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Introduction by the Organisers

The conference was organized by Randolph E. Bank, UCSD, La Jolla, Wolfgang
Hackbusch, MPI Leipzig, and Gabriel Wittum, University of Heidelberg. This was
the fourth one in a series of conferences on fast solvers held at Oberwolfach since
1999. The idea of these workshops is to bring together experts from the different
thriving areas of solvers and offer a platform for scientific exchange and progress.
The field of solvers for the algebraic systems arising from the discretization of par-
tial differential equations has developed to a major area of numerical mathematics
and scientific computing. Solvers are an essential part of simulation codes for
problems from science and technology, in many cases determining the complexity
of the whole simulation. By virtue of that, the choice of the solver can decide on
the realiability of a simulation and if it can be done at all. Thus, solvers are a
substantial mathematical component of most simulation tools and a major con-
tribution of mathematics to quite a lot of applied disciplines. This has increased
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the interest in mathematics of colleagues from the applied sciencies over the last
decade substantially.
Major areas of solvers represented at the workshop are: Multigrid methods, H-
matrices, domain decomposition methods, and conjugate gradient methods. Of-
ten these methods are combined, e.g. multigrid is mostly used as a preconditioner
nowadays. Besides that, several talks were given on other aspects of solving partial
differential equations, such as discretization schemes and the algebraic properties
of the resulting stiffness matrices, overall solution strategies, and application ar-
eas where solving plays a crucial rôle. A total of 27 presentations gave a nice
overview over the current research, open problems and new developments. Intense
discussions provided the opportunity to go into details of novel algorithms and
approaches.
In multigrid methods, a lot of research is going in the direction of developing robust
methods for special applications. This is a challenging topic requiring mathemat-
ical expertise as well as understanding of the model and the application process
itself. Another major topic is Algebraic Multigrid. AMG methods are already
wide spread in several applied communities. However, a lot of open problems re-
mains and the final algorithm is not yet in sight. Several talks also were related to
performance issues of multigrid on certain computer architectures such as super
scalar or parallel computers. Multigrid research is thriving more than ever.
A whole bunch of talks were about domain decomposition methods. These meth-
ods are of particular interest for multiphysics problems and parallelization issues.
Several new developments have been reported and discussed, giving interesting
future perspectives. Often techiques from domain decomposition analysis can be
used to analyze other methods e.g. multigrid. A novel technique useful together
with domain decomposition and multigrid, but can also stand on its own, are
hierarchical matrices (H-matrices). Here, several talks have shown the impres-
sive level of development these methods already have since their introduction in
1998. Further talks have discussed solver techniques for application problems e.g.
low Mach-number flow or electromagnetics. as well as other problem areas like
optimization. Moreover, talks about novel techniques like meshless methods and
several other solver techniques have been given.
In total, the workshop was very successful in bringing together international-level
experts from different areas and disciplines. Meanwhile, the Oberwolfach work-
shop on Schnelle Löser für partielle Differentialgleichungen is established as major
event in the solver community and a mainstay for novel developments.
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Abstracts

Analysis of a finite PML approximation to a Maxwell’s scattering
problem

J.H. Bramble

(joint work with J.E. Pasciak)

We consider the frequency domain Maxwell scattering problem

(1)

− ∇× ∇× E + k2E = 0 in Ωc,

n × E = n × g on ∂Ω,

lim
ρ→∞

ρ((∇×E) × x̂ − ikE) = 0.

Here Ω is a bounded domain in R3, ρ = |x|, and x̂ = x/ρ. In this talk, we will
consider approximations to (1) using a truncated domain perfectly matched layer
(PML).

Recently, there has been intensive computational and theoretical research to-
ward understanding the properties of PML approximations. The research into
the computational aspects of these methods is the subject of many papers in the
engineering literature and we shall not attempt to discuss them here. The original
PML method was suggested by Bérenger in [2] and [1]. The observation that a
PML method could be considered as a complex change of variable was made by
Chew and Weedon [4]. Using this technique, Collino and Monk [5] derived PML
equations based on rectangular and polar coordinates. There, they also showed
the existence and uniqueness of solutions of the truncated acoustic PML except
for a countable number of wave numbers. The formulation of PML equations for
(1) in spherical coordinates can be found in [8]. Lassas and Sommersalo [6] proved
the existence and uniqueness of the PML acoustic approximation on a truncated
domain where the outer boundary was circular. In a later paper [7], they extended
these results to smooth convex domains in Rn.

To date, there has been relatively little analysis of the truncated electromagnetic
PML equations. In this talk we describe a new analytical approach the study of
the electromagnetic PML equation.

Following [6], we use a transitional layer based on spherical geometry which
results in a constant coefficient problem outside the transition. As discussed in
[4, 5], the PML problem can be viewed as a complex coordinate transformation.
Given σ0, r1, and r2, with Ω contained in the ball of radius r1 and r1 < r2, we
start with a function σ̃ ∈ C2(R+) satisfying

σ̃(ρ) = 0 for 0 ≤ ρ ≤ r1,

σ̃(ρ) = σ0 for ρ ≥ r2,

σ̃(ρ) increasing for ρ ∈ (r1, r2).



1304 Oberwolfach Report 24/2005

Following [8], we define

ρ̃ = ρ(1 + iσ̃) ≡ ρd̃

The PML solution is developed as follows. Away from the scatterer, the solution
of (1) can be expanded in a series of Hankel functions, i.e.,

E =

∞∑

n=1

n∑

m=−n

an,mh
1
n(kρ)Y m

n (θ, φ),

for ρ ≥ r1.

Here h1
n(r) are spherical Bessel functions of the third kind (Hankel functions) and

Y m
n are spherical harmonics (see, e.g., [8] for details). The (infinite domain) PML

solution is defined by

Ẽ =





E(x) for |x| ≤ r1,
∞∑

n=1

n∑

m=−n

an,mh
1
n(kρ̃)Y m

n (θ, φ),

for ρ = |x| ≥ r1.

By construction Ẽ and E coincide on Ω1. Furthermore, the complex shift in the

argument of h1
n above guarantees exponential decay of Ẽ.

It turns out that Ẽ satisfies Maxwell’s equations using the spherical coordinates
(ρ̃, θ, φ) [8]. More precisely,

(2)

− ∇̃ × ∇̃ × Ẽ + k2Ẽ = 0 in Ωc,

n × Ẽ = n × g on ∂Ω,

Ẽ bounded at ∞.

For Ẽ expanded in spherical coordinates,

Ẽ = Ẽρeρ + Ẽθeθ + Ẽφeφ,

we have

∇̃ × Ẽ =
1

ρ̃ sin θ

(
∂

∂θ
(sin θ Ẽφ) − ∂Ẽθ

∂φ

)
eρ

+
1

ρ̃

(
1

sin θ

∂Ẽρ

∂φ
− ∂

∂ρ̃
(ρ̃Ẽφ)

)
eθ

+
1

ρ̃

(
∂(ρ̃Ẽθ)

∂ρ̃
− ∂Ẽρ

∂θ

)
eφ.

Since the solution of (2) coincides with that of (1) on Ω1 while rapidly decaying
as ρ tends to infinity, it is natural to truncate to a finite computational domain
Ω∞ and impose a convenient boundary condition on the outer boundary of Ω∞
(which we denote by Γ∞). The truncated domain need only have a minimally
smooth outer boundary (e.g., Lipschitz continuous).
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We consider the truncated PML problem involving a vector function Ẽt defined
on Ω∞ and satisfying

(3)

− ∇̃ × ∇̃ × Ẽt + k2Ẽt = 0 in Ω∞,

n × Ẽt = n × g on ∂Ω,

n × Ẽt = 0 on Γ∞.

The existence and uniqueness of solutions to the truncated PML problem (3)
will be shown provided that the truncated domain is sufficiently large, e.g., contains
a sphere of radius Rt. Specifically, we keep the PML transition layer fixed while
increasing the size computational domain.

To show uniqueness we consider a weak problem which is related to (3), specif-
ically, we consider Θ ∈ H0(curl)(Ω∞) satisfying

(4)
− (µ−1

∇× Θ,∇×Ψ)Ωc

+ k2(µΘ,Ψ) = 0

for all Ψ ∈ H0(curl)(Ω∞). We prove the following theorem.

Theorem 0.1. For Rt sufficiently large, the only solution Θ ∈ H0(curl)(Ω∞)
satisfying (4) is Θ = 0.

The existence of solutions is not a simple matter even when uniqueness has been
verified. To show the existence of solutions of (3), we consider a related div-curl
formulation. This involves setting up a variational formulation for a pair of vectors
(e,h) satisfying two connected div-curl systems. This is a weak formulation where
e and h are sought in L2(Ω∞) and are tested against functions in various vector
and scalar subspaces of H1(Ω∞) similar to the approach of [3]. This approach
allows us to prove the following two theorems:

Theorem 0.2. Let g admit an H(curl; Ω∞)-extension ĝ supported in Ω1 (the ball
of radius r1 minus Ω). Then for Rt sufficiently large, the truncated PML problem

(3) has a unique solution Ẽt.

Theorem 0.3. Let Ẽ be the solution of (2) and Ẽt be the solution of (3). For Rt

sufficiently large,

‖Ẽt − Ẽ‖L2(Ω3) ≤ Ce−2σ0kRt‖ĝ‖H(curl;Ω1).

Here Ω3 is a ball of radius r3 minus Ω for any fixed r3 (Ω3 can include the transition
region, i.e., r3 > r2).

References

[1] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J.
Comput. Phys., 114(2):185–200, 1994.

[2] J.-P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromag-
netic waves. J. Comput. Phys., 127(2):363–379, 1996.

[3] J. H. Bramble, T. V. Kolev, and J. E. Pasciak. A least-squares method for the time-harmonic
Maxwell equations. 2003. preprint.



1306 Oberwolfach Report 24/2005

[4] W. Chew and W. Weedon. A 3d perfectly matched medium for modified Maxwell’s equations
with streched coordinates. Microwave Opt. Techno. Lett., 13(7):599–604, 1994.

[5] F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J.
Sci. Comp., 19(6):2061–2090, 1998.

[6] M. Lassas and E. Somersalo. On the existence and convergence of the solution of PML
equations. Computing, 60(3):229–241, 1998.

[7] M. Lassas and E. Somersalo. Analysis of the PML equations in general convex geometry.
Proc. Roy. Soc. Edinburgh Sect. A, 131(5):1183–1207, 2001.

[8] P. Monk. Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and
Scientific Computation. Oxford University Press, Oxford, UK, 2003.

Optimality of a standard adaptive finite element method

Rob Stevenson

Adaptive finite element methods for solving elliptic boundary value problems have
the potential to produce a sequence of approximations to the solution that con-
verges with a rate that is optimal in view of the polynomial order that is applied,
also in the, common, situation that finite element approximations with respect
to uniformly refined partitions exhibit a reduced rate due to a lacking (Sobolev)
regularity of the solution. The basic idea of an adaptive finite element method is,
given some finite element approximation, to create a refined partition by subdivid-
ing those elements where local error estimators indicate that the error is large, and
then, on this refined partition, to compute the next approximation, after which
the process can be repeated. Although, because of their success in practice, during
the last 25 years the use of these adaptive methods became more and more widely
spread, apart from results in the one-dimensional case by Babuška and Vogelius
([1]), their convergence was not shown before the work by Dörfler ([6]), that was
later extended by Morin, Nochetto and Siebert ([7]).

Although these results meant a break through in the theoretical understanding
of adaptive methods, they do not tell anything about the rate of convergence, and
so, in particular, they do not show that adaptive methods are more effective than,
or even competitive with non-adaptive ones in the situation that the solution has
a lacking regularity.

Recently, in [2], Binev, Dahmen and DeVore developed an adaptive finite el-
ement method which they showed to be of optimal computational complexity.
Whenever for some s > 0, the solution is in the approximation class As, meaning
that there exists a sequence of partitions of the domain into n elements such that
the best finite element approximation with respect to this partition has an error
in energy norm of order n−s, then the adaptive method produces a sequence of
approximations that converge with the same rate, where, moreover, the cost of
computing such an approximation is of the order of the number of elements in
the underlying partition. A combination of the (near) characterization of As in
terms of Besov spaces from [3], and Besov regularity theorems from [5, 4], indicate
that under very mild conditions the value of s is indeed only restricted by the
polynomial order. An additional condition was required on the right-hand side,
the discussion of which we postpone to the end of this abstract.
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The key to obtain the optimal computational complexity result was the addition
of a so-called coarsening or derefinement routine to the method from [7], that
has to be applied after each fixed number of iterations, as well as, in view of
the cost, to replace the exact Galerkin solvers by inexact ones. Thanks to the
linear convergence of the method from [7], and the fact that after this coarsening,
the underlying partition can be shown to have, up to some constant factor, the
smallest possible cardinality in relation to the current error, optimal computational
complexity could be shown.

The result of [2] is of great theoretical importance, but the adaptive method
seems not very practical. The implementation of the coarsening procedure is not
trivial, whereas, moreover, numerical results indicate that coarsening is not needed
for obtaining an optimal method. In this talk, we will present a proof of this fact
(see [8]). We construct an adaptive finite element method, that, except that we
solve the Galerkin systems inexactly, is very similar to the one from [7], and show
that it has optimal computational complexity.

As in [2, 7], we restrict ourselves to the model case of the Poisson equation
in two space dimensions, linear finite elements, and partitions that are created
by newest vertex bisection. Our results, however, rely on three ingredients only,
two dealing with residual based a posteriori error estimators, and one dealing
with bounding the number of bisections needed to find the smallest conforming
refinement of a partition. The two results on a posteriori error estimators extend to
more general second order elliptic differential operators, to more space dimensions,
and to higher order finite elements. It can be expected that also the result about
newest vertex bisection extends to more space dimensions, which, however, has to
be investigated.

To solve a boundary value problem on a computer, it is indispensable to be able
to approximate the right-hand side by some finite representation within a given
tolerance. As (implicitly) in [7, 2], we use piecewise constant approximations, but,
in particular for higher order elements, by a modification of the adaptive refinement
routine, piecewise polynomial approximations of higher order can be applied as
well. Our aforementioned result concerning optimal computational complexity
is valid only under the additional assumption that if the solution u ∈ As, then
for any n we know how to approximate the right-hand side f by a piecewise
constant function with respect to a partition of n elements such that the error
in the dual norm is of order n−s. For s ∈ (0, 1

2 ], which is the relevant range for
piecewise linear elements, we conjecture that if u ∈ As, then such approximations
for the corresponding right-hand side exist, which, however, is something different
than knowing how to construct them. For f ∈ L2(Ω), however, the additional
assumption is always satisfied, where for constructing the approximations of the
right-hand side we may even rely on uniform refinements.

The adaptive methods from [7, 2] apply only to f ∈ L2(Ω). Our additional
assumption on the right-hand side is weaker than that of [2], but for f ∈ H−1(Ω)
not in L2(Ω), it has to be verified for the right-hand side at hand.
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Algebraic Multigrid in an Application

Gundolf Haase

(joint work with Michael Kuhn, Stefan Reitzinger, Carsten Wolters)

Solving huge systems of equations requires an optimal solver, i.e., the memory
requirements and the time for solving should be proportional to the number of un-
knowns. Recent research has enhanced multigrid methods and algebraic multigrid
methods (AMG) which are now fulfilling these requirements for many problem
classes, i.e., solving the potential problem occurring in an inverse source recon-
struction problem from medicine.

Although AMG possesses the above optimal properties a commercial user could
be dissatisfied of the computational performance in comparison to highly opti-
mized standard solvers. A lot of performance can be gained by designing data
structures with respect to state-of-the-art computer architectures, parallelization
and redesign of numerical algorithms.

The parallelization needs some modifications in the coarsening process accord-
ing to the pattern condition formulated in [2] such that the inter grid transfer
operators fulfill a certain condition on the pattern of the interpolation/restriction.
This guarantees that the parallel AMG is only a simple modification of the sequen-
tial AMG. The presented parallelization strategy for AMG results in very good
speedups.

Discretized differential equations have to be solved several thousand times inside
the solution process of an inverse problem. We got for this special application
of AMG a significant gain in CPU time (factor 4 and more) due to additional
acceleration of our code PEBBLES by simultaneous handling of several data sets,
cache aware programming and by merging of multigrid subroutines [1]. Together
with a parallelization, the solution time of the original reconstruction problem was
accelerated from 8 days to 5 hours on a 12 processor parallel computer [3].
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Using the lead field basis approach to calculate the influence matrix for MEG [4]
accelerates the inverse problem solving dramatically with the costs of storing a
large matrix for the lead field basis. The rows of this matrix can be stored in
parallel in the same way as parallel vectors in the parallelization of AMG [2]. This
allows a parallelization of the inverse problem solver by routines from a toolbox.
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Adjoint methods are particle methods: Implications for
Eulerian-Lagrangian modeling of multiphase multicomponent

transport

Thomas F. Russell

(joint work with Bjørn-Ove Heimsund, Helge K. Dahle, Magne S. Espedal)

Advection-dominated problems are notoriously difficult to solve numerically be-
cause of trade-offs between numerical diffusion and non-physical oscillations. With
standard Eulerian methods, these trade-offs can often be avoided only by using
impractically fine grids and small time steps. The Eulerian-Lagrangian localized
adjoint method (ELLAM) [CRHE] is an efficient method originally developed for
linear advection-diffusion equations. By treating advection in a Lagrangian man-
ner via operator splitting, it has no CFL restrictions on the time step and it
reduces the non-symmetry of the advection-diffusion operator. This enables accu-
rate computations with coarser grids and larger time steps than Eulerian methods
typically permit. ELLAM can be viewed as an extension of the modified method
of characteristics (MMOC) [DR] that is fully mass-conservative and handles all
types of boundary conditions rigorously. See [RC] and the references therein for
more information.

ELLAM is often used for simulating flows in porous media, and in many types
of reservoir flows strong non-linear flux functions are found, a prominent example
being the Buckley-Leverett equation for two-phase immiscible flow. Problems with
non-linear fluxes are computationally demanding, and efficient methods are nec-
essary for handling large-scale cases. Work on extending ELLAM to the Buckley-
Leverett equation [DER] has used particular splittings of the flux function [EE] in
order to handle nonlinear features. It has not been clear how to extend ELLAM
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to nonlinear systems of advection-dominated PDEs, such as those that describe
multiphase multicomponent transport.

In this talk [RHDE] we make a key observation that shows the way toward exten-
sions of adjoint-based Eulerian-Lagrangian methods, including ELLAM, to com-
plex nonlinear systems. MMOC and related schemes introduce their Lagrangian
discretization by a direct approximation of the advective part of the primal differ-
ential operator, where a common physical interpretation is in terms of propagation
of waves. ELLAM works in a dual framework and demands that space-time test
functions satisfy an adjoint equation that incorporates the Lagrangian velocity.
The key insight is that this adjoint operator has a natural physical interpretation
in terms of propagation of particles or masses, and that this velocity is a particle
velocity.

The primal system exhibits the usual difficulties of nonlinear hyperbolic con-
servation laws: crossing of characteristic curves, formation of shocks, questions of
well-posedness. The dual system is different: unlike primal waves that can break,
dual masses do not disappear, and trailing particles do not overtake leading ones.
Mathematically, this is reflected in the fact that the adjoint equation is linear, with
its complexities embedded in the nonlinear dependence of its coefficients on the
solution of the primal problem. Its space-time characteristics cannot cross, though
their directions can change discontinuously when a primal-dependent coefficient
experiences a jump, causing a discontinuous change in particle velocity.

The dual adjoint formulation is generalizable to complex transport systems, be-
cause such systems can always be viewed as propagating mass particles. In multi-
phase flows, these particles propagate in phases; each phase will have an adjoint
equation and associated test function, and the overall formulation will superpose
the phases. The dual space is the natural framework for a particle-based formula-
tion that always makes sense physically; this will enable ELLAM to be extended
to complex flows, whereas the applicability of MMOC-like schemes has been re-
stricted.

This talk presents the adjoint formulation, closely related to the original linear
ELLAM schemes. The approach does not involve any splitting of nonlinear flux
functions. It is developed in detail for a scalar multidimensional equation, includ-
ing the relationship between the primal and dual formulations. These concepts
are illustrated in some examples, focusing on the interaction between the primal
waves and the particle motion. Next, an algorithm for the solution of general hy-
perbolic 1D equations is outlined, and results are presented for the Burgers and the
Buckley-Leverett equations, as well as solutions of a 2D Buckley-Leverett equation
using the 1D algorithm on streamlines. Finally, the formulation for compositional
petroleum reservoir simulation is outlined, involving multiphase multicomponent
flow and transport.
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A Cache oblivious adaptive parallel Multilevel Implementation of the
Finite Element Method using Space filling Curves

Christoph Zenger

(joint work with Michael Bader)

Implementations of the adaptive Finite Element Method usually use vectors, tree
or haching to access data. In all cases during the process of the computation
the data are accessed in a nonlocal highly irregular way. As a consequence the
jumps in the address space produce cache misses slowing down the execution of
the program considerably. This problem gets more and more severe for modern
computer architectures because processer speed grows much faster then the speed
with which data are read from memory. In this paper we describe an implemen-
tation of an adaptive finite element scheme which is based on a fixed number of
stacks. The data needed in the course of the computation are always read from
top of one of the stacks and are later pushed to another stack for later use. The
grid is based on a space tree and allows local refinement restricted by some mild
conditions assuring compatibility. As a further advantage the memory overhead
for the description of the geometry of the underlying domain and for the the re-
finement structure is very small (only a few bits per degree of freedom). Not all
space filling curves are suitable for this approach. An implementation based on
the Peano curve is published in [GMPZ1, GMPZ2] for two and three dimensions.
In this talk we discuss an implementation based on the Sierpinski curve in two
dimensions which uses only four stacks. The three dimensional analogue is under
construction.
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Heterogeneous Domain Decomposition Methods for Coupled
Darcy/Stokes Flow Problems

Ronald H.W. Hoppe

(joint work with Paulo Porta, Yuri Vassilevski)

In this contribution, we consider heterogeneous domain decomposition methods
for coupled surface/subsurface flow problems

− ∇ ·T(u1, p1) = f1 in Ω1 ,(1a)

∇ · u1 = 0 in Ω1 ,(1b)

u1 = uD
1 on ΓD

1 ,(1c)

n1 ·T(u1, p1) = h1 on ΓN
1 ,(1d)

∇ · q = f2 in Ω2 ,(2a)

ϕ = ϕD on ΓD
2 ,(2b)

n2 · q = h2 on ΓN
2 .(2c)

Here, the equations (1a)-(1d) describe the stationary Stokes flow in the subdomain
Ω1 in terms of the velocity u1 and the pressure p1 with T(u1, p1) being the stress
tensor. The equations (2a)-(2c) stand for the Darcy flow in the subdomain Ω2

with q denoting the specific discharge vector that is related to the piezometric
head ϕ and the velocity vector u2 by Darcy’s law εu2 = q = − K ∇ϕ, where ε
is the porosity and K refers to the hydraulic conductivity tensor.
We first address the issue of mathematical modeling of coupled Darcy and Stokes
flow problems with emphasis on the transmission conditions at the interface Γ
between the two domains governed by the surface and the subsurface flows, re-
spectively:

n1 · u1 + n2 · u2 = 0 ,(3a)
(
n1 · T(u1, p1)

)
· n1 = gϕ ,(3b)

(
n1 ·T(u1, p1)

)
· τ i =

α

2
√

(τ i · κ) · τ i

(u1 − u2) · τ i , 1 ≤ i ≤ 2 .(3c)

Equation (3a) states the continuity of the fluxes, whereas (3b),(3c) represent the
continuity of the normal and tangential components of the normal stresses where
g in (3b) stands for the gravitation acceleration modulus. In particular, (3c) is
known as the Beavers-Joseph-Saffman condition [3] where κ is the symmetric
permeability tensor and the nonnegative constant α is the slip coefficient.
We consider three solution techniques based on the variational formulation of
the coupled problem and finite element discretizations with respect to simplicial
triangulations of the computational domain:
The first one, which has been originally suggested by Discacciati and Quarteroni
[1, 2], is an iterative substructuring approach involving a Neumann-Dirichlet type
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iteration that requires α = 0 in the Beavers-Joseph-Saffman transmission condition
so that (3c) can be treated as an additional boundary condition. In particular,
the ND-iteration requires the successive solution of a Neumann problem for the
Darcy equation on Ω2 and a Dirichlet problem for the Stokes system on Ω1. In
terms of associated Steklov-Poincaré operators S1 and S2, it can be interpreted
and analyzed as a preconditioned Richardson iteration

(4) λk+1 = λk + θ S−1
1

(
η − (S1 + S2) λ

k
)
, k ≥ 0 .

Here, λk ∈ Ĥ
1/2
00 (Γ), which is the subspace of functions in H

1/2
00 (Γ) with vanishing

integral mean, and 0 < θ < 1 is an under-relaxation parameter. However, a
detailed analysis shows that the applicability of the ND-iteration is limited to
porous media with high conductivity, whereas it is not competitive for other types
of porous media.
Therefore, in such cases we suggest a direct method which is based on the recovery
of the discrete Neumann-Dirichlet iteration operator. Since the direct method in
its original form is computationally costly, we focus on its practical realization
by using some sort of aggregated finite element spaces by aggregation of basis
functions associated with the nodal points of the triangulation of the interface.
Finally, it is possible to reduce the problem to one stated on the interface between
the surface and the subsurface regime. This can be done either by relying on
the continuity of the fluxes or on the continuity of the normal stresses. The first
approach requires some compatibility condition which again severely limits its
practical applicability. Such a compatibility condition, however, is not required
for the second approach which also allows the interpretation as a preconditioned
Richardson iteration, but with a somewhat reversed role of the Poincaré-Steklov
operators

(5) φk+1
Γ = φk

Γ + θ S−1
2

(
f2 − (S2 +MλQΓC

−1QT
ΓMφ) φk

Γ

)
, k ≥ 0 .

Here, C−1 stands for the solution of a Stokes problem on Ω1. The FE discretized
Stokes and Darcy problems are numerically solved by GMRES and PCG, respec-
tively, whereas GMRES is also used for the interface equation to be solved in the
realization of (5).
Numerical results for a benchmark problem illustrate the performance of the dif-
ferent approaches. As a somewhat realistic scenario, we study the simulation of
the confluence of the rivers Wertach and Lech close to the city of Augsburg.
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Analysis of a Domain Decomposition Algorithm

Randolph E. Bank

In [4, 5], we introduced a general approach to parallel adaptive meshing for systems
of elliptic partial differential equations. This approach was motivated by the desire
to keep communications costs low, and to allow sequential adaptive software (such
as the software package pltmg [1] used in this work) to be employed without
extensive recoding.

The original paradigm has three main components:

Step I: Load Balancing. We solve a small problem on a coarse mesh,
and use a posteriori error estimates to partition the mesh. Each subregion
has approximately the same error, although subregions may vary consid-
erably in terms of numbers of elements or gridpoints.
Step II: Adaptive Meshing. Each processor is provided the complete
coarse mesh and instructed to sequentially solve the entire problem, with
the stipulation that its adaptive refinement should be limited largely to
its own partition. The target number of elements and grid points for each
problem is the same. At the end of this step, the mesh is regularized such
that the global mesh described in Step III is conforming.
Step III: Global Solve. The final global mesh consists of the union
of the refined partitions provided by each processor. A final solution is
computed using domain decomposition.

With this paradigm, the load balancing problem is reduced to the numerical solu-
tion of a small elliptic problem on a single processor, using a sequential adaptive
solver such as pltmg, without requiring any modifications to the sequential solver.
The bulk of the calculation in the adaptive meshing step also takes place indepen-
dently on each processor and can also be performed with a sequential solver with
no modifications necessary for communication.

In [2], we considered a variant of the above approach in which the load balanc-
ing occurs on a much finer mesh. The motivation was to address some possible
problems arising from the use of a coarse grid in computing the load balance. This
variant also has three main components.

Step I: Load Balancing. On a single processor we adaptively create a
fine mesh of size Np, and use a posteriori error estimates to partition the
mesh such that each subregion has approximately equal error, similar to
Step I of the original paradigm.
Step II: Adaptive Meshing. Each processor is provided the complete
adaptive mesh and instructed to sequentially solve the entire problem.
However, in this case each processor should adaptively coarsen regions
corresponding to other processors, and adaptively refine its own subregion.
The size of the problem on each processor remains Np, but this adaptive
rezoning strategy concentrates the degrees of freedom in the processor’s
subregion. At the end of this step, the mesh is regularized such that the
global mesh is conforming.
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Step III: Global Solve. This step is the same as in the original para-
digm.

Using the variant, the initial mesh can be of any size. Indeed, our choice of Np

is mainly for convenience and to simplify notation; any combination of coarsening
and refinement could be allowed in Step II. Allowing the mesh in Step I to be finer
increases the cost of both the solution and the load balance in Step I, but it allows
flexibility in overcoming potential deficiencies of a very coarse mesh in the original
paradigm. See [4, 5, 6] for numerical examples of the original paradigm and [2, 3]
for examples comparing the original and variant paradigms.

Although both the original paradigm and the variant use the same domain
decomposition solver in Step III, the variant algorithm produced some unforeseen
consequences. In particular, in the pltmg package, in Step II of the paradigm,
edges lying on the interface system can be refined as necessary. Vertices added
during refinement steps can be deleted during coarsening steps, but the original
vertices defining the interface system must remain in the mesh during Steps II
and III of either paradigm. This restriction insures that the subdomains remain
geometrically conforming across all processors, and also plays an important role
in the mesh regularization algorithm applied at the end of Step II.

This point is of little consequence for the original paradigm because it is based
mainly on refinement. However, it is quite significant for the variant. Indeed, for
the variant, coarsening is limited to the interiors of subdomains corresponding to
other processors, while the parts of the interface system lying in the coarse parts of
the domain remain largely unchanged. Thus in the domain decomposition solver
the local problem has an unusual structure, in that it is highly refined on its own
subdomain and its part of the interface system, it is very coarse in the interior of
other subregions, and it has the original level of refinement on the coarse parts of
the interface system.

Interestingly, and perhaps obvious with hindsight, this unusual structure signif-
icantly improved the already very good convergence rate of the domain decompo-
sition solver. In particular, for many problems, the observed rate of convergence
appears to be independent of both the global problem size N and the number of
processors p, while the solver applied to meshes generated using the original par-
adigm (thus with less refined interface systems in the coarse region) had conver-
gence rates that were independent of N but (empirically) exhibited a logarithmic
dependence on p.

The purpose of this work is to analyze the domain decomposition solver in the
environment provided by the variant paradigm. For an idealized version of the
algorithm we are indeed able to show that the rate of convergence is independent
of both N and p. Our analysis here is interesting for several reasons. First, the
overall iteration does not have a symmetric error propagator, even in the case where
the underlying continuous problem and its conforming finite element discretization
are self-adjoint and positive definite. Thus we do not take an approach based on
estimating generalized condition numbers, but rather make direct norm estimates
for the error reduction. Second, while the approximate solution of the global
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problem belongs to a usual, globally conforming, finite element space, (in our
case, continuous piecewise linear finite elements on a shape regular triangulation)
the domain decomposition iteration itself is based on a saddle point formulation
for nonconforming finite element spaces. The Lagrange multipliers, which are used
to impose continuity at vertices along the interface, have the flavor of Dirac delta
functions when viewed in the finite element context. An additional complication
in the analysis arises from the fact that these Lagrange multipliers are not actually
computed or updated as part of the iteration.
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Inexact Data–Sparse Boundary Element Tearing and Interconnecting

Ulrich Langer

(joint work with Günther Of, Olaf Steinbach and Walter Zulehner)

In [LSa] we have recently introduced the Boundary Element Tearing and Intercon-
necting (BETI) methods as boundary element counterparts of the well–established
Finite Element Tearing and Interconnecting (FETI) methods which were proposed
by Farhat and Roux in 1991. We refer the reader to the monograph [TW] by Toselli
and Widlund for more information and references to FETI and FETI–DP meth-
ods. The coupled BETI/FETI methods were introduced in [LSb]. It is widely
recognized that Boundary Element Methods (BEM) have some advantages over
the Finite Element Methods (FEM) in the treatment of unbounded regions. But
we can also benefit from the BEM in some other situations like in the case of
large air subdomains without sources in electromagnetics or in the case of moving
parts or interfaces in magnetomechanics. The coupling of BEM and FEM within
a domain decomposition framework seems to be very attractive. The symmetric
FEM–BEM coupling technique was originally proposed by Costabel (1987). The
symmetric coupling technique was then used by Hsiao and Wendland (1991) to
construct a (primal) boundary element (BE) substructuring method. Similar to
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the finite element substructuring method they eliminate the interior subdomain
unknowns, which are the fluxes (tractions) in the BEM, and arrive at the symmet-
ric and positive definite boundary element Schur complement system that can be
solved by a direct or an iterative method. For large–scale problems, a precondi-
tioned conjugate gradient method should be used for efficiency reasons. However,
in every iteration step, the interior boundary element subdomain unknowns must
be eliminated, i.e. a discrete single layer potential must be inverted to compute the
solution of a Dirichlet boundary value problem in every subdomain. To avoid the
expensive elimination of these interior boundary element unknowns, an inexact
boundary element substructuring method was introduced in [La] which requires
the solution of a saddle point problem. The saddle point problem was solved by
the preconditioned conjugate gradient method proposed by Bramble and Pasciak
(1988) for solving systems of algebraic equations with symmetric, but indefinite
system matrices. The availability of good preconditioners is very essential for the
efficiency of the solver. In the inexact BE substructuring case preconditioners for
the local (subdomain) discrete single layer potential operators and for the global
(skeleton) boundary element Schur complement are needed. The latter should also
provide the global information exchange. Carstensen, Kuhn and Langer proposed
such preconditioners and gave a rigorous analysis of the solver in the case of dense
matrices [CKL]. Inexact finite element substructuring solvers were proposed and
investigated by Boergers (1989), Haase, Langer and Meyer (1990) and others. The
first inexact FETI solver was introduced and analyzed by Klawonn and Widlund
(2000). Let us mention that inexact versions are usually more efficient than Schur
complement techniques, especially in the case of sufficiently large local subprob-
lems. This is typical for really large scale problems. On PC clusters, also mid–size
problems can benefit from inexact solution techniques.

In this talk we introduce inexact BETI methods which lead to three–fold saddle
point problems in the first instance. However, applying an appropriate projection,
we can reduce the three–fold saddle point problem to a two–fold saddle point
problem. Following the approach given in [Zu], we present preconditioned Krylov
subspace solution methods for two–fold saddle point problems and give sharp con-
vergence rate estimates. The standard boundary element discretization of bound-
ary integral operators with nonlocal kernel functions would lead to fully populated
matrices. This is totally unacceptable for 3D boundary value problems. Indeed,
already the matrix–by–vector multiplication costs O(N 2

h) arithmetical operations
in the case of dense matrices. Here Nh denotes the number of boundary unknowns
which is of the order O(h−(d−1)), where h denotes the usual mesh size parameter
and d is the spatial dimension (d = 2, or d = 3). The same complexity is required
for the storage demand. Data–sparse approximations of the system matrix, such as
multipole techniques, panel clustering methods, H–matrix approaches, and Adap-
tive Cross Approximation methods, can reduce the complexity to almost O(Nh),
up to polylogarithmic perturbations, for both the arithmetical expenses and the
memory demand. Here we use the Fast Multipole Method in order to approximate
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the single layer potential, the double layer potential and the hypersingular bound-
ary integral operators which appear in the symmetric boundary integral domain
decomposition formulation. Our preconditioned Krylov subspace solvers for two–
fold saddle point problems require appropriately scaled preconditioners for the
local (subdomain) discrete single layer potential operators, for the local boundary
element Schur complements and for the BETI matrix in their data–sparse (fast
multipole) representations. We propose data–sparse preconditioners which result
in an almost optimal solver requiring O((H/h)(d−1)(1+ log(H/h))q log ε−1) arith-
metical operations in a parallel regime and O((H/h)(d−1)(1+ log(H/h))2) storage
units per processor, where q = 3 and ε ∈ (0, 1) is the relative accuracy of the itera-
tion error in a suitable norm. H and h denote the usual scalings of the subdomains
and the boundary elements, respectively. Other local data–sparse precondition-
ers are proposed in [LOSZa] and [LOSZb] which result in the same arithmetical
complexity estimate as given above, but with q = 5 and q = 4, respectively. More-
over, our solvers are insensitive to large jumps in the coefficients of the potential
equation that is considered as model problem throughout the paper. These results
can be generalized to linear elasticity boundary value problems in bounded and
unbounded regions. The full version of this paper can be found in [LOSZa].

This work has been supported by the Austrian Science Fund ‘Fonds zur För-
derung der wissenschaftlichen Forschung (FWF)’ under the grants P14953 and
SFB F013 ‘Numerical and Symbolic Scientific Computing’, and by the German
Research Foundation ‘Deutsche Forschungsgemeinschaft (DFG)’ under the grant
SFB 404 ‘Multifield Problems in Continuum Mechanics’.
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Sharpening the Predictive Properties of Compatible Relaxation

Robert D. Falgout

(joint work with J. Brannick, T. Manteuffel, S. McCormick, P. Vassilevski, L.
Zikatanov)

The notion of compatible relaxation (CR) was introduced by Brandt in [1] as a
modified relaxation scheme that keeps the coarse-level variables invariant. Brandt
stated that the convergence rate of CR is a general measure for the quality of the
set of coarse variables. A supporting theory for these ideas was presented in [2],
from which we developed a CR-based algebraic coarsening algorithm for use in
algebraic multigrid (AMG) methods. In [3], a new sharp convergence theory was
developed for AMG. The form of this new theory bears a striking resemblance to
its predecessor and suggests the possibility of improving the CR measure. We use
the relationship between these two theories below to motivate a new approach for
CR, one that has the potential of being a sharper measure of coarse grid quality
and a better predictor of AMG convergence.

We will use the notation in [2, 3]. Consider solving the linear system

(1) Au = f ,

where A is a real symmetric positive definite (SPD) matrix, with u, f ∈ <n. Define
the smoother error propagator by

(2) I −M−1A,

and assume that the smoother is convergent (in energy norm) so that (M+MT−A)
is SPD. Denote the symmetrized smoother operator by

(3) M̃ = M(MT +M −A)−1MT ,

i.e., M̃ is the “M” in (2) for the symmetric smoother (I −M−TA)(I −M−1A).
Let P : <nc → <n be the interpolation (or prolongation) operator, where <nc

is a lower-dimensional (coarse) vector space, and let R : <n → <nc be some
restriction operator (it is not the restriction operator used in the actual multigrid
method) such that RP = Ic, the identity on <nc . We can think of R as defining the
coarse-grid variables, i.e., uc = Ru. Note that PR is a projection onto range(P ).
For any SPD matrix X and any full-rank matrix B, we denote the X-orthogonal
projection onto range(B) by

(4) πX(B) = B(BTXB)−1BTX.

When B = P , we will drop the parentheses so that πX := πX(P ).
Consider now the two-grid multigrid operator,

(5) ETG = (I −M−1A)(I − πA).

The next two theorems summarize the main convergence results in [2, 3].
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Theorem (from [2])

(6) ‖ETG‖2
A ≤ 1 − 1

K
; K = sup

e

‖(I − PR)e‖2
fM

‖e‖2
A

.

Theorem (from [3])

(7) ‖ETG‖2
A = 1 − 1

K]
; K] = sup

e

∥∥(I − πfM
)e

∥∥2
fM

‖e‖2
A

.

From the two theorems, we note that the only difference between the quantities
K and K] is the form of the projection. More specifically, we see that K = K]

(i.e., the two “measures” are the same) if

(8) R = (P T M̃P )−1P T M̃.

Since compatible relaxation in [2] was based entirely on the form of R, this sug-
gests the possibility of defining more predictive CR methods by simply using a
“better” R. From equation (8), we see that the “best” R is rather complicated
and impractical. However, we can find a simpler form for R by noting that the
multigrid operator in (5) is invariant to post-scaling of interpolation. In particular,
we can equivalently use the interpolation operator P̄ = P (RP )−1 in the theory,
since RP̄ = Ic, as required. Now, if we compare the numerator for K in (6) to the
numerator for K] in (7), it is clear that the optimal R is given by

(9) R = P T M̃,

which is much simpler than in (8). It also makes more intuitive sense that the
coarse-grid variables are best defined as the transpose of interpolation (times the
smoother).

Note that the “best” R is a function of P , something that is not allowed in [2].
Furthermore, we want to use CR to help build P , so we cannot use P in the CR
algorithm. However, equation (9) does provide guidance for choosing an R that
might provide better prediction of two-grid multigrid rates. Assuming we have a
means of finding such an R, let us consider an example of how we might use it in
a CR method.

Assume that P has the classical form

(10) P =

[
Wp

I

]
.

Now, define the coarse-grid variables to be some kind of averaging of the form

(11) R =
[
W T I

]
.

Then, we can define S such that RS = 0 by

(12) S =

[
I

−W T

]
.
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From here, we can define the primary version of CR

(13) I − (STMS)−1(STAS).

This may or may not be easily computable, depending on M , etc. What we would
really like to use (at least it is always easily computable) is the habituated form
of CR given by

(14) ST (I −M−1A)S.

The problem here is that the theory in [2] requires that S be normalized such
that STS = If . This again is not easily computable or practical. However, we can
avoid this problem by using a modified form of habituated CR as we now describe.

Consider the following related forms of habituated CR:

(15) π(S)(I −M−1A) = (I − π(RT ))(I −M−1A).

The idea is to define the CR method as in (15) where we approximate the action
of (STS)−1 and (RRT )−1 with operators Cs and Cr , respectively. In particular,
we are interested in the case where these operators result by applying a simple
iterative method to the appropriate set of equations (e.g., (STS)us = fs) with
zero initial guess. That is, consider the following two habituated CR methods (the
second method is the one proposed by Livne [4] and Brandt):

SCsS
T (I −M−1A);(16)

(I −RTCrR)(I −M−1A).(17)

In [2], we show that the convergence rate of the habituated CR method in (14) can
be used to estimate the quality of the coarse grid and to predict the convergence
rate of the 2-grid method. We can prove a similar result for the two new CR
methods in (16) and (17).

As a simple example of the potential of these new CR methods to give sharp
prediction of two-grid multigrid rates, consider a 9-pt finite element discretization
of a 2D Laplacian problem on a square. Define R = P T = full weighting. Using
symmetric cycles for AMG and the CR methods, we get

∥∥(I −M−TA)(I − πA)(I −M−1A)
∥∥

A
= 0.1711

∥∥(I −M−TA)(I − π(RT ))(I −M−1A)
∥∥

A
= 0.1713.

If we run the method in (17) using Gauss-Seidel to produce Cr, we get
∥∥(I −M−TA)(I −RTCrR)(I −M−1A)

∥∥ = 0.186 (1 GS)

= 0.173 (3 GS).

By comparison, the primary CR method in (13) with the usual R = [0, I ] gives a
prediction for (18) of 0.5.

This work was performed under the auspices of the U.S. Department of En-
ergy by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.
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A Symmetric Smoother for NIPG

Klaus Johannsen

Discontinuous Galerkin (DG) methods, traditionally used for the solution of hy-
perbolic equations [Co, JP], have recently gained much attention in application
to elliptic problems. Whereas multigrid solution schemes are well-understood in
case of conforming Galerkin discretizations, its analysis for DG methods began
only recently. In the case of the symmetric penalized SIPG method [GRW, Wh]
standard multigrid theory has been applied successfully [GK]. In the case of non-
symmetric DG, the behavior of basic iterative methods have been investigated in
[HR, HHRa, HHRb] by means of Fourier analysis and numerical experiments in
[BR]. An rigorous treatment of the non-symmetric variants is not know to the
author.

In this contribution we investigate the smoothing property of a variant of the
symmetric Gauss-Seidel applied to the non-symmetric NIPG method. We consider
arbitrary unstructured, quasi-uniform meshes and polynomial degrees of any order.
Let A denote the NIPG discretization of the Laplacian operator. We split A into
the symmetric and the anti-symmetric part

As = 1/2(A+AT ), Aa = 1/2(A−AT ).

The key of the argumentation is an estimate of the antisymmetric part Aa with
respect to As

−ξAs ≤ iAa ≤ ξAs,

for a ξ > 0 depending on the penalty parameter only. The estimate could be
shown using standard arguments from functional analysis. Using this estimate,
the classical smoothing property could be shown to hold in the Euclidian norm for
the smoother defined by

S = I −W−1A,

W := symmetric Gauss-Seidel approximation of As.

A standard argumentation leads to h-independent multigrid convergence for the
W (ν, ν)-cycle multigrid iteration, provided the number of smoothing steps ν is
large enough. For details, see [Ha]. A dependence of the smoothing property on
the penalty parameter of the NIPG discretization is made explicite.
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Figure 1. Convergence of the V (1, 1)-cycle multigrid applied to
a model problem using the basis P2 in dependence on the penalty
parameter µ. The graphs correspond to different grid levels.

Numerical experiments confirm the theoretical findings. As an illustration,
we show the convergence rates of the V (1, 1)-cycle multigrid applied to a P2-
discretization of a two-dimensional model problem for varying penalty parameter
µ on different levels of the multigrid hierarchy in the figure below. As can be
seen clearly, the multigrid convergence does not depend on the mesh size. On the
other hand, a strong dependence on the penalty parameter µ can be observed. A
too a small penalty parameters leads to the divergence of the scheme, which is in
accordance with the theory.
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Hierarchical Matrices based on Domain Decomposition

Lars Grasedyck

(joint work with Ronald Kriemann and Sabine Le Borne)

Most direct methods for sparse linear systems perform an LU factorisation of the
original matrix after some reordering of the indices in order to reduce fill-ins. One
such popular reordering method is the so-called nested dissection which exploits
the concept of separation. The idea of nested dissection has been introduced more
than 30 years ago [Ge] and since then attracted considerable attention (see, e.g.,
[BT, HR] and the references therein). The main idea is to separate a (matrix)
graph into three parts, two of which have no coupling between each other. The
third one, referred to as an interior boundary or separator, contains couplings with
(possibly both of) the other two parts. The nodes of the separator are numbered
last. This process is then repeated recursively in each subgraph. An illustration of
the resulting sparsity pattern is shown in Figure 1 for the first two decomposition
steps. In domain decomposition terminology, we recursively subdivide our domain
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Figure 1. Nested dissection and resulting matrix sparsity structure
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into two disjoint subdomains and an interior boundary.
A favourable property of such an ordering is that a subsequent LU factorisa-

tion maintains a major part of this sparsity structure, i.e., there occurs no fill-in
in the large, off-diagonal zero matrix blocks. In fact, in the case of regular two-
dimensional grids, the computational complexity amounts to O(N 1.5) for a matrix
A ∈ RN×N . In order to obtain a (nearly) optimal complexity, we propose to ap-
proximate all nonzero, off-diagonal blocks in H-matrix representation and compute
them using H-matrix arithmetic. The (small) blocks along the diagonal and the
corresponding LU factorisations will be stored as full matrices.

We apply the new domain decomposition based H-LU factorisation [Li, GL]
to a volume-conduction model of the head [Wo], see Figure 2, where the system
has to be solved for many right-hand sides. It turns out that our new solver is
up to 5 times faster than the optimised algebraic multigrid method PEBBLES
[HKR]. Both approaches use the leadfield-bases acceleration from [WGH]. At the
last Oberwolfach workshop “Schnelle Löser für partielle Differentialgleichungen”
in 2003, the time to setup the influence matrix was reduced from 8 days down to 5
hours by use of a parallel machine and optimisation for multiple right-hand sides.
By use of the leadfield-bases acceleration and the hierarchical matrix technique
we could reduce this to 15 minutes on a single processor machine. In the second

Figure 2. Left: 5 layer head geometry; Right: North sea mesh

part of the talk we present a black-box clustering algorithm that uses only the
sparse stiffness matrix as input. The cluster tree as well as the blocking of the
matrix, based on a black-box admissibility criterion, are constructed using nested
dissection applied to the matrix graph. We compare the new black-box solver to
the standard algebraic multigrid solver PLTMG for some examples, see Figure 2,
provided by PLTMG [Ba].
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H2-matrices

Steffen Börm

Hierarchical matrices [17, 13, 6] use local low-rank approximations in order to
treat large dense matrices efficiently. H2-matrices [18, 7, 3] impose additional re-
strictions on the choice of the low-rank approximations in order to improve the
efficiency. While hierarchical matrices are the algebraic counterparts of panel-
clustering techniques [19] and multipole expansions [15, 16], H2-matrices use hier-
archical expansion systems, similar to multilevel and wavelet methods [11], in order
to reach the optimal order of complexity. Due to their purely algebraic construc-
tion, they can not only speed up matrix-vector multiplications, but also provide
efficient algorithms for the approximation of far more complicated operations like
multiplication or inversion of matrices.

All hierarchical matrix techniques subdivide a matrix M ∈ RI×J into a hier-
archical partition of submatrices M |t×s for t ⊆ I and s ⊆ J . The subsets t and
s are not arbitrary, but picked from a row cluster tree TI or a column cluster tree
TJ , which provide us with a hierarchy of partitions of the row and column index
sets I and J .
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Among the blocks t × s of the hierarchical partition, some are marked as ad-
missible, which means that we expect to be able to approximate them by low-rank
matrices. Typically, the admissibility of a block is related to its distance from the
diagonal, since diagonal blocks of a matrix will typically be invertible, i.e., of full
rank.

For standard hierarchical matrices, each admissible block t × s is approxi-

mated by a rank-k-matrix M̃ |t×s which can be expressed by the factorization

M̃ |t×s = AB>, where A and B have k columns. For H2-matrices, a different type
of factorization is used: we fix matrices Vt and Ws with k columns for all row
clusters t ∈ TI and for all column clusters s ∈ TJ . The admissible blocks are then

represented in the form M̃ |t×s = VtSt,sW
>
s for a k-by-k matrix St,s. Obviously,

the admissible blocks will still be of low rank, therefore each H2-matrix is also a
hierarchical matrix. In order to reach the optimal order of complexity, we have to
require that the cluster bases Vt and Ws are nested, i.e., that we can find k-by-k
transfer matrices Et′ and Fs′ for all t′ ∈ sons(t) and s′ ∈ sons(s) which satisfy

(Vt)iν = (Vt′Et′)iν , (Ws)jµ = (Ws′Es′)jµ

for all i ∈ t′, j ∈ s′ and ν, µ ∈ {1, . . . , k}.
The nested structure of the cluster bases is crucial for the efficiency of H2-matrix

techniques, because it allows us to re-use results prepared on lower levels of the
hierarchy when treating its higher levels, much as in other multilevel schemes [3]:
the cluster tree can be seen as a generalization of a grid hierarchy, the cluster bases
correspond to trial and test spaces on the different levels, the transfer matrices
play the role of prolongation and restriction operators.

In some situations, e.g., if asymptotically smooth integral operators are approx-
imated, the construction of a nested cluster basis is straightforward [12, 8, 10], but
in general situations, even the question of its existence can prove challenging. A
general criterion [4] can be used to establish the existence of nested cluster bases for
the approximation of integral operators and for the approximation of the solution
operators of elliptic partial differential equations.

The numerical results in Table 1 demonstrate the efficiency of the H2-matrix
representation: on the left side, the classical double layer potential operator, a
boundary integral operator involving the normal derivative of an asymptotically
smooth kernel function, has been discretized and approximated by an H2-matrix

n Build MVM DoF
2048 11 0.01 3.7
8192 51 0.11 4.4

32768 210 0.45 4.6
131072 883 2.07 4.7
524288 3818 9.77 5.2

n Build MVM DoF
1024 1 < 0.01 1.6
4096 10 < 0.01 2.0

16384 80 0.07 2.5
65536 595 0.34 2.8

262144 4127 1.51 3.0
1048576 26178 6.64 3.1

Table 1. Approximation of integral and solution operators by
H2-matrices up to a relative precision of 10−3
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using the algorithms presented in [9, 1]. On the right side, Poisson’s equation was
discretized, its solution operator computed by H-matrix arithmetics [14] and the
result converted into an H2-matrix. The parameters are adjusted to guarantee a
relative precision of 10−3. Table 1 gives the time in seconds for the construction,
the time in seconds for the matrix-vector multiplication and the storage require-
ments in KB per degree of freedom. We can see that the storage requirements,
the time for the matrix-vector multiplication and the time for the construction of
the integral operator scale linearly 1.

In order to construct the approximant of a solution operator efficiently, arith-
metic operations like matrix addition and multiplication can be used. These op-
erations can also be employed to perform other matrix operations like finding a
Cholesky or LU factorization or even solving matrix equations.

If the cluster bases are prescribed a priori, it is possible to compute the best
approximations of sums and products of H2-matrices in optimal complexity [2]
by preparing suitable data-sparse approximations of all matrix blocks in advance
and then re-using these precomputed quantities in order to avoid unnecessary
recursions. If the cluster bases are not known in advance, as it is typically the case
when treating partial differential operators, we compute the product in a suitable
H-matrix format and then construct suitable cluster bases a posteriori. Due to the
detour via standard hierarchical matrices, this approach reaches only a log-linear
complexity in the number of degrees of freedom, but can guarantee a prescribed
precision.

Table 2 compares the performance of the different matrix-matrix multiplication
algorithms: the classical single layer potential operator is discretized by Galerkin’s
method, and the resulting matrix multiplied by itself, an operation which corre-
sponds to a convolution of the kernel function. We can see that the a priori
algorithm is significantly faster than the a posteriori and the H-matrix algorithm
and that its computational complexity scales linearly. The a posteriori algorithm
reaches a better accuracy than the a priori algorithm and is still significantly faster
than the H-matrix method.

1The experiments were carried out using the HLib [5] package on one UltraSPARC IIIcu
processor with 900 MHz in a SunFire 6800 system.

n H2 a priori H2 a posteriori H
Time Err. Time Err. Time Err.

512 0.3 7.5−5 0.4 5.9−6 0.7 5.3−6
2048 9.4 1.0−4 12.5 5.6−6 35.2 4.6−6
8192 54.5 2.5−3 100.0 5.1−5 794.8 3.1−5

32768 245.7 8.1−4 546.1 7.3−5 1560.7 3.9−5
131072 1020.4 6.8−4 2769.8 7.1−5 9022.8 3.9−5

Table 2. Comparison between a priori, a posteriori and H-
matrix multiplication algorithms
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The application of these H2-matrix arithmetic operations to the inversion and
LU factorization of FEM and BEM matrices is the topic of ongoing research.
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Efficient Operator Calculus Based on Data-Sparse
Tensor-Product Decompositions

Boris N. Khoromskij

(joint work with W. Hackbusch)

Coupling the hierarchical and tensor-product formats allows an opportunity for ef-
ficient data-sparse approximation of integral and more general nonlocal operators
in higher dimensions (cf. [2], [3], [1], [4]). Examples of such nonlocal mappings are
solution operators of elliptic, parabolic and hyperbolic boundary value problems,
Lyapunov and Riccati solution operators in control theory, spectral projection op-
erators associated with the matrix sign function of the Fock matrix in solving the
Hartree-Fock equation (many-particle models), collision integrals in the determin-
istic Boltzmann equation (dilute gas) as well as the convolution integrals in the
Ornstein-Zernike equation (disordered matter).

We discuss how the H-matrix techniques combined with the low-rank Kronecker
tensor-product approximation allow to represent a function F(A) of a discrete el-

liptic operator A in a hypercube (0, 1)
d ∈ Rd in the case of a high spatial dimension

d ≥ 3. Along with integral operators, we focus on the functions A−1 and sign(A).
Applying the analytic approximation tools based on Sinc-quadratures or fitting by
exponential sums, we prove that the asymptotic complexity of our representations
can be estimated by O(Np/d logq N) with p = 1, 2, whereN is the discrete problem
size. Numerical results confirm our approximation theory.
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Fast Solvers for Non-Newtonian Flow Models

Jinchao Xu

(joint work with Youngju Lee et al)

In the design of fast solvers for partial differential equations, it is desirable to
give integrated considerations of issues related to discretizations, grid adaptation
and algebraic iterative methods. In this talk, we report our recent studies of fast
solvers for a class of non-Newtonian models.
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A new finite element scheme. Most existing discretization methods for
non-Newtonian models such as Johnson-Segalman model are known to be numer-
ically unstable when the Weissenberg number reaches to a critical value. This
phenomenon, known as “the high Weissenberg number problem” in the literature
(see [8]), is believed to be related to the fact that the so-called conformation tensor
is difficult to be kept positive definite on the discrete level[8]. In Lee and Xu[6], we
recently designed a new finite element discretization scheme for a class of rate-type
non-Newtonian models by combining many analytic and numerical techniques, in-
cluding the use of Lie derivatives, the reformulation of the constitutive relation
as a generalized Riccati equation in terms of Lie derivatives, Eulerian-Lagrangian
discretization, special positivity preserving for temporal varialbe, special positiv-
ity preserving for spatial variables, special stable finite element spaces for velocity
and pressure, and volume preserving schemes for the characteristic feet. The new
scheme is proven to preserve the positivity property of the conformation tensore
on each time step and to satisfy some discrete energy estimates which assure the
numerical stability of the new scheme for any size of Weissenberg number. Hence
the new scheme provides a solution to the long-standing high Weissenberg number
problem[8].

Fast iterative methods for the discretized systems. One great advan-
tage of our new discretization scheme is that at each time-step only a linearized
Stokes like system need to be solved together with numerous independent nonlin-
ear ordinary different equations that can be solved in parallel. For the Stokes like
system, we report a new preconditioned MINRES method [7] with preconditioner
given by multigrid methods. The preconditioned iterative method is proven to
be uniform with respect to all physical and discretization parameters. In order
to more easily combine our preconditioned methods with adaptive finite element
method which often leads to unstructured grids, we developed a new efficient al-
gebraic multigrid methods for high order finite element systems in Shu, Sun and
Xu [10]. For a given sparse stiffness matrix from a quadratic Lagrangian finite
element discretization, an algebraic approach is carefully designed to recover the
stiffness matrix associated with the linear finite element discretization on the same
underlying (but nevertheless unknown to the user) finite element grid. With any
given classic algebraic multigrid solver for linear finite element stiffness matrix, a
corresponding algebraic multigrid method can then be designed for quadratic or
higher order finite element stiffness matrix by combining with a standard smoother
for the original system. This method is designed under the assumption that the
sparse matrix to be solved is associated with a specific higher order, quadratic for
example, finite element discretization on a finite element grid but the geometric
data for the underlying grid is unknown. The resulting new algebraic multigrid
method is shown, by numerical experiments, to be much more efficient than the
classic algebraic multigrid method that is directly applied to the high order finite
element matrix. Some theoretical analysis is also provided for the convergence of
the new method.
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Grid adaptation. For the new scheme, we further report how to apply some
new grid adaptation techniques. The new techniques we recently developed are
based on the work of Bank and Xu [1, 2] for linear elements. In Huang and Xu
[4], we obtained superconvergence results for quadratic finite element on mildly
structured grids for second order elliptic equations. In Bank, Xu and Zheng [3], we
developed averaging and smoothing techniques (that are problem independent) for
superconvergence recovery of Hessian matrix for general quadratic finite element
methods on general unstructured grids. All these new methods can be used for
grid adaptation for our new finite element method for non-Newtonian models.

We would like to emphasis that our new finite element scheme for non-Newton-
ian models is based on semi-Langrangian method or method of characteristic [5,
9]. The efficiency of this type of method can be much enhanced if proper grid
adaptation methods are used.
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Schnelle Löser für partielle Differentialgleichungen 1333

Kernel Preserving Multigrid Methods for Convection Dominated
Problems

Justin W.L. Wan

(joint work with Randolph E. Bank and Zhenpeng Qu)

In this talk, we consider the steady state solution of the model equation on a
domain Ω ⊂ IR2:

−ε∆u+ a(x, y)ux + b(x, y)uy = f in Ω

αu+ γ
∂u

∂n
= g on ∂Ω,

where ε is a small diffusion parameter, the vector (a, b) represents the convection
velocity, and α, γ determine the inflow and outflow boundary conditions. The
algorithms and analysis presented will be mainly in 1D and 2D, but extension to
3D is possible in most cases. We are interested in the convection dominated limit
where ε→ 0.

The equation can be discretized by upwinding finite difference methods [8], finite
element methods [9] and finite volume methods [1]. In any case, it will result in a
linear system of the form

Ahuh = fh.

When ε � 1, the linear system can be solved efficiently using, for instance, fast
Fourier transform, preconditioned conjugate gradient, multigrid and domain de-
composition methods. For small ε, however, Ah is a highly nonsymmetric matrix,
and most of these solvers become less efficient.

Multigrid methods have been widely used for solving elliptic partial differential
equations (PDEs) since the convergence rates are often independent of mesh size.
For nonelliptic PDEs, in particular, convection diffusion equations, the multigrid
convergence deteriorates with increasing convection. One reason is that the el-
liptic multigrid approaches do not generally take into account the hyperbolicity
of the convection diffusion operator. Thus, modifications need to be made in the
smoother and coarse grid correction processes to improve convergence.

Different smoothing techniques have been developed, for instance, Gauss-Seidel
with downwind ordering [4], smoothers based on time-stepping schemes [7], line
smoothers [10], and ILU smoothers [13]. Although often effective, all these smooth-
ers are relatively expensive to compute and apply, especially in 3D. Thus, in this
talk, we primarily consider relaxation smoothers, and focus on the choice and
construction of the interpolation and restriction operators.

Coarse grid correction leads to more subtle issues. For a model constant coeffi-
cient problem, the two-level convergence factor can be as low as 0.5 [5]. A recent
phase error analysis [11] also leads to a similar result. A number of techniques have
been proposed to improve multigrid convergence, for instance, applying artificial
viscosity on coarse grid matrices [16], Galerkin coarsening [15], Petrov-Galerkin
coarsening [3, 6], and higher order coarse grid operators [14].
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In this talk, we propose a kernel preserving multigrid approach for solving
convection-diffusion equations. The multigrid methods use Petrov-Galerkin coarse
grid correction and linear interpolation. The restriction operator is constructed
by preserving the kernel of the convection-diffusion operator. The construction
considers constant and variable coefficient problems as well as cases where the
convection term is not known explicitly. For constant convection, the kernel func-
tions are known analytically. More precisely, they are constant and exponential
functions of the form, e−βx, where β is the convection vector. Then, the restriction
weights in one dimension can be easily computed as:

µ =
1

1 + eβh
, ν =

1

1 + e−βh
.

The restriction in higher dimensions can be constructed similarly as long as the
fine grid is a regular refinement of a coarse grid. Note that when β = 0, i.e.
pure diffusion, we recover full-weighting restriction (i.e. transpose of the linear
interpolation). When β is large, however, it becomes an upwind biased piecewise
constant restriction. One may view this as a generalization of the full-weighting
restriction to convection-diffusion equations. We remark that the interpolation
weights given above have also been considered in [2]. For nonconstant convection,
however, the kernel functions are not known. We thus approximate the kernel
locally. One approach is to assume the convection is locally constant and it then
reduces to the constant convection case. Another approach is to assume the kernel
functions are still constant and exponential functions, e−βx, where β = β(x).
Finally, if the convection is not given explicitly or the fine grid is not a regular
refinement of a coarse grid, we construct the restriction and interpolation operators
by solving a minimization problem with constraints given by preserving the left
and right null vectors of the matrix Ah. More precisely, let {φH

i } and {ψH
i }

be the coarse grid basis functions corresponding to interpolation and restriction,
respectively. Our approach is to compute {φH

i } and {ψH
i } at the same time using

the minimization problem:

min

M∑

i=1

(ψH
i , φ

H
i )A(1)

subject to





∑M
i=1 φ

H
i (xh

j ) = 1

∑M
i=1 e

−β·xH
i ψH

i (xh
j ) = e−β·xh

j

j = 1, . . . , N.

When β = 0, Ah becomes the standard Laplace operator and is symmetric positive
definite. Then {ψH

i } = {φH
i } and (ψH

i , φ
H
i )A = ‖φH

i ‖2
A, and hence reduces to the

elliptic formulation. Thus, it generalizes the energy minimization approach [12] to
the convection diffusion case.

The main objective of the restriction operator construction is to ensure that the
coarse grid correction process is accurate and stable. We show that although the
coarse grid matrix has a phase error of 1/2 which shifts waves of any frequency
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by one grid point, the kernel preserving restriction has the same but opposite ef-
fect that counteracts the shifting caused by the coarse grid matrix. As a result,
the coarse grid correction is accurate. Specifically, the accuracy of the Petrov-
Galerkin coarse grid correction is much better than the direct discretization ap-
proach. Moreover, we also prove that the Petrov-Galerkin coarse grid matrix is
stable in the sense that it is asymptotically an M-matrix for large convection, if the
fine grid matrix is an M-matrix. In contrast, the Galerkin coarse grid matrix (us-
ing linear interpolation and full weighting restriction) is unstable operator on the
coarse grid, although it has small phase errors like the Petrov-Galerkin approach.

To demonstrate the effectiveness of the proposed multigrid method, we will
apply it to solve a real application problem: pricing Asian options. The price of
an Asian option can be found by solving a PDE in 2D based on the Black-Scholes
equations [17] with appropriate initial and boundary conditions. The resulting
PDE is a convection-diffusion equation which has no diffusion in one direction,
leading to many numerical difficulties. It is a particularly interesting test case
for multigrid since it is very convection dominated (in fact, pure hyperbolic) in
the direction with no diffusion and the convection is not constant. We will apply
our multigrid with point GS smoothing to solve the zero strike call option, a case
where the analytic solution is known. Other numerical results, including entering
and recirculating flow problems, will also be presented. We will show that the
multigrid convergence rate is independent of the mesh size and insensitive to the
convection term.
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Machnumber independent multigrid convergence for low Machnumber
flows

Achim Gordner

Aeroacoustic noise becomes more and more an issue in science and technology. One
can perform aeroacoustic simulations either using the popular Hybrid approach
or solving the compressible Navier-Stokes equations on one grid [3]. For flows
with Machnumbers lower than one M < 1, a multiscale problem results, where
the relation between the local Strouhalnumber St = Lf

|v| of the dynamic pressure

oscillations in the flow with velocity v and frequency f and the Helmholtznumber
He = Lf

a of the acoustic pressure oscillations is given by the ratio

(1) M =
He

St
.

Hereby L denotes a given reference length and a denotes the speed of sound. Hence
the ratio of the acoustic wave length λa and the dynamic pressure oscillations λd

is proportional to the Machnumber as well. Therefore, in the hybrid approach,
the acoustic grid is coarser than the grid used to calculate the flow solution. To
account for the multiscale properties of the wavelengths in pressure variations if
the compressible Navier-Stokes equations are calculated on one grid only, one can
use an unstructured grid. In the regions, where the fluid flow has to be resolved
accurately, the grid becomes sufficiently fine, while in the far field, where only
the acoustic dominates, the grid can become much coarser in order to reduce the
number of unknowns.

However for low Machnumbers M << 1 the grid becomes extremely unstruc-
tured which gives raise to a new problem, the limiting time step size due to the
CFL-number if someone is using an explicit time stepping scheme. On an optimal
designed grid, the ratio between the smallest grid size hmin and the largest grid
size in the acoustic far-field hmax would be

(2) M =
hmin

hmax
.

An optimal relation between the order of the discretization and the gridsize would
lead to a constant cutoff frequency fmax on the domain Ω, for which frequencies
in the velocity field fV < fmax and in the acoustic field fA < fmax can be resolved
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accurately with almost no dispersion and diffusion error. With the relevant local
CFL-number CFL(x) = a∆t

h(x) , x ∈ Ω, one get a different cutoff frequency fmax =
1

#p∆t = a
h#pCFLmax

, with CFLmax = maxx∈Ω(CFL(x)), for the acoustic far field

and the velocity field

(3) fmaxV
=

a

hmax#p CFLmax
=

|v|
hmin#p CFLmax

and for the acoustic near field

(4) fmaxA
=

a

hmin#p CFLmax

#p denotes the number grid point to be used to resolve a periodic time with a
dispersion- and diffusion error lower than ε. For a given time-step ∆t, the local
CFL-number varies

(5) CFL(x) ∈ [C,
C

M
[ ∀x ∈ Ω.

For explicit methods C has to be smaller than M which results into a relation
fmaxV

= MfmaxA
. The optimal condition, where the cutoff frequency fmax =

minx∈Ω(fmaxV
, fmaxA

) is constant on the domain Ω, is fulfilled for C = 1, resulting
into local CFL-numbers greater than 1, which can be solved in general with implicit
methods.

However, then for each time-step, after linearization of the nonlinear compress-
ible Navier-Stokes equations, a linear system of equation in the form

(6) Jq = b

have to be solved, for which a geometric multigrid procedure is used. It is essential
for an robust method, that the convergence rate is independent of the Machnumber
M . It turned out, theoretical and numerically, that classical iterative methods, like
Jacobi or Gauss-Seidel, have to be damped with ω ∼M 2 to be used as a smoother
S = I − ωW−1J within the multigrid process. W−1 denotes the approximate
inverse of J that is used in the iterative solver. Hence, these are not robust for
low Machnumbers [1]. However, ILU0 showed without damping a Machnumber
independent convergence and can be used as a smoother in multigrid to solve the
compressible Navier-Stokes equations for low Machnumbers M < 1.

In addition, to guarantee also a Machnumber independent coarse grid correc-
tion, the injection j has to be used as restriction r within the multigrid process to
obtain a robust multigrid convergence with respect to the Machnumber and the
discretization used. If someone takes the adjoint of the bilinear prolongation p
for the restriction step together with an upwind dominated discretization for the
convective parts of the Navier-Stokes equations, the coarse grid correction scales
at the boundaries proportional to 1

M2 , which deteriorate the convergence rate of
the multigrid methods for Machnumbers M < 1.

Once the Two-grid method is robust against small Machnumber, it can be
shown in [1], based on a theorem found in [2], that this holds also for the Multigrid
method.
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New Smoothers for the Stokes Problem

Susanne C. Brenner

(joint work with Li-yeng Sung)

We consider the two-dimensional Stokes problem:
Find (u, p) ∈ [H1

0 (Ω)]2 × L0
2(Ω) such that

(1) S
(
(u, p), (v, q)

)
= (f ,v)L2(Ω) ∀ (v, q) ∈ [H1

0 (Ω)]2 × L0
2(Ω),

where Ω ⊂ R2 is a bounded polygon, f ∈ [L2(Ω)]2, L0
2(Ω) is the subspace of L2(Ω)

whose members have zero mean, and the bilinear form S(·, ·) is defined by

S
(
(u, p), (v, q)

)
=

∫

Ω

[
∇u : ∇v + (∇ · v)p+ (∇ · u)q

]
dx.

Let Tk (k = 0, 1, 2, . . .) be a sequence of triangulations of Ω generated by uniform
subdivision from an initial mesh T0. We assume that V k × Qk ⊂ [H1

0 (Ω)]2 ×
L0

2(Ω) is a stable pair of finite element spaces [BF] associated with Tk, i.e., the
Ladyzhenskaya-Babuška-Brezzi inf-sup condition

(2) inf
q∈Qh

sup
v∈V k

∫

Ω

(∇ · v)q dx/(|v|H1(Ω)‖q‖L2(Ω)) ≥ β > 0

holds for a constant β which is independent of k.
Furthermore we assume that the finite element spaces are nested:

V k−1 ×Qk−1 ⊂ V k ×Qk for k = 1, 2, . . . .

Consequently we can use the natural injection as the coarse-to-fine intergrid trans-
fer operator Ik

k−1 : V k−1 × Qk−1 −→ V k × Qk, and then take the fine-to-coarse

operator Ik−1
k : V k×Qk −→ V k−1×Qk−1 to be the transpose of Ik

k−1 with respect
to the weighted L2 inner product on V k ×Qk defined by

(3)
(
(v1, q1), (v2, q2)

)
k

= (v1,v2)L2(Ω) + h2
k(q1, q2)L2(Ω),

where hk denotes the mesh size of Tk.
The discrete problem for (1) can be written as

(4) Sk(uk, pk) = fk,

where Sk : V k ×Qk −→ V k ×Qk is defined by
(
Sk(v, q), (w, r)

)
k

= S
(
(v, q), (w, r)

)
∀ (v, q), (w, r) ∈ V k ×Qk

and fk is the L2-orthogonal projection of f in V k.
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Different W -cycle multigrid algorithms [H] for the solution of (4) can be con-
structed using different smoothers. However, all the known convergence results
[V, W, BSa, Z, SZ] are established under the assumption that Ω is convex and for
norms other than the energy norm ‖ · ‖1 defined by

‖(v, q)‖2
1 = |v|2H1(Ω) + ‖q‖2

L2(Ω).

Note that the energy norm is the norm where the Stokes problem is well-posed.
Indeed the LBB condition (2) implies that

(5) sup
(w,r)∈V k×Qk

S
(
(v, q), (w, r)

)
/‖(w, r)‖1 ≈ ‖(v, q)‖1.

Our goal is to design multigrid algorithms that can be shown to converge in the
energy norm for general Ω. Towards this end we introduce two new smoothers for
the generalized Stokes problem Sk(ζ, η) = (g, ρ).

The first one is defined by

(ζj , ηj) = (ζj−1, ηj−1) + γkSkC
−1
k

(
(g, ρ) − Sk(ζj−1, ηj−1)

)
,

where the operator Ck : V k ×Qk −→ V k ×Qk is symmetric positive-definite with
respect to (·, ·)k and satisfies

(6)
(
Ck(v, q), (v, q)

)
k
≈ |v|2H1(Ω) + ‖q‖2

L2(Ω) ∀ (v, q) ∈ V k ×Qk,

and γk = (constant)h2
k is a damping factor. In practice the construction of C−1

k in-

volves an optimal preconditioner for the discrete Laplace operator where C−1
k (v, q)

can be computed at a cost proportional to the dimension of V k ×Qk.
The definition of this smoother is motivated by the relation

(7)
(
SkC

−1
k Sk(v, q), (v, q)

)
k
≈ ‖(v, q)‖2

1 ∀ (v, q) ∈ V k ×Qk,

which follows from (5) and (6). From (3) and (7) we see that the constant in the
definition of γk can be chosen so that

(8) the spectral radius of γkSkC
−1
k Sk ≤ 1.

In view of (7), it is natural to introduce the following scale of discrete norms
on V k ×Qk:

(9) |||(v, q)|||2s,k =
(
(SkC

−1
k Sk)s(v, q), (v, q)

)
k

for 0 ≤ s ≤ 1.

Observe that (7) and (9) imply

(10) |||(v, q)|||1,k ≈ ‖(v, q)‖1 ≈ |v|H1(Ω) + ‖q‖L2(Ω)

and hence, by interpolation,

(11) |||(v, q)|||s,k ≈ ‖v‖Hs(Ω) + h1−s
k ‖q‖L2(Ω) ∀ (v, q) ∈ V k ×Qk.

Let Rk = Idk − γkSkC
−1
k Sk, where Idk is the identity operator on V k, be the

error propagation operator of one smoothing step. It follows from (8) and (9) that
Rk has the smoothing properties

(12) |||Rm
k (v, q)|||1,k . h−t

k m−t/2|||(v, q)|||1−t,k for 0 ≤ t ≤ 1.
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The second smoother is defined by

(ζj , ηj) = (ζj−1, ηj−1) + γkC
−1
k Sk

(
(g, ρ) − Sk(ζj−1, ηj−1)

)

and the corresponding error propagation operator is R∗
k = Idk − γkC

−1
k S2

k . This
smoother is motivated by the relation

(13) S
(
Rk(v, q), (w, r)

)
= S

(
(v, q), R∗

k(w, r)
)

∀ (v, q), (w, r)
)
∈ V k ×Qk,

which implies the following smoothing properties through duality:

(14) ||||(R∗
k)m(v, q)||||1+t,k . h−t

k m−t/2||||(v, q)||||1,k for 0 ≤ t ≤ 1,

provided that the scale of norms |||| · ||||s,k for 1 ≤ s ≤ 2 is defined by

(15) ||||(v, q)||||s,k = sup
(w,r)∈V k×Qk

S
(
(v, q), (w, r)

)
/|||(w, r)|||2−s,k .

Note that we have, because of (5),

(16) ||||(v, q)||||1,k ≈ |||(v, q)|||1,k ∀ (v, q) ∈ V k ×Qk.

On the other hand, using (11), elliptic regularity [D] and duality arguments, we
have the following approximation property:

(17) |||(Idk − Ik
k−1P

k−1
k )(v, q)|||1−α,k . h2α

k ||||(v, q)||||1+α,k,

where P k−1
k : V k × Qk −→ V k−1 × Qk−1 is the Ritz projection operator with

respect to the Stokes bilinear form S(·, ·), and α ∈ (1/2, 1] is the index of elliptic
regularity.

The error propagation operator for the two-grid algorithm, where we apply the
second smoother m1 times in the pre-smoothing step and the first smoother m2

times in the post-smoothing step, is given by Rm2

k (Idk − Ik
k−1P

k−1
k )(R∗

k)m1 . We
have, by (10), (12), (14), (16) and (17),

(18) ‖Rm2

k (Idk − Ik
k−1P

k−1
k )(R∗

k)m1(v, q)‖1 . (m1m2)
−α/2‖(v, q)‖1.

In particular, when Ω is convex, we can take α = 1 and the contraction number of
the two-grid algorithm decreases at the rate of (m1m2)

−1/2. The convergence of
the W -cycle in the energy norm for a sufficiently large number of smoothing steps
follows from (18) and a standard perturbation argument [BD].

Detailed proofs for the results outlined here can be found in [BSu], where we
address general saddle point problems [B] and discuss the convergence of W -cycle
algorithms in both the energy norm and lower order norms.

Acknowledgement This work is supported in part by the National Science
Foundation under Grant No. DMS-03-11790.

References

[BD] R.E. Bank, T.F. Dupont, An optimal order process for solving finite element equations,
Math. Comp., 36, 1981, 35–51.

[BSa] D. Braess, R. Sarazin, An efficient smoother for the Stokes equation, Appl. Numer. Math.,
23, 1996, 3–19.

[B] S.C. Brenner, Multigrid methods for parameter dependent problems, Math. Modell. Anal.
Numer., 30, 1996, 265–297.
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Meshless Multilevel Methods - Some Analytic Concepts

Wolfgang Dahmen

(joint work with Shai Dekel, Pencho Petrushev)

Meshless methods are currently attracting increasing attention in the computa-
tional engineering community. They help avoiding complicated mesh connectivities
when dealing with problems of higher spatial dimension and facilitate a painless
realization of locally high order of resolution. A unified approach to the main
variants such as hp-clouds, radial basis functions or generalized finite elements
is given in [BBO]. Nevertheless, the theoretical foundation of the meanwhile ac-
quired substantial computational experience is still at its infancy. This refers, in
particular, to the analysis of fast methods for the solution of resulting systems of
equations. An account of the state of the art of multigrid solvers can be found
in [GS1, S, GS2]. In this lecture, as a conceptual foundation for a better theoret-
ical backup of such methods, a scale of nonlinear smoothness spaces is proposed
that is capable among other things of capturing anisotropic features. It is based
on multiscale collections of atoms that are products of polynomials and smooth
compactly supported cutoff functions forming on each scale a partition of unity.
It is indicated under which circumstances representations in terms of such atoms
characterize the above mentioned smoothness classes and related best N -term ap-
proximation. Possible applications concern meshless methods for the numerical
treatment of elliptic boundary value problems based on such collections of atoms.
The obtained norm equivalences provide stable splittings for typical energy spaces
arising in this context. This allows one to formulate multivariate Schwarz precon-
ditioners that yield uniformly bounded condition numbers and support adaptive
updating techniques.
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Upscaling and multigrid for flow in heterogeneous porous media

Jens P. Eberhard

(joint work with S. Attinger, G. Wittum)

Many scientific problems involve multiple scales and, therefore, multi-scale phe-
nomena. A prominent example for this problem class is the subsurface of the
earth. Flow through the subsurface shows a multi-scale behaviour. The system
can be modeled by a flow equation for heterogeneous porous media. The fine-scale
structure significantly influences here the coarse-scale properties of the system.
Consequently, the computational effort to resolve the fine scale often exceeds the
power of computers.

We have developed and analyzed a multi-scale upscaling method for flow in
heterogeneous porous media. The new upscaling method, called Coarse graining
method, is based on filtering procedures introduced in [1]. The main idea is to
derive an upscaled flow equation using the Fourier transformation. This is achieved
by using projections and Green’s function in Fourier space. By cutting-off high
frequency modes the upscaled equation brings the small scale information to the
large scales through a scale-dependent permeability coefficient. Using perturbative
expansions and renormalization group techniques we can derive an explicit function
for the upscaled permeability [2]. The advantages of the Coarse graning method
are: (1) Upscaling for stochastic media with a continuous scale parameter, (2)
The method is easy to compute numerically, (3) It provides a general framework
for upscaling of partial differential equations with stochastic coefficients, and (4)
Using a perturbative expansion the upscaled coefficients can be evaluated.

The Coarse graining method has been extended to a numerical upscaling which
computes the upscaled coefficients locally. We have compared the method with
other existing upscaling methods by evaluating fluxes and the solutions of the flow
equation for varying scales. In all cases the numerical Coarse graining proves best.
Further, the upscaling can be extended to an iterative upscaling which utilizes only
the previous upscaled variables for the next upscaling step. The new upscaling
method is also powerful to be applicable for other types of processes considered in
heterogeneous media, e.g., time-dependent transport in heterogeneous media.

We have also used the results of the upscaling in a multigrid solver to gen-
erate the coarse grid operators which are adapted to the problem. We discuss
such an (algebraic) multgrid method and give numerical convergence results. For
moderate coefficient jumps or variances up to three, the new Coarsening multigrid
method is competitive with the algebraic Ruge-Stueben multigrid method and
other Galerkin-type multigrid methods with matrix-dependent prolongations [3].
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Fast methods for simulation based optimization

Volker Schulz

After successfully building up a simulation tool for PDE models within a certain
problem class, one is often confronted with the problem of computing optimal
shapes, controls, parameters etc. such that the states of the PDE model behave in a
desired way. In particular, one is looking for optimization strategies, which enable
the re-use of as much of the simulation tool as possible, but have on the other hand

a low relative computational complexity, which means
optimization effort
simulation effort

< const.

with a small constant.
In this talk, recent results on a collaborative project with DLR Braunschweig on

shape optimization of aircrafts with respect to drag are presented. The underlying
flow solver is based on a semi-iterative strategy (so-called pseudo-timestepping in
engineering terminology). A simultaneous optimization approach, updating state,
adjoint and design variables jointly in each step of the semi-iterative method is
shown to lead to a relative computational complexity of const.=4 up-to const.=10,
depending on the absence/presence of typical state constraints (lift, pitching mo-
ment). First results for the simultaneous optimization strategy applied to a model
problem have been presented in [HS]. Practical 2D-results for wing profiles have
been published in [HSBG]. The 3D-results presented in the talk will be published
soon.

References

[HS] S. B. Hazra, V. Schulz: Simultaneous Pseudo-timestepping for PDE-model based opti-
mization problems. Bit Numerical Mathematics, Vol. 44, No. 3, pp. 457-472, 2004.

[HSBG] S. B. Hazra, V. Schulz, J. Brezillon, N. Gauger: Aerodynamic shape optimization using
simultaneous pseudo-timestepping. Journal of Computational Physics, Vol. 204, No.1,
pp. 46-64, 2005.



1344 Oberwolfach Report 24/2005

Monotone Multigrid Methods Based on B–Splines

Angela Kunoth

(joint work with Markus Holtz)

We consider on a domain Ω ⊂ Rd an elliptic variational inequality

find u ∈ K : a(u, v − u) ≥ f(v − u) for all v ∈ K,
involving a continuous, symmetric and H1

0 (Ω)– elliptic bilinear form a(·, ·) and a
linear functional f : H1

0 (Ω) → R. The inequality is to be solved on a closed convex
subspace

K := {v ∈ H1
0 (Ω) : v(x) ≤ g(x) for all x ∈ Ω} ⊂ H1

0 (Ω),

where g ∈ H1
0 (Ω) represents a given upper obstacle.

For the efficient numerical solution of such variational inequalities, multigrid
methods in different variants based on piecewise linear finite elements have been
investigated over the past decades, see, e.g., [BC, HM, Hp, M]. However, not all
of them have assured that on coarser grids the obstacle criterion is met, which is
essential for the success of these methods. A systematic discussion of this issue
can be found in [Ko1, Ko2] in which context the terminology monotone multigrid
(MMG) methods was introduced. For piecewise finite elements as basis functions,
the appropriate approximation of the obstacle on coarser grids can be based on
geometric considerations employing point values. For higher order basis functions,
working with function evaluations does no longer yield admissible obstacle ap-
proximations so that an extension of the multigrid method to higher order basis
functions is not so obvious.

On the other hand, there are a number of problems which profit from higher
order approximations. Among these is the problem of prizing American options,
formulated in a standard model as a parabolic boundary value problem involving
Black–Scholes’ equation with a free boundary which indicates when the option is to
be exerted. In addition to computing this free boundary, of particular importance
are pointwise derivatives of the solution, the value of the stock option, up to order
two to high precision, the so–called Greek letters.

In this talk based on [HK], a monotone multigrid method was presented for dis-
cretizations in terms of B–splines of arbitrary order to solve variational inequalities
of the above form. In order to maintain monotonicity (upper bound) and quasi–
optimality (lower bound) of the coarse grid corrections for the equivalent linear
complementary problem, we have proposed an optimized coarse grid correction
(OCGC) algorithm which is based on B–spline evaluation coefficients. The OCGC
scheme was formulated by solving a linear constrained optimization problem. For
the solution process, we have exploited essential properties of B–Splines, namely,
positivity of B–Splines and total positivity of their refinement matrices. We have
proved that the OCGC algorithm is of optimal complexity of the degrees of free-
dom of the coarse grid. Moreover, the resulting monotone multigrid method was
shown to be of optimal multigrid complexity and converges with an optimal rate
independent of the discretization. Using tensor products, the construction of the
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OCGC scheme can be shown to be immediately extensible to the multivariate case,
yielding also an MMG method of optimal complexity.

Finally, the method was applied to the valuation of American options. It was
shown that a discretization based on B–Splines of order four in particular meets
the requirement of computing the pointwise error of the second derivative of the
value of the stock option up to high precision. Further results for the prizing of
options applying monotone multigrid methods can be found in [Hz].
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Balancing Domain Decomposition by Constraints – New Results

Olof B. Widlund

(joint work with Jing Li)

The often very large linear systems of algebraic equations which arise in finite
element analysis of linear elasticity and other applications have traditionally been
solved directly using a Cholesky factorization in engineering software systems.
Considerable and steady progress is being made in the deployment of efficient
solvers of this kind. In this talk, an alternative approach is explored, which has
been proven quite successful even on massively parallel computers.

Domain decomposition methods are preconditioned iterative methods often us-
ing conjugate gradients. The preconditioners are often built from direct Cholesky
solvers for problems on the subdomains and a global component which is necessary
to ensure scalability, i.e., a convergence rate which is independent of the number of
subdomains into which the original elastic body, etc., has been divided and which
deteriorates very slowly with the number of degrees of freedom of the individ-
ual subdomains. In a BDDC or FETI–DP domain decomposition algorithm, the
global component is given in terms of a set of constraints on the continuity of the
finite element solution across the interfaces of the decomposition. We demonstrate
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that FETI-DP and BDDC algorithms, see [FDP, SDP, NIE, CBD], can be built
from a few simple components of which a Cholesky solver is the most important.
This framework also highlights the close relationship between these two families
of algorithms; in fact the iteration operators of a pair of FETI–DP and BDDC
algorithms, with the same set of constraints, have the same eigenvalues with the
possible exception of 0 and 1; see [ATP]. Their rates of convergence are therefore
virtually identical and the choice of one method over another can be based on
other considerations. It appears that the BDDC algorithms often have certain
advantages over the FETI-DP methods, e.g., when developing multi-level algo-
rithms; see [TLB, TLB2] for recent work on three-level BDDC methods motivated
by the introduction of very powerful parallel computing systems with very many
processors.

With Jing Li, the speaker has recently rederived the BDDC and FETI–DP
algorithms, see [FBC], and provided a much shorter proof of the main result of
[ATP]. One of the main ideas behind this work is an explicit change of variables
which also is described in [FDP] and which appears to lead to a greater robustness
of the FETI–DP algorithms; see [PID].

There has also been recent, relatively extensive work on BDDC and FETI–DP
algorithms for mixed finite element methods and the resulting saddle point prob-
lems. A pioneering effort was carried out by Jing Li in his doctoral dissertation,
[FSS]. More recent work is due to Dohrmann [NIE] and Li and the speaker [BAS]
in which the same close connection between the spectra of the FETI–DP and
BDDC algorithms is established under a certain assumption on the constraints.
Xuemin Tu has also completed two papers, [PMF, PMH], on BDDC algorithms
for the equations of flow in porous media.
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A Simple Projected Multigrid Algorithms for Locally Refined Meshes

Peter K. Jimack

(joint work with Alison C. Jones)

This work is concerned with the fast solution of partial differential equations
(PDEs) where the solution may vary rapidly in some parts of the domain yet
be smooth and slowly varying elsewhere. In such cases it is natural to use some
form of adaptivity to ensure that the resolution of the solution is sufficiently fine
to obtain a solution that is accurate everywhere, whilst avoiding the use of an
excessive number of degrees of freedom. Examples of this type of PDE are nu-
merous and include convection-dominated problems, whose solution may contain
steep fronts or boundary layers, and phase-change or free-boundary problems for
which the interface geometry should be resolved to a high accuracy [PGD]. In
this work we focus on the use of adaptivity based upon hierarchical local mesh
refinement. In two space dimensions this typically involves the use of a quad-tree
mesh data structure to organise the local refinement and coarsening of triangular
or quadrilateral mesh elements, e.g. [PGD] (in three dimensions, not explicitly
considered here, the corresponding data structure is an oct-tree with tetrahedral
or octahedral mesh elements, e.g. [SB]).

In addition to using mesh refinement in order to improve efficiency it is also
important to use the best possible solution algorithms for the discrete systems
of equations that arise on these grids. For many time-dependent problems this
means the use of an implicit time-stepping algorithm combined with a fast alge-
braic solver such as multigrid, [Bra]. It is clear that multigrid algorithms should fit
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naturally into the framework of a numerical code which is built around hierarchical
mesh refinement. Indeed numerous authors have considered such a combination
with great success, including [Bra, HMO] for example. Perhaps the main practical
issue that needs to be overcome in order to efficiently implement a multigrid solver
on a locally refined sequence of grids is the need to decide what action to take at
the boundary of locally refined regions. Numerous possibilities exist, including:
treating such boundaries as Dirichlet conditions for the refined regions, [Bra]; un-
dertaking additional local refinement with special temporary elements that remove
the hanging nodes that lie on edges which have refined elements on one side and
a non-refined element on the other (this is often referred to as green refinement,
[Riv, SB]), and; modifying the usual finite element basis to ensure that the trial
space remains continuous everywhere, [Wan].

Here we present an alternative approach for the implementation of multigrid
on a locally refined sequence of meshes based upon a minor modification of the
full approximation scheme (FAS) algorithm. It is motivated by the work of Meyer
[Mey] in which constraints are imposed on the solution values at hanging nodes
only after the finite element system has been assembled for a class of linear prob-
lems: these constraints appearing simply as a minor modification to the usual
preconditioned conjugate gradient algorithm. To illustrate the approach we con-
sider a simple linear elliptic model problem and then indicate the generalization
to the nonlinear case.

Poisson’s equation, with Dirichlet boundary conditions u|∂Ω = 0, on a square
domain Ω ∈ <2 is given by:

(1) find u ∈ H1
0 (Ω) such that a(u, v) = b(v) ∀v ∈ H1

0 (Ω)

where

a(u, v) =

∫

Ω

∇u · ∇v dx and b(v) =

∫

Ω

fv dx .

The standard finite element (FE) approach prescribes a conforming mesh, of rect-
angles say, and a space Sh ⊂ H1

0 (Ω), of piecewise bilinears say, such that:

find uh ∈ Sh such that a(uh, vh) = b(vh) ∀vh ∈ Sh .

Selecting a basis {φ1, ..., φn} for Sh, the usual FE “hat” functions say, leads to a
linear algebraic system:

(2) Au = b .

Here A ∈ <n×n, u ∈ <n, b ∈ <n and

Aij = a(φi, φj) =
E∑

e=1

ae(φi, φj), bi = b(φi) =
E∑

e=1

be(φi), uh =
n∑

j=1

ujφj ,

where the superscript e indicates that integration is restricted to element e.
Now suppose that the FE mesh is locally refined and contains some hanging

nodes: n nodes in total (excluding the Dirichlet boundary) of which m are hanging

nodes (and let n = n−m). For each node i = 1, ..., n define φi to be:

• zero on each element that does not have node i as a vertex,
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• bilinear on remaining elements with value 1 at node i and 0 at the other
vertices.

Now, let S
h

= Span{φ1, ..., φn} and let uh ∈ S
h

be given by uh =
∑n

j=1 ujφj .

Note that when m ≥ 1 this is not a subspace of H1(Ω). Furthermore, define

Sh ⊂ S
h

to be the n-dimensional space given by

Sh = {
n∑

j=1

ujφj : at each hanging node, k say, uk = 1
2 (uk(1) + uk(2)) where

k(1) and k(2) are the two neighbours of node k} .
We will seek a finite element solution to (1) from Sh.

Rather than working with a basis for Sh directly however we propose an al-
ternative which is designed lead to a more straightforward implementation of the
multigrid solver. To achieve this consider assembling the FE equations on each
element of the non-conforming mesh, using the non-conforming basis, to obtain

(3) Au = b ,

where A ∈ <n×n, u ∈ <n, b ∈ <n and

Aij =
E∑

e=1

ae(φi, φj) , bi =
E∑

e=1

be(φi) .

Let Un ⊂ <n such that: u ∈ Un ⇔ ∑n
j=1 ujφj ∈ Sh. Also define P ∈ <n×n such

that

(Pu)k =

{
1
2 (uk(1) + uk(2)) when k is a hanging node,
uk otherwise.

Note that P : <n → Un. Although we assemble (3) we really wish to solve

(4) P TAPu = P T b

which represents n independent equations for n degrees of freedom (since (P Tu)k =
0 for each k corresponding to a hanging node). To apply a smoothing step of Jacobi
iteration we should use a solution update vector of the form:

δ = P (diag(P TAP ))−1(P T b− P TAuold) ,

ensuring that the initial guess u0 ∈ Un (hence uold ∈ Un and therefore Puold =

uold). In fact we may still obtain the required smoothing property if the diagonal
matrix is simplified to (diag(A))−1 and a relaxation parameter, ω, is incorporated
in the update.

The generalization of the above idea to a nonlinear elliptic problem is straight-
forward.

• Discretize the problem by taking the FE approximation on each element
and then assemble as normal (i.e. without regard for hanging nodes).
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• Apply the projected version of nonlinear Jacobi iteration, say, as above
to “solve” the non-conforming system b − A(u) = 0. This gives δ = ωPδ
where

δj =
(
P T b− P TA(uold)

)
j
/

(
∂A

∂uj
(uold)

)

j

.

In practice this smoother is applied as part of a nonlinear multigrid scheme and it
is demonstrated that the FAS scheme requires only minor modification to ensure
that at every stages the latest estimate of the solution lies within the conforming
subspace: by applying the projections P and P T at appropriate stages in the up-
date procedure [JJ]. This works naturally in the FAS context since this algorithm
always maintains and updates an approximation to the solution itself.

Some examples are presented to illustrated the optimal performance of this
PFAS (projected FAS) approach for nonlinear elliptic PDEs and systems of non-
linear parabolic equations discretized implicitly in time. The optimal behaviour is
as expected however the contribution of this work is to present a simpler imple-
mentation of the adaptive multigrid approach than is currently available elsewhere.
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Asymptotically Exact Functional Error Estimators on Meshes with
Superconvergence

Jeffrey S. Ovall

The use of dual/adjoint problems for approximating functionals of solutions of
PDEs with great accuracy or to merely drive a goal-oriented adaptive refinement
scheme has become well-accepted, and it continues to be an active area of research
[EHL, GS, HR, OP]. The traditional approach involves dual residual weighting
(DRW). In this work we present two new functional error estimators based on
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gradient recovery results of Bank and Xu [BX1, BX2] and give conditions under
which we can expect them to be asymptotically exact. The first of these estimators
is of the DRW type, but the second involves dual error estimate weighting (DEW)
and uses the original stiffness matrix in its computation.

We consider second order linear elliptic problems on a bounded domain Ω ⊂ R2,
with weak formulation

B(u, v) ≡
∫

Ω

a∇u · ∇v + (b · ∇u+ cu)v dx =

∫

Ω

fv dx ≡ F (v),

where B and F are bounded and B is coercive. In [BX1], Bank and Xu show that

‖∇u−Q∇uh‖1,Ω . h1+min(1,σ)| logh|‖u‖3,∞,Ω,

where uh is the piecewise linear finite element solution, Q is the (componentwise)
global L2-projector into the space of piecewise linear polynomials on the mesh, and
σ is a measure of the violation of an O(h2) approximate parallelogram assumption
on the mesh. Here we also show that

‖∇u−∇εh‖1,Ω . h1+min(1,σ)| logh|‖u‖3,∞,Ω,

where εh satisfies the residual equation B(εh, v) = F (v) − B(uh, v) on the space
of quadratic “bump” functions on the mesh. These two estimates form the basis
for the two functional error estimators.

Let G be a given functional of interest and B∗(w, v) ≡ B(v, w) denote the dual
bilinear form. We take ωh to be the piecewise linear finite element solution of the
dual equation B∗(ωh, v) = G(v), and εh to be the solution of the dual residual
equation B∗(εh, v) = G(v)−B∗(ωh, v) on the space of quadratic bump functions.
The two functional error estimators which we propose are

G1 = F (εh) −B(uh, εh) and G2 =

∫

Ω

a(Q− I)∇uh · (Q− I)∇ωh dx,

and we show that

|G(u− uh) − G1| . h2+2min(1,σ)| logh|2‖u‖3,∞,Ω‖ω‖3,∞,Ω

|G(u− uh) − G2| . h2+min(1,σ)| logh|‖u‖3,∞,Ω‖ω‖3,∞,Ω.

The functional error estimator G1 is of DRW type, and G2 is representative of a
new class of estimators, of DEW type, which employ gradient recovery techniques.
If the functional error satisfies h2 . |G(u−uh)|, for example, then both G1 and G2

are asymptotically exact estimators of G(u − uh). We demonstrate the accuracy
of the estimator G2 and the usefulness of the corresponding local error indicators
for refinement on several examples - with functionals including weighted averages,
point values, and approximate local norms.
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Multilevel Solvers for Partition of Unity Methods

Marc Alexander Schweitzer

(joint work with Michael Griebel, Peter Oswald)

1. Partition of Unity Method

The particle–partition of unity method (PUM) [1, 2, 3, 4, 5, 6, 8] is a mesh-
free Galerkin method for the numerical treatment of partial differential equations
(PDE). In essence, it is a generalized finite element method (GFEM) which em-
ploys piecewise rational shape functions rather than piecewise polynomial func-
tions. The PUM shape functions, however, make up a basis of the discrete function
space unlike other GFEM approaches which allows us to construct fast multilevel
solvers in a similar fashion as in the finite element method (FEM).

In the following, we shortly review the construction partition of unity spaces
and the meshfree Galerkin discretization of an elliptic PDE. Furthermore, we give
a summary of the efficient multilevel solution of the arising linear block-system.

1.1. Construction of Partition of Unity Spaces. In a partition of unity
method, we define a global approximation uPU simply as a weighted sum of

local approximations ui, i.e. uPU(x) :=
∑N

i=1 ϕi(x)ui(x). These local approx-
imations ui are completely independent of each other, i.e., the local supports
ωi := supp(ui), the local basis {ψn

i } and the order of approximation pi for every
single ui :=

∑
un

i ψ
n
i ∈ V pi

i can be chosen independently of all other uj . Here,
the functions ϕi form a partition of unity (PU). They are used to splice the lo-
cal approximations ui together in such a way that the global approximation uPU

benefits from the local approximation orders pi yet it still fulfills global regularity
conditions. Hence, the global approximation space on Ω is defined as

V PU :=
∑

i

ϕiV
pi

i =
∑

i

ϕi span〈{ψn
i }〉 = span〈{ϕiψ

n
i }〉.

The starting point for any meshfree method is a collection of N independent
points P := {xi ∈ Rd |xi ∈ Ω, i = 1, . . . , N}. In the PU approach we need
to construct a partition of unity {ϕi} on the domain of interest Ω to define an
approximate solution where the union of the supports supp(ϕi) = ωi covers the
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domain Ω ⊂ ⋃N
i=1 ωi and ui ∈ V pi

i (ωi) is some locally defined approximation of
order pi to u on ωi. Thus, the first (and most crucial) step in a PUM is the
efficient construction of an appropriate cover CΩ := {ωi}. We use a tree-based
construction algorithm for d-rectangular covers CΩ presented in [2, 8]. Here, the
cover patches ωi are products of intervals (xl

i − hl
i, x

l
i + hl

i) for l = 1, . . . , d. With
the help of weight functions Wk defined on these cover patches ωk we can easily
generate a partition of unity by Shepard’s method, i.e., we define

ϕi(x) =
Wi(x)∑

ωk∈Ci
Ω

Wk(x)
,

where Ci := {ωj ∈ CΩ |ωi ∩ ωj 6= ∅} is the set of all geometric neighbors of a
cover patch ωi. Due to the use of d-rectangular patches ωi, the most natural
choice for a weight function Wi is a product of one-dimensional functions, i.e.,

Wi (x) =
∏d

l=1W
l
i (xl) =

∏d
l=1 W (

x−xl
i+hl

i

2hl
i

) with supp(W) = [0, 1] such that

supp(Wi) = ωi. It is sufficient for this construction to choose a one-dimensional
weight function W with the desired regularity which is non-negative. The partition
of unity functions ϕi inherit the regularity of the generating weight function W .

In general, a partition of unity {ϕi} can only recover the constant function on
the domain Ω. Hence, we need to improve the approximation quality to use the
method for the discretization of a PDE. To this end, we multiply the partition
of unity functions ϕi locally with polynomials ψn

i . Since we use d-rectangular
patches ωi only, a local tensor product space is the most natural choice. Here,
we use products of univariate Legendre polynomials as local approximation spaces

V pi

i , i.e., we choose V pi

i = span〈{ψn
i |ψn

i =
∏d

l=1 Ln̂l

i , ‖n̂‖1 =
∑d

l=1 n̂l ≤ pi}〉,
where n̂ is the multi-index of the polynomial degrees n̂l of the univariate Legendre
polynomials Ln̂l

i : [xl
i − hl

i, x
l
i + hl

i] → R, and n is the index associated with the

product function ψn
i =

∏d
l=1 Ln̂l

i .

1.2. Galerkin Discretization. Consider the elliptic boundary value problem

Lu = f in Ω ⊂ R
d , Bu = g on ∂Ω ,

where L is a symmetric partial differential operator of second order andB expresses
suitable boundary conditions. The imposition of essential boundary conditions
within meshfree methods is more involved than in the FEM for a number of reasons
and many different approaches have been proposed. We use Nitsche’s method [7]
to enforce Dirichlet boundary conditions. The main advantages of this approach
are that it does not require a second function (or multiplier) space and that it
leads to a positive definite linear system, see [5, 8] for a more detailed discussion
of Nitsche’s method in the PUM context. Here, we just state resulting weak
formulation a(u, v) = l(v) of the simple Poisson problem

−∆u = f in Ω ⊂ Rd,
u = gD on ΓD ⊂ ∂Ω,
un = gN on ΓN = ∂Ω \ ΓD ,
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with mixed boundary conditions which reads as

(1)

∫

Ω

∇u∇v +

∫

ΓD

u(βv − vn) − unv =

∫

Ω

fv +

∫

ΓD

gD(βv − vn) +

∫

ΓN

gNv,

where the subscript n denotes the normal derivative and β is the Nitsche regu-
larization parameter which depends on the employed PUM space but can be pre-
computed without much additional cost. Finally, for the Galerkin discretization
of (1) we have to compute the stiffness matrix

A = (A(i,n),(j,m)) , with A(i,n),(j,m) = a (ϕjψ
m
j , ϕiψ

n
i ) ∈ R ,

and the right-hand side vector

f̂ = (f(i,n)) , with f(i,n) = 〈f, ϕiψ
n
i 〉L2 =

∫

Ω

fϕiψ
n
i ∈ R .

The stable approximation of these integrals is somewhat more involved than in the
FEM. Due to the meshfree construction given above the shape functions ϕiψ

n
i are

piecewise rational functions only so that the respective integrands have a number
of jumps within the integration domain which need to the resolved. For the stable
numerical integration of the weak form we use a tree-based decompostion scheme
together with efficient sparse grid integration rules, see [2, 8].

1.3. Multilevel Solution of Resulting Linear System. In a multilevel method
we need a sequence of discretization spaces Vk with k = 0, . . . , J where J denotes
the finest level. To this end we construct a sequence of PUM spaces V PU

k with
the help of a tree-based algorithm developed in [2, 3]. As a first step we generate

a sequence of point sets Pk and covers Ck
Ω from a given initial point set P̃ with

this algorithm. Following the construction given in §1.1 we can then define an
associated sequence of PUM spaces V PU

k . Note that these spaces are nonnested,
i.e., V PU

k−1 6⊂ V PU
k , and that the shape functions ϕi,kψ

n
i,k are non-interpolatory.

Thus, we need to construct appropriate transfer operators Ik
k−1 : V PU

k−1 → V PU
k

and Ik−1
k : V PU

k → V PU
k−1. With such transfer operators Ik

k−1, I
k−1
k and the stiff-

ness matrices Ak coming from the Galerkin discretization on each level k we can
then set up a standard multiplicative multilevel iteration to solve the linear sys-

tem AJ ũJ = f̂J . To this end, we have developed a special localized L2-projection
which exploits the product structure of the shape functions as well as our tree-
based coarsening scheme for the interlevel transfer. The remaining ingredient for
our multilevel solver is a block-smoothing scheme. Our numerical experiments
indicate that the V (1, 1)-cycle based on our localized L2-projections together with
an overlapping multiplicative Schwarz smoother converges with a rate which is
independent of the number of patches N as well as the employed polynomial de-
gree p. The overall complexity of the multilevel solver is O(Np3d) whereas the
number of nonzeros of the stiffness matrix is O(Np2d). Hence the proposed solver
is optimal up to a factor pd.
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Operator Preconditioning

Ralf Hiptmair

1. Theoretical Foundations

On two reflexive Banach spaces V,W we consider two continuous sesqui-linear
forms a ∈ L(V × V,C) and b ∈ L(W × W,C). Let Vh ⊂ V and Wh ⊂ W be
finite-dimensional subspaces, on which the sesqui-linear forms fulfill the inf-sup-
conditions

sup
vh∈Vh

|a(uh, vh)|
‖vh‖V

≥ cA ‖uh‖V ∀uh ∈ Vh ,(1)

sup
wh∈Wh

|b(qh, wh)|
‖wh‖W

≥ cB ‖qh‖W ∀qh ∈ Wh .(2)

Further, there is a stable pairing connecting the spaces Vh and Wh: we assume the
existence of a continuous sesqui-linear form d ∈ L(V ×W,C) that satisfies another
inf-sup-condition

sup
wh∈Wh

|d(vh, wh)|
‖wh‖W

≥ cD ‖vh‖V ∀vh ∈ Vh .(3)
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Picking bases {b1, . . . , bN}, N := dimVh, of Vh and {q1, . . . , qM}, M := dimWh,
of Wh, we can introduce the Galerkin-matrices

A := (a(bi, bj))
N
i,j=1 , D := (d(bi, qj))

N,M
i,j=1 , B := (b(qi, qj))

M
i,j=1 .

Theorem 1 (cf. [6]). If, besides (1), (2), and (3), dimVh = dimWh, then

κ(D−1BD−T A) ≤ ‖a‖ ‖b‖ ‖d‖2

cAcBc2D
,

where κ(·) stands for the spectral condition number of a square matrix.

Proof. Denote by Ah : Vh 7→ V ′
h, Bh : Wh 7→ W ′

h, and Dh : Vh 7→ W ′
h

the bounded linear operators associated with the sesqui-linear forms a, b, and d.
Writing D∗

h : Wh 7→ V ′
h for the adjoint operator of Dh, we immediately conclude

‖Ah‖Vh 7→V ′

h
= ‖a‖ ,

∥∥A−1
h

∥∥
V ′

h
7→Vh

≤ c−1
A ,

‖Bh‖Wh 7→W ′

h
= ‖b‖ ,

∥∥B−1
h

∥∥
W ′

h
7→Wh

≤ c−1
B ,

‖Dh‖Vh 7→W ′

h
= ‖D∗

h‖Wh 7→V ′

h
= ‖d‖ ,

∥∥D−1
h

∥∥
W ′

h
7→Vh

=
∥∥D−∗

h

∥∥
V ′

h
7→Wh

≤ c−1
D .

⇒
∥∥D−1

h BhD
−∗
h Ah

∥∥
V 7→V

≤ c−2
D ‖a‖ ‖b‖ ,

∥∥A−1
h D∗

hB
−1
h Dh

∥∥
V 7→V

≤ ‖d‖2c−1
A c−1

b .

Recall that the Galerkin matrix corresponding to D∗
h is DT . Thus, equipping CN

with a norm ‖·‖V inherited from the space Vh via the coefficient isomorphism w.r.t
to the basis {b1, . . . , bN}, we find

|λmax(D
−1BD−T A)| ≤

∥∥D−1BD−T A
∥∥

V 7→V
≤ c−2

D ‖a‖ ‖b‖ ,
|λmin(D−1BD−T A)−1| ≤

∥∥A−1DT BD
∥∥

V 7→V
≤ ‖d‖2c−1

A c−1
b . �

Remark. The bound of Thm. 1 is completely independent of the choice of bases
for Vh and Wh. The choice of Galerkin spaces Vh and Wh only enters through the
constants cA, cB , and cD.

2. Finite Element Applications

Now, the role of the space V of Sect. 1 is played by a Hilbert space H with inner
product (·, ·)H . As before, a is a bounded sequi-linear form on H that satisfies (1)
on a finite-dimensional subspace Hh ⊂ H .

Specializing the generic setting on Sect 1, we choose W as the dual space H ′. A
suitable finite dimensional subspace Wh ⊂ H ′ with dimWh = dimHh is furnished
by the polar set of the orthogonal complement of Hh in H .

The role of the sesqui-linear form b ∈ L(W,W ) will be played by the inner
product of H ′. In other words, the associated operator B : W ′ 7→ W ′′ = W
boils down to the inverse of the isometric Riesz-isomorphism R : H 7→ H ′. It is
immediate that ‖b‖ = 1 and (2) holds with cB = 1.

Finally, the sesqui-linear pairing d ∈ L(V ×W,C) will agree with the natural
duality pairing 〈·, ·〉H′×H . Given any basis {b1, . . . , bN}, N := dimHh, of Hh, we
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can find β1, . . . , βN ∈ H ′ such that 〈βi, bj〉H′×H = δij . This gives a basis for Wh,

for which the Galerkin matrix associated with d(·, ·) becomes the identity matrix.
Further, the Galerkin matrix B for b(·, ·) with respect to these bases is the inverse
of the Riesz matrix R := ((bi, bj)H)N

i,j=1. The bottom line is that we can conclude
from Thm. 1 that

κ(R−1A) ≤ ‖a‖cA−1 .(4)

Saddle point problems [1]. Consider the mixed variational formulation of
second-order elliptic boundary value problems with Dirichlet boundary conditions
[3, Ch. 3]. Here we have H = H(div; Ω)×L2(Ω) and the Galerkin matrix induced
by the corresponding inner product can serve as a preconditioner for the indefinite
saddle point matrix, if stable pairs of conforming finite element spaces are used.

Another example is the variational formulation of the Stokes problem [2, III.§ 5],
where H = H1

0 (Ω)×L2
0(Ω). The indefinite matrix arising from a stable conforming

finite element method can be preconditioned by the block-diagonal s.p.d. matrix
related to the inner product of H .

Complex variational problems. We target the sesqui-linear form

a(u,v) := (curlu, curlv)L2(Ω) + i (u,v)L2(Ω) , u,v ∈ H(curl; Ω) .

Since,

|a(u,u)| ≥ 1√
2
(‖curlu‖2

L2(Ω) + ‖u‖2
L2(Ω))(5)

we conclude that cA ≥ 1
2

√
2 and ‖a‖ ≤ 1 is evident.

When splitting a variational problem for the sesqui-linear form a(·, ·) into real
and imaginary parts, we end up with a saddle point problem onH := H(curl; Ω)×
H(curl; Ω) related to the bi-linear form (subscripts tag real/imaginary parts)

ã

((
uR

uI

)
,

(
vR

vI

))
:= a(uR,vR) + a(uI ,vR) + a(uR,vI) − a(uI ,vI) .

It goes without saying that ã inherits stability and continuity constants from a.
Writing R ∈ RN,N for the Galerkin matrix associated with the inner product

of H(curl; Ω), we thus find κ
((

R
−1

R
−1

)
Ã

)
≤ 1

2

√
2 . Using MINRES and

replacing R−1 by a multigrid cycle will yield a robust iterative solver for the
complex variational problem.

3. Boundary Element Applications

The weak forms of boundary integral equations of the first kind on a surface
Γ := Ω, Ω ⊂ R3, naturally involve sesqui-linear forms defined on trace spaces.
Prominent examples are the single layer boundary integral equation [7, Ch. 3]
with

a(u, v) :=

∫

Γ

∫

Γ

1

4π|x − y| u(x) v̄(y) dS(x,y) , u, v ∈ H− 1

2 (Γ) ,(6)
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and the electric field boundary integral equation [5] posed on H− 1

2 (curlΓ,Γ), for
which

a(u,v) =

∫

Γ

∫

Γ

eik|x−y |
4π|x − y|

(
u(y)v̄(x) − 1

k2
curlΓ u(y) curlΓ v̄(x)

)
dS(y,x) .

Operator preconditioning for these boundary integral equation, cf. [9], is suggested
by

• the availability of a continuous, bijective hypersingular boundary integral

operator W : H
1

2∗ (Γ) 7→ (H
1

2∗ (Γ))′ and the duality (H− 1

2 (Γ))′ ∼= H
1

2 (Γ).

• the self-duality of H− 1

2 (curlΓ,Γ) w.r.t. to the pairing (u,v) 7→
∫
Γ

u · (v̄×
n) dS (Hodge duality).

The construction of pairs of conformig boundary element spaces that play the role
of Vh andWh in Thm. 1 makes use of pairs of dual meshes. For instance, in the case
of (6) we may use piecewise constants as H− 1

2 (Γ)-conforming boundary elements
on Voronoi cells to get Vh, and piecewise linear continuous boundary elements on
the corresponding Delauney triangulation to build Wh ⊂ H

1

2 (Γ). Under weak
assumptions on shape regularity O. Steinbach [8] showed that d(u, v) :=

∫
Γ
u v̄ is a

h-uniformly stable discrete pairing. A related contruction for surface edge elements
has been proposed by A. Buffa and S. Christiansen in [4] and can be used for the
operator preconditioning approach to the electric field integral equation.

References

[1] D. Arnold, R. Falk, and R. Winther, Preconditioning in H(div) and applications, Math.
Comp., 66 (1997), pp. 957–984.

[2] D. Braess, Finite Elements, Cambridge University Press, 2nd ed., 2001.
[3] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer, 1991.
[4] A. Buffa and S. Christiansen, A dual finite element complex on the barycentric refine-

ment, C.R. Acad. Sci Paris, Ser I, 340 (2005), pp. 461–464.
[5] A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic

scattering, in Topics in Computational Wave Propagation. Direct and inverse Problems,
M. Ainsworth, P. Davis, D. Duncan, P. Martin, and B. Rynne, eds., vol. 31 of Lecture Notes
in Computational Science and Engineering, Springer, Berlin, 2003, pp. 83–124.
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Underlying Parallel Algorithm for Numerical Solution of PDEs Based
on Acyclic Directed Graph

Zeyao Mo

In recent two decades, various parallel algorithms have been successfully designed
for a wide range of numerical computations especially arising from the grid-based
simulations of partial differential equation where a discrete solution is defined on
a grid [3]. The grid consists of a set of disjoint polyhedrons called zones. Most
of cases, the data dependent relationship between neighboring two zones is often
symmetric and can be accurately depicted by undirected graphs [9]. In sequence,
the graph can be partitioned for zones distribution for load balance. Then, the
underlying parallel algorithms can be designed in the concept of supersteps as
defined in the Bulk Synchronous Parallel (BSP) programming model [10].

However, such symmetric relationship doesn’t hold for another kind of grid-
based numerical computations where zones should be updated in the behavior of
downstream dataflow depicted by directed graph (digraph) [4]. Those numerical
computations vary from the computational challenging application of radiation or
neutron transport [2][5] on the unstructured grid to many numerical cores on the
rectangular grid. Many works have applied the well known pipelining techniques
[11] to parallelize the downstream sweeping out of the framework of BSP model.
On rectangular grid, Baker et.al. discuss the neutron transport [1], Mo et.al.
[6] discuss the solution of implicitly upwind stencils or downstream smoothers
for convection dominated fluids, zhang [12] address the solution of a group of
independent tridiagonal linear system arising from compact difference stencil for
incompressible Navier-Stokes equation. On the unstructured grid, Plimpton and
Hendrickson et.al.[8] and Mo et.al.[7] addressed the particle transport problems in
Cartesian geometry and in cylindrical geometry respectively. On the unstructured
grid, however, the realization is essentially more tricky because regular pipelines
are not possible to be predefined owing to the irregular data dependent relationship
between neighboring zones.

Nevertheless, these parallel pipelining algorithms depends severely on the char-
acteristics of applications such as types of grid, shapes of zone, discrete stencil,
number of sweeping directions, and so on. Is it possible to design a uniformed
underlying parallel algorithm independent of applications but also suitable for
parallel realization of such kinds of grid-based numerical computations where the
data dependent relationship is non-symmetric and can be accurately depicted by
digraph? This report tries to find a solution.

Firstly, we construct a universe model of acyclic digraph for the description of
data dependent relationship among zones from a wide range of grid-based numer-
ical computations. So, the underlying data flowchart of those numerical compu-
tations can be equivalently transformed to the computation of this digraph. The
acyclic digraph is written as follows

(1) D = (V (D), A(D), U(D))
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Here, D is the digraph, V (D) and A(D) are the set of vertices and arcs respectively,
and U(D) is the underlying supergraph. Each vertex relates to each pair of zone
and sweeping direction, and each arc represents the data dependent relationship
between the neighboring two vertices. The underlying supergraph is a undirected
graph representing the geometric connectivity of all zones. Each vertex called
supervertex relates to a geometric zone and it includes all these vertices of the
digraph who having the same zone. This model is highly abstract and universe
independent of concrete characteristics of grid-based applications. This digraph
is computable if and only if it is acyclic. If a digraph includes a cycle, we should
break it using some application-specific methods while the digraph is constructed.

Based on this digraph, we present a underlying parallel algorithm suitable for
the parallel computation of acyclic digraph, or more aggressively, suitable for these
numerical computations. This algorithm consists of three components such as
digraph partitioning, parallel sweeping and vertices priority strategies.

The most natural idea for partitioning of an acyclic digraphD is the application
of many undirected graph partitioning methods [9] on the underlying supergraph
U(D). The set of vertices of each supervertex will be distributed to the same
processor to which the supervertex belongs. For these methods, loads can be
well balanced and vertices are connected. However, we also present a universe
partitioning method towards better performance for single sweeping direction.

Given the digraph partitioning, a parallel sweeping scheme is presented in this
report for the parallel computation of this digraph. The parallel sweeping can
extremely mine the parallelism for sweeping across digraph vertices only if it is
coupled with an optimal vertices priority strategy for vertex selection in the case
of many vertices are locally waiting for computation. In fact, we give an optimal
priority strategy with the idea of that each vertex is assigned a priority equal to the
length of shortest path away from the processor boundaries. The optimal property
is coincident with the philosophy of that a vertex should be inserted into the wait-
ing list satisfying that the current vertex located at the head is the most welcome
for the release of downstream vertices located at neighboring processors. Thus,
the parallel downstream sweeping algorithm presented in this report is optimal for
any given digraph partitioning.

The numerical results show that our new parallel algorithm can improve algo-
rithm speedup or realistic speedup by 10% compared with original results in work
[7]. Here, the algorithm speedup is the theoretical speedup under the assump-
tion of that message passing has zero overhead. Obviously, we wish our realistic
speedup will be close to the algorithm speedup. For a realistic particle transport
application on a massively parallel computer, this algorithm can achieve speedup
400 using 512 processors each having the peak performance of 1GFLOPS. The
new digraph partitioning method can improve the algorithm speedup by 50% for
single sweeping direction.

We prospect more and more realistic applications apart from the particle trans-
port and some numerical cores, especially prospect the application for robust and
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scalable parallel solver for linear or nonlinear convection dominated fluids on un-
structured grid. Of course, we prospect the applications for mesh free computa-
tions or non-numerical computations where similar data dependent relationship
exits.

In this report, we always assume that the diagraph can be well constructed in
advance. However, it is impossible for those applications where the downstream
sweeping directions depend on the swept solution itself. The digraph can only be
constructed in accordance with the realistic computation. Particularly, we denote
such digraphs by dynamically increasing digraphs. In fact, our underlying parallel
algorithm can be generalized to be suitable for such digraphs only if we modify the
priority strategy based on the shortest path away from the processor boundaries.
We look forward to realistic application of underlying parallel algorithm for such
digraphs.

In computer science, the underlying parallel algorithm and its realistic applica-
tions also bring forward a basic problems, i.e., is there a more practical parallel
programming model suitable for such kinds of parallel sweeping computing? We
can’t make sure.
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Convergence estimates for preconditioned GMRES using
element-by-element bounds on the field of values

Martin van Gijzen

(joint work with Daniel Loghin and Eline Jonkers)

1. Introduction

Preconditioned GMRES [SS] is among the most popular methods for solving non-
symmetric linear systems of equations. To analyse the convergence of GMRES
several upper bounds on the residual norm have been proposed. A class of such
bounds is based on the field of values of the (preconditioned) matrix, see e.g.
[E]. These bounds are quite useful in the analysis of preconditioners, for exam-
ple to establish mesh-independence or to determine an optimal value for a tuning
parameter.

To apply these bounds knowledge of the field of values is necessary. In the
recent paper [LGJ] bounds on the field of values of a preconditioned global Finite
Element matrix are derived based on the fields of values of the element matrices.
These bounds are easy to compute and are applicable to general matrices. The
preconditioner, however, needs to be Hermitian positive definite.

The GMRES-convergence estimates and bounds for the field of values can be
combined in order to analyse and predict the performance of a preconditioner.
To illustrate this we will analyse two problems. We will show that for a wide
class of convection-diffusion-reaction problems the number of iterations is mesh-
independent if the matrix is preconditioned with the symmetric part of the oper-
ator. For the damped Helmholtz equation that is preconditioned with a shifted
Laplacian we will show how a quasi optimal (real) shift can be determined.

2. Element-by-element bounds on the field of values

In [LGJ] a bound is formulated on the field of values FOV (A,B) of the matrix
pair (A,B), with A general and B Hermitian positive definite. FOV (A,B) is
defined by

FOV (A,B) =

{
xHAx

xHBx
,x ∈ C

n,x 6= 0

}

Furthermore, a bound is given on the numerical radius r(A,B) which is defined
by

r(A,B) = max {|z| : z ∈ FOV (A,B)} .
These bounds are based on the fields of values of the element matrices and hence
are easy to compute.

The element-by-element bound on the field of values FOV (A,B) is summarised
as follows. Let Ae, e = 1, · · · , ne be (possibly non-Hermitian) element matrices
and Be, e = 1, · · · , ne be Hermitian positive definite element matrices and let A
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and B be the global matrices that are assembled from these element matrices.
Then the following bounds hold for z ∈ FOV (A,B):

(1) min
e
λ
<(Ae),Be

min ≤ Re(z) ≤ max
e
λ<(Ae),Be

max

(2) min
e
λ
=(Ae),Be

min ≤ Im(z) ≤ max
e
λ=(Ae),Be

max .

Here <(Ae) = 1
2 (Ae +AeH) and =(Ae) = 1

i2 (Ae−AeH). λ<(Ae),Be

and λ=(Ae),Be

are eigenvalues of the generalised element eigenproblems <(Ae)xe = Bexe, and
=(Ae)xe = Bexe, respectively.

The numerical radius r(A,B) can be bounded from above as follows. Let
Ae, e = 1, · · · , ne be (possibly non-Hermitian) element matrices and Be, e =
1, · · · , ne be Hermitian positive definite element matrices and let A and B be
the global matrices that are assembled from these element matrices. Let ν be
defined by

ν = max

{
|z| : z ∈

ne⋃

e=1

FOV (Ae,Be)

}
,

then

r(A,B) ≤ ν .

3. Combination with upper bounds on the GMRES-residual norm

The element-by-element bounds on the field of values can be combined with
some of the classical bounds on the GMRES residual norm. To illustrate this we
will consider two different test problems: a family of convection-diffusion-reaction
equations and a damped Helmholtz equation.

3.1. Convection-diffusion-reaction equation. We consider the following fam-
ily of convection-diffusion-reaction equations

(3) −ε∆u+ µu+ βx
∂u

∂x
+ βy

∂u

∂y
= f .

with homogeneous Neumann boundary conditions. We assume that the parame-
ters ε (diffusion), µ (reaction), and βx and βy (convection) are constant, and that
ε > 0 and µ ≥ 0. Discretisation of equation (3) using linear triangular elements on
a uniform mesh with mesh-size h yields a global matrix that we will denote with
A. As a preconditioner we take the matrix P that corresponds to the symmetric
part of the partial differential operator, i.e., to −ε∆ + µ.

To derive an upper bound on the number of GMRES iterations we apply the
bound on the GMRES-residual norm that is given in [G], page 56. This bound
states that if FOV (A,P) is contained in a disk D = {z ∈ C : |z − c| ≤ s} which
does not contain the origin, then the GMRES-residual norm after k iterations
satisfies

‖rk‖/‖r0‖ ≤ 2

(
s

|c|

)k

.
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Since FOV (A,P) = 1 − FOV (A −P,P), FOV (A,P) is enclosed by a circle
centered at 1 and with radius r(A − P,P). An upper bound for r(A,P) can
be derived using (2). It can be shown that the numerical radius of the element
matrices is given by

ν = r(Ae −Pe,Pe) =
1

2

√
(βx − βy)2

2εµ+ 2
3h

2µ2
+

(βx + βy)2

2εµ+ 2
9h

2µ2
.

Since limh→0 γ = ‖β‖
2
√

εµ we have derived an upper bound on the GMRES-residual

norm that is independent of the mesh-size h. This is also confirmed by extensive
numerical experiments.

3.2. Damped Helmholtz equation. As a second example we consider the damp-
ed Helmholtz equation

−∆u+ (iγ − k2)u = f .

on the unit square with Neumann boundary conditions. In this equation γ repre-
sents the damping parameter and k the wave number. The problem is discretised
with 16 x 16 x 2 linear triangular elements. The wavenumber is k = 10.

As a preconditioner we take the discretisation of a shifted Laplace operator
−∆ + s2, in which s2 is a positive shift. The question is how to chose s2 for
optimal performance.

To answer this question we use the techniques outlined in the previous section
to determine a lower bound for the distance between the field of values and the
origin, which we denote by θ, and for the numerical radius Θ. These values can
be combined with the upper bound on the GMRES-residual norm proposed by
Elman [E]:

‖rk‖/‖r0‖ ≤ (1 − θ2

Θ2
)k/2.

The upper bound that is obtained in this way shows that the minimum number
of iterations is achieved for the following choice of s2:

s2opt =
3
2 |z|

| 32 + h2

6 z| − |h2

6 z|
z = iγk − k2

Numerical experiments confirm that the number of iterations is indeed (almost)
minimised for this value for s2 for a large class of problems.

4. Concluding remarks

We have discussed two examples for which the combination of element-by-
element bounds on the field of values and bounds on the GMRES-residual norm
provides a useful approach to analyse a given preconditioner. This approach works
well for problems where the preconditioner is symmetric positive definite and where
the fields of values of the element matrices do not include the origin. Further
research aims to generalise our approach to problems with a nonsymmetric pre-
conditioner.
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Adaptive FEM for crack propagation and quick solvers

Arnd Meyer

(joint work with M.Kuna, M.Scherzer)

We consider the numerical simulation of crack growth in mechanical structures.
While the model of (slow) crack propagation is well understood in fracture me-
chanics, the efficient numerical simulation requires some modern tools in numerical
analysis [MRS04, MRS05]. One is adaptive finite elements for accurate but simple
approximating the displacement field of a structure with existing crack from the
inherent strong singularities. Another important ingredient is the need of quick
solvers for the resulting series of single finite element computations along the
crack propagation. Both is contained in an efficient way using hierarchical meshes
(as they are directly obtained from the adaptive mesh–refinement) and multilevel
techniques for the preconditioner of the preconditioned conjugate gradient method
(PCGM) for each of the linear systems.

The mesh refinement of the standing crack produces hierarchical meshes, where
the hierarchy in the nodes is contained in the ”‘edge–tree”’ of refined edges and can
be used efficiently for the hierarchical preconditioner [Ys] or more sophisticated
methods such as Multi–Grid. After crack propagation, we have inserted some new
extra edges along the crack line, which possess its hierarchical information as well,
but the nodes along the crack carry ”‘double”’ number of degrees of freedom for
the new crack opening. These are not directly contained in the hierarchical infor-
mation, hence an efficient preconditioner of the next PCG–run is to be constructed
expecially.

If we consider a transformation of the usual basis of f.e. ansatz functions along
the crack into one full hat function and one jump function per crack–node, we are
able to find an efficient domain decomposition–like preconditioner for the resulting
transformed stiffness matrix from its block–structure of a main block as usual
stiffness matrix without crack and another block of fixed low bandwidth.

Some experiments yield about 30 iterations on all successive meshes for all the
PCG–iteration with this new preconditioner [Mey].
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Winterthurerstr. 190
CH-8057 Zürich
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Klaus.Stueben@scai.fraunhofer.de

Fraunhofer-Institut für
Algorithmen und Wissenschaftliches
Rechnen (SCAI)
Schloss Birlinghoven
53754 Sankt Augustin

Prof. Dr. Justin W.L. Wan

jwlwan@uwaterloo.ca

Department of Computer Science
University of Waterloo
200 University Avenue West
Waterloo ONT N2L 3G1
Canada

Prof. Dr. Mary Fanett Wheeler

mfw@ticam.utexas.edu

Department of Mathematics
University of Texas at Austin
1 University Station C1200
Austin, TX 78712-1082
USA

Prof. Dr. Olof B. Widlund

widlund@cs.nyu.edu

Courant Institute of
Mathematical Sciences
New York University
251, Mercer Street
New York, NY 10012-1110
USA

Prof. Dr. Christian Wieners

wieners@math.uni-karlsruhe.de

Institut für Praktische Mathematik
Universität Karlsruhe
76128 Karlsruhe

Prof. Dr. Gabriel Wittum

wittum@iwr.uni-heidelberg.de

wittum@techsim.org

IWR Technische Simulation
Universität Heidelberg
Im Neuenheimer Feld 368
69120 Heidelberg

Prof. Dr. Jinchao Xu

xu@math.psu.edu

Department of Mathematics
Pennsylvania State University
University Park, PA 16802
USA

Prof. Dr. Harry Yserentant

yserentant@math.tu-berlin.de

Institut für Mathematik
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Christoph Zenger

Zenger@in.tum.de

Institut für Informatik
TU München
Boltzmannstr. 3
85748 Garching


