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Abstract. The Mini-Workshop is concerned with the large-scale description
of microscopic many-particle systems with two or more conservation laws.
This is topic of common interest for statistical mechanics, probability theory
and PDE theory. The main difficulty lies in the proof of the hydrodynamic
limit in terms of a system of (generically hyperbolic) PDE’s which includes a
proper treatment of shock and boundary discontinuities that result from the
microscopic dynamics. Moreover, fundamental properties of current-carrying
stationary states of such systems (which are not Gibbs states) are studied
in terms of fluctuations of macroscopic quantities. Many powerful tools de-
veloped for particle systems (or PDE’s respectively) with one conservation
law have no obvious generalization to systems with two or more conservation
laws and hence new mathematical ideas need to be developed.
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Introduction by the Organisers

“Particle Systems with Several Conservation Laws: Fluctuations and Hydrody-
namic Limit” connects different fields where intimate connections are just emerg-
ing. In many applications (like traffic flow, dust models in astrophysics, compress-
ible fluid models) very natural microscopic descriptions of the stochastic dynamics
of interacting particles can often be related to macroscopic continuum descriptions
using nonlinear evolutionary PDEs. It is hard to rigorously relate these two levels
of modelling of the same physical or biological phenomena, though.
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Scientific progress in the area of hyperbolic conservation laws for systems of one
and two equations has been used in rigorously proving the hydrodynamic limit of
corresponding interacting particle systems. Techniques like the theory of com-
pensated compactness in PDEs are emerging as powerful tools in the interacting
particle system community. Many other original ideas were and are currently being
developed within this second context for systems with two and more conservation
laws. This had lead the organizers to believe that time has come to devote a high
profile meeting to this subject which is situated at the intersection between non-
linear hyperbolic pde theory, probability theory of interacting particle systems,
nonequilibrium statistical physics.

More specifically, the choice of the topic was motivated by the following closely
related issues: As it is well-known solutions of systems of hyperbolic PDEs de-
velop shocks and this fact causes major difficulties in the mathematical analysis
as well as in the physical interpretation of the microscopic particle structure of
a shock. Moreover, in the presence of macroscopic currents, boundary conditions
in finite systems determine the bulk behaviour of stationary solutions both of
PDEs and particle systems. This has been shown to lead to boundary-induced
nonequilibrium analogs of phase transitions which are novel phenomena of partic-
ular importance in applications which usually deal with effectively finite systems.
It raises the question how microscopic laws of interaction find an appropriate de-
scription in terms of boundary conditions of an associated hyperbolic PDE. In our
current but not fully developed understanding, the hydrodynamic limit, existence
of shocks, and the nature of boundary conditions appear to be very intricately
linked problems which require investigation within a common framework. In this
context the workshop was concerned with the following problems:

• Derivation of hydrodynamic limit
• Microscopic structure of the shocks
• Open boundary problems
• Dynamical phase transitions
• Large deviations
• Treatment of the theory of conservation laws with entropies coming form

microscopic models

The participants, coming from the US, France, Hungary and Germany, were
mathematicians from PDE theory and probability theory and physicists working
in the field of nonequilibrium statistical mechanics. With all of them being spe-
cialists coming from different fields, but sharing a common research interest, this
miniworkshop turned out to be a highly fruitful “joint venture”. A number of very
successful expository lectures on recent progress in the field helped to bridge the
gaps between the different communities. More specialized talks, partly on open
problems, led the participants to leave the confines of their respective communi-
ties and to interact with each other. All of us enjoyed enormously the externally
tranquil, but scientifically vivid and stimulating atmosphere of Oberwolfach.
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Abstracts

Hyperbolic models for chemosensitive movement in interacting cell
systems

Angela Stevens

(joint work with Hyung Ju Hwang, Kyungkeun Kang, Frithjof Lutscher)

Morphogenetic processes in biology such as neurulation and gastrulation involve
coordinated movement of cells. It is assumed that these processes happen due
to long-range signaling, although the detailed mechanisms are not completely
understood. Therefore, one is interested in biological model-systems where self-
organization of cells and in particular the mechanisms of signaling can be analyzed
in greater detail. A major question is whether or not short-range signaling or local
interaction of cells can also be the cause of coordinated movement and morpho-
genetic processes.

In the talk two one-dimensional models of hyperbolic type for structure forma-
tion in interacting cell systems were presented. The first model is dealing with
reorientation and motion of cells due to cell surface bound signals and describes
ripple formation of myxobacteria. The second model describes chemotactic move-
ment of cells due to a diffusive signal.

In the biological literature it is discussed, that ripple formation of myxobac-
teria happens due to purely local interaction. These ripples - countermigrating
periodic travelling pulses - can be observed before the final aggregation of the bac-
teria and fruiting body formation take place. Our basic mathematical model is a
one-dimensional hyperbolic system of Goldstein-Kac type with density-dependent
coefficients. Conditions for the existence of travelling patterns are discussed by
means of linear analysis and the construction of invariant domains. This gives rise
to a certain class of turning rates which are then simulated numerically. Coun-
termigrating oscillatory patterns can be observed. In case the conditions on the
turning rates are not fulfilled the simulations show the early development of one
single peak for the population density.

The second model is a one dimensional hyperbolic system for chemotactic move-
ment of cells. The model consists of two hyperbolic differential equations for the
chemotactic species and is coupled with either a parabolic or an elliptic equation
for the dynamics of the external chemical signal. The speed of the chemotactic
species is allowed to depend on the external signal and the turning rates may de-
pend on the signal and its gradients in space and time, as observed in experiments.
Global classical solutions are established for regular initial data and a parabolic
limit is proved. This limit compares to Keller-Segel type models for chemotaxis.
Thus the so-called chemotactic sensitivity in the parabolic model can be explained
in terms of the parameters of the hyperbolic model, e.g. the turning frequency.
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Exact shock measures and steady-state selection in a driven diffusive
system with two conserved densities

Attila Rákos

(joint work with Gunter M. Schütz)

Recently much attention was paid to the investigation of the stationary micro-
scopic structure [1, 2, 3] and the microscopic dynamics [4, 5, 6, 7, 8] of shock
discontinuities in driven diffusive systems. It was pointed out in [7] (and for infi-
nite systems in [6]) that in the asymmetric simple exclusion process (ASEP) for
special tuning of densities and microscopic hopping rates there exists a travelling
shock with a step-like density profile even on the microscopic scale, which behaves
like a collective one-particle excitation. However, little is known about the micro-
scopic structure and dynamics of shocks in systems with two conservation laws
[9, 10, 11, 12], which recently have become a focus of attention (for a review see
[13] and [14, 15] for more recent work).

The talk is based on a work [16] in which we show that a shock measure with
single-particle dynamics can describe also systems with two conserved densities.
We also study the hydrodynamic limit of the model (under Eulerian scaling) which
shows a larger class of stable shock solutions. The hierarchical structure of the hy-
drodynamic equations for this system allows us to deduct the steady state selection
in an open system connected to particle reservoirs at its boundaries.

We study a model which is defined on an open lattice of size L with two types
of particles (A and B). These particles interact with exclusion and are subject to
biased diffusion: they can hop stochastically onto nearest neighbour vacant sites
and exchange position (provided they are nearest neighbours) at given rates. At
the boundaries the particles can enter and leave the lattice.

Let P (k) be defined as a product measure state with particle densities (ρA
l , ρ

B
l )

on the left of site k and (ρA
r , ρ

B
r ) on the right. These shock measures with k =

0 . . . L form a family within which the only parameter is the position of the shock.
We aim at finding the most general case when this family of shock measures closes
under the time evolution of the model.

Using the quantum Hamiltonian formalism [17] we find a set of conditions which
are necessary and sufficient for having such an invariant family of shock measures.
These are the following: (1) The left and right hopping rates of the A particles
have to be equal to these rates of the B particles respectively. (2) The exchange
rates of A and B have to be the same in both directions. (3) The densities have
to satisfy ρA

l /ρ
B
l = ρA

r /ρ
B
r and (4) ρr(1−ρl)q = ρl(1−ρr)p, where p and q are the
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hopping rates of both species to the right and left, and ρ = ρA + ρB . (5) There
are some extra conditions for the boundary rates [16].

If the above conditions are satisfied than an initial shock measure P (k) evolves
into linear combinations of shock measures of this family in such a way that the
shock position k performs a biased random walk with nearest neighbour jumps at
rates pρl/ρr and qρr/ρl to the right and left respectively with reflecting boundaries.

Conditions (1-2) tell us that the species A and B have the same dynamics. Not
distinguishing between them would lead to the pure ASEP. Therefore it is not
surprising that condition (4) is in full agreement with the corresponding formula
for the ASEP [6, 7]. The novelty is that a) the family of product measures remains
invariant even if one distinguishes between A and B particles, b) there is no other
possibility for having such an invariant family of shock measures up to relabelling
the local states A, B and 0 (empty site).

It is also of interest to drop the conditions (3-4) and see how this model behaves
on the macroscopic scale. The hydrodynamic limit of the model (under Eulerian
scaling) is described by a set of partial differential equations for the time evolution
of the particle densities, in which one equation (for the total density ρ(x, t)) is
decoupled and takes the form of the well-known Burgers equation which can be
solved exactly [18]. The second equation than gives ρA/ρB =const. along the
curves x(t) satisfying ẋ(t) = 1 − ρ(x, t).

A general feature of driven systems with two conservation laws is that an initial
sharp discontinuity develops two shocks (or rarefaction waves) of different type.
The shock measures discussed before are pure shocks of one type so they don’t
split further. In our model, due to its degeneracy, the other type of shocks are
microscopically not sharp: their width scales with

√
t because of the diffusive

dynamics of the A and B particles. However, this broadening remains invisible on
Euler-scale.

In a finite system with open boundaries coupled to particle reservoirs one is
left with the question of steady state selection. In case of one conserved density
the current-density relation already determines the phase diagram in terms of the
boundary densities [19, 20] but in case of more conservation laws the question
turns out to be much more intricate and no general rule is known to apply [10].
However, in our model, due to the special hierarchical structure of the hydrody-
namic equations, it is possible to determine the resulting steady state for any given
boundary densities. So our model, even though degenerate, may serve as a testing
ground for any general theory.
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[20] V. Popkov and G. M. Schütz, Europhys. Lett. 48 257-263 (1999)

Exact steady state of exclusion processes with several species of
particles

Bernard Derrida

Second class particles were introduced in one dimensional exclusion processes
to locate shocks [1]. It was shown that for the asymmetric exclusion process, when
the asymptotic densities are ρL and ρR (with ρL < ρR when the asymmetry favors
jumps to the right), if one introduces a second class particle, this second class
particle is attracted by the shock, and there is an invariant measure [2], seen from
the second class particle, which can be calculated explicitly in terms of the matrix
ansatz [3, 4]. Second class particles are not the only way to locate a shock at
a microscopic scale, and the invariant measure seen from the shock depends on
how the location of the shock is defined. There exist however invariants [5] which
characterize the shock at the microscopic scale, and which do not depend on the
definition used to locate the shock.

Another aspect described in the talk is the ABC model [6] on a ring of L sites.
In the ABC model, each site is occupied by either a A particle, a B particle or a
C particle. The exchange rates are given by

AB → BA with probability q

BC → CB with probability q

CA → AC with probability q

and

BA → AB with probability 1

CB → BC with probability 1

AC → CA with probability 1

When q < 1 there are in the steady state 3 macroscopic domains: all the A are
grouped together with on their right all the B’s and on their left all the C’s except
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for fluctuations at the microscopic scale near the domain boundaries. On the other
hand, when q = 1, all configurations are equally likely and all the three species are
totally mixed. It is possible to show that the system undergoes a phase transition
[7] for a weakly asymmetric case, that is when

q = exp

(
−β

L

)

where the value βc of β at the transition depends on the densities ρA, ρB , ρC (with
ρa + ρb + ρc = 1). For equal densities of the three species, one can show that

βc = 2π
√

3
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Hyperbolic systems: Hydrodynamic limits via PDE methods

József Fritz

(joint work with Bálint Tóth)

The main purpose of this talk is to point out some similarities and differences of
the microscopic theory of hydrodynamics and numerical schemes for solving hyper-
bolic equations and systems of conservation laws. Let ζ = (ζk(t) : k ∈ Z) denote
the conserved quantities at time t ≥ 0 of a one-dimensional lattice model. The asso-
ciated empirical process is defined for ε > 0 , t ≥ 0 and x ∈ R as zε(t, x) := ζk(tεα)
if |εk − x| < ε/2 , where ε → 0 is the scaling parameter interpreted as the macro-
scopic size of the lattice, and α = −2 for diffusive, α = −1 for hyperbolic systems.
In the examples below, ζ is a scalar, or it is a vector of two components. The
hydrodynamic law of large numbers means that the empirical process converges to
a deterministic limit, z(t, x) that solves the macroscopic equation. In the diffusive
case we get ∂tz = ∂2

xf(z) ; the number of conservation laws is irrelevant, and a
well developed theory is available, see [6] for the first basic results.
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Hyperbolic problems are more difficult because of several reasons. Relative en-
tropy is the only general tool, but it works only in a regime of smooth macroscopic
solutions [13]. Attractive models result in a single conservation law, ∂tz+∂xf(z) =
0 , see [10,9]. Treatment of less specific systems requires an intensive application of
PDE techniques, namely entropy-flux pairs and the method of compensated com-
pactness [7,8,11,1]. The asymmetric Ginzburg-Landau model is perhaps the most
transparent example to demonstrate some basic notions, it is given by a system of
stochastic differential equations:

dωk = (a/2)(V ′(ωk+1) − V ′(ωk−1)) dt+ σ Γ(ω) dt+
√

2σT (dwk−1 − dwk) ,

where Γ := V ′(ωk+1) + V ′(ωk−1) − 2V ′(ωk) , V ∈ C2(R) is convex at infinity,
ωk ∈ R , and wk is a family of independent standard Wiener processes; the noise
maintains temperature T > 0 . Total spin,

∑
ωk is the only conservative quantity,

and we have a one-parameter family, λq of stationary product measures if σ, T > 0 ;
its marginal densities are specified as f(ωk) := exp(qωk −T−1V (ωk)−F (q, T )) , F
is the normalization. The equilibrium mean of V ′(ωk) is just Tq , ρ := λq(ωk) =
F ′

q(q, T ) , thus q = S′
ρ(ρ, T ) , where S is the convex conjugate of F at a fixed

value of T > 0 . This is a diffusive system if a = 0 , and its hydrodynamic limit
reads as ∂tρ = σT ∂2

xS
′
ρ(ρ, T ) . In the hyperbolic case of a 6= 0 the presence of Γ

is very important even if T = 0 . The numerical procedure, when T = 0, certainly
converges if V is convex, ∂tρ = a ∂xV

′(ρ) is the macroscopic equation. There
are many other possibilities to choose the regularization Γ , its present form is
dictated by a general principle of statistical physics: the microscopic system must
have a family of stationary states associated to the conservation laws. At positive
temperatures the macroscopic equation is modified by large deviation effects due
to the noise, it turns into ∂tρ = aT ∂xS

′
ρ(ρ, T ) , see [3]. If V is convex (attractive

case), then uniqueness of the limit is also known, the general case is problematic.
Systems with two conservation laws are not attractive, interacting exclusion

processes constitute a nice example [4]. We consider particles with ±1 velocities
on Z with full exclusion, thus ωk = 0,±1 is the configuration at site k ∈ Z .
The microscopic evolution is generated by L = L0 +σ S , the dynamics consists of
independent exchanges at neighboring sites. The asymmetric component, L0 sends
(1, 0) to (0, 1) and (0,−1) to (−1, 0) at a unit rate, interaction means that (1,−1)
turns into (−1, 1) at rate two; any other action is banned. Finally, σ = σ(ε) > 0,
and the symmetric S exchanges ωk and ωk+1 at rate 1. The conserved quantities are
chosen as ηk := 1−ω2

k and ξk := −ωk , then L0ηk = φk+1−φk , L0ξk = ψk+1−ψk ,

φk =
1

2
(ηkξk+1 + ηk+1ξk) +

1

2
(ηk − ηk+1) ,

ψk =
1

2
(ηk + ηk+1 + 2ξkξk+1 − 2) +

1

2
(ηkξk+1 − ηk+1ξk) + ξk − ξk+1

are the fluxes. The symmetric component, S is acting as a discrete Laplacean;
it plays the role of the elliptic stabilization what we need even for numerical
procedures. Since all stationary states are superpositions of Bernoulli measures,
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the familiar Leroux system,

∂tρ+ ∂x(ρu) = 0 , ∂tu+ ∂x(ρ+ u2) = 0

is expected as the result of HDL; ρ and u are the asymptotic densities of η and ξ ,
respectively.

The hydrodynamic law of large numbers is materialized at a level of block
averages. For any ε > 0, l = l(ε) ∈ N and space-time process ζ let

ζ̂ε(t, x) :=
1

l

∑

k∈Z

a

(
x− kε

lε

)
ζk(t/ε)

where a ≥ 0 is a smooth density of compact support. For example, if ζ := (η, ξ)

then ζ̂ε denotes the empirical process, and Ĵε corresponds to the microscopic flux
Jk := (φk, ψk) . Suppose that σ(ε) ≈ log(1/ε)

√
1/ε , l(ε) ≈

√
(1/ε) log(1/ε) , and

let Pε denote the distribution of ζ̂ε . We prove that Pε is tight in the strong topology

of L1
loc(R

2
+) , and all limit points are concentrated on weak entropy solutions of the

Leroux system. There is no result on uniqueness of the limit.

The first step of the proof is the replacement of Ĵε with f(ζ̂ε) , where f(z) ,
z := (ρ, u) is the macroscopic current. This follows by LSI for S , and it is re-
markable that, in contrast to diffusive systems, there is no transition from large
microscopic block averages to small macroscopic ones: we have to start with blocks
of size l ≈ ε−1/2 . This step is not present in numerical procedures where block
averages do not play any role. Having now the right macroscopic flux, an easy
compactness argument shows that all limit distributions of the empirical process
are concentrated on a set of measure solutions.

The method of compensated compactness is used to prove the Dirac property
of the limit distributions. We consider Lax entropy pairs (S, F ) and the related

entropy production Xε := ∂tS(ζ̂ε) + ∂xF (ζ̂ε) . It is a rapidly oscillating quantity
because the microscopic system can not have nontrivial entropy pairs, the crucial
point of the proof is to establish tightness of its distribution in H−1 . In this way
the div-curl lemma [8,11] and the Lax entropy condition are verified at the level of
limit distributions of the Young measure of the empirical process. Now we are in
a position to prove the Dirac property of the limiting Young measure, this is not
difficult in the case of single conservation laws. The Leroux system is of Temple
class, it has such a nice family of entropy pairs that the div-curl lemma yields the
Dirac property by convexity.

The probabilistic part of the argument above extends to several two-component
models, but the last step is restricted to the Leroux system. Indeed, most physical
systems of conservation laws have singular points where the conditions of strict
hyperbolicity and genuine nonlinearity break down, therefore the general results
of DiPerna [1] and others do not apply. To exclude singularities from the phase
space, a Conley- Chueh - Smoller type maximum principle would be needed for
the Riemann invariants of the macroscopic equations. Unfortunately, this is not
available for microscopic stochastic models, but there is a minor hope to prove it.



1210 Oberwolfach Report 22/2005

In the case of one-component systems the Lax entropy condition is sufficient for
uniqueness of HDL, [4] discusses some one-component models of this kind.
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Hydrodynamic limit for the Fourier’s law

Stefano Olla

Hamiltonian models perturbed with stochastic dynamics have been proven use-
ful as microscopic dynamics for the hydrodynamic limit for the Euler equations
for compressible gas, at least in the smooth regime (cf. [4]). We expose here
some recent attempt to use these type of models in order to obtain Fourier law
of diffusion of heat and compressible Navier-Stokes equations. Atoms are labelled
by x ∈ {1, . . . , N − 1}. Atom 1 and N − 1 are in contact with two separate heat
reservoirs at two different temperatures Tl and Tr. The interaction between the
reservoirs is modelled by two Ornstein-Uhlenbeck processes at the corresponding
temperatures. The moments of the atoms are denoted by p1, . . . , pN−1 and the
positions by q1, . . . , qN−1. The distances between the positions are denoted by
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r1, . . . , rN−2, where rx = qx+1 − qx. The Hamiltonian of the system that repre-
sents the total energy inside the system is given by

HN =

N−1∑

x=1

ex, ex =

(
p2

x + (rx − ρ)2
)

2
x = 1, . . . , N − 2; eN−1 =

p2
N−1

2
.

The dynamics is described by the following system of stochastic differential equa-
tions:

drx = (px+1 − px)dt, x = 1, . . . , N − 2

dpx = (rx − rx−1)dt− γpxdt+
√
γ (px−1dwx−1,x − px+1dwx,x+1) ,

x = 2, . . . , N − 2

dp1 = (r1 − ρ)dt− 1 + γ

2
p1dt−

√
γp2dw1,2 +

√
Tldw0,1,

dpN−1 = −(rN−2 − ρ)dt− 1 + γ

2
pN−1dt+

√
γpN−2dwN−2,N−1 +

√
TrdwN−1,N ,

Here wx,x+1(t), x = 0, . . . , N − 1, are independent standard Brownian motions
(with 0 average and diffusion equal to 1). The parameter γ > 0 regulates the
strength of the random exchange of momenta between the nearest neighbor parti-
cles. Observe that by translating rx in rx − ρ one has the same equations for the
new coordinate but with ρ = 0. So we set ρ = 0 without any loss of generality.
The generator of the evolution has the form

LN =
N−2∑

x=1

(px+1 − px)∂rx
+

N−2∑

x=2

(rx − rx−1)∂px
+ r1∂p1 − rN−2∂pN−1

+
γ

2

N−2∑

x=1

X2
x,x+1 +

1

2

(
Tl∂

2
p1

− p1∂p1

)
+

1

2

(
Tr∂

2
pN−1

− pN−1∂pN−1

)

where

Xx,x+1 = px+1∂px
− px∂px+1

One can check easily that the Lie algebra generated by these fields and the Hamil-
tonian part of LN has full rank at every point of the state space RN−1 × RN−2.
By Hörmander theorem it follows that this operator is hypoelliptic (cf. thm 22.2.1
in [3]), so the stationary measure has a smooth density. We denote with < · >
the expectation with respect to the stationary measure. In [2] the existence and
uniqueness of this stationary measure is proven. If Tl = Tr = T this stationary
measure is identified as the product gaussian measure of variance T . If Tl 6= Tr

the stationary state is not Gaussian neither product. Energy is conserved by the
bulk part of the dynamics and we have

LNex = jx−1,x − jx,x+1
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with

jx,x+1 = −rxpx+1 −
γ

2
(p2

x+1 − p2
x), x = 1, · · · , N − 2

j0,1 =
1

2
(Tl − p2

1), jN−1,N = −1

2
(Tr − p2

N−1)

Consequently jx,x+1 is called instantaneous current of energy. Because of station-
arity, for any x = 1, N − 1 we have

< jx,x+1 >=< j0,1 >=< jN−1,N >

Observe that this model does not conserve momentum. This is in fact dissipated
and in a Euler scaling hydrodynamic limit there will be no transport of energy.
A diffusion of energy is present in the diffusive scaling of space and time, and the
corresponding conductivity coefficient can be studied by the transport properties
of the stationary state. The following theorems are proven in [2].

Theorem 1. For any γ > 0

lim
N→∞

N < jx,x+1 >=
1

2

(
γ + γ−1

)
(Tl − Tr) .

Theorem 2. For any γ > 0

lim
N→∞

1

N
〈HN 〉 =

1

2
(Tl + Tr) .

It is easy to see that the averages of the total kinetic and potential energy are
equal. It follows then, as corollary of theorem 2, that the same result is valid for
the kinetic and the potential energies, i.e.

lim
N→∞

1

N

N−1∑

x=1

〈
p2

x

〉
= lim

N→∞

1

N

N−2∑

x=1

〈
r2x

〉
=

1

2
(Tl + Tr)

Theorem 3. For γ = 1 and any bounded function G : [0, 1] → R, we have

lim
N→∞

〈
1

N

N−1∑

x=1

G(x/N)ex

〉
=

∫ 1

0

G(q)T (q)dq

where T (q) = Tl + (Tr − Tl)q is the linear profile interpolating Tl and Tr.

Remarks:

• The case γ = 0 is exactly the case studied in [5], were the conductivity is
proven infinite because of the complete integrability of the bulk dynamics.

• The proof of the results exposed, like the existence and uniqueness of the
stationary state, are based on second moment estimates that are obtain-
able from the conservation properties of the bulk dynamics. If one could
prove some higher moment control, much stronger statement will follow,
like a law of large number version for the linear profile of temperature.

• In the case γ = 1, a non equilibrium hydrodynamic limit for this model is
proven in [1].
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Perturbation of equilibria: a hydrodynamic limit.

Benedek Valkó

(joint work with Bálint Tóth)

We present the results contained in [6]. We consider one-dimensional, locally
finite interacting particle systems with two conservation laws which under Eulerian
hydrodynamic limit lead to two-by-two systems of conservation laws:

{
∂tρ+ ∂xΨ(ρ, u) = 0
∂tu+ ∂xΦ(ρ, u) = 0,

with (ρ, u) ∈ D ⊂ R2, where D is a convex compact polygon in R2. This may be
showed by a standard application of Yau’s relative entropy method (see [8, 1, 4]
and [5]).

The system is typically strictly hyperbolic in the interior of D with possible
non-hyperbolic degeneracies on the boundary ∂D. We consider the case of iso-
lated singular (i.e. non hyperbolic) point on the interior of one of the edges of
D, call it (ρ0, u0) = (0, 0) and assume D ⊂ {ρ ≥ 0}. (This can be achieved by
a linear transformation of the conserved quantities.) We investigate the propaga-
tion of small nonequilibrium perturbations of the steady state of the microscopic
interacting particle system, corresponding to the densities (ρ0, u0) of the conserved
quantities.

We prove that for a very rich class of systems, under proper hydrodynamic
limit the propagation of these small perturbations are universally driven by the
two-by-two system {

∂tρ+ ∂x

(
ρu

)
= 0

∂tu+ ∂x

(
ρ+ γu2

)
= 0

where the parameter γ := 1
2Φuu(ρ0, u0) (with a proper choice of space and time

scale) is the only trace of the microscopic structure. The proof is valid for the
cases with γ > 1.

The proof relies on the relative entropy method and thus, it is valid only in
the regime of smooth solutions of the pde. But there are essential new elements:
in order to control the fluctuations of the terms with Poissonian (rather than
Gaussian) decay coming from the low density approximations we need to rely on
a fine interplay of probabilistic and pde methods. To be able to to control the
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large fluctuations of the asymptotically Poisson random variables, we need to use
a cutoff. It turns out that this is possible by the use of martingale techniques,
but only if the cutoff function is of very special form: it has to be a partial
derivative of a Lax entropy of the pde system in question. Thus we need to
construct a Lax entropy with specific properties for a given system which (in
theory) is a purely pde problem: it may be solved using straightforward (although
a bit lengthy) computations relying on the theory of hyperbolic pde’s (see [2, 3]).
It is very interesting though, that probability theory helps here as well: a suitable
transformation of the thermodynamic entropy of the original microscopic system
(in other words: the rate function of joint large deviations of the two conserved
quantities) provides the right Lax entropy. The fact, that our proof only works in
the γ ≥ 1 case, comes from this part: for γ < 1 our constructed cutoff function is
not powerful enough for the fluctuations of the Poisson tail. This can be explained
by the shape of the level lines of Riemann invariants for the limiting pde: these
are convex for γ < 1, linear for γ = 1 and concave for γ > 1. This change of
convexity causes a change of behavior from the pde point of view, in particular
the Lax-Chuey-Conley-Smoller maximum principle is only applicable for γ ≥ 1.

The presented results are complemented by that of [7] where it was shown that
perturbations around a hyperbolic equilibrium point are driven by two decoupled
Burgers-type equations.
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Vanishing viscosity term in hydrodynamic description of multispecies
driven particle systems with open boundaries

Vladislav Popkov

(joint work with Gunter M. Schütz)

We consider continuous time Markov processes describing many species particle
systems out of thermodynamic equilibrium, which have Bernoulli stationary mea-
sure. Two particular examples are:

I. Multilane generalization of the Asymmetric Exclusion process [1]. In this
model there are particles hopping along the M copies of one-dimensional finite
lattices. The hoppings between the lattices are excluded so that there are M
particle species each conserving separately.

II. Asymmetric exclusion process with two types of particles, see, e.g., [3]. There
is a one-dimensional finite lattice, occupied of particles of two different species
A,B, which exchange with nearest neighbours and the holes with predefined rates.
Here the number of species M = 2.

In both cases, one can prove that macroscopic shocks and rarefaction waves
arising in these systems due no nonlinearity, after Euler rescaling of space and time,
satisfy the same conditions of stability and existence as the system of hyperbolic
conservation law equations (without the right-hand side)

(1)
∂ρ

∂t
+
∂j(ρ)

∂x
= ε

∂

∂x
η(ρ,

∂ρ

∂x
), where ε→ 0

according to Lax criteria [8]. The proof is based on the analysis of the lo-
cal excitations evolution along the in the system within the Markov processes
Hamiltonian formalism [2], along the lines of [7], [4]. In (1) we have ρ (x, t) =(
ρ1 (x, t) , ρ2 (x, t) , ..., ρM (x, t)

)
, where ρQ (x, t) is a coarse-grained density of par-

ticles of specie Q as function of space and time, and j(ρ) is the macroscopic flux.
The particle system is coupled with boundary reservoirs of the fixed particle den-
sities, see [3], which in hydrodynamic limit become

(2) ρ (0, t) = ρ−; ρ (L, t) = ρ+;

In order to regularize solution of the (1) in presence of the boundaries, we have
added a vanishing viscosity term to the right-hand side of it. We are interested
in the large time evolution of the particle system and conservation law equations
of motion (1), when system reaches a steady state, and in the approach to the
steady state. The asymptotic in time evolution of the steady state is governed by
the motion of shocks and rarefaction waves, together with boundary layers defined
implicitly by the choice of the vanishing viscosity matrix in (1). Several questions
arise.

• Does the form of a viscosity term matter?
• How to choose the ”physical form” of viscosity term, which selects the

physical solution after the interaction with the boundary?
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• How to describe an interaction of shocks with the boundary for a given
viscosity matrix ?

• Which novel dynamical properties can the viscosity term choice in (1)
predict for the physical system with many particle species?

The form of viscosity matter does matter. It was demonstrated in [1] by
comparing numerical solution of the multilane ASEP model and corresponding
conservation law equation that the choice of the vanishing viscosity term is crucial.
E.g., a ”naive” choice of diagonal unit matrix

(3) ε
∂2ρ

∂x2

used widely in the literature, in the right-hand side of (1) leads to huge inconsis-
tencies, e.g., false phase transitions are predicted. At the same time the ”physical”
choice, to be discussed later, leads to perfect agreement between the particle model
and PDE evolution on Euler scale, as far as numerics can tell.

How to obtain the ”physical” viscosity term. Our heuristic approach
uses averaging, and then mean-field like treatment, of the exact operator equations
of motion for particle number operator in the Markov process, explained in [4] for
model II, and in [5],[1], for the model I. For example, for the model II it takes the
form

∂ρA

∂t
+

∂

∂x

(
jA(ρA, ρB)

)
= ε

∂

∂x

(
∂ρA

∂x
+

(
∂ρA

∂x
ρB − ∂ρB

∂x
ρA

))
(4)

∂ρB

∂t
+

∂

∂x

(
jB(ρA, ρB)

)
= ε

∂

∂x

(
∂ρB

∂x
+

(
∂ρB

∂x
ρA − ∂ρA

∂x
ρB

))
,

where jA(ρA, ρB) = ρA(1 − ρA + ρB), jB(ρA, ρB) = −ρB(1 − ρB + ρA).
Boundary eigenvalue equation
Let us determine under which conditions an infinitely small boundary layer at,

say, left boundary, will be stationary, for the model II (4). To do this, consider
the system of equations (4) on a half-axis [0,+∞) with a boundary condition

ρA(0, t) = ρA
−, ρB(0, t) = ρB

−.

We assume that (a) stationary solution has been reached (b) the density profiles are
constant with the densities rA, rB except in the ε−vicinity of the boundary, where
they decay exponentially : ρA(x)−rA ∼ exp (−λx/ε), ρB(x)−rB ∼ exp (−λx/ε).
(c) for all x,

∥∥ρA(x) − rA
∥∥ � 1 ,

∥∥ρB(x) − rB
∥∥ � 1. All our assumptions

can be justified microscopically for a shock wave which is glued to the bound-
ary. Demanding stationarity ∂ρA/∂t= ∂ρB/∂t = 0, we get from (4) integrating

once:jA(ρA(x), ρB(x)) = jA(rA, rB) + ε∂ρA

∂x +
(

∂ρA

∂x ρ
B − ∂ρB

∂x ρ
A
)
.The Taylor ex-

pansion of around the ρA
−, ρ

B
− gives in the first order approximation

(
∂jA

∂ρA

)
−
δρA +

(
∂jA

∂ρB

)
−
δρB = −λ

(
δρA + ρBδρA − ρAδρB

)
, where we denoted δρA = ρA(x) − rA,

δρB = ρB(x) − rB. Here and below the subscript ”−” denotes the substitution
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ρA, ρB → ρA
−, ρ

B
−. Doing the same procedure with the second equation in (4), we

obtain

(5) (Dj)−Ψ = λBΨ = λ

(
1 + ρB −ρA

−ρB 1 − ρA

)

−

Ψ; Ψ =

(
δρA

δρB

)

where (Dj) denotes the Jacobian of the flux (Dj)kl = ∂jk/∂ρl.

Note that the system of equations (4), after the substitutions ρ = 1 − ρA −
ρB , u = ρB − ρA, becomes Leroux system

∂ρ

∂t
+

∂

∂x
(ρu) = ε

∂2ρ

∂x2
;
∂u

∂t
+

∂

∂x

(
ρ+ u2

)

= ε
∂

∂x

(
∂u

∂x
+

(
u
∂ρ

∂x
− ρ

∂u

∂x

))
.

The boundary eigenvalue equation (5) for Leroux system will correspond-
ingly take the form

(6) (Dj)−
(
δρ

δu

)
= λB

(
δρ

δu

)
; B =

(
1 0
u 1 − ρ

)

−

Infinite reflections of shock waves from the boundaries. The eigenvalues
Ψ of the boundary eigenvalue equation (6) determine allowable infinitesimal shifts
δρA and δρB away from a fixed boundary values ρA

−, ρ
B
−. The argument can be

repeated for the right boundary, leading to the same equations (5 ) where the
substitutions ρA, ρB → ρA

+, ρ
B
+ now have to be made. On the other hand, we

have an equation for infinitesimal shocks coexistence (Dj)Φ= µΦ for the domain
away from the boundary layer region. The lines of characteristics defined by the
eigenvalues Φ, being different from the ”boundary” characteristics, defined by the
eigenvalues Ψ of (5), produce an effect of infinite (although converging) reflections
of a shock between the boundaries of the system, explained in details in [5], [3]
for the models I and II respectively. This phenomenon is generic for the many
particle species: in one-species case it never occurs.

The last remark is that with the usual choice of the viscosity term (3) to regu-
larize conservation law equations with the boundaries, the matrices B from (5),(6)
reduce to unit matrix B ≡I . In this case, no infinite shocks reflections will be
observed.
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[3] V. Popkov and G. M. Schütz, J. Stat. Mech. P12004 (2004)
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Equivalence of ensembles for two-component zero-range invariant
measures

Stefan Großkinsky

Consider a finite lattice ΛL of size L. We are interested in distributions of
particles on ΛL that arise naturally as stationary measures of interacting particle
systems. In this area of research systems with several species of conserved inter-
acting components are currently of particular interest [9]. Although our results
apply to more general situations, we fix ideas and consider a system with two
species of particles, where ηi(x) ∈ N = {0, 1, . . .} denotes the number of particles

of species i at site x. The state space of the process XL =
(
N2

)ΛL
is the set of all

configurations η =
(
η(x)

)
x∈ΛL

, where η(x) =
(
η1(x), η2(x)

)
.

Suppose that the process has a stationary weight wL ∈ M(XL) of product
form, that the dynamics conserves the number of particles Σi

L(η) ∈ N and that
these are the only conserved quantities. Due to the conservation laws there exists
a family of stationary measures for the process which are absolutely continuous
w.r.t. the weight wL with a density that depends only on the conserved quantities.
The set of all stationary measures is convex and the extremal measures are given
by choosing the density δΣ1

L
,N1

δΣ2
L

,N2
. This corresponds to fixing the number of

particles to N = (N1, N2), yielding the canonical ensemble

πL,N(η) :=
1

ZL,N

∏

x∈ΛL

w
(
η(x)

)
δΣ1

L
(η),N1

δΣ2
L
(η),N2

.(1)

The measures are well defined for each N ∈ N2 and concentrate on the finite set
XL,N ⊂ XL with (finite) normalization Z(L,N). By assumption the process is
irreducible on XL,N and the canonical measures are unique.

Choosing the density eµ1Σ
1
L eµ2Σ2

L with chemical potentials µ = (µ1, µ2) ∈ R2

gives rise to the grand-canonical (or tilted) measures

νL
µ
(η) =

1

z(µ)L

∏

x∈ΛL

w
(
η(x)

)
eµ·η(x) .(2)

In our case they are of product form and easier to analyze than the canoni-
cal measures, which can also be written πL,N = νL

µ

(
. |Σi

L = Ni, i = 1, 2
)

as
conditional measures. Note that the normalizing (site wise) partition function
z(µ) =

∑
k∈N2 w(k) eµ·k is in our case an infinite sum in contrast to models with

bounded local state space.
The thermodynamic relation R : Dµ → (0,∞)2 where Ri(µ) =

〈
ηi(x)

〉
ν1

µ

gives

the expected particle densities as a function of the chemical potentials. Dµ ⊂ Rn

is the maximal domain of R and Dρ = R
(
Dµ

)
the range. R is invertible and we

denote the inverse of R by M : Dρ → Dµ.
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The question if both ensembles are equivalent in the limit L → ∞ has been
studied in great generality so far, e.g. when the stationary weight is a translation
invariant Gibbs measure or only asymptotic decoupled [8] rather than a product
measure. However these results only cover the case of bounded local state space
or Dρ = (0,∞)2. We are interested in the case Dρ ( (0,∞)2, which characterizes
a condensation transition and arises naturally in the study of zero-range processes
(ZRP) [2, 4]. On the other hand these processes are generic realizations, since for
any sufficiently regular product weight wL there is a corresponding ZRP for which
it is stationary [3, 6].

Results

Using regularity properties of Dµ and log z(µ), such as convexity, we can show
the expected regularity of Dρ and that on the level of chemical potentials a con-
densation transition is characterized by ∂Dµ ∩ Dµ 6= ∅. In this case there exists
a continuous extension M̄ : (0,∞)2 → Dµ of the thermodynamic relation M(ρ)
which is given by the unique maximizer of the thermodynamic (specific) entropy

s(ρ) = sup
µ∈Dµ

(
ρ · µ − log z(µ)

)
.(3)

With this extension we can show the equivalence of ensembles even in the case of
condensation, using a technique for permutation invariant product measures [1].

Theorem. For every ρ ∈ [0,∞)2 the specific relative entropy vanishes,

lim
L→∞

1
L H

(
πL,[ρL]

∣∣ νL
M̄(ρ)

)
= 0 .(4)

Therefore the canonical distribution weakly converges to the product measure,

πL,[ρL]
w−→ νM̄(ρ) , for L→ ∞ ,(5)

for bounded cylinder test functions. The partition functions converge as

lim
L→∞

1
L logZ(L, [ρL]) = log z(M̄(ρ)) − ρ · M̄(ρ) = −s(ρ) .(6)

The proof requires only mild regularity assumptions on the weight w and the
statement allows for the following interpretation for large L: In the case ρ 6∈ Dρ

the system phase separates into a homogeneous background phase with density
ρc(ρ) = R(M̄(ρ)) ∈ ∂Dρ, and a condensate of vanishing volume fraction, contain-
ing the (ρ−ρc)L excess particles. There can be a condensed phase of only one or
both particle species. Under additional assumptions on the weight w we can show
that each of these condensed phases typically consists of a single lattice site for
large L, by showing a law of large numbers for the maximal occupation number
as in the single species case [7, 5]. In case of two condensates for both species, a
rigorous analysis of their relation remains an interesting open question.
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The kinetic limit of a system of coagulating Brownian particles

Alan M. Hammond

(joint work with Fraydoun Rezakhanlou)

Understanding the evolution in time of macroscopic quantities such as pressure
or temperature is a central task in non-equilibrium statistical mechanics. We study
this problem rigorously for a model of mass-bearing Brownian particles that are
prone to coagulate when they are close, where the macroscopic quantity in this
case is the density of particles of a given mass. Brownian motion arises in the
particles of a colloid, due to the random agitation of the much smaller molecules
that form the ambient environment. As such, our model could be considered
as one of a colloid, where the dominant interaction between particles is that of
coagulation. A theoretical discussion of coagulation in colloids was undertaken by
Smoluchowski in [4].

In the model that we consider, a large numberN of particles, each carrying some
integer-valued mass, are, at some initial time, scattered in Rd, whose dimension
d satisfies d ≥ 3 for the purposes of this paper. These particles then perform
Brownian motions. There is an N -dependent parameter ε that specifies the range
of interaction of any particle in the model: a pair of particles is liable to coagulate
(to form a new particle that combines the mass of the old two) when the distance
between the two is of order ε. The choice of ε as a function of N is dictated by
insisting that the so-called mean free path is bounded away from zero and infinity
in the limit N → ∞ of high particle number. (The mean free path is the mean
time until the first collision of a particle drawn uniformly at random at the initial
time. A scaling that produces a bounded mean free path is called a kinetic limit).
Our model incorporates a significant degree of physical realism, absent from earlier
work on this type of problem, in the sense that we permit the diffusion rate of the
particle to depend on its mass, including the case where this rate is taken to be
decreasing in the mass (it is physically reasonable to suppose that the diffusion
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rate of a Brownian particle is inversely proportional to the mass). As we will
later describe in precise terms, we also introduce a parameter into the mechanism
of reaction which allows us to study such reactions over a natural range of their
strengths.

We study the macroscopic evolution of this particle system by measuring the
density of particles of a given mass m in the vicinity of a macroscopic location x
and at some time t. We will prove that, when the initial number of particles is
chosen to be high, this density typically evolves as the solution of the Smoluchowski
system of PDE,

(1)
∂fn

∂t
(x, t) = d(n)∆fn(x, t) +Qn

1 (f)(x, t) −Qn
2 (f)(x, t) n = 1, 2, . . .

with initial data fn(·, 0) = hn(·), to be specified in more detail shortly. The first
term on the right-hand-side of (1) corresponds to the diffusion among particles of
mass n, with d(n) being one-half of the diffusion rate of such particles. The terms
in (1) corresponding to the interaction of pairs of particles are given by the gain
term

(2) Qn
1 (f)(x, t) =

n∑

m=1

β(m,n−m)fm(x, t)fn−m(x, t),

and the loss term

(3) Qn
2 (f) = 2fn(x, t)

∞∑

m=1

β(m,n)fm(x, t).

Here, the collection of constants β : N2 → (0,∞) quantify the macroscopic propen-
sity of mass at a pair of values to combine. As well as deriving the system (1) as the
typical macroscopic profile of our random model, we prove in this paper the precise
relation between the macroscopic constants β and the microscopic mechanism of
reaction.

We now give a precise definition of the microscopic process. We in fact define
a sequence of such models, indexed according to the initial number N of particles
in them. We define a range of interaction, ε, according to Nεd−2 = Z, where the
exact value of the positive constant Z will shortly be given. In defining the model,
the main elements to describe are the initial random choice of particle locations
and masses, the diffusive dynamics, and the mechanism for coagulation.

To describe each of these, we require notation for labelling the particles in this
time-dependent model. Let a countable set I of symbols be given. A configuration
q of particles is an Rd×N-valued function on a finite subset Iq of I . For any i ∈ Iq ,
q(i) may be written as (xi,mi). The particle labelled by i has massmi and location
xi. In practice, the index set Iq will be a function of time, with a change occurring
only at collision events, of which there are finitely many in any given sample of
one of the random models.

As for the dynamics of the process, the action on F of the infinitesmal generator
L is given by

(4) (LF )(q) = A0F (q) + ACF (q),
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where F : {Rd ×N}I → [0,∞) denotes a smooth function, its domain being given
the product topology. In (4), the diffusion operator A0 is given by

(5) A0F (q) =
∑

i∈Iq

d(mi)∆xi
F ,

while the collision operator AC is specified by

ACF (q) =
∑

i,j∈Iq

ε−2V
(xi − xj

ε

)
α(mi,mj)(6)

×
[

mi

mi +mj
F

(
S1

i,jq
)

+
mj

mi +mj
F

(
S2

i,jq
)
− F (q)

]
.

Here,

• the collection of constants α : N2 → [0,∞) are the parameters of strength
of interaction between pairs of particles of given integer mass, to which we
earlier alluded.

• the function V : Rd → [0,∞) is assumed to be continuous, of compact
support, and with

∫
Rd V (x)dx = 1. Its role is to include among the mod-

els we consider a rule for coagulation time that may be rather arbitrary,
beyond the insistence that it be Markovian and cause reaction of a pair of
particles at some time when this pair are to be found within an order of
the range of interaction ε.

• we denote by S1
i,jq that configuration formed from q by removing the

indices i and j from Iq , and adding a new index from I to which S1
i,jq

assigns the value (xi,mi +mj). The configuration S2
i,jq is defined in the

same way, except that it assigns the value (xj ,mi +mj) to the new index.
The specifics of the collision event then are that the new particle appears
in one of the locations of the two particles being removed, with the choice
being made randomly with weights proportional to the mass of the two
colliding particles.

The choice of the value of the constants α : N2 → [0,∞) transmits to the macro-
scopic reaction propensities appearing in the interaction terms (2) and (3) of the
Smoluchowski PDE. The recipe for determining β from α is as follows: there exists
a solution u = un,m : Rd → (0,∞) of the equation

(7) ∆un,m(x) =
α(n,m)

d(n) + d(m)
V (x)

[
1 + un,m(x)

]

that is unique subject to the decay condition un,m(x) = O(|x|2−d) as |x| → ∞.
The quantities β : N × N → (0,∞) in (1) are then specified by the formula

(8) β(n,m) = α(n,m)

∫

Rd

V (x)(1 + un,m(x))dx.

Our main result is conveniently expressed in terms of the empirical measures
on the locations of particles of a given mass. For each n ∈ N and t ∈ [0,∞), we
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write gn(dx, t) for the measure on Rd given by

gn(dx, t) = εd−2
∑

i∈Iq(t)

δxi(t)(dx)11
(
mi(t) = n

)
.

We also require a mild hypothesis on the diffusion coefficients d : N → (0,∞).
Namely, we suppose that there exists a function γ : N2 → (0,∞) such that α ≤ γ,
with γ satisfying

(9) n2γ
(
n1, n2 + n3

)
max

{
1,

[d(n2 + n3)

d(n2)

] 3d−2
2

,
[d(n2 + n3)

d(n2)

]2d−1}

≤
(
n2 + n3

)
γ(n1, n2).

In addition, we need some moderate hypotheses on the way in which the particles
are scattered at the initial time. See [2] for details. We now state our main result,
whose proof is also presented in [2].

Theorem 1. Let d ≥ 3. Let J : Rd × [0,∞) → R be a bounded and continuous
test function. Then, for each n ∈ N and t ∈ (0,∞),

(10) lim sup
N→∞

EN

∣∣∣∣
∫

Rd

J(x, n, t)
(
gn(dx, t) − fn(x, t)dx

)∣∣∣∣ = 0,

where we recall that ε is related to N by means of the formula Nεd−2 = Z, with
the constant Z ∈ (0,∞) being given by the expression Z =

∑
n∈N

∫
Rd hn. In (10),

{fn : Rd× [0,∞) → [0,∞), n ∈ N} denotes a weak solution to the system of partial
differential equations (1), with the collection of constants β : N2 → [0,∞) being
given by (8).
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Relative entropy in hyperbolic relaxation

Athanasios E. Tzavaras

Consider the system of hyperbolic equations with stiff relaxation terms

(1) ∂tU +
∑

α

∂αFα(U) =
1

ε
R(U) ,

where R,Fα : RN → RN , α = 1, . . . , d, are smooth, defining the evolution of a
state vector U(x, t) : Rd × R+ → RN . It is assumed that (1) is equipped with a
set of n conservation laws,

(2) ∂tPU +
∑

α

∂αPFα(U) = 0 ,

for the conserved quantities u = PU . Here, P : RN → Rn is a projection matrix
with rankP = n which determines the conserved quantities and annihilates the vec-
tor field R, that is PR(U) = 0. It is also assumed that the equilibrium solutions
of R(U) = 0 are parameterized in terms of the conserved quantities Ueq = M(u);
these functions will be called Maxwellians. Under the above framework it is con-
ceivable that the dynamics of u(x, t) : Rd×R+ → Rn in the hyperbolic limit ε→ 0
is described by the system of conservation laws

(3) ∂tu+
∑

α

∂αPFα(M(u)) = 0

Motivated by the structure of models in kinetic theory, it has been postulated in
[2] that relaxation systems (1) be equipped with a globally defined, convex entropy
H(U) satisfying

(4) ∂tH(U) +
∑

α

∂αQα(U) − 1

ε

∂H

∂U
(U) · R(U) = 0

with positive dissipation. This amounts to the conditions

(5)
∇2H∇Fα = (∇Fα)T∇2H , α = 1, . . . , d ,

∂H

∂U
(U) · R(U) ≤ 0 , ∀U ∈ RN .

Convex entropies play a stabilizing role in relaxation in accordance with kinetic
theory and thermodynamical considerations.

The objective of this work is to produce a relative entropy identity for general
relaxation systems. Our work is motivated by computations at the level of specific
relaxation systems [5] or kinetic BGK-system [1], and our aim is to extend in the
case of relaxation system a well-known computation [3, 4] for comparing a weak
solution and a smooth solution of a system of conservation laws. We note that
the usual convergence framework for relaxation limits proceeds through analysis
of the linearized (collision or relaxation) operator. By contrast, a relative entropy
identity provides a simple and direct convergence framework in the smooth regime.
The relative entropy computation hinges on entropy consistency, that is that the
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restriction of H−Q on Maxwellians induces an entropy - entropy flux pair for the
equilibrium system (3) in the form

(6) η(u) = H(M(u)) , q(u) = Q(M(u)) .

This structure is natural for models that have a thermodynamic origin, it is directly
motivated by the formal Hilbert expansion for the relaxation limit (1), and has an
interpretation in terms of the Gibbs principle.

In equilibrium statistical mechanics, the Gibbs principle states that equilib-
rium configurations achieve the maximum entropy under the existing constraints.
(In statistical mechanics the entropy is the negative of the quantity considered
here, and thus maxima become minima and accordingly production becomes dis-
sipation). It suggests to define the entropy of a subsystem by the minimization
procedure s(u) = minPU=uH(U). For H convex the resulting s is also con-
vex. Moreover the orthogonality condition ∂H

∂U (M(u)) ⊥ N(P), resulting from
the relaxation framework, induces that the minimizers satisfy s(u) = H(M(u)) =
minPU=uH(U).

Under such framework a relative entropy identity is computed, valid between
smooth solutions U of the relaxation system (1) and smooth solutions û of the
associated equilibrium dynamics (3). It has the form

∂tHr +
∑

α

∂αQα,r −
1

ε

(∂H
∂U

(U) − ∂H

∂U
(M(u))

)
·
(
R(U) −R(M(u))

)

= −
∑

α

∇2
uη(û)∂αû ∗

(
gα(u) − gα(û) −∇gα(û)(u− û)

)

−
∑

α

∇2
uη(û)∂αû ∗ P

(
Fα(U) − Fα(M(u))

)
(7)

where

Hr = H(U) −H(M(û)) − ∂H

∂U
(M(û)) · (U −M(û))

Qα,r = Qα(U) −Qα(M(û)) − ∂H

∂U
(M(û)) ·

(
Fα(U) − Fα(M(û))

)

are the relative entropy and associated fluxes respectively, while

gα(u) = PFα(M(u))

is the flux in (3).
The identity (7) yields convergence of (1) to (3) in the smooth regime provided

that the entropy dissipation of the relaxation system satisfies the hypothesis

(8) −
(∂H
∂U

(U) − ∂H

∂U
(M(u))

)
·
(
R(U) −R(M(u))

)
≥ ν|U −M(u)|2

and the entropy H is strictly convex (see [6] for the details). The hypothesis
(8) is fulfilled for many relaxation and discrete BGK systems. In the case of the
Boltzmann equation, the analog of (8) goes by the name Cercignani conjecture,
and its validity has been extensively investigated in [7].
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Linear transport equations with fast scales

Pierre-Emmanuel Jabin

(joint work with François James)

We investigate the case of models with a fast and a slow dynamics (which is
found in many physical modelling). This usually leads to a differential system of
the following kind

(1)
d

dt
Xε =

1

ε
a(Xε(t)) + b(Xε(t)), Xε(0) = x0.

The unknown function is Xε ∈ C1(R, Πn) (with Πn the torus in dimension n),
the parameter ε > 0 is very small and a and b are given by the problem but are
in general very regular (say at least Lipschitz continuous from Πn to Πn). More-
over the flow is often measure preserving (because the system is hamiltonian for
instance) and therefore a natural (though somewhat more demanding) condition
is that

(2) div a = 0.

When ε is very small, computing numerically (1) is very expansive (all the more
since n may be relatively large). The equation also typically exhibits many os-
cillations and it seems much more reasonable to try to find and solve a limiting
problem with, in some sense, averaged trajectories. On the other hand, it is well
known that Eq. (1) is equivalent to the following linear transport equation

∂tfε + b(x) · ∇xfε +
1

ε
a(x) · ∇xfε = 0,

fε(t = 0, x) = f0(x).
(3)

For instance if f0 is the indicatrix function of a set E, then fε(t, .) is the indicatrix
function of Et whereEt is the image of E through the flow defined by (1). Moreover
thanks to (2), all Lp norms of fε are preserved by (3). It is consequently very easy
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to pass to the limit in (3). Taking f 0 in L2(Πn), we first obtain that any weak
limit f of fε satisfies

(4) f ∈ K = {g ∈ L2(Πn) | a(x) · ∇xg = 0}.
Then there exists h in H−1([0, T ]×Πn) with (PK being the orthogonal projection
on K in L2)

∂tf + b(x) · ∇xf = h,

f(t = 0) = PKf
0,

(5)

and

(6) ∀φ ∈ K ∩H1([0, T ]× Πn),

∫
φ(t, x)h(t, x) dx dt = 0.

In some cases, one may prove that the function f is uniquely defined by (4), (5)
and (6). However this is not the case in general and in addition it is easy to find
simple counterexamples for which the weak limit of fε is not unique. For instance
take n = 3, b = (1, 0, 0) and a = (0, 1, x1 I0≤x1≤1 + (2 − x1)I1≤x1≤2). As the first
coordinate (x1) is invariant under the fast scale, we may work in R×Πn−1. Then
if the support of f0 lies in the set −1 < x1 < 0, we may easily compute that for
t > 3,

fε(t, x) = f0(x1 − t, x2 − t/ε, x3 − 1/ε).

Thus extracting subsequences εn such that 1/εn converges in the torus [0, 1],
we find as many limits. As a consequence, the main issue can be formulated
as whether, among all possible limits, one makes more sense (from a physical
or mathematical point of view). We investigate this in a simplified situation
containing the previous example, described below. First take b = (1, 0, . . . , 0),
a = (a1(x), . . . , an(x)) with a1 = 0. Then for each value of x1 (or almost each
value to avoid the singular cases), we may define a kernel Kx1 by

Kx1 = {g ∈ L2(Πn−1 | a(x1, x
′) · ∇x′g = 0}.

Assuming that Kx1 is piecewise constant (not a, see the example above), the
structure of all possible limits is explicit (the right hand side h being a sum of
Dirac masses in x1 supported at the points where Kx1 changes). And it is also
possible to define and select the “right” limit.

Reporter: Benedek Valkó
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