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Introduction by the Organisers

The workshop ‘Nonlinear Evolution Problems’ focussed on three types of nonlinear
evolution equations:

(1) Geometric evolution equations (essentially of parabolic type)
(2) Nonlinear hyperbolic equations
(3) Dispersive equations
The programme consisted of 22 talks presented by international specialists

from Australia, France, Germany, Italy, Sweden, Switzerland and the United
States.Generally, three lectures were delivered in the morning sessions and two
in the late afternoon which left ample time for individual discussions.

In the first group of equations, in particular the Ricci flow and conformal flows
such as the Yamabe flow and the Q-curvature flow were considered. A further
focus was on curvature flows for hypersurfaces such as the Gauss and harmonic
mean curvature flow and on geometric flows of higher order. Julie Clutterbuck
presented a direct approach to certain fundamental estimates for a general class
of parabolic equations. Mete Soner pointed out important relations between fully
nonlinear parabolic equations and backward stochastic differential equations.
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The class of hyperbolic equations was represented by wave maps, Einstein’s
equations of gravitation and nonlinear wave equations in waveguides and cones.

Among the dispersive equations the nonlinear Schroedinger equation and the
KdV equation were considered.

The individual discussions covered connections between approaches to the dif-
ferent equations in each group but also on common techniques used across the three
classes of equations. Among such techniques are for instance the careful exami-
nation of the algebraic and geometric structure of the nonlinear terms. Another
common theme appears to be the phenomenon of blow-up (singularity formation)
for solutions and methods to describe the solution near these. Selfsimilar solutions
and blow-up rates play an important role here.

The organizers decided to particularly encourage the young researchers among
theparticipants to present their work, including a PhD student and several recent
post-doctoral fellows.
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Abstracts

Second Order Backward Stochastic Differential Equations and Fully
Nonlinear Parabolic PDEs

H. M. Soner

(joint work with Patrick Cheridito, Nizar Touzi, Nicolas Victoir)

In the probability literature, backward stochastic differential equations (BSDE)
received considerable attention after their introduction by E. Pardoux and S.
Peng [7,8] in 1990. During the past decade, interesting connections to partial dif-
ferential equations (PDE) were obtained and the theory found wide applications
in mathematical finance. The key property of the BSDEs is the random termi-
nal data that the solutions are required to satisfy. Due to the usual adaptedness
conditions the stochastic processes are required to satisfy, this condition satisfied
in the future introduces additional difficulties in the stochastic setting. However,
these difficulties were overcome and an impressive theory is now available. See for
instance the survey of El Karoui, Peng and Quenez [5] and the references therein
for this theory and its applications.

A backward stochastic differential equation (BSDE in short) is this. We are
first given a diffusion process

(1) dX(t) = µ(X(t))dt+ σ(X(t))dW (t),

with an invertible d × d matrix σ and a vector µ satisfying standard regularity
assumptions. In addition, deterministic functions g and f are also given. Then,
the solution is adapted processes (Y (t), Z(t)) ∈ R×Rd satisfying

dY (t) = f(t,X(t), Y (t), Z(t))dt+ Z(t)dX(t),

with terminal data Y (T ) = g(X(T )). Connection with the partial differential
equations (PDE in short) is easily obtained if one assumes that the solution Y (t)
has a Markovian dependence on the driving diffusion process X(t), i.e., if we as-
sume Y (t) = v(t,X(t)) for some smooth function v. Then, it is a direct calculation
with the use of Ito calculus to show that Z(t) = ∇v(t,X(t)) and that v satisfies

−Lv(t, x) + f(t, x, v(t, x), Dv(t, x)) = 0 , on [0, T )×Rd,

with terminal condition v(T, x) = g(x). Here L is the Dynkin operator of the
diffusion X without the drift term and it is given by

Lv(t, x) = ϕt(t, x) +
1

2
Tr
[
D2ϕ(t, x)σ(x)σ(x)′

]
,

and Dϕ, D2ϕ are the gradient and the matrix of second derivatives of ϕ with
respect to the x variables. We should note that in the theory of BSDEs strong
existence and uniqueness results were obtained without the a priori Markovian
assumption.

Although, the above formula is an interesting stochastic representation for a
nonlinear PDE, it is valid only for semi-linear PDEs. Namely, the nonlinearity
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in this equation is in the first order derivatives and the second order derivatives
appear only linearly in L. One possible extension is to allow the equation for the
driving diffusion process X(t) to carefully depend on the other processes Y and
Z. Then, one has two stochastic differential equations, one for X and the other
for Y . While the X process satisfies an initial condition, the Y process satisfies a
terminal condition. For this reason these equations are known as forward-backward
stochastic differential equations. However, even with this extension, the represen-
tation holds only for quasi-linear partial differential equations and not for all fully
nonlinear equations.

In our paper [3], we to extend this representation result to fully nonlinear partial
equations. In view of recent developments in Monte Carlo and other probabilistic
methods, we believe that such a representation may prove to be useful in developing
stochastic numerical methods for solving fully nonlinear PDEs.

The starting point of our analysis is the recent results of the first three authors
[1, 2]. Motivated by these results, we restrict the Z process in BSDE to be a
diffusion process also. Namely, the second order backward stochastic differential
equation again starts with the diffusion process X ∈ Rd solving (1). Then, given
deterministic functions g and f , we look for a quintuple (Y, Z,Γ, A) of adapted
process with certain properties. Firstly, their ranges are

Y (·) ∈ R, Z(·) ∈ Rd, Γ(·) ∈ Sd, A(·) ∈ Rd,

where Sd is the set of all d× d symmetric matrices. We require them to solve the
stochastic differential equations, which we refer concisely as 2BSDE,

dY (t) = f(t,X(t), Y (t), Z(t),Γ(t))dt + Z(t)′ ◦ dX(t),(2)

dZ(t) = A(t)dt + Γ(t)dX(t),(3)

Y (T ) = g(X(T )),(4)

where ◦ is the Fisk–Stratonovich integral. Further technical growth and regularity
conditions are needed and we refer to [3] for the precise definition of a solution to
a 2BSDE.

In addition to the new equation (3), another important difference between
2BSDE and the standard BSDE is that in (2) the nonlinearity may also depend
on the Γ process. This dependence of f on Γ together with (3), enables us to
cover all fully nonlinear parabolic PDEs. Indeed, as in the BSDEs, let us formally
assume that there is a solution to 2BSDE and that Y (t) = v(t,X(t)) for some
deterministic function v. Then, we calculate directly that the Z process is again
the gradient, and Γ(t) is equal to D2v(t,X(t)). Hence, the dependence of f on
Γ translates into a nonlinear dependence on the Hessian of the related nonlinear
PDE which is given by

−vt(t, x) + f(t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0 , on [0, T )×Rd,(5)

v(T, x) = g(x).(6)

Notice that the above equation does not contain the Lv term as in the standard
BSDE. This is caused by our use of the Fisk–Stratonovich integral in (2) rather
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than the Ito integral. However, this choice is made only to simplify some of the
arguments below and certainly is not an important difference. Indeed, if you used
the Ito integral an additional Hessian term that would have appeared in L, but
we could absorb this by redefining f .

Above calculations imply the existence of a solution to 2BSDE when there exists
smooth solutions to (5). Indeed, let us assume that the PDE (5) together with the
terminal condition (6) has a solution v : [0, T ]×Rd → R which is continuous and

vt,∇v,D2v,LDv exist and are continuous on [0, T ) ×Rd,

where L is as before. Then, it is a direct calculation with the use of Itô formula
that the quintuple

(Y (t), Z(t),Γ(t), A(t)) = (v(t,X(t)),∇v(t,X(t)), D2v(t,X(t)),LD2v(t,X(t)))

satisfies the 2BSDE.
Now we turn to the question of uniqueness of solutions to 2BSDEs. We prove a

uniqueness result under a condition on the PDE and on f . First we assume that
the nonlinearity f is Lipschitz in Y and is non-increasing in the Hessian variable.
The monotonicity assumption is very natural as it implies that (5) is a parabolic
equation. Secondly, we assume that (5) together with the terminal condition (6)
has comparison as in the theory of viscosity solutions. The notion of comparison
is defined precisely in [3] and it simply states that any viscosity subsolution of
(5), (6) is less than ay viscosity supersolution of the same equations. In view of
the strong comparison results proved in the theory of viscosity solutions [4,6] this
condition holds for a very large class of nonlinearities f .

Under the above assumptions, we prove a uniqueness result which we state only
formally in this Introduction.
Main Theorem.

Suppose that the nonlinear PDE (5) and the terminal condition (6) has compar-
ison as din the theory of viscosity solutions. Assume further that f is elliptic and
uniformly Lipschitz and g has polynomial growth. Then, 2BSDE has at most one
solution. Moreover, if the 2BSDE has a solution, then (5) and (6) has a unique
viscosity solution v and the solution (Y, Z,Γ, A) satisfies Y (t) = v(t,X(t))

This theorem is precisely stated and proved in [3].
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Finitely many surgeries for mean curvature flow and Ricci flow

Gerhard Huisken

The mean curvature flow of hypersurfaces and Hamilton’s Ricciflow of Riemann-
ian metrics are both weakly parabolic systems that lead to quasilinear reaction-
diffusion equations for the extrinsic and intrinsic curvatures of the evolving ge-
ometries respectivey. In both cases the flow tends to have singularities for general
initial data and the shape of the singularities is determined by a delicate balance
between the diffusion and reaction forces of the relevant flow.

In high dimensions and without curvature conditions on the initial data both
flows allow a huge variety of possible singularities including in particular pinching
behaviour along higher dimensional, homothetically shrinking cylinders of type
Sn−k × Rk. With today’s analytical technology there is no hope to control such
singularities and to extend the flow beyond them by surgery if there is more than
one flat direction, ie if k > 1. One therefore has to consider dimensions and
curvature conditions that make sure that cylindrical neckpinching can only occur
with k = 1, ie with necks of type Sn−1 × R. There are four such cases, two for
each of the flows, where the same behaviour is expected: There is an algorithm
depending only on the initial data that combines the smooth flow with a surgery
procedure which occurs only at discrete times, which reduces the curvature on
each occasion by a chosen large factor and replaces, either, a spherical cap with
large curvature by a spherical cap with small curvature, or, replaces a cylinder
Sn−1 × [a, b] of large curvature with two spherical caps. In each case the flow then
allows topological conclusions on the initial object.

For mean curvature flow the first example is the case n ≥ 3 for 2-convex sur-
faces, that is surfaces with the sum of the two smallest principal curvatures being
positive. In this case the positivity assumption, which is preserved by the flow
of hypersurfaces in Euclidean space, prevents more than one flat direction near a
singularity. Joint work of Huisken and Carlo Sinestrari (Universita di Roma, Tor
Vergata), to appear, shows that a priori estimates for the roundness of the neck
and for the gradient of the curvature can be directly obtained from the initial data
and the evolution equation. It is crucial for the direct gradient estimate that n ≥ 3
in order to exploit the Codazzi equations in the cross section of a neck.

If mean curvature flow of embedded 2-surfaces with positive mean curvature
is considered, a similar behaviour is expected. However in this case the gradient
estimate will have to exploit the embeddedness to prevent a singularity as known
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from the grim reaper solution. This can possibly be accomplished with techniques
based on work of Brian White for the level set flow.

In the case of Hamilton’s Ricci flow the singularity analysis of Hamilton and
Perelman shows that only neckpinches with one flat direction can occur for n = 3,
without making additional curvature assumptions on the initial metric. The pro-
posed proof of Perelman for the surgery property as stated above depends on a
priori estimates for the curvature combined with integral monotonicity formulae.
Like in the 2-dimensional mean curvature flow the gradient estimate for the cur-
vature can not be derived directly but follows from contracdiction arguments.

The fourth example is Hamilton’s Ricci flow for 4-manifolds of positive isotropic
curvature which is a preserved condition that also rules out singularities with more
than one flat direction. It seems that the missing gradient estimate in Hamilton’s
original paper can either be provided by following Perelman’s arguments or by
obtaining it via a priori estimates similar to the case of 2-convex mean curvature
flow for n ≥ 3.

The blow-up behavior of the biharmonic map heat flow in four
dimensions

Roger Moser

Let Ω ⊂ R4 be an open set and N a compact Riemannian manifold which is
embedded isometrically in a Euclidean space Rn. We consider maps u : Ω → N .
We consider two functionals for such maps: First we have the Dirichlet energy

E1(u) =
1

2

∫

Ω

|∇u|2 dx,

which we call the first energy. Its L2-gradient is minus the tension field

τ1(u) = ∆u+A(u)(∇u,∇u),
where A denotes the second fundamental form of N ⊂ Rn. The second energy is
defined by

E2(u) =
1

2

∫

Ω

|τ1(u)|2 dx.

If S is the tensor on N defined by the condition 〈S(X, ν), Y 〉 = 〈A(X,Y ), ν〉, the
L2-gradient of E2 is given by

τ2(u) = ∆τ1(u) + 2 divA(u)(τ1(u),∇u) −DN
τ1(u)A(u)(∇u,∇u)

−A(u)(τ1(u), τ1(u)) + S(u)(τ1(u), A(u)(∇u,∇u))
− 2S(u)(∇u,A(u)(τ1(u),∇u)).

Here DN denotes covariant derivatives on N . The biharmonic map heat flow is
the L2-gradient flow belonging to E2, that is, the flow given by the fourth order
parabolic equation

∂u

∂t
+ τ2(u) = 0.
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It can be regarded as a higher order counterpart to the harmonic map heat flow,
which is given by the equation

∂u

∂t
= τ1(u).

We study a solution of the flow which is initially smooth. It must be expected
that this solution may become singular in finite time, even though no such exam-
ple is known. We consider the behavior of the flow as the first singular time is
approached.

It turns out that the set of points in Ω where singularities occur, is characterized
by concentrations of either the first or the second energy. Moreover, at each
singularity, there exists a sequence of rescalings of the flow about the respective
point, such that the obtained rescaled maps converge either to a non-constant
harmonic map (i. e., a map with τ1(u) = 0), or to a non-constant biharmonic
map (a map satisfying τ2(u) = 2). Moreover, the harmonic maps arising here
can be identified with either harmonic 2-spheres or stationary weakly harmonic
3-spheres in N . Certain conclusions about the structure and the size of the set
where the singularities occur are also possible: For instance, this set corresponds
to a generalized surface in Ω, and there exists a connection between the curvature
of this generalized surface and the limiting behavior of E2 at the singular time.

Asymptotic silence of inhomogenous cosmological singularities

Lars Andersson

(joint work with Henk van Elst, Claes Uggla, Woei-Chet Lim)

References: Gowdy phenomenology in scale-invariant variables, CQG 21 (2004)
S29-S57; gr-qc/0310127

Asymptotic silence of generic cosmological singularities, Phys. Rev. Lett. 94
(2005) 051101; gr-qc/0402051

BKL and cosmic censorship. Consider spacetimes (V, gαβ), signature − +
+ · · ·+ satisfying Einstein equations Rαβ − 1

2Rgαβ = Tαβ. Assume (V, gαβ) is
maximal, globally hyperbolic and that suitable energy conditions hold. Singular-
ity theorems tell us that generic spacetimes are causally geodesically incomplete
(singular), but give no information about the nature of the singularities. The
Strong Cosmic Censorship Conjecture states that generic maximal globally hyper-
bolic spacetimes are inextendible. The Belinskǐı, Khalatnikov and Lifshitz (BKL)
proposal gives a heuristic scenario for generic cosmological singularities. Roughly
speaking, the singularity is spacelike: observers near the singularity can’t have
communicated in the past; silence holds — particle horizons shrink to zero; the
singularity is local: spatial derivatives are dynamically insignificant near the sin-
gularity
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According to this scenario, non-stiff matter is dynamically insignificant near the
singularity; the singularity is oscillatory in case matter is non-stiff and spacetime
dimension D < 11 and non-oscillatory otherwise.

A non-oscillatory singularity is asymptotically Kasner along generic timelines;
an generic timeline in an oscillatory singularity has Kasner epochs interspersed
with bounces which change the Kasner parameters according to the BKL map.

Mixmaster vs. AVTD. According to BKL, in 3+1 dimensions, the spacetime
geometry along the timeline of a spatial point moving in the direction of a sin-
gularity will during a large fraction of the time be close to a Kasner geometry
−dt2 + t2pdx2 + t2qdy2 + t2rdz2 (coasting), interspersed by bounces which change
the Kasner exponents p, q, r. The sequence of bounces lead to a chaotic dynamics
for the Kasner exponents — the BKL map. Bianchi IX, Mixmaster, is known to
have an oscillatory singularity [Ringström, 2000]. In the presence of stiff matter or
a scalar field, singularity is quiescent or “asymptotically velocity term dominated”
(AVTD), i.e. the geometry along a generic timeline approaches a Kasner geometry,
asymptotically near the singularity, [Andersson and Rendall, 2001].

Hierarchy of cosmological models. In order to understand the structure of
singularities, it is useful to consider models with a spatial group of isometries. In
dimension 3+1 one has in order of decreasing orbit dimension for the symmetry
action, Bianchi or Kantowski-Sachs models with symmetry orbits of dimension 3,
Surface symmetric or G2 models with orbits of dimension 2, U(1) models with
orbits of dimension 1, and the full 3+1 Einstein equations without symmetry. The
reduced system is an ODE in case the orbit dimension is 3, an 1+1 dimensional
PDE in case orbit dimension is 2, and a 2+1 and 3+1 dimensional system in the
last two cases.

Cosmic censorship is well understood in the Bianchi and surface symmetric case.
In the case ofG2, the Gowdy subcase, with T 3 Cauchy surface and symmetry group
U(1) × U(1) with hypersurface orthogonal Killing fields, is well understood. In
that case the reduced system is semi-linear, while in the full G2 case, the reduced
system is quasi-linear. Generic Gowdy spacetimes have AVTD singularity and
cosmic censorship holds [Ringström, 2004]. Further, a (finite number of) spikes
form in generic Gowdy. At spike timelines, the spatial derivative is dynamically
significant, while for generic timelines, the spatial derivative becomes dynamically
insignificant.

Dynamical systems approach. Using scale invariant (Hubble normalized)
frame variables one can write the Einstein equations in first order form. This
allows one to classify fixed point sets, attractors etc. In particular, this approach
gives a natural formulation of BKL proposal and identify an asymptotic dynamical
system (the silent boundary system).

The G2 case. For vacuum G2 with Cauchy surface T 3, it is known that the area
of the symmetry orbits is a time function, and in this case maximal vacuum G2

spacetimes are globally foliated by level sets of the area function. Introducing a
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group-invariant orthonormal frame with one element the timelike normal, and one
element aligned with one of the Killing fields, one may write the G2 symmetric vac-
uum Einstein equations in terms of commutator and frame variables. Normalizing
these variables with suitable powers of the Hubble expansion rate H , one arrives
at an autonomous constrained first-order system of PDE’s with state vector

X = (E1
1,Σ+,Σ−,Σ×,Σ2, N×, N−)T = (E 1

1 ) ⊗ Y .

Here E1
1 is a rescaled frame variable parametrizing the “spatial metric”, the vari-

ables Σ+,Σ−,Σ×,Σ2 parametrize the shear, i.e. the tracefree part of the second
fundamental form, while the N×, N− parametrize the spatial connection.

The G2 vacuum Einstein equations now becomes a constrained system of PDE’s
for these variables. The Hamiltonian constraint restricts X to lie on the unit
sphere in R6. The variables E1

1,Σ+,Σ2 satisfy transport equations with no spatial
derivative, while the variables Σ−, N×,Σ×, N× satisfy pairs of 1:st order hyperbolic
equations. The rescaled spatial frame derivative is of the form E1

1∂x which is what
allows one to extract an asymptotic dynamical system.

The silent boundary. Our numerical studies indicate two important features
of the G2 system. First, asymptotic silence holds, i.e. E 1

1 → 0 exponentially as
t→ ∞. This has the consequence that for the reduced system, light cones collapse
near the singularity and in particular the particle horizon is of a size proportional
to E 1

1 .
The spatial derivative in the Hubble normalized system is of the form E 1

1 ∂x.
Setting E 1

1 = 0 one may extract an autonomous constrained system of ODE’s.
The set E 1

1 = 0 may be thought of as an unphysical boundary of phase space, the
Silent Boundary. Going to the silent boundary corresponds to collapse of the light
cones.

The dynamics on the silent boundary gives an asymptotic dynamical system,
the SB system. The SB system is equivalent to a spatially self-similar model. Nu-
merical studies indicate that the G2 SB system has oscillatory behavior, analogous
to the Bianchi IX system. However, while oscillatory behavior has been proved in
the case of Bianchi IX, this has not been done in the case of the G2 SB system.

Our numerical studies indicate that generic timelines have the property that
spatial derivatives become dynamically insignificant and for those the dynamics is
governed by the SB system. There are exceptional spike timelines where spatial
derivatives are dynamically significant. These are analogous to the spike timelines
for Gowdy, however for G2 the spike timelines are “dynamic” in the sense that
spikes recur along these timelines. Our work indicates that there is an effective
dynamical system governing the asymptotic dynamics also along spike time lines.

The above, heuristic picture, now indicates that the full G2 system should be
governed asymptotically by the SB system, along generic timelines. Since the SB
system has oscillatory behavior, this should also be the case for the full G2 system.
This is strongly supported by numerical experiments, which show that timelines
for the full G2 system and orbits of the SB system indeed have the same asymtpotic
behavior.
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A formal analysis of the rescaled Weyl tensor along non-spike and spike timelines
indicates that for generic timelines in generic G2 spacetimes, the Weyl scalars will
take arbitrarily large values along a sequence of times approaching the singularity.
This behavior is consistent with strong cosmic censorship.
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On a wave map equation arising in General Relativity

Hans Ringström

Due to the work of Choquet-Bruhat and Geroch [1, 3], it is possible to view the
Einstein vacuum equations as an initial value problem. Given vacuum initial data,
there is a maximal globally hyperbolic development (MGHD), which is unique up
to isometry. Since there are examples for which the MGHD is extendible in in-
equivalent ways, one is naturally led to the strong cosmic censorship conjecture,
stating that for generic initial data, the MGHD is inextendible. Since trying to
prove this conjecture in all generality is too ambitious at this time, it is natural
to consider a class of initial data satisfying a given set of symmetry conditions.
One can then ask the question: is it possible to show that the MGHD is inex-
tendible for initial data that are generic in this class? One way of proving that a
spacetime is inextendible is to prove that, given a causal geodesic, there are two
possible outcomes in a given time direction; either the geodesic is complete, or it
is incomplete but the curvature is unbounded along it. Here we shall be interested
in the T 3-Gowdy spacetimes, for which it is known that all causal geodesics are
complete in one time direction (the expanding direction), cf. [6], and incomplete in
the opposite direction (the singularity). What remains to be proved is thus that,
for generic initial data, the curvature is unbounded along all causal geodesics that
end on the singularity.

The essential part of the equations in the case of T 3-Gowdy, cf. [7], are

Pττ − e−2τPθθ − e2P (Q2
τ − e−2τQ2

θ) = 0(1)

Qττ − e−2τQθθ + 2(PτQτ − e−2τPθQθ) = 0.(2)

In the above parametrization, the singularity corresponds to τ → ∞, and our
main concern here is the asymptotic behaviour of solutions to (1)-(2) in this time
direction.

The equations (1)-(2) constitute a wave map equation with hyperbolic space
as a target, cf. [7]. The representation of hyperbolic space associated with the
equations is gR = dP 2 + e2P dQ2 on R2. By the wave map structure, isometries
of hyperbolic space map solutions to solutions. One particular isometry which we
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shall need in order to state the results is the inversion, denoted Inv. In the upper
half plane it corresponds to an inversion in the unit circle with center at the origin.
Note that the map taking (Q,P ) to (Q, e−P ) defines an isometry from (R2, gR) to
the upper half plane model.

In the analysis of Gowdy spacetimes, the existence of expansions for the solu-
tions close to the singularity in certain situations is the key starting point:

P (τ, θ) = v(θ)τ + φ(θ) + u(τ, θ)(3)

Q(τ, θ) = q(θ) + e−2v(θ)τ [ψ(θ) + w(τ, θ)].(4)

Here w, u → 0 as τ → ∞ and 0 < v < 1. In [4] and [5], the authors proved
that given smooth v, φ, q, ψ with 0 < v < 1, there are unique solutions to (1)-(2)
with asymptotics of the form (3)-(4). The functions v, φ, q and ψ can thus be
considered to be initial data on the singularity.

In our experience, the most important function appearing in the expansions
is v. This object may seem devoid of geometric significance, but if one naively
differentiates the expantions with respect to τ , assumes that uτ and wτ converge to
zero and computes the pointwise limit of the kinetic energy density K = P 2

τ +e2PQ2
τ

as τ → ∞, one obtains v2 as a result. Since K is a geometrically defined object, v2

is thus geometrically defined. In [7], we proved that the pointwise limit of K(τ, θ)
always exists. This leads to the following definition.

Definition 1. Let (Q,P ) be a solution to (1)-(2) and let θ0 ∈ S1. Then we define

the asymptotic velocity at θ0 to be v∞(θ0) = [limτ→∞K(τ, θ0)]
1/2 .

The importance of the asymptotic velocity comes from the fact that one can
prove that a causal curve ending at a point θ on the singularity experiences cur-
vature blow up if v∞(θ) 6= 1. In other words, the asympotic velocity can be used
as an indicator for curvature blow up. It can also be used as an indicator for the
existence of expansions.

Proposition 1. Let (Q,P ) be a solution to (1)-(2) and assume 0 < v∞(θ0) < 1.
If Pτ (τ, θ0) converges to v∞(θ0), then there is an open interval I containing θ0,
v, φ, q, r ∈ C∞(I,R), 0 < v < 1, polynomials Ξk and a T such that for all τ ≥ T

‖Pτ (τ, ·) − v‖Ck(I,R) ≤ Ξke
−ατ ,(5)

‖P (τ, ·) − p(τ, ·)‖Ck(I,R) ≤ Ξke
−ατ ,(6) ∥∥∥e2p(τ,·)Qτ (τ, ·) − r

∥∥∥
Ck(I,R)

≤ Ξke
−ατ ,(7)

∥∥∥e2p(τ,·)[Q(τ, ·) − q] +
r

2v

∥∥∥
Ck(I,R)

≤ Ξke
−ατ(8)

where p(τ, ·) = v · τ + φ and α > 0. If Pτ (τ, θ0) converges to −v∞(θ0), then
Inv(Q,P ) has expansions of the above form in a neighbourhood of θ0.

Let us introduce some terminology.

Definition 2. Assume 0 < v∞(θ0) < 1 for some θ0 ∈ S1 and

lim
τ→∞

Pτ (τ, θ0) = −v∞(θ0).
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Let (Q1, P1) = Inv(Q,P ). By Proposition 1, Q1(τ, ·) → q1. We call θ0 a non-
degenerate false spike if ∂θq1(θ0) 6= 0.

Definition 3. Assume 1 < v∞(θ0) < 2 for some θ0 ∈ S1 and

lim
τ→∞

Pτ (τ, θ0) = v∞(θ0).

Then Q converges to a smooth function q in a neighbourhood of θ0. If ∂2
θq(θ0) 6= 0,

we say that θ0 is a non-degenerate true spike.

For a non-degenerate false spike, limτ→∞ Pτ (τ, θ) = v∞(θ) in a punctured neigh-
bourhood of θ0, cf. [7]. For a non-degenerate true spike, 0 < v∞(θ) < 1 in a
punctured neighbourhood of θ0 and limτ→∞ Pτ (τ, θ) = v∞(θ) in a neighbourhood
of θ0, cf. [7].

Definition 4. Let Gl,m be the set of solutions (Q,P ) with l non-degenerate true
spikes θ1, ..., θl and m non-degenerate false spikes θ′1, ..., θ

′
m such that

lim
τ→∞

Pτ (τ, θ) = v∞(θ),

for all θ /∈ {θ′1, ..., θ′m} and 0 < v∞(θ) < 1 for all θ /∈ {θ1, ..., θl}. Let

G =
∞⋃

l=0

∞⋃

m=0

Gl,m.

Theorem 1. Gl,m is open in the C2 ×C1-topology on initial data and G is dense
with respect to the C∞-topology on initial data.

The proof of these statements are to be found in [7] and [8]. The main point is
that all solutions in G have the property that all causal curves ending on the singu-
larity experience curvature blow up. Since it is known that all causal geodesics are
complete in the opposite time direction, cf. [6], this gives a proof of strong cosmic
censorship in the class of T 3-Gowdy. Note however that the above result gives a
very detailed description of the asymptotic behaviour of generic singularities; the
true and false spikes are in fact very well understood.
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Finite Dimensional Approximations to (and non-squeezing for) the
KdV flow with periodic boundary conditions

Markus Keel

(joint work with J.Colliander, G. Staffilani, H. Takaoka, T. Tao)

This talk is concerned with the symplectic behavior of the Korteweg-de Vries
(KdV) flow

(1) ut + uxxx = 6uux; u(0, x) = u0(x)

on the circle x ∈ T := R/2πZ, where u(t, x) is real-valued. In particular we
investigate how the flow may (or may not) be accurately approximated by cer-
tain finite-dimensional models, and then use such an approximation to conclude a
symplectic non-squeezing property.

Unlike the work of Kuksin [9] which initiated the investigation of non-squeezing
results for infinite dimensional Hamiltonian systems, the non-squeezing argument
here does not construct a capacity directly, but relies rather on the aforementioned
approximations and the finite-dimensional non-squeezing theorem of Gromov [6].
In this way our results are similar to those obtained for the NLS flow by Bourgain
[2]. A major difficulty here though is the lack of any sort of smoothing estimate
which would allow us to easily approximate the infinite dimensional KdV flow by a
finite-dimensional Hamiltonian flow. To resolve this problem we invert the Miura
transform and work at the level of the modified KdV (mKdV) equation, for which
smoothing estimates can be established.

The material sketched here is described in detail in the paper [3].
On the circle we have the spatial Fourier transform

û(k) :=
1

2π

∫ 2π

0

u(x) exp(−ikx) dx

for all k ∈ Z, and the spatial Sobolev spaces

‖u‖Hs
x

:= (2π)1/2‖〈k〉sû‖l2k
for s ∈ R, where 〈k〉 := (1 + |k|2)1/2. Define the mean operator P0 by P̂0u(k) =
χk=0û(k), and the mean-zero periodic Sobolev spaces (which are preserved by the
KdV flow) Hs

0 by Hs
0 := {u ∈ Hs

x : P0u = 0} endowed with the same norm as Hs
x.

If the initial datum u0 for (1) is smooth, then there is a global smooth solution
u(t) (see e.g. [11]). We can thus define the non-linear flow map SKdV (t) on C∞(T)
by SKdV (t)u0 := u(t). In particular this map is densely defined on every Sobolev
space Hs

0 . If s ≥ −1/2, then the equation (1) is globally well-posed in Hs
0 . (see
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[4, 5, 7].) In fact, if one asks only that the flow be continuous in time, then global
well-posedness for (1) has been established for all s ≥ −1 in [8] using inverse
scattering methods.

We describe now the low frequency approximation results which lie at the heart
of our results. We let b(k) be the restriction to the integers of a real even bump
function adapted to [−N,N ] which equals 1 on [−N/2, N/2], and consider the
evolution

(2) ut + uxxx = B(6uux); u(0) = u0

where

B̂u(k) = b(k)û(k).

Let SBKdV denote the flow map associated to (2). Observe that this is a finite-
dimensional flow on the space P≤NH

s
0 , where P≤N is the Fourier projection to

frequencies ≤ N : P̂≤Nu(k) = χ|k|≤N û(k). While SBKdV is not a symplectomor-
phism, we can conjugate a flow of the form (2) with a simple multiplier operator
to arrive at the desired finite dimensional symplectomorphism (see [3]).

Theorem 1. Fix s ≥ −1/2, T > 0, and N � 1. Let u0 ∈ Hs
0 have Fourier

transform supported in the range |k| ≤ N . Then

sup
|t|≤T

‖P≤N1/2(SBKdV u0(t) − SKdV (t)u0)‖Hs
0
≤ N−σC(s, T, ‖u0‖Hs

0
)

for some σ = σ(s) > 0.

Theorem 1 can be viewed as a statement that one can (smoothly) truncate the
KdV evolution at the high frequencies without causing serious disruption to the
low frequencies. Our second main result is in a similar vein:

Theorem 2. Fix s ≥ −1/2, T > 0, N ≥ 1. Let u0, ũ0 ∈ Hs
0 be such that P≤2Nu0 =

P≤2N ũ0 (i.e. u0 and ũ0 agree at low frequencies). Then we have,

sup
|t|≤T

‖P≤N (SKdV (t)ũ0 − SKdV (t)u0)‖Hs
0
≤ N−σC(s, T, ‖u0‖Hs

0
, ‖ũ0‖Hs

0
)

for some σ = σ(s) > 0.

We prove Theorem 1 and Theorem 2 by using the Miura transform u = Mv,
defined by

(3) u = Mv := vx + v2 − P0(v
2).

As discovered in [10], this transform allows us to conjugate the KdV flow to the
modified Korteweg-de Vries (mKdV) flow

(4) vt + vxxx = F (v); v(x, 0) = v0(x)

where the non-linearity F (v) is given by

(5) F (v) := 6(v2 − P0(v
2))vx.

The modified KdV equation has slightly better smoothing properties than the or-
dinary KdV equation, and in addition the process of inverting the Miura transform
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adds one degree of regularity (from H
−1/2
0 to H

1/2
0 ). By proving a slightly more

refined trilinear estimate than those found in e.g. [5] we are able to prove the above
two theorems by passing to the mKdV setting using the Miura transform.

To describe the non-squeezing result, we need some additional notation. For any

u∗ ∈ H
−1/2
0 (T), r > 0, k0 ∈ Z∗, and z ∈ C, we consider the infinite-dimensional

ball

B∞(u∗; r) := {u ∈ H
−1/2
0 (T) : ‖u− u∗‖H−1/2

0
≤ r}

and the infinite-dimensional cylinder

C∞
k0(z; r) := {u ∈ H

−1/2
0 (T) : |k0|−1/2|û(k0) − z| ≤ r}.

Theorem 3. Let 0 < r < R, u∗ ∈ H
−1/2
0 (T), k0 ∈ Z∗, z ∈ C, and T > 0. Then

SKdV (T )(B∞(u∗;R)) 6⊆ C∞
k0(z; r).

In other words, there exists a global H
−1/2
0 (T) solution u to (1) such that

‖u(0)− u∗‖H−1/2
0

≤ R

and

|k0|−1/2|û(T )(k0) − z| > r.

Note that no smallness conditions are imposed on u∗, R, z, or T .
Roughly speaking, this theorem asserts that the KdV flow cannot squash a large

ball into a thin cylinder. Notice that the balls and cylinders can be arbitrarily far
away from the origin, and the time T can also be arbitrary. Note though that
this result is interesting even for u∗ = 0, z = 0 and smooth initial data u0, as
it tells us that the flow cannot at any time uniformly squeeze the ball B∞(0, R)
even at a fixed frequency k0. A second immediate application of Theorem 3 to
smooth solutions was highlighted in a different context already in [9], namely that
such smooth solutions of (1) cannot uniformly approach some asymptotic state:

for any neighborhood B∞(u0;R) of the initial data in H− 1
2 (T) and for any time

t, the diameter of the set SKdV (t)(B∞(u0;R)) cannot be less than R.
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On the blow-up for the critical nonlinear Schrödinger equation in a
domain

Fabrice Planchon

(joint work with Pierre Raphaël)

We consider the L2-critical focusing nonlinear Schrödinger equation in a domain
Ω with Dirichlet boundary condition:

(1) (NLS)





iut = −∆u− |u| 4
N u, (t, x) ∈ [0, T )× Ω,

u|∂Ω = 0,
u(0, x) = u0(x), u0 : Ω → C

with u0 ∈ H1
0 = H1

0 (Ω) in dimension N ≥ 1.
We thereafter assume the domain Ω to be such that local well-posedness in the

energy space H1
0 = H1

0 (Ω) holds in the following sense: for all u0 ∈ H1
0 , there

exists T > 0 and a unique maximal solution u(t) ∈ C([0, T ), H1
0 ) to (1). Moreover,

we assume that there is continuous dependence of the solution with respect to the
initial data locally in time— note that uniform continuity is not required— and
that the time of existence is lower bounded by a function of the H1 norm of the
initial data only. This is known to be the case when Ω = RN or if N = 1, 2, for
any domain Ω with conveniently smooth boundaries [11], and when N ≥ 3, recent
progress has been made when Ω is an exterior domain [2].

The power in (1) is known to be the smallest one for which blow up may occur,
and indeed finite time blow up does happen [4] from the virial identity in any
star-shaped domain (generalizing the argument of [3]).

A lot of work has been devoted to the RN case in recent years. We briefly
summarize (some of) these below. At least two different blow up behaviors are
known to occur:

• In dimension N = 1, 2, there exist a family of solutions with blow-up rate
|∇u(t)|L2 ∼ 1

T−t near blow up time, by a result of Bourgain-Wang [1].

• On the other hand, numerical simulations, [5], and formal arguments, [14],
suggest the existence of solutions blowing up like

|∇u(t)|L2 ∼
(

log | log(T − t)|
T − t

) 1
2
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in dimension N = 2. In dimension N = 1, Perelman, [12], proves the
existence of such a solution and its stability in some space E ⊂ H1.

Then the situation was clarified by Merle and Raphaël in the series of papers
[6–10,13], where they describe extensively the dynamics of (1) by classifying blow-
up solutions and proving existence of log− log solutions in the energy space under
natural assumptions.

Our aim is to address similar issues for a general domain Ω. One of the main
outcome of the analysis by Merle and Raphaël in the RN case is that the singularity
formation is in some sense a local in space phenomenon.

Two main difficulties occur for the study of the blow-up dynamics of (1) on a
domain when compared to the analysis in RN :
(i) First, we no longer retain the large symmetry group of (1) in RN , and in partic-
ular we have to do without the conservation of the momentum

∫
Im(∇uu)(t) dx.

(ii) Second, a new difficulty is the possibility for blow up to occur on the boundary
of the domain.

Our first result is a classification of blow-up dynamics for a suitable class of
solutions.

Theorem 1 (Rigidity of the blow up dynamics). Let N = 1 or N ≥ 2 assuming
the Spectral Property from [6]. There exist universal constants α∗ > 0 and C∗ > 0
such that the following holds true. Let an initial data u0 ∈ H1

0 and u(t) the cor-
responding solution to (1) with [0, T ) its maximum time interval existence on the
right in H1

0 . Assume the following:
(H1) Small super critical mass: u0 ∈ Bα∗ = {u0 ∈ H1(RN ) with

∫
Q2 ≤∫

|u0|2 <
∫
Q2 + α∗}.

(H2) Blow-up in finite time: 0 < T < +∞; note that under these two hypothesis,
u(t) admits, for t close enough to T , a geometrical decomposition∣∣∣λ0(t)

N
2 u(t, λ0(t)x + x0(t))e

iγ0(t) −Q(x)
∣∣∣
H1

≤ δ(α∗), by the variational character-

ization of the ground state Q.
(H3) Localization of the center of mass: For t close enough to T , we have

(2) x0(t) ∈ Ω and lim inf
t→T

d(x0(t), ∂Ω) > 0.

(H4) Finite momentum assumption: There exists a fixed and smooth vector-valued
cut-off function φ taking values between zero and one, with Supp(φ) ⊂comp Ω,
φ(x) being the identity when d(x, ∂Ω) ≥ 1

2 lim inft→T d(x0(t), ∂Ω), and |∇φ|L∞ ≤
10

lim inft→T d(x0(t),∂Ω) , such that u(t, x) verifies

(3) lim sup
t→T

∣∣∣∣Im(

∫
φ · ∇u(t)u(t))

∣∣∣∣ < +∞.

Then:
(i) Universality of the singular structure in space: there exist parameters
(λ(t), x(t), γ(t)) ∈ R∗

+ × Ω × R and an asymptotic profile u∗ ∈ L2 such that

(4) u(t) − 1

λ(t)
N
2

Q

(
x− x(t)

λ(t)

)
eiγ(t) → u∗ in L2 as t→ T.
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Moreover, the blow-up point is finite and inside the domain:

x(t) → x(T ) ∈comp Ω as t→ T.

(ii) Selection of the dynamics for E0 ≤ 0: if moreover

E(u0) ≤ 0,

then u(t) blows up with the log-log law

(5) lim
t→T

|∇u(t)|L2

|∇Q|L2

(
T − t

log | log(T − t)|

) 1
2

=
1√
2π
.

(iii) Rigidity of the blow up speed: If E0 > 0, then u(t) either satisfies log-log law
(5) or the following lower bound for t close enough to T :

(6) |∇u(t)|L2 ≥ C∗

(T − t)
√
E0

.

(iv) Asymptotic of u∗ on the singularity: The same conclusions on u∗ as in the
RN case hold true.

In other words, the same classification results known in RN hold in a domain,
provided blow up is a priori assumed to occur in the interior, assumption (H3),
and the modified momentum is uniformly bounded, assumption (H4).

Whenever the domain Ω is a ball, and under spherical symmetry of the datum,
assumption (H4) is automatically fulfilled. A direct corollary of Theorem 1 is thus:

Corollary 1 (Log-log blow up for E0 < 0 on a ball). Let N = 1 or N ≥ 2
assuming the Spectral Property. There exists a universal constant α∗ > 0 such
that the following holds true. Let R > 0 and Ω = B(0, R). Let u0 be a radial—
or even in dimension N = 1— initial data with

u0 ∈ Bα∗ and E(u0) < 0,

then the corresponding solution u(t) to (1) blows up in finite time 0 < T < +∞
in the log-log regime (5).

Note that this result proves the existence of log-log dynamics for the special case
Ω = B(0, R) . Existence and stability of log-log dynamics may be generalized to
an arbitrary domain, by carefully constructing data which are very well localized
inside the domain. Such data yield solutions which are in the log-log regime and
for which one may bootstrap all the a priori control, especially the momentum.

Theorem 2 (Existence and stability of the log-log dynamics). Let N = 1 or
N ≥ 2 assuming Spectral Property. There exists a universal constant α∗ > 0 such
that the following holds true.
(i) Existence of log-log dynamics: For all x̃ ∈ Ω, there exists a time T (x̃) > 0
such that for all T ∈ (0, T (x̃)), there exists a solution u(t) ∈ H1

0 (Ω) to (1) which
satisfies assumptions (H1), (H2), (H3), (H4) of Theorem 1 and blows up at time
0 < T < +∞ and at blow-up point x(T ) = x̃ in the log-log regime (5).
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(ii) Stability of the log-log dynamics: The set of initial data u0 ∈ Bα∗ such
that the corresponding solution u(t) to (1) satisfies assumptions (H1), (H2), (H3),
(H4) of Theorem 1 and blows up in the log-log regime (5) is open in H1

0 (Ω).

A simple but remarkable corollary of Theorem 2 is the existence of a two points
log-log blow up solution in RN .

Corollary 2 (Existence of a two point log-log blow up solution in RN ). Let
N = 1 or N ≥ 2 assuming the Spectral Property. There exists an initial data
u0 ∈ H1(RN ) such that the corresponding solution u(t) to (1) with Ω = RN blows
up in finite time 0 < T < +∞ in the log-log regime (5) at exactly two points in
space.
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[3] R. T. Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear
Schrödinger equations. J. Math. Phys., 18(9):1794–1797, 1977.

[4] O. Kavian. A remark on the blowing-up of solutions to the Cauchy problem for nonlinear
Schrödinger equations. Trans. Amer. Math. Soc., 299(1):193–203, 1987.

[5] M. J. Landman, G. C. Papanicolaou, C. Sulem, and P.-L. Sulem. Rate of blowup for solutions
of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3), 38(8):3837–
3843, 1988.

[6] F. Merle and P. Raphael. Blow up dynamic and upper bound on the blow up rate for critical
nonlinear schrödinger equation. to appear in Annals of Math.

[7] F. Merle and P. Raphael. Profiles and quantization of the blow up mass fro critical non
linear schrödinger equation. to appear in Comm. Math. Phys.

[8] F. Merle and P. Raphael. Sharp lower bound on the blow up rate for critical nonlinear
schrödinger equation. preprint.

[9] F. Merle and P. Raphael. Sharp upper bound on the blow-up rate for the critical nonlinear
Schrödinger equation. Geom. Funct. Anal., 13(3):591–642, 2003.

[10] F. Merle and P. Raphael. On universality of blow-up profile for L2 critical nonlinear

Schrödinger equation. Invent. Math., 156(3):565–672, 2004.
[11] T. Ogawa and T. Ozawa. Trudinger type inequalities and uniqueness of weak solutions for

the nonlinear Schrödinger mixed problem. J. Math. Anal. Appl., 155(2):531–540, 1991.
[12] G. Perelman. On the formation of singularities in solutions of the critical nonlinear

Schrödinger equation. Ann. Henri Poincaré, 2(4):605–673, 2001.
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Stable manifolds for all monic supercritical focusing NLS in 1-d

Joachim Krieger

(joint work with Wilhelm Schlag)

Consider the nonlinear focusing NLS

(1) i∂tψ + ∂2
xψ = −|ψ|2σψ, (t, x) ∈ R1+1,

where σ > 2, i. e. the L2-supercritical case. It is well known that this equation
admits standing waves of the form

ψ(t, x) = eiα
2tφ(x, α), α > 0

where the function φ(x, α) solves the associated elliptic problem

−φ′′(., α) + α2φ(., α) = φ2σ+1(., α)

Indeed, we explicitly have

φ(x, 1) =
(σ + 1)

1
2σ

cosh
1
σ (σx)

>From the work of Berestycki and Cazenave, it is well-known that these standing
waves are unstable, in the sense that certain smooth initial data arbitrarily close
to any φ(x, α) result in finite-time blow-up. An analysis of the spectrum of the
linearization of (1) around any standing wave reveals the existence of a point
spectrum consisting of a 4 dimensional root space and two imaginary eigenvalues,
one of which leads to exponential growth for the linear evolution at t→ +∞. This
intuitively suggests that choosing initial data in at least a co-dimension 5 manifold
of initial data should result in smooth solutions as t→ +∞. Indeed, applying the
inherent symmetries of (1) consisting of Galilei transforms, re-scalings and phase-
shifts should allow one to recoup four of the missing dimensions, resulting in a
co-dimension 1 manifold of good initial data.
To construct these solutions, one tries an ansatz

ψ(t, x) = W (t, x) +R(t, x),

where W (t, x) is a Galilei-transformed, phase-shifted and re-scaled version of the
standing wave eitφ(x, 1):

(2) W (t, x) := ei(v(t)x−
R

t
0
(v2(s)−α2(s))ds+γ(t))φ(x − 2

∫ t

0

v(s)ds−D(t), α(t))

depending on the parameters π(t) := {γ(t), v(t), D(t), α(t)}, and R(t, x) represents
the dispersive radiation part. The purpose of these parameters is to ensure that
the radiation part R(t, x) is controlled as far as its root part is concerned. We
have
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Theorem 1.1. Fix some σ > 2 in (1) and any α0 > 0. Then there exist a
real-linear subspace S ⊂ L2(R) of co-dimension five and a small δ > 0 with the
following properties: Let

(3) B :=
{
R0 ∈ L2(R) | |||R0||| := ‖R0‖H1 + ‖〈x〉R0‖L1∩L2 + ‖〈x〉∂xR0‖L1 < δ

}

and let Σ := {f ∈ L2(R) | |||f ||| < ∞}. Then there exists a map1 Φ : B ∩ S → Σ
with the properties

|||Φ(R0)||| . |||R0|||2 ∀R0 ∈ B ∩ S(4)

|||Φ(R0) − Φ(R̃0)||| . δ|||R0 − R̃0||| ∀R0, R̃0 ∈ B ∩ S(5)

and so that for any R0 ∈ B ∩ S the NLS (1) has a global H1 solution ψ(t) for
t ≥ 0 with initial condition ψ(0) = φ(·, α0) +R0 + Φ(R0). Moreover,

ψ(t) = W (t, ·) +R(t)

where W as in (2) is governed by a path π(t) of parameters which converges to
some terminal vector π(∞) such that supt≥0 |π(t) − π(∞)| . δ and so that

(6) ‖R(t)‖H1 . δ, ‖R(t)‖∞ . δ〈t〉− 1
2 , ‖〈x− y(t)〉− 1

2−εR(t)‖∞ . δ〈t〉−1−ε

for all t > 0 and some ε > 0. The solution ψ(t) is unique amongst all solutions with
these initial data and satisfying the above decay assumptions as well as certain
orthogonality relations and certain decay assumptions on the path. Finally, there
is scattering:

R(t) = eit∂
2
xf0 + oL2(1) as t→ ∞

for some f0 ∈ L2(R).

As mentioned earlier, one regains 4 dimensions here by letting the inherent
symmetries act on S:

Theorem 1.2. Fix any α0 > 0. Then there exist a small δ > 0 and a Lipschitz
manifold N inside the space Σ of size2 δ and codimension one so that φ(·, α0) ∈ N
with the following property: for any choice of initial data ψ(0) ∈ N the NLS (1)
has a global H1 solution ψ(t) for t ≥ 0. Moreover,

ψ(t) = W (t, ·) +R(t)

where W as in (2) is governed by a path π(t) of parameters so that |π(0) −
(0, 0, 0, α0)| . δ and which converges to some terminal vector π(∞) such that
supt≥0 |π(t) − π(∞)| . δ. The solution is unique under the same conditions as in
the preceding theorem. Finally, (6) holds and there is scattering:

R(t) = eit∂
2
xf0 + oL2(1) as t→ ∞

for some f0 ∈ L2(R).

1B ∩ S is L2-dense in S
2This means that N is the graph of a Lipschitz map Ψ with domain B ∩ S̃ where S̃ is a

subspace of codimension one and with B as in (3). As before, B ∩ S̃ is L2-dense in S̃.
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The proof of these theorems relies heavily on an analysis of the spectral prop-
erties of the operator

H = H(α) =

(
−∂2

x + α2 − (σ + 1)φ2σ(·, α) −σφ2(·, α)
σφ2σ(·, α) ∂2

x − α2 + (σ + 1)φ2σ(·, α)

)

The spectrum is located on R ∪ iR with continuous spectrum consisting of the
intervals (−∞,−α2]∪ [α2,∞), while the discrete spectrum consists of {0,±iγ(α)}
for suitable γ(α) ∈ R+. Important further properties of this spectrum are the
absence of resonances at the endpoints of the continuous spectrum. Control over
the radiation part then relies on the following linear estimates:

||eitHPdis
(
R
R̄

)
||L2

x
. ||R||L2

x
, ||eitHPdis

(
R
R̄

)
||L∞

x
. 〈t〉− 1

2 ||R||L1
x

||〈x〉−1eitHPdis

(
R
R̄

)
||L∞

x
. 〈t〉− 3

2 ||〈x〉R||L1
x

Of these inequalities the last is the most delicate, and represents a significant
departure from the behavior of the free evolution eitH0 where

H0 :=

(
−∂2

x + α2 0
0 ∂2

x − α2

)

Indeed, this is where the absence of resonances at the edges of the continuous
spectrum comes in.

The intriguing question remains as to what happens for initial data close to but
away from the initial data manifold N .
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A geometric convergence proof for the Yamabe flow

Michel Grüneberg

We study a geometric evolution equation which is derived from the total scalar
curvature functional on the space of Riemannian metrics on a compact manifold,
and prove a general convergence result in the case of manifolds that have positive
conformal Yamabe invariant. In particular, our method does not require that the
manifold be conformally inequivalent to the standard round n-sphere (Sn, ground).

Specifically, we consider the Yamabe flow




∂

∂t
g(t) =

(
rg(t) −Rg(t)

)
g(t),

g(0) = g0 given,

on a compact Riemannian manifold (Mn, gback) of dimension n ≥ 3, starting from
an arbitrary initial metric g0 ∈ [gback], the conformal class of the background met-

ric. Here, rg(t) := vol
(
g(t)

)−1 ∫
M
Rg(t) dµg(t) is the average of the scalar curvature

of g(t) over M .
This geometric evolution equation was originally introduced by R. Hamilton

shortly after the Ricci flow as an alternative approach to solving the Yamabe
problem (see [4] for an account) on manifolds of positive conformal Yamabe in-
variant; however it did not appear in the literature before 1988 (see [3]). It arises as
the negative L2-gradient flow for the (normalized) total scalar curvature functional
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when restricted to a conformal class, which is given by

R(g) =
1

vol(g)
n−2

n

∫

M

Rg dµg for g ∈ [gback].

As such, it can be viewed as a natural geometric deformation of a Riemannian met-
ric to a conformal metric of constant scalar curvature. Therefore the convergence
question for this flow constitutes the “parabolic version” of Yamabe’s problem.

The goal of this talk is to outline a proof of the general convergence result for
this flow on compact three-manifolds, given arbitrary initial metrics. We first give
a new, local proof (compare with [8]) of the general convergence result for the
Yamabe flow on compact locally conformally flat manifolds of positive conformal
Yamabe invariant: We show that on such manifolds, the evolving metric produced
by the flow converges smoothly from any initial metric to a unique limit metric
of constant scalar curvature. We then outline how this proof can be modified to
prove convergence from arbitrary initial data on any compact three-manifold of
positive conformal Yamabe invariant.

The main idea of the proof is to use the local Weil-Petersen geometry near
the (n + 2)-dimensional submanifold Mcc of constant curvature metrics in the
conformal class [ground] of the standard metric on Sn to describe the evolution of
large solutions g(t) of the Yamabe flow by means of a projected path of constant
curvature metrics g0(t). We carefully estimate the projection error that occurs in
this procedure, and based on this estimate we show how the Riemannian Pohozaev
Identity (see [5]) and the Riemannian Positive Mass Theorem (see [6]) can be
used to deduce that the scale parameter of g0(t) (measuring the concentration of
the constant curvature metric) improves once the solution is greater than some
threshold value.

By making this construction canonical, we succeed in applying this fact to
carefully chosen collections of bubbles of the solution in order to conclude that
g(t) remains uniformly bounded, which implies convergence of the flow.

This work uses in its first step (where we show that the scalar curvature function
produced by the flow converges uniformly to a constant) an integral decay estimate
that was obtained by H. Schwetlick and M. Struwe (see [7, Lemma 3.3]), and is
based on quite different methods than S. Brendle’s work [1].
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Global Convergence of the Yamabe Flow

Simon Brendle

Let M be a compact manifold of dimension n ≥ 3. Along the Yamabe flow, the
Riemannian metric is deformed such that

∂g

∂t
= −(Rg − rg) g,

where Rg is the scalar curvature associated with the metric g and rg denotes the
mean value of Rg. Since the velocity is a scalar multiple of the metric, the Yamabe
flow preserves the conformal structure.

The Yamabe flow can be reduced to a nonlinear partial differential equation of

parabolic type. Indeed, if we write the metric in the form g = u
4

n−2 g0 for a fixed
background metric g0, then the function u satisfies the equation

∂

∂t
u

n+2
n−2 =

n+ 2

4

(4(n− 1)

n− 2
∆g0u−Rg0 u+ rg u

n+2
n−2

)
.

It is known that the Yamabe flow exists for all time. Moreover, if 3 ≤ n ≤ 5
or M is locally conformally flat, then the flow approaches a metric of constant
scalar curvature as t → ∞. I discuss how this result can be generalized to higher
dimensions (n ≥ 6) under a technical condition on the Weyl tensor. The proof
requires the construction of an appropriate family of test functions.

Stability of Minkowski space in harmonic gauge

Igor Rodnianski

(joint work with H. Lindblad)

The talk discussed a new proof of global stability of Minkowski space for the
Einstein-vacuum and Einstein-scalar field equations for general asymptotically flat
initial data. The new approach relies on the use of the harmonic gauge previously
believed to be unsuitable for this problem. The problem is viewed as a “small
data global existence result” for a system of quasilinear wave equations for the
components of a metric and uses a notion of the weak null condition.
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Linear and non-linear waves in general relativity

Mihalis Dafermos

(joint work with Igor Rodnianski)

Let us begin our discussion with the wave equation

(1) 2φ = 0

on Minkowski space R3+1.
To understand the issue at hand, we need a good picture of the causal structure

of R3+1. This can be provided by its so-called Penrose diagram:

I−

I+

r
=

0

What is pictured above is in fact the 2-dimensional Lorentzian quotient Q =
R3+1/SO(3), conformally embedded as a bounded subset of R1+1. The point of
these diagrams is two-fold: On the one hand, we can read off by inspection the
causal structure, i.e. we can identify spacelike, (future and past-directed) timelike,
and null curves, and, from these concepts, for each point p ∈ Q, its causal future,1

denoted J+(p), and its causal past, denoted J−(p). On the other hand, as the
embedding is bounded, it induces a boundary ∂Q ⊂ R1+1 to which causal relations
can also be applied. In particular, we can identify a subset I+ ⊂ ∂Q called future
null infinity. This set comprises of limit points of future-directed null rays in Q
for which r → ∞, wher r denotes the area radius function2.

Let φ now be an SO(3)-invariant solution of the wave equation (1) such that φ
and ∇φ are of compact support on a complete Cauchy hypersurface with projection
in Q to be denoted Σ. Writing the equation (1) as

∂u∂v(rφ) = 0

where u and v are arbitrary null coordinates with respect to the induced metric of
Q, it is clear that, to the future of Σ, φ is supported in the darker-shaded region

1The set of all points accessible from p by a future directed causal (i.e. timelike or null) curve.

2i.e. the function r : Q → R defined by r(p) =
q

Area(π−1

1
(p))/4π, where π1 denotes the

natural projection π1 : R
3+1 → Q
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below:

I+

r
=

0

Σ

This is the celebrated strong Huygens principle. Moreover, rφ extends regularly
to I+, along which it is clearly compactly supported.

The subject of this talk is: What is the analogue of the above properties of φ
when Minkowski space is replaced by the exterior of a black hole?

First we must understand when a spacetime (M, g) contains a black hole: Let
us restrict consideration to spherically symmetric spacetimes, so–as with R3+1–we
may talk of the 2-dimensional Lorentzian quotient Q = M/SO(3), conformally
embedded into a bounded domain of R1+1, and the area function r. We can define
as before I+, and in the asymptotically flat case, this set will be non-empty. If
Q = J−(I+), we say that Q does not contain a black hole. This is clearly the case
for R3+1, by inspection of its Penrose diagram. Otherwise, we call Q\J−(I+) the
black hole of Q, and J−(I+) the exterior. The future boundary H+ of J−(I+) in
Q is known as the event horizon. These concepts are illustrated below:

I+

Σ

H+
Q \ J

− (I+ )

Why is one interested in the behaviour of waves on black hole exteriors? The
Einstein equations3 themselves

(2) Rµν −
1

2
gµνR = 2Tµν

can be viewed as a system of non-linear wave equations for gµν , with respect to
the Lorentzian metric defined again by gµν . The behaviour of these waves on I+

is precisely what is observable to detection by the astrophysicist. But moreover,
the very tenability of the notion of black holes rests on the conjecture that the
explicit Kerr family4 of black-hole solutions is dynamically stable. As in the case
with the proof of stability of Minkowski space, one expects that this stability
depends crucially on the decay properties of waves. Finally, decay rates along
H+ are intimately related to the internal structure of black holes, in particular,

3These are the fundamental equations which define the dynamics of the gravitational field in
general relativity.

4These comprise a 2-parameter family which contain all axisymmetric stationary one-black
hole solutions to the Einstein vacuum equations and are presently assumed by astrophysicists to
describe the gravitational field surrounding millions of objects in the visible universe.
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the existence and nature of “apparent” horizons, and the validity of the so-called
strong cosmic censorship conjecture, i.e. the unique predictability of the future for
all surviving observers.

In this talk, I report on fairly complete understanding of the issue of decay
in what is essentially the simplest situation where it can be posed, namely the
collapse of a spherically symmetric self-gravitating scalar field, i.e. the Cauchy
problem for the coupled nonlinear system comprising of (2) and 2gφ = 0, where

Tµν = φµφν −
1

2
gµνφ

αφα,

for asymptotically flat, spherically symmetric initial data. Definitions of all these
notions can be found in [6]. The study of the above system was initiated by
Christodoulou [2]. In [3], he showed that for generic initial data, the causal struc-
ture of the solution spacetime is either as depicted above, or as in the case of
Minkowski space. One can define a null coordinate system covering J−(I+) by
declaring some arbitrary null ray reaching I+ to be u = 1, normalizing v = r along
that ray, and normalizing u asymptotically along I+ by the condition ∂ur = −1.5

With this normalization, it turns out that u will take all real values. This latter
fact is known as weak cosmic censorship, i.e. astrophysical observers observe a
regular past for infinite proper time:

u
=
∞

Σ

v
=∞

, ∂
u r

= −
1u

=
1

v
=
r

Our first theorem [6] is

Theorem 1. Let (M, g, φ) be a spherically symmetric solution to the Einstein-
scalar field system6, such that φ, ∇φ are of compact support on a complete Cauchy
surface, and assume we are in the case where the Penrose diagram of Q is as
above. With respect to the above-defined coordinates we have

(3) |rφ(u,∞)| ≤ Cu−2, |∂u(rφ)(u,∞)| ≤ Cεu
−3+ε,

and, for r(u, v) ≤ R <∞, we have

(4) |φ(u, v)| ≤ CR,εv
−3+ε, |∂vφ(u, v)| ≤ CR,εv

−3+ε.

These decay rates were discovered by R. Price [8,10], and go by the name Price’s
law. They are thought to be sharp (modulo ε). Actually, Price’s heuristic analysis

5Coordinates u and v are known as retarded (Bondi) and advanced time, respectively.
6Our results also apply in the presence of an additional gravitationally-coupled electromag-

netic field. In this case, the theorem, together with the results of [4], imply that strong cosmic
censorship is false for this system.
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was applied to the decoupled problem where a Schwarzschild metric7 is fixed and
φ is the zero’th spherical harmonic of the wave equation. Our results also apply
to this problem:

Theorem 2. The decay rates (3)–(4) apply for the 0’th spherical harmonic of a
solution φ of the wave equation on a fixed Schwarzschild or Reissner-Nordström8

background, where φ, ∇φ are of compact support on a complete Cauchy surface.

Here, we mention that if r0 > 2m, then in the region r0 ≤ r(u, v) ≤ R, the
coordinate v is equivalent to the static time t. Similar decay rates in t for such
fixed r have also been announced by Machedon and Stalker [9].

Theorem 1 does not include a smallness condition. In the absense of symmetry,
one only expects to prove results perturbatively around known solutions— Kerr
in the black hole context— and it is almost certain that precise understanding of
decay must be used even to show that the solution does not break down. A natural
question is whether the decay rates of (3)–(4) are in principle sufficient to handle
a non-linearity perturbatively.

A model problem to pose in this context is

(5) 2gφ = |φ|p,
for some power p, on a Schwarzschild or Reissner-Nordström exterior background.
The associated energy for this field is not necessarily positive. In view of the
staticity of the background metric, it is natural to write the solution to (5) as a
superposition of solutions to the linear homogeneous equation, with the nonlinear-
ity appearing in the data. This representation is just the well-known Duhammel’s
principle. It should be clear that a priori, proving stability appears potentially
problemetic, as one must integrate in t, and yet, there is no uniform decay in t
for the linear homogeneous problem. Indeed, all points on H+ are accessible as a
limit t→ ∞, while φ will not vanish there.

It turns out that for large enough p, this problem can be overcome by a careful
analysis of the black hole geometry, together with use of the red-shift effect (see [6]),
directly for the non-linear problem. We obtain [7]

Theorem 3. Let φ be a spherically symmetric solution of (5) with compactly
supported initial data on a Cauchy hypersurface Σ in Schwarzschild or Reissner-
Nordström. For p > 4, if the C1 norm of the data is sufficiently small, and
spherically symmetric, the domain of existence of φ includes all of J−(I+)∩J+(Σ),
and, defining a v coordinate as before, we have |φ| ≤ Cv−1 in this region.

We note that for p < 1 +
√

2, blow-up has been shown [1] for arbitrarily small-
data solutions of (5). This agrees with the situation in Minkowski space, first

7The Schwarzschild family is a one-parameter subfamily of the Kerr family, with parameter
m, and describes all spherically symmetric solutions of (2) with Tµν = 0.

8The Reissner-Nordström family is a two-parameter family describing all spherically sym-
metric solutions of (2) with Tµν the energy momentum tensor of an electromagnetic field; by

convention, we mean here a globally hyperbolic spacetime.
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studied by F. John. Understanding the behaviour in the range [1+
√

2, 4] remains
an open problem.
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Q-curvature flow on S4

Andrea Malchiodi

(joint work with Michael Struwe, ETH, Zürich)

Let M be a closed four-manifold (compact without boundary) with metric g.
If Ricg denotes the Ricci Tensor of (M, g) and Rg the scalar curvature, the Q-
curvature Qg of M is defined by the expression

(1) Qg = − 1

12

(
∆gRg −R2

g + 3|Ricg|2
)
.

In complete analogy with the Gauss curvature on surfaces, in four space dimensions
the Q-curvature of a metric g = e2wg0 is related to the Q-curvature Q0 of the
background metric g0 via the equation

(2) Pg0w + 2Q0 = 2Qge
4w,

where Pg0 is the Paneitz operator in the metric g0. For any given g the operator
Pg acts on a smooth function ϕ on M via

(3) Pg(ϕ) = ∆2
gϕ− div

(
(
2

3
Rgg − 2Ricg)dϕ

)
.
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Similar to the Laplace-Beltrami in two dimensions, the Paneitz operator is confor-
mally invariant in the sense that

(4) Pg = e−4wPg0

for any conformal metric g = e2wg0. For the proofs of the above formulas we
address the reader to the references in [1].

As for the Nirenberg’s problem on S2, our goal is to prescribe the Q-curvature
of the standard sphere (S4, gS4) as a given smooth and positive function f . Since
QgS4 ≡ 3, by (2) this is equivalent to finding a solution u of the equation

(5) PgS4u+ 6 = 2fe4u,

where PgS4 = ∆2
gS4

− 2∆gS4 . The problem is variational; solutions can be charac-

terized as critical points of the functional

(6) Ef (u) =

∫

S4

(
uPgS4u+ 4QgS4u

)
dµgS4 − 3 log

(∫

S4

fe4udµgS4

)

on H2(S4), where
∫
S4 ϕdµgS4 denotes the average of any function ϕ on S4.

We prove the following result, which is based on the Morse inequalities and
which extends a previous result in [2].

Theorem 1. Suppose f : S4 → R is positive with only non-degenerate critical
points with Morse indices ind(f, p) and such that ∆gS4 f(p) 6= 0 at any such point
p. Let

(7) mi = #{p ∈ S4;∇f(p) = 0,∆gS4f(p) < 0, ind(f, p) = 4 − i}.
Then, if there is no solution with coefficients ki ≥ 0 to the system of equations

(8) m0 = 1 + k0, mi = ki−1 + ki, 1 ≤ i ≤ 4, k4 = 0,

there exists a solution of (5).

The theorem is proved using a flow in the conformal class of gS4 . Given g0 =
e2u0gS4 with total volume equal to 8

3π
2, we define u(t) by

(9) ut =
du

dt
= αf −Q,

with initial data u(0) = u0. Here Q = Qg denotes the Q-curvature of g = g(t),
given by

(10) Q =
1

2
e−4u(PgS4u+ 6) on S4,

and α is chosen in such a way that

(11) α

∫

S4

f dµ =

∫

S4

Qdµ = 8π2

for all t ≥ 0, where dµ = dµg = e4udµgS4 .
One can show that this flow is globally defined, preserves the total volume and

decreases the functional Ef . Moreover, an accurate analysis show that either the

flow is compact and converges to a solution of (5), or the metric g(t) = e2u(t)gS4
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becomes round and concentrated near some point p(t) ∈ S4. In this case the point
p(t) approaches as t→ +∞ a critical point of f for which ∆S4f ≤ 0.

Given a large number β, we consider then the set Lβ consisting of the conformal
metrics with total volume 8

3π
2, and for which Ef is less than β. One can prove

that if β is chosen sufficiently large Lβ is contractible. Moreover, assuming non-
existence of solutions to (5) and using the asymptotic analysis just described, one
finds that Lβ evolves into a contractible set N with some handles attached (in
the sense of Morse). For each critical point pi of f with ∆f(pi) < 0 there is a
corresponding handle of dimension 4 − ind(f, pi). Finally, using the assumptions
of Theorem 1 and the Morse inequalities, one arrives to a contradiction to the fact
that Lβ and N are homotopic. Therefore problem (5) admits a solution.
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A Geometric Flow for Kirchhoff Elastic Rods

Hartmut R. Schwetlick

(joint work with Chun-Chi Lin)

Recently, rod theory has been applied to the mathematical modeling of bacterial
fibers and biopolymers (e.g. DNA) to study their mechanical properties and shapes
(e.g. supercoiling). In static rod theory, an elastic rod in equilibrium is the critical
point of an elastic energy. This induces a natural question of how to find elasticae.
In our project, we ask the question: starting from a given rod configuration Γ in R3,
can we find the critical points of a Kirchhoff elastic energy, or the so called elasticae,
by means of geometric gradient flows? In order to keep the model problem in this
paper simple, we only consider a special isotropic Kirchhoff elastic energy. For
more general rod theory, readers are referred to [1].

Suppose f : I = R/Z → R3 is the centerline of a closed rod. Let γ = |∂xf |,
ds = γ dx the arclength element, and ∂s = γ−1∂x the arclength differentiation.
Denote by T = ∂sf the unit tangent vector, and κ = ∂2

sf the curvature vector of f .
A rod configuration Γ is a framed curve described by {f (s) ;T (s) ,M1 (s) ,M2 (s)},
where the material frame {T,M1,M2} forms an orthonormal frame field along f .
Thus, we can write the skew-symmetric system




T ′

M ′
1

M ′
2


 =




0 m1 m2

−m1 0 m
−m2 −m 0






T
M1

M2


 ,
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with arbitrary functions m1 (s), m2 (s), and m (s). Consider the Kirchhoff elastic
energy E of an isotropic rod Γ, defined by

E [Γ] :=

∫

I

(
α · (m2

1 +m2
2) + β ·m2

)
ds,

with material constants α > 0 and β ≥ 0. The term involving α gives the bending
energy, while the term involving β gives the twisting energy.

Whenever a smooth curve f has no inflection points, the Frenet frame field
{T,N,B} along f is well-defined. By using the Frenet frame field, it can be easily
verified that

(1) E [Γ] =

∫

I

(
α |κ|2 + βm2

)
ds,

(e.g., see [7]). A natural frame is an orthonormal frame field along a given curve f ,
which is uniquely determined by its initial data at a point and the skew-symmetric
system, 


T ′

U ′

V ′


 =




0 u v
−u 0 0
−v 0 0






T
U
V


 ,

(see [3] or [7] p. 607). A natural frame can be thought as a frame without twisting.
As we denote by θ the angle from U to M1 with θ (0) = 0, one can verify that m is
equal to the twisting rate, i.e., m (s) = θ′ (s). Whenever f contains no inflection
points, the Frenet frame is well defined along f . Denote by φ the angle from U to
N , then it is easy to verify that the torsion of the curve satisfies τ = φ′. Denote
by Ψ := θ − φ the angle from N to M1 and let 4Ψ := Ψ (L) − Ψ (0), where L is
the total length of f . By these notations, we have

(2) Tw [Γ] =

∫

I

m ds = 4Ψ +

∫

I

τ ds.

We thus set up the boundary value problem by prescribing a real number, 4Ψ,
which is called the end point condition of rod configurations in the rest of this
paper. From above, we would like to emphasize that the bending energy and
twisting energy interact as rod configurations achieving the critical points of the
elastic energy. More precisely, the twisting depends on the centerlines of rods
as well. Otherwise, the twisting energy and bending energy can be considered
separately and the resulting centerlines of rod elasticae would simply be curve
elasticae.

In [7], Langer and Singer proposed to study the generalized elastic curves by

introducing the geometric functional F̃ of curves f : I → R3,

(3) F̃ [f ] := λ3K [f ] + λ2T [f ] + λ1L [f ] ,
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where

K [f ] :=

∫

I

1

2
|κ|2 ds, T [f ] :=

∫

I

τ ds, L [f ] :=

∫

I

ds,

and the λi are Lagrange multipliers for i = 1, 2. According to their formulation, a

generalized elastic curve f in equilibrium is a critical point of the elastic energy F̃
among the class of curves with fixed total torsion T [f ] = T0 and length L [f ] = L.
As long as λi together with the fixed total torsion T0 fit certain relations, they
showed that f is the centerline of an isotropic elastic rod in equilibrium. The
problems considered here and in Eq. (3) are closely related to curve straightening
flow. To the authors’ knowledge, curve straightening flows have been studied by
Wen [10], Polden [9], Koiso [6] and Dziuk, Kuwert, Schätzle [4]. At the begin-

ning, we tried to apply such methods to the geometric flow related to F̃ from [7].
However, we face an essential difficulty coming from the constraint of fixing the
total torsion. Namely, after multiplying the term of the first variation of the total
torsion T [f ] by its Lagrange multiplier, the method of L2 curvature estimates
combined with Gagliardo-Nirenberg-type interpolation inequalities fails, because
this term has higher power of derivatives in total than those coming from K [f ].

In order to resolve this difficulty we propose another approach. We learn from [5]
and [7] that a symmetric elastic rod must have a constant twisting rate. Observe
that among all isotropic rod configurations Γ with constant twisting rate m =
T [f ]+4Ψ

L , fixed length L, but without inflection points, we have the identity,

E [Γ] = G4Ψ,L [f ] := 2αK [f ] +
β

L
(T [f ] + 4Ψ)

2
.

Our first result, [8, Theorem 1], states that the equilibrium elastic rods must stay
in the subclass of rod configurations with constant twisting rate and fixed length
L. It turns out that in our geometric approach working with the functional

(4) F [f ] := G4Ψ,L [f ] + λ1 · (L [f ] − L) ,

of curves with fixed length L is more suitable than working directly with the rod
energy E .

For smooth initial data we consider the length preserving L2 gradient flow of F
reading

(5) ∂tf = λ3 · (−∇2
sκ− |κ|2

2
κ) + λ2 (t) · ∇s (T × κ) + λ1 (t) · κ,

where λ2 (t) := 2β
L (T [f ] + 4Ψ), λ3 := 2α, and λ1(t) is chosen to fix the length.

Our main result, [8, Theorem 2], shows that for any real number 4Ψ and any
smooth initial closed curve f0, there exists a smooth solution of (5), until the ap-
pearance of inflection points. With the assumption of no inflection points appear-
ing during the flow, the curves sub-converge to f∞, an equilibrium of the energy
functional F , after reparametrization by arclength and translation. Furthermore,
if f∞ contains no inflection points, then f∞ is the centerline of an equilibrium

Kirchhoff elastic rod with constant total twisting rate given by T [f∞]+4Ψ
L .
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Time-interior gradient estimates for quasilinear evolution equations

Julie Clutterbuck

(joint work with Ben Andrews)

This talk concerned an oscillation bound for a class of parabolic equations of the
form

(1) ut = trace{A(Du, t)D2u}+ b(Du, t),

characterised by the positivity of

(2) α(r) := r2 inf

{
vTA(q, t)v

(v · q)2 : q ∈ Rn, |q| = r, v ∈ Rn\(q)⊥
}
.

Our method is descended from one used by Kruzhkov [4] to find estimates for
such equations in only one spatial dimension. The essential part of our argument
is as follows: Let u be a smooth solution of (1) that is spatially periodic over a
lattice Γ ∈ Rn (similar techniques lead to estimates for the Dirichlet and Neumann
problems on a domain Ω ⊂ Rn). Define a new quantity on {(x, y, t) ∈ R×R×[0, T ] :
y 6= x} by Z(x, y, t) := u(y, t) − u(x, t) − 2ϕ(|y − x|, t), for ϕ to be chosen later
so that Z(·, ·, 0) < 0. We then calculate the evolution equation for Z at the first
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positive maximum:

Zt = trace
{
A(ϕ′e1)D

2u(y, t)
}
− trace

{
A(ϕ′e1)D

2u(x, t)
}
− 2ϕt

+ b(ϕ′e1, t) − b(ϕ′e1, t)

= trace

{[
A(ϕ′e1) C
CT A(ϕ′e1)

] [
DxxZ DxyZ
DxyZ DyyZ

]}
− 2ϕt

+ ϕ′′(A11 − C11) +
2ϕ′

|y − x|

(
n∑

i=2

(Aii − Cii)

)
,

where we have introduced new coordinates with e1 = (y − x)/|y − x|, and C is an
n × n matrix. If A satisfies the condition (2), then we may choose C so that the

matrix

[
A(ϕ′e1) C
CT A(ϕ′e1)

]
is positive definite, the coefficient of ϕ′ is zero, and the

coefficient of ϕ′′ is maximised. Consequently, we find that Zt ≤ −2ϕt+2α(|ϕ′|)ϕ′′.
Now, ϕ is chosen to satisfy the one-dimensional parabolic equation

ϕt ≥ α(|ϕ′|)ϕ′′, with singular initial data given by a Heaviside function; this
ϕ captures the worst behaviour of the oscillation of u. We then have Zt ≤ 0 at a
first positive maximum, so the maximum principle gives the estimate

|u(y, t) − u(x, t)| ≤ 2ϕ (|y − x|/2, t) .
This leads to gradient estimates |Du(·, t)| ≤ C(t) for equations such as the mean
curvature flow (here the estimate derived is similar to that by Evans and Spruck
[3]), the anisotropic mean curvature flow, and the p-heat flow. The estimate for
the anisotropic mean curvature flow has also been established using other methods
in [2].

As an example, the following theorem applies to cases where A scales in a similar
way to the coefficients for mean curvature flow for large values of Du:

Theorem. If there are positive constants a and P so that

α(|p|)|p|2 ≥ a for |p| ≥ P

then there is a T ′ > 0 such that for t ∈ (0, T ′],

|Du| ≤ C1(1 + t3/2 exp(C2/t)),

where T ′, C1 and C2 depend on n, a, P and oscu.

None of gradient estimates depend on an initial gradient bound, but rather on
an oscillation bound. This work may be found in the forthcoming article [1].
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The Degenerate Gauss and Harmonic Mean Curvature Flows

Panagiota Daskalopoulos

We consider the evolution of weakly convex surfaces Σ in R3 with flat sides by
the fully nonlinear geometric flows: the Gauss Curvature flow and the Harmonic
Mean Curvature flow. The equations become degenerate at each flat side, whose
free boundary moves with finite speed.

We study the following questions: (i) The short time existence and regularity
of the interface and the solutions up to the interface (smoothing effect of the
interface); (ii) The all time regularity of the interface; (iii) The evolution of the
interface; (iv) The final shape of the interface.

The Gauss Curvature Flow: We consider the evolution of a weakly convex
surface Σ(t) with flat sides in R3 by the Gauss Curvature Flow (GCF)

∂P

∂t
= KN

where each point P moves in the inward direction N with velocity equal to the
Gaussian Curvature K of the surface. Expressing the surface Σ(t) near the flat
side as a graph z = f(x, y, t), the function f evolves by

(1) ft =
detD2f

(1 + |Df |2)3/2
a fully-nonlinear equation which becomes degenerate at the interface Γ(t) between
the flat and strictly convex sides.

Assuming that g =
√
f satisfies at t = 0 the non-degeneracy condition

0 < c ≤ |Dg| ≤ C <∞ and gττ ≥ c > 0

near the interface, we have shown : (a) (with R. Hamilton) the short time existence
of a C∞-smooth up to the interface solution of the GCF; (b) (with K. Lee) the C∞-
regularity of the interface Γ(t), and the surface up to the interface, on 0 < t < Tc,
with Tc denoting the time when the area of the flat side shrinks to zero ; (c) (with
K. Lee) that the flat side will shrink to a point. The final shape of the flat side
(most probably an ellipse) is still an open problem.

The Harmonic Mean Curvature Flow: We consider the evolution of a surface
Σ(t) in R3 by the Harmonic Mean Curvature Flow (HMCF)

∂P

∂t
=
K

H
N

where each point P moves in the inward direction N 2 with velocity equal to
the Harmonic Mean Curvature of the surface, namely the quotient K/H of the
Gaussian Curvature Kof the surface over the its Mean Curvature H.
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Expressing the surface Σ near the flat side as a graph z = f(x, y, t), the function
f evolves by

ft =
detD2f

(1 + f2
x)fyy − 2 fxfyfxy + (1 + f2

y )fxx

a fully-nonlinear equation which becomes degenerate at the interface Γ(t) between
the flat and strictly convex sides. Also, since H ≡ 0 on the flat side the flow is not
defined there.

Assuming that there exists 0 < p < 1 and c > 0, C < ∞ such that at time
t = 0:

(2) |∇fp| ≤ C and c ≤ fp−1D2f ≤ C

we have shown (with M.C. Caputo) that (a) a unique solution of the HMCF
satisfying condition (2) exists ; (b) the free-boundary Γ(t) evolves by the Curve
Shortening Flow;

Our approach, in both flows, is based on sharp a priori estimates on appro-
priately defined Hölder Spaces which are scaled according to the singular metric,
which governs the evolution of the corresponding degenerate problem.

Wave Equations in Waveguides and Cones

Reinhard Racke

(joint work with P. Lesky)

1. Introduction

We report on our joint work with P. Lesky [1] (Part I), and announce a recent
result obained with M. Dreher and P. Lesky [2] (Part II). We consider Klein-Gordon
or wave equations:

(1.1) utt − ∆u+mu = f(u, ut,∇u,∇ut,∇2u)

(1.2) u(t = 0) = u0, ut(t = 0) = u1

(1.3) u(t, ·) = 0 on ∂Ω

u = u(t, x), t ∈ R, x ∈ Ω ⊂ Rn,m ≥ 0

The domain Ω has an infinite smooth boundary, hence is neither bounded nor
an exterior domain (domain with bounded complement), but represents in Part
I infinite cylinders (waveguides) or domains like strips in R2 or domains between
two parallel planes in R3. More generally, Ω is assumed to satisfy

(1.4) Ω = Rl ×B, B ⊂ Rn−l bounded,

where 1 ≤ l ≤ n− 1. The aim is to get sharp Lp–Lq-decay rates for the associated
linearized problem (f ≡ 0 or f at most depending on t and x), and a discussion of
the nonlinear system — global existence and asymptotics for (1.1)–(1.3). For the
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Cauchy problem, i.e. Ω = Rn, see e.g. Klainerman (1980, 1982, 1985, 1986), Klain-
erman and Ponce (1983), Christodoulou (1986), Shatah (1982, 1985) and others
(see the references in [1]. For exterior domains, see e.g. Shibata and Tsutsumi
(1986), Hayashi (1995), Keel, Smith and Sogge (2002), Sogge (2002) and others.
Wave guides are different, e.g. the decay of solutions to the linear wave equation
(m = 0, f = f(t, x)) in whole of R3 (Cauchy problem) is the same as for the region
between two planes in R3. To get Lp-Lq-decay rates for the solutions we use a
partial eigenfunction expansion in the bounded direction and information on the
growth of eigenvalues of elliptic operators in general domains. For the fully nonlin-
ear system (Part I only), we follow the strategy for exterior domains as given in by
Shibata and Tsusumi (1986); this was not yet optimal with respect to the degree
of vanishing of the nonlinearity near zero in space dimensions less than 6, recent
work of Metcalfe, Sogge and Stewart overcomes this. For the situation of conical
sets Ω = {rω ∈ Rn | 0 < r,∞, ω ∈ Ω0}, where Ω0 ⊂ Sn−1 6= ∅ smooth, n ≥ 2, in
Part II, we only study linear wave equations.

2. Part I: Lp–Lq-estimates in wave guides — linear case

Theorem 2.1. Let f = 0. Let u be the unique solution to (1.1)–(1.3), and let
2 ≤ q ≤ ∞, 1/p+ 1/q = 1, then for t ≥ 0,

‖(u(t), ut(t),∇u(t))‖Lq(Ω) ≤
c

(1 + t)(1−
2
q ) l

2

‖(u0, u1,∇u0)‖W Ñp, p(Ω)
,

for some Ñp, and c depends at most on q and m.

For the general linearized case, f = f(t, x), one uses the transformation v :=
(∆ +m)−1utt.

3. Part I: Global solutions and asymptotics for nonlinear systems

We follow the following strategy of Shibata and Tsutsumi (1986): Let f be
smooth and satisfy

f(W ) = O(|W |α+1) as |W | → 0,(3.1)

where

α = α(l) :=





3 if l = 1,
2 if 2 ≤ l ≤ 4,
1 if l ≥ 5.

(3.2)

Let q(l) := 2α(l)+2 with associated Hölder exponent p(l), and let d(l) := α(l)
α(l)+1

l
2 .
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Theorem 3.1. Assume (3.1). Then there are K ∈ N and ε > 0 such that if u0 ∈
W 2K, 2(Ω) ∩W 2K−1, p(l)(Ω), u1 ∈ W 2K−1, 2

2 (Ω) ∩ W 2K−2, p(l)(Ω) and (u0, u1, f)
satisfies the compatibility condition of order 2K, and

‖u0‖W 2K, 2(Ω) + ‖u0‖W 2K−1, p(l)(Ω) + ‖u1‖W 2K−1, 2(Ω)

+‖u1‖W 2K−2, p(l)(Ω) < ε

then there exists a unique solution

u ∈
2K⋂

j=0

Cj
(
[0,∞),W 2K−j, 2(Ω)

)
⊂ C2([0,∞) × Ω)

satisfying

sup
t≥0

(
‖(u(t), ut(t),∇u(t)‖L2(Ω) + (1 + t)d(l)‖u(t), ut(t),∇u(t)‖Lq(l)(Ω)

)
≤ c1,

where the constant c1 depends at most on l,Ω.

4. Part II: Lp-Lq-estimates for linear wave equations in cones

We use polar co-ordinates, Fourier expansion in the bounded region, and ex-
plicit representations of solutions to the radial wave equation, deriving appropriate
sophisticated estimates in weighted Sobolev spaces.

Theorem 4.1. Let u be the solution to the initial boundary value problem for the
linear wave equation, i.e. to (1.1)–(1.3) with m = 0 and f = 0 (and u0 = 0), in the
conical set Ω. Let d := [n−1

2 ], and let AS denote the Laplace-Beltrami operator
on Ω0. Then u satisfies

|u(t, x)| ≤ Ct−(n−1)/2
d∑

k=0

‖(s−2AS)(n−1−k)/2∂ks (s(n−1)/2u1(s, φ))‖L1(Ω).

where the constant C does not depend on t, x or u1.

Interpolation and nonlinear systems have not yet been discussed.
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The equivalence of linear and dynamical stability of Ricci flat metrics

Natasa Sesum

We can talk about two kinds of stability of the Ricci flow at Ricci flat metrics.
One of them is a linear stability, defined with respect to Perelman’s functional F .
The other one is a dynamical stability and it refers to a convergence of a Ricci
flow starting at any metric in a neighbourhood of a considered Ricci flat metric.
The precise definitions of these two notions of stability are as follows.

Definition 1. Let g0 be a geometry whose Ricci flow g(t) converges in Ck norm
(k ≥ 3). We will say that g0 is dynamicaly stable if there exists a Ck neighbourhood
U of a metric g0 such that the Ricci flow g̃(t) of every metric g̃ ∈ U exists for all
times t ∈ [0,∞) and converges to g0. We will say that g0 is weakly dynamicaly
stable if there exists a neighbourhood U of a metric g0 such that the Ricci flow
g̃(t) of every metric g̃ ∈ U exists for all times t ∈ [0,∞) and converges.

The other kind of stability is related to Perelman’s functional F introduced
in [2]. It is given by

F(g, f) =

∫

M

e−f (|∇f |2 +R)dVg .

We can consider functional λ(g) = inf{F(g, f) |
∫
M e−fdVg = 1}. It turns out

that Ricci flat metrics are the critical points of functional λ. We can define a linear
stability of a Ricci flat metric g0 with respect to a second variation of F . More
precisely,

Definition 2. Let M be compact, with Ric(g0) = 0. We will say that g0 is linearly
stable iff D2

g0λ(h, h) ≤ 0.

It turns out that studying the linear stability of Ricci flat metrics reduces to
studying the spectrum of the Lichnerowicz laplacian ∆Lhij = ∆hij + 2Ripqjh

pq .
We want to relate a linear and a dynamical stability of a Ricci flat metric g0. More
precisely, the main theorem we want to prove is the following.

Theorem 1. Let g0 be a Ricci flat metric on a closed manifold M . Then if g0 is
dynamicaly stable, it is linearly stable as well. If g0 is linearly stable and integrable
then it is weakly dynamicaly stable.

The fact that dynamical stability implies linear stability is an easy corollary
of the monotonicity formula for Perelman’s functional λ along the Ricci flow. To
prove the other way around we have to study the spectrum of ∆L. Since the
Ricci flow equation is not a strictly parabolic equation, we use DeTurck’s trick
fisrt to make it strictly parabolic. We show that by choosing sufficiently small
neighbourhood around g0 we can construct a gauge for every arbitrarily large,
but fixed time interval so that our solution stays as close to g0 as we want. The
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linearization of the right hand side of the Ricci DeTurck flow

d

dt
g̃ij = −2R̃ij + ∇V g̃,

g̃(0) = g0,

around g0 is just the Lichnerowicz laplacian. The linear stability condition on g0

implies there are no positive eigenvalues of ∆L. The negative ones give us expo-
nentially decaying modes which imply the long time existence and the convergence
of a flow starting nearby g0 at the same time. To deal with the neutral modes
(that come from the zero eigenfunctions of ∆L) we use the integrability condition
imposed on g0. This condition tells us the set of Ricci flat metrics around g0 has
a smooth manifold structure. We use this condition to find a sequence gi of new
reference Ricci flat metrics on time intervals of fixed length so that there are no
zero directions in a projection of g̃(t) − gi onto the set of solutions of a linear
equation d

dtF = ∆LF . This will imply exponential decay and the exponential
convergence of g̃(t) to a Ricci flat metric. This yields the exponential convergence
of the original Ricci flow equation as well.

As a corollary of Theorem 1 we get the following result about Calabi-Yau man-
ifolds.

Theorem 2. Let g0 be a Kähler Ricci flat metric on a K3 surface M . There
exists a neighbourhood Ng0 of g0 so that the Ricci flow of any initial metric in
Ng0 converges to a unique Ricci flat metric on M , that is g0 is weakly dynamicaly
stable. Moreover, any Calabi-Yau metric on a compact manifold M of an arbitrary
dimension is dynamicaly stable.
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Evolution of an extended Ricci Flow system

Bernhard List

In my talk I discussed the following initial value problem

(∗)
{

∂tg = −2Rc(g) + 4 du⊗ du
∂tu = ∆gu

for a Riemannian metric g and a function u ∈ C∞(M) on some closed 3-dimension-
al manifold M for given smooth initial data (g0, u0). I restricted the discussion
to dimension three, although the presented results are also true for n ≥ 3 with a
slight modification of the numerical constants. Some reasons to look at this system
are given by the following properties of (∗):
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• Stationary points are solutions of the static Einstein vacuum equations.
This provides an interesting link to general relativity.

• Setting u ≡ const, (∗) reduces to Hamilton’s Ricci Flow (c.f. [5, 6]).
• The system is weakly parabolic, so short time solutions exist following the

arguments in [1].
• There is a variational structure for (∗) using recent ideas of Perelman in [3],

namely the system

(∗∗)





∂tg = −2Rc(g) + 4 du⊗ du−L∇fg
∂tu = ∆gu−L∇fu
∂tf = −∆gf − T

where T := R− 2|∇u|2, is the gradient flow of the entropy

E(g, u, f) :=

∫

M

(
|∇f |2 + T

)
e−fdVg .

Given a solution of (∗), one can solve backwards for f(t). Then (∗∗) is
equivalent to (∗) via the diffeomorphisms generated by ∇f(t).

Since (∗∗) is a gradient flow one can compute

Lemma 1. ∂tE(t) ≥ 0 and equality precisely holds on gradient solitons.

A gradient soliton is a special solution changing in time only by diffeomorphisms
generated by a gradient vector field. In addition there is the definition:

Definition 1. (g, u) is called breather, iff ∃t1 < t2 and α > 0 such that g(t2) =
α · (φ∗g)(t1) and u(t2) = (φ∗u)(t1) for some diffeomorphism φ. α = 1, > 1, < 1 is
called steady, expanding and shrinking breather.

So in contrast to solitons there are only two points in time such that the ge-
ometry of the solutions is more or less the same. As a first consequence of the
monotonicity I proved in a similar way to [3, §2]:

Theorem 1. Steady/expanding breathers are gradient solitons. Moreover u is
constant and g is Ricci flat/Einstein in this case.

For the proof one uses the monotonicity of the infimum of E over all normalized
smooth f , the existence of minimizers and the fact that volume is nondecreasing.

Because of the last point this approach doesn’t work for shrinking breathers.
Therefore I looked at the modified entropy

W (g, u, f, τ) :=

∫

M

[
τ
(
|∇f |2 + T

)
+ f − n

]
(4πτ)−

n
2 e−fdV

inspired by [3, §4]. A computation gives

Lemma 2. If (g, u)(t) satisfy (∗) and ∂tf = −∆gf − T + n
2τ and ∂tτ = −1 holds,

then ∂tW (t) ≥ 0 and equality precisely holds on homothetic gradient solitons.

Homothetic solitons can differ in time not only by diffeomorphisms but also by
scaling. One can check now the monotonicity properties of the infimum of W over
f as before and also over positive τ , which are inherited from W , to prove
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Theorem 2. Shrinking breathers are gradient solitons.

A second important application of W is

Theorem 3. Solutions of (∗) cannot collapse at finite T .

Here collapse is defined as follows:

Definition 2. (g, u)(t) collapses at T iff ∃ (tk) ↗ T and Bk := Btkrk
(xk), s.t.

r2k/tk ≤ C uniformly in k, supBk
|Rm|(tk) ≤ r−2

k and r−nk V ol(Bk) → 0 for k → ∞.

The proof of Theorem 3 follows the same lines as the proof in [3, §4.1]. Assuming
to the contrary the existence of sequences of times and collapsing balls one can
construct a sequence of test functions wk supported on Bk and concentrating there
s.t. for τ(t) := (tk + r2k) − t one proves W (g(tk), u(tk), wk , r

2
k) → −∞ for k → ∞.

Using Bishop-Gromov volume comparison and the monotonicity for µ(g, u, τ) :=
inff{W (g, u, f, τ)

∣∣∫ (4πτ)−
n
2 e−fdV = 1} one gets the contradiction

−∞ < C ≤ µ
(
g, u, τ

)
(0) ≤ µ(g, u, τ)(tk) ≤W (g(tk), u(tk), wk, r

2
k) → −∞

where the lower bound C (which can be negative and large) follows from the fact
that g(0) and u(0) are fixed and smooth and that τ(0) = tk + r2k is bounded.

The second important tool I presented was the following regularity result. I used

the scaling function ϕ(t) := R2t
R2+t and collected all relevant component functions

in a vector Φ = (Rijkl ,∇p∇qu)i,j,k,l,p,q=1...3 with norm |Φ|2 := |Rm|2+ |∇2u|2 and
similar for higher derivatives. I denoted the domain of interest for fixed R and T
by Γ :=

{
(t, x)

∣∣0 ≤ t < T, dt(x0, x) ≤ R
}

and proved

Theorem 4. Assume supΓ ϕ
k+2|∇kΦ|2 ≤ C̃k ∀ k = 0 . . .m, where m ≥ 1 is

fixed, R ≤
√
T , x0 ∈ M . Then

sup
Bt

θR
(x0)

|∇m+1Φ|2 ≤ C̃(1 − θ)−2

(
1

R2
+

1

t

)m+3

holds for all t ∈ (0, T ] and θ ∈ [0, 1), where C̃ = C̃(n,m, C̃0, . . . , C̃m).

The proof of Theorem 4 uses ideas from [4] and [2] applied to the test function
f = ϕm+3|∇m+1Φ|2

(
λ+ ϕm+2|∇mΦ|2

)
.

The theorem allows to deduce smoothness of the solution from bounds on |Φ|
by iteration. This can be improved:

Proposition 1. Let Γ be as above and suppose (g, u) is a solution of (∗). Then

sup
Bt

R(x0)

|∇u|2 ≤ 1

4

(
1

R2
+

1

t

)

and if in addition supΓ

(
ϕ2|Rm|2

)
≤ C̃0 then

sup
Bt

θR(x0)

|∇2u|2 ≤ C(n, C̃0)(1 − θ)−2

(
1

R2
+

1

t

)2

for all t ∈ (0, T ] and θ ∈ [0, 1).
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This means that the gradient of u is always bounded and that the curvature of
g(t) controls the Hessian of u(t), i.e. boundedness of Rm implies smoothness of
the solution. I deduced the following consequences from Theorems 3 and 4:

Corollary 1. Curvature blows up at singularities, i.e.

lim sup
t↗Tmax

[
sup
x∈M

|Rm|2(t, x)
]

= ∞ ,

where Tmax is the maximal existence time of the solution.

Corollary 2. Let (g, u)(t) be a solution on [0, T )×M for closed M and finite T .
Assume there are sequences tk → T and xk ∈ M s.t. Sk := |Rm|(tk, xk) → ∞
for t → T and ∃C > 0 such that sup[0,tk)×M |Rm|(t, x) ≤ CSk. Define the

rescalings g̃k(t) := Sk · g(tk + t
Sk

) and ũk(t) := u(tk + t
Sk

). Then a subsequence of

(g̃k, ũk) converges smoothly on compact subsets to a complete ancient noncollapsed
solution.

Corollary 3. Let M be complete. Then for all smooth initial data (g0, u0) s.t.
|Rm0|20 + |u0|20 + |∇u0|20 ≤ k, there is a smooth solution (g, u)(t) to (∗) on [0, T ]
for some T = T (n, k) > 0, satisfying g(0) = g0 and u(0) = u0.
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Optimal Transportation Metrics for a Class of Nonlinear Wave
Equations

Alberto Bressan

The Camassa-Holm equation can be written as a first order integro-differential
PDE.:

ut +

(
u2

2

)

x

+ Px = 0 , (1)

where

P
.
=

1

2
e−|x| ∗

(
u2 +

u2
x

2

)
.
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It is well known that this equation provides an example of completely integrable
PDE. It admits solitary waves, called peakons. Special solutions consisting of
finitely many peakons can be constructed in the form

u(t, x) =

n∑

i=1

pi(t) e
−|x−qi(t)|.

The strengths pi and the locations of the peakons satisfy the Hamiltonian system
of ODEs: 




ṗi =
∑

j 6=i

pipj sign(qi − qj) e
−|qi−qj |

q̇i =
∑

j

pj e
−|qi−qj |.





As long as the solutions remain smooth, the total energy

E(t)
.
=

1

2

∫ ∞

−∞

[
u2(t, x) + u2

x(t, x)
]
dx

remains constant in time. However, solutions might lose regularity in finite time.
In this case, they remain uniformly Hölder continuous but their gradient ux may
become infinite. One then has various ways for prolonging solutions, after singu-
larity formation: either conserving the total energy, or dissipating part of it.

For a given initial condition u0 ∈ H1(IR), various methods are known for con-
structing global solutions. In [3] the authors constructed a continuous semigroup of
dissipative solutions as limits of vanishing viscosity approximations. Alternatively,
in [1] the conservative solution was obtained as the fixed point of a contractive
transformation, using a new set of independent and dependent variables.

Concerning uniqueness and continuous dependence on the initial data, we re-
mark that couples of solutions do not satisfy any a priori estimate of the form

d

dt

∥∥u(t) − v(t)
∥∥
H1 ≤ C ·

∥∥u(t) − v(t)
∥∥
H1 ,

∥∥u(t) − v(t)
∥∥
H1 ≤ L ·

∥∥u(0) − v(0)
∥∥
H1 .

An effective tool to study continuous dependence on the initial data is provided
by a certain distance, defined as the optimal cost of a transportation problem. We
now review this construction, in connection with spatially periodic solutions of the
equations (1).

Consider the space X = IR × IR × T, where T is the unit circle. Given u ∈
H1
per(IR), with u(x) = u(x+ 1) for all x ∈ IR, define the graph

Graph(u) =
{(
x, u(x), 2 arctanux(x)

)
; x ∈ IR

}
⊂ X.

Define µu as the measure supported on Graph(u), having density 1 + u2
x w.r.t.

Lebesgue measure, i.e.

µu(A) =

∫

(x,u(x),2 arctanux(x))∈A

(
1 + u2

x(x)
)
dx.
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Given u, v ∈ H1
per , consider the corresponding measures µu, µv . Let ψ : IR 7→ IR

be an absolutely continuous, increasing map, with inverse ψ−1 also absolutely
continuous, and such that ψ(x + n) = n + ψ(x) by spatial periodicity. Define a
transportation plan, from µu to µv , moving mass according to

(
x, u(x), 2 arctanux(x)

)
7→

(
ψ(x), v

(
ψ(x)

)
, 2 arctan vx

(
ψ(x)

))
.

Notice that in this case the amount of mass
(
1 + u2

x(x)
)
dx on the graph of u is

put in correspondence to the mass
(
1+v2

x

(
ψ(x)

))
ψ′(x) dx on the graph of v. The

cost of this transportation is defined as

Jψ(u, v)

.
=

∫ 1

0

dX

((
x, u(x), arctanux(x)

)
,
(
ψ(x), v(ψ(x)), arctan vx(ψ(x))

))
· φ(x) dx

+

∫ 1

0

∣∣∣
(
1 + u2

x(x)
)
−
(
1 + v2

x(ψ(x)))ψ′(x)
∣∣∣ dx

=

∫
[distance] · [transported mass] +

∫
[excess mass]

Here φ(x) = min
{(

1 + u2
x(x)

)
,
(
1 + v2

x(ψ(x))ψ′(x)
}
. We then define the dis-

tance functional J by taking the infimum of the cost over all transportation plans:

J(u, v) = inf
ψ
Jψ(u, v) u, v ∈ H1

per.

As proved in [2], this new functional has the key properties

1

C
‖u− v‖L∞ ≤ J(u, v) ≤ C · ‖u− v‖H1 ,

∣∣∣∣
d

dt
J
(
u(t), v(t)

)∣∣∣∣ ≤ κ · J
(
u(t), v(t)

)
,

where the constants C, κ remain uniformly valid as u, v range over bounded subsets
of H1. The inequality J

(
u(t), v(t)

)
≤ e|κ|tJ(u(0), v(0)

)
now provides a sharp

estimate on the dependence of solutions on the initial data.
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Semi-Relativistic NLS of Critical Type: The Boson Star Problem

Enno Lenzmann

We study nonlinear Schrödinger equations with kinetic energy part originating
from special relativity. That is, we consider

(1) i∂tu =
√
−∆ +m2 u+ F (u), (t, x) ∈ R1+3,

where u(t, x) is complex-valued, m ≥ 0 denotes a given mass parameter, and

F (u) is some nonlinearity. Here the operator
√
−∆ +m2 is defined via its symbol√

ξ2 +m2 in Fourier space.
Equation (1) arises in the theory of boson stars, see, e. g., [1, 2], where F (u) is

a focusing Hartree type nonlinearity given by

(2) F (u) = −
( 1

|x| ∗ |u|
2
)
u,

with ∗ as convolution. Motivated by this physical example, which leads to an L2-
critical equation, we address the Cauchy problem for equation (1) with nonlinearity
(2). In fact, we prove local well-posedness for initial data u(0, x) = u0(x) in
Hs(R3), s ≥ 1/2. Moreover, these solutions extend to all times, i. e., we have
global well-posedness, if the initial datum u0 satisfies

(3)

∫

R3

|u0(x)|2 dx <
∫

R3

|Q(x)|2 dx,

where Q ∈ H1/2(R3) is a ground state solution for

(4)
√
−∆Q−

( 1

|x| ∗ |Q|2
)
Q = −Q.

We remark that criterion (3) implying global-in-time solutions is valid irrespec-
tively of m ≥ 0 in (1). In physical terms, the quantity

(5) Nc =

∫

R3

|Q(x)|2 dx

corresponds to the “Chandrasekhar limit mass” for boson stars, and we find that
Nc > 4/π holds by using suitable estimates.

In addition to well-posedness, we also address solitary wave solutions for (1),
just called solitons, with focusing nonlinearity given by (2). It turns out that if
m > 0 holds, then orbitally stable ground state solitons u(t, x) = eiωtϕω(x) exist
for every 0 < ‖ϕω‖2

2 < Nc, where

(6)
√
−∆ +m2 ϕω −

( 1

|x| ∗ |ϕω |
2)ϕω = −ωϕω,

for some ω > 0. On the other hand, when m = 0 the corresponding soliton ground
states, ϕω, necessarily have L2-norm ‖ϕω‖2

2 = Nc and are expected to be unstable.
We refer to [3] for extensions and proofs of parts of the material discussed above.
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On stability of standing waves for NLS with perturbed periodic
potential

Scipio Cuccagna

In this talk we consider standing waves of the Nonlinear Schrödinger Equation

i∂tu(t, x) + (∂2
x − P (x) − εq(x))u(t, x) − (|u|p−1u)(t, x) = 0 for (t, x) ∈ R+ × R

with P (x) a periodic smooth potential, q(x) ∈ C∞
0 (R) a nonzero function, either

nonpositive or nonnegative, ε > 0 small. It is well known that the spectrum σ(H0)

of H0 = − d2

dx2 + P (x) is formed by bands, separated by gaps. Here we consider
potentials with two bands σ(H0) = [E0, E1] ∪ [E2,+∞) , with P (x) derived by
the Jacobian elliptic function sn(x, κ). Associated to each value of the energy E
there is a quasimomentum k with Imk ≥ 0. For each E ∈ σ(H0) there is an
appropriately normalized pair of functions φ±(x,E), called Bloch functions, of
the form φ±(x,E) = e±ikm±(x,E) with m±(x + 1, E) = m±(x,E), such that
φ±(x,E) can be used to define an analogue of the Fourier transform. The spec-
trum of H = H0 + εq(x) is formed by the same bands plus a certain number
of eigenvalues. If q(x) ≥ 0 there is an eigenvalue λ1 > E1 with approximately√
λ1 −E1 ≈ ε

∫
R
q(x)|φ+(x,E1)|2dx. By bifurcation the Nonlinear Schrödinger

Equation admits small standing waves u(t, x) = e−itωφω(x), with φω(x) smooth
in (x, ω) and where as ω → λ we have φω → 0 in any Sobolev space. There are
two main notions of stability. We can write nearby solutions using the Ansatz

u(t, x) = e−i
R

t
0
ω(s)ds+iγ(t)

(
φω(t)(x) +R(t, x)

)

and ask if the Ansatz is true for all times, with R always small in H1(R) and ω(t)
close to a fixed value for all time. This is the notion of orbital stability, very much
explored in the literature. The standard references are Cazenave and Lions [2],
Weinstein [6], and [3, 4]. Unfortunately, none of these applies to this case. The
other notion is that of Asymptotic Stability, where one asks whether R scatters
and ω(t) converges to a fixed value. We proved this last fact, for solutions u(t, x)
such that u(0, x) decays rapidly to 0 as x → ∞. The proof is based, like [5],
which deals with the case P (x) ≡ 0, on linearization around the standing wave,
and on a perturbative argument which exploits the following two Linear Dispersive
Estimates, for Pc(H) the projection on the continuous spectrum of H ,
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‖Pc(H)eitH : L1(R) → L∞(R)‖ ≤ Cmax
{
t−

1
2 , 〈t〉− 1

3

}

and

‖Pc(H)eitH : L2(〈x〉8dx) → L2(〈x〉−8dx)‖ ≤ c〈t〉− 3
2 .

Specifically, inserting the Ansatz into the Nonlinear Schrödinger Equation we
obtain the Equation for the Remainder

iRt(t, x) −HR(t, x) + (ω(t) − γ̇(t))R(t, x) = Error.

By the right choice of γ(t) and ω(t) in the Ansatz we have R(t) = Pc(H)R(t). It
turns then out that the Linear Dispersive Estimates allow to reduce to the case
Error = 0 in the Equation for the Remainder, at least in the case when p� 1 in
the Nonlinear Schrödinger Equation.

There is some beautiful mathematics behind the two Linear Dispersive Esti-
mates and estimates of this type have yet to be proved for generic smooth and
periodic potentials P (x).

We have discussed q(x) ≥ 0. Now let us turn to If q(x) ≤ 0 with q(x) 6≡ 0.
Now there are eigenvalues λj > Ej for j = 0, 2 with approximately

√
Ej − λj ≈

ε
∫

R
q(x)|φ+(x,Ej)|2dx. As before, by bifurcation the Nonlinear Schrödinger Equa-

tion admits small standing waves u(t, x) = e−itωφω(x), where ω belong to intervals
of the form [λj − η, λj ] for small η > 0. These are called Ground States for j = 0
and Excited States for j = 2. Ground States are orbitally stable by [3, 6], while
Excited States are orbitally unstable. We discuss a proof of Asymptotic Stability
of the Ground States. Once again the proof is based on inserting the Ansatz into
the Nonlinear Schrödinger Equation to obtain the Equation for the Remainder.
This time though H has two eigenvalues, and by modulation we can only assume
that R has 0 ground state component. However there is no way to exclude that
R has nonzero excited state component. This means that the Equation for the
Remainder is in reality a system involving a continuous component and a discrete
component. It turns out that the discrete component leaks slowly into the con-
tinuous component where it disperses. This implies that now the Equation for
the Remainder involves long range perturbative terms and that decay is hard to
prove. Fortunately the situation here is very similar to one considered by Buslaev
and Perelman [1] which requires a normal forms argument for the discrete mode
and the use of a Fermi Golden Rule. To implement these ideas one is forced to
write the Equation for the Remainder in a vectorial form and to prove Linear Dis-
persive Estimates for a certain class of vectorial, and not selfadjoint, Schrödinger
operators.

References

[1] Buslaev, Perelman , On the stability of solitary waves for nonlinear Schrödinger equations,
Transl. AMS Ser. 2, 164, ed. N.N. Uraltseva (1995), 75–98.

[2] Cazenave, Lions, Orbital stability of standing waves for nonlinear Schrödinger equations,
Comm. Math. Phys. 85 (1982), 549–561.



1424 Oberwolfach Report 25/2005

[3] Grillakis, Shatah, Strauss, Stability of solitary waves in the presence of symmetries, I, Jour.
Funct. An. 74 (1987), 160–197.

[4] Grillakis, Shatah, Strauss, Stability of solitary waves in the presence of symmetries, II,
Jour. Funct. An. 94 (1990), 308–348.

[5] Soffer, Weinstein, Multichannel nonlinear scattering II. The case of anisotropic potentials
and data, J. Diff. Eq. 98 (1992), 376–390.

[6] Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations , Com. Pure
Appl. Math. 39 (1986), 51–68.

Reporter: Julie Clutterbuck



Nonlinear Evolution Problems 1425

Participants

Prof. Dr. Luigi Ambrosio

luigi.ambrosio@sns.it

Scuola Normale Superiore
Piazza dei Cavalieri, 7
I-56100 Pisa

Prof. Dr. Lars Andersson

larsa@math.miami.edu

Lars.Andersson@aei.mpg.de

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
14476 Golm

Simon Brendle

brendle@math.princeton.edu

Department of Mathematics
Princeton University
1104 Fine Hall
Washington Road
Princeton NJ 08544
USA

Prof. Dr. Alberto Bressan

bressan@math.psu.edu

Department of Mathematics
Pennsylvania State University
University Park, PA 16802
USA

Dr. John Buckland

john.buckland@maths.anu.edu.au

Centre for Mathematics and its
Applications
Australian National University
Canberra ACT 0200
AUSTRALIA

Prof. Dr. Luca Capogna

lcapogna@uark.edu

Department of Mathematics
University of Arkansas
SCEN
Fayetteville AR 72701
USA

Dr. Julie Clutterbuck

juliec@math.fu-berlin.de

Fachbereich Mathematik
und Informatik
Freie Universität Berlin
Arnimallee 2-6
14195 Berlin

Prof. Dr. Scipio Cuccagna

cuccagna@math.princeton.edu

cuccagna.scipio@unimore.it

DISMI ( Dipartimento di Scienze e
Metodi dell’Ingegneria)
University Modena & Reggio Emilia
Via Fogliani 1
I-42100 Reggio Emilia

Prof. Dr. Piero D’Ancona

dancona@mat.uniroma1.it

Dipartimento di Matematica
Universita di Roma ”La Sapienza”
Istituto ”Guido Castelnuovo”
Piazzale Aldo Moro, 2
I-00185 Roma

Dr. Mihalis Dafermos

M.Dafermos@dpmms.cam.ac.uk

Dept. of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
GB-Cambridge CB3 OWB



1426 Oberwolfach Report 25/2005

Prof. Dr. Panagiota Daskalopoulos

pdaskalo@math.columbia.edu

Department of Mathematics
Columbia University
2990 Broadway, Math. Building 509
MC 4406
New York NY 10027
USA

Prof. Dr. Klaus Ecker

ecker@math.fu-berlin.de

Fachbereich Mathematik
und Informatik
Freie Universität Berlin
Arnimallee 2-6
14195 Berlin

Prof. Dr. Joachim Escher

escher@ifam.uni-hannover.de

Institut für Angewandte Mathematik
Universität Hannover
Welfengarten 1
30167 Hannover

Prof. Dr. Mikhail Feldman

feldman@math.wisc.edu

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison, WI 53706-1388
USA

Prof. Dr. Vladimir S. Georgiev

georgiev@dm.unipi.it

Dipartimento di Matematica
Universita di Pisa
Largo Bruno Pontecorvo,5
I-56127 Pisa

Dr. Michel Grüneberg
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