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Introduction by the Organisers

The workshop Complexity Theory was organised by Joachim von zur Gathen
(Bonn), Oded Goldreich (Rehovot), Claus-Peter Schnorr (Frankfurt), and Madhu
Sudan (Cambridge). The workshop was held on June 5th–11th 2005, and attended
by approximately 50 participants spanning a wide range of interests within the field
of Computational Complexity. Sixteen talks were presented in the mornings, at-
tended by all participants. In addition, extensive interaction took place in smaller
groups. Specifically, several more specialized sessions were held in the afternoons
and were typically attended by 5-20 participants, and numerous imformal meetings
of 2-5 participants took place at various times (including at night).

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on Algebraic
and Boolean Complexity, the meeting has continuously evolved to cover a wide
variety of areas, most of which were not even in existence at the time of the first
meeting (in 1972). The format of the meetings has also been drastically changed
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in the recent meetings so that the focus is on interactions in small specialized
sessions, maintaining unity via general plenary sessions. While inviting many of
the most prominent researchers in the field, the organizers try to identify and
invite a fair number of promising young researchers. The current meeting marks
the retirement from the organizing team of the last and youngest member of the
founding team (Claus Schnorr).

Computational Complexity (a.k.a Complexity Theory) is a central field of Com-
puter Science with a remarkable list of celebrated achievements as well as vibrant
research activity. The field is concerned with the study of the intrinsic complex-
ity of computational tasks, and this study tends to aim at generality : it focuses
on natural computational resources, and considers the effect of limiting these re-
sources on the class of problems that can be solved. Computational complexity is
related to and has substantial interaction with other areas of mathematics such as
number theory, algebra, combinatorics, coding theory, and optimization.

The workshop has focused on several sub-areas of complexity theory and its na-
ture may be best examplified by a brief survey of some of the meeting’s highlights.

The complexity of Undirected Connectivity. For more than two decades,
undirected connectivity was one of the most appealing examples of the computa-
tional power of randomness. Whereas every graph (e.g., a planar graph represent-
ing a maze) can be efficiently traversed by a deterministic algorithm, the classical
deterministic algorithms required an extensive use of (extra) memory (i.e., linear in
the size of the graph). On the other hand, it was known that, with high probability,
a random walk (of polynomial length) visits all vertices in the corresponding con-
nected component. Thus, the randomized algorithm requires a minimal amount
of auxiliary memory (i.e., logarithmic in the size of the graph). Even after more
than a decade of focused attension at the issue, a significant gap remained between
the space complexity of randomized and deterministic polynomial-time algorithms
for this natural and ubiquitous problem. After deterministic polynomial-time pri-
mality testing was discovered in 2003, undirected connectivity became the most
famous example where randomized computations seemed more powerful than de-
terministic ones.

In the workshop, Omer Reingold presented his recent breakthrough result as-
serting that any graph can be traversed by a deterministic polynomial-time algo-
rithm that only uses a logarithmic amount of auxiliary memory. His algorithm is
based on a novel approach that departs from previous attempts, where the latter
tried to derandomize the random-walk algorithm. Instead, Reingold’s algorithm
traverses a virtual graph, which (being an “expander”) is easy to traverse (in de-
terministic logarithmic-space), and maps the virtual traversal of the virtual graph
to a real traversal of the actual input graph. The virtual graph is constructed
in (logarithmically many) iterations, where in each iteration the graph becomes
easier to traverse.

A new proof of the PCP Theorem. The PCP Theorem is one of the most
influential and impressive results of complexity theory. Proven in the early 1990’s,
the theorem asserts that membership in any NP-set can be verified, with constant
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error probability (say 1%), by a verifier that probes a polynomially long (redun-
dant) proof at only a constant number of randomly selected bit locations. The
PCP Theorem led to a breakthrough in the study of the complexity of combina-
torial approximation problems. Its original proof is very complex and involves the
composition of two highly non-trivial proof systems, each minimizing a different
parameter of the asserted PCP system (i.e., the proof length and the number of
probed bits).

In the workshop, Irit Dinur presented an alternative approach to the proof of the
PCP Theorem. Her recent breakthrough approach leads to a simpler proof of the
PCP Theorem as well as to resolving an important open problem regarding PCP
systems (namely, constructing a PCP system having proofs of almost-linear rather
than polynomial length). Dinur’s approach is based on gradually improving the
performance of PCP-like systems, starting with a trivial system and performing
(logarithmically) many amplification steps. In each step, the PCP-like system is
composed with itself in a way that almost preserves all parameters while drastically
improving one particular parameter.

Extracting randomness. Extracting almost-perfect randomness from weak
sources of (imperfect) randomness is crucial for the actual use of randomized proce-
dures. The latter are analyzed assuming they are given access to a perfect random
source, while in reality one typically has access only to sources of weak randomness
(e.g., having constant entropy rate). Indeed, the problem has attracted a lot of
attention in the last couple of decades. In the 1990’s and early 2000’s, the focus
was on single-source extractors that utilize a very short auxiliary random seed.
After more than a decade of impressive progress, culminating in an almost opti-
mal construction, the focus has shifted back to “seedless’ extraction from a few
independent weak sources. In the workshop, Avi Wigderson surveyed the progress
made on the latter problem in the last couple of years, and the techniques used
towards this end. His presentation was followed by a specialized session devoted
to this subject.

Cryptography. Modern Cryptography is intimately related to Complexity The-
ory. A new aspect of this relationship was manifested in a talk by Yuval Ishai,
which described a recent work by himself, Eyal Kushilevitz and their graduate
student Benny Applebaum. They showed that, for many central cryptographic
primitives, secure implementations that have moderate complexity (which exists
under standard complexity assumptions) can be transformed into secure imple-
mentations that have very low (and in fact minimal) complexity (i.e., each output
bit in these implementations can be computed in constant time). Additional works
in the area of Cryptography were presented and discussed in a specialized session
devoted to this area.

Holographic Reductions. Standard (many-to-one) reductions between com-
putational problems utilize gadgets that enforce a correspondence between global
solutions and a sequence of partial local solutions (within the gadgets). In the
workshop Les Valiant presented a novel type of reductions, called holographic,
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in which individual global solutions are not a combination of corresponding local
solutions, but rather the set of global solutions is a combination of the sets of
local solutions. He presented holographic reductions between counting problems,
noting that the corresponding gadgets cannot be implemented in the standard
(non-holographic) manner. These reductions (to a problem that is solvable in
polynomial-time) yield polynomial-time algorithms for problems that were not
known to be efficiently solvable.

The complexity of Matrix Multiplication. Improved algorithms for matrix
multiplication were the focus of extensive research in the 1970’s and 1980’s, cul-
minating in a n2.38-time algorithm for multiplying two n-by-n matrices. Much of
the progress on this question has occurred at the various Oberwolfach meetings on
Complexity Theory. In the workshop, Chris Umans presented a novel approach to
the design of such algorithms. So far, this approach has not yielded an improved
algorithm, however it yields significantly a simpler proof of the fact that matrix
multiplication can be performed in n2.41 steps. This is remarkable in light of the
formidable complexity of previous proofs in the area. Additional works in the
area of Algebraic Complexity were presented and discussed in a specialized session
devoted to this area.

Additional topics that were discussed in the workshop include a geometric ap-
proach to combinatorial optimization problems (see Sanjeev Arora’s extended ab-
stract), the pursuit of even stronger PCP systems (see extended abstracts by Eli
Ben-Sasson and Oded Regev), computational problems regarding integer lattices
(see specialized session devoted to the topic), the complexity of approximation
problems (see Julia Chuzhoy’s extended abstract), computational problems in
coding theory (see Eyal Kushilevitz’s extended abstract), the relation between
worst-case and average-case complexity (see extended abstracts by Adi Akavia
and Amnon Ta-Shma), and Quantum Computing (see extended abstracts by Scott
Aaronson and Ran Raz).

This report contains extended abstracts of the sixteen plenary talks as well as
summaries of the specialized sessions, which were written by the organizers of these
sessions. In addition, the report includes three extended abstracts of talks given
in the specialized sessions (by Peter Buergisser, Ran Raz, and Ronen Shaltiel).
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Abstracts

Undirected ST-Connectivity in Log-Space

Omer Reingold

We present a deterministic, log-space algorithm that solves st-connectivity in undi-
rected graphs. The previous bound on the space complexity of undirected st-

connectivity was log4/3(·) obtained by Armoni, Ta-Shma, Wigderson and Zhou [4].
As undirected st-connectivity is complete for the class of problems solvable by sym-
metric, non-deterministic, log-space computations (the class SL), this algorithm
implies that SL = L (where L is the class of problems solvable by deterministic log-
space computations). Independent of our work (and using different techniques),
Trifonov [19] has presented an O(log n log logn)-space, deterministic algorithm for
undirected st-connectivity.

Our algorithm also implies a way to construct in log-space a fixed sequence
of directions that guides a deterministic walk through all of the vertices of any
connected graph. Specifically, we give log-space constructible universal-traversal
sequences for graphs with restricted labelling and log-space constructible universal-
exploration sequences for general graphs.

1. Introduction

We resolve the space complexity of undirected st-connectivity (denoted
USTCON), up to a constant factor, by presenting a log-space (polynomial-time)
algorithm for solving it. Given as input an undirected graph G and two vertices
s and t, the USTCON problem is to decide whether or not the two vertices are
connected by a path in G (our algorithm will also solve the corresponding search
problem, of finding a path from s to t if such a path exists). This fundamental
combinatorial problem has received a lot of attention in the last few decades and
was studied in a large variety of computational models. It is a basic building block
for more complex graph algorithms and is complete for the class SL of problems
solvable by symmetric, non-deterministic, log-space computations (see [3] for a
recent study of SL and quite a few of its complete problems).

The time complexity of USTCON is well understood as basic search algorithms,
particularly breadth-first search (BFS) and depth-first search (DFS), are capable
of solving USTCON in linear time. In fact, these algorithms apply to the more
complex problem of st-connectivity in directed graphs (denoted STCON), which
is complete for NL (non-deterministic log-space computations). Unfortunately,
the space required to run these algorithms is linear as well. A much more space
efficient algorithm is Savitch’s [18], which solves STCON in space log2(·) (and
super-polynomial time).

Major progress in understanding the space complexity of USTCON was made by
Aleliunas, Karp, Lipton, Lovász, and Rackoff [2], who gave a randomized log-space
algorithm for the problem. Specifically, they showed that a random walk (a path
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that selects a uniform edge at each step) starting from an arbitrary vertex of any
connected undirected graph will visit all the vertices of the graph in polynomial
number of steps. Therefore, the algorithm can perform a random walk starting
from s and verify that it reaches t within the specified polynomial number of steps.
Essentially all that the algorithm needs to remember is the name of the current
vertex and a counter for the number of steps already taken. With this result we
get the following view of space complexity classes: L ⊆ SL ⊆ RL ⊆ NL ⊆ L2

(where RL is the class of problems that can be decided by randomized log-space
algorithms with one-sided error and Lc is the class of problems that can be decided
deterministically in space logc(·)).

The existence of a randomized log-space algorithm for USTCON puts this prob-
lem in the context of derandomization. Can this randomized algorithm be deran-
domized without substantial increase in space? Furthermore, the study of the
space complexity of USTCON has gained additional motivation as an important
test case for understanding the tradeoff between two central resources of compu-
tations, namely between memory space and randomness. Particularly, a natural
goal on the way to proving RL = L is to prove that USTCON ∈ L, as USTCON
is undoubtedly one of the most interesting problems in RL.

Following [2], most of the progress on the space complexity of USTCON indeed
relied on the tools of derandomization. In particular, this line of work greatly ben-
efited from the development of pseudorandom generators that fool space-bounded
algorithms [1, 5, 10, 7] and it progressed concurrently with the study of the L vs.
RL problem. Another very influential notion, introduced by Stephen Cook in the
late 70’s, is that of a universal-traversal sequence. Loosely, this is a fixed sequence
of directions that guides a deterministic walk through all of the vertices of any
connected graph of the appropriate size (see further discussion below).

While Nisan’s space-bounded generator [10], did not directly imply a more
space efficient USTCON algorithm it did imply quasi-polynomially-long, universal-
traversal sequences, constructible in space log2(·). These were extremely instru-
mental in the work of Nisan, Szemeredi and Wigderson [11] who showed that
USTCON ∈ L3/2 – The first improvement over Savitch’s algorithm in terms of
space (limited of course to the case of undirected graphs). Using different meth-
ods, but still heavily relying on [10], Saks and Zhou [17] showed that every RL
problem is also in L3/2 (their result in fact generalizes to randomized algorithms
with two-sided error). Relying on the techniques of both [11] and [17], Armoni,
et. al. [4] showed that USTCON ∈ L4/3. Their USTCON algorithm was the most
space-efficient one previous to this work. We note that the most space-efficient
polynomial-time algorithm for USTCON previously known was Nisan’s [10], which

still required space log2(·). Independent of our work (and using different tech-
niques), Trifonov [19] has presented an O(log n log logn)-space, deterministic al-
gorithm for USTCON.
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2. Main Idea at a Glance

In retrospect, the essence of our algorithm is very natural: If you want to
solve a connectivity problem on your input graph, first improve its connectivity.
In other words, transform your input graph (or rather, each one of its connected
components), into a expander. We will also insist on the final graph being constant
degree. Once the connected component of s is a constant-degree expander, then it
is trivial to decide if s and t are connected: Since expander graphs have logarithmic
diameter, it is enough to enumerate all logarithmically long paths starting with
s and to see if one of these paths visits t. Since the degree is constant, the
number of such paths is polynomial and they can easily be enumerated in log space.
Our transformation of an arbitrary graph into an expander rely on techniques
developed by Reingold, Vadhan and Wigderson [16] in the context of combinatorial
constructions of constant degree expanders.

References

[1] Miklós Ajtai, János Komlós, and E. Szemerédi. Deterministic simulation in LOGSPACE. In Pro-
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On Khot’s Unique Games Conjecture

Oded Regev

In 2002, Khot [15] presented a conjecture known as the unique games conjecture.
We survey recent progress including applications of this conjecture and attempts
to prove (or disprove) it.

We first describe some of the known NP-hardness results. Many of the known
results are tight. For example,

• MAX3SAT: a random assignment satisfies 0.875 of the clauses. [14] has
shown a tight hardness of 0.875 + ε for any constant ε > 0.

• E3LIN2: a random assignment satisfies 0.5. [14] has shown a tight hard-
ness of 0.5 + ε for any constant ε > 0.

• MaxClique: [13] has shown hardness of n1−ε for any constant ε > 0. This
is essentially tight (a trivial algorithm gives n).

• SetCover: Hardness result of lnn [8] matching the greedy algorithm.

On the other hand, there are many problems for which the known NP-hardness
results are very far from the best known algorithms. For example,

• VertexCover: A simple algorithm gives an approximation of 2. The best
NP-hardness result is 1.36 [7].

• Coloring 3-colorable graphs: The best algorithm colors in n3/14 colors [4].
The best known hardness result shows that it is NP-hard to color with 5
colors [17, 10].

• SparsestCut: Best algorithm approximates within (logn)0.5 [2]. No known
NP-hardness results are known.

• MaxCut: Best algorithm approximates to within 0.878 [11]. Best known
NP-hardness result is 0.941 [14].

For all these problems, the unique games conjecture implies a stronger, and
often tight, hardness result:

• VertexCover: Unique-game-hardness of 1.999. [18].1

• Coloring 3-colorable graphs: Unique-game-hardness for any constant [6].
• SparsestCut: Unique-game-hardness within any constant (and beyond)

[5].
• MaxCut: Unique-game-hardness to within 0.878 [16].

1We thank Scott Aaronson for suggesting the name ‘unique-game-hardness’ during the Ober-
wolfach talk.
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Extracting Randomness from Few Independent Sources

Avi Wigderson

This abstract surveys recent progress on the problem of extracting almost per-
fect randomness from a few independent sources of defected randomness. We refer
to defected sources that have a constant min-entropy rate, where a distribution X
over binary strings of length n has min-entropy k if every string has probability at
most 2−k in X . We seek to use sources that have constant min-entropy rate (i.e.,
min-entropy Ω(n)) in order to obtain an almost perfect virtual source of bits, by
using a suitable randomness extractor. A randomness extractor for t independent

sources of min-entropy k with error ε is a function ext : ({0, 1}n)t → {0, 1}m such
that for every t independent sources, X1, ..., Xt, if each Xi has min-entropy at
least k then the distribution ext(X1, ..., Xt) is ε-close to the uniform distribution
over m-bit strings. Our goal is to obtain such explicit constructions; that is, the
function ext needs to be polynomial-time computable.

The motivation to this problem is evident given the prevalent role of random-
ness computer science especially in the design of algorithms, distributed systems,
and cryptography. The justification for the use of randomness in computation is
that randomness seems to exist in nature, and thus it is possible to sample natural
phenomena (such as tossing coins) in order to make random choices in compu-
tation. However, there is a discrepancy between the type of random input that
we expect when designing randomized algorithms and protocols, and the type of
random data that can be found in nature. While randomized algorithms and pro-
tocols expect a stream of independent uniformly distributed random bits, this is
too much to hope for from samples of natural phenomena. Indeed, the aforemen-
tioned min-entropy sources are intended to provide a general and flexible model
of the type of samples one may hope to obtain in reality.

Unfortunately, randomness extraction (as defined above) is impossible from a
single source (i.e., t = 1), even if the source has min-entropy n−1. Previous works
have dealt with this problem in two ways: The first way is to add a short truly
random seed as a secondary input to the extractor (see survey article [10]). In algo-
rithmic applications, the random seed may be replaced by a deterministic scanning
of all possibilities, applying the extractor (on the single source sample) with each
possible seed, running the algorithm using each resulting string, and using the
median value of the algorithm’s output. This strategy is typically impossible in
distributed and cryptographic applications, and thus a different approach is called
for. The second approach is to use no seed, but make further assumptions on
the structure of the weak sources (in addition to the minimal assumption of it
containing sufficient min-entropy). Indeed, allowing few independent sources may
be viewed as a special case of the second approach, and this motivates the con-
struction of multiple-source extractors. Needless to say, we wish to use a small
number of sources. Specifically, we want the number of sources to be a constant
(independent of the sample length, n), and preferably use only two sources.
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We note that the construction of a 2-source extractor is a generalization of a
bipartite Ramsey graph. A bipartite graph with N vertices on each side is called
k-Ramsey if, for every choice of 2k vertices on each side, the induced subgraph
contains some edges and misses some other edges. Indeed a 2-source extractor for
sources of length n and min-entropy k, yields a bipartite k-Ramsey graph with 2n

vertices on each side.
It is easy to show that 2-source extractors exists for min-entropy O(1) +

log2(n/ε
2), but explicit constructions were previously known only in case the

min-entropies of both independent sources sum-up to more than n (cf. [5], fol-
lowing [11]). Explicit t-extractors for min-entropy rate below half were not know
for any constant t. Here we report of recent results that break this barrier; that is,
we discuss explicit constrictions of O(1)-source extractors for any constant min-
entropy rate. We mention few of these results:

• Multiple-source extraction for any entropy rate [1]. For every δ > 0, there
exists an explicit poly(1/δ)-source extractor for sources of min-entropy
rate δ. The extractor’s output (i.e., m) has length n and its error (i.e., ε)
is exponentially small.

• Three-source extraction for any entropy rate [2]. For every δ > 0, there
exists an explicit 3-source extractor for sources of min-entropy rate δ. The
extractor’s output has length slightly greater than any constant and its
error is slightly smaller than any positive constant.

• Two-source extraction for entropy rate 0.499 [3]. For some constant δ <
1/2, there exists an explicit 2-source extractor for sources of min-entropy
rate δ.

• Extraction in an asymmetric setting [8]. Many results that hold for ex-
traction using a single weak source (even with logarithmic min-entropy)
and a perfectly random short seed, extend to the case that the seed has
min-entropy rate ρ, for any constant ρ > 1/2.

These works build on results from additive number theory, which are briefly re-
viewed next.

Let A be a subset of some field F (or even a ring), and define A+A
def
= {a+ b :

a, b ∈ A} and A · A def
= {a · b : a, b ∈ A}. Note that |A| ≤ |A + A| ≤ |A|2 (and

similarly |A| ≤ |A · A| ≤ |A|2). An example for a set A where A + A is small (of
size about 2|A|) is an arithmetic progression. An example for a set A where A ·A
is small is a geometric progression. The Erdős-Szemerédi Theorem asserts that for
every finite set of integers A either A+A or A·A is of size at least |A|1+ε0 , for some
universal constant ε0. In some sense, one can view this theorem as saying that a
set of integers can’t be simultaneously close to both an arithmetic progression and
a geometric progression.

A natural question is whether this theorem also holds in finite fields. A first
observation is that this theorem is false in a field F that contains a non-trivial
subfield F ′. This because if we let A = F ′ then A + A = A · A = A. However,
Bourgain, Katz and Tao [4] proved that a variant of the Erdős-Szemerédi Theorem
does hold in a finite field with no non-trivial subfields. In particular it holds in the
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fields GF(p) and GF(2p) for every prime p. That is, they proved a corresponding
lower-bound holds provided that A is neither too small nor too big (i.e., |A| ∈
(|F|δ , |F|1−δ), for some universal constant δ > 0). Konyagin [7] gave a stronger
result for prime fields, and showed that, as long as |A| < |F|0.99, the lower-bound
holds (even if |A| is very small).

The foregoing suggests that the function f3(x, y, z) = x · y + z may be a good
3-source extractor. For starters, for X,Y and Z that are uniformly and indepen-
dently distributed on A, Konyagin’s result implies that f3(X,Y, Z) has either a
very large support or a significantly larger support than X . Thus, starting with
3log 1/δ copies of X , which has min-entropy rate δ, and combining these copies via
a ternary-tree construction using f3, we obtain a random variable with support
size |F|0.99. Two extensions are required in order to obtain the desired extractor.
Firstly, we need to deal with different sources rather than with identical sources
(or copies of the same random variable). More importantly, we need to obtain
bounds on the min-entropy of the resulting distribution, and not merely on the
size of its support.

We note that a straightforward statistical analogs of the foregoing set size results
do not hold. For example, consider random variables X and Y that are uniformly
distributed on A and G respectively, where A (resp., G) is an arithmetic (resp.,
geometric) progression of size 2k. Then, X and Y have each min-entropy k, but
bothX+Y andX ·Y assign 1/4 of their probability weight to A andG, respectively,
and so their min-entropy is at most k+2. Fortunately, it can be shown that for any
independent sources X,Y and Z of min-entropy k < 0.9 log |F|, the distribution
f3(X,Y, Z) has min-entropy (1 + ε) · k, where ε > 0 is a universal constant. In
fact, this is the main technical result of [1], and its proof utilizes the result of
Konyagin [7] along with some other additive number-theoretic results of Rusza [9]
and Gowers [6].

Using the aforementioned result, we observe that the recursive tree construc-
tion using f3 allows us to obtain a random variable over F having min-entropy
0.9 log |F|, using poly(1/δ) independent sources of min-entropy rate δ. To obtain
an extractor, we repeat the construction twice, using different sources, and combine
the results using an explicit 2-source extractor for high min-entropy (cf. [5, 12]).1
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The PCP Theorem via gap amplification

Irit Dinur

Background. The PCP Theorem characterizes the class NP as the set of lan-
guages for which membership can be proven with a robust, or ‘Probabilistically
Checkable’, Proof. That is, a verifier can verify correctness of such a proof, by toss-
ing O(log n) random coins and reading only a constant number of proof symbols.
Equivalently formulated, the PCP theorem asserts the existence of a polynomial-
time reduction from SAT to gap-CSP (gap constraint satisfaction) where each
constraint is (say) over two variables. This means that every satisfiable formula
is transformed into a system of constraints that is totally satisfiable, and every
unsatisfiable formula is transformed into a constraint system that only 1−α frac-
tion of which can be satisfied, for some α > 0. This interpretation of the PCP
theorem was discovered by [12, 1], and together with the proof of the PCP The-
orem by [2, 1], brought about a revolution of the field of inapproximability. The
proof of the theorem followed an exciting sequence of developments in interactive
proofs, [15, 3, 7, 14, 19, 23, 4, 5, 12] to list just a few. The proof techniques were
mainly algebraic including low-degree extension, low-degree test, parallelization
through curves, a sum-check protocol, and the Hadamard and quadratic functions
encodings.

Our approach. In this work we take a different approach for proving the PCP
Theorem, which is perhaps natural in the context of inapproximability. For a given
system of constraints C, we consider the satisfiability gap of the system, denoted
sat(C), which is the smallest fraction of constraints that every assignment must
leave unsatisfied. The outline of our proof is as follows. We start with a constraint
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system C, for which it is NP-hard to decide if C is satisfiable or not. Namely, it is
NP-hard to distinguish between the cases (i) sat(C) = 0 and (ii) sat(C) ≥ 1/n.
Such a statement is immediate from the NP-completeness of, say, 3SAT. Now
repeatedly apply an amplification step to C, doubling the satisfiability gap at each
iteration (but so that if it was zero it remains zero). We will elaborate on this step
further below. The final outcome C ′ is a constraint system for which in the first
case still sat(C′) = 0, and in the second case sat(C ′) ≥ α for some α > 0. The
amplification step will only incur a linear blowup in the size of C so it is possible
to apply it logn times, with the size of the final output still polynomially related
to the size of the original input. This gives a reduction from 3SAT to gap-3SAT,
thus proving the PCP Theorem.

Let us describe the amplification step in some more details. Our inductive step
consists of three operations on constraint systems: (1) Preprocessing, (2) Graph
powering, and (3) Alphabet reduction.

The most important step is the middle (graph powering) step which is the one
that doubles the satisfiability gap. In order to describe this step let us focus on
systems of constraints over two variables. Such systems can naturally be described
as constraint graphs, whose vertices are variables that take values from some finite
alphabet Σ, and whose edges are associated with constraints. So each edge carries
a list of pairs of Σ-values that are ‘allowed’ for the endpoints of that edge. We
note in passing that it is clearly NP-hard to decide if a given constraint graph is
completely satisfiable or not, e.g., by reduction from 3-colorability (the alphabet
Σ is the set of three colors, and the edges carry inequality constraints).

In order to amplify the gap of a constraint graph we simply raise it to the power
t, for some t = O(1). The graph powering operation is defined as follows: The new
underlying graph is the t-th power of the original graph (with the same vertex-set,
and an edge for each length-t path, and we allow parallel edges). Each vertex v
will hold a value over a larger alphabet, that is a vector of dt values from Σ. This
vector is interpreted as v’s “opinion” about the values of all of its neighbors at
distance ≤ t, including itself. The constraint over two adjacent vertices u, v in the
new graph will be satisfied iff the values and opinions of u and v are consistent
with an assignment that satisfies all of the constraints induced by u, v and their
neighborhoods.

Our main lemma asserts that the satisfiability gap of Gt is at least that of G
multiplied by a factor of roughly

√
t. This is true as long as the initial underlying

graph is sufficiently “well-structured”. By this we mean that the graph is d-regular
for a constant d, has self-loops, and is an expander. All of these properties are
easily obtained in the preprocessing stage.

The main advantage of this operation is that it does not increase the number of
variables in each constraint (which stays 2 throughout). Moreover, when applied
to d-regular graphs for d = O(1), it only incurs a linear blowup in the graph
size (the number of edges is multiplied by dt−1), and an affordable increase in

the alphabet size (which goes from Σ to Σdt

). Combined with an operation that
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reduces the alphabet back to Σ, we get an inductive step that can be repeated
logn times until a constant gap is attained.

Gap amplification lemma. Let us give a high-level description of why the gap
of Gt is larger than that of G. The intuitive reason is that each vertex in Gt has
access to more information, seeing a vector of dt values instead of just one. Also,
it is compared with vertices “further away”, so there is a higher chance to detect
the inconsistency inherent in the graph G (which is measured by the satisfiability
gap).

The idea of the proof is to fix some “best” assignment A : V → Σdt

, which
falsifies the smallest fraction of constraints in Gt. We then extract from it an
assignment a : V → Σ, according to popular opinion (under A).

We then relate the fraction of G-constraints that violate a to the fraction of
Gt-constraints that violate A. Recall that Gt had a constraint for every length-
t path, so we are counting how many bad paths there are, given that there is a
certain fraction of bad edges. Already it should seem reasonable that if the density
of bad edges is α, then the probability that a length-t path in a graph that is an
expander would see a bad edge is on the order of tα. The proof is more subtle than
that because having a path pass through a bad edge, does not yet mean that the
constraint on that path is falsified under A. However, we prove that a constant
fraction of the paths that pass through a fixed bad edge in their middle portion
(i.e., the edge is the i-th step in the path, for t/2−

√
t ≤ i ≤ t/2+

√
t) reject under

A. Here we exploit the connection of A to the popular-vote assignment a.

The full inductive step. The inductive step can be illustrated as

Gi+1 = (prep(Gi))
t ◦ P

where prep(G) denotes a relatively simple transformation of any constraint-graph
G into a constant degree regular expander graph with similar satisfiability gap.
The operation G◦P denotes composition with a constant-size “PCP” algorithm P ,
which is an algorithm that inputs a constraint over a large alphabet, and outputs
a system of constraints over a small alphabet. We run P on each constraint in our
constraint graph, and take the union of the outputs to be the new constraint system
G◦P . It is not hard to show that this yields alphabet reduction, without harming
the satisfiability gap. The point is that since in our setting the input to P always
has constant size, P is allowed to be extremely inefficient. This relaxation makes P
not too difficult to construct, and one can choose their favorite implementation, be
it Long-code based or Hadamard-code based. In fact, P can be found by exhaustive
search, provided we have proven its existence in an independent fashion.

Short PCPs and Locally Testable Codes. Constructing extremely short Prob-
abilistically Checkable Proofs and Locally-Testable Codes (LTCs) has been the
focus of several works [5, 20, 18, 17, 10, 6, 9]. The shortest PCPs/LTCs are due
to [6] and [9], each best in a different parameter setting. We show how to use the
gap-amplification lemma to prove that SAT ∈ PCP 1

2
,1[log2(n · poly logn), O(1)].

This construction uses the PCP of [9] as starting point.
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Final Remarks. This work follows [16, 11] in the attempt to find an alternative
proof for the PCP Theorem that is combinatorial and/or simpler.

The construction described herein is inspired by Reingold’s breakthrough proof
for SL = L [22]. Reingold shows how one iteration of powering / zigzagging,
increases the spectral gap of any graph; so after logn iterations the initial graph
becomes an expander. In our proof, the same form of amplification occurs for the
satisfiability gap of a constraint graph. The steady increase of the satisfiability
gap is inherently different from the original proof of the PCP Theorem. There,
a constant satisfiability gap (using our terminology) is generated by one powerful
transformation, and then a host of additional transformations are incorporated
into the final result to take care of other parameters.

It is interesting to contrast our amplification and the amplification that occurs
in Raz’s parallel repetition theorem [21]. In some weak sense, our amplification can
be viewed as a derandomized parallel repetition, but there are several differences
between the two approaches. Parallel repetition takes a constraint system of size
n to a new one whose size is nt. Our amplification step takes a system of size n
into a system of size n · const(t). Indeed, this is the largest blowup we can tolerate
if we want to repeat the amplification step logn times.

Applying parallel repetition to a constraint system that has a constant satis-
fiability gap, can result in a new system whose gap is 1 − ε for arbitrarily small
ε > 0. We remark that having such a gap of nearly 1 has proved extremely useful
in inapproximability reductions. In our proof, once the satisfiability gap reached
some constant, it does not continue to grow to reach 1 − ε. In fact, very recently
Bogdanov [8] gave an example of a constraint graph with a constant satisfiability
gap, for which graph powering does not amplify the gap beyond 1/2. This limi-
tation is in agreement with the fact that, generally speaking, derandomization of
the parallel repetition theorem is impossible [13].
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Geometry and expansion: A survey of recent results

Sanjeev Arora

Graph expansion occurs as a unifying concept across several areas of theoretical
computer science, including theory of communication networks, theory of error-
correcting codes, theory of approximation algorithms, and theory of computational
pseudo-randomness. This brief survey concerns new, geometric ways of looking at
expansion that have engendered new breakthroughs in approximation algorithms,
geometric embeddings of metric spaces, and probabilistically checkable proofs.

In approximation algorithms the breakthrough is new O(
√

logn)-approximation
algorithms for a host of NP-hard optimization problems, starting with the discov-
ery of such an algorithm for sparsest cut in [3]. These new algorithms rely on
a new analysis of a family of semidefinite programs.
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In geometric embeddings new results include an almost-tight embedding of `1-
spaces into `2 with distortion O(

√
logn log logn). There have also been a spate of

results ruling out certain types of embeddings, most notably a paper of Khot and
Vishnoi which rules out O(1)-distortion embedding of `22 into `1.

Constructions of PCPs in recent years have relied upon theorems in Fourier
Analysis which are also geometric in nature, and this has also become clearer
thanks to the results on embeddings.

Yet another connection between geometry and expansion is that the above re-
sults rely upon a geometric analog of the study of expansion, namely, isoperimetric
problems. The simplest is the classical result that every closed set in <2 whose
area is A has perimeter at least 2

√
πA, the perimeter of the circle of area A. One

can in fact prove the stronger statement that if this set has perimeter ”close to”
2
√
πA, then it ”looks like” a circle of area A. The latter type of theorems we be

referred to as Strong Isoperimetric Theorems. Isoperimetric theorems about the
n-dimensional sphere and the boolean hypercube play an important role in the
above results.
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IEEE Foundations of Computer Science.

[2] Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest cut. ACM
STOC 2005.

[3] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings, and graph par-
titioning. In ACM STOC 2004, pages 222–231.

On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography

Oded Regev

Our main result is a reduction from worst-case lattice problems such as SVP and
SIVP to a certain learning problem. This learning problem is a natural extension
of the ‘learning from parity with error’ problem to higher moduli. It can also be
viewed as the problem of decoding from a random linear code. This, we believe,
gives a strong indication that these problems are hard. Our reduction, however, is
quantum. Hence, an efficient solution to the learning problem implies a quantum
algorithm for SVP and SIVP. A main open question is whether this reduction can
be made classical.

Using the main result, we obtain a public-key cryptosystem whose hardness is
based on the worst-case quantum hardness of SVP and SIVP. Previous lattice-
based public-key cryptosystems such as the one by Ajtai and Dwork were only
based on unique-SVP, a special case of SVP. The new cryptosystem is much
more efficient than previous cryptosystems: the public key is of size Õ(n2) and

encrypting a message increases its size by Õ(n) (in previous cryptosystems these

values are Õ(n4) and Õ(n2), respectively). In fact, under the assumption that all
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parties share a random bit string of length Õ(n2), the size of the public key can

be reduced to Õ(n).

Main theorem. Let n be some integer and let ε ≥ 0 be some real. Consider the
‘learning from parity with error’ problem, defined as follows: find s ∈ Zn

2 given a
list of ‘equations with errors’

〈s, a1〉 ≈ε b1 (mod 2)

〈s, a2〉 ≈ε b2 (mod 2)

...

where the ai’s are chosen independently from the uniform distribution on Z
n
2 and

〈s, ai〉 =
∑

j sj(ai)j is the inner product modulo 2 of s and ai. The input to the

problem consists of the pairs (ai, bi) and the output is a guess for s. By the ≈ε

symbol we mean that each equation is independently chosen to be correct with
probability 1 − ε and incorrect with probability ε. Notice that the case ε = 0 can
be solved efficiently by, say, Gaussian elimination. This requires O(n) equations
and poly(n) time.

The problem seems to become significantly harder when we take any positive
ε > 0. For example, let us consider again the Gaussian elimination process and
assume we are interested in recovering only the first bit of s. Using Gaussian
elimination, we can find a set S of O(n) equations such that

∑

S ai is (1, 0, . . . , 0).
Summing the corresponding values bi gives us a guess for the first bit of s. However,
a standard calculation shows that this guess is correct with probability 1

2 +2−Θ(n).
Hence, in order to obtain the first bit with good confidence, we have to repeat the
whole procedure 2Θ(n) times. This yields an algorithm that uses 2O(n) equations
and 2O(n) time. In fact, it can be shown that given only O(n) equations, the
s′ ∈ Zn

2 that maximizes the number of satisfied equations is with high probability
s. This yields a simple maximum likelihood algorithm that requires only O(n)
equations and runs in time 2O(n).

Blum, Kalai, and Wasserman [8] provided the first subexponential algorithm
for this problem. Their algorithm requires only 2O(n/ log n) equations/time and
is currently the best known algorithm for the problem. It is based on a clever
idea that allows to find a small set S of equations (say, O(

√
n)) among 2O(n/ log n)

equations, such that
∑

S ai is, say, (1, 0, . . . , 0). This gives us a guess for the first

bit of s that is correct with probability 1
2 + 2−Θ(

√
n). We can obtain the correct

value with high probability by repeating the whole procedure only 2O(
√

n) times.
Their algorithm was later shown to have other important applications, such as
the first 2O(n)-time algorithm for solving the shortest vector problem in a lattice
[11, 5].

An important open question is to explain the apparent difficulty in finding
efficient algorithms for this learning problem. Our main theorem explains this
difficulty for a natural extension of this problem to higher moduli, defined next.
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Let p = p(n) ≤ poly(n) be some prime integer and consider a list of ‘equations
with error’

〈s, a1〉 ≈χ b1 (mod p)

〈s, a2〉 ≈χ b2 (mod p)

...

where this time s ∈ Zn
p , ai are chosen independently and uniformly from Zn

p , and
bi ∈ Zp. The error in the equations is now specified by a probability distribution χ :
Zp → R

+ on Zp. Namely, for each equation i, bi = 〈s, ai〉+ei where each ei ∈ Zp is
chosen independently according to χ. We denote the problem of recovering s from
such equations by LWEp,χ (learning with error). For example, the learning from
parity problem with error ε is the special case where p = 2, χ(0) = 1−ε, and χ(1) =
ε. Under a reasonable assumption on χ (namely, that χ(0) > 1/p + 1/poly(n)),
the maximum likelihood algorithm described above solves LWEp,χ for p ≤ poly(n)

using poly(n) equations and 2O(n log n) time. Under a similar assumption, an
algorithm resembling the one by Blum et al. [8] requires only 2O(n) equations/time.
This is the best known algorithm for the LWE problem.

Our main theorem shows that for certain choices of p and χ, a solution to
LWEp,χ implies a quantum solution to worst-case lattice problems.

Theorem 1 (Informal). Let n, p be integers and α ∈ (0, 1) be some real such that
αp > 2

√
n. If there exists a polynomial time algorithm that solves LWEp,Ψ̄α

then
there exists a quantum algorithm that approximates the shortest vector problem
(SVP) and the shortest independent vectors problem (SIVP) to within Õ(n/α) in
the worst case.

We define Ψ̄α as a distribution on Zp that has the shape of a discrete Gaussian
centered around 0 with standard deviation αp. Also, the probability of 0 (i.e., no
error) is roughly 1/(αp). A possible setting for the parameters is p = O(n2) and
α = 1/(

√
n logn) (in fact, these are the parameters that we use in our crypto-

graphic application).
The SVP and SIVP are two of the main computational problems on lattices.

The best known polynomial time algorithms yield only mildly subexponential ap-
proximation factors. It is conjectured that there is no classical polynomial time
algorithm that approximates them to within any polynomial factor. Lattice-based
constructions of one-way functions, such as the one by Ajtai [2], are based on this
conjecture.

One might guess that the same conjecture holds in the quantum world, i.e.,
there is no quantum polynomial time algorithm that approximates SVP (or SIVP)
to within any polynomial factor. Thus one can interpret the main theorem as
saying that based on this conjecture, the LWE problem is hard. The only evidence
supporting this conjecture is that there are no quantum algorithms for lattice
problems that are known to outperform classical algorithms, even though this
is probably one of the most important open questions in the field of quantum
computing. We do not know, however, if this conjecture is true.
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In fact, one could also interpret our main theorem as a way to disprove this
conjecture: if one finds an efficient algorithm for LWE, then one also obtains a
quantum algorithm for approximating worst-case lattice problems. Such a result
would be of tremendous importance on its own. Finally, we would like to stress
that it is possible that our result can be made classical. This would make all our
results stronger and the above discussion unnecessary.

The LWE problem can be equivalently presented as the problem of decoding
random linear codes. More specifically, let m = poly(n) be arbitrary and let
s ∈ Z

n
p be some vector. Then, consider the following problem: given a random

matrix Q ∈ Zm×n
p and the vector t = Qs + e ∈ Zm

p where each coordinate of the

error vector e ∈ Zm
p is chosen independently from Ψ̄α, recover s. The Hamming

weight of e is roughly m(1 − 1/(αp)) (since a value chosen from Ψ̄α is 0 with
probability roughly 1/(αp)). Hence, the Hamming distance of t from Qs is roughly
m(1−1/(αp)). Moreover, it can be seen that for large enoughm, for any other word
s′, the Hamming distance of t from Qs′ is roughly m(1 − 1/p). Hence, we obtain
that approximating the nearest codeword problem to within factors smaller than
(1 − 1/p)/(1 − 1/(αp)) on random codes is as hard as quantumly approximating
worst-case lattice problems. This gives a partial answer to the important open
question of understanding the hardness of decoding from random linear codes.
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Cryptography in NC0

Yuval Ishai

(joint work with Benny Applebaum and Eyal Kushilevitz)

The efficiency of cryptographic primitives is of both theoretical and practical in-
terest. In this work, we consider the question of minimizing the parallel time-
complexity of basic cryptographic primitives such as one-way functions (OWFs)
and pseudorandom generators (PRGs) [2, 12]. Taking this question to an extreme,
it is natural to ask if there are instances of these primitives that can be computed
in constant parallel time. Specifically, the following fundamental question was
posed in several previous works (e.g., [5, 4, 3, 8, 9]):

Are there one-way functions, or even pseudorandom generators, in
NC0?

Recall that NC0 is the class of functions that can be computed by (a uniform
family of) constant-depth circuits with bounded fan-in. In an NC0 function each
bit of the output depends on a constant number of input bits. We refer to this
constant as the output locality of the function and denote by NC0

c the class of NC0

functions with locality c.
The above question is qualitatively interesting, since one might be tempted

to conjecture that cryptographic hardness requires some output bits to depend
on many input bits. Indeed, this view is advocated by Cryan and Miltersen [3],
whereas Goldreich [4] takes an opposite view and suggests a concrete candidate
for OWF in NC0. However, despite previous efforts, there has been no convincing
theoretical evidence supporting either a positive or a negative resolution of this
question.

Our Results. As indicated above, the possibility of implementing most crypto-
graphic primitives in NC0 was left wide open. We present a positive answer to
this basic question, showing that surprisingly many cryptographic tasks can be
performed in constant parallel time.
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Since the existence of cryptographic primitives implies that P 6= NP, we cannot
expect unconditional results and have to rely on some unproven assumptions.1

However, we avoid relying on specific intractability assumptions. Instead, we as-
sume the existence of cryptographic primitives in a relatively “high” complexity
class and transform them to the seemingly degenerate complexity class NC0 with-
out substantial loss of their cryptographic strength. These transformations are
inherently non-black-box, thus providing further evidence for the usefulness of
non-black-box techniques in cryptography.

We now give a more detailed account of our results.

A general compiler. Our main result is that any OWF (resp., PRG) in a
relatively high complexity class, containing uniform NC1 and even ⊕L/poly, can
be efficiently “compiled” into a corresponding OWF (resp., sublinear-stretch PRG)
in NC0

4. (The class ⊕L/poly contains the classes L/poly and NC1 and is contained
in NC2. In a non-uniform setting it also contains the class NL/poly [11].) The
existence of OWF and PRG in this class is a mild assumption, implied in particular
by most number-theoretic or algebraic intractability assumptions commonly used
in cryptography. Hence, the existence of OWF and sublinear-stretch PRG in
NC0 follows from a variety of standard assumptions and is not affected by the
potential weakness of a particular algebraic structure. A similar compiler can also
be obtained for other cryptographic primitives including one-way permutations,
encryption, signatures, commitment, and collision-resistant hashing.

It is important to note that the PRG produced by our compiler will generally
have a sublinear additive stretch even if the original PRG has a large stretch.
However, one cannot do much better when insisting on an NC0

4 PRG, as there is
no PRG with superlinear stretch in NC0

4 [9].

OWF with optimal locality. The above results leave a small gap between the
possibility of cryptography in NC0

4 and the known impossibility of implementing
even OWF in NC0

2. We partially close this gap by providing positive evidence for
the existence of OWF in NC0

3. In particular, we construct such OWF based on
the intractability of decoding a random linear code.

Non-cryptographic generators. Our techniques can also be applied to ob-
tain unconditional constructions of non-cryptographic PRGs. In particular, build-
ing on an ε-biased generator in NC0

5 constructed by Mossel et al. [9], we obtain
a linear-stretch ε-biased generator in NC0

3. This generator has optimal locality,
answering an open question posed in [9]. It is also essentially optimal with respect
to stretch, since locality 3 does not allow for a superlinear stretch [3]. Our tech-
niques apply also to other types of non-cryptographic PRGs such as generators
for space-bounded computation [1, 10], yielding such generators (with sublinear
stretch) in NC0

3.

1This is not the case for non-cryptographic PRGs such as ε-biased generators, for which we
do obtain unconditional results.
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Techniques. Our key observation is that instead of computing a given “crypto-

graphic” function f(x), it might suffice to compute a function f̂(x, r) having the
following relation to f :

(1) For every fixed input x and a uniformly random choice of r, the output

distribution f̂(x, r) forms a “randomized encoding” of f(x), from which
f(x) can be decoded. That is, if f(x) 6= f(x′) then the random variables

f̂(x, r) and f̂(x′, r′), induced by a uniform choice of r, r′, should have
disjoint supports.

(2) The distribution of this randomized encoding depends only on the encoded
value f(x) and does not further depend on x. That is, if f(x) = f(x′) then

the random variables f̂(x, r) and f̂(x′, r′) should be identically distributed.
Furthermore, we require that the randomized encoding of an output value
y be efficiently samplable given y. Intuitively, this means that the output

distribution of f̂ on input x reveals no information about x except what
follows from f(x).

Each of these requirements alone can be satisfied by a trivial function f̂ (e.g.,

f̂(x, r) = x and f̂(x, r) = 0, respectively). However, the combination of the two
requirements can be viewed as a non-trivial natural relaxation of the usual notion

of computing. In a sense, the function f̂ defines an “information-theoretically

equivalent” representation of f . In the following, we refer to f̂ as a randomized
encoding of f .

For this approach to be useful in our context, two conditions should be met.

First, we show that a randomized encoding f̂ can be securely used as a substi-

tute for f . For instance, if f is a OWF then so is f̂ . Second, we show that this
relaxation is sufficiently liberal, in the sense that it allows to efficiently encode

relatively complex functions f by functions f̂ in NC0. Our main constructions of
randomized encodings in NC0 build on the machinery of randomizing polynomials
from [6, 7], where it was shown that any function f in ⊕L/poly can be efficiently

encoded by a function f̂ whose algebraic degree is 3. The notion of randomiz-
ing polynomials was originally motivated by questions in the seemingly unrelated
domain of information-theoretic secure multiparty computation.
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If NP languages are hard on the worst-case then it is easy to find their
hard instances

Amnon Ta-Shma

(joint work with Dan Gutfreund, Ronen Shaltiel)

It is traditional in computational complexity to measure worst-case complexities,
and say that an algorithm is feasible if it can be solved in worst-case polynomial
time (i.e., in P or BPP). A general belief is that all NP-complete languages do not
have feasible algorithms that are correct on every input. Thus under a worst-case
measure of complexity, these problems are hard. However, this does not mean
that in practice NP-complete problems are hard. It is possible that for a given
problem, its hard instances are “rare”, and in fact it is solvable efficiently on all
instances that actually appear in practice.

Trying to capture the notion of “real-life” instances, we look at input distribu-
tions that can be efficiently generated. Often, we don’t have precise knowledge
of the distribution of the inputs, and even worse, this distribution may change
in the future. A reasonable guarantee is that the inputs are drawn from some
samplable distribution. We say that D is samplable if there exists some proba-
bilistic polynomial-time machine that generates the distribution. We would like to
design an algorithm that is guaranteed to succeed with good probability whenever
the inputs are sampled from some samplable distribution. This gives rise to the
following definition, due to Kabanets [8].

Definition 1. (Pseudo classes) Let C be a class of algorithms and L a language.
We say that L ∈ Pseudop(n) C if there exists an algorithm B ∈ C such that for
every samplable distributions D = {Dn}n∈N

we have that for large enough n,
Prx∈Dn [B(x) = L(x)] ≥ p(n).

When C is a class of probabilistic algorithms, there are subtleties in this defini-
tion. In this abstract we ignore these subtleties and we refer the reader to the paper
[5]. Our main result is a worst-case to average-case reduction for PseudoBPP.
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Theorem 2.

(1) NP 6= P ⇒ NP 6⊆ Pseudo5/6 P
(2) NP 6= RP ⇒ NP 6⊆ Pseudo97/100 BPP

This worst-case to average-case reduction in the algorithmic setting, stands in
contrast to the failure in proving such a reduction in the cryptographic setting (for
the class Avg BPP[4, 3, 9]). To the best of our knowledge, it is the first worst-case
to average-case reduction for NP-complete languages under a natural notion of
average-case complexity. Stated in words, Theorem 2 says that if NP is hard on
the worst case then for any efficient algorithm trying to solve some NP complete
language it is possible to efficiently sample instances on which the algorithm errs.

Overview of the technique. We now give a high level overview of the proof of
Theorem 2. We assume that NP 6= P, our goal is to show that for any deterministic
algorithm BSAT there is a samplable distribution which generates hard instances
for BSAT. The main step in the proof is a lemma that shows that there is a
deterministic procedure R that when given as input the description of BSAT and
an input n outputs at most three formulas, and for infinitely many n, BSAT errs
on at least one of the formulas. In other words, the procedure R finds instances
such that one of them is hard for BSAT.

We know that BSAT does not solve SAT, fix some length n on which BSAT
makes an error. The basic idea is to consider the following statement denoted φn:
“there exists an instance x of length n such that BSAT(x) 6= SAT(x)”. Note that
this statement is a true statement. If this statement was an NP statement then
we could reduce it into an instance of SAT and feed it to BSAT. If BSAT answers
’no’ then φn is an instance on which BSAT errs. If BSAT answers ’yes’ then in
some sense BSAT “admits” that it makes an error on inputs of length n. We can
hope to use BSAT to find a witness x to φn and such a witness x is a formula on
which BSAT errs.

Note however, that at the moment it is not necessarily the case that deciding φn

is in NP. This is because it could be the case that BSAT errs only on unsatisfiable
formulas. (Say for example that BSAT always answers ’yes’.) Verifying that
φn holds seems to require verifying that a given formula x is unsatisfiable. We
overcome this difficulty by replacing BSAT with an algorithm SSAT that has the
following properties:

• When SSAT answers ’yes’ then it also outputs a satisfying assignment,
and in particular it never errs when it answers ’yes’.

• If SSAT answers ’no’ then BSAT answers ’no’.
• If BSAT answers ’yes’ on input x then either SSAT answers ’yes’ (and

finds a satisfying assignment) or else SSAT outputs three formulas such
that BSAT errs on at least one of them.

It is easy to construct such an algorithm SSAT by using the standard self-
reducibility property of SAT. More precisely, on input x, the algorithm SSAT
attempts to use BSAT to find a satisfying assignment. In every step it holds a
formula x that BSAT answers ’yes’ on. It then substitutes one variable of x to



Complexity Theory 1459

both “zero” and “one” and feeds these formulas to BSAT. If BSAT answers ’yes’
on one of them, then the search continues on this formula. Otherwise, at least one
of the answers of BSAT on x and the two derived formulas is clearly incorrect.
Finally, SSAT accepts if it finds a satisfying assignment. It is easy to verify that
SSAT has the properties listed above.

To find a hard instance we change φn to be the following statement: “there
exists an instance x of length n such that SAT(x) = 1 yet SSAT(x) 6= ’yes’”. Note
that now deciding φn is in NP and therefore we can reduce it to a formula. To
find hard instances we run SSAT(φn). There are three possibilities.

• SSAT finds three instances such that on one of them BSAT errs.
• SSAT answers ’no’, but in this case BSAT answers ’no’ and φn is a formula

on which BSAT errs.
• SSAT answers ’yes’ and finds a satisfying assignment x.

It is important to stress that we’re not yet done in the third case. While we
know that SSAT errs on x, it’s not necessarily the case that BSAT errs on x. In
the third case, we run SSAT on x. This time we know that the third possibility
cannot occur (because we are guaranteed that SSAT does not answer ’yes’ on x)
and therefore we will be able to find a hard instance.

Extending the argument to the case where BSAT is randomized. is
done as follows. We say that a randomized algorithm conforms with confidence
level 2/3 if for every input x, either the algorithm accepts x with probability 2/3
or it rejects x with probability 2/3. When given such an algorithm BSAT we can
easily use amplification and get an algorithm BSAT that conforms with confidence
level 1 − 2−2n. As in Adelman’s argument [1], for almost all choices of random
strings u, BSAT(·, u)’s answer “captures” whether BSAT accepts or rejects x.
Thus, we can do the same argument as above replacing BSAT with BSAT(·, u) for
a uniformly chosen u. We will find hard instances for BSAT(·, u), and with high
probability (over the choice of u) one of the instances will be a formula on which
BSAT errs with noticeable probability.

In general, we cannot assume that BSAT conforms to some confidence level.
(For example, BSAT is allowed to flip a coin on some instances). For the gen-
eral case, we use amplified versions of BSAT and SSAT, together with a more
cumbersome case-analysis to implement the idea of the deterministic case.

References

[1] L. Adelman. Two theorems on random polynomial time. In Proceedings of the 19th Annual
IEEE Symposium on Foundations of Computer Science, pages 75–83, 1978.

[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 379–
386, 1990.

[3] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
pages 308–317, 2003.

[4] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journal
on Computing, 22:994–1005, 1993.



1460 Oberwolfach Report 26/2005

[5] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. If NP languages are hard on the worst-case then
it is easy to find their hard instances. Proceedings of the Twentieth Annual IEEE Conference
on Computational Complexity, ??–??, 2005.

[6] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of the 10th
Annual Conference on Structure in Complexity Theory, pages 134–147, 1995.

[7] R. Impagliazzo and A. Wigderson. Randomness vs. time: de-randomization under a uni-
form assumption. In Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, pages 734–743, 1998.

[8] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. Journal
of Computer and System Sciences, 63 (2):236–252, 2001.

[9] E. Viola. Hardness vs. randomness within alternating time. In Proceedings of the 18th An-
nual IEEE Conference on Computational Complexity, pages 53–62, 2003.

3-Server Information-Theoretic Private-Information Retrieval

Eyal Kushilevitz

(joint work with A. Beimel, Y. Ishai and J.F. Raymond)

We survey the state-of-the-art in information-theoretic Private Information Re-
trieval (PIR) protocols. In such protocols there are k servers S1, . . . , Sk, each
holding an identical copy of an n-bit string x (sometimes referred to as the “data-
base”) and a user U that holds an index i ∈ [n]. The goal of such a protocol is
for the user to learn xi while keeping i secret from each of the servers.1 There is
a trivial solution for the problem: let one of the servers, e.g. S1, send the entire
string x to the user. While this indeed solves the problem, the communication
complexity of this protocol (i.e., n bits of communication) is too large. In con-
trast, without the privacy requirement logn + 1 bits suffice for the user to learn
xi. The main goal of PIR research is to get the communication complexity lower
(this alone can be shown to require k > 1 servers).

The study of PIR protocols was initiated by Chor et al [6] and since then at-
tracted a significant amount of attention. Specifically, the following results are
known: (1) If the number of servers, k, can be a function of the database size, n,
then k =polylog(n) servers suffice for obtaining polylog(n) communication [6, 2].
(2) A protocol for k = 2 servers with communication complexity O(n1/3) and
for general k with communication complexity O(n1/k) [6]. (3) k-server protocol
with communication complexity O(n1/2k−1) [1, 10, 9, 3, 13].2 (4) k-server proto-
col with communication complexity O(nc log log k/(k log k)) [4]. Some of these results
also have implications for the problem of constructing Locally Decodable Codes

1Various natural extensions and generalizations of this problem are discussed in the literature
but are ignored in this survey. Examples of such extensions include the problem of computational
PIR (where privacy is obtained by using cryptographic assumption and under the assumption
that the server(s) are limited to efficient computations) [5, 12, 7], symmetric PIR (where there

is an additional requirement that the user learns no information on x other than the value of xi)
[8], PIR against coalitions of t servers [6, 9, 13], etc.

2Each of the papers in this sequence of works achieves some improvements over the previous
ones in various aspects; e.g., in the dependency of the complexity in k.
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(LDCs) [11]. Specifically, the best known LDCs are constructed via (binary an-
swer) PIR protocols.

This survey concentrates on the case of k = 3 servers.3 We present three
protocols:

• A protocol of complexity O(n1/2). This protocol (as well as the following
protocols) uses as basic ingredients arithmetization and replication secret-
sharing. This is a binary-answer PIR protocol (of the type needed to
construct LDCs) and is still the best known protocol of this type for k = 3.

• A protocol of complexity O(n1/5). This protocol balances the communi-
cation between the user and servers by making a simple observation about
the structure of the (low degree) polynomials that are coming out of the
arithmetization and the replication secret-sharing scheme.

• A protocol of complexity O(n4/21). This protocol, on top of the above
ingredients, uses recursion in the context of PIR, which is the main idea
in [4].
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Holographic Algorithms

Leslie Valiant

Using the notion of polynomial time reduction computer scientists have discovered
an astonishingly rich web of interrelationships among the myriad natural compu-
tational problems that arise in diverse applications. These relationships have been
used both to give evidence of intractability, such as that of NP-completeness [1, 2]
or #P-completeness [3], as well as some surprising new algorithms [4].

In this talk we discuss a new notion of reduction [5], which we call a holographic
reduction, that is more general than the traditional one in the following sense.
Instead of locally mapping solutions one-to-one it maps them many-to-many but
preserves the sum of the solutions.

One application is to finding new polynomial time algorithms where none was
known before. We shall give such algorithms for several counting problems related
to planar graphs. These include a restricted case of the problem of counting the
number matchings in planar graphs, the unrestricted case being known to be #P-
complete [6]. They also include counting the number of satisfying assignments of
a planar formula consisting of not-all-equal-of-3 gates, and counting the number of
ways the edges of a cubic planar graph can be directed so that there are no sources
or sinks. Also included is the problem of deciding the minimal number of nodes
that need to be removed from a degree three planar graph to make it bipartite,
and the problem of counting the parity of approximate solutions of planar linear
equations of even length over GF[2].

A more radical proposal is that of revisiting the currently accepted conjectures
of computer science, such as that P 6= NP, and seeing whether holographic reduc-
tions offer any insights towards either positive or negative resolutions. The talk
reviews complexity theory in this light. We show that there exist infinite families
of polynomials with integer coefficients such that the existence of a solution over
the complex numbers for any one member would imply the existence of fixed size
algebraic gadgets for certain natural fixed size combinatorial constraints, the exis-
tence of which in turn would imply that there are polynomial time algorithms for
#P. This relationship may be viewed both as an approach to finding surprising
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new algorithms, and also as a restricted model of computation for which lower
bound proofs might be sought.
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Are Quantum States Exponentially Long Vectors?

Scott Aaronson

I’m grateful to Oded Goldreich for inviting me to the 2005 Oberwolfach Complexity
Theory meeting. In this extended abstract, which is based on a talk that I gave
there, I demonstrate that gratitude by explaining why Goldreich’s views about
quantum computing are wrong.

Why should anyone care? Because in my opinion, Goldreich, along with Leonid
Levin [6] and other “extreme” quantum computing skeptics, deserves credit for
focusing attention on the key issues, the ones that ought to motivate quantum
computing research in the first place. Personally, I have never lain awake at night
yearning for the factors of a 1024-bit RSA modulus, let alone the class group of a
number field. The real reason to study quantum computing is not to learn other
people’s secrets, but to unravel the ultimate Secret of Secrets: is our universe a
polynomial or an exponential place?

Last year Goldreich [5] came down firmly on the “polynomial” side, in a short
essay expressing his belief that quantum computing is impossible not only in prac-
tice but also in principle:

As far as I am concern[ed], the QC model consists of exponentially-
long vectors (possible configurations) and some “uniform” (or
“simple”) operations (computation steps) on such vectors . . . The
key point is that the associated complexity measure postulates
that each such operation can be effected at unit cost (or unit
time). My main concern is with this postulate. My own in-
tuition is that the cost of such an operation or of maintaining
such vectors should be linearly related to the amount of “non-
degeneracy” of these vectors, where the “non-degeneracy” may
vary from a constant to linear in the length of the vector (de-
pending on the vector). Needless to say, I am not suggesting a
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concrete definition of “non-degeneracy,” I am merely conjectur-
ing that such exists and that it capture[s] the inherent cost of the
computation.

My response consists of two theorem-encrusted prongs:1 first, that you’d have
trouble explaining even current experiments, if you didn’t think that quantum
states really were exponentially long vectors; and second, that for most complexity-
theoretic purposes, the exponentiality of quantum states is not that much “worse”
than the exponentiality of classical probability distributions, which of course no-
body complains about. Due to the length limitation, in this abstract I’ll discuss
only the first prong, which is based on my paper “Multilinear Formulas and Skep-
ticism of Quantum Computing” [1], and not the second prong, which is based on
my paper “Limitations of Quantum Advice and One-Way Communication” [2].

Prong 1: Quantum States Are Exponential

For me, the main weakness in the arguments of quantum computing skeptics
has always been their failure to suggest an answer to the following question: what
criterion separates the quantum states we’re sure we can prepare, from the states
that arise in Shor’s factoring algorithm? I call such a criterion a “Sure/Shor
separator.” To be clear, I’m not asking for a red line partitioning Hilbert space
into two regions, “accessible” and “inaccessible.” But a skeptic could at least
propose a complexity measure for quantum states, and then declare that a state
of n qubits is “efficiently accessible” only if its complexity is upper-bounded by a
small polynomial in n.

In his essay [5], Goldreich agrees that such a Sure/Shor separator would be de-
sirable, but avers that it’s not his job to propose one. Motivated by the “hands-off”
approach of Goldreich and other skeptics, in [1] I tried to carry out the skeptics’
research program for them, by proposing and analyzing possible Sure/Shor sep-
arators. The goal was to illustrate what a scientific argument against quantum
computing might look like.

For starters, such an argument would take care to assert the impossibility only of
future experiments, not experiments that have already been done. So for example,
it would not dismiss exponentially-small amplitudes as physically meaningless,
since one can easily produce such amplitudes by polarizing n photons each at
45◦. Nor would it appeal to the “absurd” number of particles that a quantum
computer would need to maintain coherently—since, to give one example, the
Zeilinger group’s C60 experiment [3] has already demonstrated “Schrödinger cat

states,” of the form |0〉⊗n+|1〉⊗n

√
2

, for n large enough to be interesting for quantum

computation.
Of course, the real problem is that, once we accept |ψ〉 and |ϕ〉 into our set of

possible states, consistency almost forces us to accept α |ψ〉 + β |ϕ〉 and |ψ〉 ⊗ |ϕ〉
as well. So is there any defensible place to draw a line? This conundrum is
what led me to investigate “tree states”: the class of n-qubit pure states that are

1Sanjeev Arora asked why I don’t have three prongs, thereby forming a ψ-shaped pitchfork.
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expressible by polynomial-size trees of linear combinations and tensor products.

As an example, the state
(

|0〉+|1〉√
2

)

⊗ · · · ⊗
(

|0〉+|1〉√
2

)

is a tree state; and indeed, so

is any state that can be written succinctly in the Dirac notation, using only the
symbols |0〉 , |1〉 ,+,⊗, (, ) together with constants (no

∑

’s allowed). In evaluating
tree states as a possible Sure/Shor separator, we need to address two questions:
first, should all quantum states that arise in present-day experiments be seen as
tree states? And second, would a quantum computer allow the creation of non-tree
states?

My results imply a positive answer to the second question: not only could
a quantum computer efficiently generate non-tree states, but such states arise
naturally in several quantum algorithms.2 In particular, let C be a random linear
code over GF2. Then with overwhelming probability, a uniform superposition
over the codewords of C cannot be represented by any tree of size nε log n, for some
fixed ε > 0. Indeed, nΩ(log n) symbols would be needed even to approximate such
a state well in L2-distance, and even if we replaced the random linear code by a
certain explicit code (obtained by concatenating the Reed-Solomon and Hadamard
codes). I also showed an nΩ(log n) lower bound for the states arising in Shor’s
algorithm, modulo a number-theoretic conjecture: basically, that the multiples of
a large prime number, when written in binary, constitute a decent erasure code.
All of these results rely on a spectacular recent advance in classical theoretical
computer science: Raz’s superpolynomial lower bounds on multilinear formula size
[7] (which were proven about a month before I needed them for my application!).
Incidentally, in all of the cases discussed above, I conjecture that the actual tree
sizes are exponential in n; currently, though, Raz’s method can only prove lower
bounds of the form nΩ(log n).3

Perhaps more relevant to physics, I also conjecture that 2-D and 3-D “cluster
states” (informally, 2-D and 3-D lattices of qubits with pairwise nearest-neighbor
interactions) have exponential tree size.4 If true, this conjecture suggests that
states with enormous tree sizes might have already been observed in condensed-
matter experiments—for example, those of Ghosh et al. [4] on long-range en-
tanglement in magnetic salts. In my personal fantasy land, once the evidence
characterizing the ground states of these condensed-matter systems became un-
deniable, the skeptics would hit back with a new Sure/Shor separator. Then
the experimentalists would try to refute that separator, and so on. As a result,
what started out as a philosophical debate would gradually evolve into a scientific
one—on which progress not only can be made, but is.

2On the other hand, I do not know whether a quantum computer restricted to tree states
always has an efficient classical simulation. All I can show is that such a computer would be
simulable in Σ

p
3 ∩ Π

p
3 , the third level of the polynomial-time hierarchy.

3I did manage to prove an exponential lower bound, provided we restrict ourselves to linear
combinations α |ψ〉 + β |ϕ〉 that are “manifestly orthogonal”—which means that for all compu-
tational basis states |x〉. either 〈ψ|x〉 = 0 or 〈ϕ|x〉 = 0.

4By contrast, I can show that 1-D cluster states have tree size O
`

n4
´

.
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Short PCPs

Eli Ben-Sasson

(joint work with Oded Goldreich, Prahladh Harsha, Madhu Sudan, Salil Vadhan)

1. Efficient Verification of Proofs

Probabilistically Checkable Proof (PCP) systems [10, 2, 1] (also known as Holo-
graphic Proofs [3]) are proof systems that allow efficient probabilistic verification
of proofs. Formally, a PCP system is given by a verifier, called a PCP verifier,
that probabilistically queries a purported proof of a claimed theorem and accepts
valid proofs of true theorems with probability one, while accepting any claimed
proof of false assertions with low probability, say at most 1/2. In early works on
this subject [3, 10, 2, 1], the notion of efficiency took on two different meanings.

• In the work of Babai et al. [3], which refer to inputs in error-correcting
form, efficient verification meant the running time of the verifier is small
(poly-logarithmic) and the length of the ”Holographic” proof is not much
larger than that of its classical analog (in [3], a classical proof of length
n is converted to a Holographic proof of length n1+ε, for arbitrarily small
ε > 0). However, the query complexity of the verifier (i.e. the number of
bits it reads from the proof) was only bounded by its running time.

• The work of Feige et al. [10] showed that obtaining a verifier with small
query complexity yields hardness of approximation results. The PCP The-
orem [2, 1] indeed showed the existence of verifiers with constant query
complexity for any language in NP. Such query efficient proofs translate
to strong non-approximability results for many combinatorial optimiza-
tion problems (cf. [5, 4, 12, 11, 14]). However, in [10, 2, 1] and subsequent
works, the running time of the PCP-verifier as well as the length of the
”probabilistically checkable” proof were allowed to be arbitrary polynomi-
als.
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In this talk we describe recent research that shows one can obtain efficient
verification under both interpretations. In other words, one gets PCP verifiers
(say, for the NP-complete language 3SAT) that run in poly-logarithmic time and
make a constant number of queries to a proof of sub-polynomial length. Notice
we improve upon [3] in terms of proof-length, while matching the efficiency of [3]
in running time and the efficiency of [1] in query complexity.

2. Results

We described the following two results from [8] and [7] respectively.

(1) Constructions of probabilistically checkable proofs (PCPs) of length n ·
poly(logn) (to prove satisfiability of circuits of size n) that can verified by
querying poly(logn) bits of the proof. (Notice this result does not claim
poly-logarithmic running time for the verifier). We also give constructions
of locally testable codes (LTCs) with similar parameters.

We pointed out that Dinur [9] recently showed (among other things)
that the query complexity can be reduced to a constant while retaining
the proof length at n · poly(logn). This result is obtained by applying her
novel proof of the PCP Theorem (also presented in this workshop) to our
result.

(2) Every language in NP has a probabilistically checkable proof of proximity
(i.e., proofs asserting that an instance is “close” to a member of the lan-
guage), where the verifier’s running time is poly-logarithmic in the input
size and the length of the probabilistically checkable proof is only poly-
logarithmically larger that the length of the classical proof. (Such a verifier
can only query poly-logarithmically many bits of the input instance and
the proof. Thus it needs oracle access to the input as well as the proof,
and cannot guarantee that the input is in the language — only that it is
close to some string in the language.) The time complexity of the verifier
and the size of the proof were the original emphases in the definition of
holographic proofs, due to Babai et al. (STOC ’91), and our work is the
first to return to these emphases since their work.

3. Techniques

We focused on (sketching) the proof of the first result mentioned above. Previ-
ous constructions of short PCPs (from [3] to [6]) relied extensively on properties
of low degree multi-variate polynomials. In contrast, our constructions rely on
new problems and techniques revolving around the properties of codes based on
high degree polynomials in one variable (also known as Reed-Solomon codes). We
show how to convert the problem of verifying the satisfaction of a circuit by a
given assignment to the task of verifying that a given function is close to being a
Reed-Solomon codeword, i.e., a univariate polynomial of specified degree. This re-
duction is simpler than the corresponding steps in previous reductions, and gives
a new alternative to using the popular “sum-check protocol”. We then give a
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new PCP for the special task of proving that a function is close to being a Reed-
Solomon codeword. This step of the construction is by a self-contained recursion,
and the only ingredient needed in the analysis is the bi-variate low-degree test of
Polischuk and Spielman [13].

Note that our constructions yield LTCs first, which are then converted to PCPs.
In contrast, most recent constructions go in the opposite (and less natural) direc-
tion of getting LTCs from PCPs.
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A Group-Theoretic Approach to Fast Matrix Multiplication

Chris Umans

(joint work with Henry Cohn, Robert Kleinberg, Balázs Szegedy)

The exponent of matrix multiplication is the smallest real number ω such that
for all ε > 0, O(nω+ε) arithmetic operations suffice to multiply two n×n matrices.
The standard algorithm for matrix multiplication shows that ω ≤ 3. Strassen’s
remarkable result [5] shows that ω ≤ 2.81 . . ., and a sequence of further works
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culminating in the work of Coppersmith and Winograd [4] have improved this
upper bound to ω ≤ 2.376 . . . (see [1] for a full history). Most researchers believe
that in fact ω = 2, but there have been no further improvements in the known
upper bounds for the past fifteen years.

In this talk we describe ongoing work on a new “group-theoretic” approach
to matrix multiplication, recently proposed in [2]. The basic idea is to reduce
matrix multiplication to group algebra multiplication with respect to a suitable
non-abelian group. In the first part of the talk we describe this reduction together
with a property of groups that is sufficient to admit such a reduction. We sketch
a proof that an infinite family of groups admits such a reduction with parameters
that are necessary (but not yet sufficient) to achieve ω = 2. In the second part of
the talk we describe further demands on the representation theory of the groups
used in the reduction in order for the overall approach to yield non-trivial bounds
on ω. We end by describing a specific group that proves ω < 2.908 . . . in this
framework, and we speculate that generalizing this example may provide a route
to proving ω = 2.

Recall that by employing Strassen’s framework for recursive matrix multiplica-
tion, any method for multiplying k × k matrices A and B that operates by (1)
forming linear combinations of the entries of A and linear combinations of the en-
tries of B, (2) multiplying m pairs of these sums, and (3) expressing the entries of
the result matrix C = AB as linear combinations of the m products, immediately
yields ω ≤ logk m (in Strassen’s original algorithm k = 2 and m = 7).

Our method follows exactly this strategy. To describe it we need to recall the
definition of the group algebra C[G]; this is the set of all formal linear combinations
of elements of groupG, with addition and multiplication defined naturally on these
formal sums (using the group multiplication law to multiply group elements). We
often think of elements of C[G] as vectors of length G. The Discrete Fourier
Transform (DFT) is a linear transform that turns group algebra multiplication
into block-diagonal matrix multiplication, where the sizes of the blocks are the
character degrees of G. Formally the DFT realizes the isomorphism

C[G] ' C
d1×d1 · · ·Cd`×d` ,

where the di are the character degrees of G (and then, necessarily,
∑

i d
2
i = |G|).

Multiplication of k×k matrices “embeds” into C[G] multiplication if there exist
three subgroups H1, H2, H3 ⊆ G that satisfy the triple product property: for all
h1 ∈ H1, h2 ∈ H2, h3 ∈ H3 we have

h1h2h3 = 1 ⇔ h1 = h2 = h3 = 1.

It can be verified that if we index the rows and columns of matrix A by ele-
ments of H1 and H2, and define Ā =

∑

h1∈H1,h2∈H2
Ah1,h2

(h1h
−1
2 ); and if we

index the rows and columns of matrix B by elements of H2 and H3, and define
B̄ =

∑

h2∈H2,h3∈H3
Ah2,h3

(h2h
−1
3 ); then the coefficient on (h1h

−1
3 ) in the product

ĀB̄ is exactly the (h1, h3) entry in the result matrix C = AB. Moreover, if we
“multiply in the Fourier domain,” i.e., we compute the DFT of Ā, the DFT of
B̄, then perform the block-diagonal matrix multiplication, and finally compute
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the inverse DFT of the result, then we conform to the framework required for
recursive matrix multiplication. The number m of multiplications required is the
number of multiplications required for the block-diagonal matrix multiplication,
which is roughly

∑

dω
i . Altogether we obtain the following theorem:

Theorem 1 (Cohn and Umans [2]). Suppose that subgroups H1, H2, H3 ⊆ G, each
of size k, satisfy the triple product property, and let d1, d2, . . . , d` be the character
degrees of G. Then kω ≤ ∑

i d
ω
i .

Notice that
∑

i d
2
i = |G| is a lower bound on the right hand side of the above

inequality, and thus to have a hope of proving ω = 2, we need a family of groups
G of size k2+o(1), each containing three subgroups of size k satisfying the triple
product property. The following theorem shows that this is in fact possible:

Theorem 2 (Cohn and Umans [2]). Let Gn be the symmetric group acting on
n(n+1)/2 points arranged in a triangular array with sidelength n. Let H1, H2, H3

be the three subgroups of Gn that preserve (set-wise) the rows of points parallel
to each of the three sides, respectively. Then H1, H2, H3 satisfy the triple product
property in Gn, and |H1| = |H2| = |H3| = |Gn|1/2−o(1).

Unfortunately when plugged into Theorem 1 this family of groups does not
even yield ω < 3, because the character degrees di are too large. The challenge
thus becomes to find a family of groups together with subgroups satisfying the
triple product property and for which the character degrees are small enough for
Theorem 1 to yield nontrivial bounds on ω.

How small is “small enough”? One corollary of Theorem 1 is that if for some
family of groups admitting k × k matrix multiplication with |G| = k2+o(1), we
have the maximum character degree dmax ≤ |G|γ for some constant γ < 1/2, then
ω = 2. Since a priori dmax < |G|1/2 for any group G, this seems like it may be
within reach. A second corollary of Theorem 1 is that this method proves ω < 3
iff we can find a group G admitting k × k matrix multiplication via H1, H2, H3,
and for which

|H1||H2||H3| >
∑

i

d3
i .

In fact we can even relax the requirement that H1, H2, H3 are subgroups, and
instead allow subsets of G. If Q(Hi) denotes the set of (right-) quotients of pairs
of elements from Hi, then the condition in the triple product property becomes
q1q2q3 = 1 ⇔ q1 = q2 = q3, where qi ∈ Q(Hi).

In [3] we construct a group and three subsets that “beat the sum of the cubes” of
the character degrees, and thus prove a non-trivial bound on ω. The construction
is as follows. Let A be any abelian group of size m, and consider the semidirect
product of C2 = {1, z} (the cyclic group of order 2) with A6, where z acts by
interchanging the first three and last three coordinates; i.e., if (a, b, c, d, e, f) ∈ A6,
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then z(a, b, c, d, e, f)z = (d, e, f, a, b, c). The three subsets we consider are:

F = {(a, 0, 0, 0, a′, 0)zi : a, a′ ∈ A, a 6= 0, i ∈ {0, 1}}
G = {(0, b, 0, 0, 0, b′)zj : b, b′ ∈ A, b 6= 0, j ∈ {0, 1}}
H = {(0, 0, c, c′, 0, 0)zk : c, c′ ∈ A, c 6= 0, k ∈ {0, 1}}

In [3] we prove that these subsets satisfy the triple product property. The size of
each of the subsets is 2m(m − 1), so |F ||G||H | = 8m3(m − 1)3. It is easy to see
that the containing group has dmax = 2, and thus

∑

i

d3
i ≤ dmax

∑

i

d2
i = dmax(2m

6) = 4m6,

which for sufficiently large m is exceeded by |F ||G||H |. As argued above such
a construction proves nontrivial bounds on ω and in fact taking m = 17 yields
ω < 2.908 . . ..

This group can also be described as the wreath product of the symmetric group
of order 2 with the abelian group A3. By generalizing this construction in different
ways, we can prove better bounds (ω < 2.48 . . . and ω < 2.41 . . .) using wreath
products of the full symmetric group with abelian groups. The difficult part in
such constructions seems to be apportioning the abelian part among the three
subsets in a way that ensures that the triple product property holds. In [3],
we make two conjectures regarding this apportionment that would improve our
existing constructions to the point that they would yield ω = 2.
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On Basing One-Way Functions on NP-Hardness

Adi Akavia

(joint work with Oded Goldreich, Shafi Goldwasser, Dana Moshkovitz)

One-way functions are functions that are easy to compute but hard to invert,
where the hardness condition refers to the average-case complexity of the inverting
task. The existence of one-way functions is the cornerstone of modern cryptogra-
phy: almost all cryptographic primitives imply the existence of one-way functions,
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and most of them can be constructed based either on the existence of one-way
functions or on related (but seemingly stronger) versions of this assumption.

As noted above, the hardness condition of one-way functions is an average-
case complexity condition. Clearly, this average-case hardness condition implies a
worst-case hardness condition; that is, the existence of one-way functions implies
that NP is not contained in BPP. A puzzling question of fundamental nature is
whether or not the necessary worst-case condition is a sufficient one; that is, can
one base the existence of one-way functions on the assumption that NP is not
contained in BPP.

More than two decades ago, Brassard [2] observed that the inverting task as-
sociated with a one-way permutation (or, more generally, a 1-1 one-way function)
cannot be NP-hard, unless NP = coNP . The question was further addressed
(indirectly), in the works of Feigenbaum and Fortnow [3] and Bogdanov and Tre-
visan [1], which focused on the study of worst-case to average-case reductions
among decision problems.

Our Main Results. In this work we re-visit the aforementioned question, but
do so explicitly. We study possible reductions from a worst-case decision prob-
lem to the task of average-case inverting a polynomial-time computable function
(i.e., reductions that are supposed to establish that the latter function is one-way
based on a worst-case assumption regarding the decision problem). Specifically,
we consider (randomized) reductions of NP to the task of average-case inverting
a polynomial-time computable function f , and capitalize on the additional “com-
putational structure” of the search problem associated with the inverting task.
This allows us to strengthen previously known negative results, and obtain the
following two main results:

(1) If given y one can efficiently compute |f−1(y)| then the existence of a
(randomized) reduction of NP to the task of average-case inverting f
implies that NP ⊆ coAM.

The result extends to functions for which the preimage size is efficiently
verifiable via an AM protocol. For example, this includes regular functions
with efficiently recognizable range. Recall that AM is the class of sets hav-
ing two-round interactive proof systems, and that it is widely believed that
coNP is not contained in AM (equiv., NP is not contained in coAM).
Thus, it follows that such reductions cannot exist (unless NP ⊆ coAM).

We stress that this result holds for any reduction, including adaptive
ones. We note that the previously known negative results regarding worst-
case to average-case reductions were essentially confined to non-adaptive
reductions (cf. [3, 1], where [3] also handles restricted levels of adaptivity).

(2) For any (polynomial-time computable) function f , the existence of a (ran-
domized) non-adaptive reduction of NP to the task of average-case in-
verting f implies that NP ⊆ coAM.

This result improves over the previous negative results of [3, 1] that
placed NP in non-uniform coAM (instead of in uniform coAM).
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These negative results can be interpreted in several ways. The straightforward
view is that they narrow down the means by which one can base one-way func-
tions on NP-hardness. Namely, under the assumption that NP is not contained
in coAM, these results show that (1) non-adaptive randomized reductions are
not suitable for basing one-way functions on NP-hardness, and (2) that one-way
functions based on NP-hardness can not have efficient algorithms for computing
(or, more generally, verifying) the preimage size. Another interpretation is that
these negative results are an indication that (worst-case) complexity assumptions
regarding NP as a whole (i.e., NP 6⊆ BPP) are not sufficient to base one-way
functions on. But this does not rule out the possibility of basing one-way func-
tions on the worst-case hardness of a subclass of NP (e.g., the conjecture that
NP ∩ coNP 6⊆ BPP). Yet another interpretation is that these negative results
suggest that we should turn to “non black-box” reductions for basing one-way
functions on NP-hardness.

Relation to Feigenbaum-Fortnow and Bogdanov-Trevisan. Our work
builds on the previous works of Feigenbaum and Fortnow [3] and Bogdanov and
Trevisan [1], while capitalizing on the additional “computational structure” of the
search problem associated with the task of inverting polynomial-time computable
functions. We believe that our results illustrate the gain of directly studying the
context of one-way functions rather than inferring results for it from a the general
study of worst-case to average-case reductions.

Although a main motivation of [1] is the question of basing one-way functions
on worst-case NP-hardness, its focus (like that of [3]) is on decision problems. Us-
ing known reductions between search and decision problems, Bogdanov and Tre-
visan [1] also derive implications on the (im)possibility of basing one-way functions
on NP-hardness. In particular, they conclude that if there exists an NP-complete
set for which deciding any instance is non-adaptively reducible to inverting a one-
way function (or, more generally, to a search problem with respect to a sampleable
distribution), then coNP ⊆ AMpoly.

The works [1, 3] fall short of a general impossibility result in two ways. First,
they only consider non-adaptive reductions, whereas Ajtai’s celebrated worst-
case to average-case reductions of lattice problems are adaptive. Second, [1, 3]
reach conclusions involving a non-uniform complexity class (i.e., AMpoly). Non-
uniformity seems an artifact of their techniques, and one may hope to conclude
that coNP ⊆ AM rather than coNP ⊆ AMpoly. (One consequence of the uni-
form conclusion is that it implies that the polynomial time hierarchy collapses to
the second level, whereas the non-uniform conclusion only implies a collapse to
the third level.)

The Benefits of Direct Study of One-Way Functions. Working directly
with one-way functions allows us to remove both the aforementioned shortcom-
ings. That is, we get rid of the non-uniformity altogether, and obtain a meaningful
negative result for the case of general (adaptive) reductions. Specifically, work-
ing directly with one-way functions allows us to consider natural special cases of
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potential one-way functions, which we treat for general (i.e., possibly adaptive)
reductions. One special case of potential one-way functions is that of regular one-
way functions. Loosely speaking, in such a function f , each image of f has a
number of preimages that is (easily) determined by the length of the image. We
prove that any reduction (which may be fully adaptive) of NP to inverting a regu-
lar polynomial-time computable function that has an efficiently recognizable range
(possibly via an AM-protocol) implies coNP ⊆ AM. More generally, this holds
for any function f for which there is an AM-protocol for determining the number
of inverses |f−1(y)| of each given y. We call such functions size-verifiable, and note
that they contain all functions for which (given y) one can efficiently compute
|f−1(y)|.

As stated above, we believe that the study of the possibility of basing one-way
functions on worst-case NP-hardness is the most important motivation for the
study of worst-case to average-case reductions for NP . In such a case, one should
consider the possible gain from studying the former question directly, rather than
as a special case of a more general study. We believe that the results presented in
this work indicate such gains. Firstly, working directly in the context of one-way
function enabled us to get rid of the non-uniformity in all our results (by replacing
non-uniform advice that provide needed statistics with AM-protocols designed to
provide these statistics). Secondly, the context of one-way function enabled us
to consider meaningful types of one-way functions and to establish even stronger
results for them. We hope that this framework may lead to resolving the general
question of the possibility of basing any one-way function on worst-case NP-
hardness via any reduction. In light of the results of this paper, we are tempted
to conjecture an impossibility result (pending, as usual, on coNP 6⊆ AM).
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Hardness of Undirected Routing Problems

Julia Chuzhoy

In this talk we present several recent hardness of approximation results for
undirected routing problems, with a focus on the Edge Disjoint Paths and related
problems.

In general, the input to a routing problem consists of a graph G (directed or
undirected), and a number of source-sink pairs (s1, t1), . . . , (sk, tk) that need to be
connected. In the Edge Disjoint Paths problem (EDP), the objective is to connect
as many pairs as possible via edge-disjoint paths.
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The best approximation algorithm for EDP in directed graphs has a ratio
of O(min(n2/3,

√
m)) [12, 5, 13] where n and m denote the number of vertices

and edges respectively in the input graph. This upper bound is matched by an
Ω(m1/2−ε)-hardness due to Guruswami et al. [10]. Therefore, the directed version
of the problem is quite well-understood. However, this is not the case with undi-
rected graphs, for which the problem is still widely open. The best current upper
bound is O(

√
n) [6], while on the negative side, until recently, only APX-hardness

has been known.
A related routing problem is Congestion Minimization. The input to this prob-

lem is exactly the same as in the EDP problem, namely graph G and a collection of
source-sink pairs. The goal is to connect each source to its sink by a single path,
such that the edge congestion is minimized, where edge congestion is the maximum
number of paths sharing an edge. For this problem, Raghavan and Thompson’s
randomized rounding technique [14] gives an O( log n

log log n )-approximation algorithm

for both directed and undirected versions. When the input graph is directed,
an Ω(log log n)-hardness was proved by Chuzhoy and Naor [8]. However, until
recently no non-trivial lower bounds were known for the undirected version.

The last few years have seen a significant progress in understanding the hard-
ness of undirected routing problems. In particular, Andrews [1] introduced a
new approach for proving hardness of undirected routing problems, and showed

Ω(log1/2−ε)-hardness of the Buy-at-Bulk problem. Following [1], Andrews and

Zhang [3] proved Ω(log log1−ε n) hardness of undirected Congestion Minimization.

Andrews and Zhang [2] also showed that undirected EDP is Ω(log1/3−ε n)-hard

to approximate. This result was recently improved to Ω(log1/2−ε)-hardness by
Chuzhoy and Khanna [7].

We demonstrate this new approach on the hardness of Edge Disjoint Paths
problem. Consider the following reduction from the Maximum Independent Set
problem (MIS) to EDP: for each vertex in the MIS instance, we create a source-
sink pair and a canonical path that connects this pair. The canonical paths are
defined in such a way that whenever there is an edge between vertices u and v
in the MIS instance, the two corresponding canonical paths share an edge. It is
easy to see that if the solution to the resulting EDP instance consists of canonical
paths only, then it can be translated into a solution of the MIS instance of the
same cost. The opposite is also true: any solution to the MIS instance naturally
defines a solution to the EDP instance. The problem is that in general, solutions
of the EDP instance do not necessarily follow the canonical paths, and if such a
solution has many non-canonical paths, then it cannot be translated into a large
cardinality independent set. The main idea is to convert the above EDP instance
into a random graph with “almost” high girth. Roughly speaking, in order to
create the random instance, we make many copies of each vertex from the original
EDP instance. Each edge in the original EDP instance is then replaced by a
random matching between the copies of its endpoints. In the new instance, we can
bound the number of non-canonical paths in any solution as follows: the number of
long non-canonical paths is restricted due to the graph capacity. As for the short



1476 Oberwolfach Report 26/2005

non-canonical paths, each such path forms a small cycle with some canonical path.
The number of such small cycles can be bounded due to the random structure of
the graph.

An interesting variation of the EDP and the Congestion Minimization problems
is EDP with congestion. In this problem, we are given an input graph G, a
collection of source-sink pairs (s1, t1), . . . , (sk, tk), and an integer c. The goal is to
route maximum number of s− t pairs, while the congestion on any edge is at most
c. We are interested in a bi-criteria setting here, where the optimal solution uses
edge disjoint paths only, while the algorithm is allowed congestion up to c. Since
the Edge Disjoint Paths problem seems to be hard to approximate, it is interesting
whether a better approximation can be found for its natural relaxation, namely

EDP with congestion. Recently, an Ω(log
1−ε
c+2 )-hardness was proved independently

by [7, 4, 11]. We present the construction of [7] in this talk.
Finally, we study the multicommodity flow relaxation of the Edge Disjoint Paths

problem. It is known that the linear program has integrality gap of Ω
√

logn [9].
However, even for c = 2, so far no superconstant lower bounds on the integrality
gap of the multicommodity flow relaxation has been known. The hardness results

of [7, 4, 11] naturally show that the integrality gap is at least Ω(log
1−ε
c+2 ). However,

the constructions are unnecessarily complex. In this talk we describe a direct

simple construction of Ω

(

(

log n
log log2 n

)1/(c+1)

/c2
)

integrality gap due to [7].
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Quantum Information and the PCP Theorem

Ran Raz

We present the recent paper: ”Quantum Information and the PCP Theo-
rem” [1].

Probabilistic Checkable Proofs with an additional quantum witness.
Our main result is that the membership x ∈ SAT (for x of length n) can be
proved by a combination of the following two witnesses:

(1) A logarithmic-size quantum witness
(2) A polynomial-size classical witness consisting of blocks of length polylog(n)

bits each, s.t. only one of these blocks is read by the verifier

In other words, after seeing the logarithmic-size quantum witness the verifier only
needs to read one of the blocks of the classical witness in order to verify the
membership x ∈ SAT .

Interactive proofs with quantum advice. We also study the power of inter-
active proofs with quantum advice and we show that the class QIP/qpoly contains
all languages. That is, for any language L (even non-recursive), the membership
x ∈ L (for x of length n) can be proved by a polynomial-size quantum interactive
proof, where the verifier is a polynomial-size quantum circuit with working space
initiated with some quantum state |ΨL,n〉 (depending only on L and n).

Moreover, the interactive proof that we give is of only one round, and the
messages communicated are classical.

Interactive proofs with randomized advice. The quantum advice in the last
result can be replaced by a randomized advice. The last result can hence be
presented as a classical result.

Our protocol shows that the class IP/rpoly contains all languages. That is,
for any language L, the membership x ∈ L (for x of length n) can be proved by
a polynomial-size classical interactive proof, where the verifier is a polynomial-
size circuit with working space initiated with a random string chosen from some
distribution DL,n (depending only on L and n). Moreover, the interactive proof
that we give is of only one round.

It is important to note that the classical result only holds if the setting is such
that the prover (of the interactive proof) cannot see the advice that was given to
the verifier. In other words, the result holds only if the class IP/rpoly is defined
with an advice that is kept as a secret from the prover.
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Representation of classical bits by a quantum or random string. Both of
the above results are based on a new representation of an exponential number of
classical bits by a short quantum or random string.

We show how to encode 2n (classical) bits a1, ..., a2n by a single quantum state
|Ψ〉 of size O(n) qubits, such that: for any constant k and any i1, ..., ik ∈ {1, ..., 2n},
the values of the bits ai1 , ..., aik

can be retrieved from |Ψ〉 by a one-round Arthur-
Merlin interactive protocol of size polynomial in n. This shows how to go around
Holevo-Nayak’s Theorem, using Arthur-Merlin proofs.

As before, the quantum advice in the last result can be replaced by a randomized
advice. The last result can hence be presented as a classical result.

Our protocol hence shows how to encode 2n (classical) bits a1, ..., a2n by a single
random string ρ of size O(n), such that: for any constant k and any i1, ..., ik ∈
{1, ..., 2n}, the values of the bits ai1 , ..., aik

can be retrieved from ρ by a one-round
Arthur-Merlin interactive protocol of size polynomial in n.

As before, the classical result only holds if the setting is such that the string ρ
is kept as a secret from the prover.

A quantum low degree test. Our main result also relies on a new machinery
of quantum low-degree-test that may be interesting in its own right. Technically,
this is the hardest part of the paper.
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The Computational Complexity of the Euler characteristic and the
Hilbert Polynomial

Peter Bürgisser

(joint work with Felipe Cucker and Martin Lotz)

The talk presented results from [10, 11, 12].

Motivation. The Euler characteristic χ(V ) of a topological space V is one of
the most basic invariants in algebraic topology and occurs in many branches of
geometry. Remarkably, it can be characterized in various different ways. For
instance, for spaces V admitting a finite triangulation, it is the alternating sum
of the number of i-simplices of the triangulation. The Hilbert polynomial is an
important discrete object attached to a complex projective variety V ⊆ Pn. Among
other things, it encodes the dimension, the degree and the arithmetic genus of V .
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Previous Work. S. Basu [3] gave the first single exponential time algorithm for
the computation of the Euler characteristic of a semialgebraic set. Algorithms for
computing Hilbert polynomials were described in [17, 6, 5]. These algorithms are
based on the computation of Gröbner bases, which leads to bad upper complexity
estimates. Currently, no upper bound better than exponential space is known for
the computation of the Hilbert polynomial of a projective variety.

In [9] a systematic study of the inherent complexity of computing algebraic or
topological invariants of (semi)algebraic sets was initiated, with the goal of char-
acterizing the complexity of various such problems by completeness results in a
suitable hierarchy of complexity classes. Versions of L. Valiant’s counting com-
plexity class #P [18], tailored to the Blum-Shub-Smale model of computation [8],
turned out to be relevant for this purpose. Over the reals, such a counting class
was first introduced by K. Meer [16].

For instance, the problem #HNC of counting the number of complex common
zeros of a finite set of multivariate polynomials is complete for the counting class
#PC over C. One of the results of [9] states that the computation of the modified
Euler characteristic of a semialgebraic set is polynomial time equivalent to the
problem of counting the number of real common zeros of a multivariate polynomial.

Our results. We show that the problem EULERC of computing the topological
Euler characteristic of a complex algebraic variety is polynomial time equivalent
to the problem #HNC. Moreover, we prove that the problem Hilbertsm of com-
puting the Hilbert polynomial of a smooth equidimensional complex projective
variety can be reduced in polynomial time to the problem #HNC. We can prove
analogous statements in the Turing model of computation. Finally, we show that
the more general problem of computing the Hilbert polynomial of a homogeneous
ideal is polynomial space hard. This implies polynomial space lower bounds for
both the problems of computing the rank and the Euler characteristic of cohomol-
ogy groups of coherent sheaves on projective space as well as for the problem of
computing the corresponding Euler characteristic, thus improving the #P-lower
bound in E. Bach [2].

Proof Ideas. The class #PC captures the complexity of counting the number of
complex solutions to systems of polynomial equations. It is therefore not surprising
that some of the ideas and tools of intersection theory, enumerative geometry, and
Schubert calculus are salient for our purposes.

A first ingredient of our proofs is a complexity framework for analyzing general
position arguments (generic parsimonious reductions). Efficient algorithms for
quantifier elimination elimination over R are essential in this context, see [4].

The reduction from EULERC to HNC crucially depends on a recent result due
to P. Aluffi [1]. This result characterizes the Euler characteristic of a (possibly
singular) projective hypersurface Z(f) in terms of the multidegrees of the projec-
tive gradient map of f . Our reduction from Hilbertsm to #HNC consists of the
following three steps:
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(1) We interpret the value pV (d) of the Hilbert polynomial of V ⊆ P
n on d ∈ Z

as the Euler characteristic χ(OV (d)) of the twisted sheaf OV (d).
(2) The Hirzebruch-Riemann-Roch Theorem [13] gives an explicit combinato-

rial description of χ(OV (d)) in terms of certain determinants ∆λ(c) (re-
lated to Schur polynomials) in the Chern classes ci of the tangent bundle
of V .

(3) The homology class corresponding to the cohomology class ∆λ(c) can be
realized up to sign by a degeneracy locus, which is defined as the pullback
of a Schubert variety under the Gauss map [14].

We call the geometric degree of such a degeneracy locus a projective character.
The above observation allows to express the coefficients of the Hilbert polynomial
as rational linear combinations of projective characters. We now use the fact
that the computation of the geometric degree of varieties is essentially possible
in the complexity class #PC, and that the class #PC is closed under exponential
summation.
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Simulating Independence: New Constructions of Condensers, Ramsey
Graphs, Dispersers, and Extractors

Ronen Shaltiel

(joint work with Boaz Barak, Guy Kindler, Benny Sudakov, Avi Wigderson)

A distribution X over binary strings of length n has min-entropy k if every
string has probability at most 2−k in X . We say that X is a δ-source if its rate
k/n is at least δ. In this work we continue a long line of research concerned with
“extracting randomness from high entropy distributions” (see survey article [8]).

Main results. We give the following new explicit constructions (namely, poly(n)-
time computable functions) of deterministic extractors, dispersers and related ob-
jects. All work for any fixed rate δ > 0. No previous explicit construction was
known for either of these, for any δ < 1/2. The first two constitute major progress
to very long-standing open problems.

(1) Bipartite Ramsey graph Ramsey : ({0, 1}n)2 → {0, 1}, such that for
any two independent δ-sources X1, X2 we have Ramsey(X1, X2) = {0, 1}.

A corollary is a new explicit construction of bipartite Ramsey graphs.
That is, a 2-coloring of the edges of the complete N by N bipartite graph
with N = 2n, such that no induced N δ by N δ subgraph is monochromatic.
This improves a previous construction by [5] which achieves δ = 1/2 −
1/

√
n.

(2) Three source extraction Ext : ({0, 1}n)3 → {0, 1}, such that for any
three independent δ-sources X1, X2, X3 we have that Ext(X1, X2, X3) is
(o(1)-close to being) an unbiased random bit.

This result improves previous results by [1] that requires O(1/δ2) sourc-
es (although that result achieves smaller error). The aforementioned con-
struction is used as a componenet in our constructions together with in-
comparable results by [2, 9, 3] that for δ > 1/2 require only two sources.

(3) Constant seed condenser1 Con : {0, 1}n → ({0, 1}m)c, such that for
any δ-source X , one of the c output distributions Con(X)i, is a 0.9-source
over {0, 1}m. Here c is a constant depending only on δ.

In the rest of this abstract, we provide an overview of our techniques.

1This result was also independently obtained by Ran Raz.
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A constant seed condenser. Our basic condenser bcon will take strings of
length n with n = 3p for some prime p. For every x ∈ {0, 1}n let x = x1x2x3 its
natural partition to three length p blocks. Define bcon : {0, 1}3p → ({0, 1}p)4 by
bcon(x) = x1, x2, x3, x1 · x2 + x3 (with arithmetic in GF (2p)).

We prove that if X is a δ-source with δ < 0.9, then at least one of the output
blocks is a (δ + Ω(δ2))-source. Iterating it a constant number of times on a δ-
source allows us to increase to rate (of some output block) above 0.9 and achieve
the aforementioned result.

The proof heavily relies on the main lemma of [1], who proved x1 · x2 + x3 is
condensed assuming that the xi’s are independent. We certainly cannot assume
that in our case, as X is a general source. Still, we use that lemma to show that
if none of these first 3 blocks is more condensed than the input source, then they
are “independent enough” for using that main lemma.

A 2-source constant-seed/“somewhere” extractor. Our two main deter-
ministic constructions in this paper are a 3-source extractor and a bipartite Ram-
sey. For both, an essential building block, is a constant seed 2-source extractor
s ext (short for “somewhere extractor”) for constant entropy rate, which we de-
scribe next.

What we prove is that for every δ > 0 there are integers c, d and a poly(n)-
time computable function s ext : ({0, 1}n)2 → ({0, 1}n/c)d, such that for every
two δ-sources X1, X2 there is at least one output block s ext(X1, X2)i which is
(exponentially close to) uniform.

Constructing the somewhere extractor s ext is simple, given the condenser con
of the previous subsection. To compute s ext(X1, X2), compute the output blocks
of con(X1) and con(X2). By definition, some output block of each has rate > .9.
We don’t know which, but we can try all pairs! For each pair we apply a 2-source
extractor which expects its sources to have entropy rate > 1/2. (Recall that there
are such explicit constructions). We obtain a constant number of linear length
blocks, one of which is very close to uniform. Formally, if d is the number of
output block of con, then s ext will produce d2 blocks, with s ext(X1, X2)i,j =
2-src-ext(con(X1)i, con(X2)j).

A 4-source extractor. In the paper we construct a 3-source extractor. For the
purpose of explaining some of the ideas in the construction it is easier to show a
4-source extractor. Recall that our 2-source somewhere extractor s ext produces
a constant number (say) d of linear length output blocks, one of which is random.
First we note that producing shorter output blocks maintains this property as a
prefix of a random string is random.

Let us indeed output only a constant b bits in every block (satisfying b ≥
log(db)). Concatenating all output blocks of this s ext(X1, X2) gives us a dis-
tribution (say Z1) on db bits with min-entropy ≥ b. If we have 4 sources, we
can get another independent such distribution Z2 from s ext(X3, X4). But note
that these are two independent distributions on a constant number of bits with
sufficient min-entropy for (existential) 2-source extraction. Now apply an optimal
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(non-constructive) 2-source extractor on Z1, Z2 to get a uniform bit; as db is only
a constant, such an extractor exists by the probabilistic method and can be found
in constant time by brute-force search! We denote it by opt. To sum up, our
4-source extractor is

4ext((X1, X2); (X3, X4)) = opt(s ext(X1, X2), s ext(X3, X4))

The Construction of bipartite Ramsey graphs. This construction uses the
components above but is significantly more complicated. In the next paragraph
we try to highlight some (but not all) of the ideas that are used.

We first observe that our 4-source extractor can extract randomness even when
given two independent block-wise sources.2 We then use methods from [7] to show
that for any source X there exists a way to partition it into two contingent blocks
(X1, X2) that form a block wise source. Thus, given two independent sources we
can hope to partition each one of them into a block-wise source and apply our
4-source extractor. An obvious problem is that we do not know where to split a
given source X . The main construction of the paper gives a technique that given
two samples x and y from two independent sources X and Y with rate ≥ δ finds a
way to partition the two strings so that the resulting distributions are independent
block-wise source (at least on a non-negligible fraction of the original probability
space). Applying this method gives a construction of a bipartite Ramsey graph.

References

[1] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting Randomness from Few Independent
Sources. In Proc. 45th FOCS. IEEE, 2004.

[2] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Proba-
bilistic Communication Complexity. In Proc. 26th FOCS, pages 429–442. IEEE, 1985.

[3] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved Randomness Extraction from Two
Independent Sources. In Proc. of 8th RANDOM, 2004.

[4] P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combina-
torica, 1(4):357–368, 1981.
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Multi-Linear Formulas for Permanent and Determinant are of
Super-Polynomial Size

Ran Raz

An arithmetic formula is multi-linear if the polynomial computed by each of its
sub-formulas is multi-linear. We prove that any multi-linear arithmetic formula for
the permanent or the determinant of an n× n matrix is of size super-polynomial
in n. Previously, super-polynomial lower bounds were not known (for any explicit
function) even for the special case of multi-linear formulas of constant depth.

The talk presented lower bounds and methods from [3, 4].

Introduction. Arithmetic formulas for computing the permanent and the deter-
minant of a matrix have been studied since the 19th century. Are there polynomial
size formulas for these functions ? Although the permanent and the determinant
are among the most extensively studied computational problems, polynomial size
formulas for these functions are not known. The smallest known formula for the
permanent of an n × n matrix is of size O(n22n). The smallest known formula
for the determinant of an n × n matrix is of size nO(log n). An outstanding open
problem in complexity theory is to prove that polynomial size formulas for these
functions do not exist. Note, however, that super-polynomial lower bounds for the
size of arithmetic formulas are not known for any explicit function and that ques-
tions of this type are considered to be among the most challenging open problems
in theoretical computer science.

We prove super-polynomial lower bounds for the subclass of multi-linear for-
mulas. An arithmetic formula is multi-linear if the polynomial computed by each
of its sub-formulas is multi-linear (as a formal polynomial), that is, in each of its
monomials the power of every input variable is at most one.

Multi-Linear Formulas. Let F be a field, and let {x1, ..., xm} be a set of input
variables. An arithmetic formula is a binary tree whose edges are directed towards
the root. Every leaf of the tree is labelled with either an input variable or a field
element. Every other node of the tree is labelled with either + or × (in the first
case the node is a plus gate and in the second case a product gate).

An arithmetic formula computes a polynomial in the ring F[x1, ..., xm] in the
following way. A leaf just computes the input variable or field element that labels
it. A plus gate computes the sum of the two polynomials computed by its sons. A
product gate computes the product of the two polynomials computed by its sons.
The output of the formula is the polynomial computed by the root. The size of
the formula is defined to be the number of nodes in the tree.

A polynomial in the ring F[x1, ..., xm] is multi-linear if in each of its monomials
the power of every input variable is at most one. An arithmetic formula is multi-
linear if the polynomial computed by each gate of the formula is multi-linear.
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Motivation. Multi-linear formulas are restricted, as they do not allow the inter-
mediate use of higher powers of variables in order to finally compute a certain
multi-linear function. Note, however, that for many multi-linear functions, formu-
las that are not multi-linear are very counter-intuitive, as they require a ”magical”
cancellation of all high powers of variables. For many multi-linear functions, it
seems ”obvious” that the smallest formulas should be multi-linear.

Multi-linear polynomials are very powerful and are extensively used in theoret-
ical computer science. Hence, the class of multi-linear formulas seems to be quite
strong and it is very interesting to study its computational power.

Note also that both the permanent and the determinant are multi-linear func-
tions in the input variables and that many of the well known formulas for these
functions are multi-linear formulas. In particular, the smallest known arithmetic
formula for the permanent is multi-linear. (For the determinant, the smallest
known formulas are not multi-linear. Sub-exponential size multi-linear formulas
for the determinant are not known.)

Finally, we note that several classes of formulas that were studied in the past are
subclasses of multi-linear formulas. One example is monotone arithmetic formulas.
It is easy to see that a monotone arithmetic formula for a multi-linear function is
always multi-linear.

Our Results. We prove that over any field, any multi-linear arithmetic formula
for the permanent or the determinant of an n × n matrix is of size nΩ(log n). An
obvious corollary of our result is that over any field, any multi-linear arithmetic cir-
cuit for the permanent or the determinant of an n×n matrix is of depth Ω(log2 n).
Our method is quite general and can be applied for many other functions.

Previous Work. Multi-linear arithmetic formulas were formally defined in [2].
Previous to our result, lower bounds for the size of multi-linear formulas were not
known even for formulas of constant depth. Exponential lower bounds for a variant
of constant depth multi-linear formulas were obtained in [2]. Lower bounds for
several other restricted subclasses of multi-linear formulas were obtained in [1, 2, 5].

Methods. The starting point for our proof is the partial derivatives method of
Nisan and Wigderson [1, 2]. It was suggested in [2] that for certain restricted sub-
classes of arithmetic formulas (and circuits), the dimension of the space spanned
by all partial derivatives of the output is quite small. The method was used
in [1, 2, 5] to obtain lower bounds for several subclasses of formulas and circuits.
Note, however, that for multi-linear formulas the dimension of the space spanned
by all partial derivatives may be very large, even if the formula is of linear size.
In particular, that dimension may be much larger than the dimension of the space
spanned by all partial derivatives of the permanent or the determinant. Neverthe-
less, the set of partial derivatives still plays a crucial roll in our proof.

To handle sets of partial derivatives, we make use of the partial derivatives
matrix. The partial derivatives matrix was first used for proving lower bounds by
Nisan [1], and was later on used in several other works.
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In our proof, we also use rank arguments as well as random restrictions. Both
these methods were used for proving lower bounds in numerous of works. However,
we use them here in a completely different way. For example, random restrictions
were used in many works in order to eliminate gates. Here, we use random re-
strictions in order to make gates unbalanced without eliminating even a single
gate.
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Specialized Session on Cryptography

Shafi Goldwasser and Moni Naor (Session Chairs)

Cryptography and complexity have been fertilizing each other for the last three
decades. Therefore, there were two sessions concentrating on the connection be-
tween complexity and cryptography, an afternoon and an evening one. The talks
and the abstracts are listed below.

1. Yael Kalai Tauman: On the Impossibility of Obfuscation with
Auxiliary Inputs

Barak et. al. [1] formulated the notion of obfuscation, and showed that there ex-
ist (contrived) classes of functions that cannot be obfuscated. In contrast, Canetti
[7] and Wee [19] showed how to obfuscate point functions, under various complex-
ity assumptions. Thus, it would seem possible that most programs of interest can
be obfuscated even though in principle general purpose obfuscators do not exist.

We show that this is unlikely to be the case. In particular, we consider the
notion of ”obfuscation w.r.t. auxiliary inputs,” which corresponds to the setting
where the adversary, which is given the obfuscated circuit, may have some a priori
information. This is essentially the case of interest in any usage of obfuscation
we can imagine. We prove that there exist many natural classes of functions that
cannot be obfuscated w.r.t. auxiliary inputs, both when the auxiliary input is
dependent on the function being obfuscated and even when the auxiliary input is
independent of the function being obfuscated.



Complexity Theory 1487

2. Boaz Barak: Concurrent Composition Using Super-Polynomial
Simulation [2]

We consider the problem of constructing a secure protocol for any multi-party
functionality, which remains secure when executed concurrently with multiple
copies of itself and other protocols, without any assumptions on existence of trusted
parties, honest majority or synchronicity of the network. Recently it was shown
by Lindell [13] that such a protocol is impossible to obtain under the standard
definition of security, namely, polynomial-time simulation by an ideal adversary.

We construct a protocol for this problem which is secure in this setting, under
a relaxed definition security, namely, quasi-polynomial-time simulation by an ideal
adversary. Quasi-polynomial-time simulation seems to suffice for the canonical
application of multi-party secure computation; that is obtaining protocols for any
task whose privacy, integrity and input independence cannot broken by efficient
adversaries under reasonable cryptographic assumptions. We emphasize that the
security of our protocol does not rely on setup conditions such as the existence of
a common reference string, nor does it require an existence of honest majority of
parties.

Our construction is the first such protocol under reasonably standard crypto-
graphic assumptions (i.e., existence of a hash function collection that is collision
resistent with respect to circuits of subexponential size, and existence of trapdoor
permutations which are secure with respect to circuits of quasi-polynomial size).

The main new technique introduced is “protocol condensing”. That is, tak-
ing a protocol that has strong security properties but requires super-polynomial
communication and computation, and then transforming it into a protocol with
polynomial communication and computation that still inherits the strong security
properties of the original protocol. Our main result is obtained by combining this
technique with previous results of Pass [17] and Canetti et al [8].

3. Guy Rothblum: The Complexity of Online Memory Checking[16]

We consider the problem of storing a large file on a remote and unreliable server.
To verify that the file has not been corrupted, a user could store a small private
(randomized)“fingerprint” on his own computer. This is the setting for the well-
studied authentication problem, and the size of the required private fingerprint is
well understood. We study the problem of sub-linear authentication: suppose the
user would like to encode and store the file in a way that allows him to verify that
it has not been corrupted, but without reading the entire file. If the user only
wants to read t bits of the file, how large does the size s of the private fingerprint
need to be? We define this problem formally, and show a tight lower bound
on the relationship between s and t when the adversary is not computationally
bounded, namely: s× t = Ω(n), where n is the file size. The problem of sublinear
authentication is an easier case of the online memory checking problem, introduced
by Blum et al. [6] in 1991, and hence the same (tight) lower bound applies also to
this problem.
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It was shown by [6] that when the adversary is computationally bounded, under
the assumption that one-way functions exist, it is possible to construct much
better online memory checkers and sub-linear authentication schemes. It was
not previously known, however, whether one-way functions are required for the
implementation of efficient online checkers. The study of which computational
assumptions are necessary for implementing cryptographic tasks was initiated by
Impagliazzo and Luby [12]. We continue this study and show that the existence
of one-way functions is also a necessary condition for implementing efficient online
memory checker: even slightly breaking the lower bound in a computational setting
implies the existence of one-way functions.

To show lower bounds we reduce the problems of online memory checking and
sublinear authentication to a communication complexity problem. We show these
cryptographic primitives are related to the simultaneous messages (SM) commu-
nication model, introduced by Yao [18]. Newman and Szegedy [15] showed tight
bounds for the SM complexity of the equality function, and their result was gen-
eralized by Babai and Kimmel [4]. To prove a lower bound for sublinear authenti-
cation, we generalize Yao’s SM model, introducing a Consecutive Messages model
of communication complexity. We then extend Babai and Kimmel’s result to the
new model. We also show that breaking the lower bound in a computational set-
ting implies the existence of one-way functions. Another essential ingredient of
our results is an algorithm for learning adaptively changing distributions (ACDs),
see Naor and Rothblum [14]. We use this learning algorithm to show that an ad-
versary can “learn” the distribution of addresses that the sublinear authenticator
will read in its next run.

4. Sergey Yekhanin: A Geometric Approach to
Information-Theoretic Private Information Retrieval [20]

A t-private information retrieval (PIR) scheme allows a user to retrieve the i’th
bit of an n-bit string x replicated among k servers, while any coalition of up to
t servers learns no information about i. We present a new geometric approach
to PIR, and obtain (1) A t-private k-server protocol with smaller communica-
tion complexity, (2) A 2-server protocol with O(n1/3) communication, polynomial
preprocessing, and online work O(n/ logr n) for any constant r, improving the
previously known bound of O(n/ log2 n), (3) Smaller communication for instance
hiding, PIR with a polylogarithmic number of servers, robust PIR, and PIR with
fixed answer sizes. Finally, our techniques are of independent interest, and may
serve as a tool for obtaining better upper bounds. As an example of the model’s
power we give a new geometric proof of the best known upper bound for 1-private
k-server PIR protocols of [3] for k < 26.

5. Moni Naor: Using Complexity Lower Bounds for Fighting Spam -
Pebbling and Proofs of Work [11]

In 1992 Dwork and Naor proposed that e-mail messages be accompanied by
easy-to-check proofs of computational effort in order to discourage junk e-mail, now
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known as spam [10],and suggested specific CPU-bound functions for this purpose.
Noting that memory access speeds vary across machines much less than do CPU
speeds, Abadi, et al. [5] initiated a fascinating new direction: replacing CPU-
intensive functions with memory-bound functions, an approach that treats senders
more equitably. Memory-bound functions were further explored by by Dwork,
Goldberg, and Naor [9], who designed a class of functions based on pointer chasing
in a very large shared random table T . We may think of T as part of the definition
of their functions. Using hash functions modelled as truly random functions (i.e.
‘random oracles’), they proved lower bounds on the amortized number of memory
accesses that an adversary must expend per proof of effort.

The drawbacks to the use of a large random table in the definition of the
function is that it makes distributing the software for proof-of-effort harder to dis-
tributed and to modify. We answer an open question of [9] by designing a compact
representation for the table. The paradox, compressing an incompressible table,
is resolved by embedding a time/space tradeoff into the process for constructing
the table from its representation. Roughly speaking, our approach is to gener-
ate T using a memory-bound process. Sources for such processes are time/space
tradeoffs, such as those offered by graph pebbling, and sorting. We exploit known
dramatic time/space tradeoffs for pebbling in constructing a theoretical solution,
with provable complexity bounds; the solution uses a hash function, modelled by
a random oracle in the proof.
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Specialized Session on Complexity of Lattice Problems

Oded Regev (Session Chair)

This specialized session consisted of four talks. The first talk [1], presented by
Henrik Koy of Frankfurt University, focused on a new method for lattice basis
reduction. Unlike more traditional method for block basis reduction (such as that
of Schnorr), Koy’s basis reduction uses the dual basis throughout the reduction
algorithm. This method yields improved running time, on the order of n3kk/2

when blocks of size k are used.
In the second talk [2], Claus P. Schnorr of Frankfurt University presented sev-

eral approaches to lattice basis reduction based on the birthday method. These
methods yield greatly improved running times. However, some of them have the
drawback that their space requirement is very large, essentially the same as the
time requirement. This forms the main bottleneck is applying these method prac-
tically, and it is an interesting open question to reduce the space requirement.

In the third talk [3], Oded Regev of Tel Aviv University presented reductions
among lattice problems of different norms. The result is based on the method of
random embedding. It shows a gap-preserving reduction from the l2 norm of lattice
problems to the corresponding problem in the lp norm for any 1 ≤ p ≤ ∞. This
implies that it is enough to prove NP-hardness in the l2 norm as this automatically
implies NP-hardness in all other norms.

In the fourth talk [4], Johannes Blömer of University of Paderborn, described
an improved reduction between the two main lattice problems: the shortest vec-
tor problem (SVP) and the closest vector problem (CVP). More precisely, the
reduction is from approximating CVP to within n · f(n) to approximating SVP
to within f(n) where f(n) ≥ 1 is any function of n. This improves on earlier
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work of Kannan. However, unlike Kannan’s reduction, Blömer’s reduction only
solves the optimization version of CVP (where the goal is to find the distance of
the target vector from the lattice) as opposed to the search version of CVP. The
reason for this has to do with the use of non-constructive transference theorems
in the reduction.
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Specialized Session on Algebraic Complexity

Peter Bürgisser (Session Chair)

The talks in this session on algebraic complexity were dealing with a variety of
topics centering around the evaluation and factorization of polynomials, problems
in (semi)algebraic geometry, and derandomization in the context of arithmetic
circuits.

Although the permanent and the determinant are among the most extensively
studied computational problems, polynomial size formulas for these functions are
not known. The talk by Ran Raz presented an exciting super-polynomial lower
bound on the size of multilinear formulas for the permanent and determinant
from [18, 19]. Previous lower bounds results for restricted subclasses of multi-
linear formulas were obtained in [16, 17, 20]. The lower bound proof is based
on rank arguments and a novel use of random restrictions, which are used to
unbalance gates (instead of eliminating them as usual).

Joos Heintz discussed some new aspects of effective elimination theory (joint
work with Bart Kuijpers). He presented a model in the spirit of Constraint Data-
base Theory [13], which allows the descriptive specification of the most funda-
mental tasks of effective elimination theory in algebraic and semialgebraic geome-
try. This requires a suitable extension and refinement of the traditional database
model. In particular, polynomial equation solving is modeled by so called “sample
point queries”. By means of a suitable genericity condition the notion of ”geomet-
ric query” is introduced [10]. This notion allows a fairly realistic repesentation of
traditional elimination tasks and in particular the descriptive specification of elim-
ination polynomials (different from their more traditional operative specifications).
In this model, it is possible to prove the intrinsic exponential time character of
geometric elimination procedures, under the restriction that they are parsimonious
with respect to branchings. As a byproduct one obtains that the branching-free
interpolation of polynomials of given arithmetic circuit complexity requires expo-
nential time (compare with [8]).

Peter Bürgisser studied the computational complexity of two of the most fun-
damental invariants of complex algebraic varieties: the Euler characteristic and
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the Hilbert polynomial. He presented results from [3, 4, 5, 6] (joint work with
Felipe Cucker and Martin Lotz). A version #PC of Valiant’s counting complexity
class #P [21], tailored to the Blum-Shub-Smale model of computation [7] over C,
is defined and studied. (Over R, such a counting class was first introduced by
Meer [15].) The problem #HNC of counting the number of complex common zeros
of a finite set of multivariate polynomials turns out to be complete for #PC. The
first main result states that the problem EULERC of computing the topological
Euler characteristic of a complex algebraic variety is polynomial time equivalent
to the problem #HNC. The second main result establishes a polynomial time
reduction from the problem Hilbertsm of computing the Hilbert polynomial of
a smooth equidimensional complex projective variety to #HNC. Analogous state-
ments are shown for the Turing model of computation.

The reduction from EULERC to HNC crucially depends on a recent result due to
Aluffi [1]. This result characterizes the Euler characteristic of a (possibly singular)
projective hypersurface Z(f) in terms of the multidegrees of the projective gradient
map of f . The reduction from Hilbertsm to #HNC is based on ideas and tools of
intersection theory, enumerative geometry, and Schubert calculus. In particular,
the Hirzebruch-Riemann-Roch Theorem [11] is used.

Erich Kaltofen presented a new result about factoring sparse polynomials (joint
work with Pascal Koiran). H.W. Lenstra Jr. [14] had found a polynomial time
algorithm for finding the small degree factors of a sparse univariate rational poly-
nomial The new algorithm by Kaltofen and Koiran [12] allows to compute the
rational linear factors of sparse bivariate rational polynomials with rational co-
efficients in deterministic polynomial time. The essence of the proof is a “gap
theorem” based on the Bogomolov property of cyclotomic extensions [2], which
separates the Weil height for non-roots of unity by a constant from 1.

The talk by Zeev Dvir was motivated by the fundamental Polynomial Iden-
tity Testing (PIT) problem: given a circuit computing a multivariate polynomial,
determine whether the polynomial is identically zero. It is well known that this
task can be solved in polynomial time by randomized algorithms. Two results for
depth-3 circuits with a bounded top fan-in were shown: a deterministic algorithm
that runs in quasipolynomial time, and a randomized algorithm that runs in poly-
nomial time and uses only polylogarithmic number of random bits (joint work with
Amir Shpilka). The proof is based on a relation to Locally Decodable Codes. Those
are codes that allow the recovery of each message bit from a constant number of
entries of the codeword. Along the way, known results on locally decodable codes
were improved, cf. [9].
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Specialized Session on Randomness Extractors

Boaz Barak (Session Chair)

Let X be a family of distributions over {0, 1}n (e.g., the family of distributions
over affine subspaces of a certain dimension; the family of products of indepen-
dent distributions of a certain entropy). A randomness extractor w.r.t. X is a
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deterministic function E : {0, 1}n → {0, 1}m such that for every random variable
X ∈ X , E(X) is close to the uniform distribution. In recent years, construct-
ing explicit, efficiently computable randomness extractors for interesting families
of distributions has been an important research direction in theoretical Computer
Science, with many important connections and applications. In this session several
new results in this direction were reported. In addition, a talk about the related
notion of randomness dispersers was also presented in a different session of the
same workshop by Ronen Shaltiel. The following talks were given in this session:

Extracting Randomness Using Few Independent Sources — Boaz Barak.
In this work we give the first deterministic extractors from a constant number of
weak sources whose entropy rate is less than 1/2. Specifically, for every δ > 0
we give an explicit construction for extracting randomness from a constant (de-
pending polynomially on 1/δ) number of distributions over {0, 1}n, each having
min-entropy δn. These extractors output n bits, which are 2−n close to uniform.
This construction uses several results from additive number theory, and in partic-
ular a recent one by Bourgain, Katz and Tao [3] and of Konyagin [4].

Joint work with Russell Impagliazzo and Avi Wigderson. An extended abstract
of this work appeared in the FOCS’ 2004 conference [1].

Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number — David Zuckerman. A randomness extractor is an
algorithm which extracts randomness from a low-quality random source, using
some additional truly random bits. We construct new extractors which require
only logn + O(1) additional random bits for sources with constant entropy rate.
We further construct dispersers, which are similar to one-sided extractors, which
use an arbitrarily small constant times logn additional random bits for sources
with constant entropy rate.

We use our dispersers to derandomize the results of Hastad [6] and Feige-Kilian
[5] and show that approximating Max Clique and Chromatic Number to within
n1−ε are NP-complete, for any ε > 0. We also derandomize the results of Khot [7]
and show that there is a γ > 0 such that no quasi-polynomial time algorithm ap-

proximates the clique number or chromatic number to within n/2(log n)1−γ

, unless

NP̃ = P̃.
Our constructions rely on recent results in additive number theory and extrac-

tors by Bourgain-Katz-Tao [3], Barak-Impagliazzo-Wigderson [1], Barak-Kindler-
Shaltiel-Sudakov-Wigderson [2], and Raz [8]. We also simplify and slightly
strengthen key lemmas in the second and third of these papers.

Deterministic Extractors for Affine Sources over Large Fields — Ariel
Gabizon. An (n, k)-affine source over a finite field F is a random variable X =
(X1, ..., Xn) ∈ Fn, which is uniformly distributed over an (unknown) k-dimension-
al affine subspace of Fn. For the case of sufficiently large fields, we improve over
[2] and show how to (deterministically) extract practically all the randomness
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from affine sources, for any field of size larger than nc (where c is a large enough
constant). Our main results are as follows:

(1) (For arbitrary k): For any n, k and any F of size larger than n20, we
give an explicit construction for a function D : F

n → F
k−1, such that for

any (n, k)-affine source X over F, the distribution of D(X) is ε-close to
uniform, where ε is polynomially small in |F|.

(2) (For k = 1): For any n and any F of size larger than nc, we give an
explicit construction for a function D : Fn → {0, 1}(1−δ) log2 |F|, such that
for any (n, 1)-affine source X over F, the distribution of D(X) is ε-close to
uniform, where ε is polynomially small in |F|. Here, δ > 0 is an arbitrary
small constant, and c is a constant depending on δ.

Joint work with Ran Raz.
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Specialized Session on Pseudorandomness

Ronen Shaltiel (Session Chair)

This summary covers two talks which were given in the informal “pseudoran-
domness session”. The first given by Ronen Shaltiel is based on the paper [1] and
the second given by Avi Wigderson is based on the paper [2].

Pseudorandomness for approximate counting and sampling - Ronen
Shaltiel. We study computational procedures that use both randomness and non-
determinism. Examples are Arthur-Merlin games and approximate counting and
sampling of NP-witnesses. The goal of this paper is to derandomize such proce-
dures under the weakest possible assumptions.
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Our main technical contribution allows one to “boost” a given hardness as-
sumption. One special case is a proof that

EXP 6⊆ NP/poly ⇒ EXP 6⊆ PNP
|| /poly.

In words, if there is a problem in EXP that cannot be computed by poly-size
nondeterministic circuits then there is one which cannot be computed by poly-
size circuits which make non-adaptive NP oracle queries. This in particular shows
that the various assumptions used over the last few years by several authors to
derandomize Arthur-Merlin games (i.e., show AM = NP) are in fact all equiva-
lent. In addition to simplifying the framework of AM derandomization, we show
that this “unified assumption” suffices to derandomize several other probabilistic
procedures.

For these results we define two new primitives that we regard as the natural
pseudorandom objects associated with approximate counting and sampling of NP-
witnesses. We use the “boosting” theorem (as well as some hashing techniques) to
construct these primitives using an assumption that is no stronger than that used
to derandomize Arthur-Merlin games. As a consequence, under this assumption,
there are deterministic polynomial time algorithms that use non-adaptive NP-
queries and perform the following tasks:

• approximate counting of NP-witnesses: given a Boolean circuit A, output
r such that (1 − ε)|A−1(1)| ≤ r ≤ |A−1(1)|.

• pseudorandom sampling of NP-witnesses: given a Boolean circuit A, pro-
duce a polynomial-size sample space that is computationally indistinguish-
able from the uniform distribution over A−1(1).

We also present applications. For example, we observe that Cai’s proof that

Sp
2 ⊆ ZPPNP and the learning algorithm of Bshouty et al. can be seen as a

reduction to sampling that is not probabilistic. As a consequence they can be
derandomized under the assumption stated above, which is weaker than the as-
sumption that was previously known to suffice.

Joint work with Chris Umans.

A Randomness-Efficient Sampler for Matrix-valued Functions and Ap-
plications - Avi Wigderson. In this paper we give a randomness efficient sam-
pler for matrix-valued functions. Specifically, we show that the random walk on an
expander approximates the recent Chernoff-like bound for matrix-valued functions
of Ahlswede and Winter, in a manner which depends optimally on the spectral
gap. The proof uses perturbation theory, and is a generalization of Gillman’s and
Lezaud’s analysis of the Ajtai-Komlos-Szemeredi sampler for real-valued functions.

Derandomizing our sampler gives a few applications, yielding deterministic
polynomial time algorithms for problems in which derandomizing independent
sampling gives only quasipolynomial time deterministic algorithms. The first
(which was our original motivation) is to a polynomial-time derandomization of
the Alon-Roichman theorem: given a group of size n, find O(log n) elements
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which generate it as an expander. This implies a second application - efficiently
constructing a randomness-optimal homomorphism tester, significantly improving
the previous result of Shpilka and Wigderson. The third is to a “non-commutative”
hypergraph covering problem - a natural extension of the set-cover problem which
arises in quantum information theory, in which we efficiently attain the integrality
gap when the fractional semi-definite relaxation cost is constant.

Joint work with David Xiao.
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Specialized Session on the Complexity of Low Distortion Embeddings

Muli Safre (Session chair)

Embeddings of one metric space into another have been investigated for many
years, as an active area of Banach spaces, (see Johnson-Lindenstrauss lemma, and
Bourgain’s upper-bound). One considers a mapping of one metric space M to a
metric space M’ with the smallest distortion, namely when all distances between
any pair of mapped points are within some factor of the distances between the orig-
inal preimage points. Embeddings recently were shown to be a prolific algorithmic
methodology [6, 1]

The shortest path between points in an undirected graph is a metric. One can
consider embedding such a given metric in another, simpler metric, and applying
a known algorithmic on that simpler metric, so as to altogether solve the problem
at hand. The simplest metric possible for such purposes is the L1 metric. A low
distortion embedding into L1 amounts to an embedding into the binary hypercube,
hence translates shortest distance into Hamming distance.

There are many other potential ways by which to apply embedding techniques to
efficiently solve computational problems. In fact, Semi Definite Programming [4]
can be thought of as a related technique, where one maps a graph into the Eu-
clidean sphere. Recent results regarding computing the expansion of a graph, or
more generally the sparsest cut [1] in a graph, namely, where a set of demand is
imposed and the cut need to satisfy as many of those as possible.

It is therefore worthwhile to consider whether one metric embeds into another
with as low as possible distoryion. And if indeed that is the case what is the
computational complexity of such embeddings. Such results were shown recently
by Khot and Vishnoy and by Khot and Naor (in as of yet unpublished papers)
for the L1 metric. An exciting aspect of these results is their use of Analysis of
Boolean Functions [5, 3, 2]. Specifically, in order to prove such non embedabil-
ity results one should apply one of the theorems proved regarding influences of
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low-degree functions, namely Boolean function whose Fourier transform weight is
concentrated of small characters. It also seems to be the case that in order to im-
prove such results one have to rely on and hopefully prove some open conjecture
regarding the distribution of the Fourier weight of Boolean functions with rather
high degree.
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Prof. Dr. Johannes Blömer
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