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Introduction by the Organisers

The motion of a Riemannian metric along its Ricci curvature,

d
dtgij = −2Rij(g(t))

was proposed in 1982 by Richard S. Hamilton as a geometric version of the heat
equation suitable for uniformizing and smoothing the geometry of a given initial
Riemannian manifold (M3, g0). Hamilton’s work has opened up the whole area of
geometric evolution equations, leading to the discovery of new phenomena in these
equations and to topological applications such as the classification of 3-manifolds
of positive Ricci-curvature and certain 4-manifolds. Recent work of G. Perelman
has indicated how to approach a proof of the Poincaré-conjecture and the Thurston
Geometrization conjecture for 3-manifolds using Hamilton-Ricciflow.

The mini workshop has concentrated on a thorough technical investigation of
that part of the work of Perelman that is related to Hamilton-Ricciflow with
surgeries on a finite time interval. Together with further work of Perelman and
also Colding-Minicozzi this part of Perelman’s work implies a proof of the Poincaré
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conjecture when confirmed. The efforts of the workshop were greatly helped by
previous work of other mathematicians on Perelman’s work., e.g. the notes of B.
Kleiner and J. Lott.

The workshop was able to confirm major sections in the two papers of G.
Perelman including the entropy- and reduced volume estimates, the compactness
properties of ancient solutions to the flow and the surgery construction. It was
also able to reinterpret several arguments involving Alexandrov spaces from the
viewpoint of smooth Differential Geometry.

When the workshop had to come to an end, its participants agreed that it would
be very desirable to establish self-contained expositions of the following points:

(1) The boundedness of the curvature supBρ(x) R ≤ c(ρ) in the proof of the
approximation theorem I.12.1 of Perelman’s first paper.

(2) The approximation of mini-max surfaces in the varifold distance for im-
mersed surfaces in the paper of Colding-Minicozzi.

(3) The survival of the reduced volume estimate past surgeries.
(4) The uniform control of a fixed scale ρ > 0 past all surgeries on a finite

time interval, below which the approximation theorem applies.

It seems that detailed self-contained expositions of (3) and in particular (4)
require more effort than (1) and (2).
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Abstracts

Uniform non-collapsing and an elliptic Harnack-type inequality

Huai-Dong Cao

During the mini-workshop, I first described Richard Hamilton’s dimension re-
duction argument for the Ricci flow, see §21 and §22 in [1].

In another lecture, I discussed part of Perelman’s work on the Ricci flow and
gave a detailed presentation of how to prove uniform noncollapsing for ancient
noncollapsing solutions as was indicated in §11.9 of [2].

I also showed how to obtain an elliptic Harnack type inequality for the scalar
curvature. From the latter one easily obtains the important gradient estimates
for the scalar curvature by combining with Shi’s local derivative estimates. More
precisely, we gave a detailed proof of the following:

Theorem There exist positive constants κ0, η and a positive function ω defined
on [0,∞) with the following properties. Suppose we have a three-dimensional non-
compact ancient κ-solution (M, gij(t)), −∞ < t ≤ 0, for some κ > 0. Then:

(i) the ancient κ-solution is either an ancient κ0-solution, or a metric quotient
of the round three-sphere;

(ii) for every x, y ∈ M and t ∈ (−∞, 0], we have

R(x, t) ≤ R(y, t)ω(R(y, t)d2
t (x, y)).

References

[1] R. Hamilton, The formation of singularities in the Ricci flow, Collection: Surveys in differ-
ential geometry Vol. II (1995), 7–137.

[2] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
arXiv:math.DG/0211159v1 11Nov2002.

Entropy and lower volume ratio bounds

Klaus Ecker

In this talk we discussed Perelman’s entropy formula for the Hamilton-Ricciflow.
This formula features in chapters 3 and 4 of [1].

Perelman considers an integral expression which resembles the standard L2-
integral of a function f over the manifold with respect to the volume measure of
the Ricci flow evolving metric at time t, augmented by the scalar curvature at that
time and multiplied by a weight function involving f which is analogous to the
standard Gaussian in Euclidean space. Moreover, there is a positive scaling factor
τ which roughly corresponds to negative time or more precisely the time left to
a fixed given time. Perelman’s entropy is the infimum of this expression over all
functions f which satisfy a normalisation condition akin to the requirement that
the weight corresponds to a probability distribution on the manifold.
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In the case of Euclidean space, one obtains this integral expression by writing
all the integrals appearing in the standard logarithmic Sobolev inequality on one
side of the inequality. The entropy in this simple case thus equals zero. In general,
the entropy at time t can be estimated from below in terms of the constant in
the logarithmic Sobolev inequality on our manifold at that time and the scaling
parameter τ . In a way, a lower bound on the entropy corresponds to a lower bound
arising in a Poincaré inequality, or in other words to a lower bound on the lowest
eigenvalue of the Laplacian plus the scalar curvature.

An upper estimate for the entropy with scaling parameter equal to r2 is given
by the logarithm of the natural volume ratio of a geodesic ball of radius r and
another term which is bounded if the norm of the Riemann tensor, scaled by r2,
is bounded on that ball. If both a lower and an upper bound hold for the entropy
one thus obtains a positive lower bound on the volume ratios of geodesic balls.

It was one of Perelman’s ingenious achievements to realize that the entropy for
a solution of Hamilton-Ricciflow, considered as a function of t is non-increasing.
This is established by a long but standard calculation. The achievement consisted
in suggesting the correct monotone quantity. It is interesting to note that in Perel-
man’s entropy formula he is taking a time derivative in a kind of Sobolev inequality
at time t so in other words obtains control on how isoperimetric information is
maintained by the Hamilton-Ricciflow.

An immediate consequence of the monotonicity of the entropy and the upper
and lower bounds discussed above is the fact that on any finite time solution of
Hamilton-Ricciflow one obtains a lower bound on the volume ratios in balls of
radius less than a constant proportional to the square root of the existence time of
the solution. This lower bound depends only on the initial metric. Considering this
information on sequences of rescaled solutions of the flow allows one to take longer
and longer time intervals and therefore obtains a lower volume ratio estimate
for all radii on smooth limiting solutions. Such an estimate does not hold on
certain eternal solutions of the Hamilton-Ricciflow such as the product of the two-
dimensional cigar soliton with the real line. This solution admits sequences of
geodesic balls with radii rk tending to infinity for which the volume grows like
r2
k rather than r3

k as it should for a 3-manifold. Therefore, such solutions cannot
occur as rescaling limits of finite time solutions of the flow.

The latter information has been a vital step in proceeding with Hamilton’s pro-
gramme for the use of Hamilton-Ricciflow in trying to settle the geometrization
programme. Moreover, lower volume ratio bounds easily imply lower bounds on
the injectivity radius, which is a crucial condition for the applicability of Hamil-
ton’s compactness theorem for solutions of the Ricciflow.

References

[1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
arXiv:math.DG/0211159v1 11Nov2002.
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The surgery construction for the Hamilton-Ricciflow

Gerhard Huisken

In his paper [1] concerning Ricciflow with surgery R. Hamilton develops a de-
tailed quantitative concept of necks that are sufficiently close to a cylinder. The
lecture describes the surgery in the 3-dimensional case in the context of Perel-
man’s paper on Ricciflow with surgery [2]. In particular it is shown that for a
given class of initial data the neck-parameters and surgery parameters can be cho-
sen in such a way that surgery preserves the pinching estimate of Hamilton-Ivey
for 3-dimensional Hamilton-Ricciflow.

References

[1] R. Hamilton, Four-manifolds with positive isotropic curvature Comm. anal. Geom 7 (1997),
1–92.

[2] G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math.DG/0303109v1
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Properties of reduced distance and volume

Tom Ilmanen

In the lecture, we summarized the basic properties of the reduced distance
`(x, t) = `q,T (x, t) and reduced volume

Ṽ (t) = Ṽq,T (t) := (4π(T − t))−n/2

∫
e−`(x,t)dvolt(x)

on a Ricci flow (M, (g(t))0≤t≤T ), see [1, chapter 7]. In particular, we reviewed the
three weak inequalities satisfied by the reduced distance, and the monotonicity of
the reduced volume, and addressed the limiting properties of these quantities at
the initial time t=0 and the final time t → T .

Particular attention was paid to the lower bound for Ṽq,T (0) in terms of the
initial geometry. We checked that it takes the form

Ṽq,T (0) ≥ c(K, i, T )

where K := maxx |Rmg(0)(x)|g(0) and i := minx injg(0)(x).
There are two proofs of the Bishop-Gromov monotonicity formula, the first

by Jacobi fields, the second by (n − 1)-dimensional volume elements that are
transverse to a geodesic (i.e. the Riccati equation). Perelman’s derivation of the
monotonicity of reduced volume is like the former. It would be interesting to see
a proof analogous to the latter.

In [1, Chap. 11.4] it is shown that the case 0 < R < ∞ is impossible, where R :=
lim supx→∞ R(x)d(x, p)2 is the asymptotic scalar curvature ratio of an ancient
solution with positive curvature operator. Perelman’s proof uses a blowdown of
the solution in the sense of Alexandrov spaces. Another method uses smooth
estimates for triangles and a smooth limit.
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There is a third way to prove this, based on the Bishop-Gromov monotonicity
formula. The key is the well-known fact that a smooth blowdown of a manifold
of nonnegative Ricci curvature and Euclidean volume growth is a smooth cone.
For a Ricci flow with positive curvature operator, this is then impossible by the
splitting result from Hamilton’s strong maximum principle for tensors.

We present this well-known fact as a sequence of two lemmas.
Let M be a Riemannian manifold with Rc ≥ 0, p ∈ M , Br = Br(p), θ(r) =

θ(Br) := |∂Br|/rn, s(x) := d(x, p). Note that θ(r) is monotone nonincreasing. Let
h, H , and A be the metric, mean curvature, and second fundamental form of ∂Br.

Lemma 1. For every θ0 > 0 and ε > 0 there is δ > 0 such that if

θ(r) − θ(3r) ≤ δ, θ(3r) ≥ θ0,

then

(1) |Rc(ν, ν)| +

∣∣∣∣A −
H

n − 1
h

∣∣∣∣
2

+

∣∣∣∣H −
n − 1

s(x)

∣∣∣∣
2

≤
ε

r2

in B3r \Br\Z0, where Z0 is some set of measure less than εrn. Furthermore, there
is Y0 ⊆ ∂Br such that |Y0| ≤ εrn−1 and every x ∈ ∂Br \ Y0 is on a minimizing
geodesic from p to a point in ∂B3r.

The elementary proof of this lemma involves tracing through the quantities in
the Bishop-Gromov monotonicity formula.

Now let (Mi, gi, pi) be a sequence of pointed Riemannian manifolds, Bi
r :=

Bgi
r (pi), ri → 0, Ωi := Bi

1/ri
\ Bi

ri
, and d(qi, pi) = 1. Suppose that

(Ωi, gi, qi) → (Ω, g, q)

as pointed manifolds in the sense of Cheeger, that is, (Ω, g) is a Riemannian
manifold (not complete in this case) and there are diffeomorphisms

φi : Ui ⊆ Ωi

∼=
−→ Vi ⊆ Ω

such that φi(qi) = q, the Ui exhaust the Ωi (in a certain sense), Vi exhausts Ω,
and

(φi)∗(gi) → g in C∞,

on compact subsets of Ω.

Lemma 2. Assume that Rcgi
≥ 0 and θ(Bi

1/ri
) − θ(Bi

ri
) → 0. Then Ω has a

smooth cone structure, that is,

Ω = (0,∞) × (Σ, gΣ), g = ds2 + s2gΣ,

for some smooth Riemannian (n − 1)-manifold (Σ, gΣ).

Note that the situation of the lemma would arise (using Cheeger’s compactness
theorem and Hamilton’s curvature estimates) for the blowdown of an ancient Ricci
flow of nonnegative curvature operator and quadratic curvature decay.

Lemma 1 implies Lemma 2. If everything were known to converge smoothly,
then it would simply be a matter of integrating up the quantites that vanish in
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(1). But one must take care (and use the minimizing property of the geodesics
in the second part of Lemma 1) because the limit of distance functions s(x) :=
dgi

(φ−1
i (x), pi) and its level-sets are not known a-priori to be C2.

References

[1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
arXiv:math.DG/0211159v1 11Nov2002.

An examination of surgery strategies

Dan Knopf

In geometric evolution equations such as mean curvature flow and Ricci flow,
a solution that becomes singular (in the sense that its curvature becomes infi-
nite at some finite time) will typically asymptotically approach a standard model
as the singularity time is reached. This behavior is analogous to (but is more
complicated than) that observed for semilinear parabolic equations of the form
ut = ∆u + up. (See for instance [3, 4].) If these standard singularity models are
understood well enough, a natural way of resolving developing singularities is to
perform geometric-topological surgeries at discrete singularity times t1 < t2 < · · · .
In each such surgery, an (almost) standard neighborhood of the developing singu-
larity is removed and replaced in such a way that curvature control is regained,
at least for a short time. (See [5], [6, 7], [9, 10], and [8].) Specifically, a surgery
program assigns to every initial manifold (Mn, g0) a discrete sequence of times
0 = t−0 < t+0 = t−1 < t+1 < · · · together with a family Mn

k of smooth manifolds and
metrics g(t) such that

i each (Mk, g(t)) is a smooth geometric evolution for t−k ≤ t < t+k ;

ii each (Mk+1, g(t−k+1)) is obtained from (Mk, limt↗t+
k

g(t)) by replacing part of

Mk by a (possibly empty) geometrically standard piece; and
iii each replacement is triggered by parameters depending only on the initial data,

and reduces the curvature below a fixed level also depending only on the initial
data.

For Ricci flow in dimension three, the most natural mechanism of singularity
formation and conjecturally the most common is the neck : a region that resembles
a quotient of the shrinking cylinder ds2 + ρ2gS2 . (See below for a precise defini-
tion.) In the mathematical literature, one finds two main strategies for detecting
and performing surgery on necks. The first was pioneered by Hamilton [5] and is
applied to mean curvature flow by Huisken–Sinestrari [7]. The second was intro-
duced by Perelman [9, 10]. In what follows, we briefly review and contrast some
basic elements of their approaches. Almost everything below is taken from [5],
[9, 10], and the Kleiner–Lott notes [8].
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A motivating example. Consider [−L, L] × S2 with metric g = ds2 + r2gS2 ,
where gS2 is a standard round metric. Suppose a singularity forms at the point
{0}×S2 at time T < ∞. (This happens for an open set of rotationally symmetric

metrics on S3; see [1].) Define σ = s√
T−t

and τ = log 1
T−t . Let ρ(t) =

√
2(T − t)

denote the radius of the standard self-similar cylinder solution. Then one has the

precise asymptotics r
ρ ≈ 1 + σ2−2

8τ for |σ|√
τ

= O(1) and r
ρ ≈ 1 + σ2

8(τ+log 1

σ2 )
for

e−δτ |σ| = O(1). (See [2].)

Topological and geometric necks. For a < b, define the cylinder C3 = [a, b]×
S2 ⊂ R

4. A topological neck in a manifold M 3 is a local diffeomorphism N :
C3 # M3. Let G denote the Riemannian metric on M 3; let g = N∗(G) denote
the pullback metric on C3; and let ḡ denote the induced (product) metric on C3,
normalized to have scalar curvature R̄ = 1. For x ∈ [a, b], the mean radius of
S2(x) := {x} × S2 is defined as

r(x) =

√
Area(S2(x), g)

8π
,

and the area-normalized pullback metric is ĝ = r−2g.
For ε > 0, k ≥ 1, and L > 0, one says a topological neck N is geometrically

(ε, k, L)-cylindrical if

I |ĝ − ḡ|ḡ ≤ ε;

II
∑k

j=1

∣∣∇̄j ĝ
∣∣
ḡ
≤ ε;

III
∑k

j=1

∣∣∣ ∂j

∂xj log(r(x))
∣∣∣ ≤ ε; and

IV b − a ≥ L.

Perelman’s formulation. An (ε, ρ)-neck in the sense of Perelman is a metric
ball Bt := Bg(t)(x, ρ

ε ) such that (Bt, ρ
−2g(t)) is an (ε, dεe + 1, 2ε−1) cylindrical

neck. A strong (ε, ρ)-neck in the sense of Perelman is a family {Bs = Bs(x, ρ
ε ) :

t − ρ2 ≤ s ≤ t} of balls such that each
(
Bs,

1
(1+t−s)ρ2 g(s)

)
is an (ε, dεe + 1, 2ε−1)

cylindrical neck. An (ε, ρ)-cap is the union of an (ε, ρ)-neck and either B3 or else
R ×Z2

S2 ≈ RP
3\B̄3.

Normal necks. One says a topological neck N is normal if

A for all x ∈ [a, b], S2(x) is a constant mean curvature surface in (C3, g);
B for all x ∈ [a, b], the map id : (S2(g), ḡ) → (S2(x), g) is harmonic with center of

mass (x,~0);
C for all x ∈ [a, b] and all Killing vector fields V̄ of ḡ|S2(x), one has

∫

S2(x)

ḡ(V̄ , ν) dA = 0,

where ν is the g-unit normal to S2(x); and

D for all [α, β] ⊆ [a, b], Vol([α, β] × S2, g) = 8π
∫ β

α r(x)3 dx.
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One says N is a maximal normal (ε, k, L)-neck if for any (ε, k, L)-neck N0 such
that N = N0 ◦ F , the map F : dom(N) → dom(N0) is onto. Normal necks enjoy
good existence, uniqueness, and maximal extension properties. (See [5] for precise
statements.) In particular, one has the following important maximality result.

Theorem 1 (Hamilton). For all L > 0, there exist ε > 0 and k ≥ 1 such that
any normal (ε, k, L)-neck is contained in a maximal normal (ε, k, L)-neck, unless
M3 ≈ (R × S2)/Γ.

Neck detection. Let N be a topological neck and let P ∈ C3. One says the

curvature at P is (ε, k, L)-cylindrical if |Rm−Rm|ḡ ≤ ε and
∑k

j=1 |∇̄
j Rm |ḡ ≤ ε

in Bḡ(P, L). This property makes it possible to detect necks, as follows.

Theorem 2 (Hamilton). For every (ε, k, L), there exists (ε′, k′, L′) such that if
the curvature at a point P of a topological neck is (ε′, k′, L′)-cylindrical, then P
lies at the center of a geometric (ε, k, L)-neck.

Canonical neighborhoods. In order to perform surgery, one must know that
every region of sufficiently high curvature has a standard form. Let ϕ : [1,∞) →
(0,∞) be monotone with limR→∞ ϕ(R) = 0 and let r : [0,∞) → (0,∞) be mono-
tone decreasing. Perelman says a Ricci flow surgery program is ϕ-pinched if for
all (x, t) with R(x, t) ≥ 1, one has

1

R
Rm ≥ −ϕ(R) g Z g.

Perelman says a Ricci flow surgery program satisfies the Canonical Neighborhood
Assumption if every (x, t) with R(x, t) ≥ r−2 belongs to a parabolic neighborhood
{Bg(s)(x, t) : t − ε2r2 ≤ s ≤ t} whose properties match those of neighborhoods in
ancient κ-solutions (singularity models), as set forth in the following.

Theorem 3 (Perelman). There exists ε0 > 0 such that for all ε ∈ (0, ε0), there
exist c1(ε) ≥

30
ε and c2(ε) ≥ 3 such that for each (x, t) in any ancient κ-solution,

there exist r and B with

r ∈

[
1

c1

√
R(x, t)

,
c1√

R(x, t)

]

and Bg(t)(x, r) ⊆ B ⊆ Bg(t)(x, 2r) such that either

(1) B is the final time slice of a strong (ε, εr)-neck;
(2) B is an (ε, εr)-cap;
(3) B is a closed manifold diffeomorphic to S3 or RP

3; or
(4) B is a quotient of the round sphere.

Moreover, at time t, one has

a |∇R| < ηR3/2 and |Rt| < ηR2 everywhere;
b 1

c2
R(x, t) ≤ R ≤ c2R(x, t) in B;

c Vol(B) ≥ 1
c2

(R(x, t))−3/2 in cases (1)–(3); and

d sect ≥ 1
c2

R(x, t) in case (3).
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The critical issue in Perelman’s surgery program is to show that the Canonical
Neighborhood Assumption continues to hold after the first surgery time.
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The compactness of the set of κ-solutions

Bernhard List

The content of the talk was the following compactness theorem of Perelman [1,
§11.7] which is used to prove a gradient estimate for the scalar curvature, uniform
on the set of κ-solutions.

Here a κ-solution is defined to be an ancient, complete, non-flat, κ-noncollapsed
solution to the Ricci Flow with bounded sectional curvature and positive curvature
operator.

The theorem is a crucial tool in Perelman’s paper, since the further study of
regions with high curvature near a singular point is done by comparing a general
solution with an approximate κ-solution. The precise statement is

Theorem The set of pointed κ-solutions is compact modulo scaling, i.e. from every
sequence of such solutions and base points (Mk, xk, gk(t)) satisfying R(xk , 0) = 1
we can extract a smooth converging subsequence, whose limit is also a pointed κ-
solution.

Since the original proof is very short, a more detailed exposition following the
lines of Perelman’s proof was given, including a careful inspection of the crucial
point-picking arguments and the constructions of the collapsing balls.
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The canonical neighbourhood assumption

Jan Metzger

The key to the surgery procedure for the three dimensional Ricci flow as it is
proposed in Perelman [1],[2] is the so called canonical neighborhood assumption.
This assumption, which is actually a property, guarantees that the Ricci flow, as
it goes singular, approaches the special geometry of a long neck. The knowledge
of this fact then allows the construction of a surgery procedure adapted to this
geometry.

In Theorem 12.1 of his first paper, Perelman establishes this assumption in the
case that at the time of interest, no surgeries were made for some time.

In the program of constructing a solution to Ricci flow with surgery, this the-
orem allows one to get off the ground and perform surgery at the first singular
time.

In addition the proof of the theorem contains important ideas, that are used
later in the program. A modified version of this proof is used in Chapter 5 of [2]
to establish the canonical neighborhood assumption in the presence of surgeries in
the past.

The full statement of Theorem 12.1 from [1] is:

Theorem Let ε > 0, κ > 0 and a decreasing function φ : R+ → R+ with
lims→∞ φ(s) = 0 be given. Then there exists r0 = r0(ε, κ, φ) with the following
property.

Let (M, g(t)) be a family of Riemannian manifolds satisfying the Ricci flow
equation

∂

∂t
g = −2Ric

for t ∈ [0, T ] and the following assumptions:

(1) (M,g(t)) is κ-noncollapsed on scales < r0, i.e. for all (x, t) ∈ M × [0, T ]
and 0 < r < r0, whenever |Rm| ≤ r−2 on B(x, r) × [t − r2, t] the volume
of this ball with respect to g(t) satisfies r−nVol(B(x, r)) ≥ κ.

(2) (M,g(t)) is φ-almost nonnegatively curved, i.e.

Rm(x, t) ≥ −φ(R(x, t))R(x, t)

for each (x, t) with R(x, t) ≥ 1.

Then if (x0, t0) ∈ M × [0, T ] is a point with t0 ≥ 1 and Q := R(x0, t0) ≥ r−2
0 , then

in the parabolic neighborhood

Bt0(x0, (εQ)−1/2) × [t0 − (εQ)−1, t0]

after rescaling, the metric g(t) is close to a κ-solution. Here Rm(x, t) denotes the
Riemannian curvature operator of g(t) at x ∈ M , R denotes the scalar curvature
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and Bt(x, r) denotes the metric ball around x with radius r measured with respect
to the metric g(t).

A κ-solution to the Ricci flow is a solution on the time interval (−∞, 0], which
is complete, non-flat, κ-noncollapsed, has nonnegative curvature operator and
bounded curvature on every time slice.

Such solutions are deeply analyzed in Chapter 11 of [1] and portions of them
provide the canonical neighborhoods from the introduction.
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Finite extinction time—report on a paper of Colding and Minicozzi

Leon Simon

The finite extinction time result of Colding and Minicozzi [2], like the alternative
finite extinction time result originally proposed by Perelman, is designed to ensure
that if we start with a counterexample M = M 3 to the Poincaré conjecture (we
stick to this case in the present discussion, although Colding and Minicozzi’s paper
applies somewhat more generally—indeed to any M = M 3 with π3(M) 6= 0) then
the Hamilton Ricci flow with surgeries can exist for at most a fixed time T < ∞
depending only on the initial data (M, g(0)).

This effectively means, since each Hamilton surgery takes place at a fixed scale
and results in a fixed reduction in the volume of M each time it is performed, that
only finitely many surgeries would be required before an immediate contradiction is
obtained (modulo checking the appropriate facts about the discreteness of surgery
times and preservation of various bounds after each surgery), thus significantly
simplifying the Ricci flow approach to the Poincaré conjecture as distinct from the
Ricci flow approach proposed to settle the full Thurston geometrization conjecture.

The general approach to the proof of finite extinction time (both by Perelman
and Colding-Minicozzi) is the following:

Suppose that there is a bounded function w : [0, T ) → (0,∞) (not necessarily
continuous) such that

(1)
d̄w(t)

dt
≤ −θ −

α

t + β
w(t)

for all t ∈ [0, T ), where θ, β are given positive constants and α ∈ (0, 1) is also a

given constant, and where d̄f(t)
dt = lim suph↓0

f(t+h)−f(t)
h for any f . Then we must

have

(2) T ≤
(1 − α

θ
β−αw(0) + β1−α

)1/(1−α)

− β.

This is proved in the obvious way, by observing that (1) implies that the function
(t+β)−αw(t)+ θ

1−α (t+β)1−α is decreasing on [0, T ). Furthermore (since we want
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to apply the above principle in a setting where t is the time variable of a Hamilton
Ricci flow (M, g(t)) in the case when surgeries are allowed) we should note that we
will still be able to prove the inequality (2) if there are 0 = t0 < t1 < t2 < · · · <
tQ < T = tQ+1 such that (1) holds on each interval [tj−1, tj), j = 1, . . . , Q + 1,
provided that

(3) lim sup
t↑tj

w(t) ≤ w(tj), j = 1, . . . , Q.

The idea is to find a suitable function w(t) on (M, g(t)), where (M, g(t)) is a
Hamilton Ricci flow with surgeries, so that the above general principle can be
applied. A candidate for such a function is the “width” function w of (M, g(t)),
which we proceed to define. Assume that our 3-dimensional manifold M is a
homotopy 3-sphere which is not diffeomorphic to S3, so that in particular π3(M) ≈
Z, and let

(4) w(t) = inf
γ∈Γp,q,λ(M)

max
s∈[0,1]

Eg(t)(γs).

Here the notation is as follows: p, q are any pair of points (not necessarily distinct)
in M , Γp,q,λ(M) is the set of C1 maps γ : S3

∗ → M which are homotopic to a fixed
continuous λ : S3

∗ → M which generates π3(M), where S3
∗ is the piecewise C1

homeomorph of the standard S3 defined by S3
∗ = ({0}×B3)∪ ([0, 1]×S2)∪ ({1}×

B3), with B3 = {x ∈ R
3 : |x| ≤ 1}, and where γ|{0} × B3 ≡ p, γ|{1} × B3 ≡ q,

γs(ω) = γ(s, ω), (s, ω) ∈ (0, 1) × S2, γ0, γ1 are the constant maps from S2 into
M taking values p, q respectively (thus {γs}s∈[0,1] is a continuous one-parameter

family of C1 maps S2 → M), and Eg(t) is the energy functional defined for C1

maps of S2 into (M, g(t)) by

Eg(t)(ϕ) =
1

2

∫

S2

|dϕ|ω |
2
g(t) dω =

1

2

∫

S2

(
|dϕ|ω (τ1)|

2
g(t) + |dϕ|ω (τ2)|

2
g(t)

)
dω,

where τ1, τ2 are any orthonormal basis for Tω(S2), ω ∈ S2. For maps γ ∈
Γp,q,λ(M), the corresponding families {γs}s∈[0,1] ∈ C1([0, 1]; C1(S2; M)) are re-
ferred to as “sweep-outs” of M . The area functional Ag(t) is

Ag(t)(ϕ) =

∫

S2

|dϕ|ω (τ1) ∧ dϕ|ω (τ2)|g(t) dω,

and it is a standard fact that
(5) Ag(t)(ϕ) ≤ Eg(t)(ϕ) with equality ⇐⇒ ϕ is conformal

in the sense that |dϕ|ω (τ1)| ≡ |dϕ|ω (τ2)| and 〈dϕ|ω (τ1), dϕ|ω (τ2)〉 ≡ 0. It can then
be checked that the above width function can equivalently be defined in terms of
the area functional, because

(6) inf
γ∈Γp,q,λ(M)

max
s∈[0,1]

Eg(t)(γs) = inf
γ∈Γp,q,λ(M)

max
s∈[0,1]

Ag(t)(γs).

Colding and Minicozzi in [2] prove that in fact the function w in (4) satisfies an
inequality of the form (1) with θ = 4π, α = 3

4 , and β any number in (0, −1
minM R|t=0

]

if minM R|t=0
< 0 and with any β > 0 if minM R|t=0

≥ 0. They establish this by
using known results about the “min-max” in (4)—in particular the facts that
for each given ε > 0 there is a δ = δ(ε) > 0 and a sequence γj ∈ Γp,q,λ(M)
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(also depending on ε) such that

max
s∈[0,1]

Eg(t)(γ
j
s) → w(t)min-max (i):

dvar(∪iΣ
j
is, γ

i
s) < ε ∀s ∈ [0, 1] such that Eg(t)(γ

j
s) > w(t) − δmin-max (ii):

(finite union over i), where each Σj
is is a branched conformal minimal immersion

and dvar is the varifold metric defined by

(7) dvar(Σ1, Σ2) = sup
|f |≤1, Lipf≤1

∣∣
∫

Σ1

f(x, νΣ1
) −

∫

Σ2

f(x, νΣ2
)
∣∣

for any pair of branched immersed surfaces Σ1, Σ2 in M , where νΣj
is a continuous

unit normal for Σj and where the functions f referred to in the sup are Lipschitz
maps f : ∪x∈M{x} × (TxM)⊥ → R.

The properties min-max(i), (ii) are justified in the paper [2] by appealing to a
general theory developed by Jost [3] (which ensures a property like min-max(ii)
with respect to weak convergence in W 1,2 for some s), and the proof that the paths
γj

s can be modified to ensure the implication in min-max(ii) holds with respect to
the metric dvar for all s such that Eg(t)(γ

j
s) > w(t)−δ is justified by appealing to [1].

However the reference [3] is restricted to a classical setting and does not explicitly
discuss approximation in the varifold metric of min-max(ii) (although it seems
clear that this could be done by using the harmonic replacement property), while
the paper [1] actually refers to a minimax setting which is a little different than that
mentioned above; in view of the importance of the results under consideration, it
would perhaps be desirable to have a self-contained justification of min-max(i),(ii).

With min-max(i),(ii) available it is then relatively straightforward to prove the
claimed inequality (1) with the relevant values of α, β, θ; specifically

(8)
d̄w(t)

dt
≤ −4π −

3/4

t + β
w(t)

where β is arbitrary ∈
(
0, −1

minM R|t=0

]
if minM R|t=0

< 0 and with β > 0 com-

pletely arbitrary if minM R|t=0
≥ 0.

To prove this Colding-Minicozzi first recall the evolution equation Rt = ∆R +
2|Ric|2 ≥ ∆R + 2

3R2 which via a standard comparison/maximum principle argu-

ment (comparing with solutions of the ODE ϕ′ = 2
3ϕ2 with ϕ(0) = minM R|t=0

in
case minM R|t=0

≤ 0 and just using the normal parabolic maximum principle for
Rt ≥ ∆R in case minM R|t=0

≥ 0) gives the lower bound

(9) R|t ≥
−3

2(t + β)
,

where β is arbitrary ∈
(
0, −1

minM R|t=0

]
in case minM R|t=0

< 0 and β > 0 is

completely arbitrary in case minM R|t=0
≥ 0.

Then the identity d
dtAg(t)(Σ) = −

∫
Σ
(R − Ric(νΣ, νΣ)) is used, together with

the min-max(i),(ii) above at a specific time τ to give a sequence of sweep outs

γj
s(τ), and the Gauss-Bonnet theorem on Σj

is, to verify directly that, if s is such
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that Eg(τ)(γ
j
s) ≥ w(τ) − δ, then

d

dt |t=τ

Ag(t)(γ
j
s(τ)) ≤ −4π−

1

2

∫

γj
s(τ)

R+C1ε ≤ −4π+
1

2
Ag(τ)(γ

j
s(τ))(−min

M
R|t=τ )+C2ε,

where C1, C2 depend on |Ric|t=τ |C1 but do not depend on j or s, and the sweep-out

{γj
s}s∈[0,1] does not depend on t (the sweep-out is selected so that min-max(i),(ii)

hold at the fixed time t = τ). Then by the lower bound (9)
d

dt
Ag(t)(γ

j
s) ≤ −4π +

3/4

t + β
w(t) + C3ε.

By a Taylor approximation to order 2 we then have

h−1
(
Ag(τ+h)(γ

j
s) −Ag(τ)(γ

j
s)

)
≤ −4π +

3/4

t + β
w(t) + C4ε + C5h

for sufficiently small h > 0 (independent of τ, j), and, since Ag(τ)(γ
j
s) ≤ Eg(τ)(γ

j
s) ≤

maxs∈[0,1] Eg(τ)(γ
j
s) → w(τ), we conclude, after appealing to (6) and then letting

j → ∞, that

h−1(w(τ + h) − w(τ)) ≤ −4π +
3/4

t + β
w(t) + C4ε + C5h,

and hence (8) is established by taking lim suph↓0, and then letting ε ↓ 0.
Colding and Minicozzi make no explicit discussion of the fact that the width

cannot jump up after a surgery, but after a remark of Tom Ilmanen at the work-
shop this seems quite clear (at least in the context of counterexamples to the
Poincaré conjecture) from the following argument: Assume without loss of gen-
erality that M is a prime homotopy 3-sphere which is a counterexample to the
Poincaré conjecture; then after a standard Hamilton surgery we get two compo-

nents, one which is a standard S3 and the other, M̃ say, which is again a prime
homotopy 3-sphere which is a counterexample to the Poincaré conjecture. In fact
the surgery is by definition such that there is a diffeomorph Σ of S2 contained in
M such that M \ Σ has two components M±, with M+ a fake 3-ball and M− a

standard 3-ball, and M̃ is the image of M under a distance decreasing transfor-

mation Ψ : M → M̃ which is C1 and such there is a point x0 ∈ M̃ with Ψ|M+

a diffeomorphism onto M̃ \ {x0} and Ψ(M−) = {x0}, so (since M− is a standard

3-ball) Ψ gives a homotopy equivalence M ≈ M̃ . Therefore Γp,q,λ(M) is mapped

bijectively to Γ
ep,eq,eλ(M̃), where p̃ = Ψ(p), q̃ = Ψ(q), λ̃ = Ψ ◦ λ : S3

∗ → M̃ is a

generator for π3(M̃), and γ ∈ Γp,q,λ(M) maps to γ̃ = Ψ ◦ γ ∈ Γ
ep,eq,eλ(M̃), which

trivially has Eeg(γ̃s) ≤ Eg(γs) for each s because Ψ is distance decreasing. Thus w

computed on M̃ at times after the surgery has starting value which is ≤ the value
of w computed on M at the time of surgery.
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A priori estimates for the asymptotic scalar curvature ratio on

κ-noncollapsed, positively curved solutions to the Ricci flow.

Miles Simon

Let (M, g(t))t∈(−∞,1] be a κ-noncollapsed solution to Ricci-flow, with non-
negative curvature operator. Let A be the asymptotic scalar curvature, and as-
sume 0 < A < ∞. Fix a base point p ∈ M . We can then find a sequence of points
xk ∈ M so that

d2
t=0(xk, p) → ∞ as k → ∞,

R(xk , 0)d2
t=0(xk, p) → A as k → ∞.(1)

This implies that R(xk, 0) → ∞ as k → ∞. We set

gk(·, t) := R(xk, 0)g(·,
t

R(xk , 0)
).

Notation: Rk(x, t) := R(gk(t))(x) and kdt(x, y) := dist(gk(t))(x, y). Then we
have scaled so that Rk(xk , t) = 1, and furthermore kd0(xk , p) ≤ 2A. In particular,
the Harnack inequality gives us that

Rk(x, t) ≤
2A

kd
2
0(x, p)

,

for all kd
2
0(x, p) ≥ b > 0. Defining the sets:

Ωk := {x ∈ M |b < kd0(x, p) < B, },

we see that Ωk is non-empty, since it contains xk , and using the convergence
theorems of Cheeger-Anderson (see [6], Section on convergence of Riemannian
Manifolds) and Hamilton (see [3]) we obtain (in view of the fact that our solutions
are κ- noncollapsed) a convergent subsequence to a smooth open Riemannian
manifold Ω, and a solution to the Ricci flow (Ω, g̃(t)t∈(−1,0]). Returning to the

original manifolds we see that (M, kg(0), p) = (M, λkg(·, 0), p), where λk → 0. A
theorem of Gromov in [1, pages 58-59] gives: Such a sequence of metric spaces
converges in the sense of Gromov-Hausdorff to a Tits cone C.

In our case this cone is positively curved and non-flat as Rk(xk, 0) = 1. This
would mean that (Ω, g(0)) is a piece of a non-flat cone, which would contra-
dict the maximum principle for the evolving curvature operater (see [4]). One
open issue is to relate the two notions of convergence: Gromov-Hausdorff and
Cheeger/Hamilton. It would be interesting to see if we could prove that such an
asymptotic scalar curvature is impossible, without having to resort to the Gromov-
Hausdorff convergence and Tits cones.
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Gradient estimates in Ricci flow and in mean curvature flow

Carlo Sinestrari

A fundamental step in Perelman’s analysis of the singularities of 3-dimensional
Ricci flow is an estimate of the scalar curvature. This follows combining Theorem
12.2 in [2] and the statement §1.5 in [3]. The former theorem is the well-known
canonical neighbourhood property, saying that for any solution on a closed three-
manifold and any ε > 0 there exists r0 > 0 such that any point where R > r−2

0 has
a parabolic neighbourhood which is ε-close to an ancient κ-solution. The latter
property, which was basically proved in §11 of [2], says that at any point of any
ancient κ-solution we have the estimates

|∇R|2 ≤ ηR3 |Rt| ≤ ηR2,

for some universal constant η not depending even on κ.
Rather than giving a full analysis of the ingenious proof of these estimates, in

this short note we will point out the analogies and the differences with a gradient
estimate for the mean curvature flow contained in the forthcoming paper [1].

Theorem Let Mt, t ∈ [0, T [ be smooth closed n-dimensional surfaces immersed
in IRn+1 evolving by mean curvature, with n ≥ 3. Suppose that M0 is two-convex
(i.e. the sum of the two smallest principal curvatures is positive everywhere). Then
there exist c, C > 0 such that the inequalities

|∇A|2 ≤ c|A|4 + C, |∂tA| ≤ c|A|3 + C

hold everywhere on Mt for all t ∈ [0, T [ . Here A denotes the second fundamental
form. The constant C depends on the initial data M0 while c only depends on the
dimension n.

Although the statements are very similar, the proof of the result is completely
different in the two cases. The result for the mean curvature flow is proved using
the maximum principle. The subtle part of the proof consists of the choice of the
test function to which the maximum principle will be applied. The possibility of
defining the test function relies on other estimates obtained previously, which use
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the two–convexity assumption. The proof also uses in an essential way the sharp
inequality |∇H |2 ≤ n+2

3 |∇A|2, where H is the mean curvature.
Perelman’s argument for the Ricci flow uses quite different arguments. As we

have seen, he first analyzes the ancient κ-solutions, and then he shows that regions
with sufficiently high curvature of an arbitrary solution are close to κ-solutions.
The noncollapsing property plays a central role throughout the analysis, as well
as other tools, like the behaviour at infinity of complete manifolds of positive
curvature and the Toponogov splitting theorem. The central part of the argument
is a compactness theorem for κ-solutions, which gives the gradient estimates as
a corollary. The canonical neighbourhood property is then derived by a delicate
contradiction argument using techniques from the theory of Alexandrov spaces.

It is remarkable that in both cases the coefficient of the leading term of the gra-
dient estimate only depends on the dimension and not on the data. For the mean
curvature flow, this term can be explicitly evaluated by looking at the evolution
equation to which the maximum principle is applied. In the case of the Ricci flow,
the coefficient could depend a priori on the noncollapsing constant κ. However,
Perelman also proves that κ cannot be smaller than some fixed κ0, except for the
quotients of the sphere S3. Thus, the constant η in the inequality can be chosen
independently of κ.

In Perelman’s proof many statements are obtained by contradiction arguments.
In some respect it would be desirable to have more direct methods, like in a proof
by maximum priciple, in order to have a more explicit dependence of the constants;
this might also possibly simplify the analysis of the surgeries afterwards. However,
finding an alternative approach to these estimates for the Ricci flow seems at the
present time quite a difficult task.
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