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Introduction by the Organisers

Current research in the control of partial differential equations is driven by a
multitude of applications in engineering and science that are modelled by coupled
systems of nonlinear differential equations. Associated optimal control problems
need efficient numerical methods to deal with the resulting very large problems.
There is a fast development of numerical methods and the associated analysis must
keep track to justify them and to prepare the basis for further research. It has been
the main intention of this Conference to tighten the links between applications,
numerics and analysis with some emphasis on the analytic aspects. The meeting
was attended by about 50 participants from Europe and the US.

The scientific program consisted of 30 talks that covered various topics such
as controllability, feedback control, optimality conditions, analysis and control of
Navier-Stokes equations, model reduction of large systems, optimal shape design,
and applications in crystal growth, chemical reactions and aviation. It showed
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that Optimal Control of Partial Differential Equations is a very lively and active
mathematical field. Well known experts with long standing experience, Postdocs
and PhD students contributed to the program. In particular, 4 PhD students from
US took part who received full support from the NSF.

This diversity of topics and mix of participants stimulated an extensive and
fruitful discussion and initiated new collaborations, in particular of younger re-
searchers.

Karl Kunisch
Günter Leugering
Jürgen Sprekels
Fredi Tröltzsch
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Abstracts

On an Optimal Obstacle Control Problem

Mäıtine Bergounioux

(joint work with Suzanne Lenhart)

We consider an optimal control problem where the state satisfies a bilateral elliptic
variational inequality and the control functions are the upper and lower obstacles.
We seek a state that is close to a desired profile and for which the H2 norms of
the obstacles are not too large. The motivation of our work is threefold. First,
as mentioned above, many shape optimization problems can be modeled as the
problem we describe here below. Secondly, as usual, in optimal control theory,
we are looking for a first order necessary optimality system that allows us to
compute the solution exactly (often not the case) or numerically. Thirdly, from
the theoretical point of view, the problem is involved in a wider class of (open)
problems, which can be (formally) described as follows:

min{J(u, χ), u = T (χ), χ ∈ Uad ⊂ U},
where T is an operator which associates u to χ, where u is a (or the only) solution
to :

∀v ∈ K(u, χ), 〈A(u, χ), u− v〉 ≥ 0,

where K is a multiapplication from X × U to 2X , where X is a Banach space and
U a Hilbert space. Let us give an example: let Y be a Banach space and A a
differential operator (linear or not), parabolic or elliptic from Y to the dual space
Y ′, and h an application from R × R × R to R. The differential equation that
relates the control χ to the state function u (i.e., the state “equation”) is

〈Au, v − u, 〉Y,Y′ + h(u, χ, v) − h(u, χ, u) ≥ (χ, v − u) ∀v ∈ Y ,
where

(i) h(u, χ, v) = h(v) gives the classical variational inequalities;
(ii) h(u, χ, v) = h(χ, v) gives (for example) obstacle problems (where the

obstacle is the control): this is the problem we investigate here;
(iii) h(u, χ, v) = h(u, v) leads to quasi-variational inequalities whose study is

very delicate.

Let Ω be an open bounded subset of Rn with a smooth boundary ∂Ω. We
consider the bilinear form a(., .) defined on H1

o (Ω) ×H1
o (Ω) by

(1) a(u, v) =

n∑

i,j=1

∫

Ω

aij
∂u

∂xi

∂v

∂xj
dx +

n∑

i=1

∫

Ω

bi
∂u

∂xi
v dx+

∫

Ω

cu v dx,

where aij , bi, c belong to L∞(Ω). Moreover, we assume that aij belongs to C0,1(Ω̄)
(the space of Lipschitz continuous functions in Ω) and that c is nonnegative. The
bilinear form a(., .) is continuous on H1

o (Ω) ×H1
o (Ω) and coercive on H1

o (Ω).
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We call A ∈ L(H1
o (Ω), H−1(Ω)) the linear (elliptic) operator associated with a

such that 〈Au, v〉 = a(u, v). Given ϕ, ψ ∈ H1
o (Ω), we set

(2) K(ϕ, ψ) = {u ∈ H1
o (Ω) | ϕ ≤ u ≤ ψ a.e. in Ω},

which is a nonempty, closed, convex subset of H1
o (Ω). All inequalities as u ≤ ψ

are understood in the almost everywhere sense. Moreover, f ∈ L2(Ω). For any
ϕ, ψ ∈ H2(Ω), the variational inequality

(3) ∀v ∈ K(ϕ, ψ), a(u, v − u) ≥ (f, v − u), u ∈ K(ϕ, ψ),

has a unique solution u that belongs to to H2(Ω) ∩H1
o (Ω)( [2]. So we may define

the operator T from (H2(Ω)∩H1
o (Ω))× (H2(Ω)∩H1

o (Ω)) to H2(Ω)∩H1
o (Ω) such

that T (ϕ, ψ) = u is the unique solution to the variational inequality (3). It is
known that this operator is not differentiable.

The set of admissible controls is defined as follows:

Uad = {(ϕ, ψ) ∈ (H2(Ω) ∩H1
o (Ω)) × (H2(Ω) ∩H1

o (Ω)) | ϕ ≤ ψ },
and we consider the optimal control problem (P) :

min

{
J(ϕ, ψ)

def
=

1

2

∫

Ω

(T (ϕ, ψ)−z)2dx+
ν

2

(∫

Ω

(
(∆ϕ)2 +(∆ψ)2

)
dx

)
, (ϕ, ψ)∈Uad

}
,

where z ∈ L2(Ω).
We use a classical technique (see [1,2]) to approximate the variational inequality

by a semilinear equation. We define

(4) β(r) = 0 if r ≥ 0, −r2 if r ∈ [−1

2
, 0], r +

1

4
if r < −1

2
.

and introduce the following semilinear elliptic equation:

(5) Au+
1

δ
(β(u− ϕ) − β(ψ − u)) = f in Ω, u = 0 on ∂Ω.

As β(· − ϕ) − β(ψ − ·) is nondecreasing, it is known that the above equation has
a unique solution uδ ∈ H2(Ω) ∩H1

o (Ω), and we set uδ = T δ(ϕ, ψ).
Then we may prove the following results :

Theorem 1. 1. Let (ϕδ , ψδ) ∈ Uad be a sequence strongly convergent in H1
o (Ω)

to some (ϕ, ψ) as δ tends to 0. Then the sequence uδ = T δ(ϕδ , ψδ) converges to
u = T (ϕ, ψ) strongly in H1

o (Ω).
2. T is continuous from Uad endowed with the H2(Ω) × H2(Ω) sequential weak
topology to H1

o (Ω) endowed with the sequential weak topology.
3. Problem (P) has (at least) an optimal solution (ϕ∗, ψ∗).

Let (ϕ∗, ψ∗) be an optimal solution to (P) and u∗ = T (ϕ∗, ψ∗).
For any δ > 0, we define Jδ(ϕ, ψ) :=

1

2

[∫

Ω

(
T δ(ϕ, ψ)−z

)2
dx+ν

∫

Ω

(
(∆ϕ)2 +(∆ψ)2

)
dx+‖ϕ−ϕ∗‖2

2 +‖ψ−ψ∗‖2
2

]
.

and define an approximate optimal control problem as follows:

(Pδ) min {Jδ(ϕ, ψ), (ϕ, ψ) ∈ Uad }.
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Theorem 2. Problem (Pδ) has (at least) an optimal solution (ϕδ , ψδ). Moreover,
the sequence (ϕδ , ψδ) weakly converges to (ϕ∗, ψ∗) in H2(Ω), while uδ=T δ(ϕδ, ψδ)
strongly converges to u∗ = T (ϕ∗, ψ∗) in H1

o (Ω).

We now establish a (necessary) optimality system for (Pδ) .

Theorem 3. Assume that (ϕδ , ψδ) is an optimal solution to (Pδ) and uδ =
T δ(ϕδ , ψδ). Then there exist pδ ∈ H1

o (Ω) ∩ H2(Ω) and µδ1, µ
δ
2 ∈ L2(Ω) such that

the following optimality system is satisfied:

(6a) Auδ +
1

δ

(
β(uδ − ϕδ) − β(ψδ − uδ)

)
= f in Ω, uδ = 0 on ∂Ω,

(6b) A∗pδ + µδ1 + µδ2 = uδ − z in Ω, pδ = 0 on ∂Ω,

(6c)
∀(ϕ, ψ) ∈ Uad,

(
µδ1 + ϕδ − ϕ∗, ϕ− ϕδ

)
2

+
(
µδ2 + ψδ − ψ∗, ψ − ψδ

)
2

+ ν
(
∆ϕδ ,∆(ϕ− ϕδ)

)
2

+ ν
(
∆ψδ ,∆(ψ − ψδ)

)
2
≥ 0.

Finally we prove that we may pass to the limit, thanks to accurate estimates
for the different δ-elements and we obtain :

Theorem 4. Let (ϕ∗, ψ∗) be an optimal solution to (P). Then ∆(ϕ∗ + ψ∗) ∈
H1
o (Ω) and there exist p∗ ∈ H1

o (Ω) and λ∗ ≥ 0 in H−1(Ω) such that the following
optimality system is satisfied:

(7a) u∗ = T (ϕ∗, ψ∗),

(7b) A∗p∗ = u∗ − z∗ − µ∗ in Ω, p∗ = 0 on ∂Ω,

(7c) 〈p∗, µ∗〉 ≥ 0,

(7d) µ∗ = µ∗
1 + µ∗

2, with µ∗
1 = −λ∗ − ν∆2ϕ∗ and µ∗

2 = λ∗ − ν∆2ψ∗,

(7e) 〈λ∗, ϕ∗ − u∗〉 = 0 and 〈λ∗, u∗ − ψ∗〉 = 0.
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Thin and Cracked Sets in Image Processing and Related Topics

Michel C. Delfour

As a matter of terminology a subset Ω of the N -dimensional Euclidean space RN

whose boundary Γ is not empty is said to have a thin boundary if theN -dimensional
Lebesgue measure of its boundary Γ is zero (cf. [8], pp. 210–225). In this talk, two
sets of results are presented in relation to the use of the oriented distance function
in shape/geometric analysis and optimization with potential applications in image
processing and level sets methods.

The first one [10] is the introduction of the new family of cracked sets [10]
which forms a compact family of sets in the W 1,p-topology associated with the
oriented distance function [8] with an original application to the celebrated image
segmentation problem formulated by Mumford and Shah and some variations of
the associated original image functional that do not require a penalization term
on the length of the segmentation. The sets in this family have thin boundary. It
contains non-regular sets and submanifolds of variable dimension. They can have
cusps [5–7] and a wide range of singularities.

In the classical formulation of the segmentation problem, there is a penalization
term that makes the length of the segmentation finite. Yet, it is easy to construct
simple examples of segmentation where that length is infinite. Moreover that
term contributes to neglect long slender objects with a large perimeter and a
small surface area to the benefit of objects with a large surface area and a small
perimeter. Therefore thin crack-like objects will be more difficult to see.

The originality of the approach is that it does not require a penalization term
on the length of the segmentation and that, within the set of solutions, there exists
one with minimum density perimeter as defined by Bucur and Zolésio [4]. It is
different from the approach by SBV functions [2] where the locus of discontinuities
of the function (and hence the perimeter of the segmenting interface) is finite. In
the process, we revisit and recast in the W 1,p-framework the earlier existence
theorem of Bucur and Zolésio [4] for sets with a uniform bound or a penalization
term on the density perimeter.

The second set of results [9] is a new nonlinear evolution equation that describes
the time evolution Ωt of the oriented distance function1

bΩt

def
= dΩt − d{Ωt

of an initial set Ω at time t = 0 with only a thin boundary under the influence of
a velocity field V (t). This equation

∂

∂t
bΩt + V (t) ◦ pΓt · ∇bΩt = 0 a.e. in R

N

makes sense almost everywhere in the space variable and not only on the boundary
(or the front) Γt of the time-varying set Ωt. In our analysis the velocity field V (t)

1dA is the usual distance function to a set A and {A is the complement of the set A in R
N .
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is assumed to be Lipschitz, but the projection pΓt is at best BV as the gradient of
the convex function

ft(x)
def
=

1

2

(
|x|2 − |bΩt(x)|2

)

(cf. [8], p. 214 and Thm 6.3, p. 230). The singularities of pΓt occur on the
skeleton of Ωt which is a set of zero measure. The term V (t) ◦ pΓt makes sense as
a BV mapping since it is the composition of a Lipschitz mapping V (t) and a BV
mapping pΓt (cf. [3]).

In [9], we relate our results to equations and constructions used in the context
of level set methods [13]. A simple example illustrates that our equation still holds
even if the restriction of the equation to the boundary does not make sense. It
also turns out that the velocity term V (t) ◦ pΓt in our equation is related to the
concept of extension velocity introduced by Malladi, Sethian, and Vemuri [11] in
1995 (see also [1]). The natural extension velocity that comes out of our analysis
is the original velocity V (t) evaluated at the projection pΓt(x) of the point x onto
the time-varying boundary (or front) Γt. This was one of the choices of extension
velocity suggested in [11]. We further introduce in [9] a new moving narrow-band
method that does not theoretically require a reinitialization of the band and can be
readily implemented to solve our evolution equation only in the narrow band. It
is based on the introdution of a special two-parameter extension/cut-off function
that creates two tubular neighborhoods Uh′(Γt) and Uh(Γt) around Γt of fixed
thicknesses 0 < h′ < h (independent of t). In the smaller tubular neighborhood
Uh′(Γt) we have exactly bΩt while outside the larger tubular neighborhood Uh(Γt)
we have zero.
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Unique Continuation for the Stationary Anisotropic Maxwell System

Matthias M. Eller

The Cauchy problem is one of the classical boundary value problems in partial
differential equations. It is well known that the hyperbolic Cauchy problem is well-
posed. Problems of boundary control and inverse problem for partial differential
equations have led to a more detailed study of non-hyperbolic or ill-posed Cauchy
problems. Roughly speaking, these ill-posed Cauchy problems become relevant
whenever one measures some some physical quantity on the boundary of a region
(or part thereof) and wants to predicts behavior of the same quantity inside of
that region. The most interesting question for the ill-posed Cauchy problem is the
question about the uniqueness of the solution. In other words, do zero Cauchy
data on the boundary of a region force a solution to a partial differential equation
to vanish inside that region? This is essentially a local problem and is then often
called unique continuation.

Unique continuation is very well understood for operators with analytic coeffi-
cients. Holmgren’s Theorem (1901) gives the exhaustive answer: There is unique-
ness of the continuation across all non-characteristic surfaces. As soon as the
coefficients are non-analytic the problem becomes much more difficult. By now
there is a large class of positive results, in particular for scalar second order oper-
ator. On the other hand there are still only few positive results for higher order
equations or for systems of equations. For some striking counterexamples even for
operators with C∞-coefficients we refer to [K63] and [P61].

Most uniqueness results rely on Carleman estimates which are weighted energy
estimates carrying a large parameter. Given a partial differential operator P of
order m and a level surface S = {ψ(x) = ψ(x0)} where ψ ∈ C2 with ψ′(x0) 6= 0
one looks for an estimate of the form

(1)
∑

|α|≤m−1

τ2(m−|α|)−1

∫
e2τφ|Dαu|2dx ≤ C

∫
e2τφ|P (x,D)u|2dx τ ≥ τ0

for all u ∈ C∞
0 compactly supported in a neighborhood of x0. Here φ = eλψ for

some λ ≥ λ0 and τ is a large positive parameter. An inequality of this form implies
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unique continuation for solutions to P (x,D)v = 0 across the surface C2-surface
S, i.e. if v is zero in S+ = {ψ(x) > ψ(x0)} then v vanishes in a full neighborhood
of x0. This follows from the estimate (1) after a localization and perturbation
argument [H83, Chapter XXVII].

T. Carleman pioneered this type of estimate in 1939 for the purpose of unique
continuation [C39]. L. Hörmander developed estimates of the from (1) systemati-
cally and proved unique continuation across so-called strongly pseudo-convex sur-
faces for a large class of scalar operators [H63, Chapter 8]. His results are optimal
for second order elliptic operators and provide also some results for second order
hyperbolic operators. Hörmander’s theorem does not apply to systems of partial
differential equations; however, a number of systems of partial differential equa-
tions can be principally decoupled into a diagonal system of second order operators.
Carleman estimates are applied to each component and uniqueness can be proved.
This has been done for the isotropic elastic wave equations [W69] [EINT02] as
well as the isotropic Maxwell equations [EINT02]. However, this approach breaks
down as soon as the system becomes anisotropic, i.e. when the coefficients are not
scalars but rather matrices.

A precursor of Hörmander’s Theorem is Calderón’s Theorem [C58]. He proved
unique continuation across some surfaces for a scalar mth order operator. His
proof is quite instructive. Using pseudo-differential operators he transforms the
mth order equation into a first order system without changing the characteristic
set. Then he considers the system as an evolution in direction of the surface
function’s gradient ψ′. The symbol of the first order system is brought into Jordan
form. A Carleman estimate is derived provided the Jordan form is smooth and
satisfies certain structural assumptions.

Rather recently, Imanuvilov and Yamamoto have observed that Calderón’s ap-
proach will lead to a Carleman estimate for the stationary isotropic elastic sys-
tem [IY04]. In this talk we will use Calderón’s method to obtain a Carleman
estimate and unique continuation for the anisotropic stationary Maxwell equa-
tions.

Let E(x) and H(x) be two vector-valued functions Ω → R3, the electric field
intensity and the magnetic field intensity, respectively. Furthermore, the electric
permeability ε(x) and the magnetic permittivity µ(x) are 3 × 3 positive definite,
symmetric matrices with C1 entries. The homogeneous Maxwell system consists
of the following equations

ε(x)E(x) − curlH(x) = 0

µ(x)H(x) + curlE(x) = 0

div(ε(x)E(x)) = 0

div(µ(x)H(x)) = 0

(2)

We will discuss the following Carleman estimate.
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Theorem 1. Let Ω be a connected, open set in R
3 and let ψ ∈ C1(Ω) such that

∇ψ 6= 0. Let E,H ∈ H1(Ω) with compact support in Ω. Then there exist positive
constants λ0,s0 and C such that for s ≥ s0 and λ ≥ λ0

1

sλ

3∑

j=1

∫

Ω

φ−1(|∂jE|2 + |∂jH |2)e2sφdx+ sλ2

∫

Ω

φ(|E|2 + |H |2)e2sφdx

≤ C

∫
e2sφ

{
|εE −∇×H |2 + |µH + ∇×E|2 + |∇ · (εE)|2 + |∇ · (µH)|2

}
dx

Here φ = eλψ.

This theorem gives the following uniqueness result.

Theorem 2. Solutions to the homogeneous anisotropic Maxwell equations with
positive C1-coefficients satisfy the unique continuation property across any C2-
surface.

To our best knowledge this is the first uniqueness result for the fully anisotropic
Maxwell system and improves over earlier works by V.Vogelsang [V91] and T. Okaji
[O02]. In both papers there were some structural assumptions on the relationship
of ε and µ, more specifically, the assumption ε(x0) = µ(x0) = I was imposed
in [V91] and the assumption ε(x0) = κµ(x0) for a scalar κ in [O02].

This Carleman estimate is proved using Calderón’s approach. For that purpose
it will suffice to consider the div-curl system, i.e.

curlw(x) = F (x)

div(A(x)w(x)) = G(x)
(3)

where A(x) is a symmetric, positive definite matrix with C1 entries. Maxwell’s
system (2) is a weakly coupled system of two div-curl systems.

So far unique continuation for solutions to systems of partial differential equa-
tions have been proved on a case by case basis. A more general result is highly
desirable. The central question here is whether certain G̊arding type inequalities
which are known to be valid for scalar operators can be generalized to the case of
matrix symbols.
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elastischer Körper Math. Z. 111 1969 pp.387-398.

Aero-Structural Wing Design Optimization Using a Coupled Adjoint

Approach

Nicolas R. Gauger

(joint work with Antonio Fazzolari and Joel Brezillon)

The aerospace industry is increasingly relying on advanced numerical flow simula-
tion tools in the early aircraft design phase. Today’s flow solvers, which are based
on the solution of the compressible Euler and Navier-Stokes equations, are able to
predict aerodynamic behaviour of aircraft components under different flow condi-
tions quite well [1]. Within the next few years numerical shape optimization will
play a strategic role for future aircraft design. It offers the possibility of designing
or improving aircraft components with respect to a pre-specified figure of merit,
subject to geometrical and physical constraints.

Here, aero-structural analysis is necessary to reach physically meaningful opti-
mum wing designs. The use of single disciplinary optimizations applied in sequence
is not only inefficient but in some cases has been shown to lead to wrong, non-
optimal designs [2]. Although multidisciplinary optimizations are possible with
classical approaches for sensitivity evaluations by means of finite differences, these
methods are extremely expensive in terms of calculation time, requiring the reit-
erated solution of the coupled problem for every design variable.

However, adjoint approaches are known to allow the evaluation of these sen-
sitivities in an efficient way and to lead to high accuracy. First, we present the
development and application of a continuous adjoint approach for single disci-
plinary aerodynamic shape designs. This approach was previously developed at
the German Aerospace Center (DLR) [3] and was the starting point for the exten-
sion to aero-structural wing designs. Second, we describe the adjoint approach and
its implementation for the evaluation of the sensitivities for coupled aero-structure
optimization problems [4] and its application for the drag reduction of the AMP
wing by constant lift while taking into account the static deformation of this wing
caused by the aerodynamic forces (see figure 1). Finally, we show the application
of the coupled aero-structural adjoint approach for the Breguet formula of aircraft
range, where next to the lift to drag ratio the weight of the AMP wing is taken
into account (see also figure 1).
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Figure 1. Pressure distribution for the baseline AMP wing shape
and for the optimal wing shapes for drag minimization and range
maximization (Mach = 0.78, α = 2.83◦).



Optimal Control of Coupled Systems of PDE 1011

References

[1] N. Kroll, C.C. Rossow, D. Schwamborn, K. Becker and G. Heller, MEGAFLOW - a Nu-
merical Flow Simulation Tool for Transport Aircraft Design, ICAS 2002-1.10.5, 23rd Inter-
national Congress of Aeronautical Sciences, Toronto, 2002.

[2] J.R. Martins, J.J. Alonso and J.J. Reuther, High-Fidelity aero-structural design optimiza-
tion of a supersonic business jet, AIAA 2002-1483, 2002.

[3] J. Brezillon and N. Gauger, 2D and 3D Aerodynamic Shape Optimization using the Adjoint

Approach, Aerospace Science and Technology, Vol. 8, No. 8, pp. 715-727, 2004.
[4] A. Fazzolari, N. Gauger and J. Brezillon, Sensitivity Evaluation for Efficient Aerodynamic

Shape Optimization with Aeroelastic Constraints, In Neittaanmäki, Rossi, Korotov, Onate,
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Optimal Control in Magnetohydrodynamics

Roland Griesse

(joint work with Karl Kunisch)

Magnetohydrodynamics, or MHD, deals with the mutual interaction of electri-
cally conducting fluids and magnetic fields. The nature of the coupling between
fluid motion and the electromagnetic quantities arises from the following three
phenomena:

(i) The relative movements of a conducting fluid and a magnetic field induce
an electromotive force (Faraday’s law) to the effect that an electric current
develops in the fluid.

(ii) This current in turn induces a magnetic field (Ampère’s law).
(iii) The magnetic field interacts with the current in the fluid and exerts a

Lorentz force in the fluid.

It is the third feature in the nature of MHD which renders it so phenomenally
attractive for exploitation especially in metallurgical processes. The Lorentz force
offers a unique possibility of generating a volume force in the fluid and hence to
control its motion in a contactless fashion and without any mechanical interference.

Essentially, the MHD system consists of the Navier-Stokes equation with Lo-
rentz force, yielding the fluid velocity u and its pressure p, plus Maxwell’s equations
describing the interaction of the electric field E and the magnetic field B. In the
stationary case, the complete MHD system is given by

∇ · J = 0 ∇× E = 0(1)

(Charge conservation) (Faraday’s law)

∇ · B = 0 ∇× (µ−1B) = J(2)

(No magnetic monopoles) (Ampère’s Law)

J = σ(E + u × B)(3)

(Ohm’s law)
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together with the Navier-Stokes system with Lorentz force

%(u · ∇)u − η∆u + ∇p = J × B(4)

∇ · u = 0.(5)

We refer to [1, 4] for more details. Here and throughout, µ denotes the magnetic
permeability of the matter occupying a certain point in space, and %, η and σ
denote the fluid’s density, viscosity and conductivity. All of these numbers are
positive. We emphasize that we consider µ a constant throughout space, hence
we assume a non-magnetic fluid and no magnetic material present in its relevant
vicinity.

It is an outstanding feature in magnetohydrodynamics that from the set of
state variables (u, p,E,B,J), the electric and magnetic fields E and B extend
to all of R3, whereas the velocity u and pressure p are confined to the bounded
region Ω ⊂ R3 occupied by the fluid. The current density J is defined within
the fluid region and possibly also in external conductors. In what appear to be
the practically relevant cases where the outside of the fluid region Ω is finitely
conducting or non-conducting, hence permitting control by distant magnetic fields,
the proper boundary condition for B is an interface condition requiring B to be
continuous across ∂Ω in both its normal and tangential components, i.e.,

[B]∂Ω = 0(6)

where [·]∂Ω denotes the jump of any quantity when going from the interior of Ω to
its exterior. In the velocity–current formulation in terms of the variables (u,J) of
the state equation system (1)–(5), see [3], the magnetic field B is eliminated by
means of a solution operator B(J) which uniquely solves the div–curl system (2)
for divergence-free currents J and respects the interface condition (6). Moreover,
the irrotational electric field E is replaced by its potential φ (unique only up to a
constant). In our case of constant permeability µ, the operator B(J) is given by
the Biot-Savart law,

(7) B(J)(x) = − µ

4π

∫

R3

x − y

|x − y|3 × J(y) dy.

Inserting B = B(J) into (1)–(5), we are left with the velocity–current formulation
of the stationary MHD system,

%(u · ∇)u − η∆u + ∇p− J × B(J) = 0 ∇ · u = 0(8)

σ−1J + ∇φ− u × B(J) = 0 ∇ · J = 0(9)

for the unknowns (u, p,J , φ). Here u and p and the electric potential φ are confined
to the region Ω occupied by our conducting fluid, while J may additionally extend
to external conductors, see Figure 1.

To complete the specification of the state equation, boundary conditions are
required for the current density J and the fluid velocity u. For the former, we
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require

J · n = J inj · n on ∂Ωinj ∩ ∂Ω(10)

J · n = 0 on ∂Ω \ ∂Ωinj(11)

where the injected current J inj can be controlled in magnitude. For the fluid
velocity, we impose Dirichlet boundary conditions

u = h on ∂Ω.(12)

In [2] we consider an optimal control problem of the form

Minimize
αu
2
‖u − ud‖2

L2(Ωu,obs)
+
αB
2

‖B − Bd‖2
L2(ΩB,obs)

+
αJ
2
‖J − Jd‖2

L2(ΩJ,obs)
+
γext

2
|Iext|2 +

γinj

2
|Iinj|2 +

γB
2
|Bext|2(P)

subject to (8)–(12).

The control variables Iext, Iinj and Bext denote the strengths of the currents in
external conductors, and of an external magnetic field, respectively, see Figure 1.
The total magnetic field B is a superposition of the field B(J) induced by the

Figure 1. General Setup: Fluid region Ω (blue cube), external
conductor Ωinj attached to the fluid region (grey), and external
conductor Ωext separate from the fluid region (red).

current J inside the fluid domain, the fields B(J ext) and B(J inj) induced by the
currents in the external conductors (whether or not attached to the fluid domain),
and the magnetic field Bext associated with the permanent magnet, i.e.,

B = B(J) + B(Jext) + B(J inj) + Bext.(13)

We present a proper function space framework, first order necessary and second
order sufficient optimality conditions for (P) and prove a convergence result for
an operator splitting scheme concerning the numerical solution of the MHD state
equation.
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Optimal Boundary Control of Conservation Laws

Martin Gugat

Many parts of the infrastructure can be modelled as networked systems of con-
servation laws (water channels, streets, pipeline systems). The solution of optimal
control problems for such systems can help to run these systems in an efficient
way. For the development of numerical methods that solve these problems, an
analysis of systems of this type is essential. As a first example problem, we con-
sider problems of optimal exact boundary control for the wave eqation. For these
problems, analytical solutions of the optimal control problems can be given for a
large class of spaces (see [3], [2]).

For networked systems of water channels, the de St. Venant equations coupled
by algebraic node conditions are used as a model. The de St. Venant equations
form a system of two scalar conservation laws, so that information can travel in two
directions (downstream and upstream) at the same time. Various controllability
results have been achieved so far:

• Frictionless horizontal channels, Local Controllability see [1], [9]:
Locally around a subcritical stationary state (also for star–shaped net-

works) exact boundary control with continuously differentiable states is
possible.

For the applications, it is important to have some information about the control-
lability properties of the system for states that are far away from each other.

• Frictionless horizontal channels, Transcritical Global Controllability see
[5]: Between all stationary states (both sub- and supercritical withour
restriction on their distance) exact boundary control with continuously
differentiable states is possible.

• Trees of sloped channels with friction, Global Controllability see [8]:
Between supercritical stationary states with the same orientation exact

boundary control with continuously differentiable states is possible.
• Recent results (see [10]) state that locally around a subcritical stationary

state for tree shaped networks of channels local controllability is possible.

For the numerical solution of optimal control problems with networked water chan-
nels, an adjoint based sensitivity calculus has been developed for continuously
differentiable solutions (see [6]). This calculus has been used for the numerical
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solution of example problems by gradient based optimization methods. Traffic
flow through networks of street has also been studied (see [7]). In this case, the
flow is modelled by a single scalar conservation law.
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Spatial Domain Decomposition and Model Reduction for Parabolic

Optimal Control Problems

Matthias Heinkenschloss

(joint work with M. Herty and D. C. Sorensen)

This work combines an optimization-level spatial domain decomposition method
with model reduction for the efficient solution of linear-quadratic parabolic opti-
mal control problems. Such problems arise directly in many applications, but also
as subproblems in Newton or sequential quadratic programming methods for the
solution of nonlinear parabolic optimal control problems. The motivation for this
work is threefold. First, our approach addresses the storage issue that arises in the
numerical solution of parabolic optimal control problems due to the strong cou-
pling in space and time of the state, adjoint, and control variables. Secondly, our
domain decomposition method introduces parallelism at the optimization level.
The third motivation arises from the availability of sensor networks that offer in-
network computing capabilities, allow neighbor-to-neighbor communication, but
for which communication among distant nodes is prohibitive because of commu-
nication bandwidth and battery power limitations. Our combination of domain
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decomposition and model reduction offers the possibility for in-network comput-
ing, in which the global problem is solved using spatially distributed processors
that communicate primarily with their immediate neighbors.

To illustrate our ideas, we consider the example problem

minimize
1

2

∫ T

0

∫

Ω

(y(x, t) − z(x, t))2dxdt+
α

2

∫ T

0

∫

Ω

u2(x, t)dxdt,(1)

subject to

(2)
∂ty(x, t) − µ∆y(x, t) + a(x)∇y(x, t) + c(x)y(x, t) = f(x, t) + u(x, t)

in Ω × (0, T ), y(x, t) = 0 on ∂Ω × (0, T ), y(x, 0) = y0(x) in Ω,

where Ω ⊂ Rd, d = 1, 2 or 3, is a given domain, y0 ∈ L2(Ω), z ∈ L2(Ω × (0, T )),
a ∈ [W 1,∞(Ω)]d, c ∈ L∞(Ω), f ∈ L2(Ω × (0, T )) are given functions and α > 0,
µ > 0 are given parameters. We refer to y as the state and to u as the control.
Extension of our framework to several other problems are possible.

It is well known [7] that the optimal control problem (1,2) has a unique solution
y ∈ {y : y ∈ L2(0, T ;H1

0(Ω)), y′ ∈ L2(0, T ;H−1(Ω))} and u ∈ L2(Ω × (0, T )).
The system of necessary and sufficient optimality conditions consists of (2) and
(3)

−∂tp(x, t) − µ∆p(x, t) − a(x)∇p(x, t)
+(c(x) −∇a(x))p(x, t) = −(y(x, t) − z(x, t)) in Ω × (0, T ),

p(x, t) = 0 on ∂Ω × (0, T ), p(x, T ) = 0 in Ω,

αu(x, t) + p(x, t) = 0 in Ω × (0, T ).(4)

The domain decomposition approach for the solution of (2,3,4) is based on [4]
(see also [3, 5]). We divide Ω into nonoverlapping subdomains Ωi, i = 1, . . . , s,
and we define the subdomain interfaces Γi = ∂Ωi \ ∂Ω and Γ = ∪si=1Γi. We
introduce states and adjoints yΓ, pΓ defined on Γ × (0, T ). The system (2,3,4)
of optimality conditions is imposed onto Ωi. Let yi, ui, pi be the solution of the
restriction of (2,3,4) onto Ωi with the condition that yi = yΓ and pi = pΓ on
Γi × (0, T ). We may view yi, ui, pi as functions of yΓ and pΓ. For the example
problem, these functions are affine linear. To ensure that the subdomain states,
controls and adjoints yi, ui, pi are the restriction of the global states, controls and
adjoints y, u, p (the solution of (2,3,4)) onto Ωi, we require

(5)

(
µ ∂
∂ni

− ( 1
2a(x) · ni)

)
yi(x, t) = −

(
µ ∂
∂nj

− ( 1
2a(x) · nj)

)
yj(x, t),(

µ ∂
∂ni

+ ( 1
2a(x) · ni)

)
pi(x, t) = −

(
µ ∂
∂nj

+ ( 1
2a(x) · nj)

)
pj(x, t)

on ∂Ωi∩∂Ωj×(0, T ) for adjacent subdomains Ωi,Ωj . Here ni denotes the outward
unit normal for the ith subdomain. The subdomain solutions yi, ui, pi can be
viewed as affine linear functions of the interface variables yΓ and pΓ. Hence,
satisfying the transmission conditions (5) can be written as an operator equation

(6)

s∑

i=1

Si(yΓ, pΓ) =

s∑

i=1

ri.
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The equation (6) is solved using a preconditioned Krylov subspace method.
The evaluation of Si(yΓ, pΓ) requires the solution of the restriction of the ho-

mogeneous problem (2,3,4) onto Ωi with the condition that yi = yΓ and pi = pΓ

on Γi× (0, T ). The right hand sides ri are determined by similar subdomain opti-
mization problems, but with interface condition yi = 0 and pi = 0 on Γi × (0, T ).
It can be shown (see [3–5]) that the evaluation of Si(yΓ, pΓ) is equivalent to the
solution of an optimization problem, which is essentially a smaller copy of (1,2)
restricted onto the subdomain Ωi.

The operators Si, restricted to functions defined on Γi × (0, T ) can shown to
be invertible. The application of the inverse of Si also requires the solution of a
subdomain optimization problem. The inverses of Si can be used to construct pre-
conditioners for (6) that extend to the optimization context Neumann-Neumann
preconditioners well known for the solution of single PDEs [8].

The application of Si and their inverses, which are needed in preconditioners
for (6), correspond to subdomain optimal control problems. These problems are
significantly smaller than the original one (1,2) and they can be solved in parallel.
However, these are still expensive tasks. Moreover, for computations in sensor-
networks, sensors that will be available in the near future are not expected to
have sufficient computing power to solve the subdomain optimal control problems.
This motivates the introduction of model reduction. Model reduction seeks to
replace a large-scale system by a system of substantially lower dimension that has
nearly the same response characteristics. Specifically, we apply balanced model
reduction [1, 2] to the subdomain problems associated with Si and their inverses.
The advantages are that reduced order models for the subdomain problems can
be computed in parallel, and that model reduction can be tailored to localized
features of the problem more effectively than would be possible if balanced model
reduction was applied to the global problem (1,2) directly. This combination
of domain decomposition and model reduction also makes it possible to derive
distributed solution algorithms applicable in sensor networks.

As we have stated before, the evaluation of Si(yΓ, pΓ) requires the solution of
the restriction of the homogeneous problem (2,3,4) onto Ωi with the condition that
yi = yΓ and pi = pΓ on Γi×(0, T ). We apply model reduction to this system. This

leads to operators Ŝi that are much cheaper to evaluate computationally than Si.

Each Ŝi is invertible. Similarly, we can derive operators Ŝ−1
i that replace S−1

i . We
can now use model reduction to design preconditioners for (6). This will lead to
a faster algorithm for the solution of (1,2). We can also modify (6) by replacing

Si, ri with Ŝi, r̂i. The solution of the resulting system is no longer a solution of

(1,2), but the error in the solution can be bounded by operator norms ‖Ŝi−Si‖ [6].
The advantage of this modification of (6) is that the subdomain optimal control

problems that correspond to Ŝi are small and can be easily solved with small
computing resources, which is important for computing in sensor networks.

The crucial task now is to generate reduced models with bounds on ‖Ŝi − Si‖.
Such bounds are automatically provided as a result of the balanced reduction.
In [6] the subdomain problems associated with Si, which are essentially restrictions
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of (2,3,4) onto Ωi are identified with dynamical systems with inputs ui, yΓ (the
control restricted to Ωi and the states on the interface) and with outputs yi and
µ ∂
∂ni

yi−( 1
2a·ni)yi (the state restricted to Ωi and the Robin interface data (cf. (5)).

The so-called state space representation of these subdomain dynamical systems is
precisely in the form that allows the application of balanced truncation [1, 2] and

results in bounds for the operator norms ‖Ŝi − Si‖ that can be controlled.
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Boundary Feedback Control for the Stabilization of Unstable

Parabolic Systems

Vincent Heuveline

(joint work with T. Carraro and A. Fursikov)

We consider the stabilization problem by means of Dirichlet feedback control for
systems modeled by scalar or vector parabolic equations. The main emphasis is put
on the treatment of highly nonlinear reaction-advection-diffusion type equations
which are unstable if uncontrolled.

We present in that context two approaches:

(i) Formulation by means of an optimal control problem (joint work with T.
Carraro)

(ii) Extension operator and invariant manifold (joint work with A. Fursikov)

In the formulation by means of optimal control, the aspects related to online check-
pointing and a posteriori error estimation by means of model reduction (SPOD)
are addressed.
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Applications of stabilization for reactive multicomponent flows are presented.
In the second proposed approach we address numerical aspects related to the
quadratic approximation of invariant manifolds.

Optimal Control of Variational Inequalities

Michael Hintermüller

(joint work with D. Ralph, S. Scholtes, and K. Kunisch)

Many practical applications result in minimization problems of the form

minimize J(y, u) over (y, u) ∈ H × U(1a)

subject to y ∈ K, 〈A(u)y, v − y〉 ≥ (f(u), v − y) ∀v ∈ K,(1b)

with Ω ⊂ Rd, d = 1, 2, 3, a bounded and sufficiently smooth domain, H a suitable
Hilbert space,

K = {v ∈ H |v ≥ 0}
and U denoting the Hilbert space of controls. Instances are H = H1

0 (Ω) and
U ⊆ L2(Ω). Further, the objective J is assumed to be sufficiently smooth, the
operator A(u) maps from H to its dual space H∗, and f ∈ L(U,L2(Ω)).

Typical applications which lead to problems of structure (1) come from engi-
neering sciences (like, e.g., elastohydrodynamic lubrication of rolling element bear-
ings [2]), or, also in a transient regime, mathematical finance in form of volatility
estimation in the Black-Scholes model for American options; [1].

It is well known that due to the variational inequality-type constraint, problem
(1) does not satisfy any of the classical constraint qualifications which would guar-
antee the existence of Lagrange multipliers. This fact necessitates an independent
approach for the proof of the existence of Lagrange multipliers associated to (1).
We also point out that the first order necessary systems derived in the literature
might accept spurious stationary points; see, e.g., the recent papers [3,6]. In fact,
the critical set in the context of the derivation of first order conditions is the
so-called bi-active set B, i.e., the set where

y∗ = 0 and λ∗ = 0 a.e. on B,

simultaneously. If this set would have measure zero, then typically the overall
problem (and the existence proof of multipliers) is more amenable. In this case, in
finite dimensions one obtains that, under the assumption that the discretization
of A(u) is well behaved, the solution y(u) of the discretized lower level problem is
Fréchet-differentiable with respect to u [8, Thm. 4.2.28]; otherwise one can at best
guarantee directional differentiability. Usually, however, B has positive measure
and therefore has to be taken into account.

In this presentation a new first order optimality characterization is discussed
which involves dual quantities (multipliers) associated to y∗ = 0 and λ∗ = 0 on
B satisfying certain sign conditions, respectively. For H = H1

0 (Ω) and A(u) a
second order linear elliptic partial differential operator, the multipliers associated
to λ∗ = 0 is in L2(B) while the quantity associated to y∗ = 0 is only a measure.
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The technique of proof hinges on the notion of pieces. Given some subset A ⊂ Ω,
a piece problem is a problem associated to (1) with

y = 0, λ ≥ 0 on A,

λ = 0, y ≥ 0 on I = Ω \A,
and the variational inequality in (1) is replaced by

A(u)y − λ = f(u) in H∗.

Notice that the resulting problem resembles a state-constrained optimal control
problem; [4]. Pieces are called adjacent if they differ only on a subset of the
bi-active set.

In a second part, an algorithmic framework is considered. It is based on a
feasibility restoration phase and a (semismooth) Newton step: In its core, given
u, first a solution of the variational inequality is computed. Then, based on this
solution and neglecting the conditions on the bi-active set, a linearization of the
first order system is performed. The solution of this system provides a search
direction for updating the current primal and dual variables. If the algorithm
stops, then the sign conditions of the multipliers on the current bi-active set are
checked. As long as these conditions are not satisfied, a new piece is defined and
the algorithm is continued; otherwise it stops at a stationary point in the sense of
the new first order conditions.

Particular attention is payed to the solver for the variational inequality in the
restoration step. Here, the focus will be given on variational inequalities where
A(u) is a second order linear elliptic differential operator with smooth coefficients,
and H = H1

0 (Ω). In this case, the variational-inequality in (1) denotes the first
order necessary and sufficient condition for

minimize 〈1
2
A(u)y − f(u), y〉(2a)

subject to y ≥ 0 a.e. in Ω(2b)

and (1) becomes a bi-level optimization problem. The proposed solution algorithm
for the lower level problem (2) is a semismooth Newton path-following method.
In a first step, (2) is regularized by considering

(3) minimize 〈1
2
A(u)y − f(u), y〉 +

1

2γ
‖max(0, λ̄− γy)‖2

L2(Ω).

Notice that the inequality constraint in (2) is softened by adding a quadratic
relaxation term replacing the hard constraint. The parameter γ ∈ (0,∞) denotes
the so-called path- (or penalty) parameter. It induces a Lipschitz continuous
primal-dual path

{(yγ , λγ) : γ ∈ (0,∞)},
where yγ solves (3), and λγ = max(0, λ̄ − γyγ) approximates the Lagrange mul-
tiplier λ∗ associated to the inequality constraint in (2) at its solution y∗ ≥ 0. It
is shown that by solving (3) as γ → ∞ a solution of the original problem (2) is
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approach, and that for every fixed γ the multiplier λγ enjoys more regularity than
λ∗.

For the solution of the first order system of (3), which is given by

A(u)yγ − λγ = f(u),

λγ = max(0, λ̄− γyγ),

a semismooth Newton method is used and, for fixed γ, its locally superlinear
convergence in function space is shown. The latter analysis relies on the concept
of slant differentiability and the particular problem structure; see [5, 7].

Based on an analysis of the smoothness properties of the primal-dual path,
differentiability properties of the value function

V (γ) = 〈1
2
A(u)yγ − f(u), yγ〉 +

1

2γ
‖max(0, λ̄− γyγ)‖2

L2(Ω)

are proved. These considerations allow to introduce a model function which closely
approximates the behavior of V along the primal-dual path and which serves as a
reliable tool for updating the path-parameter γ.

Further, the proposed algorithm relies on an inexact path-following technique.
Here, the ”inexactness” refers to the fact that early along the major iterations,
i.e., for small γ when solving (3), it is sufficient that the iterates stay in a certain
neighborhood of the path. This neighborhood, however, becomes smaller as γ is
enlarged. Finally, the efficiency of the new path following method and the overall
solution procedure is demonstrated for a class of parameter estimation problems.

Acknowledgement. The first part, i.e., the derivation of sharp first order
conditions for characterizing a solution of (1) is joint work with D. Ralph and S.
Scholtes, both from the Judge Institute of Managements Sciences, University of
Camebridge. The inexact path-following concept for the solution of elliptic vari-
ational inequalities is based on joint work with K. Kunisch from the Department
of Mathematics and Scientific Computing, University of Graz.
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Control of Crystal Growth Processes

Michael Hinze

(joint work with Günter Bärwolff, Ulrich Matthes, Axel Voigt, and Stefan
Ziegenbalg)

Crystal growth technology is essential for the developments in microelectronics,
optical communication, laser technology and numerous other high technologies.
An increase in crystal sizes and demands for structural perfection, homogeneity
and defect control will even increase the importance of reliable crystal growth
technologies in the future. The economic pressure requires increase of yields at
optimized performance.

Crystal growth processes involve many different related physical mechanisms
which interact on very different spatial and temporal scales. Mathematically, this
is expressed by a hierarchy of weakly coupled models of pdes. In model-based
simulation this weak coupling of the different components in the models can be
used to derive algorithms which relate microscopic crystal properties to macro-
scopic growth parameters. Model-based optimization is ’dual’ to the model-based
simulation in the sense that its hierarchy is directed from specific microscopic to
more general macroscopic pde models. Output variables of the different models
in the simulation loop take now the role of gains, and input variables those of
control parameters. In this spirit model-based optimization and design of crystal
growth processes are formidable tasks whose solution not only neccesitates inter-
disciplinary efforts of applied mathematicians and process engineers. It moreover
also serves as prototyping test application for the development and specification of
new mathematical and numerical approaches in the emerging field of optimization
problems with systems of coupled nonlinear pdes.

As model design applications we discuss control of the crystal melt considering
as mathematical model the Boussinesq approximation, control of solidification for
a sharp interface model, and control of weakly conductive fluids by Lorentz forces.

Control of the crystal melt: The flow in the crystal melt is gouverned by
the Boussinesq approximation of the Navier-Stokes system for the velocity ~u =
(u, v, w), the pressure p and the temperature θ;

(1)





~ut + (~u · ∇)~u− ∆~u+ ∇p−Gr θ~g = 0 on ΩT ,
−div ~u = 0 on ΩT ,

θt + ~u · ∇θ − 1
Pr∆θ − f = 0 on ΩT .

Here ~g = (0, 0, 1), and ΩT = Ω× (0, T ) denotes the space-time cylinder with cylin-
drical melt zone of height H and radius R. Furthermore, Gr denotes the Grashof
number, and Pr the Prandtl number. Since here we are interested in control via
boundary temperatures the absence of external forces is assumed. System (1) is
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supplied with temperature boundary conditions of third kind on the crucible walls
(which form the control boundary Γc), at the solid-liquid interface Γd the melting
temperature is prescribed, and Dirichlet boundary conditions at the remaining
parts of the boundary. For the flow Dirichlet boundary conditions are prescribed
on the whole boundary Γ. This leads to

(2)





u = ud, v = vd, w = wd on ΓT ,
a ∂θ∂n + bθ = θc on ΓcT ,

θ = θd on ΓdT ,

where ΓT := Γ × [0, T ], and a, b denote physical constants which may not vanish
simultaneously. System (1) is further supplied with appropriate initial values for
the velocity and temperature. We note that it is possible to include via ud, vd, wd
certain crystal and crucible rotations, as it is common in the case of Czochralski
growth. In the case of zone melting techniques one would require ~u = ~0 on ΓT .
The material properties and the dimensionless parameters depend on the specific
application and have to be defined appropriately. The optimization problem now
is given by

min
~u,θc

J(~u, θc) s.t. (1) − (2),

where the cost functional J models the control gain and costs. Examples of control
of Czochralski growth and floating zone devices for realistic material parameters
can be found in [1], [2]. Model predictive control of the Boussinesq approximation
is investigated in [3].

Control of solidification: Let Ω := S × (0, Xn+1) ⊂ Rn+1 denote the container
with the substrate, where S := (0, X1) × · · · × (0, Xn). For t ∈ [0, T ] we denote
by Ωs(t),Ωl(t) ⊂ Ω the parts containing the solid and the liquid phases, where

we assume that Ωs(t) ∩ Ωl(t) = ∅, and Ω = Ωs(t) ∪ Ωl(t). The free boundary

of dimension n then is defined by Γ(t) = Ωs(t) ∩ Ωl(t) and in our approach is
modeled as a graph Γ(t) = {(y, f(t, y)) : y ∈ S}. As mathematical model for the
solidification process we take the Stefan problem

(3)





∂tu = ks

csρ
∆u in Ωs and ∂tu = kl

clρ
∆u in Ωl,

VΓ = ks∂µu
∣∣
Ωs

− kl∂µu
∣∣
Ωl

on Γ, ( where VΓ = ft√
1+|∇f |2

),

∂ηu =
αs/l

ks/l
(ub0 + βubc − u) on ∂Ω, and

u = u0 in Ω and Γ(0) = Γ0.

In this model ks/l denote the heat conductivities, cs/l the specific heat in the solid
and liquid part, respectively, αs/l the heat transfer coefficients, ρ the density of
the substrate, and µ denotes the normal on Γ(t) directed from the solid to the
liquid phase. Further, ubc denotes the control temperature on the container wall,
and ub0 some temperature field from experience. For tracking a given evolution
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f̄(t, y) the optimization problem is given by

min
f,ubc

J(f, ubc) :=
1

2

∫ T

0

∫

S

(f − f)2 +
λ1

2

∫ T

0

∫

∂Ω

β2u2
bc+

λ2

2

∫

S

(f − f)2
∣∣
t=T

+
λ3

2

∫ T

0

∫

Γ

1
(
∂µu

∣∣
Ωs

+ ∂µu
∣∣
Ωl

)2 s.t. (3).

We have not included the Gibbs-Thomson law in our mathematical model, since it
describes effects on the meso- and micro-scale, whereas the boundary control acts
on the macro scale. However, the λ3−addend in the cost functional prevents the
regions along the free boundary where dendritic growth may occur from getting
large. For a discussion and more details we refer to [4].

Control of weakly conductive fluids: Weakly conductive fluids like sea water
and other electrolytes can be controlled by means of Lorentz forces

FL = J ×B,

which exponentially decay into the fluid. Here J is the current density and B
denotes the magnetic induction. Practically Lorentz forces can be generated by
certain electrode-magnet arrangements. Since the magnetic Reynolds number Rem
(of order 10−12 for electrolytes) and the conductivity of weakly conductive fluids
are very small FL in this case can be modeled as an external force. As mathemat-
ical model for the controlled flow in the domain Ω over the time horizon [0, T ] we
therefore take the incompressible Navier-Stokes system with volume force FL;

(NS)





yt − ν∆y + (y∇)y + ∇p = FL in Q := (0, T )× Ω,
−∇ · y = 0 in Q,
y(0) = y0 in Ω.

For FL we make the Ansatz

FL(t, x) =

m∑

i=1

ui(t)Fi(x)e
−dist[x,∂Ω],

with Fi denoting spatial vector fields modeling the direction of the Lorentz force,
and control variables ui modeling time dependent amplitudes related to the electric
current. The optimization problem then is given by

min
y,u

J(y, u) s.t. (NS), and − a ≤ ui(t) ≤ a for all t.

Here the cost functional J again models the control gain and costs, and a denotes
the maximal absolute value of admissible amplitudes. For details we refer to [5].
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Optimal Control of Solid-Solid Phase Transitions Including

Mechanical Effects

Dietmar Hömberg

(joint work with Wolf Weiss)

During the last 15 years, the thermomechanical modeling of phase transitions in
steel became an active research topic of physical metallurgy (cf., eg., [1–3] and the
references therein). It seems that there is no unified thermomechanical model at
hand so far that is well accepted and that allows to reproduce all experiments.
However, it is quite clear what the principle effects are that a macroscopic model
should account for:

• The metallurgical phases have material parameters with different thermal
characteristics, hence their effective values have to be computed by a
mixing rule.

• The different densities of the metallurgical phases result in a different
thermal expansion. This thermal and transformation strain is the major
contribution to the evolution of internal stresses during heat treatments.

• Experiments with phase transformations under applied loading show an
additional irreversible deformation even when the equivalent stress cor-
responding to the load is far below the normal yield stress. This effect is
called transformation-induced plasticity.

• The irreversible deformation leads to a mechanical dissipation that acts
as a source term in the energy balance.

• The internal stresses influence the transformation kinetics.

Assuming that the density only depends on the different volume fractions via a
mixture ansatz as well as disregarding the mechanical contribution to the phase
transition kinetics leads to the folowing model which has been investigated in [4]:
Find volume fractions z = (z1, . . . , z5), a stress tensor σ, a displacement field u
and a temperature field θ, such that the following system is satisfied:

z(t) = P [θ](t),(1)

div σ = f,(2)

ε(u) = C(z)σ + εth +

t∫

0

Λ(z)ξS(ξ) dξ,(3)
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(4) ρ(z)cεθt − div
(
k(θ) grad θ

)
= −ρL(z)z1,t

+ σ : εtht + Λ(z)t |S|2 + dw.

The operator equation (1) describes the evolution of the volume fractions z =
(z1, . . . , z5) depending on the temperature θ. Typically, the operator P is given
as the solution operator to an ordinary differential equation. Equation (2) is the
usual quasistatic momentum balance with stress tensor σ and an external force f .
The linearized strain tensor ε(u) is defined by

ε(u)ij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 3.

The constitutive equation (3) is derived from Hooke‘s law under the assumption
that the overall strain ε(u) can be additively decomposed into an elastic part,
C(z)σ, a thermal one, εth and one that stems from the transformation induced

plasticity, which is given by
t∫
0

Λ(z)ξS(ξ) dξ. Here, C(z) is the inverse of the stiffness

tensor, Λ(z) is a coefficient allowed to depend on the phase volume fractions, and
S is the trace-free part of σ. The last equation is the energy balance, with the
density ρ, heat capacity at constant strain cε, and the latent heat L. The heat
source w, multiplied by a coefficient d = d(x, t), may serve as a distributed control.
The main analytical difficulty of the coupled system stems from the quadratic
nonlinearity in S on the right-hand side of (4). Adding appropriate initial and
boundary conditions it has been shown in [4] that (1)–(4) admit a weak solution,
while uniqueness is still an open problem.

In the heat treatment of steel the goal is to obtain a desired distribution of
phases at end-time T . This corresponds to minimizing the cost functional

J(d) =
α1

2

∫

Ω

(z(T )− zd)
2

subject to (1)–(4). In [7] this control problem has been investigated disregarding
the anisotropic strain component in (3).

An important heat treatment technology is the laser hardening of steel. Ne-
glecting mechanical effects this problem has been investigated in [5] using model
reduction. An even more efficient approach based on PID- control has been de-
scribed in [6] including a strategy for the interplay between simulation and machine
based control which has also been verified by experiments.
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Convergence Analysis of an Adaptive Finite Element Method for

Distributed Control Problems with Control Constraints

Ronald H.W. Hoppe

(joint work with Michael Hintermüller)

Although adaptive finite element methods are widely and successfully used for
the efficient numerical solution of PDE related problems [1–3, 9, 12], very little is
known so far with regard to conditions that guarantee an error reduction and thus
lead to a convergent scheme. A convergence analysis of adaptive finite element
methods for standard Lagrangian type finite element discretizations of second or-
der elliptic boundary value problems has been performed in [8, 11]. Very recent
results, obtained in cooperation with C. Carstensen [5–7], deal with adaptive edge
element discretizations, adaptive mixed and adaptive nonconforming finite element
approximations. As far as the a posteriori error analysis of adaptive finite element
schemes for optimal control problems is concerned, the unconstrained case has
been addressed in [4] (cf. also [3]). In the control constrained case, residual-type
a posteriori error estimators have been derived and analyzed in [10].
In this contribution, we are concerned with the convergence analysis of an adap-
tive finite element method for distributed optimal control problems with control
constraints of the form

minimize J(y, u) :=
1

2
‖y − yd‖2

0,Ω +
α

2
‖u− ud‖2

0,Ω(1a)

over (y, u) ∈ H1
0 (Ω) × L2(Ω),

subject to − ∆ y = f + u ,(1b)

u ∈ K := {v ∈ L2(Ω) | v ≤ ψ a.e. in Ω} .(1c)

Here, Ω ⊂ R
2 is a bounded, polygonal domain with boundary Γ := ∂Ω. Moreover,

we suppose that

(2) ud, yd ∈ L2(Ω) , f ∈ L2(Ω) , ψ ∈ L2(Ω) , α ∈ R+ .

It is well-known that under the assumption (2) the distributed optimal control
problem (1a)-(1c) admits a unique solution (y, u) ∈ H1

0 (Ω)×L2(Ω) which is char-
acterized by the existence of an adjoint state (co-state) p ∈ H1

0 (Ω) and a Lagrange
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multiplier for the inequality constraint (co-control) σ ∈ L2(Ω) such that

a(y, v) = (f + u, v)0,Ω , v ∈ H1
0 (Ω) ,(3a)

a(p, v) = − (y − yd, v)0,Ω , v ∈ H1
0 (Ω) ,(3b)

u = ud +
1

α
(p− σ) ,(3c)

σ ∈ ∂IK(u) .(3d)

Here, a(·, ·) stands for the bilinear form

a(w, z) :=

∫

Ω

∇w · ∇z dx , w, z ∈ H1
0 (Ω) ,

and ∂IK : L2(Ω) → 2L
2(Ω) denotes the subdifferential of the indicator function IK

of the constraint set K.
The control problem is discretized with respect to a shape regular simplicial tri-
angulation of the computational domain using continuous, piecewise linear finite
elements for the state and the adjoint state and elementwise constant approxima-
tions of the control and the adjoint control.
The methods provide an error reduction and thus guarantee convergence of the
adaptive loop which consists of the essential steps ’SOLVE’, ’ESTIMATE’,
’MARK’, and ’REFINE’. Here, ’SOLVE’ stands for the efficient solution of the
finite element discretized problems. The following step ’ESTIMATE’ is devoted to
a residual-type a posteriori error estimation of the global discretization errors in
the state, the adjoint state, the control and the adjoint control. A bulk criterion
is the core of the step ’MARK’ to indicate selected edges and elements for refine-
ment, whereas the final step ’REFINE’ deals with the technical realization of the
refinement process itself.
The residual-type a posteriori error estimator consists of edge and element resid-
uals, a complementarity consistency error term and lower and higher order data
oscillations.
The main result states conditions that guarantee an error reduction of the error
in the state, the adjoint state, the control, and the adjoint control and thus es-
tablishes convergence of the adaptive scheme. The proof of this result is based on
three significant properties: the first one is the reliability of the error estimator,
that is, it provides an upper bound for the global discretization errors. The second
one is what is called strict discrete local efficiency. Here, it has to be shown that
the components of the error estimator can be bounded locally by the respective
norms of the differences of the coarse and fine mesh finite element approximations
of the state, the adjoint state, the control, and the adjoint control. Finally, the
third important property is a perturbed Galerkin orthogonality of the finite ele-
ment approximations. We will show that an error reduction can be achieved by a
subtle interaction of these three basic properties. The proof does not require any
regularity of the solution.
Numerical results illustrate the performance of the error estimator.
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Modeling and Controllability of Linked Elastic Structures of Differing

Dimensions

Mary Ann Horn

(joint work with Günter Leugering)

Controllability and stability properties of linked structures composed of multiple
elastic elements give rise to an abundance of mathematical challenges. When a
structure is composed of a number of interconnected elastic elements, the behav-
ior becomes much harder to both predict and to control. It cannot simply be
considered as a single large flexible structure, because the effects of each element
upon the next are critical in determining its motion. While it may be known that
a single element is exactly controllable with an appropriate choice of boundary
feedback, a connected system composed of the same types of elements may not
even be approximately controllable due to issues arising as energy is transmitted
across the joints. Yet flexible structures consisting of a combination of strings,
beams, plates and shells arise in many applications, including but not limited to
trusses, robot arms, solar panels and suspension bridges [3].

To construct feasible models, it is typically necessary to return to the basic
kinematic hypotheses and apply Hamilton’s Principle to derive the equations of
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motion and the associated junction conditions at the interfaces [2]. Once ap-
propriate models are developed, the use of boundary control becomes even more
important in linked dynamic systems. Within a multi-link structure, the nat-
ural locations to implement control are at the joints or edges of the structure.
Initially, two plate-beam configurations are considered, the first consisting of a
beam orthogonally attached to the edge of the plate and the second composed of
a beam whose centerline is orthogonal to one of the faces of the plate. Nonlinear
plate-beam systems are motivated by issues arising from large-amplitude periodic
oscillations, but such systems have not been seen in the literature.

A model comprised of a nonlinear von Kármán plate coupled with a nonlinear
beam equation is developed from first principles [1]. Dynamic junction conditions
are imposed at the interface. Wellposedness is established by first considering a
corresponding linear problem, then applying a perturbation theorem for nonlinear
semigroups. Proof of regularity takes advantage of elliptic theory, as well as the
regularity of the Airy’s stress function. Stabilization through the use of veloc-
ity feedback along the boundary of the plate (and, possibly, at the free end of
the beam) is based on energy methods and critically relies on unique continua-
tion properties for the system. Without unique continuation of the solution, the
traditional alternative has been to impose strict restrictions on the domain, e.g.,
assuming the domain is either convex or star-shaped. However, no unified theory
exists for unique continuation and results are highly dependent on the model under
consideration.
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Applications of Semi–Smooth Newton Method to Variational

Inequalities

Kazufumi Ito

This talk discusses semismooth Newton methods for solving nonlinear non-smooth
equations in Banach spaces. These investigations are motivated by complementar-
ity problems, variational inequalities and optimal control problems with control
or state constraints, for example. The function F (x) for which we desire to find a
root is typically Lipschitz continuous but not C1 regular. A generalized Newton
iteration for solving the nonlinear equation F (x) = 0 with is defined by

(1) xk+1 = xk − V −1
k F (xk), where Vk ∈ ∂BF (xk).
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where a generalized Jacobian Vk ∈ ∂BF (xk) in the finite dimensional case. Local
convergence of {xk} to x∗, a solution of F (x) = 0, is based on the following
concepts;

(2) |F (x∗ + h) − F (x∗) − V h| = o(|h|),

where V = V (x∗ +h) ∈ ∂BF (x∗ +h), for h in a neighborhood of x∗. Thus, letting
h = xk − x∗ and V k = V (xk) we have

|xk+1 − x∗| = |V −1
k (F (xk) − F (x∗) − Vk(x

k − x∗))| = o(|xk − x∗|).

The condition (2) is equivalent to the semismoothness of F at x∗ under appropriate
assumptions in the finite dimensional case. This leads to the following definition
in Banach spaces X, Z.

Definition 1. (a) Let D ⊂ X be an open set. F : D ⊂ X → Z is called Newton
differentiable at x, if there exists an open neighborhood N(x) ⊂ D and mappings
G : N(x) → L(X,Z) such that

lim
|h|→0

|F (x+ h) − F (x) −G(x + h)h|Z
|h|X

= 0.

The family {G(x) : x ∈ N(x)} is called a N -derivative of F at x.
(b) F is called semismooth at x, if it is Newton differentiable at x and

lim
t→0+

G(x+ t h)h exists uniformly in |h| = 1.

Examples which motivate our study include nonlinear variational inequalities
of the form: find x ∈ C such that

(f(x), y − x) ≥ 0 for all y ∈ C,

where C is a closed convex set in a Hilbert X . It can equivalently be written as

(3) F (x) = x− ProjC(x− f(x)) = 0,

where ProjC is the projection of X onto C. In particular, if C is a hypercube
{x|φ ≤ x ≤ ψ} in X = L2(Ω), with φ ≤ ψ and the inequalities are defined
pointwise, then (3) can be expressed as

(4) F (x) = f(x) + max(0,−f(x) + x− ψ) + min(0,−f(x) + x− φ) = 0.

Our particular interest in (1) is due to the fact that the primal-dual active set
strategy for (4) is a specific semi-smooth Newton method in case f is linear.
The primal-dual active set strategy is known to be extremely efficient for solving
discretized variational inequalities and constrained optimal control problems.

The globalization of the iteration (1) in Rm on the basis of the merit functional
θ(x) = |F (x)|2 is achieved by
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Algorithm 1. Let β, γ ∈ (0, 1) and σ ∈ (0, σ̄). Choose x0 ∈ Rm and set k = 0.
Given xk with F (xk) 6= 0. Then:
(i) If there exits a solution hk to

Vk h
k = −F (xk)

with |hk| ≤ b|F (xk)|, and if further

|F (xk + hk)| < γ |F (xk)| ,
set dk = hk, xk+1 = xk + dk, αk = 1, and mk = 0.

(ii) Otherwise choose dk = d(xk) according to (A.2) and let αk = βmk , where mk

is the first positive integer m for which

θ(xk + βm dk) − θ(xk) ≤ −σβm θ(xk).
Set xk+1 = xk + αk d

k,

under the following assumptions:

• (A.1) S = {x ∈ Rm : |F (x)| ≤ |F (x0)|} is bounded.
• (A.2) There exist σ̄ and b > 0 such that for each x ∈ S there exists
d = d(x) ∈ Rm satisfying

(1) θ′(x; d) ≤ −σ̄θ(x) and |d| ≤ b |F (x)|.
• (A.3) The following closure property holds: if xk → x̄ and d(xk) → d̄

with xk ∈ S, then θ′(x̄; d̄) ≤ −σ̄θ(x̄).
• (A.4) θ is subdifferentiably regular for all x ∈ S, i.e., θo(x; d) = θ′(x; d)

for all d ∈ Rm.

Concerning conditions (A.2) and (A.3) we introduce the notions of quasi-direct-
ional derivative. This will allow us to construct descent directions which satisfy
these two conditions. Combining conditions (A.1)-(A.4) and the notion of quasi-di-
rectional derivative provides us with a rather axiomatic approach to globalization
of the semi-smooth Newton method based on the norm functional as merit func-
tional.

Some Inverse Problems in Piezoelectricity

Barbara Kaltenbacher

(joint work with Manfred Kaltenbacher, Tom Lahmer, and Marcus Mohr)

Piezoelectric transducers that transform mechanical into electric energy and vice
versa, play an important role in many technical applications ranging from ultra-
sound generation in medical imaging and therapy to injection valves in automotive
industry. For the development of piezoelectric sensors and actuators by means of
numerical simulation, precise knowledge of the elastic stiffness coefficients, the
dielectric coefficients and the piezoelectric coupling coefficients is necessary.

The topic of this talk is identification of these material parameters, that appear
as coefficients in a system of partial differential equations modelling piezoelectric
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behaviour. Especially, we focus on the nonlinear situation, where due to large
excitations, some of the material parameters are not constants any more but but
depend on the electric field strength.

Starting with the constant coefficient case, we show different possible formu-
lations of the forward problem as a system of coupled PDEs and discuss well-
posedness as well as fast solution approaches. Concerning the inverse problem,
identifiability of the material parameters from non-eigenfrequencies is shown, which
leads to a PDE based approach for determining these material parameters, as op-
posed to the conventional purely experimental scheme that is based on measure-
ments of resonance frequencies.

In the nonlinear case one is faced with the infinite dimensional problem of
determining the functional dependence of the material parameters on the states
from the given measurements. This amounts to a parameter identification problem
for a nonlinear system of PDEs. We discuss the question of identifiability by means
of a one-dimensional model problem and point out the inherent instability of the
identification problem. Moreover, we propose a reconstruction method based on
a frequency domain formulation of the PDEs using a multiharmonic ansatz for
the states. Here, regularization is introduced by an appropriate kind of time
discretization as well as early stopping of the Newton type method that is employed
for inverting the nonlinear parameter-to measurement-map.

The last part of the talk is devoted to a discussion of first ideas on an important
future research issue in this context, namely the characterization of hysteresis in
piezoelectric transducers.
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Boundary Feedback Stabilization of a Navier Stokes Flow

Irena Lasiecka

(joint work with Viorel Barbu and Roberto Triggiani)

We consider a Navier Stokes flow defined on a simply connected bounded domain
Ω ⊂ Rd, d = 2, 3 with a smooth boundary Γ and boundary control u in the no-slip
(Dirichlet) boundary conditions:

yt − ν0∆y + (y · ∇)y = ∇p1 + f, in Ω × (0,∞)

∇ · y = 0, in Ω × (0,∞)

y = u, on Γ × (0,∞)

y(0) = y0, in Ω(1)
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Our aim is to locally stabilize the flow in a neighborhood of an unstable (steady-
state) equilibrium ye. Thus let ye ∈ H2(Ω) ∩ V and pe ∈ H1(Ω) satisfy

−ν0∆ye + (ye · ∇)ye = ∇pe + f, ∇ · ye = 0 in Ω, ye = 0 on Γ(2)

Here and below, for simplicity, we omit the notation (.)d to denote function spaces
of d-vectors. We seek a feedback operator F : Y → U ⊂ L2(Γ) such that the
control law u = F (y− ye) stabilizes the flow exponentially in the neighborhood of
the unsteady equilibrium ye. The choices of the state space W and control spoace
U are important. In what follows we shall take:

W ≡ H1/2−ε(Ω) ∩H, when d = 2, and W ≡ H1/2+ε(Ω) ∩H, when d = 3

where 0 < ε < 1/2, and

H ≡ {y ∈ L2(Ω); ∇ · y = 0 in Ω, y · ν = 0 on Γ}, V = H1
0 (Ω) ∩H

The control space is given by: U = {u ∈ L2(Γ);u · ν = 0}
Thus, we restrict the class of boundary controls to have purely tangential action.

It is natural to consider the linearization around the equilibrium v ≡ y−ye with the
resulting pressure p = p1−pe. After taking the Leray’s projection P : L2(Ω) → H
and noting that Pv = v we are led to consider

vt − ν0P∆v + P [(ye · ∇)v + (v · ∇)ye] = 0, in Ω × (0,∞)

∇ · v = 0, in Ω × (0,∞)

v = u, on Γ × (0,∞)(3)

It is known that the Stokes operator A : D(A) ⊂ H → H given by

Av ≡ ν0P [∆v − P (ye · ∇)v + (v · ∇)ye], D(A) ≡ H2(Ω) ∩ V
generates an analytic semigroup on H. Hence, the fractional powers (cI −A)θ are
well defined on H for a suitable translation c. Moreover, we have D((cI −A)θ) =
H2θ(Ω) ∩H ; θ < 1/4.

Let the operator D : U → H be the Dirichlet map, ie the extension of the
boundary data into the interior via the steady state problem. With the above
notation the standard boundary control model corresponding to (3) [2] takes the
form;

(4) vt = A(v −Du), v(0) = v0

We are ready to state our main result which asserts the existence of a feedback
operator stabilizing the nonlinear model, provided that the initial condition is
sufficiently close to the unstable equilibrium point ye. We shall consider separately
the three and two dimensional cases.

1. Three dimensional case

Let R : W = H1/2+ε(Ω)∩H →W ′ be the Riccati operator (positive self-adjoint
on H) which defines the value function corresponding to the following minimization
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problem

MinJ(u, v) ≡
∫ ∞

0

|v(t)|2H3/2+ε(Ω) + |u(t)|2Udt

subject to the condition that v(u) satisfies (3) with u ∈ L2(0,∞;U).
It is shown in [2] ( a highly non-trivial fact, which in turn rests on the interior

stabilization results of [3] ) that the functional J(u, v(u)) is proper in the sense
of optimization theory; that is, the Finite Cost Condition of the above optimal
control problem is satisfied [4]. As a consequence, the Riccati operator R defining
the value function is well defined R : W → W ′ and in fact is an isomorphism
between these two spaces. This then allows one to define an equivalent norm on
the state space W by |y|W ∼ |Ry|H . The main result is the statement that the
operator

u = F (y − ye) ≡ ν0∂νR(y − ye), on Γ

stabilizes exponentially the flow (1). This is to say that the feedback control given
by u = ν0∂νR(y − ye) when inserted into the dynamics (1) gives the following
estimate for the nonlinear solutions

Theorem 1. [2] Under the above setting, the (unbounded, densely defined) feed-
back F = ν0∂νR leads to a strongly continuous semigroup generated by A(I−DF )
on the space W = H1/2+ε(Ω)∩H. Moreover, u = F (y−ye) stabilizes exponentially
problem ( 1) in a sufficiently small neighborhood of the equilibrium state ye;ie for
y0 ∈ V(ρ, ye) ≡ {y ∈ W : |y − ye|W ≤ ρ}, for sufficiently small ρ. In this case
we then have

|y(t) − ye|H1/2+ε(Ω) ≤ Ce−ωt|y0 − ye|H1/2+ε(Ω)

where the constant ω is independent of ρ.

In addition to the above pointwise stability result in W, the following additional
regularity of the flow holds true: y ∈ L2(0,∞;H3/2+ε(Ω)), and u = F (y − ye) ∈
L2(0,∞;H1+ε(Ω)).

2. Two dimensional case

The two-dimensional case is, as expected, more regular. In fact, we can work
within a lower topology and we select the state space W ≡ H1/2−ε(Ω)∩H, where
0 < ε < 1/2. The control space is the same as in the three-dimensional case. Since
in the two dimensional case the state space W is below compatibility conditions,
we may have several choices for the Riccati feedback opertors.

In analogy with the 3-d case, we may take R : W = H1/2−ε(Ω) ∩ H → W ′

to be the Riccati operator (positive self-adjoint on H) defining the value function
corresponding to the following minimization problem

MinJ(u, v) ≡
∫ ∞

0

|v(t)|2H3/2−ε(Ω) + |u(t)|2Udt

subject to the condition that v(u) satisfies (3) with u ∈ L2(0,∞;U). As before,
it is shown in [2] that the functional J(u, v(u)) is proper (the Finite Cost Con-
dition is satisfied). In addition, in the two-dimensional case, one can select the
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feedback operators to be active only on an arbitrary small portion of the bound-
ary. Furthermore - under a finite dimensional spectral assumption (FDSA) in [2]
that A restricted on its finite-dimensional unstable sub-space be diagononalizable,
the feedback operator may also be finite dimensional) Thus the Riccati operator
R (positive self-adjoint on H and defining the value function), is a well defined
operator R : W = H1/2−ε(Ω) ∩ H → W ′. Moreover, it is also an isomorphism
between these two spaces. As in the 3-d case the operator

F (y − ye) ≡ ν0∂νR(y − ye)

stabilizes exponentially the dynamics.

Theorem 2. [ [2]] The control feedback u = F (y − ye) stabilizes exponentially
problem ( 1) in a sufficiently small neighborhood of the equilibrium ye ie for y0 ∈
V(ρ, ye) ≡ {y ∈ W = H1/2−ε(Ω)∩H : |y− ye|W ≤ ρ} for sufficiently small ρ. In
this case we have:

|y(t) − ye|H1/2−ε(Ω) ≤ Ce−ωt|y0 − ye|H1/2−ε(Ω)

where the constant ω is independent of ρ. In addition, the feedback operator F can
be taken to be supported on an arbitrary small portion of the boundary Γ. Under
the Finite Dimensional Spectral Assumption, it can be taken to be, in addition,
finite dimensional.

In the two-dimensional case, other selections of the gain operators in the opti-
mization problem are possible. For instance, one may minimize

MinJ(u, v) ≡
∫ ∞

0

|v(t)|2H + |u(t)|2Udt

subject to the condition that v(u) satisfies (3) with u ∈ L2(0,∞;U). In that case,
the Riccati operator not only is bounded R ∈ L(H), but it has additional regularity
properties in line with the Riccati theory for analytic semigroups and bounded
observation [4]. More specifically, while the formally same feedback operator u =
F (y) = ν0∂νR(y−ye) stabilizes exponentially the nonlinear dynamics (in line with
Theorem 2 ) , we also have that

• The linearized feedback generator AF ≡ A(I−DF ) generates an analytic
semigroup onH and onW = H1/2−ε(Ω)∩H , which is exponentially stable
and satisfies

∫∞

0
|eAF tx|2

H3/2−ε(Ω)
dt ≤ C|x|2W

• The feedback F = ν0∂νR is bounded H → U
• The corresponding Riccati equation takes the classical form (A∗Rx, y)H+

(RAx, y)H + (x, y)H = ν2
0 < ∂νRy, ∂νRx >U , for x, y ∈ D(A∗ε)

We also have the regularity: y ∈ L2(0,∞;H3/2−ε(Ω)), u ∈ L2(0,∞;H1−ε(Γ))

Remark 1. We note that the key point to obtaining a stabilization result of the
nonlinear problem is the ability to achieve an “improved” regularity of the feedback
semigroup eAF t which is sufficiently high to control the nonlinear terms. In the
three dimensional case we obtain

∫∞

0
|eAF tx|2

H3/2+ε(Ω)
dt ≤ C|x|2

H1/2+ε(Ω)
by using



Optimal Control of Coupled Systems of PDE 1037

a ”high gain” functional cost. In the two dimensional case, the corresponding in-
equality takes the form

∫∞

0
|eAF tx|2

H3/2−ε(Ω)
dt ≤ C|x|2

H1/2−ε(Ω)
and is obtained with

both L2(Ω) and H3/2−ε(Ω) gains. While the L2 case is much simpler, since it re-
lies on classical Riccati theory [4], the H3/2−ε penalization requires a construction
of a ”new” class of Riccati equations (as in the 3-dimensional case). However,
it appears that this latter option provides for more robust algorithms and gives
a larger base of attraction. In all these cases (regardless of the penalization), the
fundamental issue to be resolved is showing the Finite Cost Condition for the corre-
sponding functional cost [2]. This issue is particularly subtle due to the constraints
imposed on the control
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Feedback Controller Design for PDE Systems in COMPleib

Friedemann Leibfritz

We consider static output feedback (SOF) control design problems, e. g. SOF–H∞

synthesis, and focus the discussion on the numerical solution of SOF problems
if the control system is described by partial differential equations (PDEs). The
discretization of those problems leads to large–scale non–convex and nonlinear
semidefinite programs (NSDPs). We discuss some practical difficulties which arise
in the solution of such problems and consider some algorithmic strategies for solv-
ing the non–convex NSDPs. Moreover we state some PDE–based models which
are currently implemented in COMPleib 1.1: the COnstrained Matrix-optimization
Problem library [4] which contains actually 171 test examples drawn from a vari-
ety of control systems engineering applications. For example, COMPleib contains
variants of the following PDE models: 2D unstable convection diffusion equations
with distributed as well as boundary control input, 2D nonlinear perturbed heat
equation models with boundary control, 1D modified Burgers as well as Korteweg–
de Vries–Burgers models, nonlinear damped wave/mass spring systems and a 1D
coupled diffusion radiation model in a thin circular disc (e. g. see [4], [5], [6]).
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COMPleib may serve as a useful benchmark tool for NSDP , BMI and other ma-
trix optimization problem (including linear SDP) solvers (e. g. IPCTR [3], [5],
SSDP [1] for NSDPs arising in feedback control design, or, PENBMI [2] for bi-
linear matrix inequality problems, or, SeDuMi (Sturm), SDPT3 (Todd), DSDP
(Ye) and so forth for linear SDPs). As a byproduct, COMPleib can be used as
a test environment for parts of control design procedures, e. g. model reduction
algorithms. A numerical strategy for computing a linear SOF control law for dis-
cretized PDE control systems can be found in [5], [6]. In example, a finite difference
or finite element discretization of a PDE control problem yields a large–scale finite
dimensional control system of the following form (e. g. see [4], [5], [6])

(1)
Eẋ(t) = (A+ δA)x(t) +B1w(t) +Bu(t),
z(t) = C1x(t) +D11w(t) +D12u(t), y(t) = Cx(t) +D21w(t),

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny , z ∈ Rnz , w ∈ Rnw denote the state, control
input, measured output, regulated output, and noise input, respectively. E ∈
R
nx×nx is a regular diagonal matrix (very often we have that E is equal to the

identity matrix) and all other data matrices are given. If δA ≡ 0 the system matrix
A is not affected by a perturbation, and, if G(x(t)) ≡ 0, the system is linear.
Depending on the corresponding PDE model, we get linear or nonlinear control
systems. If the PDE model is nonlinear, we linearize or neglect the nonlinear
term G(x(t) for computing a SOF control. The goal is to determine the matrix
F ∈ Rnu×ny of the SOF control law u(t) = Fy(t) such that the closed loop system

(2) ẋ(t) = A(F )x(t) +B(F )w(t), z(t) = C(F )x(t) +D(F )w(t),

fulfills some specific control design requirements, where A(F ) = E−1(A + δA +
BFC), B(F ) = E−1(B1+BFD21), C(F ) = C1+D12FC, D(F ) = D11+D12FD21.
In particular, the optimal SOF–H∞ problem can be formally stated in the following
term: Find F such that A(F ) is Hurwitz and the H∞–norm of ( 2) is minimal. If
D11 = 0, D21 = 0, the simplified H∞–NSDP is given by (e. g. see [4], [5])
(3)

min β−1, A(F )TL+ LA(F ) + C(F )TC(F ) + β2LB1B
T
1 L = 0, L � 0, β > 0,

(A(F ) + β2B1B
T
1 L)TV + V (A(F ) + β2B1B

T
1 L) + I = 0, V � 0,

where X = (β, F, L, V ) ∈ R × Rnu×ny × Snx × Snx are matrix variables, Sm

denotes the space of all real symmetric m×m matrices and Z � 0 (Z � 0) is used
to indicate that Z ∈ Sm is positive (semi–) definite. For solving the non–convex
H∞–NSDP we use the interior point constrained trust region (IPCTR) solver as
described in [3], [5]. IPCTR is specialized to NSDPs of the form (3) which arise
in SOF/ROC (reduced order control) design. It is a combination of a primal–dual
interior point method, a modified conjugate gradient approach and a constrained
reduced SQP–type trust region method which exploits the inherent structure of
the SOF/ROC–NSDP problems. IPCTR is a fully iterative method and, thus, no
explicit evaluation of the Hessian of the Lagrangian is needed in IPCTR which
can be a very time consuming process, in particular for large NSDPs. Solving
a NSDP of the form (3) can be very difficult since, in general, it is nonlinear
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and non–convex in the matrix variables X = (β, F, L, V ) and the constraint set
contains nonlinear and non–convex matrix equalities/inequalities. Moreover, the
number of NSDP variables can be very huge if nx is big, e. g. let nx = 4000, nu =
ny = 2 � nx then the H∞–NSDP has approximately sixteen million variables
(e. g. 2 1

2nx(nx + 1) + nuny + 1 ≈ O(n2
x) = 16 · 106). To my knowledge, it is

impossible to solve a NSDP of that size. Furthermore, due to the matrix product
BFC, the closed loop matrix A(F ) can be a dense matrix even if A is sparse.
Thus, it is not clear in which way a sparsity pattern in A can be exploited in
an algorithm for solving very large NSDPs. One way out of this dilemma is to
perform a model reduction procedure to the discretized PDE model prior we solve
the H∞–NSDP as proposed by [5], [6]. For example the computational design of
a SOF control for a linear (unstable) convection–diffusion model leads to large–
scale NSDPs of the form (3). In Ω = [0, 1]× [0, 1] the infinite dimensional control
problem of the convection–diffusion model is given by (e. g. see [6])

(4)
vt = κ∆v − ε1(vξ + vη) + ε2v +

∑nu

i=1 ui(t)bi, in Ω, t > 0,
v(ξ, η; t) = 0, on ∂Ω, t > 0 and v(ξ, η, 0) = v0(ξ, η), in Ω,

where v := v(ξ, η; t), (ξ, η) ∈ Ω, t > 0, ∆ is the Laplace operator, ε1, ε2 ≥ 0 are
given constants, ∂Ω denotes the boundary of Ω, κ > 0 is the diffusion coefficient,
bi, i = 1, . . . , nu are given shape functions for the control inputs u1, . . . , unu and
v0(·) is the initial state in Ω at t = 0. After a spatial finite difference discretization
we end up with a linear control system of the form (1) with nx = 3600 states.
We choose nu = 2 and bi = χΩu

i
, i = 1, 2, where χΩu

i
denotes the characteristic

function on the control input domain Ωui ⊂ Ω of ui and Ωu1 = [0.1, 0.4]× [0.1, 0.4],
Ωu2 = [0.6, 0.9] × [0.7, 0.9]. Moreover, we set ny = 2 and measure the state on
the observation domains Ωyi ⊂ Ω, i = 1, 2 of y(t) = (y1(t), y2(t))

T , where Ωy1 =
[0.1, 0.4]×[0.5, 0.7], Ωy2 = [0.6, 0.9]×[0.1, 0.4]. For computing the SOF–H∞ control
law for the large–scale discretized (unstable) COMPleib PDE model, we use the
approach of [5], [6]. This method is a combination of a POD approximation of the
large–scale dynamical system (1) with IPCTR for solving a low dimensional H∞–
NSDP. In particular, first we compute a POD approximation of the large–scale
discrete model (1) to derive a control system of the form (1), but with dimension
npod � nx, e. g. npod = 5. Then, neglecting or linearizing the nonlinear part
G(x(t)) in (1), we solve the npod dimensional H∞–NSDP (3) to obtain the linear
SOF control law u(t) = Fy(t). Finally, we fit this SOF control law into the
high dimensional (nonlinear) PDE control system. For more details and several
numerical experiments we refer to [5] and [6]. Another PDE control system in
COMPleib is a 2D model of a nonlinear instable diffusion equation. In the domain
Ω = [0, 1] × [0, 1] we consider a initial boundary value problem of this nonlinear
reaction–diffusion model for the unknown function v(ξ, η; t), (ξ, η) ∈ Ω, t > 0:

(5)
vt = κ∆v + ε2v − ε1v

3 +
∑nu

i=1 ui(t)bi, in Ω, t > 0,
v(ξ, η; t) = 0, on ∂Ω, t > 0 and v(ξ, η, 0) = v0(ξ, η), in Ω,

where ε1, ε2 ≥ 0 are positive constants and the other quantities are defined as in
the previous example. For ε1 = 0 and ε2 = 0, the open loop system of (5) is the
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heat equation, which is asymptotically stable. However, it is unstable if ε2 > 0 is
large enough even if ε1 = 0. The unstable viscous modified Burgers equation with
boundary control input u and given κ = 0.5, ε = 0.25 is a 1D PDE instance in
COMPleib (e. g. see [6]):

vt − κvξξ + vvξ − εv = 0, ξ ∈ (0, 2π), t > 0
vξ(t, 0) = 0, vξ(t, 2π) = u, v(0, ξ) = sin(ξ).

Finally, we state an unstable 1D Korteweg–de Vries–Burgers model. For given
κ = 0.5, λ = 0.1, ε = 0.345 the following boundary control problem can be found
in COMPleib :

vt − κvξξ + λvξξξ + vvξ − εv = 0, ξ ∈ (0, 2π), t > 0
v(t, 0) = 0, vξ(t, 2π) = u, vξξ(t, 2π) = 0, v(0, ξ) = ξsin(ξ).

References

[1] B. Fares, D. Noll and P. Apkarian, Robust control via sequential semidefinite programming,
SIAM Journal on Control and Optimization Vol. 40, No. 6 (2002), 1791–1820.
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Optimal Control of an Elliptic PDE with Nonlocal Radiation Interface

Conditions

Christian Meyer

(joint work with O. Klein, P. Philip, J. Sprekels, and F. Tröltzsch)

This work deals with the optimal control of the production of silicon carbide (SiC)
single crystals that represent an important semiconductor material. The state-of-
the-art technique to produce SiC single crystals is the physical vapor transport
(PVT) method. A corresponding growth apparatus mainly consists of a graphite
crucible Ωs with a cavity inside that is denoted by Ωg . This cavity is filled with
argon and, at the bottom, with polycrystalline SiC powder. The crucible is heated
up to 2000–3000 K, usally by induction heating. Due to the high temperature,
the SiC powder sublimates and crystallizes at the cooled top of the cavity. In this
way, the desired single crystal grows into the reaction chamber (see e.g. [3] for
details). A simplified optimal control problem that arises from this application
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but still covers some main difficulties, is given by the following semilinear elliptic
problem with pointwise control constraints

(P)





minimize J(y, u) :=
1

2

∫

Ωg

|∇y − z|2 dx +
ν

2

∫

Ωs

u2 dx

subject to −div(κs∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(
∂y

∂nr

)

g

− κs

(
∂y

∂nr

)

s

= G(σ|y|3y) on Γr = Ωs ∩ Ωg

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0 = ∂Ωs

and ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs,

with a desired state gradient z ∈ L2(Ω)2 and thermal conductivities κs ∈ L∞(Ωs),
κg ∈ L∞(Ωg), κs, κg > 0 a.e. in Ωs and Ωg , respectively. Furthermore, y0 ∈
L16(Γ0) is the external temperature with y0 ≥ ϑ > 0 a.e. on Γ0. The bounds
ua and ub are functions in L∞(Ωs) with 0 < ua(x) < ub(x) a.e. in Ωs. We
assume that the outer boundary Γ0 and the interface Γr are Lipschitz and Γr is
additionally piecewise C1,δ . Moreover, ε ∈ [0, 1] denotes the emissivity, σ > 0 is
the Stefan-Boltzmann constant, and G represents a nonlocal radiation operator
that is defined by

G(σ|y|3y) := (I −K)(I − (1 − ε)K)−1ε σ|y|3y.
Here, K denotes an integral operator with symmetic kernel ω, i.e. (Kv)(x) :=∫
Γr
ω(x, z)v(z) dsz, for further details see [8], [9].

The operator G was investigated in detail by Laitinen and Tiihonen who proved
that G is a bounded linear operator from Lp(Γr) to itself for 1 ≤ p ≤ ∞ ( [4,
Lemma 8]). In general, G is not positive, i.e. v(x) ≥ 0 a.e. on Γr does not imply
(Gv)(x) ≥ 0 a.e. on Γr. This property causes that the nonlinearity in the state
equation in (P) is not monotone. However, Laitinen and Tiihonen showed in [4]
that it is pseudomonotone. Hence, Brezis’ theorem for pseudomonotone operators
(cf. [11]) implies the existence of solutions of the state equation in the state space
V = {v ∈ H1(Ω) | τrv ∈ L5(Γr), τ0v ∈ L5(Γ0)}. Using a technique introduced
by Stampacchia in the linear case (see [2], [7]), we prove the boundedness of the
solutions in Ω and on Γr ∪Γ0 and introduce a corresponding state space by V ∞ =
H1(Ω) ∩ L∞(Ω) (see [5]). By the theory of Fredholm operators, the existence of
a unique solution to the linearized state equation is also shown in [5]. Based on
this result, the implicit function theorem gives the differentiability of the control-
to-state operator S : L2(Ωs) → V∞. In a standard way, a pointwise discussion
of the variational inequality yields the well-known projection formula for control
constrained problems:

ū(x) = Pad

{
−1

ν
p(x)

}
,
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where Pad : R → R is the pointwise projection operator on [ua(x), ub(x)]. Here,
p ∈ H1(Ω) denotes the adjoint state that solves the following adjoint equation

div(κg∇p) = ∆ȳ − div z in Ωg

div(κs∇p) = 0 in Ωs

κs

(
∂p

∂nr

)

s

− κg

(
∂p

∂nr

)

g

+ 4σ |ȳ|3G∗p =
∂ȳ

∂nr
− z · nr on Γr

κs
∂p

∂n0
+ 4εσ |ȳ|3p = 0 on Γ0.

Second-order sufficient optimality conditions are established in a very recent work
[6]. The corresponding analysis is based on the techniques introduced in [1] and
[10]. These conditions account for strongly active sets and give local optimality in
a Ls-neighborhood of a reference function, where s can be chosen smaller than ∞.

Finally some numerical results are presented that were computed using a Gauß–
Newton method. The arising linear-quadratic subproblems were solved with an
active set strategy. The PDEs were discretized with linear finite elements.

References
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Recent Results on Exact Controllability of the Navier-Stokes System

Jean-Pierre Puel

1. Introduction and main results

Let Ω ⊂ RN be a bounded regular domain, with N = 2 or N = 3. Assume
that ω ⊂ Ω is a nonempty (small) open subset and T > 0 is given. In the sequel,
we will use the following notation: Q = Ω × (0, T ), Σ = ∂Ω × (0, T ); C will stand
for a generic positive constant that may depend on Ω and ω.

We will be concerned here with some controllability properties of the Navier-
Stokes system

(1)





yt − ∆y + (y · ∇)y + ∇p = v1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(x, 0) = y0 in Ω

and the similar linear Stokes-like problem

(2)





yt − ∆y + ∇ · (y ⊗ y + y ⊗ y) + ∇p = f + v1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

where y = y(x, t) is given and satisfies adequate regularity assumptions. In (2),
the symbol ⊗ stands for the usual tensor product in RN . As usual, it will be
convenient to analyze the observability properties of the following system, which
can be viewed as the adjoint of (2):

(3)





−ϕt − ∆ϕ− (Dϕ)y + ∇π = g in Q,

∇ · ϕ = 0 in Q,

ϕ = 0 on Σ,

ϕ(x, T ) = ϕ0(x) in Ω.

Here, Dϕ = ∇ϕ+ ∇ϕT . We will need some function spaces:

H = { z ∈ L2(Ω)N : ∇ · z = 0 in Ω, z · n = 0 on ∂Ω },

V = { z ∈ H1
0 (Ω)N : ∇ · z = 0 in Ω }.

Furthermore, the following hypotheses over y will be needed in order to have a
suitable Carleman inequality for the solutions to (3):

(4) y ∈ L∞(Q)N , yt ∈ L2(0, T ;Lσ(Ω))N
(
σ > 6/5 if N = 3

σ > 1 if N = 2

)
.
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Our first main result is a new global Carleman estimate for the solutions to (3).
Several weight functions will be needed:

(5)
α(x, t) =

e5/4λm ‖η0‖∞ − eλ(m ‖η0‖∞+η0(x))

t4(T − t)4
, ξ(x, t) =

eλ(m ‖η0‖∞+η0(x))

t4(T − t)4
,

α̂(t) = min
x∈Ω

α(x, t), α∗(t) = max
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t).

Here, m > 4 is a fixed real number and η0 ∈ C2(Ω) is a function satisfying

η0 > 0 in Ω, η0 = 0 on ∂Ω, |∇η0| > 0 in Ω \ ω′,

where ω′ ⊂⊂ ω is a nonempty open set. The existence of such a function η0 is
proved in [4].

Theorem 1. Let us assume that (4) holds. There exist positive constants s, λ
and C, only depending on Ω and ω such that, for every g ∈ L2(Q)N and ϕ0 ∈ H,
the associated solution to (3) satisfies

(6)

∫∫

Q

e−2sα
(
(sξ)−1(|ϕt|2 + |∆ϕ|2) + sλ2ξ|∇ϕ|2 + s3λ4ξ3|ϕ|2

)
dx dt

≤ C(1 + T 2)

(
s15/2λ20

∫∫

Q

e−4sbα+2sα∗

ξ̂ 15/2 |g|2 dx dt

+ s16λ40

∫∫

ω×(0,T )

e−8sbα+6sα∗

ξ̂ 16 |ϕ|2 dx dt
)

for any λ ≥ λ (1 + ‖y‖∞ + eλT ‖y‖2
∞ + ‖yt‖2

L2(Lσ)) and any s ≥ s (T 7 + T 8).

This Carleman inequality provides, in a classical way, an observability inequality
for the solutions to (3) i.e.,

(7) ‖ϕ(0)‖L2(Ω) ≤ C

∫∫

ω×(0,T )

|ϕ|2 dx dt

for a positive constant C. It is now classical to prove that the inequality (7) implies
the null controllability of (2) for f = 0.

The second main result concerns the local exact controllability to the trajecto-
ries of (1). It is the following:

Theorem 2. Let (y, p) be a solution to the Navier-Stokes problem

(8)





yt − ∆y + (y · ∇)y + ∇p = 0 in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

satisfying (4) and y0 ∈ L2N−2(Ω)N ∩ H. Then there exists δ > 0 such that, for
any y0 ∈ L2N−2(Ω)N ∩H satisfying ‖y0 − y0‖L2N−2(Ω)N ≤ δ, we can find controls

v ∈ L2(ω × (0, T ))N and associated states (y, p) such that one has (1) and

y(x, T ) = y(x, T ) in Ω.



Optimal Control of Coupled Systems of PDE 1045

In the following sections, we will indicate the main ideas of the proofs of theo-
rems 1 and 2. The detailed proofs are given in [3].

2. A new Carleman inequality

We will use the notation I(s, λ;ϕ) to denote the left hand side of (6). Let
g ∈ L2(Q)N and ϕ0 ∈ H be given and let (ϕ, π) be the associated solution to (3).
We can first apply to each component of ϕ the usual Carleman inequality for the
heat equation with right hand side in L2(Q). After some arrangements, we get

(9) I(s, λ;ϕ) ≤ C

(∫∫

Q

e−2sα (|g|2 + |∇π|2) dx dt

+s3λ4

∫∫

ω′×(0,T )

e−2sα ξ3 |ϕ|2 dx dt
)
,

for all λ ≥ C(1 + ‖y‖∞) and s ≥ C(T 7 + T 8). For the proof of (9), see [6] and [4];
for the explicit values of λ and s, see [2].

In view of the main result in [8] and following the ideas of [7], we can estimate
the pressure gradient in (9) and deduce that

(10)

I(s, λ;ϕ) ≤ C

(
s3λ4

∫∫

ω′×(0,T )

e−2sα ξ3 |ϕ|2 dx dt

+ s2 λ2

∫∫

ω1×(0,T )

e−2sα ξ2 |π|2 dx dt+ s

∫∫

Q

e−2sα ξ |g|2 dx dt
)
,

for any λ ≥ C(1 + ‖y‖∞) and any s ≥ C(T 7 + T 8), where ω1 is an open set such
that ω′ ⊂⊂ ω1 ⊂⊂ ω. The rest of the proof is oriented towards the absorption
of the local pressure term in (10). Let us remark that we have only used the
assumption y ∈ L∞(Q)N until this moment, while more regularity on y will be
needed to perform a local estimate of the pressure.

We can assume that the pressure has been chosen with zero mean in ω1 . Then,

∫∫

ω1×(0,T )

e−2sα ξ2 |π|2 dx dt ≤ C

∫∫

ω1×(0,T )

e−2sbα ξ̂ 2 |∇π|2 dx dt

and using the equation satisfied by ϕ and π we see that the task is to obtain local
estimates of ∆ϕ and ϕt .

For the estimate of ∆ϕ, we can use classical arguments for the heat equation;
observe that u = ∆ϕ fulfills a heat equation where the pressure is absent. On the
other hand, integrating by parts in time and using well known a priori estimates
for the Stokes system (see [5]), we can find a local estimate of ϕt in terms of local

integrals of ϕ and ∇ϕ and I(s, λ;ϕ). More precisely, with q = s15/2e−2sbα+sα∗

ξ̂ 15/2
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and ω2 an open set satisfying ω1 ⊂⊂ ω2 ⊂⊂ ω, for any small ε > 0 we obtain

s2λ2

∫∫

ω1×(0,T )

e−2sbαξ̂ 2 |ϕt|2 dx dt

≤ ε I(s, λ;ϕ)

+ Cελ
20(1 + T )

(
‖q g‖2

L2(L2) + ‖q ϕ‖2
L2(L2(ω2))

+ ‖q∇ϕ‖2
L2(L2(ω2))

)

for λ ≥ C(1 + ‖y‖∞ + eC T ‖y‖2
∞ + ‖yt‖2

L2(Lσ)). Let us remark that proving such

a local estimate requires many technical computations and led us to assume yt ∈
L2(Lσ).

The local estimates of ∆ϕ and ϕt lead to the desired Carleman inequality (6).

3. The local null controllability of the Navier-Stokes system

The proof of theorem 2 follows the ideas in [7]. Thus, we deduce in a first step
a null controllability result for (2) with suitable right hand side f .

More precisely, let us set Ly = yt−∆y+∇· (y⊗y+y⊗y) and let us introduce
in dimension N = 3 the space E3, with

(11)
E3 = {(y, v) ∈ E0 : esβ

∗/2(γ∗)−1/4y ∈ L4(0, T ;L12(Ω)3),

∃p : esβ
∗

(γ∗)−1/2(Ly + ∇p− v1ω) ∈ L2(0, T ;W−1,6(Ω)3)},
where

E0 = {(y, v) : e2s
bβ−sβ∗

γ̂−15/4y, e4s
bβ−3sβ∗

γ̂−8v1ω ∈ L2(Q)N ,

esβ
∗/2(γ∗)−1/4y ∈ L2(0, T ;V ) ∩ L∞(0, T ;H)}.

and where the new weight functions β, β∗, etc. are given by

β(x, t) =
e5/4λm‖η0‖∞ − eλ(m‖η0‖∞+η0(x))

`(t)4
,

β̂(t) = minx∈Ω β(x, t), β∗(t) = maxx∈Ω β(x, t),

γ(x, t) =
eλ(m‖η0‖∞+η0(x))

`(t)4
, γ̂(t) = max

x∈Ω
γ(x, t), γ∗(t) = min

x∈Ω
γ(x, t).

Here, we have introduced

`(t) =

{
T 2/4 in (0, T/2)

t(T − t) in (T/2, T ).

We then have:

Proposition 3. Let us assume that y satisfies (4) and the following hypotheses
on the initial condition and the right hand side hold:

y0 ∈ H ∩ L4(Ω)3, esβ
∗

(γ∗)−1/2f ∈ L2(0, T ;W−1,6(Ω)3).

Then there exists a control v such that the associated solution (y, p) to (2)
satisfies (y, v) ∈ E3.
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Notice that this is actually a null controllability result for (2). Indeed, if (y, v) ∈
E3, we have in particular that y(x, T ) = 0 in Ω.

The rest of the proof of theorem 2 relies on an appropriate inverse mapping
theorem. More precisely, we use the following result (see [1]):

Proposition 4. Let E, F be two Banach spaces and let A : E 7→ F satisfy
A ∈ C1(E;F ). Assume that e0 ∈ E, A(e0) = h0 and A′(e0) : E 7→ F is an
epimorphism. Then, there exists δ > 0 such that, for every h ∈ F satisfying
‖h− h0‖F < δ, there exists a solution of the equation

A(e) = h, e ∈ E.

We can apply this result to the mapping A : E 7→ F given by

A(y, v) = (Ly + (y · ∇)y + ∇p− v1ω, y(·, 0)) ∀(y, v) ∈ E3,

where E3 is as in (11) and F = L2(esβ
∗

(γ∗)−1/2;W−1,6(Ω)3)× (L4(Ω)3 ∩H), with
e0 = (0, 0, 0) and h0 = (0, 0).

From the definition of E3, one can easily check that A is well defined and
satisfies A ∈ C1(E;F ). Finally, the identity

Im(A′(0, 0, 0)) = F

is equivalent to the result stated in proposition 3. This completes the proof of
theorem 2.
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Feedback Boundary Stabilization of the Two and the Three

Dimensional Navier-Stokes Equations

Jean-Pierre Raymond

Let Ω be a bounded and connected domain in R2 or R3 with a regular boundary
Γ, ν > 0, and consider a couple (w, χ) – a velocity field and a pressure – solution
to the stationary Navier-Stokes equations in Ω:

−ν∆w + (w · ∇)w + ∇χ = f and div w = 0 in Ω, w = u∞
s on Γ.

We assume that w is regular and is an unstable solution of the instationary Navier-
Stokes equations. We want to determine a Dirichlet boundary control u, in feed-
back form, localized in a part of the boundary Γ, so that the corresponding con-
trolled system:

(1)

∂y

∂t
− ν∆y + (y · ∇)w + (w · ∇)y + (y · ∇)y + ∇p = 0,

div y = 0 in Q∞, y = Mu on Σ∞, y(0) = y0 in Ω,

be stable for initial values y0 small enough in an appropriate space X(Ω). In this
setting, Q∞ = Ω × (0,∞), Σ∞ = Γ × (0,∞), X(Ω) is a subspace of V0

n(Ω) ={
y ∈ L2(Ω) | div y = 0 in Ω, y · n = 0 on Γ

}
, w ∈ X(Ω), and the operator

M is a restriction operator ensuring that the control is localized on a part of the
boundary Γ (see [10]). If we set (z, q) = (w + y, χ+ p) and if u = 0, we see that
(z, q) is the solution to the Navier-Stokes equations

∂z

∂t
− ν∆z + (z · ∇)z + ∇q = f , div z = 0 in Q∞,

z = u∞
s on Σ∞, z(0) = w + y0 in Ω.

Thus y0 is a perturbation of the stationary solution w. When w ∈ L∞(Ω) and
y0 ∈ V0

n(Ω) ∩ L4(Ω) with |y0|L4(Ω) small enough, the existence of a boundary
control u such that the solution to equation (1) exponentially decreases in the
norm of the space X(Ω) = V0

n(Ω)∩L4(Ω), follows from a local exact controllability
result stated in [5, Theorem 2]. But the proof in [5] does not give any way to
define such a control in feedback form. In the three-dimensional case, and when

X(Ω) =
{
y ∈ H1(Ω) | div y = 0 in Ω, 〈y · n, 1〉H−1/2(Γ),H1/2(Γ) = 0

}
, the

existence of a control exponentially stabilizing (1) is proved in [6]. One way to
construct robust feedback laws consists in using the methods of the optimal control
theory. This approach has been studied in the case of an internal control [1–3],
and has been numerically tested with a boundary control in the very specific
geometry of the rectangular driven cavity [7] and when the normal component
of the control is equal to zero. As it is the situation corresponding to many
engineering applications [8,9], here we do not assume that the normal component
of the control variable is zero.

The Linear-Quadratic theory for the Dirichlet control of the linearized Navier-
Stokes equations has been studied in a very recent work [4], in the case when
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the normal component of the boundary control is zero, and when the control
is applied everywhere on the boundary. To the best of our knowledge the case
when the normal component is not equal to zero has not yet been studied in the
literature. The main objectives of this talk are:

- first to develop the Linear-Quadratic theory over an infinite time horizon of
the Dirichlet boundary control of the Oseen equations when the control is localized
on a part of the boundary, and when the normal component of the control is not
zero,

- next to show that the linear feedback law, calculated with the linearized model,
and applied to the nonlinear equation (1), provides a local exponential stabilization
of the state in some appropriate space X(Ω).

In the two dimensional case the feedback control law is obtained by studying
the control problem

(P) inf
{
J(y,u) | (y,u) satisfies (2), u ∈ L2(0,∞;V0(Γ))

}
,

where

J(y,u) =
1

2

∫ ∞

0

∫

Ω

|y|2 dxdt+
1

2

∫ ∞

0

∫

Γ

|u|2 dxdt,
and

(2)

∂y

∂t
− ν∆y + (w · ∇)y + (y · ∇)w − ωPy + ∇p = 0, in Q∞,

div y = 0 in Q∞, y = Mu on Σ∞, y(0) = y0 in Ω,

where V0(Γ) =
{
y ∈ L2(Γ) | 〈y · n, 1〉H−1/2(Γ),H1/2(Γ) = 0

}
. The coefficient

ω > 0, which is not present in (1), is added in equation (2) in order to guarantee
the exponential decay in the norm H1/2−ε(Ω), 0 < ε < 1/4, of the solution of the
nonlinear closed loop system defined below. We show that the control problem (P)
can be rewritten in the form of another control problem in which the state variable
is Py – where P is the so-called Helmholtz projection operator – and not y. This
transformation is essential in our approach. It leads to a Riccati equation which
is the natural one for the new control problem, but which is not the expected one
if we only consider problem (P). This transformation of (P) into a new control
problem is a direct consequence of rewriting equation (2) in the form:

(3)
Py′ = APy − ωPy +BMu, y(0) = y0,

(I − P )y = (I − P )DAγnMu.

The operator A is the Oseen operator, the control operator is defined by B =
(λ0I − A)DA for some λ0 > 0, and DA is the Dirichlet operator associated with
λ0I −A. We refer to [10] for the transformation of equation (2) into (3), and for
regularity results for equation (3). Denoting by Πω the solution to the Riccati
equation of the control problem (P), and setting RA = MD∗

A(I − P )DAM + I ,
we show that the closed loop system

∂y

∂t
− ν∆y + (w · ∇)y + (y · ∇)w + ∇p = 0, in Q∞,

div y = 0 in Q∞, y = −MR−1
A MB∗ΠωPy on Σ∞, y(0) = y0 in Ω,
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is exponentially stable if |y0|H1/2−ε(Ω)∩V0
n(Ω) is small enough for some 0 < ε < 1/4.

In the three dimensional case we obtain a similar result by studying the control
problem

(Q) inf
{
I(y,u) | (y,u) satisfies (4), u ∈ L2(0,∞;V0(Γ))

}
,

where

I(y,u) =
1

2

∫ T

s

∫

Ω

|(−P∆)−1/2Py|2 +
1

2

∫ T

s

∫

Γ

|R1/2
A u|2,

and

(4)

∂y

∂t
− ν∆y + (w · ∇)y + (y · ∇)w − ωy + ∇p = 0, in Q∞,

div y = 0 in Q∞, y = θ(t)Mu on Σ∞, y(0) = y0 in Ω.

The weight function θ is a C2 function from R+ into [0, 1], satisfying θ(0) = 0,
θ(t) = 1 for t ≥ T for some T > 0. In that case the solution Πω of the Riccati
equation of the control problem (Q) depends on t in the intervall [0, T ]. The
exponential decay is obtained in the norm H1/2+ε(Ω) if |y0|

H
1/2+ε
0 (Ω)∩V0

n(Ω)
is

small enough.
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Sufficient Second-Order Optimality Conditions for Mixed Constrained

Optimal Control Problems

Arnd Rösch

(joint work with Fredi Tröltzsch)

In this talk we consider the optimal control problem to minimize

(1) F (y, u) =

∫

Ω

f(x, y(x)) dx+

∫

Γ

g(x, y(x), u(x)) ds(x)

subject to the state equations

Ay + y = 0 in Ω

∂nAy = b(x, y, u) on Γ,(2)

the control constraints

(3) 0 ≤ u(x) for x ∈ Γ,

and to the mixed control-state constraints

(4) c(x) ≤ u(x) + γ(x)y(x) for x ∈ Γ.

The main task of our talk is to establish second-order sufficient optimality con-
ditions that are close to the associated necessary ones. For control-constrained
problems, this issue was discussed quite completely in literature for semilinear
elliptic and parabolic equations.

A suitable Lagrange functional can be defined by

L(y, u, p, µ1, µ2) = F (y, u) −
∫

Ω

(

m∑

i,j=1

aijDjyDip+ yp) dx−
∫

Γ

bp ds(x)

−
∫

Γ

µ1u ds(x) −
∫

Γ

(u+ γy − c)µ2 ds(x)

since the Lagrange multipliers can be expressed by regular functions, i.e. p ∈
Y = C(Ω̄) ∩ H1(Ω) and µi ∈ L∞(Γ): The existence of such regular Lagrange
multipliers has been proved in Tröltzsch [6], Bergounioux, Tröltzsch [2], and Arada,
Raymond [1] for the parabolic case and Tröltzsch [7], Rösch, Tröltzsch [4] for the
elliptic case. The existence of regular multipliers can be shown under a Slater type
condition and the assumption γ ≥ 0.

Moreover any local solution ū, the associated state ȳ, the corresponding adjoint
state p̄ ∈ Y , and regular Lagrange multipliers µ̄i ∈ L∞(Γ), have to satisfy together
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the following first order necessary optimality system (FON),

(FON)





DyL(ȳ, ū, p̄, µ̄1, µ̄2) = 0
DuL(ȳ, ū, p̄, µ̄1, µ̄2) = 0
and for a.a. x ∈ Γ
µ̄1(x) ≥ 0
µ̄2(x) ≥ 0
ū(x)µ̄1(x) = 0
(ū(x) + γ(x)ȳ(x) − c(x))µ̄2(x) = 0.

We define strongly active sets by

A1(δ1) := {x ∈ Γ : µ̄1(x) ≥ δ1},
A2(δ2) := {x ∈ Γ : µ̄2(x) ≥ δ2}.

Moreover, we say that (y, u) ∈ C(Ω̄) × L∞(Γ) belongs to the critical subspace, if

u = 0 on A1,

u+ γy|Γ = 0 on A2,

and

Ay + y = 0 in Ω

∂nAy − b̄y y = b̄u u in Γ

Now, we are able to state sufficient second-order optimality conditions:
SSC: There exist positive numbers δ, δ1, δ2 such that the definiteness condition

L′′
(y,u)(ȳ, ū, p̄, µ̄1, µ̄2)[y, u]

2 ≥ δ‖u‖2
L2(Γ)

is satisfied for all (y, u) belonging to the critical subspace.
Theorem: Let (SSC) and a regularity condition be satisfied. Then there exist

δs > 0 and ε > 0 such that the quadratic growth condition

F (y, u) − F (ȳ, ū) ≥ δs‖u− ū‖2
L2(Γ)

holds for all admissible pairs (y, u) with ‖u− ū‖L∞(Γ) < ε. Therefore, ū is a locally
optimal control in the sense of L∞(Γ).

The regularity condition is a solvability condition of an elliptic partial differ-
ential equation (see [5]). This condition is similar to the linear independence
constraint qualification in finite dimensional optimization.

The presented theory is more general than a former result of the authors [3]:
We abstain from any nonnegativity property of involved operators. Moreover, the
definition of the strongly active sets seems to be more natural than in [3].
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On compactness, Domain Dependence and Existence of Steady State

Solutions to Compressible Isothermal Navier-Stokes Equations.

Jan Sokolowski

(joint work with P. I. Plotnikov)

We prove the existence of stationary solutions to the Navier-Stokes equations of
compressible isentropic flows

α%u + div (%u⊗ u) + ∇%γ = %F + ∆u + (1 + ν)∇divu in D′(Ω),(1a)

α%+ div (%u) = f in D′(Ω), u = 0 on ∂Ω(1b)

in a bounded domain Ω ⊂ R3 on the condition that the adiabatic constant γ ≥ 1.
The main result is the following

Theorem. If γ > 1, then for every F ∈ C(Ω) problem (1) has a weak solution

% ∈ Lγ(Ω), u ∈ H1,2
0 (Ω). If γ = 1, then there are % ∈ L1(Ω) and u ∈ H1,2

0 (Ω)
satisfying (1b) such that

α%u + div (%u ⊗ u) + ∇%+ div S = %F + ∆u + (1 + ν)∇divu.

Here the weak star defect measure S is concentrated on the one-dimensional rec-
tifiable set Ωsing and has the representation

∫

Ω

ϕ(x) : dS(x) =

∫

Ωsing

s(x) ⊗ s(x) : ϕ(x)m(x)dH1 for all ϕ ∈ C1
0 (Ω)9,

Theorem yields the alternative: Either the concentration set is empty or its
Hausdorff dimension is equal to one. Whether concentrations are cancelled or a
non-trivial singular set really exists is a question which we cannot decide with
certainty. Note only that if approximate solutions and a flow region are also
invariant under the action of some group x → x′, then a concentration set and
a measure density θ also are invariant under the action of the this group. The
precise definition of the concentration set and the measure density are given in [2].
In particular, the velocity field and the pressure are invariant with respect to the
shift x3 → x3 + const, in the case of a two-dimensional flow in the plane (x1, x2).
Therefore, in this case Ωsing is the union of a countable set of straight lines and
θ is a constant along each of those. From this we conclude that ÷S = 0 and
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concentrations are cancelled in agreement with results of P.L. Lions and [1]. The
same results hold true for axially symmetric flows. On the other hand, the simple
examples show that singularities definitely exist for solutions of the pressureless
Navier-Stokes equations, which are used in astrophysics. Finally, let us point out
that the results can be used in three dimensional case, in the same way as in [1]
in two dimensional case, to establish the existence of solutions for the associated
shape optimization problems of the drag minimization.
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An Optimization Approach for Frictional Contact Problems

Georg Stadler

We are concerned with the development and convergence analysis of second-order
algorithms for the solution of frictional contact problems in function space. The
main difficulty of these problems lies in the contact and friction conditions, which
are inherently nonlinear thus making both theoretical analysis as well as an efficient
numerical realization challenging (we refer to the selected contributions [1,2,5] and
the references given therein). Here, we mainly consider the contact problem with
Tresca friction (also known as given friction) and remark that the more realistic
contact problem with Coulomb friction can be approached by solving a sequence
of Tresca friction problems and using a fixed point idea.

The contact problem with Tresca friction can be stated as the following con-
strained and non-differentiable optimization problem:

(P) min
τy=0 on Γd

τNy≤d a.e. on Γc

J(y) :=
1

2
a(y,y) − L(y) +

∫

Γc

Fg‖τTy‖ dx.

Here, Ω ⊂ Rn, n = 2, 3 is the region occupied by the elastic body whose boundary
is split into three disjoint parts Γd,Γn and Γc. By ε(y) = 1

2

(
∇y + (∇y)>

)
and

σ(y) = λtr(ε(y))Id+2µε(y) we denote the linear strain and stress tensors, respec-
tively, where λ and µ are the Lamé parameters given by λ = (Eν)/

(
(1+ν)(1−2ν)

)

and µ = E/
(
2(1 + ν)

)
with Young’s modulus E > 0 and the Poisson ration

ν ∈ (0, 0.5). The symmetric bilinear form a(· , ·) and the linear form L(·) are de-
fined by a(y, z) :=

∫
Ω

σ(y) : ε(z) dx and L(y) =
∫
Ω

fy dx+
∫
Γn

t τy dx, where “:”

denotes the sum of the componentwise products and f ∈ L2(Ω) and t ∈ L2(Γn)
denote inner force and surface tractions, respectively. The function g ∈ L2(Γc)
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denotes the given friction and F : Γc → R is such that Fg ∈ L2(Γc). Moreover,
d ≥ 0 models a possible gap between elastic body and rigid foundation. Finally,
τN and τT denote the normal and tangential component of the trace operator,
respectively.

While (P) is a constrained and non-differentiable optimization problem, its
Fenchel dual is a constrained maximization problem with a differentiable func-
tional [7]. The variables appearing in this dual problem can be interpreted as
components of the stress tensor σ(y) and the first-order optimality conditions for
(P) (in the context of duality theory often called extremality conditions) involve
both primal and dual variables.

Due to a lack of regularity of the dual variables we introduce a Tichonov-type
regularization in the dual problem, depending on parameters γ1, γ2 > 0. In the
corresponding primal problem this regularization leads to a quadratic penalization
of the pointwise inequality constraint corresponding to the contact condition, and
to a local C1-smoothing of the non-differentiable friction term. As the regular-
ization parameters tend to infinity, it can be shown that both the solution of the
primal and of the dual problem converge to the solution of the original (primal
and dual) problem in the corresponding function spaces.

For simplicity, in what follows we restrict ourselves to the case of planar elas-
ticity, i.e., n = 2 (see also [6]). In this case the primal solution yγ ∈ (H1(Ω))n of
the smoothed problem is characterized by the existence of dual variables λγ , µγ ∈
L2(Γc) such that

a(yγ , z) − L(z) + (µγ , τTz)Γc + (λγ , τNz)Γc = 0 for all z ∈ (H1(Ω))n,

λγ − max(0, λ̂+ γ1(τNyγ − d)) = 0 on Γc,{
γ2(ξγ − τTyγ) + µγ − µ̂ = 0,

ξγ − max(0, ξγ + σ(µγ − Fg)) − min(0, ξγ + σ(µγ + Fg)) = 0
on Γc,

where σ > 0 is arbitrary and λ̂, µ̂ ∈ L2(Γc) denote fixed shifting functions whose
introduction is motivated by augmented Lagrangians.

The above equations are semismooth in function space in the sense of [3, 8].
Thus, we can apply a generalized Newton method for their solution. Due to the
appearance of the pointwise max- and min- functions, this results in an algorithm
having the form of an active set method. It is related to the strategy in [1] and can
be shown to converge locally superlinear in infinite dimensions. In our numerical
experiments we observe that the method performs very reliably and that it con-
verges from any initialization after very few (usually 5–12) iterations. Moreover,
the number of iterations depends only weakly on the mesh-size and on the value
of the regularization parameters, i.e., we can solve the regularized problem very
efficiently.

Naturally, the question arises how a family of regularized solutions can be used
to obtain the solution of the original problem. Here, we propose two possibilities:
Firstly, a first-order augmented Lagrangian method, which is an update strategy
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for the shift parameters λ̂ and µ̂. While having desirable properties such as con-
vergence from arbitrary initialization, the convergence of this method is quite
slow if the regularization parameters γ1, γ2 are kept fixed. The second method we
propose is a continuation strategy with respect to the parameters γ1, γ2. These
parameters can either be increased heuristically or, more conveniently, using an
infinite-dimensional path-following strategy as proposed in [4] for an obstacle prob-
lem. Similarly as for interior point methods the overall number of iterations of the
path-following method can be decreased if the auxiliary problems are only solved
approximately. The performance of our methods for solving contact problems with
Tresca friction carries over to problems with Coulomb friction using a fixed point
algorithm.
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Dirichlet Boundary Stabilization of the Plate Equation

Marius Tucsnak

(joint work with Käıs Ammari and Gérald Tennenbaum)

The aim of this work is to give an exponential stability result for a Bernoulli-
Euler plate equation in a square, damped by a feedback bending moment acting
on a part of the boundary. The main novelty brought in by this work is that it
gives a complete characterization of the control regions for which the exponential
stability property holds. The main result of this work is the following.
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Theorem 1. Consider the square Ω = (0, π) × (0, π) and let Γ be an open subset
of ∂Ω. Consider the following control problem

ẅ + ∆2w = 0, x ∈ Ω, t > 0,(1)

w(x, t) = 0, x ∈ ∂Ω, t > 0,(2)

∆w = 0, x ∈ ∂Ω \ Γ, t > 0(3)

∆w(x, t) = − ∂

∂ν
(Gẇ), x ∈ Γ, t > 0(4)

w(x, 0) = w0(x), ẇ(x, 0) = w1(x), x ∈ Ω,(5)

where G denotes the inverse of the Laplace operator with homogenous Dirichlet
boundary conditions in Ω and ν denotes the outer unit normal field to ∂Ω. Then
the following assertions are equivalent:
1) The system (1)-(5) is exponentially stable in H1

0 (Ω) ×H−1(Ω).
2) The control region Γ contains both a horizontal and a vertical segment of non
zero length.

Sketch of the Proof.
First step. We show that equations (1)-(5) are equivalent, in a precise sense, to
an initial value problem of the form

ẅ(t) +A0w(t) +B0B
∗
0 ẇ(t) = 0 ,

w(0) = w0, ẇ(0) = w1,

where H is an appropriate Hilbert space, A0 : D(A0)→H is a self-adjoint and
strictly positive operator, and B0 is an unbounded admissible control operator

defined in Hilbert space U with values in
[
D(A

1
2
0 )
]∗

.

Second step. We show that the operators A0 and B0 defined at the first step
satisfy the condition

If β > 0 is fixed and Cβ =
{
λ ∈ C |Reλ = β

}
, the function

λ ∈ C+ =
{
λ ∈ C |Reλ > 0

}
→ H(λ) = λB∗

0 (λ2I +A0)
−1B0 ∈ L(U)

is bounded on Cβ
The basic technical tool in the proof of the above estimate is the following

elementary lemma.

Lemma 2. Assume that α > 0. Then there exists a constant C > 0, depending
only on α, such that for all m ∈ N and for all λ ∈ C with real part equal to α we
have

∑

n≥0

|λ|
|λ2 + (m2 + n2)2| ≤ C .
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Third step.

By using the result obtained at step 2, combined with the general result from [1]
it follows that that the exponential stability of (1)-(5) is equivalent to an exact
observability estimate for the corresponding undamped problem. The proof is con-
cluded by using the recent result in [2] which asserts that this exact observability
result property is equivalent to property 2) in the statement of the theorem.
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Quantum Control: from Theory to Experimental Practice

Gabriel Turinici

This summary will present activities related to the control of quantum phenomena.
More specifically, the focus of the research presented here is on the interaction
of the laser with matter. The applications include not only tailored construc-
tion of chemical compounds (through selective dissociation of chemical bounds in
molecules or through creation of new ones), but also preparation of specific quan-
tum states (that can for instance be later used in logic gates for quantum com-
puters) and fast switches in semiconductors. Yet other applications are related
to the High Harmonic Generation techniques, where a laser of given frequency
is input to a system (typically a chrystal) and lasers of integer multiples of this
frequency are obtained as output; this is a very promising technique to build e.g.
high frequency X-rays lasers. The mathematical description of the laser-matter
interaction is formulated within the framework of the quantum theory through
a time dependent Schrödinger equation containing on the one part the internal
Hamiltonian of the system H0 and on the other part terms describing the its in-
teraction with the laser. If the interaction is considered up to the first order, a
bi-linear system results where the control term (the laser intensity) ε(t) multiplies
the quantum state wavefunction:

{
i ∂∂tΨ(x, t) = (H0 − ε(t)µ)Ψ(x, t)
Ψ(x, t = 0) = Ψ0(x).

(1)

Here x is the set of internal variables, Ψ is the state of the system and µ(x) is the
coupling dipole operator.

1. Quantum controllability

Successful control of chemical phenomena has been demonstrated on a variety of
experimental settings. A natural question is concerned to the controllability of the
systems, which requires to assess the set of all attainable final states. Results have
already been obtained in finite-dimensional settings related to the computation of
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the Lie algebra spanned by −iH0 and −iµ [1, 2] or directly with tangent space
results [3], and a fairly complete description of phenomena at work is present.
However, fundamental questions remains still unanswered in this field such as the
good notions of controllability of the infinite-dimensional equations complemented
with easily implementable criterions to assess this controllability property.

2. Monotonic algorithms for quantum optimal control

At the level of the numerical simulations, much work is still required in or-
der to bring the size of the systems that can be treated accurately to practical
dimensions. Of course, using efficient algorithms to solve the quantum control
critical point equations is crucial to the overall cost reduction; some of the most
used schemes nowadays fall within the class of monotonically convergent algo-
rithms that are guaranteed to improve the performance (measured through a cost
functional J(ε)) at each iteration. Joint work with several co-authors lead to the
introduction of new classes of monotonic algorithms [4, 5] and to the study of
their convergence properties. Further works concerned the Lyapunov functional
approaches [6]. Finally, similarities between the two classes of algorithms have
been demonstrated.

3. Algorithms for experimental realization of quantum control

Experimental realization of quantum control is performed in practice through
the minimization of the cost functional J(ε), realized on a computer, but which
calls an experimental cycle each time when the value J(ε), is to be computed, and
measures the result; the minimization algorithm used is most often a derivative of
Genetic Algorithms or Evolutionary Strategy paradigm. The understanding of how
this algorithm manages to find the good solutions and its practical implications
are the goal of this part of my research. During our studies, we realized that other
algorithms can be used in the experimental setting [7], and one of those is actually
under implementation at Princeton University.

4. Parallel in time discretization schemes.

Whereas massively parallel computers enable simulations on larger and larger
space scales, very few methods are available to achieve similar results in the time
domain. Naturally, contrary to space, time is sequential and this precludes a
priori the straightforward implementation of a parallel approach. The parareal
discretization scheme (designed initially with JL Lions and Y Maday) [8] is a
possible solution to this endeavor. It combines very precise simulations run in
parallel on disjoint time segments with a coarse (approximate) simulation over the
entire time span. This scheme has also been extended to the control of quantum
evolution equations [9].
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5. Dynamical discrimination of molecules

Similar molecules often may be characterized as sharing common chemical struc-
tures and as such, they are expected to have related Hamiltonians and similar
chemical and physical properties. Examples range from simple isotopic variants of
diatomics to highly complex molecules including those of biological relevance. A
common need is to analyze or separate one molecular species in the presence of pos-
sibly many other similar agents. To enhance the ability to distinguish molecules,
we advocate the use of the optimal dynamic discrimination (ODD) approach: all
similar molecules are excited by a common laser pulse optimized to maximize
signals from only one species, while suppressing signals from all the others. A
controllability analysis and implementations [10, 11] shown that this techniques
gives good results in practice.
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Second-Order Approaches to Constrained Large-Scale Optimization

Problems with Partial Differential Equations

Michael Ulbrich

We consider two modern second order approaches to constrained large-scale op-
timization problems with PDEs: Interior-point methods and semismooth Newton
methods. It is shown that the resulting linear systems for the step computation
have very similar structure. In order to implement these algorithms efficiently, fast
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solvers for the Newton systems have to be developed. We describe how the semis-
mooth Newton system arising from 3D two-body elastic contact problems can be
solved very efficiently by multigrid methods [3]. As a second application, we con-
sider free material optimization (see, e.g., [1, 4]) and develop a preconditioner for
the primal-dual/semismooth Newton system. Finally, free material optimization
with contact is considered. This problem results in an infinite-dimensional mathe-
matical program with equilibrium constraints (MPEC). Currently, MPECs [2] are
under intensive investigation in the field of finite-dimensional nonlinear optimiza-
tion. We show that the approaches developed there are successfully applicable to
the problem at hand. The investigations of this study are illustrated and supported
by large-scale numerical tests.
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Generalized SQP-Methods with ”Parareal” Time-Domain

Decomposition for Time-Dependent PDE-Constrained Optimization

Stefan Ulbrich

We present recent results from [6] on a generalized SQP-framework with itera-
tive solvers based on the parallel ”Parareal” time-decomposition algorithm for the
parallel solution of time-dependent PDE-constrained optimization problems.

The Parareal algorithm was recently proposed by J.-L. Lions, Y. Maday et
al. [1–4] as a parallel solver for time-dependent PDEs. The Parareal algorithm is
a time-domain-decomposition method that combines the parallel solution of the
PDE on the subdomains by a high resolution scheme with an error propagation step
by a sequential low resolution scheme on a coarse grid. The Parareal algorithm
allows the fast solution of time-dependent PDEs on parallel computers and is
capable of handling nonlinear PDEs efficiently without linearization. The Parareal
algorithm can be seen as a preconditioned parallel iterative solver for a multiple
shooting formulation of the PDE.

In this talk we propose a generalized SQP-framework for time-dependent PDE-
constrained optimization that allows the flexible use of external iterative Parareal
solvers for the state equation and adjoint equation. The generalized SQP-method
uses a novel nonmonotone SQP-concept without penalty function inspired by [5]
that enforces convergence and controls the inexactness of the Parareal state and



1062 Oberwolfach Report 18/2005

adjoint solvers efficiently. The algorithm is capable of using arbitrary, also nonlin-
ear, user-provided state and adjoint solvers, in particular Parareal solvers. This
leads to a modular parallel SQP-type algorithm based on time-decomposition tech-
niques for time-dependent PDE-constrained optimization.

The efficiency of the approach is demonstrated by numerical results for the
optimal control of semilinear parabolic PDEs in 2-D.
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Adaptive Finite Element Methods for Optimization Problems

Boris Vexler

We present a systematic approach to error control and mesh adaptation in the
numerical solution of optimization problems governed by partial differential equa-
tions.

The infinite dimensional optimization problems are discretized by finite element
methods leading to discrete problems. This procedure may be interpreted as model
reduction. It is desirable to carry out the optimization process on a cheap discrete
model which still captures the “essential” features of the physical problem under
consideration. The three main questions which arise are:

• What are the “essential” features?
• How can they be measured?
• How such a cheap discrete model can be designed?

For measuring a quality of a given discretization (model), it is crucial to introduce
a quantity describing the goal of the computation, called quantity of interest. Due
to different types of the quantity of interest we distinguish between the following
types of problems:

(A) Functional minimization problem, if the quantity of interest coincides with
the cost functional;
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(B) Parameter identification problem, if the quantity of interest is given as a
functional on the control (parameter) space;

(C) Parameter (model) calibration problem, if the quantity of interest depends
on both the state and the control variable.

For these three types of optimization problems, we derive a posteriori error
estimates accessing the discretization error with respect the quantity of interest,
see [2, 3].

Since we consider finite element (mesh-based) discretization, a choice of a dis-
crete model is equivalent to a choice of an appropriate finite element mesh. There-
fore, we develop algorithms for finding efficient (cheap) discretizations by auto-
matically constructing locally refined meshes with a “minimal” number of mesh
points. These algorithms are based on the error estimators for the discretization
error with the quantity of interest. Our approach extends the concepts for error
estimation from [1].

The developed methods are applied to optimal control problems in fluid dynam-
ics as well as to estimation of chemical models in multidimensional reactive flow
problems [4]. We demonstrate the behavior of our method on the problem of cal-
ibration of the diffusion coefficients for a hydrogen flame with detailed chemistry.
The underlying model includes the compressible Navier-Stokes equations and nine
(nonlinear) convection-diffusion-reaction equations for chemical species.

In addition, we present recent results concerning space time finite element dis-
cretization, see [5], and a posteriori error estimation for time-dependent (parabolic)
optimization problems.
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Optimal Control Problems with Pointwise Convex Control Constraints

Daniel Wachsmuth

Introduction. In fluid dynamics the control can be brought into the system by
blowing or suction on the boundary. Then the control is a velocity, which is a
directed quantity, hence it is a vector in R2 respectively R3. That is, the optimal
control problem is to find a vector-valued function u ∈ Lp((0, T ) × Ω)n.
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In the literature, optimal control problems with control constraints in the form
of box constraints ua(ξ) ≤ u(ξ) ≤ ub(ξ) are mostly investigated. This is the most
suitable choice in cases where the control is a scalar quantity such as heating,
cooling and so on. But as already mentioned, in some applications the control
u(ξ) is a vector. In this case, it is more adequate to have control constraints of
the form g(ξ;u(ξ)) = g(ξ;u1(ξ), . . . , un(ξ)) = 0 or u(ξ) ∈ U(ξ) ⊂ Rn.

There are a few articles about optimal control problems with such constraints.
Second-order necessary conditions for problems with the control constraint u(ξ) ∈
U(ξ) were proven by Páles and Zeidan [4] involving second-order admissible vari-
ations. Second-order necessary as well as sufficient conditions were established in
Bonnans [1], Bonnans and Shapiro [2], and Dunn [3]. However, the set of admis-
sible controls has to be polygonal and independent of ξ, i.e. U(ξ) ≡ U .

In contrast, we will follow another approach. We treat the control constraint as
an inclusion u(ξ) ∈ U(ξ). The advantage of this approach is that the analysis is
based on rather elementary say geometrical arguments, hence there is no need of
any constraint qualification. For the details, we refer to the forth-coming article [5].

The optimization problem. We will investigate optimality conditions for opti-
mal control problems with a general set-valued control constraint. For the sake of
brevity, we deal with the abstract problem

(1) min f(u) subject to u ∈ Uad ⊂ L2(Q)n.

The function f is required to be twice Fréchet differentiable from L2(Q)n to R.
Here, Q is a measurable subset of Rn. It represents the set where the control acts.
The set of admissible controls Uad is defined by

Uad = {u ∈ L2(Q)n : u(ξ) ∈ U(ξ) a.e. on Q}.

The admissible set is built by a set-valued function U : Q ; R
n. We will impose

the following assumptions on this mapping:

(i) U is a measurable set-valued function, whose images U(ξ) are closed and
convex with non-empty interior a.e. on Q.

(ii) There exists a function fU ∈ L2(Q)n with fU (x, t) ∈ U(x, t) a.e. on Q.

Please note, we did not impose any conditions on the sets U(x, t) that are beyond
convexity such as boundedness or regularity of the boundaries ∂U(x, t). Assump-
tion (i) guarantees the existence of a measurable selection of U , i.e. a measurable
single-valued function fM with fM (x, t) ∈ U(x, t) a.e. on Q. However, no mea-
surable selection needs to be square-integrable, therefore, the second assumption
guarantees the existence of an admissible control.

Optimality conditions. The first order necessary condition for our abstract
problem can be derived from known results: Let ū be a local minimizer of (1).
Then it holds

(2) ∇f(ū)(u− ū) ≥ 0 ∀u ∈ Uad,
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which is equivalent to −∇f(ū) ∈ NUad
(ū). Here NC(u) denotes the normal cone

on a convex set C at a point u.
Now, we will present a second-order sufficient condition for local optimality of

a reference control ū. Let us first introduce for ε > 0 the set of points, where the
control constraint is strongly active by

Qε(ū) =
{
ξ ∈ Q : dist

(
−∇f(ū)(ξ), rbNU(ξ)(ū(ξ))

)
> ε
}
.

Here rbN is the relative boundary of the normal cone. This definition means that
−∇f(ū)(ξ) lies not only in the normal cone but has also some positive distance to
its relative boundary.

We assume the following coercivity condition to be satisfied for some δ > 0

(3) ∇2f(ū)[h, h] ≥ δ‖h‖2
2 ∀h ∈ L2(Q)n : hN (ξ) = 0 a.e. on Qε(ū).

Thus, we need coercivity of ∇2f only in directions h whose normal component hN
vanishes on the strongly active set. The function hN is defined as the pointwise pro-
jection of h on the space of normal directions, i.e. hN (ξ) = projspanNU(ξ)(ū(ξ))(h(ξ)).

Assuming that (2) and (3) are satisfied, we can prove local optimality of ū.

Theorem. Let ū satisfy the conditions (2) and (3) for some ε, δ > 0. Then ū
is locally optimal in L∞, and there are constants ρ, α > 0 such that the quadratic
growth

f(ū) ≤ f(u) + α‖u− ū‖2
2

holds for all u ∈ Uad with ‖u− ū‖∞ ≤ ρ.
For a proof in the context of optimal control of non-stationary Navier-Stokes

equations we refer to [5]. The crucial point in the proof is to show that the function
hN , which is the projection on the normal directions, is measurable.
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Shape Control for Wave Equations

Jean-Paul Zolesio

We consider classical wave and heat equations in a moving domain. The moving
domain is contained in a fixed bounded universe D and the evolution is in finite
time T < ∞. The non-cylindrical evolution domain Q is derived from the con-
vection of the caracteristic function χΩ0 for a given speed vector field V, given in
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H := L1(0, T, BV (D,RN )) with divV ∈ L2(0, T, L2(D))) and V · n = 0 at ∂D.
That speed field V turns out to be the control parameter of some ”classical like”
functional. Actually, the wave equation solution is not known to exist in such a
nonsmooth tube Q. In order to close the analysis we consider in fact the weak clo-
sure in H of some family f of smooth vector fields Vn ∈ L1(0, T,W 1,∞(D,RN )) =
E for which the classical flow mapping Tt ⊂ V is classical one to one defined in D.

From Cooper, Cooper and Strauss, and P. Acquistapace etc. it is known that
non cylindrical wave and heat equations do have unique solutions yn in Qn, asso-
ciated to the control Vn ∈ E. With D. Bucur, we introduce the density perimeter
or fractal perimeter as

Pγ(A) = sup
0<ε<γ

measRN

Aε

2ε

for any closed set A and Aε, the ε-delation, Aε =
⋃
n∈AB(n, ε).

Among all good properties it is known that Pγ(∂Ω) <∞ implies that Ω\∂Ω is
an open set and measRN (∂Ω) = 0 so that, using the weak formulation of the wave
problem, we get existence for the limiting domain Q. This turns out to the clean
– using the transverse field Z – solution of the evolution problem Zt+[Z, V ] = W
where [·, ·] is the Lie-bracket, and of its adjoint backward problem. We derive the
gradient with respect to the control V for the cost functional.

We also present the cubic derivative of the energy.

Reporter: Uwe Prüfert
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pruefert@math.tu-berlin.de

Institut für Mathematik
Technische Universität Berlin
Sekr. MA 4-5
Strasse des 17. Juni 136
10623 Berlin

Prof. Dr. Jean Pierre Puel

jppuel@cmapx.polytechnique.fr

Departement de Mathematiques
Universite de Versailles Saint
Quentin
45, av. des Etats-Unis
F-78035 Versailles Cedex

Prof. Dr. Rolf Rannacher

rannacher@iwr.uni-heidelberg.de

rolf.rannacher@iwr.uni-heidelberg.de

Institut für Angewandte Mathematik
Universität Heidelberg
Im Neuenheimer Feld 294
69120 Heidelberg

Prof. Dr. Jean-Pierre Raymond

raymond@mip.ups-tlse.fr

Mathematiques
Universite Paul Sabatier
118, route de Narbonne
F-31062 Toulouse Cedex 4

Dr. Arnd Rösch
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