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Abstract. Numerical upscaling is often the only way in which various mul-
tiscale problems can be handled. Numerics related to solving auxiliary prob-
lems appearing in asymptotic homogenization, as well as numerical treatment
of multiscale problems with non-separable scales, are discussed here. Among
the main topics discussed, are classification of multiscale problems and multi-
scale numerical algorithms; deriving coarse scale approximations via approx-
imate truncations or based on variational principles; iterations over scales;
accuracy and robustness of numerical upscaling algorithms; similarity and
differences between different approaches (multigrid, multiscale FEM, hetero-
geneous multiscale method, etc.); convergence issues; area of applicability of
the numerical upscaling, etc.
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Introduction by the Organisers

This Mini-Workshop was attended by sixteen participants from five countries,
representing different scientific schools and generations. Fifteen presentations
(each accompanied with intensive discussions), two common round table discus-
sions, and an uncountable number of discussions in couples, triples, etc. - the week
flew as an instant. Mixing different generations - leading scientists working from
years in the field, and ones who just finished PhD and came full with promising
ideas and enthusiasm - provided a basis for versatile discussion of each question,
for generating new ideas and for immediate attempts to apply these idea for solv-
ing the problems discussed. Blackboard discussions, sheets of paper, fast coding
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and demonstration on the laptops of results from computations - any and all ways
of discussing, arguing, convincing: this is how the workshop looked.

Multiscale problems, due to their importance for many branches of science and
industry, attract significant attention of the mathematical community. The main
targets of this workshop were the numerical aspects of the multiscale problems: in-
tegrating numerical algorithms with asymptotic homogenization theory when the
latter is applicable, and developing numerical approaches for multiscale problems
with nonseparable scales. The last is especially important. Many multiscale prob-
lems are heterogeneous at each scale, and no small parameter can be introduced
there. For such problems the equations at all scales are coupled, and the one way,
fine-to-coarse scale procedure is not applicable. Instead, an (iterative) coupled
solution at all scales is required. The mathematical studies of coupled multiscale
problems are still far from the level which is achieved in the field of the asymptotic
homogenization, and this has to be compensated for by intensive research. The
most active mathematical research in the field of numerical upscaling is currently
carried out in two directions: upscaling based on multigrid methods, and upscal-
ing based on multiscale finite element method. Both, MG and multiscale FEM,
provide a suitable framework for solving coupled multiscale problems.

Various general and particular questions were discussed during the workshop.
Among the general questions, special attention deserves the need of classifica-

tion of the multiscale problems with respect to the goals seeked: For example:
i) mathematical model at the fine scale is known and the solution is sought at
the fine scale (coarse scale serves only to accelerate the solution procedure); ii)
mathematical model at the fine scale is known, but the solution is sought at the
coarse scale only (fine scale has to provide information about the model and the
effective properties of the coarse scale), etc.

Another hot topic for discussions is when the scales can be separated and when
not (depending on the geometry, process parameters, etc.). In particular, examples
for problems with nonseparable scales, arising in Geoscience, were presented. The
case when the scales can not be separated is the most difficult one, and there
is no alternative to the numerical upscaling here. How to solve problems with
nonseparable scales - with AMG-type approach, or with multiscale FEM, or with
a combination of both; with overlapping or without overlapping for cell problems,
etc., - all these questions were intensively discussed during the workshop, and
they still need to be further discussed aiming at breaking the complexity of the
multiscale problems considered.

Further interesting topics discussed there were:
• Different approaches for deriving coarse scale equations: based on truncated

asymptotic expansions, starting from variational principles, etc.
• Different approaches for calculating effective coefficients of the coarse scale

equations: matrix-dependent prolongation in multigrid; solving overlapping or
non-overlapping local problems in multiscale and heterogeneous FEM, etc.
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• How to put together analytical and numerical approaches for solving the
auxiliary or the cell problems.

• How to benefit from the similarity between algebraic approaches (AMG ag-
glomeration, approximate total reduction, etc.) and upscaling approaches (Ms-
FEM, HMM, etc).

• How to combine the solution on a fine scale for a quasi–steady variable with
transient computations on a coarse scale for other variables. Example from mul-
tiphase flow in porous media was presented when pressure is calculated once on
the coarse scale, while contamination transport in time is simulated on a coarser
scale.

• Define benchmark problems with separable and unseparable scales to test
different approaches.

Some of the discussed questions are reflected in the presented abstracts, others
need further research and we expect that they will appear in forthcoming papers.
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Abstracts

Higher Order Gradient Continuum Description of Atomistic Models
for Crystalline Solids

Marcel Arndt

(joint work with Michael Griebel)

The behavior of materials often involves quite different length scales. The effects
which can be observed range from the macroscale down to the atomic length
scale or even to the quantum mechanical scale. For an accurate modeling and
an efficient numerical treatment, it is necessary to address the problem on the
complete hierarchy of scales and to explore the relationships of different models
on different length scales.

Two approaches are of special interest: upscaling and coupling techniques. Up-
scaling means to derive a model on one scale from a model on the next finer scale,
whereas in the coupling approach, several models on different length scales are
used simultaneously within one numerical simulation. Widely used coupling tech-
niques are the quasi-continuum method [6], the bridging scales method [7] and the
heterogeneous multiscale method [4].

Here we are interested in upscaling techniques from the atomic length scale to
the continuum mechanical length scale for crystalline solids. The basic ingredient
of an atomistic model is the potential energy Φ(A), which is a function of the atom
positions:

(0.1) Φ(A)
(
{y(x)}x∈L∩Ω

)
.

L denotes the crystal lattice, Ω ⊂ R
d the shape of the specimen in the reference

configuration and y : L ∩ Ω → R
d a discrete deformation function. The goal of

upscaling is to assign a continuum potential energy to a continuum deformation
function y : Ω → R

d, making use of the atomistic potential Φ(A). The evolution
equations and other models can then be derived from the continuum potential.

A classical upscaling technique is the scaling technique, which has been analyzed
e.g. in [3]. It is based on rescaling the atomistic potential energy to an arbitrary
fine lattice εL for ε > 0 and subsequently letting ε tend to zero. This coincides with
the thermodynamic limit, which drives the number of particles to infinity. Under
moderate assumptions, it can be shown that this procedure leads to a potential
energy in the form

(0.2) Φ(y)(S) =

∫

Ω

Φ(S),x
(
∇y(x)

)
dx

for a continuum deformation function y : Ω → R
d. It is well-known that the

according evolution equation

(0.3) ρ
∂2y

∂t2
(x) = div Φ(S),x′(

∇y(x)
)
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exhibits classical solutions only for a finite time horizon due to hyperbolic shock
waves. This breakdown of solution theory stands in contrast to the discrete system,
which exhibits solutions for an infinite time horizon. Moreover, the solutions
lack the typical dispersive effects of the discrete system. An asymptotic analysis
reveals that only partial information from the atomistic system is transferred to
the continuum level, whereas other information is necessarily lost by the limit
process.

As a remedy we consider the system within the so-called quasicontinuum regime,
i.e. for a large, but finite number of particles. To this end, the inner expansion
technique [1, 2] has been developed. It works as follows.

First, the atomistic potential Φ(A) is localized by splitting it up into a sum

(0.4) Φ(A)
(
{y(x)}x∈L∩Ω

)
=

∑

x∈L∩Ω

Φ(A),x
(
{y(x)}x∈L∩Ω

)

of local potentials Φ(A),x, each of which describes the interaction of the atoms
around the point x. Nearly all physically meaningful potentials allow for such a
localization.

Second, we perform a power series expansion of the continuum deformation
function y : Ω → R

d around each point x up to some degree K and reformulate
the potential as follows:

Φ(A)(y) =
∑

x∈L∩Ω

Φ(A),x
(
{y(x)}x∈L∩Ω

)

≈
∑

x∈L∩Ω

Φ(A),x

({
K∑

k=0

1

k!
∇ky(x) : (x− x)k

}

x∈L∩Ω

)
(0.5)

=:
∑

x∈L∩Ω

Φ(I),x
(
y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)
.

The choice of expansion points x ∈ L ∩ Ω strongly determines the approxima-
tion properties of the resulting continuum model. For many types of potential
functions, it can be shown that the best choice for x is the barycenter of the posi-
tions of the involved atoms, since the remainder terms of the series expansion are
minimized then.

The expression (0.5) still contains the finite sum over the lattice L ∩ Ω of ex-
pansion points. The sum acts like a Riemann sum and is averaged in a third
step

Φ(I)(y) =
∑

x∈L∩Ω

Φ(I),x
(
y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)

≈ α−1

∫

Ω

Φ(I),x
(
y(x),∇y(x),∇2y(x), . . . ,∇Ky(x)

)
dx(0.6)

=: Φ(J)(y),
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where α denotes the volume of a unit cell of L. This gives us the final continuum
potential Φ(J).

The resulting continuum potential Φ(J)(y) from (0.6) is a generalization of
Φ(S)(y) from (0.2) which involves higher order gradients. It is shown that the
higher order terms allow the description of the microscopic material properties
to a higher extent than commonly used continuum mechanical models like (0.2).
In particular, the discreteness effects of the underlying atomistic model are cap-
tured. Moreover, convexity and boundedness properties of the atomistic system
are carried over to the continuum level.

The approximation properties of the resulting continuum model are studied
numerically for the model problem of a one-dimensional atomic chain. Depending
on the degree K of approximation, it turns out that the dispersion is captured
both qualitatively and quantitatively very well, whereas it is completely lost by the
scaling technique. The inner expansion technique is then applied to the physically
more relevant three-dimensional example of a silicon crystal. It is shown that the
resulting continuum model is much more precise than the standard model obtained
by the thermodynamic limit. Especially the three-body interactions profit from
the higher order terms. Let us note that an application to shape memory alloys is
given in [1].

Finally let us mention the direct expansion technique [5] as another upscaling
scheme which gives an approximation of the atomistic system within the quasi-
continuum regime. It is based on a power series or a Padé approximation of the
evolution equation of the discrete system and is capable to preserve the micro-
scopic properties such as the dispersion on the continuum scale as well. However,
it does not preserve convexity and boundedness properties of the atomistic system
in general, which often leads to ill-posed problems.
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Coarse Grained Mixing Parameters for Solute Transport

Sabine Attinger

Flow and transport in natural formations are dominated by the heterogeneous
structure of the material. To capture observed phenomena accurately, one has to
discretize numerical models by grid cells of smaller size than the scale of hetero-
geneity. The computational effort to solve field scale problems is very demanding
and it is common to diminish the computational resolution by choosing coarser
grids. Variability is lost in this case and one faces the problem how to model the
impact of unresolved velocity fluctuations upon transport. Standard upscaling
procedures such as homogenization and stochastic modelling compensate unre-
solved effects by introduction of macrodispersive fluxes. Both methods average
out all heterogeneities resulting in a total loss of spatial variability in the flow and
transport parameters. In general, one has to make a compromise between compu-
tational efficiency and the preciseness/correctness of the model solution. However,
numerical grid cells of size much larger than the heterogeneity scale might be not
desired nor might yield reliable results with respect to the required preciseness of
the results. Or practical problems might be dominated by additional scales not
much larger than the heterogeneity scale.

We aim at improving standard upscaling procedures by introducing a method
called Coarse Graining that is capable to transfer a heterogeneous model not only
on very large scales but also to intermediate scales. Standard upscaling meth-
ods are also called asymptotic methods whereas the method of Coarse Graining
accounts for preasymptotic effects as well.

1. The Model

Solutes released into fluid flow are carried along with the flow but are also
subject to diffusion in the presence of concentration gradients. Our focus is not
on the microscopic pore scale but on the larger Darcy scale. Both, hydrodynamic
dispersion and diffusion, contribute to dispersive movement of solutes and the
mass conservation for solutes read

(1.1) θ
∂c

∂t
= ∇(θD∇c) −∇(uc) + qScS

where c denotes the solute concentration (dimensions mass/Ld). qS is the volu-
metric rate of the concentration sink/source cS and u is the heterogeneous Darcy
velocity. D is the dispersion tensor. It is assumed to be diagonal and isotropic.

We split the spatially fluctuating Darcy velocity into a deterministic and a
random contribution,

(1.2) u(x) ≡ u− u′(x) ,

where u is the averaged Darcy velocity. The field u′(x) denotes the fluctuation
around the mean value. The corresponding velocity auto-correlation functions are
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denoted by

(1.3) u′i(x)u′j(x
′) = Cuu

ij (x − x′) ,

where u′i(x) is the i-component of the d-dimensional field u′(x), i = 1, . . . , d with
isotropic correlation lengthsl.

2. Effective Mixing Parameters

In heterogeneous media, the mixing coefficients depend implicitly on the spatial
distribution of the heterogeneities, Dij = Dij(c), via the concentration. In the
stochastic approach, the large scale plume is characterized by an large scale or
ensemble dispersivity which reads

(2.1) Dens
ij ≡ Dij(c)

where the overbar denotes the average over the ensemble of aquifer realizations.
It represents the dispersion characteristics of the whole ensemble of aquifer real-
izations. The ’effective’ dispersivity is different from this quantity,

(2.2) Deff
ij ≡ Dij(c)

The ensemble dispersion coefficient takes into account an artificial dispersion ef-
fect caused by fluctuations of the center of mass positions of the solute clouds in
different realizations of the inhomogeneous medium. This effect is suppressed in
the effective dispersion coefficients Deff(t), because there the center of mass po-
sitions are superimposed before the ensemble average is performed. In general,
the experimentally observable dispersion, which is a property related to one given
aquifer, is represented by the effective quantity Deff

ij (t).
Thus, deriving real block-scale mixing coefficients needs coarse graining of effec-

tive mixing coefficients instead of ensemble mixing coefficients if one is interested in
finite time regimes. Rubin et al. [1999] applied coarse graining to solute transport
but only stated explicit results for block-scale macrodispersivity values.

3. Results.

With this talk, we presented scale dependent or block-scale effective mixing
coefficients as a completation of the work of E fendiev et al. and Rubin et al..

The ensemble dispersion approaches its long time value on time scales larger
than t� τu. For infinite Peclet numbers, we get

(3.1) δDens
11 (λ) =

√
π/2σ2

f ul

(
1 −

1

(1 + λ2/4l2)(d−1)/2

)

where λ denotes the scale which is still resolved by the model or the width of the
Coarse Graining filter. The ensemble dispersion coefficient displays artificial mix-
ing effects due to the spatial filter. Even without any physical small scale mixing
mechanism D = 0, the ensemble dispersion reaches finite long time values. This
scale or resolution dependent ensemble dispersion coefficient is comparable to the
block-effective macrodispersion coefficient introduced by Rubin [1999].
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The effective dispersion coefficient approaches its constant long time value for
very large times only. The long time value is identical to that of the ensemble
quantity. Increasing the width of the filter, the time scales split. Similar to
the time behavior of the effective mixing coefficients in Stochastic Modelling, the
difference between ensemble and effective mixing vanishes only after the plume
has sampled dispersively a sufficiently large region in space. We find

δDeff
11 (t, λ) = δDens

11 (t, λ) −

√
π

2
γ−2 σ2

f u l(3.2)

((
1 + 4

t

τD

)−(d−1)/2

−

(
1 +

λ2

4l2
+ 4

t

τD

)−(d−1)/2
)

The sufficiently large region, mentioned above, is not determined by the hetero-
geneity scale l but by the width of the spatial filter λ. If the plume has spread over
the width of the filter, the filtering procedure displays no artificial mixing any more
and consequently ensemble and effective mixing coefficients become identical.

4. Conclusions.

We demonstrated that the ensemble dispersion coefficient displays artificial mix-
ing effects overestimating the real scale dependent mixing. The artificial filtering
effects could be suppressed making use of the concept of effective mixing parame-
ters. Closed results are stated for weakly heterogeneous media, avoiding empirical
functions as needed in E fendiev et al [2000]. For further information, the reader
is referred to Attinger [2005].
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Multiscale finite element methods for nonlinear problems

Yaslchin Efendiev

Many processes involve a wide range of scales. Because of the scale disparity in
multiscale problems, it is often impossible to resolve the effects of small scales di-
rectly. For this reason some type of coarsening or upscaling is performed. The main
idea of upscaling techniques is to form coarse-scale equations with a prescribed an-
alytical form that may differ from the underlying fine-scale equations. In multiscale
methods, by contrast, the fine-scale information may be carried throughout the
simulation, and the coarse-scale equations are generally not expressed analytically,
but rather formed and solved numerically.
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Recently a number of multiscale numerical methods, such as residual free bub-
bles, variational multiscale method, multiscale finite element method (MsFEM),
two-scale finite element methods, two-scale conservative subgrid approaches, and
heterogeneous multiscale method (HMM) have been proposed. We remark that
special base functions in finite element methods have been used earlier in [1], where
using special base function, the generalized finite element method is introduced.
We have generalized MsFEM to nonlinear problems. Originally, MsFEM is pro-
posed for linear equations and its main idea is to use oscillatory base functions to
capture the local-scale information. The pre-computed multiscale base functions
allow us to interpolate a coarse-scale function, defined at the nodal values of the
coarse grid, to the underlying fine grid. This idea can be naturally generalized
to nonlinear problems if one considers, instead of the base functions, a multiscale
map from the coarse grid space to the underlying fine grid space. This multiscale
map is constructed using the solutions of the local problems and provides us with
the interpolation of the coarse-scale function, defined at the nodal values of the
coarse grid, to the underlying fine grid. For linear problems, our multiscale map is
linear and, thus, the image of the coarse dimensional space is a linear space with
the same dimension. A basis for the multiscale space can be obtained by map-
ping a basis of the coarse dimensional space. The latter gives us the multiscale
finite element basis functions introduced in [4]. Once the multiscale mapping is
defined, we can formulate the global finite element formulation of the problem.
Our multiscale finite element methods use a Petrov-Galerkin formulation in which
we use multiscale finite element bases as basis functions and standard linear finite
elements as test functions. We would like to stress that the formulation of Ms-
FEM does not require any assumptions on the nature of heterogeneities, such as
periodicity, almost periodicity, or etc.

We considered the analysis of MsFEM for general nonlinear elliptic equations,
uε ∈ W 1,p

0 (Ω)

(0.1) −div(aε(x, uε, Dxuε)) + a0,ε(x, uε, Dxuε) = f,

where aε(x, η, ξ) and a0,ε(x, η, ξ), η ∈ R, ξ ∈ R
d satisfy some assumptions, which

guarantee the well-posedness of the nonlinear elliptic problem (0.1). Here Ω ⊂ R
d

is a Lipschitz domain and ε denotes the small scale of the problem. The homoge-
nization of nonlinear partial differential equations has been studied previously (see,
e.g., [5]). It can be shown that a solution uε converges (up to a sub-sequence) to

u in an appropriate norm, where u ∈ W 1,p
0 (Ω) is a solution of a homogenized

equation

(0.2) −div(a∗(x, u,Du)) + a∗0(x, u,Du) = f.

The homogenized coefficients can be computed if we make an additional assump-
tion on the heterogeneities, such as periodicity, almost periodicity, or when the
fluxes are strictly stationary fields with respect to spatial variables. In these cases,
an auxiliary problem is formulated and used in the calculations of the homoge-
nized fluxes, a∗ and a∗0. Our motivation in considering this type of equation stems
from porous media applications, where nonlinear fluxes arise. In particular, we
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are interested in porous media flows in unsaturated media and the transport of
two-phase flows in heterogeneous porous media. In these examples, nonlinearities
arise due to the interaction between the phases and components.

We have studied the convergence of the generalized MsFEM for periodic as
well as random heterogeneities. To analyze the method for periodic case, we first
approximate the solutions of the local problems by introducing appropriate correc-
tors, which are periodic with respect to the fast variables. These approximations of
the local solutions allow us to extract the homogenized behavior of MsFEM solu-
tions and compare it with the homogenized solutions of the continuous equations.
Sharp estimates for the corrector approximations are obtained. The analysis al-
lows us to understand the resonance error and propose an oversampling technique
as in [4]. Numerical examples are presented to show the accuracy of the oversam-
pling method. We use both periodic and random fields with long-range correlation
structures (with and without discontinuities) in our numerical experiments. We
present numerical examples for both multiscale finite element and multiscale fi-
nite volume element methods. Multiscale finite volume element methods are very
closely related to multiscale finite element method, where the formulation of the
method follows the standard finite volume element methods. All the examples
clearly demonstrate the advantages of the oversampling method. In particular,
the oversampling approach provides small errors for relatively large coarsening.
Finally, we would like to note that the resonance errors are a common feature of
multiscale methods unless periodic problems are considered and the solutions of
the local problems in an exact period are used. In this case, one can solve the
local problems in one period to approximate the multiscale map.

The results can be extended to parabolic equations. These results and applica-
tions of the method are presented in [2, 3].

References

[1] I. Babus̆ka and E. Osborn, Generalized finite element methods: Their performance and
their relation to mixed methods, SIAM J. Numer. Anal., 20 (1983), pp. 510–536.

[2] , Numerical homogenization of nonlinear random parabolic operators, SIAM Multi-
scale Modeling and Simulation, 2(2) (2004), pp. 237–268.

[3] Y. Efendiev, T. Hou, and V. Ginting, Multiscale finite element methods for nonlinear
problems and their applications, Comm. Math. Sci., 2 (2004), pp. 553–589.

[4] T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in com-
posite materials and porous media, Journal of Computational Physics, 134 (1997), pp. 169–
189.

[5] A. Pankov, G-convergence and homogenization of nonlinear partial differential operators,
Kluwer Academic Publishers, Dordrecht, 1997.



Mini-Workshop: Numerical Upscaling: Theory and Applications 1141

Upscaled models for porous media flows

Richard Ewing

The modeling of multiphase flow in porous formations is important for both
environmental remediation and the management of petroleum reservoirs. Prac-
tical situations involving multiphase flow include the dispersal of a non-aqueous
phase liquid in an aquifer or the displacement of a non-aqueous phase liquid by
water. In the subsurface, these processes are complicated by the effects of perme-
ability heterogeneity on the flow and transport. Simulation models, if they are to
provide realistic predictions, must accurately account for these effects. However,
because permeability heterogeneity occurs at many different length scales, numer-
ical flow models cannot in general resolve all of the scales of variation. Therefore,
approaches are needed for representing the effects of subgrid scale variations on
larger scale flow results.

On the fine (fully resolved) scale, the subsurface flow and transport ofN compo-
nents can be described in terms of an elliptic (for incompressible systems) pressure
equation coupled to a sequence of N − 1 hyperbolic (in the absence of dispersive
and capillary pressure effects) conservation laws. In this abstract we address the
upscaling of both pressure and saturation equations.

Traditional approaches for scale up of pressure equations generally involve the
calculation of effective media properties. In these approaches the fine scale in-
formation is built into the effective media parameters, and then the problem on
the coarse scale is solved. We refer to [3] for more discussion on upscaled model-
ing in multiphase flows. Recently, a number of approaches have been introduced
where the coupling of small scale information is performed through a numerical
formulation of the global problem by incorporating the fine features of the prob-
lem into base elements. In this work we develop a similar approach using finite
volume framework. Because of their conservative features, finite volume methods
are often preferred in the applications, such as flow in porous media. Our method-
ology is similar to the multiscale finite element methods [8]. We discuss numerical
implementation, as well as some applications of our approach.

Though there are a number of technical issues associated with the subgrid mod-
els for the pressure equation, the lack of robustness of existing coarse-scale models
is largely due to the treatment of the hyperbolic transport equations. Previous ap-
proaches for the coarse-scale modeling of transport in heterogeneous oil reservoirs
include the use of pseudo-relative permeabilities, the application of nonuniform
or flow-based coarse grids [2], and the use of volume averaging and higher mo-
ments [4]. Our methodology for subgrid upscaling of the hyperbolic (or convection
dominated) equations uses volume averaging techniques. In particular, we employ
perturbation analysis to derive the macrodiffusion that represents the effects of
subgrid heterogeneities. The macrodiffusion, in particular, can be written as a co-
variance between the velocity fluctuations and fine-scale quantity that represents
the length of the fine-scale trajectories. For the computation of the fine-scale
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quantities we use detailed information that is contained in the multiscale base
functions.

We note that the resulting macrodispersion depends on the concentration of the
components due to the functional dependence of the velocities on it. Thus, a mere
use of this macrodispersion model would require saving the velocities for each time.
We implemented a procedure to overcome the aforementioned impracticality by
proposing a recursive relation relating the length of the fine-scale trajectories to
the velocities. The recursive relation is based on the invariance of the trajectory
viewed at two different time levels, as long as these two time levels are reasonably
close to each other. In previous approaches [4] the authors use simplified models
for macrodispersion, where only pre-asymptotic behavior of the macrodispersion is
modeled. These simplifications limit the applications of macrodispersion models to
general flow scenarios. A procedure for the computation of two-point correlations
of spatial velocity fields is proposed. The latter allows the use of our approach for
more general flow scenarios. These results are presented in [6, 7].

In this talk, we also discussed a multiscale finite element approach in which the
basis functions are constructed using the solution of the global fine-scale problem
at the initial time (only). The heterogeneities of the porous media are typically
well represented in the global fine-scale solutions. In particular, the connectivity
of the media is properly embedded into the global fine-scale solution. Thus, for the
porous media with channelized features (where the high/low permeability region
has long-range connectivity), this type of approach is expected to work better.
Indeed, our computations show that our modified approach performs better, for
porous media with channelized structure, than the approaches in which the basis
functions are constructed using only local information. Some analysis is presented
to justify our numerical observations. In our numerical simulations, we have used
cross-sections of recent benchmark permeability fields, such as the SPE compara-
tive solution project, in which the porous media has a channelized structure and
a large aspect ratio. The results are presented in [5].
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Upscaling: A review of some numerical methods

Chris Farmer

Upscaling refers to the process of approximating one system of, usually dif-
ferential, equations by a system of equations that is easier to solve but with the
same average or large scale behaviour. This is a classical activity referred to as
homogenisation in the mathematical literature and effective medium theory in the
theoretical physics literature.

In this talk a classification of some numerical approaches was given. The prob-
lem of single phase, incompressible fluid flow through porous media was taken as
a model problem. This has practical importance in the modelling of oil recovery,
groundwater management and pollution modelling.

Incompressibility leads to the condition that the flux is divergence-free, divu =
0. Darcy’s law provides the condition that the flux is proportional to a potential
gradient, u = −k∇p where a unit viscosity is assumed. The permeability coeffi-
cient, k, is in general a positive definite symmetric tensor. Various combinations
of boundary conditions are applied to this model problem. The full problem in-
volves multiple phases and leads to a system of parabolic equations, some of which
are nearly elliptic and some nearly hyperbolic. The upscaling problem is to find
a smoother, or at least simpler, permeability coefficient, k, so that the average
behaviour is preserved. A detailed review of upscaling can be found in Farmer
(2002). For general background see Farmer (2005).

If a physical experiment is performed on a heterogeneous material the per-
meability is calculated by taking the ratio of the gradient of the average flux to
the average gradient. Numerical approaches to upscaling involve simulating such
physical experiments. As most numerical experiments involve a grid, and as the
detailed model will require a large, fine grid, we refer to the detailed model as
the fine grid model. The equivalent simpler model is called the coarse grid model.
Thus there is a fine grid experimental stage and a coarse grid calibration stage. Cal-
ibration involves inferring coarse grid coefficients by solving inverse problems with
the fine grid results as input data. To make the calibration calculation easy, the
numerical experiment is designed so that the flow is, on average, one dimensional
and with a spatially constant pressure at one end of the system and a constant,
lower, pressure at the other end.

There are two types of fine grid numerical experiment. One type involves ex-
periments on small subregions which, in many cases, become the grid cells in the
coarse grid model. We refer to such small scale experiments as local. The other
type of experiment involves solving the fine grid model on a large part of the
original problem domain. The fine grid experiment might, exceptionally, solve the
original problem. When the fine grid problem involves a substantial portion of the
domain we refer to the experiment as global.
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Once the fine grid result is obtained a coarse grid model is calibrated that
reproduces some aspects of the large scale behaviour. When this is done using just
a small part of the coarse model, we refer to a local calibration, and when the whole
coarse model is calibrated (probably involving a large scale optimisation problem)
we refer to a global calibration. We thus arrive at four types of upscaling local-
local, local-global, global-local and global-global. The first word of the pair refers
to the fine grid experiment and the second word to the method of calibration. The
local-global method as defined here is not used. However, speculation as to what
might be involved in such a local-global method is a fruitful activity in analysing
the way in which mathematical upscaling techniques are applied by engineers (see
Farmer 2005 for further discussion).

Generally upscaling methods work if the length scales of the problem are well-
separated. This means that the methods are subject to the same limitations
as homogenisation approaches. However, numerical upscaling methods, although
heuristic, are applicable in practice to a wide range of problems. Upscaling meth-
ods can be applied recursively, over several levels in cases where the fine grid model
is only defined implicitly as for example by a probability density function. This
is very similar to the real space renormalisation group method used in statistical
physics. When the length scales are not well separated then the global-local and
global-global upscaling methods will be best, as long as the boundary conditions
are not too different from those used in the fine grid experiments.

More recently new approaches to upscaling problems have been devised. Of par-
ticular note are the multiscale basis function methods of Hou (1997) and of Jenny
at al (2003). For simple problems, although better founded in theory, multiscale
methods are practically the same as upscaling approaches. For more complicated
problems the methods are of wider applicability. Nevertheless, these methods are
only useful in cases where the fine grid model is available as a well defined numerical
modelling. The work of Durlofsky (2003) involves an iterative approach, whereby
a coarse grid calculation is used to obtain a possibly more accurate boundary
condition for a repetition of the fine grid experiments.
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Upscaling of two-phase flow processes in highly heterogeneous porous
media including interfaces on different scales

Rainer Helmig

Environmental remediation and protection has provided an especially impor-
tant motivation for multiphase research in the course of the last 15 years [4, 15].
The release of non-aqueous phase liquids, both lighter and denser than water
(LNAPLs and DNAPLs), into the environment is a problem of particular impor-
tance to researchers and practitioners alike [14]. Of late, such work has focused on
the construction of mathematical models which can be used to test and advance
our understanding of complex multiphase systems, evaluate risks to human and
ecological health, and aid in the design of control and remediation methods.

One of the foremost problems facing the reliable modeling of multiphase porous
medium systems is the problem of scale. Roughly speaking, a model is assembled
from a set of conservation equations and constitutive, or closure, relations. One
must identify constitutive relations and system-specific parameters that are appro-
priate for the spatial and temporal scales of interest. Often, however, a disparity
exists between the measurement scale in the field or laboratory and the scale of
the model application in the field. Furthermore, neither the measurement nor the
field application scales are commensurate with the scale of theoretical or empirical
process descriptions. Both closure relation forms and parameters are subject to
change when the system of concern is heterogeneous in some relevant respect.

Figure 1 graphically depicts the range of spatial scales of concern in a typical
porous medium system. It illustrates two important aspects of these natural sys-
tems: several orders of magnitude in potentially relevant length scales exist, and
heterogeneity occurs across the entire range of relevant scales. A similar range of
temporal scales exists as well, from the pico-seconds over which a chemical reac-
tion can occur on a molecular length scale to the decades of concern in restoring
sites contaminated with DNAPLs.

A careful definition of relevant length scales can clarify any investigation of
scale considerations, although such definitions are a matter of choice and modeling
approach [6]. We define the following length scales of concern: the molecular
length scale, which is of the order of the size of a molecule; the microscale, or the
minimum continuum length scale on which individual molecular interactions can
be neglected in favor of an ensemble average of molecular collisions; the local scale,
which is the minimum continuum length scale at which the microscale description
of fluid movement through individual pores can be neglected in favor of averaging
the fluid movement over a representative elementary volume (REV) – therefore
this scale is also called the REV-scale; the mesoscale, which is a scale on which
local scale properties vary distinctly and markedly; and the megascale or field-
scale. Measurements or observations can yield representative information across
this entire range of scales, depending on the aspect of the system observed and
the nature of the instrument used to make the observation. For this reason, we do
not specifically define a measurement scale.
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Figure 1. Different scales for flow in porous media

For the minimum continuum length scale, we take the boundaries of the different
grains directly into account. For the microscale, we look at a variety of pore throats
and pore volumes. Note that, for both scales, we average over the properties of
the fluids only (achieving for example density, viscosity).

When looking at the REV-scale, we average over both fluid–phase properties
and solid–phase properties. In Figure 2, we show schematically the averaged prop-
erties (e.g. the porosity). While averaging over a representative elementary volume
(REV), we assume that the averaged property P does not oscillate significantly.
In Figure 2 this is the case in the range of V0 to V1 with V0 < V1, so any volume
V with V0 ≤ V ≤ V1 can be chosen as REV. Accordingly, we do not assume any
heterogeneities on the REV-scale. For our model, we assume that the effects of
the sub–REV–scale heterogeneities are taken into account by effective parameters.
The super–REV–scale heterogeneities have to be taken into account by applying
different parameters to the domain of interest. Both steady transitions as well
as jumps have to be considered for the parameters. We denominate those het-
erogeneities with jumps within the spatial parameters as block heterogeneities.
Within the context of this work, we assume that block heterogeneities can be
described by subdomains with well–defined interfaces. In this paper, we do not
consider heterogeneities on the field scale.

Because the scale of interest in this paper is ultimately the meso–scale, one can
usually ignore molecular-scale phenomena, although these effects are embodied
in continuum–conservation equations and associated closure relations. However,
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Figure 2. Different scales for flow in porous media (schemati-
cally for Figure 1)

we must consider all other important and relevant scales in the current study of
multiphase porous–medium systems.

Conceptually, one wishes to describe phenomena at a given scale using the
minimum amount of information from smaller scales. This process gives rise to
quantities at each scale that may not be meaningful at smaller scales. For example,
fluid pressures are not relevant to individual collisions at the molecular scale,
and point-wise fluid saturations or volume fractions do not necessarily reflect the
microscale fluid composition at that point. A conceptually satisfying theoretical
approach – one that could fundamentally increase the field’s maturity – must
provide a method for incorporating models on a given scale sparingly into models
on the next larger scale using rigorous mathematics and sound physical reasoning.

For example, microscale models can be developed to describe fluid flow in indi-
vidual pores by solving the Navier-Stokes equations [1] or Boltzmann equation [2]
over an appropriate domain. These methods can in turn be used to model systems
consisting of many pores, even of a size equivalent to an REV for a REV-scale
porous–medium system. Such approaches have been used to develop REV-scale
closure relations based upon microscale processes [5].

As yet, this kind of connection does not exist across relevant length scales
for all the phenomena considered in multiphase porous–medium systems. Valid
questions remain about the importance of heterogeneities for specific processes,
the appropriate form and parameterization of closure relations for heterogeneous
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multiphase porous–medium systems, and effective ways of simulating such systems
economically.

In spite of the problems of scale, we need reliable efficient multiphase flow and
transport simulators that represent the dominant flow and transport mechanisms
in heterogeneous multiphase porous–medium systems. The REV-scale modeling
problem has been operationally separated from the more general problem of cas-
cading scales, although the two problems are formally entwined. The two have
been split apart because of the urgent need to respond practically to such prob-
lems, even before we understand them fully. The operational separation of local
scale modeling from a more comprehensive theoretical modeling methodology has
resulted in many practical models and experimental studies of complex multi-
phase phenomena [16, 10, 7, 11, 8, 9]. Engineering has played an important role
in implementing this practical response.

¿From the mesoscopic perspective, two basic classes of multiphase applications
have received attention in the literature and deserve further consideration: the
imbibition of DNAPL into a heterogeneous porous–medium system [8, 9, 3] and
the removal of a DNAPL originally in a state of residual saturation [12, 13]. The
former class determines the morphology of the DNAPL distribution at residual
saturation, which, therefore, determines the initial condition of the latter problem.
While the public is greatly concerned with remediating DNAPL–contaminated
soils, many questions concerning DNAPL imbibition and removal still hinder our
remediation efforts.

The overall goal of this work is to advance our understanding of models for
heterogeneous multiphase porous–medium systems across a range of scales. Our
specific objectives are (1) to evaluate the role of the spatial scale in determining
the dominant process for multiphase flow; (2) to investigate the influence of pore-
scale heterogeneity on microscale and REV-scale flow processes; (3) to summarize
conventional continuum-scale mathematical models; (4) to evaluate the accuracy
and efficiency of a set of spatial and temporal discretization approaches for solving
multiphase flow and transport; (5) to compare numerical simulations with exper-
imental observations for heterogeneous mesoscopic systems; and (6) to point the
way toward important future areas of research in the field.
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On averaging of the non-periodic conductivity coefficient using
two-scale extension

Vsevolod Laptev

(joint work with S. Belouettar)

It is usually difficult to predict a global behavior of some process in heterogeneous
media (for example composite/porous materials) although the physics of the pro-
cess might be well understood locally. The reason lying in the complexity of the
microstructure gives rise to different upscaling methods.

Heterogeneities having periodic microstructure play a central role in the devel-
opment of upscaled models. From one side they represent an important particular
case of general heterogeneous media and on the other there are well developed
mathematical techniques (e.g. the two-scale asymptotic expansion method), which
help to derive formally and often rigorously the upscaled model. As a result many
physical processes in heterogeneous media having periodic microstructures are well
investigated both from theoretical and from practical points of view and the period-
icity assumption is usually a starting point for the upscaling procedures [2],[5],[6].
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Although this assumption is valid in only limited number of cases, mostly in arti-
ficially created materials. Therefore for practical purposes one should be able to
deal with non- periodic structures.

The deterministic homogenization procedure starts from a sequence of problems
{Pε}. In the periodic case the heterogeneity in Pε is usually described by an ε-
periodic function aε(x) = a(x/ε) (where a(y) is a given 1-periodic function). Quite
often the purely periodic coefficient can be generalized without difficulties to the
locally periodic coefficient aε(x) = a(x, x/ε) (where a(x, y) is a given 1-periodic
function in y). In the following steps one has to investigate the convergence of the
sequence (in a wide sense) and to find a limit problem P0. The solution of the
limit problem can be used in order to approximate the solutions of the problems
Pε for small enough ε.

The coefficients a(y) or a(x, y) are considered in mathematical literature as
given functions belonging to some functional spaces, without paying much atten-
tion where they come from.

In this presentation we start from a rapidly oscillated (non-periodic) coefficient
aM (x) given in Ω and define a two-scale extension for aM (x) – any 1-periodic in
y function a(x, y) satisfying for some ε̄ > 0 the equality a(x, x/ε̄) = aM (x) in Ω.

If aM (x) is a coefficient in a problem P then the resulting sequence {Pε} (con-
structed from the two-scale extension a(x, y)) passes through the problem P when
ε = ε̄. And if the sequence {Pε} has a limit problem P0 then the solution of P0

can be used in order to approximate the solution of P . Roughly speaking, P0 is
an upscaled problem for P .

The two-scale extension is not unique and different two-scale extensions lead
to different upscaled problems. The trivial extension is given by a(x, y) = aM (x).
More useful extensions can be constructed in the following way (assuming that

aM (x) is known in a larger domain Ω̃ ⊃ Ω to avoid uncertainties close to ∂Ω):

• we choose ε̄ > 0 (small in comparison to the typical size of Ω);

• for each x ∈ Ω we choose an ε̄-cube Wx containing x and Wx ⊂ Ω̃
(Wx is a cubic Representative Elementary Volume around x);
It is reasonable to distinguish two main choices for Wx:

– Wx is an ε̄-cube with the center x.
– Having a partition Ω = ∪jΩj (Ωi∩Ωj = ∅, i 6= j) that each Ωj has an
ε̄-cube Wj (Ωj ⊆Wj) then for each x ∈ Ωj we can define Wx := Wj .

Now we fix x ∈ Ω and construct a(x, ·):

(1) ã(x, y) = aM (y), y ∈ Wx;
(2) ã(x, y) is extended ε̄-periodically in y to the whole space.
(3) a(x, y) = ã(x, ε̄y) is the two-scale extension.

The discontinuity of such two-scale extensions can be partially compensated by
”admissibility” in the sense of the two-scale convergence method [1].

Applying this approach to the second order elliptic equation with homogeneous
Dirichlet boundary conditions, the initial problem is

P : −∇ · (aM (x)∇u) = f in Ω, u|∂Ω = 0,
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the imaginary sequence of problems with the two-scale extension a(x, y) is

Pε : −∇ · (a(x, x/ε)∇uε) = f in Ω, uε|∂Ω = 0,

and the averaged (upscaled) problem with A(·) calculated using the standard ho-
mogenization algorithm [2],[5],[6] is

P0: −∇ · (A(x)∇U) = f in Ω, U |∂Ω = 0,

where the solution of a cell problem depending on aM (·) inWx is used to determine
the averaged tensor coefficient A(x).

For several 1D and 2D test problems we have compared numerically u with U

and Û , where Û is a so-called H1 correction of U , calculated a posteriori from U
and the cell problem solutions. The dependency of the approximation error and
the averaged coefficient on ε̄ was shown and discussed.

There are many algorithms currently known for practical calculation of A(·)
[3],[4]. Some of them (having the same local problem with periodic boundary
conditions) can be recovered by a special choice of the two-scale extension. This
gives them a justification by an asymptotical argument as well as some freedom
for improvement and generalization. The two-scale extensions might be also useful
for better understanding fundamental questions related to upscaling.
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On averaging of the non-periodic conductivity coefficient using
two-scale extension

Vsevolod Laptev

(joint work with S. Belouettar)

It is usually difficult to predict a global behavior of some process in hetero-
geneous media (for example composite/porous materials) although the physics of
the process might be well understood locally. The reason lying in the complexity
of the microstructure gives rise to different upscaling (averaging, homogenization)
methods.

Heterogeneities having periodical structure play a central role in the develop-
ment of upscaled models. From one side they represent an important particular
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case of general heterogeneous media and on the other there are well developed
mathematical techniques (e.g. two-scale asymptotic expansion method), which
help to derive formally and often rigorously the upscaled model. As a result many
physical processes in heterogeneous media having periodical microstructures are
well investigated both from theoretical and from practical points of view and the
periodicity assumption is usually a starting point for the upscaling procedures.
Although this assumption is valid in only limited number of cases, mostly in arti-
ficially created materials. Therefore for practical purposes one should be able to
deal with non- periodical structures.

In this presentation we define a notion of two-scale extension for a given non-
periodic coefficient and present several ways to construct it. The main purpose is
to adapt the upscaling results known for problems with (locally) periodic coeffi-
cients to problems with non-periodic coefficients. The locally periodic coefficient
is a natural generalization of a purely periodic coefficient. It is often used in ho-
mogenization as a given two-scale function. Its form determines the sequence of
problems depending on a small parameter as well as the final form of the upscaled
model. Instead of treating the locally periodic coefficient as a given function we
try to construct it (two-scale extension) in such a way that the resulting sequence
of problems passes through the given problem with non-periodic coefficient. This
is a key idea of using two-scale extensions. Different two-scale extensions lead to
different upscaled problems.

The classical averaging algorithm for the second order elliptic equation with the
locally periodic coefficient is used to calculate an effective coefficient for the par-
ticular non-periodic problem by solving finite (or infinite) number of cell problems,
covering the whole domain.

The discontinuity of the proposed two-scale extensions can be partially com-
pensated by ”admissibility” in the sense of the two-scale convergence method.

The averaging approach was tested on several problems in 1D and 2D with
randomly generated conductivity.

Multiscale preconditioning

Nicolas Neuss

1. Introduction

In this contribution, we consider the numerical solution of discrete equations
arising from the discretisation of a multiscale problem. We show that the mul-
tiscale nature can be used to construct an efficient preconditioner. In contrast
to [8], we do not require conditions of cell symmetry here, but require a suffi-
cient resolution of the fine scale problem which allows to transfer the continuous
approximation result of homogenisation theory to the discrete situation.
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2. Microscopic problem

For k ≥ 1, let A ∈ C0,1
per(R

d,Rd×d) be a Lipschitz-continuous, 1-periodic, matrix-

valued function which satisfies Aij(x) = Aji(x) for all x ∈ R
d together with the

ellipticity and continuity condition that there exist constants 0 < λ1 ≤ λ2 < ∞
such that

(2.1) λ1|ξ|
2 ≤ (ξ, A(x)ξ) ≤ λ2|ξ|

2 , x ∈ R
d .

Now, let ε = 1/N for some N ∈ N and Ω = (0, 1)d. Given f ∈ L2(Ω), we search
for uε ∈ H10(Ω) satisfying

(2.2) aε(uε, v) :=

∫

Ω

∇v(x)A(
x

ε
)∇uε(x)dx =

∫

Ω

f(x)v(x)dx

for all test functions v ∈ H10(Ω). The Lemma of Lax-Milgram then guarantees
unique solvability of this problem.

3. Homogenised problem

Homogenisation theory (c.f. [7]) proves that, for small ε, a good approximation
of the solution uε of problem (2.2) can be constructed by solving the following
homogenised problem: find u0 ∈ H10(Ω) satisfying

(3.1) a0(u0, v) :=

∫

Ω

∇v : A0∇u0dx =

∫

Ω

v fdx, v ∈ H10(Ω),

where the constant coefficient matrix A0 is defined as an average

(3.2) A0ij =

∫

Y

(
Aij(y) +

d∑

l=1

Ail(y)
∂Nj

∂yl
(y)

)
dy,

over Y = (0, 1)d with functions Nk ∈ Ḣ1(Y ), k = 1, . . . , n satisfying

(3.3) a(Nk, V ) :=

∫

Y

∇V (y) : A(y)∇Nk(y)dy = −

∫

Y

∇ϕ(y) : A(y)ekdy

for all V ∈ Ḣ1(Y ), where ek ∈ R
d is the vector with components (δjk)j=1,...,n.

Theorem 1. Let uε be the solution of (2.2), Nk be the solutions of (3.3), and u0
be the solution of (3.1). Consider the first-order corrector

(3.4) u1,ε(x) := u0(x) + ε
d∑

k=1

Nk(
x

ε
)
∂u0

∂xk
(x)

and the boundary correction θε = θε(∇u0) defined by θε = u1,ε on ∂Ω and

(3.5)

∫

Ωε

∇vε(x) ·Aε(x)∇θε(x)dx = 0, vε ∈ V ε
0 .

Then we have the error estimate

(3.6) ‖∇(uε − u1,ε + θε)‖≤
,L2(Ωε)Cε‖f‖,L2(Ω).

Proof. See, e.g., [7], [8], [9]. 2
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4. Discretisation

Let Tĥ denote a quasi-uniform mesh of the unit cell Y which fits across the
identified boundary ∂Y . Thus, Tĥ can be scaled by ε and repeated periodically,

such that we obtain a ε-periodic mesh Th on Ω of meshsize h = εĥ. Both Th

and Tĥ may contain simplices or tensor products of simplices (i.e. triangles and/or
quadrangles for n = 2). With TH we denote the cube mesh of meshsize H = ε.

On Th, we discretise problem (2.2) with standard conforming finite elements of
order 1 and denote the ansatz space with Dirichlet boundary conditions by S1h,0.
In the same way, we discretise problem (3.3) on Tĥ, and denote the ansatz space
consisting of periodic functions with zero mean value by S1ĥ. Solving the arising
finite-dimensional problem gives us approximations Nĥ ∈ Sĥ of N , and using Nĥ

instead of Nĥ in (3.2) gives us an approximation A0
ĥ

to A0. Finally, we can use

A0
ĥ

for discretizing (3.1) using an ansatz space S1H,0 consisting of conforming

multilinear finite elements on TH .

Remark 4.1. Because of Theorem 1, the most interesting case is h ≤ ε2, because
otherwise the solution to the homogenised problem (3.1) together with a boundary
layer approximation according to (3.5) would yield an equally good or even better
approximation at lower computational cost.

5. Multiscale preconditioning

If h is small (e.g. of size ε2 as indicated in Remark 4.1), the efficient solution
of problem (2.2) on S1h,0 becomes large, and efficient solution techniques are
called for. Here, we propose to use a domain decomposition with respect to the
subdomains

(5.1) Ωε
~k

= Ω ∩ ε(~k + (−1, 1)d) , 1 ≤ max
i=1,...,d

|ki| ≤
1

ε
− 1

together with a coarse space defined by solving the discrete homogenised problem.

More precisely, let Vh = S1h,0, and for 1 ≤ i ≤ m = 1
(1/ε−1)d , let i 7→ ~k(i) be a

numbering of the set {~k ∈ Z
d : 0 ≤ kj ≤ 1

ε − 1}.

Theorem 2. Let

(5.2) Vi = {v ∈ Vh : Supp(v) ⊂ Ω~k(i)} , i = 1, . . . , n ,

and set V0 = Range(ph
H), where ph

H : VH → Vh is defined as

(5.3) uH 7→ Ih ◦ (uH + ε

d∑

k=1

Nk
∂uH

∂xk
)

with Ih : C0(Ω) → Sh denoting the projection operator defined by nodal evaluation.
For i = 1, . . . , n let Ai : Vi → V ′

i be defined by restricting the bilinear form aε

from (2.2) to Vi. For i = 0, choose A0 to be a discretisation of the homogenised
problem.
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ε 1/2 1/4 1/8 1/16
ρ 0.0004 0.36 0.45 0.5

Table 1. Convergence rates for solving the diffusion problem.

If ĥ . ε, and H ∼ ε, then every v ∈ Vh has a decomposition v =
∑n

i=0 vi with
vi ∈ Vi such that for some K1 > 0 independent of ε and h, we have

(5.4)
( n∑

i=0

‖vi‖
2
Ai

) 1
2

≤ K1‖v‖A .

and there exists K2 > 0 such that for arbitrary ui ∈ Vi,

(5.5)

n∑

k=0

n∑

i=0

a(vk, ui) ≤ K2‖v‖A

( n∑

i=1

‖ui‖
2
Ai

) 1
2

.

Proof. For vh ∈ Vh, let vH denote the solution of

aH(vH , wH) = aε(vh, p
h
HwH) , wH ∈ VH ,

and set v0 = ph
HvH . Then it is a straightforward combination of standard finite

element error estimates and Theorem 1 to show that the remainder w = vh −

v0 satisfies ‖w‖
.

,L2(Ω)ε. This is sufficient to show that (5.4) is satisfied for the

decomposition w =
∑n

i=1 vi, if vi is defined as Ih ◦ (wψi) for {ψi}i=1,...,m denoting

the set of standard nodal basis functions in SH with ψi(~k
(j)) = δij . (5.5) follows,

because no more than 2d + 1 of the subspaces have nonempty intersection. 2

Corollary 3. A parallel subspace correction using the subspaces V0, . . . , Vn defined
above yields an optimal preconditioner for problem (2.2) discretised on Vh = S1h,0.

6. Numerical results

We look at a special case of problem (2.2), with a scalar diffusion coefficient

Aij(y) =
δij

(2 + 1.8 sin(2πy1))(2 + 1.8 sin(2πy2))
.

We discretize and solve this problem according to Sections 4 and 5. As solver for
the local subproblems we used a simple CG iteration with Jacobi preconditioning.

The implementation was done using the program Femlisp, see [5]. We vary ĥ = ε,
H = ε, h = ε2 simultaneously with ε and obtain the convergence rates shown in
Table 1. Of course, a more practical version of this algorithm would not use
an exact solver on each subspace, but an approximate hierarchical solver. The
numerical results do not change significantly in this case and also Theorem 2 can
be adapted easily.

Finally, we want to remark that the technique described here can also be applied
to higher order discretisations, systems of equations like linear elasticity, and even
to situations where the micro- and macroproblem are of rather different character.
For example, consider the problem of solving Stokes equation in a domain Ωε with
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ε 1/2 1/4 1/8 1/16
ρ 0.65 0.69 0.69 0.7

Table 2. Convergence rates for solving the Stokes problem.

periodically distributed holes of size ε, with no-slip boundary conditions posed
on ∂Ωε. Here the homogenised equation is a diffusion equation (Darcy’s law)
with a certain permeability which can be computed by solving flow problems on

a representative cell. Preliminary results for ĥ = const (which corresponds to
the setting of [8]) and a very cheap choice of overlapping subspaces centered at
vertices of Th show a robust convergence independent of ε, see Table 2. However,

the theoretical analysis of this method as well as the analogous method with ĥ ∼ ε
is still open.
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Numerical analysis of coarse-grained stochastic lattice dynamics

Petr Plecháč

(joint work with Markos A. Katsoulakis, Alexandros Sopasakis)

Introduction. In [13, 16] the authors started developing systematic mathematical
strategies for the coarse-graining of microscopic models, focusing on the paradigm
of stochastic lattice dynamics and the corresponding MC simulators. In these pa-
pers a hierarchy of coarse-grained stochastic models–referred to as coarse-grained
MC (CGMC) – was derived from the microscopic rules through a stochastic closure
argument. The resulting stochastic coarse-grained processes involve Markovian
birth-death and generalized exclusion processes and their combinations.

The CGMC algorithms discussed here are related to a number of methods
involving coarse-graining at various levels. For example, corrections to the CGMC
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dynamics from the renormalization group flow given by RGMC and multigrid
MC methods [2, 6, 8] will improve approximation properties of CGMC. Various
coarse-graining approaches may yield explicitly derived stochastic coarse models
such as CGMC or [9, 11, 18], or can be statistics-based [19] or may rely on on-fly
simulations, e.g., equation-free [17], heterogeneous multi-scale [7] or multi-scale
FEM methods [10]. A systematic approach to upscaling of stochastic systems has
been developed in [1, 4, 3, 5].
Microscopic lattice models. The presented analysis applies to the class of Ising-
type lattice systems. For the sake of simplicity we assume that the computational
domain is defined as the discrete periodic lattice ΛN = 1

nZ
d ∩ T which represents

discretization of the d-dimensional torus T = [0, 1)d. The microscopic degrees of
freedom or the microscopic order parameter is given by the spin-like variable σ(x)
defined at each site x ∈ ΛN . In this paper we discuss only the case of discrete
spin variables, i.e., σ(x) ∈ Σ with Σ = {−1, 1}, Σ = {0, 1} (Ising model) or
Σ = {0, 1, . . . s} (Potts models). We denote σ = {σ(x) | x ∈ ΛN} a configuration
of spins on the lattice, i.e., an element of the configuration space SN = ΣΛN . The
interactions between spins at a given configuration σ are defined by the microscopic
Hamiltonian

(0.1) H(σ) = −
1

2

∑

x∈ΛN

∑

y 6=x

J(x− y)σ(x)σ(y) +
∑

x∈ΛN

h(x)σ(x) ,

where h(x) denotes the external field at the site x. The two-body inter-particle
potential J accounts for interactions between individual spins. We consider the
class of potentials with the given interaction range L, J(x− y) = 1

LdV
(

n
L |x− y|

)
,

x, y ∈ ΛN , where V (r) = V (−r), V (r) = 0 if |r| ≥ 1. The canonical equilibrium
state is given in terms of the Gibbs measure.

The microscopic dynamics is defined as a continuous-time jump Markov process
that defines a change of the spin σ(x) with the probability c(x, σ; ξ)∆t over the
time interval [t, t+ ∆t]. The probability that over the time interval [t, t+ ∆t] the
spin at the site x ∈ ΛN spontaneously changes from σt(x) to a new value in the
state space ξ ∈ Σ is c(x, σ; ξ)∆t +O(∆t2). We denote the resulting configuration
σx,ξ. In the case of the Ising-type state space and spin-flip dynamics we omit ξ in
this notation. The generator L : L∞(SN ) → L∞(SN ) of the Markov process acting
on a bounded test function φ ∈ L∞(SN ) defined on the space of configurations is
given by

(0.2) (Lf)(σ) =
∑

x∈ΛN

∫

Σ

c(x, σ; ξ)
(
φ(σx,ξ) − φ(σ)

)
dξ .

We require that the dynamics is of the relaxation type such that the invariant
measure of this Markov process is the Gibbs measure.
Approximation of the coarse-grained process The coarse-graining is defined
in a geometric way introducing the coarse-grained observables as block-spin vari-
ables. We define the coarse-graining operator T : SN → Sc

M,q , where the coarse
configuration space Sc

M,q is defined on the coarse lattice Λc
M , and with the new
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state space Σc. The coarse configuration η = Tσ ∈ Sc
M,q is defined on a smaller

lattice with M lattice sites and with the coarse state space Σc for the new lattice
spins η(k). The parameter q defines the coarse-graining ratio. The operator T
induces an operator T∗ on the space of probability measures T∗ : µ(σ) 7→ µc(η)
:= µ{σ ∈ SN |Tσ = η}. For example, the projection operator defines the block
spin at the coarse site k as (Tσ)(k) :=

∑
x∈Ck

σ(x). Given the Markov process

({σt}t≥0,L) with the generator L we obtain a coarse-grained process {Tσt}t≥0

which is not, in general, a Markov process. From the computational point of view
this may cause significant difficulties should sampling of such a process be imple-
mented on the computer. Therefore we derive an approximating Markov process
({ηt}t≥0, L̄c) which can be easily implemented once its generator is given explicitly.

We define the configuration δk defined on the coarse state space is equal to zero
at all sites except the site k ∈ Λc

M where it is equal 1. The exact generator for the
coarse process can be written in the form

(0.3) Lcψ(η) =
∑

k∈Λc
M

ca(k) [ψ(η + δk) − ψ(η)] +
∑

k∈Λc
M

cd(k) [ψ(η − δk) − ψ(η)] ,

where the new rates are ca(k) =
∑

x∈Ck
c(x, σ)(1 − σ(x)), cd(k) =∑

x∈Ck
c(x, σ)σ(x) correspond to the adsorption and desorption processes. Now it

is reasonable to propose an approximating Markov process, which for the case of
desorption/adsorption is a birth-death process {ηt}t≥0 defined on the state space
Σc = {0, 1, . . . q}. This process is defined by the generator L̄c of the form (0.3)
where the rates ca and cd are replaced by approximate rates c̄a(k, η) = d0(q−η(k)),

and c̄d(k, η) = d0η(k)e
−βŪ(η). The new interaction potential Ū(η) represents the

approximation of the original interaction U(σ),

(0.4) Ū(l, η) =
∑

k∈Λc
M

l6=k

J̄(l, k)η(k) + J̄(0, 0)(η(l) − 1) − h̄(l) .

In the talk we present detailed derivation of the approximating process
({ηt}t≥0, L̄

c). Furthermore, we analyse the approximation properties of this pro-
cess from the two different points of view deriving information theory estimates
and weak convergence estimates. As an example of the former we discuss theorems
of the following type

Theorem 1 ([15]). Suppose the process {ηt}t∈[0,T ], defined by the coarse generator

L̄c is the coarse approximation of the microscopic process {σt}t∈[0,T ] then for any
q < L and N , Mq = N the information loss as q/L→ 0 is

(0.5)
1

N
R
(
T∗QT∗σ0,[0,T ] |Q

c
η0,[0,T ]

)
= T O

( q
L

)

This gives an estimate on relative entropy R of the coarse-grained process in
terms of the ratio between the coarse-graining level q and the interaction range L.

In many practical MC simulations the main goal is to estimate averages (ex-
pected values) of specific observables. Therefore it is natural to analyse the weak
error, defined as the quantity ew := |ES [Tσt] − ES [ηt]|, where the expectation
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ES [Tσt] is defined for the path conditioned on the initial configuration Tσ0 = S
and ES [ηt] on η0 = S. We discuss results of the following type:

Theorem 2 ([14], Weak error). Let φ ∈ L∞(SN ) be a test function (observable)
on the microscopic space. Given the initial configuration Let ({σt}t≥0,L) be a
microscopic process with Tσ0 = S and ({γt}t≥0,Lγ) be the corresponding synthetic
process, then the weak error satisfies for 0 < T <∞

(0.6) |ES [φ(σT )] − ES [φ(γT )]| ≤ CT

( q
L

)2

,

where the constant CT is independent of q and L but depends on T .

We propose a technical tool (the synthetic process {γt}t≥0) that allows us to
compare the projected process {Tσt}t≥0 with the approximating process {ηt}t≥0.
We refer to [14] for more details and proofs as well as numerical simulations that
confirm the error analysis and demonstrate also good approximation of quantities
that depend on the path. We also discuss computational speed-up and efficiency.
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Toward upscaling of flow in deformable porous media

Peter Popov

(joint work with Oleg Iliev and Andro Mikelic)

Many important engineering applications such as ground water flow, reservoir
engineering, various filtering devices used in chemical processing, to name a few,
involve flow in deformable porous media [3]. The upscaling of deformable porous
media involves two coupled physical processes. At the microscopic (pore) level one
has a deformable skeleton surrounded by a fluid. The solid is usually described by
the Lamé equations of linear elasticity and the fluid by the Stokes equations.

In general the upscaling problem for poroelasticity medium is not separable even
when the microscopic heterogeneity (the pores) is well separated. This is due to
the fact that the skeleton can deform arbitrarily large due to different parameters
such as macroscopic displacements, pressure and velocity. However, for certain
classes of poroelastic problems it is possible to derive macroscopic equations.

The problem has been first studied experimentally by Biot [5, 3] who formu-
lated the macroscopic equations for the effective medium. The application of the
asymptotic homogenization method [4, 8, 2, 9] has lead to theoretical justification
of Biot’s equation [1, 8, 6] along with appropriate cell problems from which the
macroscopic parameters can be computed numerically. The macroscopic equations
are derived under the assumption that the solid-fluid interface displacements are
small compared to the pore size. This allows to apply interface conditions at the
initial position of the fluid solid interface and important properties such as peri-
odicity of the unit cell are preserved. A wide range of applications, for example, in
soil acoustics fall within these limits. However, many other important engineering
problems cannot be considered under such severe restrictions.

Under more relaxed assumptions Lee and Mei [7] have derived a nonlinear
macroscopic governing equations by assuming periodic media and allowing the
interface displacements to be of the same order as the pore size. It is also assumed
that the total deformation of a the unit-cell can be decomposed into a rigid-body
motion of each unit cell after which the interface displacement become infinitely
small in the new reference frame. Under certain symmetry assumptions of the
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unit cell prior to the deformation it is shown that macroscopic equations reduce
to Biot’s law.

The focus of this work is the case when, due to problem parameters such as
macroscopic pressure and displacement, the fluid-solid interface deforms consid-
erably at the pore level. When the interface cannot be approximated by a rigid
body motion of its initial position it is necessary to consider the Fluid-Structure
Interaction (FSI) problem at pore level as a problem with an unknown interface.

Therefore, this work first formulates the stationary FSI problem in terms of
incompressible Newtonian fluid and a linearized elastic solid. The flow is assumed
to be characterized by very low Reynolds number and is described by the Stokes
equations. The strains in the solid are small allowing for the solid to be described
by the Lame equations. However, no restrictions are applied to the magnitude of
the displacements with respect to the pore size, thus leading to strongly coupled,
nonlinear fluid-structure problem. Then, under certain assumptions, an asymp-
totic solution to the FSI problem is developed for a long channel geometry. A
nonlinear Darcy-type upscaled equation is obtained:

(0.1)
∂

∂x

(
γ3(x)

∂p0

∂x

)
= 0,

where the channel runs along the x axis, p0(x) is the y-averaged pressure, and γ(x)
is the half-width of the fluid part of the channel. This width is found to depend
on the channel geometry, solid material parameters and the y-averaged pressure:

(0.2) γ(x) ≈ 1 + δ
1

λs + 2µs
p0(x),

Here λs and µs are the Lame constants for the solid, and δ is the thickness of the
solid part of the channel.

Further, a numerical method for the FSI problem is developed and used to
verify the analytical result. The microscale FSI problem is treated numerically by
an iterative procedure which solves sequentially fluid and solid subproblems. Each
of the two subproblems is discretized by finite elements and the fluid-structure
coupling is reduced to an interface boundary condition. Numerical and asymptotic
solutions are found to converge to each other, thus validating both the numerical
solver and the analytical derivation (0.1), (0.2). Numerical computations are also
used to perform permeability computations for different geometries.

In conclusion, while upscaling the FSI problem under such general conditions
for arbitrary pore geometry is unlikely, the results in this work can be used to
select parameters for numerical upscaling. Based on the indication from the long
channel that the most important upscaling parameter is the averaged pore pressure
various numerical upscaling schemes can be devised for more general geometries.

A more detailed description of the results is available in Technical report No.65,
2004 of Fraunhofer ITWM (www.itwm.fhg.de).
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On numerical upscaling of flow in anisotropic porous media

Irina Rybak

(joint work with Oleg Iliev)

Introduction. Multiscale problems can be conditionally subdivided to two
large groups. In the first, solution at the fine scale is sought, while solution at the
corse scale is a target for the second group. Typical examples from the second
group are flow in porous media, heat conductivity of heterogeneous materials, etc.
Here we are interested in such a class of problems, for which the mathematical
model (including the coefficients) is given at the fine scale, while the model (equa-
tion and/or coefficients) and the solution are sought at the coarse scale. That
is, given fine scale model Lf , bf : Lfuf = bf , find Lc, bc, uc such that Lcuc = bc
and ‖ < uf >B −uc‖A is small. Here B,A are some proper operators defining
averaging and a norm, respectively.

Essential success was achieved during the last decades in the studies of problems
with clearly separated fine and coarse scales (e.g., periodic microstructure, or
statistically homogeneous porous media). When the fine and the coarse scales
can be decoupled, solving a multiscale problem reduces to one way two-stage
procedure: i) solve fine scale ‘cell-problem” and use its solution to upscale the
effective properties of the multiscale media; ii) solve coarse scale equations with
the calculated effective coefficients. That is, a cell problem with a given Lf is
solved, its solution is used to find Lc, and finally Lcuc = bc is solved for any
specified bc.

The separation of scales, however, is not always possible, and developing numer-
ical upscaling techniques for such problems is the subject of this presentation. An
iterative local-global upscaling approach is proposed in [1] for simulating flow in
highly heterogeneous formations with diagonal permeability tensor. Recall, that
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we are interested only in the solution at the coarse scale, therefore we do not
mention here the many multigrid and multilevel methods, which are used to solve
multiscale problems when solution at the fine scale is the final target. Currently,
we are working on further developments of the approach from [1] and here we
present our first results.

Fine scale problem. In rectangular domain Ω we consider 2-D pressure equa-
tion obtained by combining the continuity equation (∇ · u = f) and Darcy’s law
(u = −K · ∇p) for steady state incompressible single phase flow in porous media

−∇ · (K · ∇p) = f, in Ω,

with full symmetric permeability tensor K. The tensor coefficients can be dis-
continuous, the following interface conditions are satisfied in such a case: [p] =

0,
[
K ∂p

∂n

]
= 0.

The above equation is discretized with finite volume method. In the domain
Ω̄, we consider N1 × N2 control volumes. The pressure p is calculated at the
centers of the control volumes. Each cell is split into four subcells by the lines
joining adjacent cell centers. To discretize, we derive piecewise linear interpolating
polynomials (linear in each subcell), such that the pressure gradient is constant
in each subcell, the fluxes are continuous across the cell faces, and the pressure
is continuous only in the centers of the cell’s faces. Such approach was also used
in [2, 4]. In the case when the solution is smooth, second order convergence for
the pressure is observed even when the tensor coefficient is discontinuous.

Multiscale algorithm. The local-global iterative method from [1] could be
considered as overlapping domain decomposition with a coarse grid correction, if
the fine scale solution would be the target of the computations. On the other case,
for a periodic or statistically homogeneous medium this approach is equivalent
to applying homogenization for calculating the coarse scale coefficients, followed
by solving the coarse scale problem. The algorithm is based on decomposing the
computational domain into overlapping subdomains, solving local problems in each
subdomain to calculate (homogenize) effective coefficients for this subdomain, and
a solution of the coarse scale problem with the just calculated coefficients. Itera-
tions over scales are carried out until convergence of the coarse scale coefficients.
A critical part of the algorithm is how to choose the boundary conditions for each
local problem, after the current coarse scale iterate is calculated. Certain summa-
tion along faces is suggested in [1]. However, this summation does not guarantee
even monotonicity for the boundary condition, what contradicts to the essence
of the considered elliptic problem. Instead, we suggest solving local one dimen-
sional problems between each two coarse scale nodes as a part of the procedure
for recovering the local boundary conditions for pressure for the local fine scale
problem. Such a procedure preserves a piecewise constant solution. The effective
permeability in each coarse block is calculated from the local solution in the way
described in [3]. It guarantees the symmetry and positive definiteness of the coarse
scale problem. The type and interpolation of fine scale (local) pressure boundary
conditions from coarse scale ones is subject of further research.
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Results. The discretization was first validated on problems with known solu-
tion, and second order convergence for the pressure was observed for discontinuous
full tensor coefficient in the case of smooth solutions. Further, the following mul-
tiscale problem from [5] was considered.

K =

(
aε(x, y) 0

0 aε(x, y)

)
,

aε(x, y) =
1

6

(
1.1 + sin(2πx/ε1)

1.1 + sin(2πy/ε1)
+

1.1 + sin(2πy/ε2)

1.1 + cos(2πx/ε2)
+

1.1 + cos(2πx/ε3)

1.1 + sin(2πy/ε3)
+

1.1 + sin(2πy/ε4)

1.1 + cos(2πx/ε4)
+

1.1 + cos(2πx/ε5)

1.1 + sin(2πy/ε5)
+ sin

(
4x2y2

)
+ 1

)
,

where ε1 = 1/5, ε2 = 1/13, ε3 = 1/17, ε4 = 1/31, ε5 = 1/65.
Numerical results (comparison with a reference solution on a fine grid) demon-

strating the convergence of the pressure with O(H) are summarized below. We do
not observe here the so called resonanse effect, this should be studied further.

Nx ×Ny mx ×my

∥∥〈pf
〉
− pc

∥∥
C

5 × 5 4 × 4 0.105836
10 × 10 4 × 4 0.049314
20 × 20 4 × 4 0.025197
50 × 50 4 × 4 0.011173
100× 100 4 × 4 0.005172

The following notations are used here: Nx × Ny – number of coarse blocks;

mx ×my – number of fine blocks;
〈
pf
〉

– volume average of fine grid solution; pc

– coarse grid solution. In [5] authors reported that they did not succeed to solve
this problem with both, HMM (Heterogeneous multiscale method) and MsFEM
(Multiscale finite element method). Our algorithm solves the problem, probably
a reason is the accurate discretuization for the fluxes used in our case.

Finally, a problem with anisotropic heterogeneous coefficients and unseparable
scales was solved by the presented local-global iterative approach, results will be
reported in a forthcoming paper.

Future work. As a long term perspective we plan:
1. to study the convergence of the global-local iterative algorithm in the case of
tensor coefficients;
2. to analyse different boundary conditions for the auxiliary cell problems at the
fine scale;
3. to analyse the influence of the order of approximation of the fluxes in solving
the auxiliary cell problems on the convergence of the local-global iterative process;
4. to reformulate the local-global method as a kind of multigrid method with
nonlinear coarse scale operator;
5. to develop approach with a limited usage of the fine scale information (in the
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case when some a priori information for the variation of the coefficients is known.
The last means that we would like to solve the coarse scale problem at a coarse scale
price (i.e., cheap). Currently, we ’touch’ each fine scale point, and in this sense the
algorithm is still expensive in its memory requirements. The difference between,
e.g., classical MG or AMG approaches which solve the fine scale problem, and the
current algorithm, is in aiming at a convergence for the coarse scale solution here,
and in using nonlinear coarse scale operator in solving a linear fine scale problem.
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Multiscale analytical solutions and homogenization of n-dimensional
generalized elliptic equations

Rosangela F. Sviercoski

(joint work with A. W. Warrick, C. L. Winter)

1. Analytical solutions

Let Ω = [0, 1]n, and K : Ω → R such that K(x) ∈ Lp(Ω) with 1 < p < ∞ and
is one of the forms:

K (x) =
c1∑n

i=1 ki (xi)
(0.1) K (x) =

c2∏n
i=1 ki (xi) + d2

(0.2)

The constants c1, c2, d2 are nonzero so that K(x) > 0 for all x ∈ Ω. For the form
(0.2) we assume that for each i = 1, .., n, ki (xi) is a positive function.

Theorem 1. The weak solution wi(x) ∈ Lp(Ω) for the BVP:

(1.1)





∇ · (K (x)∇wi (x)) = −∇ · (K (x) ei) x ∈ Ω

wi (x) = 0 along the ith boundary

(K(x)∇wi(x)) · ej = 0 j 6= i
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is given, up to a constant, by

(1.2) wi (x) =

∫ xi

0
dτ

K(x1,..,τ,..,xn)∫ 1

0
dτ

K(x1,..,τ,...,xn)

− xi

Proof. The solution is obtained in 2-D, without loss of generality, by assuming
that wi(x) is a separable function but not K(x). See [7]. 2

Corollary 2. Under the assumptions of theorem 1, w(x) =
∑n

i=1 wi(x) ∈ Lp(Ω)
is the weak solution of:

(1.3)

{
∇ · (K (x)∇w (x)) = −∇ · (K (x)1) x ∈ Ω

w(x) =
∑

j 6=i wj (x) on each ith boundary

with 1 = (1, ..1).

Corollary 3. Under the assumptions of theorem 1, u(x) =
∑n

i=1 ui(x) =∑n
i=1 wi(x) + xi ∈ Lp(Ω) is the weak solution for the BVP

(1.4)

{
∇ · (K (x)∇u (x)) = 0 x ∈ Ω

u (x) =
∑

j 6=i uj (x) + xi + d on each ith boundary

where d corresponds to any source (or sink) at the corner of the boundary.

Corollary 4. (Periodic case) If K(x) is a periodic function then the solu-
tions to (1.1) and (1.3) are periodic and (1.2) satisfies: (i)

∫
Ω
wi (x) dx = 0;

(ii)
∫
Ω ∇wi (x) dx = 0; (iii)

∫
ΩK (x) ∂wi

∂xj
dx = 0 for j 6= i.

2. Homogenization of Linear Elliptic Equation

Consider the family of linear BVP’s, with Kε ∈ Lp(Ω) for all ε > 0:

(2.1)

{
∇ · (Kε (x)∇uε (x)) + f (x) = 0 x ∈ Ω

u (x) = uD (x) x ∈ ∂Ω

Assume that the coefficient Kε (x) = K
(

x
ε

)
= K(y) for all x ∈ Ω, meaning that

K is Y− periodic in Rn with ε a scale parameter. To obtain a homogenized ap-
proximation to (2.1), as in [2], [4] and [7], we consider the two-scale asymptotic
expansion uε(x) = u0(x, y) + εu1(x, y), make this substitution into (2.1) and per-
form the two-scale differentiation. By using the periodicity assumption, we obtain
that the solution u0(x) ∈ Lp(Ω) satisfying the equation

(2.2)

n∑

i,j=1

K0
i,j∂iju

0 (x) + f (x) = 0

approximates weakly in Lp(Ω), the solution of (2.1) as ε→ 0.
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By setting Ri(y) = 1
R

1
0

dτ
K(y1,y2,...,τ,...,yn)

, the effective coefficient K0 is defined by:

(2.3)

K0
ij =

∫

Y

K (y) (δi,j + ∂yi
wi (y)) dy =




∫
Y
R1dY 0 ... 0

0
∫

Y
R2dY ... 0

: : : :
0 0 ...

∫
Y
RndY




In [7] we had shown that this effective coefficient satisfies the Voigt-Reiss inequality
and the known results in the literature are particular cases. We also had performed
error analyses to obtain convergence properties for given K(x) functions as well as
numerical experiments demonstrating the applicability of this result to different
types of BVP.

3. Homogenization of Nonlinear Elliptic Equation

Under the same assumptions on the coefficient function, as in the linear case,
we obtain the weak approximation in Lp(Ω) of the solution uε(x) of the nonlinear
BVP:

(3.1)

{
∇ · (Kε (x, uε (x))∇ (uε (x))) + f (x) = 0 x ∈ Ω

uε (x) = uD (x) x ∈ ∂Ω

by u0(x), the solution of the BVP

(3.2)

n∑

i,j=1

K0
ij(u

0(x))∂iju
0 (x) + f (x) = 0

Considering Pi (y1, .., yn, u (x)) = 1
R 1
0

dτ
K(y1,.τ,.,yn,u(x))

, we have that the effective non-

linear coefficient is given as

(3.3) K0
i,j(u

0(x)) =

∫

Y




P1 0 ... 0
0 P2 .. 0
0 .. Pi 0
0 .. .. Pn


 dY

We also have shown the application of this result for different types of nonlinear
BVP’s, including an example with a body force.

4. Comparison with numerical results

By considering K(x) in either (0.1) or (0.2), we have the following: (a) The ele-
ments in the diagonal are given as the arithmetic average of the harmonic average
in each direction. (b) The effective coefficient is a diagonal matrix given that the
original K(x) is periodic. (c) K0 is isotropic given that K(x) is symmetric about
the axis x1 = x2. Our hypothesis is that these facts hold for more general forms
of coefficient functions. Indeed, in [7] we have compared the analytical form with
the numerical results obtained by [1], where the rectangular inclusion type have
been considered and we obtain a difference less than 10% on average. We also
compared our analytical coefficient K0 with the numerical approximations Knum
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[3] and Kbb [6], where inclusions of different shapes have been considered. The
table show that the differences, between Knum and K0, again are less than 10%
on average.

Shape Knum Kbb K0 Relative Difference (RD)

square 1.548 1.598 1.409 9 %
disk 1.516 1.563 1.403 8 %

lozenge 1.573 1.608 1.417 11 %
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From fine to coarse and/or from coarse to fine - an attempt to clarify
multiscale terminology

Ulrich Trottenberg

In this talk, we have tried to clarify terminology. There is a large variety
of approaches in numerical simulation addressing different scales and the termi-
nology used in this context is rather confusing. From this list, we would like to
mention here: multiscale modelling; upscaling, averaging, coarsening, homogeniza-
tion; downscaling, refinement; filtering, smoothing; multiscale/multilevel/multigrid
computing; cyclic/total reduction, AMG, renormalization group; related approach-
es are addressed by grid partitioning, domain decomposition, multidisciplinary cou-
pling and the like.

In the following, we will not explain each of these terms, but for the purpose
of clarification and simplification introduce the following fundamental distinctions:

a. multiscale modelling versus multiscale computing
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b. going one way (from fine to coarse or from coarse to fine) versus going both
ways (from fine to coarse and from coarse to fine)

c. reduction type versus multigrid type methods.

a. Multiscale modelling versus multiscale computing

Multiscale modelling: In trying to understand, describe and control natural
and technical phenomena and processes, it often turns out that different scales
play an important role: Very small (atomistic, nano-, microscopic) scales may
influence and determine phenomena on much larger (meso-, macro-) scales, or more
generally different scales interact with each other significantly. When modelling
such multiscale phenomena, an approach is needed which takes all relevant scales
into account. For such situations and for corresponding approaches, we use the
term multiscale modelling. In multiscale modelling, one may have or not have
a target scale in mind, on which the simulation result (’the solution’) is finally
wanted.

Multiscale computing is an algorithmic approach. Assuming that we want
to calculate the solution on a target scale, additional scales are used auxiliarily in
order to make the calculation more efficient.

The classical and most elaborate approach in this context is multigrid [2]. Look-
ing at multigrid as an iterative solver one goes from fine to coarse and back from
coarse to fine in an iterative manner. Classical multigrid is a combination of
smoothing (filtering) and approximation (coarse grid correction) procedures. In
classical (geometric) multigrid a hierarchy of grids (finer and coarser ones) is pre-
defined based on geometric (grid) information. More sophisticated multigrid ap-
proaches like Algebraic Multigrid (AMG) make use (only) of the algebraic infor-
mation that is provided by the matrix representing the discretized problem. In
AMG the coarse grid structures are constructed automatically.

In addition, there are further sophisticated multigrid approaches like FMG,
where iterative geometric multigrid is combined with a global refinement strategy.
In FAC and MLAT (multilevel adaptive technique) local grid structure refinements
and coarsenings are dynamically constructed during the calculation, based on er-
ror estimator criteria.

b. Going one way versus going both ways

From fine to coarse: In the context of (multiscale) modelling, the concept
of upscaling [1] refers to the transition of a fine scale model to a coarse(r) scale
model. The idea of this transition is reduction of complexity, i.e. reducing the
degrees of freedom in a given model substantially, but maintaining its essential
features under consideration.
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Typical ways of carrying out such transitions from fine to coarse are averaging
and homogenisation. Others (in context of discretisation and matrix representa-
tion) are aggregation and reduction type approaches as well as the renormalization
group method (in computational physics), see below.

The concept of upscaling also includes the option of making use of a hierarchy
of scales, repeating the transition (coarsening) process several times.

From coarse to fine: In discretizing and iteratively solving (nonlinear) partial
differential equations there is a long tradition in using coarse grid (or coarse level)
approximations as first guesses on finer grids.

Going both ways, from fine to coarse and from coarse to fine: The
approaches, from fine to coarse and from coarse to fine, sketched so far are not nec-
essarily one-directional, but in many cases can be and are used in a bi-directional
manner. For example, if upscaling is used to replace a primary fine scale model
by a coarser one, the coarse scale ’solution’ (simulation result) may well be inter-
preted and be used for a more detailed look on the finer scale. Similarly, a primary
coarse scale model may be considered (locally or globally) on a finer scale in order
to study important local phenomena or to better understand fine scale influences.

Going from fine to coarse usually is intended to gain efficiency and going from
coarse to fine to gain accuracy (and insight).

However, multigrid and multigrid related algorithmic approaches are not op-
tionally, but fundamentally bi-directional. Multigrid and AMG type methods,
make essential use of finer and coarser scales and transition processes between the
scales: Indeed, these methods draw their efficiency out of the interplay between
smoothing processes on finer levels and coarse scale corrections on coarser levels.
Although there are multigrid algorithms the overall structure of which is from
coarse to fine, viz. FMG [2] the individual steps of FMG are bi-directional!

Other related approaches like ’cascadic multigrid’ which are essentially one-
directional, are not regarded as multigrid methods in a strict sense.

c. Reduction type versus multigrid type methods

In going from fine to coarse, there are essentially two different objectives that
can be pursued. One is to construct a coarse scale model/problem that is mathe-
matically equivalent to the fine scale model for those unknowns/degrees of freedom
which the two scales have in common (reduction type). The other (more general)
objective is to define a coarse scale model/problem that is an adequate approxi-
mation representing the essential information of the original model on the coarse
scale (multigrid type).

Reduction type methods: Cyclic reduction (for 1D-problems) and total
reduction methods (for 2D and 3D partial differential equations) transform fine
grid problems equivalently to coarser grids, in a simple and typically numerical
stable way. In that respect, these methods can be regarded as specific, particularly
efficient elimination processes (for discrete partial differential equations).
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Similarly, renormalization group methods in theoretical physics intend to trans-
form a fine scale problem equivalently to a coarser scale.

Algebraic multigrid (AMG) can be interpreted both as a generalization of (total)
reduction, and - from the multigrid point of view - as an extension of classical
geometric multigrid to matrix represented linear algebra problems.

Multigrid type (filtering) processes. In classical multigrid, relaxation type
procedures are used for smoothing which means that the high frequency compo-
nents of the errors which are visible only on the fine scale (grid) are filtered out.
After applying such error smoothing procedures, the remaining low frequency com-
ponents can without essential loss of information, but with considerably reduced
computational effort be treated further on the coarser scales (grids).

Finally, we would like to mention (confess) that the distinctions we made for
clarification may be regarded as somewhat artificial: In practice the different ap-
proaches addressed in this talk are often combined ...
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Selecting coarse grid operators within a multigrid algorithm by local
Fourier analysis

Roman Wienands

We consider a two-dimensional discrete boundary value problem

Lhuh(x) = fh(x) (x ∈ Ωh), Bhuh(x) = gh(x) (x ∈ ∂Ωh)

with discrete differential operator Lh, discrete boundary operator Bh defining the
boundary conditions, discrete domain Ωh, meshsize h and given functions fh, gh.

Suppose that Lh can be locally represented by a stencil
[
`hκ(x)

]
h
, i.e.,

Lhuh(x) =
∑

κ∈Jh

`h
κ
(x)uh(x + κh) with x ∈ Ωh,

stencil entries `hκ(x) ∈ IR and a certain index set Jh ∈ ZZ
2 containing (0, 0). For

ease of presentation we consider only consistent discretizations, i.e.,
∑

κ∈Jh

`hκ(x) = 0.

Solving the discrete boundary value problem with the help of an appropriate multi-
grid method [1, 2] necessitates the construction of a sequence of discrete domains
with coarser resolutions and corresponding coarse grid approximations for Lh. A
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standard choice for the determination of coarser grids is to repeatedly double the
mesh size in each spatial direction yielding Ω2h, L2h, Ω4h, L4h, etc.

In this talk, we proposed a strategy to automatically select coarse grid dis-
cretizations within a multigrid solution method with the help of local Fourier
analysis [1, 2, 3]. For the application of local Fourier analysis it is necessary to

consider locally frozen operators with constant coefficients (Lh
∧
=
[
`hκ
]
h
) which

are extended to an infinite grid Gh. The corresponding eigenfunctions (or Fourier
components) and the related eigenvalues (or Fourier symbols) read

φh(x,θ) := ei θx/h (θ ∈ [−π, π]2), L̃h(θ) :=
∑

κ∈Jh

`hκe
i θκ.

The Fourier symbols for L2h
∧
=
[
`2h
κ

]
2h

are obviously given by

L̃2h(θ) :=
∑

κ∈J2h

`2h
κ
ei θ2κ.

Hence, Fourier components φh(x,θ) with θ /∈ Θlow := [−π/2, π/2]2 can not be
represented on G2h as they coincide with certain Fourier components φh(x,θ∗)
with θ

∗ ∈ Θlow due to the periodicity of the exponential function. This observa-
tion is known as aliasing and frequencies θ ∈ Θlow are called low frequencies. Due
to the aliasing of Fourier components, the coarse grid discretizations should be
good approximations of Lh especially w.r.t. the (very) low frequencies. In order
to satisfy this requirement, the coarse grid approximations are constructed by the
minimization of a certain low-frequency L2-norm. More precisely, the coarse grid
discretization is derived in such a way that its Fourier symbol is a best approxi-
mation (w.r.t. low frequencies) of the Fourier symbol of the fine grid operator. To
formulate this approximation problem we consider the function space

L2
low :=



v : Θlow → C with

(∫

Θlow

|v(θ)|2 dθ

)1/2

<∞





with corresponding inner product and norm, respectively:

〈v, w〉low :=

∫

Θlow

v(θ)w(θ) dθ, ‖v‖low :=
√
〈v, v〉low

(
v, w ∈ L2

low

)
.

L2
low equipped with 〈 , 〉low yields a Hilbert space. For the derivation of L2h we

are looking for the optimal (w.r.t. ‖ . ‖low) approximation of L̃h ∈ L2
low in the

following subspace

F2h := span
{
ei 2θν − 1 : ν ∈ J2h \ {(0, 0)}

}
⊂ L2

low.

This is a classical approximation problem which can be easily solved. The occur-
rence of “-1” within each basis function ensures a consistent coarse grid discretiza-
tion (i.e.,

∑
κ∈J2h

`2h
κ

= 0).
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To illustrate the presented procedure we consider the construction of a coarse
grid discretization given by a compact 5-point stencil:

L2h
∧
=




`2h
(0,1)

`2h
(−1,0) −

∑
κ6=(0,0) `

2h
κ `2h

(1,0)

`2h
(0,−1)




2h

, F2h := span {φ1, φ2, φ3, φ4}

with φ1(θ) := ei 2θ(−1,0) − 1, φ2(θ) := ei 2θ(1,0) − 1,

φ3(θ) := ei 2θ(0,−1) − 1, φ4(θ) := ei 2θ(0,1) − 1 (θ ∈ Θlow).

The optimal coarse grid stencil is then given by the following linear system

(〈φi, φj〉low)i,j=1,...,4




`2h
(−1,0)

`2h
(1,0)

`2h
(0,−1)

`2h
(0,1)


 =

(
〈L̃h, φi〉low

)
i=1,...,4

.

We would like to emphasize that each inner product occurring in the above linear
system is a linear combination of certain integrals which can be explicitly calcu-
lated

∫

Θlow

ei (θ1κ1+θ2κ2) dθ =





4π2/n2 for κ1 = κ2 = 0

4π sin (πκ2/n) /(κ2n) for κ1 = 0, κ2 6= 0

4π sin (πκ1/n) /(κ1n) for κ1 6= 0, κ2 = 0

−2[cos (π (κ1 + κ2) /n) for κ1, κ2 6= 0

− cos (π (κ1 − κ2) /n)]/ (κ1κ2)

with Θlow := [−π/n, π/n]2. This means that the matrix (〈φi, φj〉low)i,j=1,...,m can

be precomputed for a given coarse grid pattern J2h. Hence, general formulas for the
stencil entries `2h

κ
can be calculated in terms of `h

κ
. The complete sequence of coarse

grid operators (L2h, L4h, L6h, . . . ) can be obtained by a repeated application of
the above strategy yielding a black-box method for the construction of coarse grid
operators! Analyzing this approach we made the following important observation:
Choosing Θlow = [−π/2, π/2]2 yields bad coarse grid approximations whereas
considering only very low frequencies (i.e., Θlow = [−π/n, π/n] with n → ∞)
yields excellent coarse grid approximations. Moreover, the analytical formulas
for the coarse grid stencil entries converge to fixed expressions for n → ∞. For
example, one obtains the following formulas for a 5-point coarse grid operator
assuming a 5-point fine grid stencil:

`2h
(−1,0) =

3

8
`h(−1,0) −

1

8
`h(1,0), `2h

(1,0) = −
1

8
`h(−1,0) +

3

8
`h(1,0),

`2h
(0,−1) =

3

8
`h(0,−1) −

1

8
`h(0,1), `2h

(0,1) = −
1

8
`h(0,−1) +

3

8
`h(0,1).

Similar analytical expressions can be obtained for other fine and coarse grid stencil
patterns. In this way it was possible to recover well-established coarse grid oper-
ators in simple situations and (even more important) to obtain improvements for
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more difficult situations. The method has been successfully applied to Poisson-
type equations, problems with jumping coefficients, convection diffusion equations,
etc.

Finally, we would like to mention that the presented approach can be easily
modified for other regular coarsening strategies like semi or red-black coarsening
and for discrete operators with

∑
κ∈J `κ 6= 0. The underlying analysis can even be

used to judge between coarsening strategies and different patterns of coarse grid
stencils.
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