a vector bundle on X and s
is given by the point of homogeneous coordinates [0 : 1], which finishes this sketch
of proof.
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Riemann-Roch, Séminaire de géométrie algébrique du Bois-Marie (1966-1967). Lecture
Notes in Mathematics 225 (1971). Springer.

9. Ω∗(k) and the Lazard ring

Annette Huber-Klawitter

The aim of the talk was to give an exposition of the proof of the following result
of Levine and Morel:

Theorem 1. ([1, Theorem 12.6]) Let k be a field of characteristic 0. Let L∗ denote
the Lazard ring. Let Ω∗ be algebraic cobordism over k. Then the structural map

L∗ −→ Ω∗(k)

is an isomorphism.

Injectivity is shown along the lines of the topological case. A natural map
Ω∗(k) → Z[t1, t2, . . . ] is constructed. (It is the map to a twisted version of Chow
theory given by the universal property of algebraic cobordism.) Its composition
with the map of the theorem agrees with the standard embedding of the Lazard
ring into the polynomial ring (see [1, Lemma 12.2]).
Hence the real issue is surjectivity. The Theorem is easily seen to follow from the
following two Lemmas:

Lemma 1. ([1, Theorem 4.16]) Let k be a field. Then the natural map

Z→ Ω0(k)

is an isomorphism.
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Lemma 2. Define additive cobordism as

Ωad
∗ = Ω∗ ⊗L∗

Z .

Let k be a field of characteristic 0. Then

Ωad
>0(k) = 0 .

The proof of Lemma 2 can be reduced to proving the vanishing of the class [Y ]
of a smooth projective variety of dimension d > 0 in additive cobordism, i.e., to
expressing [Y ] in terms of the coefficients of the formal group law in Ω∗(k). These
coefficients are known. In particular, [P1] occurs.
In the special case Y a smooth hypersurface of Pd+1 of degree n the axioms of
algebraic cobordism together with the formulas for the class of a normal crossings
divisor imply easily that [Y ] = n[P1] = 0. The general case is carefully reduced
to this special case via resolution of singularities. The key property of additive
cobordism which is used in the argument is birational invariance:

Proposition 1. ([1, Proposition 12.5]) Let char(k) = 0. Let W, W ′ be birationally
isomorphic smooth projective varieties. Then [X ] = [X ′] in Ωad

∗ (k).

The proof of this proposition uses the deep fact ([2], [3]) that any birational map
can be factored by a sequence of blow-ups and blow-downs with smooth centers.
The case of such blow-ups can be computed directly.
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10. Degree formulas

Alexander Schmidt

In the whole talk the letter k will denote a field of characteristic zero. The reference
for all the results below is [1] where you also find a discussion for the case when k
has positive characteristic. We denote by Sch/k the category of separated schemes

of finite type over k and by Sm/k its full subcategory consisting of smooth quasi-
projective k-schemes. Let A∗ be an oriented Borel-Moore weak homology theory
on Sch/k . Suppose that A∗ is generically constant ([1], Definition 13.1). Then,
for X ∈ Sch/k reduced with irreducible components X1, . . . , Xr, we obtain ([1],
Definition 13.4) degree maps

degi : A∗(X)→ A∗−dim(Xi)(k), i = 1, . . . , r.

Assume, in addition, that A∗ satisfies the localization property ([1], Definition
13.5). Then we have the following theorem, called the generalized degree formula.
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Theorem 1. Let X ∈ Sch/k be reduced. Assume that, for each closed integral

subscheme Z ⊂ X, we are given a projective birational morphism Z̃ → Z with Z̃ ∈
Sm/k. Then the A∗(k)-module A∗(X) is generated by the classes [Z̃ → X ]. More
precisely, let X1, . . . , Xr be the irreducible components of X. Let α be an element in
A∗(X). Then, for each closed integral subscheme Z ⊂ X with codimX Z > 0 (i.e.
Z does not contain a generic point of X), there is an element ωZ ∈ A∗−dim(Z)(k),
all but finitely many zero, such that

α−
r∑

i=1

degi(α) · [X̃i → X ] =
∑

Z, codimX Z>0

ωZ · [Z̃ → X ].

By [1], Corollary 13.3, algebraic cobordism is generically constant, and for a
morphism f : Y → X of smooth, projective irreducible varieties over k, we obtain
the element deg(f) ∈ Ωd(k), d = dim(Y ) − dim(X). For X ∈ Sm/k , projective
and irreducible, we consider the ideal

M(X) ⊂ Ω∗(k)

generated by the classes of smooth, projective k-schemes Y with dim(Y ) < dim(X),
such that there exists a k-morphism Y → X . The follwing theorem follows imme-
diately from the generalized degree formula.

Theorem 2. For a morphism f : Y → X between smooth projective irreducible
k-schemes, one has

[Y ]− deg(f) · [X ] ∈M(X).

Finally, we deduce from the generalized degree formula a degree formula due to
M. Rost. For X smooth projective of dimension d, we set

sd(X) := − deg Nd(c1, . . . , cd)(TX) ∈ Z,

where Nd is the d-th Newton polynomial, TX is the tangent bundle of X and
deg : CH0(X)→ Z is the usual degree map. If d is of the form pn− 1 where p is a
prime number and n ≥ 1, then sd(X) is divisible by p. We have the following

Theorem 3. Let f : Y → X be a morphism between smooth projective varieties of
dimensions d > 0. Assume that d = pn− 1 where p is a prime number and n ≥ 1.
Then there exists a zero-cycle on X with integral coefficients whose degree is the
integer

sd(Y )

p
− deg(f) ·

sd(X)

p
.

References

[1] M. Levine and F. Morel, Algebraic Cobordism I. revised version.
http://www.math.neu.edu/˜ levine/publ/Publ.html



Arbeitsgemeinschaft mit aktuellem Thema: Algebraic Cobordism 905

11. Cobordism and Chow groups

Christian Serpé

Evidently the theory Ωad
∗ := Ω∗ ⊗L∗

Z is the universal additive Borel-Moore weak
homology theory on Sch/k. The main goal of this talk is to show that this theory
is isomorphic to the Chow theory. In the second part a filtration on cobordism is
given. We closely follow section 14 of [1]. For the hole talk we assume that k is a
field of characteristic zero. By the universality of Ω∗ and the fact that the group

law of CH∗ is additive we get a morphism

Ω∗ ⊗L∗
Z→ CH∗.

Lemma 1. Let X ∈ Sch/k, Y ∈ Sm/k irreducible and f : Y → X be a projective

morphism. Furthermore, let f̃(Y )→ f(Y ) be a resolution of singularities (i.e. the

morphism f̃(Y ) → f(Y ) is birational, projective and f̃(Y ) ∈ Sm/k). Then we
have

[Y
f
−→ X ]Ωad

∗

=

{
deg(Y/f(Y ))[f̃(Y )→ X ]Ωad

∗

if dimY = dimf(Y )

0 otherwise.

Proof. Apply the generalised degree formula to [Y → f(Y )] and use the fact that
Ωad

∗ ' Z. �

We denote by Z∗(X) the free abelian group on the set of closed integral subschemes
for a scheme X ∈ Sch/k, graded by dimension. We define a morphism

φ : Z∗(X)→ Ω∗(X)⊗L∗
Z

by φ(Z) := [Z̃ → Z → X ]Ωad , where Z̃ → Z is a resolution of singularities of Z.
From Lemma 1 it follows that this is independent of the chosen resolution. We
have the following observation for the morphism φ:

• The composition φ : Z∗(X) → Ω∗(X) ⊗L∗
Z → CH∗(X) is the canonical

morphism.
• φ is surjective (by Lemma 1)
• φ is compatible with projective push forward (by Lemma 1)

By using resolution of singularities and the fact that Ωad
∗ has by definition the

additive group law one can deduce

Proposition 1. The morphism φ factors through rational equivalence.

So all together we have proven

Theorem 1. The canonical morphism

Ω∗ ⊗L∗
Z→ CH∗

is an isomorphism of oriented Borel-Moore weak homology theories on Sch/k and
φ induces the inverse.

From this one can deduce the following two corollaries.
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Corollary 5. For X ∈ Sch/k the canonical morphism

Ω0(X)→ CH0(X)

is an isomorphism.

Corollary 6. Let X be a smooth scheme over k.

(1) If dim(X) = 1 we have Ω1(X) ' K0(X).

(2) If dim(X) = 2 we have Ω1(X) ' K̃0(X) := ker(K0(X)
rk
−→ H0

Zar(X, Z)).

To get a filtration on Ω∗(X) for a X ∈ Sch/k we define F (n)Ω∗(X) as the subgroup

of Ω∗(X) which is generated by classes [Y
f
−→ X ] with Y smooth, irreducible, and

dim(Y )− dim(f(Y )) ≥ n. We have the following observations:

• F (n)Ω∗(X) is a Ω∗(k) submodule of Ω∗(X)
• F (n)Ω∗(k) ' Ω∗≥n(k)

• F (1)Ω∗(X) ' ker(Ω∗(X)→ CH∗(X) (by theorem 1)

From the generalised degree formula one can deduce

Theorem 2. Let X ∈ Sch/k and n ≥ 0. Then we have

F (n)Ω∗(X) ' L∗≥nΩ∗(X).

Now for the associated graded it follows

Corollary 7. For X ∈ Sch/k there is a surjection

L∗ ⊗Z CH∗ → Gr∗Ω∗(X)

of bigraded abelian groups.
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12. Steenrod operations and other degree formulas

Jens Hornbostel

Consider an Eilenberg-Steenrod cohomology theory E∗( ) defined on topological
spaces such as singular cohomology H∗( , Z), topological K-theory K∗( ) or
complex cobordism MU∗( ). A stable cohomology operation of degree d is a
natural transformation of functors E∗ → E∗+d compatible with the suspension
isomorphism. By the Brown representability theorem, the cohomology theory E∗

is representable in the stable homotopy category SH by a spectrum E. It follows
that the ring of all stable E-cohomology operations is isomorphic to [E, S∗∧E]SH.
When E∗ = H∗( , Z/p) is singular cohomology with mod p -coefficients, then the
spectrum is called the mod p -Eilenberg-Mac Lane spectrum and the ring of of
cohomology operations is called the mod p-Steenrod algebra and denoted by A∗

p.
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Theorem 1. If p is a prime number, then A∗
p is isomorphic to the Z/p-algebra

generated by elements P i for all i ≥ 1 of degree 2i(p−1) and β of degree 1 modulo
the Adem relations.

The element β is called the Bockstein. If p = 2, then the generators P i are tradi-
tionally denoted by Sq2i.
The action of stable cohomology operations on cohomology groups provides a re-
finement of cohomological invariants. Stable cohomology operations appear in
computations of stable homotopy groups of spheres via the Adams-Novikov spec-
tral sequence and in the construction of other orientable cohomology theories
from MU∗ via the Landweber exact functor theorem. See standard textbooks
on homotopy theory such as [6] for more details. Morel and Voevodsky ([5],

[7]) have constructed the stable A1-homotopy category SH(k) which is the al-
gebraic analogue of SH for algeraic varieties over a base field k. Moreover they
construct a motivic Eilenberg-Mac Lane spectrum that represents bigraded mo-
tivic cohomology H∗,∗

mot( , Z) and similar for finite coefficients (see [5],[7] and lec-
tures 16,17). Voevodsky [8] constructs stable bigraded cohomology operations

P i : H∗,∗
mot( , Z/p) → H

∗+2i(p−1),∗+i(p−1)
mot ( , Z/p) which conjecturally gener-

ate the bigraded endomorphism algebra over H∗,∗
mot(k, Z/p) of the mod p -motivic

Eilenberg-Mac Lane spectrum in SH(k) if p does not divide char(k). He also es-

tablishes an isomorphism CHn(X) ∼= H2n,n
mot (X, Z). The induced action of the P i

on C̄H∗ := CH∗⊗Z/p conjecturally coincides with the Steenrod operations which
Brosnan [1] constructed using equivariant Chow groups. They have been used by
Merkurjev to prove a certain degree formula [4, Theorem 6.4] and reprove some
results on quadrics (see lecture 13). In this lecture, we sketch another defition due

to Levine [2] of the action of Steenrod operations on C̄H
∗

in char(k) = 0 based on
algebraic cobordism (which coincides with Brosnan’s in this case). From now on,
we fix once and for all a prime p. Consider the functor CH∗[b] := CH∗[b1, b2, ...]

where bi is a variable of degree pi − 1. Then there is a procedure to twist this
theory, that is its first Chern class and its pull-backs as in [2, section 4]. The
formal group law of this twisted theory CH∗[b]

(b) is no longer additive, but it is
additive on the mod p -theory C̄H∗[b]

(b) by [2, Proposition 9]. Consequently, the
transformation S : Ω∗ → CH∗[b]

(b) factors as S̄ : CH∗ → C̄H∗[b]
(b). Considering

series of non-negative integers R = (r1, r2, ...), we may write S =
∑

R SRbR and
similar mod p. (Observe that S(i,0,0,...) corresponds to P i.) The factorization of S
mod p implies [2, Lemma 11]:

Lemma 1. For all R 6= (0, 0, ...), SR(Ω>0(k)) is contained in p.CH∗(k)(∼= p.Z).

Hence for any smooth projective variety X of dimension |R| > 0 (where |R| :=
r1(p − 1) + r2(p

2 − 1) + ...), we see that SR(X) is divisible by p. This applies
in particular to S(0,...,0,1,0,...) with 1 in degree i which can be shown to coincide

with the spi−1 of [3, section 13] and lecture 10. We set sR := SR

p and show

that sR(X) = 1
pdeg(cR(−TX)) (modp) where cR is the twist of the first chern
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class and TX is the tangent bundle of X . (This formula shows that Levine’s sR

equals Merkurjev’s Rp.) As S(X × Y ) = S(X)S(Y ), it follows [2, Lemma 12]
that sR(X × Y ) = 0 if X and Y are smooth projective varieties of dimension
≥ 1. Combining all this with the generalized degree formula [3, Theorem 13.6]
(see lecture 10), Levine [2, Theorem 13] can give a new proof of the degree formula
of Merkurjev mentioned above:

Theorem 2. Let f : Y → X be a morphism of smooth projective varieties over k
of dimension |R| for some R = (r1, r2, ...) as above. Then

sR(Y ) ≡ deg(f) · sR(X) mod (p, I(X))

where I(X) ⊂ Z is the ideal generated by the degrees of all field extensions of all
closed points of X.
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13. Some applications

Stefan Schröer

Let k be a ground field, X a smooth proper scheme, d = dim(X). Let nX be the
greatest common divisor for the numbers deg(x), where x ∈ X ranges over the
closed points. Merkurjev considers numbers Rp(X) ∈ Z/nXZ defined as follows
[5]. Let p be a prime different from the characteristic of the ground field k, and R =
(r1, r2, . . . , rn) be a finite sequence of integers ri > 0. Let cR be the symmetrization
of the polynomial

(X1 . . . Xr1
)p−1(Xr1+1 . . . Xr1+r2

)p2−1 . . .
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which has degree deg(R) =
∑

ri(p
i − 1). We may view the variables Xi as Chern

roots and obtain for dim(X) = deg(R) a zero cycle cR(−TX) ∈ CH0(X). The
degree of cR(−TX) is always divisible by p. Merkurjev defines

Rp(X) ≡
deg(cR(−TX))

p
modulo nX

and calls the scheme X Rp-rigid if Rp(X) 6≡ 0. One should think of cR(−TX)
as an action of an element in the Milnor basis of the Steenrod algebra. Using
Brosnan’s definition of Steenrod operations on Chow groups [1], the definition
extends to proper schemes that are not necessarily smooth. Using the degree
formula Rp(X) = deg(f)Rp(Y ) modulo nY for any f : X → Y , Merkurjev proves
the following:

Theorem 1. Let α be a correspondence from X to Y , for example the graph
of a rational map. Suppose that X is Rp-rigid, that vp(nX) ≤ vp(nY ) holds for
the p-adic valuations, and that p does not divide the degree of α over X. Then
dim(X) ≤ dim(Y ).

Using this result, Merkurjev gives short elegant new proofs for three results on
quadratic forms. The first result is due to Hoffman [2]:

Proposition 1. Let X and Y be two smooth anisotropic quadrics. Suppose
dim(X) ≥ 2n − 1, and that Y becomes isotropic over the function field k(X).
Then dim(Y ) ≥ 2n − 1.

The second result is due to Izhboldin [3]:

Proposition 2. Suppose in addition that dim(Y ) = 2n − 1. Then X becomes
isotropic over the function field k(Y ).

The last applicationdue to Karpenko [4]. Suppose X is a Brauer-Severi variety
admitting an OX (2), and let Y ⊂ X be a smooth divisor with ideal isomorphic
to OX(−2). Such Y is a twisted form of a smooth quadric, which are also called
involution varieties.

Proposition 3. Suppose the Brauer–Severi variety X contains no nontrivial lin-
ear subvarieties. Then the twisted quadric Y remains anisotropic over the function
field k(X).

Here a subscheme L ⊂ X is called linear if L⊗ k̄ ⊂ X ⊗ k̄ is a linear subscheme
in the classical sense.
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14. Construction of pull-backs in algebraic cobordism, part1

Ania Otwinowska

The motivation for this talk (and the next one) was to prove that Ω? is the
universal oriented cohomology theory on the category Sm/k of smooth schemes
over k, or equivalently that Ω? is the universal oriented Borel-Moore homol-
ogy theory. This reduces to proving the existence of functorial pull-back maps
f∗ : Ω?(X) −→ Ω?+dim f (Y ) for non-necessarily smooth maps f : Y −→ X be-
tween smooth schemes over k. As any such f is the composition of its graph
Γf : Y −→ X × Y followed by the smooth projection pr1 : X × Y −→ X , one re-
duces to the case where f is a closed embedding between smooth schemes, or more
generally a locally complete intersection map. Mimicking Fulton’s deformation to
the normal cone, one proves (see next talk) that it is enough to deal with the
case where f : D −→ X is a strict normal crossing divisor (SNC) : the irreducible
components of D are smooth, with smooth intersections of expected dimensions.
Given D = (L, s) a strict normal crossing divisor on X with support |D| (where
L denotes a line bundle on X and s : X −→ L a section) one would like to define
a pull-back

Z?(X)
D(.)
−→ Ω?−1(|D|)

(Y
φ
−→ X, L1, · · · , Lr) 7→ (φ∗D −→ |D|, L1, · · ·Lr)

.

The following two problems can occur :
1) if φ(Y ) ⊂ |D| then the divisor φ∗D of |D| is not defined.
2) even if φ(Y ) 6⊂ |D|, the divisor φ∗D may not be smooth, or even SNC. To solve
these problems one first defines a modified cycle group :

Definition 1.

Z?(X)D =
〈
{(Y

φ
−→ X, L1, · · ·Lr) ∈ Z?(X) | either φ(Y ) ⊂ |D| or φ∗D is SNC}

〉

This in the subgroup of Z?(X) spanned by cycles in good position w.r.t. D.
Hence one can define the pull-back :

Definition 2.

Z?(X)D
D(.)
−→ Ω?−1(|D|)

(Y
φ
−→ X, L1, · · · , Lr) 7→





(Y
φ
−→ D, L1, · · · , Lr)

iff(Y ) ⊂ D

fD
? (c1(L

D
1 , · · · , c1(L

D
r ))([f∗D −→ |f∗D|]

iff(Y ) 6⊂ D
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In the first part of the talk, one defines a modified cobordism group Ω∗(X)D

with a natural map Ω?(X)D
λ
−→ Ω?(X). The quotient group Ω∗(X)D is obtained

from Z?(X)D by mimicking the construction of Ω?(X) from Z∗(X). In the second
part we consider the diagram

Ω∗(X)

��

Z?(X)D
// //

D(.)
**VVVVVVVVVVVVVVVVVVV

Ω?(X)D

λ

88qqqqqqqqqq

&&
Ω?−1(|D|)

.

and prove the

Theorem 1. The triangle

Z?(X)D
// //

D(.)
&&MMMMMMMMMM

Ω?(X)D

��
Ω?−1(|D|)

is well-defined and commutative.

In part 2 the map λ is shown to be an isomorphism, completing the proof of
existence of functorial pull-backs.
The key point is deformation to the normal cone.

15. Construction of pull-backs in algebraic cobordism, part 2

Jörg Wildeshaus

The purpose of this talk was to construct general pull-backs for Ω∗, using the
construction of the previous talk. It was first observed that this can be done in
various settings, of which the two most important ones are the following: (1) ar-
bitrary pull-backs for Ω∗ on the category Smk, (2) l.c.i.-pull-backs for Ω∗ on the
category Schk. For (1), we just need the definition and basic properties of Ω∗(X)D

as developed in talk no. 14. For (2), we need to accept that a similar definition,
with analogous properties is still possible when X is only in Schk, and the effective
divisor D is not necessarily an NC-divisor.
We first stated the Moving Lemma:

Theorem 1. The canonical map

ϑX : Ω∗(X)D −→ Ω∗(X)

is an isomorphism.
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Using this, we then proceeded to construct l.c.i.-pull-backs. Given the definition
of l.c.i., and the presence of smooth pull-backs, what remained to be done was to
construct pull-backs for regular closed immersions. The obvious solution for a
codimension one regular immersion iD : D ↪→ X is to define the pull-back i∗D as

i∗D : Ω∗(X)
ϑ−1

X−→ Ω∗(X)D
D( )
−→ Ω∗−1(D) ,

where D( ) : Ω∗(X)D → Ω∗−1(D) is the “intersection with the divisor D” defined
in talk no. 14.
For a regular closed immersion i : Z ↪→ Y , one follows Fulton’s method of defor-
maion to the normal cone. Consider the blow-up W of Y × P1 along Z × 0, and
remove the proper transform of Y × 0, to get an open subset U of W . W projects
to Y , and it was explained how to produce elements in Ω∗+1(U) from an element
η ∈ Ω∗(Y ). This involves the surjectivity of the projective push-forward

Ω∗+1(W )→ Ω∗+1(Y × P1) .

In fact, using localization, one shows that the push-forward is surjective for mor-
phisms associated to a blow-up along a regular immersion. Furthermore, one can
control the kernel. This shows that the elements in Ω∗+1(U) produced from η all
have the same pull-back under iV , where V is the intersection of U and the excep-
tional divisor in W . (i∗V is defined since V is a divisor in U .) One observes that V
is the normal bundle of the immersion i. This bundle is of rank d, if d denotes the
codimension of i. The homotopy property then tells us that the pull-back induces
an isomorphism between Ω∗−d(Z) and Ω∗(V ). Combining everything, one gets

i∗ : Ω∗(Y ) −→ Ω∗−d(Z) .

Nothing was said about the properties needed to check that this construction in-
deed gives rise to a well-defined pull-back for l.c.i.-morphisms.
In the last part of the talk, we sketched the proof of the Moving Lemma.

16. The A1-homotopy approach to algebraic cobordism: Part One

Oliver Röndigs

Let k be a field. The goal, motivated by algebraic topology, is to represent coho-
mology theories on Sm/k by objects in a triangulated category, the stable motivic
homotopy category. It is obtained by formally inverting certain maps of stable
versions of spaces over k. Smooth schemes over k are not flexible enough to be
used as spaces over k, since quotient space constructions do not make sense.

Definition 1. Let sSet be the category of simplicial sets (set-valued presheaves
on the category of finite non-empty ordinals and monotone maps). A space over
k is a functor A : (Sm/k)op → sSet which is a sheaf for the Nisnevich topology on
Sm/k. Let Spc(k) be the category of spaces over k.
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The choice of the Nisnevich topology will be justified below. Any smooth scheme
X over k defines a representable space over k, denoted by X : (Sm/k)op → sSet.
The value of X at Y ∈ Sm/k is the discrete simplicial set HomSm/k(Y, X). This
gives a full embedding Sm/k ↪→ Spc(k). Any simplicial set K defines a constant
space over k, the Nisnevich sheafification of the functor Y → K. There is a notion
of pointed space over k, where a basepoint in A is a map Spec(k)→ A. Adding a
disjoint basepoint to a space A over k produces A+ = A

∐
Spec(k). Let Spc•(k)

be the category of pointed spaces over k. It is closed symmetric monoidal under
the smash product A ∧ B = A×B/A ∨ B, with unit T 0 = Spec(k)+.

Example 1. Let p : X → Y be a vector bundle in Sm/k, with zero section z : Y ↪→
X. The Thom space Th(p) of p is the pointed space over k obtained as the quotient
of the inclusion X − z(Y ) ↪→ X of spaces over k. Let T := Th

(
A1 → Spec(k)

)
.

Note that Th(p× q) = Th(p)∧Th(q). In particular, T ∧n is the Thom space of the
trivial bundle An → Spec(k).

Once the correct class of weak equivalences in Spc(k) is set up, Thom spaces
behave as in topology – see the analog of the tubular neighborhood theorem 1.

Definition 2. A map f : A → B of spaces over k is a stalkwise equivalence if
the maps fx : Ax → Bx induced on stalks are weak equivalences of simplicial sets.
Recall that any simplicial set K has a nice topological space |K| as a geometric
realization, and a map g of simplicial sets is a weak equivalence if the induced map
|g| is a homotopy equivalence. Recall also that the stalks in the Nisnevich topology
are the henselizations of the local rings.

The stalkwise homotopy category Hs(k) of spaces over k is obtained by formally
inverting the stalkwise equivalences. It is not good enough for our goal, since Sm/k
still embeds fully in the stalkwise homotopy category. To see that Hs(k) is indeed
a category, one shows that stalkwise equivalences are part of a model structure on
spaces over k [2]. The internal hom on Spc(k) is compatible with the stalkwise
equivalences and thus induces an internal hom Hom

Hs(k)(−,−) on Hs(k) [1].

Definition 3. A space C over k is A1-local if the projection A1
X → X induces an

isomorphism

HomHs(k)(X, C)→ HomHs(k)(A
1
X , C).

for every X ∈ Sm/k. A map f : A→ B of spaces over k is a weak equivalence if,
for every A1-local space C over k, the induced map

Hom
Hs(k)(B, C)→ Hom

Hs(k)(A, C)

is an isomorphism.

The motivic unstable homotopy category H(k) of k is obtained by formally in-
verting the weak equivalences in Spc(k). The pointed version is denoted H•(k).
As above, H(k) is a category, because weak equivalences belong to a model struc-
ture on Spc(k) [4]. Any stalkwise equivalence is a weak equivalence. The map
A1 → Spec(k) is not a stalkwise equivalence, but a weak equivalence.
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Example 2. In H(k), P1 is isomorphic to a suspension. The diagram

A1 − {0} //

��

A1

��
A1 // P1

is a homotopy pushout square in which A1 is contractible. Hence P1 ' S1 ∧ Gm,
where S1 is the simplicial circle and Gm is the space over k represented by A1−{0}
and pointed by 1. By collapsing A1 to the point Spec(k), one sees that P1 ' T .

There are at least two good reasons for choosing the Nisnevich topology. One
is that any smooth connected scheme of dimension d has vanishing Nisnevich
cohomology in degrees > d. The other is the Homotopy Purity Theorem, which
is essentially due to the fact that any smooth pair Z ↪→ X Nisnevich-locally looks
like Ad ↪→ Ad+c. It fails in the Zariski topology.

Theorem 1 (Morel-Voevodsky). Let i : Z ↪→ X be a closed embedding in Sm/k,
and let q denote the normal bundle of i. In H•(k) there is an isomorphism

X/X − i(Z) ∼= Th(q).

One consequence of theorem 1 is the Gysin long exact sequence for any coho-
mology theory represented by a spectrum over k – see corollary 8. Another con-
sequence is a motivic Pontrjagin-Thom construction: Any projective connected
X ∈ Sm/k of dimension d admits a vector bundle p of rank n over X such that

• TanX + p = On+d in K0(X), and
• there is a non-trivial map T n+d → Th(p) in H•(k).

Details may be found in [7, Section 2]. The latter indicates that a situation in
which smashing with T is invertible is desirable.

Definition 4. A spectrum E over k consists of a sequence (E0, E1, . . . ) of pointed
spaces over k, together with structure maps σn : T ∧ En → En+1 for every n ≥ 0.
A map of spectra over k is the obvious thing.

Example 3.

• The sphere spectrum over k is given by the sequence I = (T 0, T, T∧2, . . . ).
Every structure map is the identity. Similarly, any smooth scheme X over
k has a suspension spectrum Σ∞X = (X+, T ∧X+, T∧2 ∧X+, . . . ).

• Let Spc(k)tr be the category of simplicial Nisnevich sheaves with trans-
fers (additive contravariant functors from the category of smooth finite
correspondences over k to the category of simplicial abelian groups [5]).
Forgetting the addition induces a functor u : Spctr(k)→ Spc(k) which has
a left adjoint Ztr : Spc(k) → Spctr(k). Set HZn := uZtr(T∧n). Structure
maps of HZ are induced by the fact that u and Ztr are monoidal:

T ∧HZn −→ uZtr(T ) ∧ uZtr(T∧n) −→ uZtr(T ∧ T∧n) = HZn+1.

where the first map is unity ∧ id
One may also deduce that HZ is a commutative ring spectrum over k.
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• As in topology, there is a universal bundle γn of rank n obtained as the col-
imit over m of the tautological bundles γm

n → Grm(Am+n). Set MG`n :=
colimm Th(γm

n ). The bundle pulls back to the direct sum γm
n ⊕ O. By

example 1, this induces a structure map T ∧MG`n → MG`n+1. Again
MG` is a ring spectrum over k.

There is an obvious notion of levelwise equivalence of spectra over k, which
produces a levelwise homotopy category Hlevel(k). It is not stable, because the
suspension functor S1∧− does not induce an equivalence on Hlevel(k). To remedy
this, a coarser notion of equivalence of spectra over k has to be introduced.

Definition 5. Abbreviate HomH•(k)(T,−) by ΩT . A spectrum G over k is an
ΩT -spectrum over k if for any n ≥ 0, the morphism Gn → ΩT Gn+1 induced by
the structure map is an isomorphism in H•(k). A map f : E → F of spectra over
k is a stable equivalence if, for any ΩT -spectrum G over k, the induced map

HomHlevel(k)(F, G) → HomHlevel(k)(E, G)

is an isomorphism.

Formally inverting the stable equivalences in the category of spectra over k
produces the stable motivic homotopy category SH(k) of k. Again stable equiv-
alences are part of a model structure, so SH(k) is a decent category. Almost
by construction T ∧ − : SH(k) → SH(k) is an equivalence. Since T is itself a
suspension by example 2, SH(k) is then a triangulated category. The suspension
S1∧− induces the shift functor, and the triangles are induced by cofiber sequences
E ↪→ F → F/E of spectra over k. The cyclic permutation on T ∧3 is homotopic
to the identity, thus SH(k) has a closed symmetric monoidal product which is
compatible with the triangulated structure [3]. The unit is the sphere spectrum.
Due to its excellent properties, SH(k) is the perfect place to shop around for
cohomology theories on Sm/k.

Corollary 8. Let E be a spectrum over k and X ∈ Sm/k. Then

Ep,q(X) := HomSH(k)(Σ
∞X, Sp−2q ∧ T∧q ∧ E)

defines a cohomology theory on Sm/k having the extended homotopy property and
long exact sequences of Gysin, Mayer-Vietoris and blow-up type.

Here is one example of a representable cohomology theory. See [6] for a proof.

Theorem 2 (Voevodsky). The cohomology theory represented by HZ coincides
with Bloch’s higher Chow groups.
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17. The motivic Thom spectrum MG` and the algebraic cobordism
Ω∗(−)

Joseph Ayoub

This is a report on a ”work in progress” of F. Morel and M. J. Hopkins. Their work
is a step toward the identification of the motivically defined theory MG`2∗,∗(−)
with the geometrically defined one Ω∗(−). Namely, they prove:

Theorem 1. For any smooth k-variety X the natural graded homomorphism
MG`2∗,∗(X) 7−→ Ω∗(X) is surjective.

The plan of the lecture was:

(1) Some basic properties of MG`.
(2) The computation of MG`2∗,∗(k).
(3) Proof of the main theorem.

From now one, the base field k is fixed and all our varieties will be k-varieties. For
simplicity we shall assume k to be of characteristic zero.

1. Some basic properties of MG`

In this first part, we transpose from the topological to the motivic context some
classical properties of the Thom spectrum. We denote by T = A1/Gm one of the
motivic spheres. When speaking about spectra, we shall always mean T -spectra.
The A1-homotopy category of spectra is a triangulated category denoted by SH(k)
(cf. Morel [1]).
Let us recall that as in algebraic topology, the motivic Thom spectrum is defined
by the collection: (S0, Th(γ1), . . . , Th(γn), . . . ) together with the usual assembly
maps. Here γn is the tautological vector bundle on the infinite Grassmanian of
n-planes. For a smooth variety X , we put MG`p,q(X) = [X+, MG` ∧ T q[p− 2q]].

Lemma 1. MG` is an oriented ring spectrum.

The proof is exactly the same as the classical one. It is based on the identifica-
tion of Th(γ1) with the pointed space (P∞, ∗).
As a consequence, we can define for a line bundle L on X a first Chern class

c1(L) ∈ MG`2,1(X) by the composition: X
[L]
7−→ P∞ 7−→ MG` ∧ T . Using this,

one obtain a projective bundle formula by the usual method, and then the other
Chern classes for vector bundles. This can be used to define the Thom classes:
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Definition-Construction 1. Let V/X be a vector bundle of rank r. The Thom
class t(V) of V lives in MG`2r,r(Th(V)). It is defined in the following manner:
Recall that one model of Th(V) is P(V + 1)/P(V). Thus one have a long exact
sequence (which breaks into short ones):

MG`∗,∗(Th(V)) // MG`∗,∗(P(V + 1)) // MG`∗,∗(P(V))

MG`∗,∗(k)[1, u, . . . , ur] MG`∗,∗(k)[1, u, . . . , ur−1]

We then define t(V) to be the element of the middle group equal to ur − c1.u
r−1 +

· · · + (−1)rcr where ci are such that the image of t(V) became zero in the last
group. The exactness of the sequence give us a unique anteced ent of t(V) in the
first group. This is the Thom class.

A consequence of this construction is:

Lemma 2. MG` is the universal oriented ring spectrum.

Indeed let E be such a spectrum. The construction above still make sens for E.
In particular if we take the Thom classes of γn we get maps: Th(γn) 7−→ E ∧ T n

yielding the unique map of spectra MG` 7−→ E. Later on, we shall apply this to
E = HZ, the motivic cohomology spectrum, to get the morphism: MG` 7−→ HZ.
The next step of our study is the Thom isomorphism. Let V/X be a vector bundle
of rank r. Define (as in topology) the reduced diagonal: Th(V) 7−→ Th(V) ∧X+

using the pull-back square:

V //

��

V × 0

��
X

∆ // X ×X

Theorem-Definition 1. For any oriented ring spectrum E, the following com-
position:

E ∧ Th(V) // E ∧ Th(V) ∧X+
// E ∧ E ∧ T r ∧X+

// E ∧ T r ∧X+

is an isomorphism. It is called the Thom isomorphism.

Roughly speaking, the above result says that an oriented ring spectrum does
not make the difference between the Thom space of a non trivial vector bundle
and the Thom space of a trivial one with the same rank. A consequence of that is
a natural isomorphism: E∗,∗(Th(V)) = E∗−2r,∗−r(X).
We end this section by constructing transfers map for MG`2∗,∗(−). It is sufficient
to consider the case of a closed immersion and the projection of a projective space
over X . The second case follow easily from the projective bundle formula. For a
closed immersion we need to use the Thom isomorphism. Indeed, let i : Y ⊂ X be
a closed immersion. We denote by νi, νX and νY the normal bundles of i, X and
Y . Note that νX and νY are not vector bundles in the usual sens but only virtual
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one (that is of negative rank). As in topology, we can form the composition in

SH(k): Th(νX) // Th(i∗νX ⊕ νi) Th(νY ) When applying E∗,∗ we get

a map in the opposite direction: E∗,∗(Th(νY )) 7−→ E∗,∗(Th(νX)). Now using the
Thom isomorphism, we have the identifications

E∗,∗Th(νY ) ' E∗+2dY ,∗+dY (Y ) and E∗,∗Th(νX) ' E∗+2dX ,∗+dX (X)

Where dX and dY are the dimension of X and Y . Then denoting c = dX − dY

the codimension of Y in X , we obtain the wanted transfer map: E∗,∗(Y ) 7−→
E∗+2c,∗+c(X). As a consequence, E2∗,∗(−) is an oriented Borel-Moore cohomol-
ogy theory. In particular using the universality of Ω∗(−) we get the natural ho-
momorphism in Theorem 1.

2. the computation of MG`2∗,∗(k)

The main step of the proof of Theorem 1 is the following proposition:

Proposition 1. The canonical homomorphism given by the formal group law:
L∗ 7−→MG`−2∗,−∗(k) is an isomorphism.

The injectivity of the above homomorphism is easy: one use for example a
complex realization. There is also a purely algebraic proof based on a Quillen
trick... The main difficulty is to show the surjectivity. For this one need a difficult
lemma:

Lemma 3. The canonical morphism of spectra: MG` 7−→ HZ induce an isomor-
phism1:

MG`/(x1, . . . , xn, . . . )
∼ // HZ

Where xi are generator of the Lazard ring.

Assuming Lemma 3, the proof of Proposition 1 goes by induction on ∗. The
point is that for N > 0, one have [T N , HZ] = 0 by Voevodsky cancellation theo-
rem. Using a stability argument,the Lemma 7 implies that

[T N , MG`/(x1, . . . , xN )] = 0.

Then if we apply [T N ,−] to the distinguished triangle:

MG`/(x1, . . . , xN−1) ∧ T N xN−→MG`/(x1, . . . , xN−1)→MG`/(x1, . . . , xN )→

we get a surjection: xN : Z 7−→MG`−2N,−N/(x1, . . . , xN−1)(k). Using the induc-
tion hypothesis, one deduce that: LN 7−→MG`−2N,−N(k) is indeed a surjection.

1The quotient ring spectrum MG`/(x1, . . . , xn, . . . ) is not so easy to construct. Some serious
technical difficulties arise if one try to do this naively. One way to overcome these difficulties is
to work in a category of MG`-modules.
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3. Proof of the main theorem

A consequence of Proposition 1 is that MG`2∗,∗(−) is generically constant. More-
over, we have a weak form of the localization property, namely: given a smooth
pair (Y ⊂ X) with Y of codimension c, one have an exact sequence:

MG`2∗−2c,∗−c(Y ) // MG`2∗,∗(X) // MG`2∗,∗(X − Y )

These properties suffices to derive a generalized degree formula (see [2], [3])
for MG`2∗,∗(−). In particular, this implies that MG`2∗,∗(X) is generated as a
MG`−2∗,−∗(k) = L∗-module by cobordism cycles: [Z 7−→ X ] with Z a desingular-
ization of a closed subset of X . This clearly implies Theorem 1.
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jschuerm@math.uni-muenster.de

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Dr. Christian Serpe

serpe@uni-muenster.de

serpe@math.uni-muenster.de

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Dr. Zoran Skoda

zskoda@irb.hr

Rudjer Boskovic Institute
Theoretical Physics Division
PO Box 180
10002 Zagreb
CROATIA

Markus Spitzweck

spitz@uni-math.gwdg.de

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Prof. Dr. Jan Stienstra

stien@math.uu.nl

Mathematisch Instituut
Universiteit Utrecht
Budapestlaan 6
P. O. Box 80.010
NL-3508 TA Utrecht

Prof. Dr. Eckart Viehweg

viehweg@uni-essen.de

FB 6 - Mathematik
Universität Duisburg-Essen
Standort Essen
45117 Essen

Matthias Wendt

wendt@mathematik.uni-leipzig.de

Mathematisches Institut
Universität Leipzig
Augustusplatz 10/11
04109 Leipzig

Prof. Dr. Jörg Wildeshaus

wildesh@math.univ-paris13.fr

Departement de Mathematiques
Institut Galilee
Universite Paris XIII
99 Av. J.-B. Clement
F-93430 Villetaneuse

Malte Witte

mam98jpu@studserv.uni-leipzig.de

witte@mathematik.uni-leipzig.de

Mathematisches Institut
Universität Leipzig
Augustusplatz 10/11
04109 Leipzig

Prof. Dr. Serge A. Yagunov

yagunov@pdmi.ras.ru

St. Petersburg Branch of
Mathematical Institute of
Russian Academy of Science
Fontanka 27
191011 St. Petersburg
RUSSIA


