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Introduction by the Organisers

This workshop, organised by Helmut Hofer (New York), Jean-Christophe Yoccoz
(Paris), and Eduard Zehnder (Zürich), continued the biannual series at Oberwol-
fach on Dynamical Systems that started as the “Moser–Zehnder meeting” in 1981.
The workshop was attended by more than 50 participants from 12 countries.

The main theme of the workshop were the new results and developments in
the area of classical dynamical systems, in particular in celestial mechanics and
Hamiltonian systems. Among the main topics were new global results on the Reeb
dynamics on 3-manifolds, KAM theory in finite and infinite dimensions, as well
as new developments in Floer homology and its applications. High points were
the first complete existence proof of quasiperiodic solutions in the planetarian
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N -body problem, and the solution of a long-standing conjecture of Anosov about
the number of closed geodesics on Finsler 2-spheres.

The meeting was held in a very informal and stimulating atmosphere.
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Abstracts

A new approach to the Weinstein conjecture in dimension three

Casim Abbas

(joint work with Kai Cieliebak and Helmut Hofer)

Let (W,ω) be a symplectic manifold, and let H : W → R be a smooth function
(’Hamiltonian function’). We associate to H a vector field XH via the equation
dH = iXH

ω, and we are interested in the dynamics of the vector field XH . In
classical mechanics the function H represents the total energy of the mechanical
system, and W is the phase space of the system. Trajectories x(t) of the system
ẋ(t) = XH(x(t)) lie on hypersurfaces of constant energy S = {H = c}. A funda-
mental question to ask is whether a given energy hypersurface S carries periodic
trajectories. Using variational methods, Paul Rabinowitz proved the following
result [7].

Theorem 1. Let W = R2n, n ≥ 1, with the standard symplectic structure
ω =

∑n
j=1 dxj ∧ dyj. Moreover, let S be a star–shaped compact regular energy

hypersurface of some Hamiltonian function H (regular meaning that ∇H(x) 6= 0
if x ∈ S). Then S contains a periodic trajectory of the system ẋ = XH(x).

Alan Weinstein then tried to find a general geometric condition for a hypersur-
face S which might guarantee the existence of periodic trajectories. In his paper
[10] he introduced the notion of contact type.

Definition 1. A hypersurface S in a 2n-dimensional symplectic manifold (W,ω)
is of contact type if there is a 1–form λ on S such that λ ∧ (dλ)n−1 is a volume
form on S and dλ = ω|S.

A. Weinstein observed that all known examples of hypersurfaces with periodic
orbits on it were of contact type, and he formulated the following conjecture in
his 1979 paper [10].

Conjecture 1. Assume S is a compact regular energy hypersurface in a symplectic
manifold. If S is of contact type and H1(S,R) = 0 then S carries a periodic
trajectory.

This conjecture was resolved by Claude Viterbo in the case where W = R2n

without the condition on the cohomology of the hypersurface [9]. In [6] Helmut
Hofer and Eduard Zehnder proved their famous ’almost existence result’ for a
family of compact regular energy hypersurfaces. On the other hand, without the
contact type condition, one cannot guarantee the existence of periodic trajectories
since there are compact regular energy hypersurfaces without periodic orbits (see
the article by Viktor Ginzburg [3] for a smooth counterexample in dimension 6, and
[4] for a counterexample in dimension 4 with regularityC2). The general Weinstein
conjecture can be formulated without the ambient symplectic manifold as follows:
If M is a (2n− 1)–dimensional manifold then a contact form on M is a 1–form λ
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such that λ∧ (dλ)n−1 is a volume form. The subbundle TM ⊃ ξ := kerλ→M is
called the contact structure associated to λ, and (ξ, dλ|ξ⊕ξ) is a symplectic vector
bundle. We define the so–called Reeb vector field Xλ by the equations

iXλ
dλ ≡ 0 , iXλ

λ ≡ 1.

If M = {H = c} ⊂ (W,ω) is a contact type hypersurface then the trajectories
of XH |M and Xλ coincide up to parametrization. The first result in the general
context was established by Helmut Hofer in 1993 [5] using pseudoholomorphic
curve techniques:

Theorem 2. Let (M,λ) be a closed three dimensional contact manifold. Then Xλ

has a periodic trajectory in the following cases:

(1) M = S3

(2) π2(M) 6= 0
(3) ξ = kerλ is an overtwisted contact structure

The methods used in [5] are not adequate for the general case. In the paper
[1] we prove the Weinstein conjecture for an interesting class of contact manifolds
in dimension three, the ones which admit a so–called planar open book decom-
position. Modifying the pseudoholomorphic curve equation in a suitable way, the
same program as in the planar case would prove the general conjecture in dimen-
sion three. Here is a very brief outline:
Let (S, j) be a closed Riemann surface, let Γ ⊂ S be a finite set, denote by πλ

the projection onto the first factor in the splitting TM = ξ ⊕ R · Xλ, and let
J : ξ → ξ be a complex structure compatible with the symplectic form dλ. The
crucial partial differential equation is the following:

(∗)





πλDu(z) ◦ j(z) = J(u(z)) ◦ πλDu(z) if z ∈ S\Γ
u∗λ ◦ j = da+ γ on S\Γ
dγ = d(γ ◦ j) = 0 on S
0 < supφ∈Σ

∫
S
ũ∗d(φλ) <∞ with Σ := {φ ∈ C∞(R, [0, 1]) |φ′ ≥ 0}

where ũ = (a, u) : S\Γ → R ×M and γ is a suitable harmonic 1–form on the
closed surface S. It can be shown that the map u must approach the set of
periodic trajectories of Xλ if restricted to smaller and smaller circles around each
puncture z ∈ Γ. Hence existence of a solution to the problem (∗) would confirm
the Weinstein conjecture. Without the harmonic 1–form γ, equation (∗) is just
the usual pseudoholomorphic curve equation in the symplectization R × M of
the contact manifold M [5]. The so–called planar case discussed in the paper [1]
permits us to choose the Riemann surface S equal to the two–sphere. In this case γ
is equal to zero. The main idea of the proof is a cobordism argument. It is possible
to modify the contact form λ to another one of the form f λ with a positive function
f such that the corresponding problem (∗) with λ replaced by fλ has solutions.
We then pick a positive smooth function F (t, x) on R×M such that F (t, x) = f(x)
for t >> 0 and F (t, x) ≡ 1 for t << 0. We define an R–dependent contact form
λa(x) := F (a, x)λ(x). Similarly, we replace J(x) by an almost complex structure
J(a, x) such that J(a, . ) is compatible with dλa and a–independent if |a| >> 0,



Dynamical Systems 1749

and we consider the PDE (∗) with λ, J, πλ replaced with the corresponding R-
dependent objects. For a >> 0 there are solutions, and the objective is to show
that there is a family (aτ , uτ ) of solutions with infτ infz{aτ (z) | z ∈ S\Γ} = −∞.
As a consequence of the Symplectic Field Theory compactness result [2] the family
must decompose into pieces (a so–called holomorphic building), and one of them
must lie in the part where λa ≡ λ, proving the existence of a solution to the original
problem (∗). Why is the harmonic form in the equation necessary if S 6= S2 ?
The reason is that otherwise the index of the Fredholm operator corresponding to
the linearization of (∗) would be negative. On the other hand, existence theory
of solutions for a modified contact form does not always yield spheres, but also
curves with genus. Without the harmonic forms present in the equation, the
compactness result from Symplectic Field Theory is available. A more general
compactness result for (∗) is work in progress.
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On the Floer homology of cotangent bundles

Alberto Abbondandolo

(joint work with Matthias Schwarz)

Theorem 1. Let M be a compact orientable manifold.

(a) The Floer homology of T ∗M is isomorphic to the singular homology of
Λ(M), the free loop space of M (with integer coefficients).

(b) This isomorphism is a ring isomorphism from the pair-of-pants product on
the Floer homology of T ∗M to the Chas-Sullivan loop product on H∗(Λ(M)).
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The first statement was first proved by Viterbo in [4]. Salamon and Weber have
presented a different proof in [3]. After recalling the definition of Floer homology,
we shall present a third proof of statement (a), which makes use only of very
classical tools, namely classical Morse theory and the Legendre transform. The
isomorphism constructed in this way has allowed us to prove statement (b), which
will not be discussed here.

The cotangent bundle of M carries the canonical exact symplectic form ω =
dp ∧ dq. A Hamiltonian H ∈ C∞(T × T ∗M) (T = R/Z) determines a 1-periodic
vector field XH by the formula ω(XH , ·) = −dH . We are interested in the set
P(H) of 1-periodic orbits of XH (contractible or not). We shall assume that every
1-periodic orbit x is non-degenerate. This implies that P(H) is at most countable.

The elements of P(H) are critical points of the Hamiltonian action functional

AH(x) =

∫

T

(x∗(p dq)−H(t, x(t)) dt) .

Floer’s approach to develop a Morse theory for AH was to study its L2-gradient
equation. More precisely, fixing an ω-compatible almost complex structure J on
T ∗M , the associated metric ω(J ·, ·) induces an L2-metric on the space of loops on
T ∗M , and the corresponding negative gradient equation d

dsu = −∇L2AH(u) is

(1) ∂su+ J(t, u)(∂tu−XH(t, u)) = 0,

where u : R × T → T ∗M . This is a Cauchy-Riemann-type equation, so it does
not generate a well-posed Cauchy problem. However, its stationary solutions are
critical points, that is elements of P(H), and the action functional AH strictly
decreases along each non-stationary solution. Fix two orbits x−, x+ ∈ P(H), and
consider the set of solutions of (1) connecting them,

M(x−, x+) =

{
u ∈ C∞(R× T, T ∗M) | u solves (1), lim

s→±∞
u(s, ·) = x±

}
.

For a generic choice of J ,M(x−, x+) is an oriented manifold of dimension µ(x−)−
µ(x+), µ(x) denoting the Conley-Zehnder index of the periodic orbit x. The
Conley-Zehnder index is indeed well-defined because on cotangent bundles there
is a preferred set of trivializations, namely those mapping (0)×Rn into the vertical
subbundle T vT ∗M . For the same reason, the question of coherent orientations of
moduli-spaces is simpler than on a general symplectic manifold.

A crucial issue is the question of a priori bounds for spaces of solutions of (1).
Standard elliptic estimates show that C1 bounds imply Ck bounds for every k ∈ N.
Since ω is exact, C0 bounds imply C1 bounds. C0 bounds cannot be expected to
hold for every Hamiltonian. If H is assumed to have quadratic growth in p for |p|
large, it can be proved that for every a ∈ R, P(H) ∩ {AH ≤ a} is finite, and the
set of solutions of (1) such that |AH(u(s, ·))| ≤ a for every s ∈ R is C0-bounded.

If Fk(H) denotes the free Abelian group generated by the elements x ∈ P(H)
with µ(x) = k, we can define a boundary homomorphism ∂ : Fk(H) → Fk−1(H),
k ∈ Z, by counting the elements of the finite setsM(x−, x+)/R with appropriate
orientation signs, for µ(x−) − µ(x+) = 1. The resulting complex is known as the
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Floer complex of (H, J). Changing J one obtains isomorphic chain complexes.
Changing also H one obtains homotopically equivalent chain complexes. In par-
ticular, the homology H∗F (H, J) of the Floer complex is independent of J and H ,
and it is called the Floer homology of T ∗M .

While the Floer homology of a compact manifold P is just the singular homology
of P (over appropriate coefficient rings), the Floer homology of T ∗M is isomorphic
to the singular homology of Λ(M). Viterbo’s original proof makes use of generating
function homology. Salamon and Weber’s approach consists in relating the Floer
equation (1) to a heat equation for loops on M . Here we will compare the Floer
complex of (H, J) to the Morse complex of the Lagrangian action functional SL,
H and L being related by the Legendre transform. More precisely, if a Lagrangian
L ∈ C∞(T×TM) is fiberwise strongly convex and has quadratic growth in v, the
action functional

SL(γ) =

∫

T

L(t, γ(t), γ̇(t)) dt

is smooth on W 1,2(T,M) the Hilbert manifold of loops on M of Sobolev class
W 1,2, it is bounded below, and it satisfies the Palais-Smale condition. Its critical
set is the set P(L) of 1-periodic orbits of the corresponding Lagrangian system,
and each critical point γ has finite Morse index m(γ). Under these assumptions,
classical infinite dimensional Morse theory as developed by Palais and Smale in
the sixties applies. Actually, it is convenient to use the Morse complex approach
(see [1] for full details). If Mk(SL) denotes the free Abelian group generated by
the elements of P(L) of Morse index k, the W 1,2 negative gradient flow of SL

allows to define a boundary operator ∂ : M∗(SL)→ M∗−1(SL). This time we are
dealing with a true flow, so this is just the chain complex associated to a suitable
cellular filtration of W 1,2(T,M), hence its homology is the singular homology of
this space, or - by homotopy equivalence - of the space Λ(M).

Assume now that the Hamiltonian H is the Legendre transform of a Lagrangian
L satisfying the above conditions,

H(t, q, p) = max
v∈TqM

(p[v]− L(t, q, v)) ,

so that there is a one-to-one correspondence between P(H) and P(L) (given by the
projection π : T ∗M →M) and the Conley-Zehnder index equals the Morse index,
µ(x) = m(π(x)). These observations show that the chain complexes F∗(H, J) and
M∗(SL) have the same set of generators, with the same grading. However, there
is no reason why the two boundary homomorphisms should coincide, the first one
involving a Cauchy-Riemann-type PDE on T ∗M , the second one an abstract ODE
on W 1,2(T,M). Nevertheless, we can prove the following:

Theorem 2 ([2]). Let L ∈ C∞(T×TM) be a fiberwise strongly convex Lagrangian
growing quadratically in v, and let H ∈ C∞(T× T ∗M) be its Legendre transform.
Then there is a chain complex isomorphism Φ : M∗(SL)→ F∗(H, J).

In particular, the homology of the Floer complex is isomorphic to the singular
homology of Λ(M), as claimed. Actually, the above result says that Morse theory



1752 Oberwolfach Report 31/2005

for the Hamiltonian action functional and for the Lagrangian action functional,
although constructed in a completely different way, agree up to the chain level.

The isomorphism Φ is defined by looking at the moduli-spaces

M+(γ, x) =
{
u ∈ C∞([0,+∞)× T, T ∗M)

∣∣∣ u solves (1),

lim
s→+∞

u(s, ·) = x, π(u(0, ·)) ∈ Wu(γ)
}
,

for every pair γ ∈ P(L), x ∈ P(H). Here Wu(γ) ⊂ W 1,2(T,M) is the unstable
manifold of the critical point γ with respect to the negative W 1,2 gradient flow
of SL. The fact that we are dealing with a Cauchy-Riemann-type equation with
a finite dimensional family of Lagrangian boundary conditions implies that, for a
generic choice of J , M+(γ, x) is an oriented manifold of dimension m(γ) − µ(x).
A priori bounds for the solutions in M+(γ, x) are easily proved by noticing that
for every loop z in T ∗M , AH(z) ≤ SL(π ◦ z), the equality holding when z is a
periodic orbit of XH . This indeed yields to the estimate

(2) AH(x) ≤ AH(u(s, ·)) ≤ AH(u(0, ·)) ≤ SL(π ◦ u(0, ·)) ≤ SL(γ),

the starting point to get a priori bounds for all derivatives. The same estimate
also shows that M+(γ, x) is empty whenever SL(γ) ≤ AH(x) and π ◦ x 6= γ. If
we define the homomorphism Φ by counting the elements of the zero-dimensional
moduli-spaces M+(γ, x), for m(γ) = µ(x), we easily get that Φ is a chain map
from M∗(SL) to F∗(H, J). The above facts imply that if we order the periodic
orbits by increasing action level, this homomorphism is represented by a (possibly
infinite dimensional) upper triangular square matrix. When γ and x correspond to
the same periodic solution, i.e. π ◦ x = γ, the differential version of the inequality
(2) implies that the coefficient of x in the expression of Φγ is ±1. Therefore the
upper triangular matrix has entries ±1 on its diagonal, hence it is an isomorphism
of free chain complexes.
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Shadowing chains of collision orbits in the elliptic 3 body problem

Sergey Bolotin

Suppose Sun of mass 1 and Jupiter of mass µ ≪ 1 move in R2 along ellipses
with foci at 0 and eccentricity ǫ ∈ (0, 1). Jupiter’s position u(t, µ, ǫ) is a function of
time t ∈ T = R/2πZ depending on the parameters µ, ǫ. The elliptic 3-body problem
describing the motion of the Asteroid of negligible mass has the Hamiltonian

Hµ,ǫ(p, q, t) = |p|2/2− |q + µu(t, µ, ǫ)|−1 − µ|q − u(t, µ, ǫ)|−1, p, q ∈ R2.

For µ = 0 Jupiter disappears and H0,ǫ = H0(p, q) is the Hamiltonian of the Kepler
problem Sun–Asteroid. We say that σ = (γi)i∈Z is a collision chain of the system
(H0,ǫ) if (for simplicity we write u(t) = u(t, 0, ǫ))

• γi : [ti−1, ti]→ R2 \ {0} is a solution of Kepler’s problem;
• γi(ti−1) = u(ti−1), γ(ti) = u(ti) and γi(t) 6= u(t) for ti−1 < t < ti;
• relative collision velocities change: v+

i ∧ v−i 6= 0, where v±i = p±i − u̇(ti),
p+

i = γ̇i(ti), p
−
i = γ̇i+1(ti);

• relative collision energies are preserved: h+
i = h−i = hi, where h±i =

H0(p
±
i , u(ti))− p±i · u̇(ti).

We are interested in almost collision orbits of the system (Hµ,ǫ) which O(µ)-
shadow such chains for small µ > 0. Periodic orbits of this type were first con-
sidered by Poincaré who named them second species solutions. Poincaré claimed
the existence of such solutions shadowing a 2-chain of elliptic collision orbits for
the general 3 body problem, but did not provide a complete proof. For ǫ = 0 the
Hamiltonian Hµ,0 of the circular 3 body problem is autonomous in the rotating
coordinate frame, and hence has Jacobi’s integral Hµ,0 − G = h, where G is the
angular momentum. Second species periodic solutions with given h were studied
in [4], see also the references there. In [3] the existence of symbolic dynamics of
almost collision orbits was proved. In this talk we prove the existence of chaotic
second species orbits for the elliptic 3 body problem (Hµ,ǫ) with small eccentricity
ǫ.

We say that a collision chain σ = (γi)i∈Z of the system (H0,ǫ) is µ0-shadowed
if for any µ ∈ (0, µ0) there exists an orbit of the system (Hµ,ǫ) which is O(µ)-
shadowing σ.

Theorem 1. For any h ∈ (−3/2,
√

2) there is a dense set {Gk}k∈L in (2 −√
4h+ 6,−h) such that for any finite set K ⊂ L there exist ǫ0 > 0, a > 0 such

that for any ǫ ∈ (0, ǫ0) there exists µ0 > 0 such that for any sequence (ki ∈ K)i∈Z,
ki−1 6= ki, and any sequence (li ∈ N)i∈Z, li ≥ a, there exists a µ0-shadowed
collision chain

. . . γ11 . . . γ1m1︸ ︷︷ ︸
m1

γ21 . . . γ2m2︸ ︷︷ ︸
m2

. . . γi1 . . . γimi︸ ︷︷ ︸
mi

. . . , |mi − li| ≤ 1,

of the system (H0,ǫ), where γij is an elliptic collision orbit with angular momentum
and energy which are O(ǫ)-close to Gki

and Eki
= h−Gki

, respectively.
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Hence the system (Hµ,ǫ) has a chaotic invariant set in |Hµ,ǫ−G−h| < Cǫ. The
proof of Theorem 1 is based on Theorems 2–3 below.

Let Σ be the set of all collision orbits γ : [t0, t1]→ R2 of the system (H0,ǫ) with
non-conjugate t0 < t1. Then Σ is a 2-dimensional manifold and the projection
π : Σ → R2, π(γ) = (t0, t1), is a local diffeomorphism. Hence Σ has an open
covering {Σk}k∈L such that πk = π|Σk

: Σk → Uk ⊂ R2 is a diffeomorphism. Let

Sk(t0, t1) =

∫ t1

t0

(|γ̇(t)|2/2 + |γ(t)|−1) dt

be the action of γ = π−1
k (t0, t1). Fix a finite set K ⊂ L such that D12Sk(t0, t1) 6= 0

in Uk. For k = (ki)i∈Z ∈ KZ and t = (ti)i∈Z such that (ti−1, ti) ∈ Uki
let

Ak(t) =
∑

Ski
(ti−1, ti).

The functional is formal but its componentwise derivative A′
k
(t) ∈ l∞ is well

defined. If t is a critical point of Ak, then σ = (γi)i∈Z, γi = π−1
ki

(ti−1, ti), is a

collision chain of the system (H0,ǫ) with relative collision energies

hi = −D2Ski
(ti−1, ti) = D1Ski+1

(ti, ti+1).

We say that a critical point t is c-nondegenerate if the Hessian matrix A′′
k
(t)

satisfies ‖(A′′
k
(t))−1‖∞ ≤ c <∞. If the collision velocities v±i satisfy |v+

i ∧ v−i | >
d > 0 for all i ∈ Z, then t will be called (c, d)-nondegenerate.

Theorem 2 ([1]). There exists µ0 = µ0(c, d,K) > 0 such that for any µ ∈ (0, µ0),
any k ∈ KZ, and any (c, d)-nondegenerate critical point t of Ak, the system (Hµ,ǫ)
has a unique orbit which is O(µ)-shadowing the collision chain corresponding to t.

To prove Theorem 1 it is enough to find many nondegenerate critical points
of Ak. We give a dynamical reformulation of the nondegeneracy condition. Let
fk : Vk ⊂ A→ A = T×R be a symplectic map with generating function Sk. Then

fk(t0, h0) = (t1, h1), h0 = D1Sk(t0, t1), h1 = −D2Sk(t0, t1).

A critical point t = (ti)i∈Z of Ak defines an orbit x = (xi)i∈Z, xi = (ti, hi) ∈ Vki
,

of a sequence (fki
)i∈Z of symplectic maps: xi+1 = fki

(xi). For k = (ki)i∈Z ∈ KZ

and x ∈ Vk1
set F(k, x) = (S(k), fk1

(x)), where S : KZ → KZ is the Bernoulli
shift. The dynamics of random compositions fkn

◦ · · · ◦ fk1
can be viewed as the

dynamics of a single skew product map F of a subset of KZ × A. If F has a
hyperbolic compact invariant set Λ such that x ∈ Vk1

for all (k, x) ∈ Λ, then there
exists c > 0 such that for any (k, x) ∈ Λ the corresponding t is a c-nondegenerate
critical point of Ak.

Suppose that the symplectic maps {fk}k∈K are almost integrable:

Sk(t0, t1) = Ψk(t1 − t0) + ǫψk(t0, t1 − t0) +O(ǫ2), ǫ≪ 1.

Let Φk : Jk → R be the Legendre transform of −Ψk and ρk(h) = Φ′
k(h). Then

fk(t, h) = (t+ ρk(h) +O(ǫ), h+ ǫD1ψk(t, ρk(h)) +O(ǫ2)).
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To prove the existence of a nontrivial hyperbolic invariant set of fk is a hard
problem related to exponentially small splitting of separatrices. This difficulty
disappears if we take random compositions of different maps {fk}k∈K . Suppose
for simplicity (this holds in our application) that

ψk(t, ρk(h)) =
∑

akn(h)eint

is a Fourier polynomial and there are no resonances, i.e. if akn(h) 6= 0, then
nρk(h) /∈ 2πZ. Then fk has an approximate first integral h+ ǫχk(t, h), where

χk(t, h) =
∑

inakn(h)(einρk(h) − 1)−1eint.

Theorem 3. There exist constants a, b, c, d, ǫ0 > 0, such that for any ǫ ∈ (0, ǫ0),
any sequence (ki)i∈Z such that h ∈ Jki

, ρ′ki
(h) < 0 and χki

(t, h) 6≡ χki+1
(t, h) for

all i, and any sequence (li ∈ N)i∈Z, li ≥ a, there exists a sequence

k = . . . , k1, . . . , k1︸ ︷︷ ︸
m1

, . . . , ki, . . . , ki︸ ︷︷ ︸
mi

, . . . , |li −mi| ≤ d,

such that Ak has a cǫ−1/2-nondegenerate critical point t with hi ∈ (h− bǫ, h+ bǫ).

Then F has a hyperbolic invariant set in KZ×T×(h−bǫ, h+bǫ) with Lyapunov
exponents of order

√
ǫ.

For the system (H0,ǫ), any h ∈ (−3/2,
√

2) is contained in an infinite number
of intervals Jk and the functions ψk have only 2 harmonics [2]. We may set d = 1.
Then Theorem 1 follows.

References

[1] Bolotin S. V., Shadowing chains of collision orbits. In print in: Discrete and Cont. Dynam.
Syst. (2005)

[2] Bolotin S. V., Second species periodic orbits of the elliptic 3 body problem. In print in:
Celestial Mech. and Dynam. Astron. (2005)

[3] Bolotin S. V. and MacKay R. S., Periodic and chaotic trajectories of the second species for
the n-centre problem, Celestial Mech. Dynam. Astron., 77 (2000), 49–75.

[4] Marco J.-P. and Niederman L., Sur la construction des solutions de seconde espèce dans
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Central configurations with vanishing total mass in the four-body
problem

Martin Celli

All the results of the abstract are proved in [2]. Newton’s equations define the
motion of a system of N point particles with positions ~r1, . . . , ~rN (elements of a
Euclidean space) and constant strictly positive or negative masses m1, . . . , mN

which interact through gravitation:

~̈ri = ~γi(~r1, . . . , ~rN ) =
∑

j 6=i

mj
~rj − ~ri
||~rj − ~ri||3

·
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We are interested in the particular case M = m1 + · · · +mN = 0, where compu-
tations become easier.

In the two-body problem, let us write: ~R = ~r1 − ~r2 and ~P = ~̇r1 − ~̇r2. We only

consider the case where ~P and ~R are not collinear. Let us suppose for instance:

det(~P , ~R) > 0. Let us denote by ~P ′ the element of vect(~P , ~R) such that
(

~P

||~P ||
, ~P ′
)

is a direct orthonormal basis. Let us define s(t) by

sh(s(t)) = − (~P |t ~P + ~R)

det(~P , ~R)
·

For m1 = 1, m2 = −1, the solutions of the two-body problem have the following

expression (~ai, ~bi are constant vectors):

~ri(t) =
1

||~P ||2

(
s(t)

~P

||~P ||
+ ch(s(t))~P ′

)
+ t~ai +~bi·

In a same translating frame whose origin describes a chain curve, the two bodies
have uniform rectilinear motions.

When M 6= 0, we can define a center of inertia:

~G = ~Ω +
1

M

N∑

i=1

mi(~ri − ~Ω)

(the equality does not depend on the origin ~Ω). When M = 0, the center of inertia
is no more defined, but we can define a vector of inertia:

~λ =

N∑

i=1

mi(~ri − ~Ω)·

For M 6= 0, the principle of inertia expresses that there are two constant vectors

~u and ~v such that ~G(t) = t~u + ~v. In an analogous way, for M = 0, this principle

expresses that there are two constant vectors ~u and ~v such that ~λ(t) = t~u + ~v.

For M 6= 0, the knowledge of ~G provides information on the absolute motion of

the N -body system. But for M = 0, the vector of inertia ~λ is invariant under
translations. Thus its knowledge gives information on the motion of the bodies

after reduction of the translations. For instance, the norm of ~λ only depends on
the mutual distances, and we have

−
∑

1≤i<j≤N

mimj||~rj(t)−~ri(t)||2 = ||~λ(t)||2 = ||t~u+~v||2 = ||~u||2t2 +2(~u ·~v)t+ ||~v||2·

This equality already appeared in [6] as a consequence of the equality of Lagrange-
Jacobi.
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The degeneracy when M = 0 provides a case of integrability in the collinear

three-body problem: under the assumption ~̇λ(0) = ~0, the equations become inte-
grable and the vector ~r2 − ~r1 is a solution of a three fixed center problem.

A configuration is said to be central if, and only if, with vanishing initial veloci-
ties, it generates a homothetical motion (collapse or repulsion). This is equivalent
to write that there exists ξ such that, for every i, j:

~γj(~r1, . . . , ~rN )− ~γi(~r1, . . . , ~rN ) = ξ(~rj − ~ri)·

If ξ 6= 0, there is a fixed center for the homothety, and each ~rj − ~ri is the solution
of a two-body problem with M 6= 0. If ξ = 0, there is no fixed center for the
homothety, the ~γi(~r1, . . . , ~rN ) do not depend on i, and each ~rj − ~ri is the solution
of a two-body problem with M 6= 0. Central configurations are also linked to rigid
motions. They can be seen as singularities in the configuration space.

In the case N = 3, for any set of positive masses, it is known that there is
exactly one collinear central configuration and that the only non collinear central
configuration is the equilateral triangle. This is also true for N = 3 and M = 0.

The collinear central configurations are the configurations with ~λ = ~0. For these
configurations, we have ξ 6= 0, whereas for the equilateral triangle, we have: ξ = 0.
As a problem for the 21st century, S. Smale asked whether the number of central
configurations (up to isometries and homotheties) was finite ([10]). The problem is
already difficult with N = 4. The central configurations with N = 4 and positive
masses were studied numerically in [9]. We can enumerate them when the masses
are equal thanks to [1]. Thanks to a numerically assisted proof, it has recently
been proved that the answer was positive for N = 4 ([7]).

The problem of central configurations is linked to algebraic equations with the
masses as real parameters. Thus it can be raised with positive and negative masses.
The proof in [7] also works with positive and negative masses, but unfortunately,
its present form does not include the case M = 0! On the other hand, it has been
proved that, by allowing one negative mass, one could obtain continua of five-
body central configurations ([8]). But there is no example of such a continuum
with M = 0.

For a central configuration with M = 0 and ξ 6= 0, we have ~λ = ~0. This property
makes computations easier. It is linked to the better ”integrability” with M = 0.

The equality ~λ = ~0 enables to express the position of one body as a function of the
others. Thus we have to deal with a (N − 1)-body problem. The ~γi are replaced
with ~γ′i which are also invariant under translations and rotations and are homoge-
neous. Thanks to this, I could prove that a four-body central configuration with
ξ 6= 0 is not cocircular. The most important result is the following:
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For any set of masses (x,−x, y,−y), where x, y 6= 0, there are exactly two non
collinear central configurations with ξ 6= 0. They are trapezia.

Central configurations with M = 0 are involved in the study of choreographies.
A choreography ([4]) is a solution of Newton’s equations such that the bodies
chase each other on the same curve with the same phase shifts between two bodies.
A. Chenciner and R. Montgomery recently proved the existence of the ”eight” orbit
([5]). It is the first non trivial choreography to be discovered, and it had been found
numerically by C. Moore in 1993. Since this discovery, many choreographies have
been found, but they all require equal masses. It has been proved that planar
choreographies with distinct masses do not exist for N ≤ 5 ([3]). Thanks to the
properties of equilibria with M = 0, I proved that they do not exist for any N if we
replace the Newtonian forces with forces associated with a logarithmic potential.
This result can be applied to choreographies of N vortices in a planar fluid.
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Arnold diffusion in Hamiltonian Systems: A priori Unstable Case

Chong-Qing Cheng

In this talk, we study a priori hyperbolic and time-periodic Hamiltonian systems
with arbitrary n+ 1 degrees of freedom. The Hamiltonian has the form

H(u, v, t) = h1(p) + h2(x, y) + P (u, v, t)
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where u = (q, x), v = (p, y), (p, q) ∈ R×T, (x, y) ∈ Tn×Rn, P is a time-1-periodic
small perturbation. H ∈ Cr (r ≥ 3) is assumed to satisfy the following hypothesis:

H1: h1 + h2 is a convex function in v, i.e., the Hessian matrix ∂2
vv(h1 + h2)

is positive definite. It is finite everywhere and has superlinear growth in v, i.e.,
(h1 + h2)/‖v‖ → ∞ as ‖v‖ → ∞.

H2: it is a priori hyperbolic in the sense that the Hamiltonian flow Φt
h2

de-
termined by h2 has a non-degenerate hyperbolic fixed point (x, y) = (0, 0), the
function h2(x, 0) : Tn → R attains its strict maximum at x = 0 mod 2π. We set
h2(0, 0) = 0.

Here, we do not assume that the hyperbolic fixed point (x, y) = (0, 0) is con-
nected to itself by its stable and unstable manifold, i.e., W s(0, 0) ≡ Wu(0, 0).
Such a condition appears unnatural when n > 1.

Let Bǫ,K denote a ball in the function space

Cr({(u, v, t) ∈ Tn+1 × Rn+1 × T : ‖v‖ ≤ K} → R),

centered at the origin with radius ǫ. Now we can state our main result, which is
a higher-dimensional version of the theorem formulated by Arnold where it was
assumed that n = 1.

Theorem 1. Let A < B be two arbitrarily given numbers and assume H satisfies
the above hypotheses H1 and H2. There exist a small number ǫ > 0, a large
number K > 0 and an open and dense set in Sǫ,K ⊂ Bǫ,K such that for each
P ∈ Sǫ,K there exists an orbit of the Hamiltonian flow which connects the region
with p < A to the region with p > B.

We use variational arguments to construct diffusion orbits. In order to use a
variational method, we put the problem of consideration into Lagrangian formal-
ism. Using Legendre transforme L∗ : H → L we obtain the Lagrangian

L(u, u̇, t) = max
v
{〈v, u̇〉 −H(u, v, t)}.

Here u̇ = u̇(u, v, t) is implicitly determined by u̇ = ∂H
∂v . We denote by L :

(u, v, t) → (u, u̇, t) the coordinate transformation determined by the Hamilton-
ian H .

Roughly speaking, we construct diffusion orbits by connecting different Mañé
sets, along which the Lagrange action attains its local minimum. To construct local
connecting orbits between different Mañé sets, we introduce so-called pseudo con-
necting orbit sets. These sets contain the minimal configurations of some modified
Lagrangian which do not necessarily generate orbits determined by the Lagrangian
L. Based on the upper semi-continuity of the set functions, from Lagrangian to
Mañé set and to pseudo connecting orbit set, and on the understanding of these
sets with respect to the configuration manifold and its finite covering, we show
that each configuration in the pseudo connecting orbit set generates a real orbit
of the Lagrangian L which connects some Mañé set to another Mañé set nearby
if this Mañé set has some kind of topological triviality. Such construction does
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not need the manifold structure of the Mather sets, and is applicable to systems
with arbitrary degrees of freedom. Thus, some global connecting orbits can be
constructed if some so-called generalized transition chain is established. Such a
chain does exist in the system we study in this talk.

KAM theory for partial differential equations

Walter Craig

§1. The setting is that of Hamiltonian partial differential equations, which are
evolution equations of the form

(1) ∂tv = JgradvH(v) , v(0) = v0 ∈ H ,

where the phase space H is a Hilbert space, typically infinite dimensional. The
Hamiltonian vector field

XH = JgradvH(v)

is given in terms of the symplectic form

ω(X,Y ) = 〈X, J−1Y 〉H , JT = −J ,
and the Hamiltonian is a real valued functional H(v) : H 7→ R. Denoting the flow
by ϕt(v) = v(t, ·), we are interested in orbits of (1) which are stable motions of
the system, which means in this problem that the orbit has the property that

{ϕt(v) : t ∈ R} = Tm ,

where the torus Tm is of dimension m, 1 ≤ m ≤ ∞.

§2. The question of the existence of such orbits can be posed as a variational
problem, on a formal level at least. Consider mappings of tori into phase space;
S : Tm 7→ H which satisfy the property of flow invariance,

(2) S(ξ + tΩ) = ϕt(S(ξ)) ,

with frequency vector Ω ∈ Rm. This implies that both

Ω · ∂ξS = ∂tS , ∂tS = JgradvH(S) .

The problem is thus to solve

(3) gradvH(S)− J−1Ω · ∂ξS = 0

for the mapping S(ξ) and the frequency vector Ω.
On the space of mappings S ∈ X := {S(ξ) : Tm 7→ H} define the averaged

Hamiltonian H(S) and the action functionals Ij(S), j = 1, . . .m, by

H(S) =

∫

Tm

H(S(ξ)) dξ , Ij(S) = 1
2

∫

Tm

〈S, J−1∂ξj
S〉H dξ ,

The variations of these functionals are

δSIj(S) = J−1∂ξj
S , δSH(S) = gradvH(S) ,
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therefore (3) can be rewritten as

(4) δSH(S) = Ω · δSI(S) .

Consider the codimension m subvariety Ma of the space of mappings X defined
by fixing the actions;

Ma := {S ∈ X : I1(S) = a1, . . . , Im(S) = am} .
Then (4) corresponds to the following Lagrange multiplier rule.

Principle. Critical points of H(S) on Ma correspond to solutions of (4) with the
actions I(S) = a, with frequency vector given by the Lagrange multipliers Ω.

The functionals Ij(S) and H(S) are invariant under a group action of the torus
Tm, namely the transformations τα : S(ξ) 7→ S(ξ+α), α ∈ Tm, preserve their level
sets. Therefore the variety Ma is invariant under this group action. The problem
thus consists in finding critical Tm orbits of H(S) on Ma, for whenever S∗ is a
critical point of H(S) on Ma then the entire orbit {τα(S∗) : α ∈ Tm} consists of
critical points.

§3. It is a basic question as to whether such critical points exist. The first difficulty
is that in general the PDE (3) is a small divisor problem, its linearized equation
is degenerate in the space of torus mappings and its inverse typically exhibits a
loss of derivatives. It is therefore not clear whether direct methods in the calculus
of variations can play a rôle. Secondly, the torus action by Tm gives rise to the
question of multiplicity of solutions. Even if m is infinite this can be a problem of
lower dimensional tori, and it is a question as to which out of a continuous family
of tori will survive in the perturbation theory. If the first issue can be addressed,
this still gives rise to a problem of counting, or at least providing a lower bound
on the number of critical orbits of H(S) for fixed actions I(S) = a.

There are at least several cases in which both these hurdles can be overcome.
Addressing the nonlinear wave equation, the approach of C.E. Wayne and my-
self [CW93] handles the small divisor problem using Fröhlich – Spencer resolvant
estimates [FS83] for the linearized operators in a Nash – Moser iteration scheme.

The second difficulty, that of multiplicity of critical orbits in the presence of a
group action, can be addressed by versions of Morse – Bott theory. I will describe
the basic outline of this in the context of an example.

We will take the nonlinear Schrödinger equation as an illustrative case, namely;

(5) ∂tu = i(− 1
2∆u +Q(x, u, u)) ,

posed on the spatial domain Td = Rd/Γ where Γ is a lattice of full rank. This is
a Hamiltonian system with Hamiltonian

H(u) =

∫

Td

1
2 |∇u|2 +G(x, u, u) dx , ∂uG = Q .

Suppose that G = g1(x)|u|2+. . . , then in Taylor expansionH(v) = H(2)(v)+R(v),
for R vanishing up to at least second order at v = 0. The Hamiltonian H(v) has
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an elliptic stationary point at v = 0, meaning that the linearized equation around
zero is given by the quadratic Hamiltonian

H(2)(u) =

∫

Td

1
2 |∇u|2 + g1(x)|u|2 dx =

∑
k∈Γ′ ωk|û(k)|2 .

Here we have expanded the functions u in their generalized Fourier series in
eigenfunction/eigenvalue pairs (ψk(x), ωk) with respect to the operator L(g1)ψ =
− 1

2∆ψ + g1(x)ψ. This is a harmonic oscillator with frequencies {ωk}, k ∈ Γ′. In
a similar spirit consider the generalized Fourier expansion of torus mappings

S(x, ξ) =
∑

(j,k)∈Zm×Γ′

s(j, k)ψk(x)eij·ξ .

In these coordinates the linearized equations about the solution S = 0 take the
form

(6) (δ2SH
(2)(0)− Ω · δ2SI(0))s(x, ξ) =

∑

(j,k)

(ωk − Ω · j)s(j, k)ψk(x)eij·ξ = F (x, ξ) .

The eigenvalues of the linearized operator are {ωk−Ω·j}(j,k)∈Zm×Γ′ which typically
forms a dense set in R. Choosing frequencies ωk1

, . . . ωkm
and then a frequency

vector Ω0 = (Ω0
1, . . . ,Ω

1
m) satisfying the resonance relations ωkℓ

− Ω0 · jℓ, define
N := {(j, k) : ωk − Ω0 · j = 0} a subset of the lattice Zm × Γ′. The set N has
cardinality 2M ≥ 2m, which is always even, and it may be infinite. The linearized
operator in (6) has a null space X1 = span {ψk1

(x) exp(ij · ξ) : (j, k) ∈ N} ⊆ X .
The torus we seek is nonresonant if m = M , and resonant if m < M .

The Morse – Bott theory as conceived in this context is based on the character
of the intersection Ma ∩X1. The result, which is still conjectural in part, is that
for a given, there are integers p1, . . . , pm such that

∑
ℓ=1,...,m pℓ = M , and

(7) Ma ∩X1 = ×m
ℓ=1S

2pℓ−1 ,

a product of odd dimensional spheres. The torus group acts on this set, and
through Tm equivariant cohomology we find that functions invariant under this
torus action and Morse – Bott with respect to it must have a minimum number β
of critical Tm-orbits. This lower bound β = β(p) depends in particular upon the
dimensions given by p1, . . . , pm, but in any case it is bounded below independently
of p by

(8) β ≥M −m+ 1 .
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KAM for the non-linear Schrödinger equation

L. H. Eliasson

(joint work with S. B. Kuksin)

We shall discuss the perturbation theory of lower-dimensional tori (KAM) for the
non-linear Schrödinger equation with perodic boundary conditions in dimension d.
The difficulties in applying KAM in infinite dimensions are substantial and become
larger with increasing d. This is a report on a recent work (with S. Kuksin) that
aims to solve the problem for any d.

We consider the d-dimensional nonlinear Schrödinger equation (NLS)

−iu̇ = ∆u+ V (x) ∗ u+ ε|u|2u; u = u(t, x)

under the periodic boundary conditions x ∈ Td. The convolution potential V :
Td → C must have real 1 Fourier coefficients V̂ (a), a ∈ Zd, and we shall suppose
it is analytic,

|V̂ (a)| ≤ C1e
−C2|a| ∀ a ∈ Zd .

If we write {
u(x) =

∑
a∈Zd(ξa + iηa)eila,x

u(x) =
∑

a∈Zd(ξa − iηa)eila,x,

then, in the symplectic space
{
{(ξa, ηa) : a ∈ Zd} = RZ

d × RZ
d

∑
a∈Zd dξa ∧ dηa,

the equation becomes a Hamiltonian system with Hamiltonian

H =
1

2

∑

a∈Zd

(|a|2 + V̂ (a))(ξ2a + η2
a) + εh(ξ, η),

where h is a quartic form in (ξ, η).
Let A be a finite subset of Zd and fix

0 < ra(0) ≤ 1

1This equation is a popular model for the ‘real’ NLS equation, where instead of the convolution
term V ∗ u we have the potential term V u. Considering this model we remove some technical
difficulties, which are not related to the main ones.
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for each a ∈ A. The (#A)-dimensional torus

1

2
(ξ2a + η2

a) = ra(0), a ∈ A,
is invariant for the Hamiltonian flow when ε = 0. In a neighborhood of this torus
we introduce action-angle variables (ϕa, ra)

ξa =
√

2(ra(0) + ra) cos(ϕa), ηa =
√

2(ra(0) + ra)) sin(ϕa).

The Hamiltonian now becomes

H =
∑

a∈A

ωara +
1

2

∑

a∈L

Ωa(ξ2a + η2
a) + εh(ϕ, r, ξ, η),

where
ωa = |a|2 + V̂ (a), a ∈ A,

are the basic frequencies, and

Ωa = |a|2 + V̂ (a), a ∈ L = Zd \ A,
are the normal frequencies.

We define (for m∗ ∈ N) the complex domain

Oγ(ρ, σ) =

{
|ℑϕ| < ρ, |r| < σ2

||ξ||γ =
√∑

a∈L |ξa|2|a|2m∗e2γ|a| < σ, ||η||γ < σ

H is analytic on Oγ(ρ, σ) and its (local) hamiltonian flow is well-defined on this
domain.

The basic frequencies ω = {ωa : a ∈ A} will be our free parameters belonging
to a set

U ⊂ {ω ∈ RA : |ω| ≤ C3} .
The normal frequencies should verify

|Ωa + Ωb|, |Ωa| ≥ C4 ∀ a, b ∈ L ,
|Ωa − Ωb| ≥ C4 ∀ a, b ∈ L, |a| 6= |b|.

Theorem 1. Under the above assumptions, for ε sufficiently small there exist a
Borel subset U ′ ⊂ U ,

Leb (U \ U ′) ≤ cte. εexp1 ,

and, for each ω ∈ U ′, a real analytic symplectomorphism

Φω : Ωγ/2(ρ/2, σ/2)→ Oγ/2(ρ, σ) ,

such that |Φω − id| ≤ cte. εexp2 and

H ◦Φω(ϕ, r, ξ, η) = lω′, r+
+lξ,Ω′

1ξ + lη,Ω′
1η + 2lξ,Ω′

2η + εh(ϕ, r, ξ, η),

where Ω′ = Ω′
1 + iΩ′

2 is Hermitian and block-diagonal with finite-dimensional
blocks, and where

h′ ∈ O2(r, ξ, η) ∪ O3(ξ, η).

The constant cte. only depends on the dimensions d and n and on C1, . . . , C4. The
exponents exp1 and exp2 only depend on the dimensions d and n.
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A first consequence of this statement is the persistence of quasi-periodic solu-
tions: The torus Φω(Tn×{0}×{0}) is invariant for the Hamiltonian flow and the
flow on it is conjugate to the linear flow

t→ ϕ+ tω′ .

A second consequence is the reducibility of the linearized system on this torus (ie.
the variational equations of the quasi-periodic solution) to the constant coefficient
system determined by

lω′, r + lξ,Ω′
1ξ + lη,Ω′

1η + 2lξ,Ω′
2η.

Due to its form it follows that all Lyapunov exponents of the solutions vanish.
Some references. For finite dimensional Hamiltonian systems the first proof of

persistence and reducibility of stable (i.e. vanishing of all Lyapunov exponents)
isotropic tori was obtained by Eliasson [1, 2]. This has been improved in many
works and the situation in finite dimension is pretty well understood. Not so,
however, in infinite dimension.

For space–one–dimensional (d = 1) equations, if the space-variable x belongs to
a finite segment and the equation is supplemented by the Dirichlet or Neumann
boundary conditions, the same result was obtained by Kuksin in [3]. The case
periodic boundary conditions was treated later by Bourgain in [4], using another
multi–scale scheme, suggested by Fröhlich–Spencer in their work on the Anderson
localisation, and later exploited by Craig–Wayne to construct time–periodic solu-
tions of nonlinear PDEs. Due to these and other publications, the perturbation
theory for quasiperiodic solutions of 1d Hamiltonian PDE is now sufficiently well
developed.

For space–multi–dimensional (d ≥ 2) equations the situation is much less under-
stood. Developing further the scheme, suggested by Fröhlich–Spencer, Bourgain
managed to prove persistence for the 2d case [5]. Finally, he has recently an-
nounced that the new techniques allow to establish persistence of quasi-periodic
solutions for any d. (A detailed proof has not been given yet but the ideas are
explained in his book [6].) It should be mentionned that the multi–scale-scheme
developped by these authors does not (at least not immediately) give vanishing of
the Lyapunov exponents nor reducibility of the linearized equation.

Main ideas. Very briefly, our main idea is to put under strict control the linear
parts of the transformations, forming the KAM–procedure, defined by the homo-
logical equation.The solution, with estimates, of this equation requires control of
the “small divisors” which imposes conditions on ω ∈ U . These conditions are
relatively easy to fulfill when L is a finite set in Zd or when L ⊂ Z1 because then
the equation imposes on finitely many conditions on ω on every scale. In the case
when L is an infinite subset of Zd, d ≥ 2, the equation imposes infinitely many
conditions on ω on every scale.

To verify that these conditions can be fulfilled in the n-parameter family ω ∈ U ,
we make use of a special property of infinite–dimensional matrices — the Töplitz-
Lipschitz property. This property has two nice features. These matrices form an
algebra: one can multiply them and solve linear differential equations [7]. They



1766 Oberwolfach Report 31/2005

permit a “compactification of the dimensions”: If the Hessian (with respect to
(ξ, η)) of the Hamiltonian is Töplitz-Lipschitz, then the infinitely many small di-
visor conditions needed to solve the homological equation reduce to finitely many
conditions [8].
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Sard, Whitney, Assouad and Mather

Albert Fathi

Suppose L is a Tonelli Lagrangian on the compact manifold M , i.e.:

1) L : TM → R is Cr, r ≥ 2.

2) ∂2L
∂v2 (x, v) is positive definite for all (x, v) ∈ TM .

3) L(x,v)
‖v‖x

→∞ as ‖v‖x →∞.

For x, y ∈M , t > 0, we introduce

ht(x, y) = inf

{∫ t

0

L(γ(s), γ̇(s))ds | γ : [0, t]→M, γ(0) = x, γ(t) = y

}

John Mather has shown that there exists a unique value c[0] such that

h(x, y) = lim inf
t→∞

ht(x, y) + c[0]t

is finite everywhere. Moreover, the function h : M × M → R is Lipschitz, and
satisfies h(x, x) ≥ 0 and h(x, z) ≤ h(x, y) + h(y, z), so that δM (x, y) := h(x, y) +
h(y, x) is a semi-metric on A = {x | h(x, x) = 0}, which is the projected Aubry

set. We introduce the equivalence relation x ∼ y if δM (x, y) = 0; on ÃM = A/ ∼,

the function δM becomes a genuine metric δ̃M . This metric space is called the
Mather quotient of L.
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John Mather has shown in [1] that for every r ≥ 2 there exists a Cr Tonelli
Lagrangian on some high-dimensional torus TN such that the Mather quotient

(ÃM , δ̃M ) is isometric to ([0, 1], |x− y|).
We show how to partially extend this result: For every doubling compact metric

space (X, δ) we find a Cr Lagrangian L on some high-dimensional torus TN such

that (ÃM , δ̃M ) is Lipschitz equivalent to (X, δ).
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About M. Herman’s proof of ‘Arnold’s theorem’ in celestial mechanics

Jacques Féjoz

Consider 1+n point bodies with massesm0, ǫm1, . . . , ǫmn > 0 (ǫ > 0) and position
vectors x0, x1, . . . , xn ∈ R3. According to Newton’s equations we have

ẍj = m0
x0 − xj

||x0 − xj ||3
+ ǫ
∑

k 6=j

mk
xk − xj

||xk − xj ||3
(j = 1, . . . , n).

These equations have a limit when ǫ → 0, for which each planet (masses ǫmj)
undergoes the only attraction of the sun (mass m0). If the energies of the planets
are negative, planets describe Keplerian ellipses with some given semi major axes
and excentricities. As a whole, the system is quasiperiodic with n frequencies. In
1963, V. Arnold [A] published the following remarkable result.

Theorem 1. For every m0,m1, . . . ,mn > 0 and for every a1 > · · · > an > 0 there
exists ǫ0 > 0 such that for every 0 < ǫ < ǫ0, in the phase space in the neighborhood
of circular and coplanar Keplerian motions with semi major axes a1, . . . , an, there
is a subset of positive Lebesgue measure of initial conditions leading to quasiperiodic
motions with 3n− 1 frequencies.

The proof of this theorem is rendered difficult by the multitudinous degeneracies
of the planetary problem. Arnold’s initial proof does not fully describe these
degeneracies and actually misses one of them. Hence it is wrong in the case
of n ≥ 3 planets in space. In 1998, in a series of lectures M. Herman sketched a
complete and more conceptual proof of this theorem [F]. I will now review a couple
of ideas which make this proof so powerful and, I believe, elegant. These ideas
mainly pertain to some normal forms of Hamiltonians, which might not surprise
the specialists but which epitomize the structure of KAM theory as understood
by M. Herman.

Let X = Tp × B̄p, Tp = Rp/Zp and B̄p the closed p-dimensional unit Euclidean
ball. Endow X with the natural coordinates (θ, r) and the standard symplectic
form ω =

∑p
j=1 dθj∧drj . IfH ∈ C∞(X) is a smooth Hamiltonian, its Hamiltonian

vector field is θ̇ = ∂rH, ṙ = −∂θH . Denote by Rα, α ∈ R, the Hamiltonian
defined by Rα = α · r. Let Nα = {Rα + O(r2)} be the space of Hamiltonians for
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whose flow the torus T
p
0 = Tp × {0} is invariant and quasiperiodic with frequency

vector α. Let also G be some space of Hamiltonian diffeomorphisms, which we will
not fully describe here, but which is diffeomorphic to a neighborhood of (0, id) in
the product B∞

1 (Tp)×Diff∞
o (Tp), where B∞

1 (Tp) is the space (acting by translation
in the r direction) of closed one-forms on Tp and Diff∞

o (Tp) is the space (acting
contragrediently) of diffeomorphisms of the torus which fix the origin. Let φα be
the map

φα : Nα × G × Rp → C∞
+ (X)

(N,G, α̂) 7→ H = N ◦G+Rα̂,

where C∞
+ (X) is the quotient of the space of Hamiltonians by the real constants.

The Hamiltonian N ◦ G is symplectically conjugate to N by G; hence for the
flow of N ◦G the torus G−1(Tp

0) is invariant and α-quasiperiodic. The term Rα̂,
which tunes the frequency, unfortunately breaks down the dynamical conjugacy;
hence I call (N,G, α̂) a twisted conjugacy of H , and in general H does not have
an invariant torus. Eventually, define

HDγ,τ = {α ∈ Rp : |k · α| ≥ γ||k||−τ ∀ k ∈ Zp \ 0} (γ, τ > 0).

Theorem 2 (Twisted conjugacy, M. Herman). For every α ∈ HDγ,τ and for
every No ∈ Nα, the map φα is a local (tame in the sense of Hamilton) C∞-
diffeomorphism in a neighborhood of (No, id, 0) 7→ No; in particular, the G-orbit
of Nα defines a germ of submanifold of codimension p of C∞

+ (X). Moreover, the
germ of map (H,α) 7→ φ−1

α (H) is C∞-smooth in the sense of Whitney.

Sketch of proof. We want to solve the equation φα(N,G, α̂) = H for H close
enough to No in the C∞-topology. In this setting, small denominators manifest
themselves in the loss of differentiability of φα, which prevents from choosing
Banach norms at the source and target spaces of φα for which this operator is
both bounded and coercive. A way out is to use scaled Fréchet structures and the
Nash-Moser inverse function theorem. For the sake of simplicity, the version due
to Sergeraert and Hamilton in the C∞-category can be used. Then the problem
boils down to inverting the linear operator dφα(N,G, α̂) for (N,G, α̂) close, but
not necessarily equal, to (No, id, 0). This inversion is equivalent to one step in the
induction of Kolmogorov’s original proof of the invariant torus theorem.

In order to get rid of the twist of the conjugacy, a natural idea could be to
tune the frequency before conjugating by G, i.e., to consider ψα : (N,G, α̂) 7→
(N + Rα̂) ◦ G instead of φα. But ψα is glaringly not a local diffeomorphism – if
it were, the property of having an invariant torus would be open in the space of
Hamiltonians! We will use this idea in a more sophisticated manner. Let

N = ∪α∈RpNα = {α · r +O(r2)}α∈Rp .

Corollary 1 (Hypothetical conjugacy). For every No ∈ N there is a (non unique)
germ of C∞-diffeomorphism

Θ : C∞
+ (X) → N × G

H 7→ (NH , GH), NH = αH · r +O(r2),
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at No 7→ (No, id) such that for every H the following implication holds :

αH ∈ HDγ,τ =⇒ H = NH ◦GH .

I call (NH , GH) a hypothetical conjugacy of H because the property H = NH ◦
GH depends on arithmetical conditions involving the unknown frequency αH .

Proof. According to Theorem 2, the equality Θ̃(H,α) = φα
−1(H) defines a

germ of map
Θ̃ : C∞

+ (X)×HDγ,τ → N × G × Rp

at No which is Whitney-smooth. According to Whitney’s extension theorem, this
germ extends to a smooth germ

Θ̃ : C∞
+ (X)× Rp → N × G × Rp.

Now, the equality No = (No +Rα−αo) ◦ id+Rαo−α shows that

∂α̂

∂α

∣∣∣∣
{G=id}

= −idRp .

Hence, the usual implicit function theorem entails that there is a unique germ
of function α = ᾱ(H) such that α̂(ᾱ) = 0. There only remains to set Θ(H) =

Θ̃(H, ᾱ(H)).

Now assume that the perturbed Hamiltonian H depends on some parameter
s ∈ Bt; if H is close to some completely integrable Hamiltonian, s may be the
action coordinate and, in the case of Arnold’s theorem, s represents the semi-
major axes, excentricities and inclinations. By composition with Θ, H determines
a frequency map s 7→ αs, which is C∞-close to the frequency map s 7→ αo

s of the
unperturbed Hamiltonian No.

Theorem 3 (Arnold, Margulis, Pyartli). If some real-analytic map s ∈ Bt 7→
αo

s ∈ Rp is non-planar in the sense that its image is nowhere locally contained in
some proper vector space of Rp, the Lebesgue measure of {s ∈ Bt, αo

s ∈ HDγ,τ} is
positive provided that γ is small enough and τ large enough.

There exists a similar statement in the smooth setting, involving finitely many
derivatives of the frequency map. By combining the two latter statements and
using the fact that being non planar is an open property in the C∞-topology, we
get an invariant tori theorem. Unfortunately, the following holds.

Theorem 4 (M. Herman). The frequency map αo of the first order secular system
– that is, the Birkhoff normal form of the planetary problem along circular and
coplanar Keplerian n-tori –, as a function of the semi major axes, has its image
lying entirely in a plane P of codimension 2. Moreover, its image lies in no plane
of higher codimension.

The theorem can be proved by induction on the number of planets and by com-
plexifying the semi-major axes. The first resonance comes from Galilean symmetry
and disappears when fixing the direction of the angular momentum. The second
resonance is mysterious and seems not to have been noticed before. According
to numerical evidence, it vanishes when the secular system is fully reduced by
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rotations, or for the second order secular system; but one precisely wants to avoid
these computations in the general case (quoting M. Herman, ‘BLC’ for ‘Bonjour
Les Calculs’ !).

M. Herman’s resonance can actually be taken care of by looking to the plan-
etary problem in a well-chosen rotating frame of reference, or, equivalentely, by
adding to the Hamiltonian a term proportional to the vertical angular momen-
tum. Abstracly, this is tantamount to applying Corollary 1 not merely to H but
to H + Rβ with β varying in the set V of frequencies spanned by the first inte-
grals of H . Let α = αH,β be the frequency of H + Rβ , as defined by Θ. Since
∂α/∂β|{G=id} = idRp , the deformation α1 : (s, β) ∈ Bt ×V 7→ αNo,β is non planar
in P +V . If H has enough ‘transversal’ first integrals in respect of the resonances
of αo, i.e., if P +V = Rp (which is the case for the planetary system), the map α1

is non-planar and Theorem 3 applies. Due to Fubini’s theorem, there is a fixed β
for which the inverse image of HDγ,τ by the partial map s 7→ α1

s,β has a positive
measure. Hence H + Rβ has a set of invariant tori of positive measure. The so
obtained invariant tori are Lagrangian, hence invariant for H itself.
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Zygmund foliations and rigidity

Boris Hasselblatt

(joint work with Patrick Foulon)

For Anosov systems, both diffeomorphisms and flows, interesting phenomena of
smooth and geometric rigidity have been observed in connection with the degree
of (transverse) regularity of the (weak) stable and unstable subbundles of these
systems. The seminal result was the study of volume-preserving Anosov flows
on 3-manifolds by Hurder and Katok [4], which showed that the weak-stable and
weak-unstable foliations are C1+Zygmund and that there is an obstruction to higher
regularity whose vanishing implies smoothness of these foliations. This, in turn,
happens only if the Anosov flow is smoothly conjugate to an algebraic one. The
cocycle obstruction described by Katok and Hurder was first observed by Anosov
and is the first nonlinear coefficient in the M oser normal form. Therefore one
might call it the KAM -cocycle.



Dynamical Systems 1771

The present work, presented here for the first time, is aimed at showing some
analogous rigidity features associated with the longitudinal direction, i.e. associ-
ated with various degrees of regularity of the sum of the strong stable and un-
stable subbundles. In [2] we showed that for a volume-preserving Anosov flow
on a 3-manifold the strong stable and unstable foliations are Zygmund-regular [6,
Section II.3, (3·1)], and we exhibited an obstruction to higher regularity, which ad-
mits a direct geometric interpretation. Vanishing of this obstruction implies high
smoothness of the joint strong subbundle and that the flow is either a suspen-
sion or a contact flow. The work in progress presented here is aimed at a similar
understanding of higher-dimensional systems.

Definition 1 ([5]). Let M be a manifold, ϕ : R×M →M a smooth flow. Then ϕ is
said to be an Anosov flow if the tangent bundle TM splits as TM = Eϕ⊕Eu⊕Es,
where Eϕ(x) = Rϕ̇(x) 6= {0} for all x ∈M , in such a way that there are constants
C > 0 < λ < 1 < η such that for t > 0 we have

‖Dϕ−t ↾ Eu‖ ≤ Cη−t and ‖Df t ↾ Es‖ ≤ Cλt.

The subbundles are then invariant and (Hölder-) continuous and have smooth
integral manifolds Wu and W s that are coherent in that q ∈Wu(p) =⇒ Wu(q) =
Wu(p). Wu and W s define laminations (continuous foliations with smooth leaves).

Definition 2. A function f between metric spaces is said to be Hölder continu-
ous if there is an H > 0, called the Hölder exponent, such that d(f(x), f(y)) ≤
const.d(x, y)H whenever d(x, y) is sufficiently small. We specify the constant by
saying that a function is H-Hölder. A continuous function f : U → R on an
open set U ⊂ R is said to be Zygmund-regular if there is Z > 0 such that
|f(x+h)+f(x−h)−2f(x)| ≤ Z|h| for all x ∈ U and sufficiently small h. To specify
a value of Z we may refer to a function as being Z-Zygmund. The function is said
to be “little Zygmund” (or “zygmund”) if |f(x+h)+f(x−h)−2f(x)| = o(|h|). For
maps between manifolds these definitions are applied component-wise in smooth lo-
cal coordinates.

Zygmund regularity implies modulus of continuity O(|x log |x||) and hence H-
Hölder continuity for all H < 1 [6, Theorem (3·4)]. It follows from Lipschitz
continuity and hence from differentiability. Being “little Zygmund” implies having
modulus of continuity o(|x log |x||).

The regularity of the unstable subbundle Eu is usually substantially lower than
that of the weak-unstable subbundle Eu ⊕ Eϕ. The exception are geodesic flows,
where the strong unstable subbundle is obtained from the weak-unstable subbun-
dle by intersecting with the kernel of the invariant contact form. This has the effect
that the strong-unstable and weak-unstable subbundles have the same regularity.
However, time changes affect the regularity of the strong-unstable subbundle, and
this is what typically keeps its regularity below C1. In [2] we presented a longi-
tudinal KAM-cocycle that is the obstruction to differentiability, and we derived
higher regularity from its vanishing.
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Theorem 1 ([2, Theorem 3]). Let M be a 3-manifold, k ≥ 2, ϕ : R ×M → M
a Ck volume-preserving Anosov flow. Then Eu ⊕ Es is Zygmund-regular, and
there is an obstruction to higher regularity that can be described geometrically as
the curvature of the image of a transversal under a return map. This obstruction
defines the cohomology class of a cocycle (the longitudinal KAM-cocycle), and the
following are equivalent:

(1) Eu ⊕ Es is “little Zygmund” (see Definition 2).
(2) The longitudinal KAM-cocycle is a coboundary.
(3) Eu ⊕ Es is Lipschitz.
(4) Eu ⊕ Es ∈ Ck−1.
(5) ϕ is a suspension or contact flow.

In (5) no stronger rigidity should be expected because Eu ⊕ Es is smooth for
all suspensions and contact flows.

The work by Hurder and Katok in [4] inspired developments of substantial ex-
tensions to higher dimensions, see, for example, [3]. The present work tries to
make some analogous progress for higher-dimensional systems in this “longitudi-
nal” context. We assume uniform quasiconformality, that is, boundedness of

Ki(x, t) :=
max{‖dϕt(u)‖ | u ∈ Ei(x), ‖u‖ = 1}
min {‖dϕt(u)‖ | u ∈ Ei(x), ‖u‖ = 1}

on M × R for i = u, s.

Theorem 2. Let M be a compact Riemannian manifold, k ≥ 2, ϕ : R×M →M
a uniformly quasiconformal volume-preserving Ck Anosov flow with dimEu =
dimEs. Then Eu ⊕Es is Zygmund-regular, and there is an obstruction to higher
regularity that defines the cohomology class of the longitudinal KAM-cocycle, and
the following are equivalent:

(1) Eu ⊕ Es is “little Zygmund” (see Definition 2).
(2) The longitudinal KAM-cocycle is a coboundary.
(3) Eu ⊕ Es is Lipschitz.

Unlike in dimension 3 we do not know whether these in turn imply that Eu ⊕
Es ∈ Ck−1. On the other hand, going far beyond our earlier assertion that smooth-
ness of Eu ⊕ Es implies that ϕ is a suspension or contact flow, there is a rigidity
theorem by Fang:

Theorem 3 ([1, Theorem 1]). Let M be a compact Riemannian manifold, ϕ : R×
M → M a uniformly quasiconformal volume-preserving C∞ Anosov flow with
dimEu, dimEs ≥ 2 and Eu ⊕ Es ∈ C∞. Then up to a constant time change and
finite covers, ϕt is C∞ flow equivalent either to the suspension of a hyperbolic
automorphism of a torus, or to a canonical perturbation of the geodesic flow of a
hyperbolic manifold.

Here, a canonical perturbation of a flow of a vector field X is that of the vector
field X/(1 + α(X)) for a closed C∞ 1-form α such that 1 + α(X) > 0.
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Normally hyperbolic spheres in the coupling of oscillators

Mathilde Kammerer-Colin de Verdière

(joint work with Marc Chaperon)

Our main result is the existence of invariant, repelling or attracting, spheres in the
neighboorhood of an elliptic fixed point for generic families of vector fields with a
large space of parameters.

Theorem 1. Let (u, x) 7→ Xu(x) ∈ R2n be a generic sufficiently smooth family

of vector fields with parameter u ∈ Rn2+n, defined in a neighbourhood of 0 ∈
R2n × Rn2+n, such that 0 is an elliptic fixed point of X0 without resonances of
order lower than 4. Assume X0 is formally linearizable at order 3 at 0 ∈ R2n.

Under these hypotheses, there exists an open neighbourhood U of 0 ∈ Rn2+n such
that for every u ∈ U , the vector field Xu has a repelling (or attracting) invariant
manifold Wu diffeomorphic to S2n−1. The submanifold Wu depends continuously
on the parameter u ∈ U and tends to {0} when u→ 0.

Sktech of proof in the case n = 2. The standard normal form theory provides
a local change of coordinates R4 = C2; the normal form Nu induces a planar

vector field in the modulus plane : ṙ2j = r2j (λj + ajr
2
1 + bjr

2
2) for j = 1, 2 with

u = (λj , aj , bj)j=1,2 by genericity [2]. Choose ε ∈ R∗
+. In the first quadrant, the

sphere S = S(0, ε) is represented by a line segment; for very particular values of
the parameter u0 this segment is repelling and made of fixed points of Nu0

. This
means that the sphere S ⊂ R4 is foliated by invariant tori for Nu0

. The standard
normal hyperbolicity theory implies: for parameter values not too far from u0 and
for ε small enough the vector field Xu admits an invariant repelling manifold close
to S. More precisely, we have used the very simple result in [1] which is stated for
maps and admits an analogous formulation for vector fields [3].
Comments.
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• The open set Un is made of neighboorhoods of very particular values of the
parameters for which the normal form induces no dynamic on the segment
lines representing the sphere; it is obviously far from being as large as
possible.
• It is very easy to see the invariant sphere in the normal form Nu because

of the big dimension of our parameter space;
• this result holds for diffeomorphisms with the same assumptions of gener-

icity, elliptic fixed point and non resonance: hu : (R2n, 0)→ (R2n, 0) with
dX0(0) having n pairs of eigenvalues (e±iαj )16j6n or hu : (R2n−1, 0) →
(R2n−1, 0) with dX0(0) having (n−1) pairs of eigenvalues (e±iαj )16j6n−1

and the eigenvalue −1.

More details can be found in [3].
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Two new approaches to local rigidity of abelian actions: KAM and
algebraic K-theory

Anatole Katok

We consider two classes of algebraic partially hyperbolic actions of Zk and Rk:
actions by automorphisms of a torus and restrictions of the Weyl Chamber flow
to an intermediate subgroup of rank ≥ 2.

For the first class we prove local differential rigidity by a KAM-type method.
Vanishing of the obstructions for the linearized equation and tame estimation for
the non-linear conjugacy equation involve ”the higher-rank” trick and an estimate
of the solution of the second cohomology equation.

For the second class the method is very different and complementary. It uses the
construction of solutions for the cohomolgy equation for the perturbed action. The
key element is a representation of generators and relations in SL(n; R) following
classical work of R. Steinberg and J. Milnor.

Variation on a Theorem of C. Conley

Janko Latschev

For a smooth flow on a smooth compact manifold, a fundamental theorem of
Conley asserts the existence of a smooth Lyapunov function, that is a function
whose critical set coincides with the chain-recurrent set R of the flow and whose
derivative in the flow direction is negative outside R. One may interpret this result
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as giving (via Lusternik-Schnirelman theory) a lower bound on the complexity of
the chain recurrent set in terms of the category of M .

In my talk, I discussed the problem of existence of Lyapunov 1-forms, as de-
scribed by the following definition:

Definition 1. [3] Let ϕt be a smooth flow on the smooth closed manifold M , and
let Z ⊂ M be a closed subset invariant under the flow of ϕt. A Lyapunov 1-form
for (ϕt, Z) is a smooth closed 1-form λ such that

(L1) λ vanishes pointwise on Z and is exact in some neighborhood of Z, and
(L2) λ(V ) < 0 on M \Z, where V is the generating vector field for the flow ϕt.

There is also a parallel notion of a Lyapunov 1-form for continuous flows on
compact metric spaces, which was introduced in [4]. Part of the results described
below have analogues in that context as well.

The existence question is motivated in part by recent results about flows that
admit Lyapunov 1-forms. For example, Farber [2] introduced a category-type
invariant cat(M, ξ) associated to a cohomology class ξ ∈ H1(M ; R). When ξ = 0,
it agrees with the usual Lusternik–Schnirelman category, and for ξ 6= 0 and M
connected it takes values between 0 and cat(M) − 1. Farber showed that his
invariant can be effectively bounded from below in terms of homotopy theory. In
[2], he proved a first version of the following result, which later appeared as stated
in [5].

Theorem 1 ([2, 5]). Let ϕt be a smooth flow on a smooth closed manifold M ,
and let Z be an isolated invariant set with finitely many components Z1, . . . , Zk.
Suppose there exists a Lyapunov 1-form for (ϕt, Z) representing ξ ∈ H1(M ; R).

Then either

cat(M, ξ) ≤
k∑

i=1

catM (Zi),

or there exist points x1, . . . , xr, xr+1 = x1 ∈ M \ Z with r ≤ k such that for each
i = 1, . . . , r the forward limit set of xi and the backward limit set of xi+1 are
contained in the same connected component of Z.

Other interest in this question comes from the general philosophy that there
should be a theory generalizing Novikov theory for 1-forms with Morse singularities
in the same way that Conley’s theory generalizes ordinary Morse theory. First
results in this direction have been obtained by Fan and Jost [1].

There is a classical theorem by Schwartzman [7] that can be rephrased as an
existence result for Lyapunov 1-forms with Z = ∅. In fact, given a finite invariant
measure µ for the flow ϕt on M generated by the vector field V , the asymptotic
cycle of µ is defined as the homomorphism Aµ : H1(M ; R)→ R given by mapping
the cohomology class [α] of a closed form α to

Aµ([α]) :=

∫

M

α(V ) dµ.
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Theorem 2 (Schwartzman [7]). Let ϕt be a smooth flow on a smooth closed
manifold M . Then there exists a smooth Lyapunov 1-form for (ϕt,∅) representing
the class ξ ∈ H1(M ; R) if and only if

Aµ(ξ) < 0

for every finite positive invariant measure µ.

In the joint work [3] we proved a first existence result for Lyapunov 1-forms
with nonempty zero set, which is also formulated in terms of asymptotic cycles
of finite invariant measures. Unfortunately, it requires the zero set of the form to
be isolated in the chain recurrent set, an assumption that is rather restrictive and
also nearly impossible to check in practice.

It turns out that to get necessary and sufficient conditions in a more general
situation, one has to appropriately enlarge the class of measures one considers.
In fact, given the flow ϕt and the closed invariant subset Z ⊂ M , one is lead to
consider locally finite invariant measures µ on M \Z. These still define relative as-
ymptotic cycles Aµ : H1(M,Z; R)→ R, where the cohomology groupH1(M,Z; R)
is computed using forms compactly supported in M \ Z. Since we assume that
the Lyapunov 1-form is exact near Z, it seems reasonable to restrict our search
to classes ξ ∈ H1(M ; R) that vanish in some neighborhood of Z. In terms of the
long exact sequence in cohomology

· · · → H0(Z; R)→ H1(M,Z; R)
j∗→ H1(M ; R)

i∗→ H1(Z; R)→ . . . ,

where H∗(Z; R) is computed from germs of differential forms near Z, we are thus
interested in classes ξ ∈ HZ := ker i∗ = im j∗. It turns out that the measures
carrying the relevant homological information are those whose relative asymptotic
cycle descends as a well-defined homomorphism to HZ . We thus arrive at the
following definition.

Definition 2. A locally finite invariant measure µ on M \ Z is called coherent
relative to Z if Aµ : H1(M,Z; R) → R vanishes on ker j∗ and so descends to a

homomorphism Ãµ : HZ → R. More explicitly, this means that
∫

M\Z

dg(V ) dµ = 0

for all smooth functions g : M → R whose differential vanishes in some neighbor-
hood of Z.

The easiest examples of coherent measures are given by finite invariant measures
µ that restrict non-trivially to M \ Z. Next there are examples arising from
homoclinic orbits, i.e. orbits in M \ Z whose forward and backward limit set are
contained in the same component of Z, or chains similar to those described in the
first theorem above. The main result of [6] now reads as follows.

Theorem 3 ([6]). Let ϕt be a smooth flow on a smooth closed manifold M , and let
Z ⊂ M be an isolated invariant set for ϕt. Then there exists a smooth Lyapunov
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1-form for (ϕt, Z) representing ξ ∈ HZ if and only if

Ãµ(ξ) < 0

for every positive measure µ coherent relative to Z.

In the talk, I also mentioned two results from [6] that hold in the special case
where we consider an integral cohomology class ξ ∈ H1(M ; Z). The first one
characterizes the possible closed invariant subsets Z ⊂ M for which there can be
a Lyapunov 1-form representing ξ as countable intersections of isolated invariant
sets admitting such forms. The second characterizes the smallest set Z for which
there exists a Lyapunov 1-form for (ϕt, Z) representing ξ ∈ H1(M ; Z) as a certain
subset of the chain recurrent set naturally associated to ξ, under the assumption
that there is at least one Lyapunov 1-form representing ξ.
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Multiple closed geodesics on Finsler 2-spheres

Yiming Long†

(joint work with Victor Bangert)

The study of closed geodesics on spheres is a classical and important problem in
both dynamical systems and differential geometry. The results of V. Bangert in
1993 and J. Franks in 1992 prove that for every Riemannian metric on S2 there
exist infinitely many geometrically distinct closed geodesics. In 1973, A. Katok
constructed a remarkable irreversible Finsler metric on S2 which possesses pre-
cisely two distinct prime closed geodesics. Based on this result, D. V. Anosov in
his ICM report of 1974 proposed the following question: ”For the n-dimensional
sphere Sn, Katok’s example gives an irreversible Finsler metric, arbitrarily near to
the ’standard’ metric (to the metric of constant curvature) which has 2[n/2] closed
geodesics. This number coincides with the lower bound which one naturally expects
for irreversible Finsler metrics on Sn and which can be proved for metrics suffi-
ciently near the ’standard’ metric”. Here we denote by [a] = max{k ∈ Z | k ≤ a}
for any a ∈ R. Note that the existence of one closed geodesic on any Finsler
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2-sphere follows from the proof of the classical theorem of Lyusternik-Fet in 1951.
We are only aware of a few results on the existence of at least 2 closed geodesics
on Finsler 2-spheres under certain non-degeneracy conditions.

In a recent paper we proved the following theorem which confirmed Anosov’s
conjecture for all Finsler 2-spheres.

Theorem 1 (V. Bangert and Y. Long). For every Finsler metric F on the 2-sphere
S2, there exist at least two distinct prime closed geodesics.

Our proof depends on the following four main ingredients: (1) the precise index
iteration formulae of Y. Long established in 2000, (2) Morse inequality, (3) two
theorems of N. Hingston proved in 1993 and 1997, and (4) a new exact sequence
method.

† Y. Long was partially supported by the 973 Program of MOST, NSFC, Yangzi River Pro-

fessorship, MCME, SRFDP of MOE of China, S. S. Chern Foundation, LPMC, and Nankai

University.
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Log-Riemann Surfaces

Ricardo Perez-Marco

We exposed our joint project with Kingshook Biswas on building an algebraic
theory for transalgebraic curves. Log-Riemann surfaces correspond to Riemann’s
point of view of Riemann surfaces, that is with canonical charts. These canonical
charts allow to write formulas (for uniformization, transabelian integrals, etc.) and
allow to make the link of the geometry with the world of special functions.

We defined Caratheodory convergence and the associated Caratheodory theo-
rem. As a corollary we proved Euler’s formula

ez = lim
n→+∞

(
1 +

z

n

)n

=
(
1 +

z

∞
)+∞

(apparently nobody understood why that was a geometric proof of the formula ...
but this was due to the esotheric exposition of the author).

Fiberwise volume growth via Lagrangian intersections

Felix Schlenk

(joint work with Urs Frauenfelder and Leonardo Macarini)

1. Topological entropy and volume growth. The topological entropy htop(ϕ)
of a compactly supported C1-diffeomorphism ϕ of a smooth manifold X is a basic
numerical invariant measuring the orbit structure complexity of ϕ. There are
various ways of defining htop(ϕ), see [5]. If ϕ is C∞-smooth, a geometric way
was found by Yomdin and Newhouse in their seminal works [11] and [7]: Fix a
Riemannian metric g on X . For j ∈ {1, . . . ,dimX} denote by Σj the set of smooth
compact (not necessarily closed) j-dimensional submanifolds of X , and by µg(σ)
the volume of σ ∈ Σj computed with respect to the measure on σ induced by g.
The j’th volume growth of ϕ is defined as

vj(ϕ) = sup
σ∈Σj

lim inf
m→∞

1

m
logµg (ϕm(σ)) ,

and the volume growth of ϕ is defined as v(ϕ) = max1≤j≤dim X vj(ϕ). Newhouse
proved in [7] that htop(ϕ) ≤ v(ϕ), and Yomdin proved in [11] that htop(ϕ) ≥ v(ϕ)
provided that ϕ is C∞-smooth, so that

(1) htop(ϕ) = v(ϕ) if ϕ is C∞-smooth.

The topological entropy measures the exponential growth rate of the orbit com-
plexity of a diffeomorphism. It therefore vanishes for many interesting dynamical
systems. Following [6, 4] we thus also consider the j’th slow volume growth

sj(ϕ) = sup
σ∈Σj

lim inf
m→∞

1

logm
logµg (ϕm(σ))

and the slow volume growth s(ϕ) = max1≤j≤dim X sj(ϕ). It measures the polyno-
mial volume growth of the iterates of the most distorted smooth j-dimensional
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family of initial data. Note that vj(ϕ), v(ϕ), sj(ϕ), s(ϕ) do not depend on the
choice of g, and that vdim X(ϕ) = sdim X(ϕ) = 0.

The aim of our work is to give uniform lower estimates of localized versions of
v(ϕ) and s(ϕ) for certain symplectomorphisms of cotangent bundles. We consider
a smooth closed d-dimensional Riemannian manifold (M, g) and the cotangent
bundle T ∗M over M endowed with the induced Riemannian metric g∗ and the

standard symplectic form ω =
∑d

j=1 dpj ∧ dqj . We abbreviate

D(r) = {(q, p) ∈ T ∗M | |p| ≤ r} and Dq(r) = T ∗
q M ∩D(r).

Let ϕ be a C1-smooth symplectomorphism of (T ∗M,ω) which preserves D(r). If
ϕ is C∞-smooth, (1) says that the maximal orbit complexity of ϕ|D(r) is already
contained in the orbit of a single submanifold of D(r). Usually, lower estimates
of the topological entropy do not give any information on the dimension or the
location of such a submanifold. We consider for ϕ as above the uniform fiberwise
volume growth

vfibre(ϕ; r) = inf
q∈M

lim inf
m→∞

1

m
logµg∗

(
ϕm (Dq(r))

)

and the uniform slow fiberwise volume growth

sfibre(ϕ; r) = inf
q∈M

lim inf
m→∞

1

logm
logµg∗

(
ϕm (Dq(r))

)
.

Writing v(ϕ; r) = v
(
ϕ|D(r)

)
and so on, we clearly have

v(ϕ; r) ≥ vd(ϕ; r) ≥ vfibre(ϕ; r),(2)

s(ϕ; r) ≥ sd(ϕ; r) ≥ sfibre(ϕ; r).(3)

We obtain lower estimates of vfibre(ϕ; r) and sfibre(ϕ; r) in terms of the growth of
certain homotopy-type invariants of M . For the sake of brevity we assume from
now on that π1(M) is finite.

2. Rationally elliptic and hyperbolic manifolds. A closed connected man-
ifold M with finite fundamental group π1(M) is said to be rationally elliptic if
the total rational homotopy π∗(M)⊗Q is finite dimensional, and M is said to be
rationally hyperbolic if the integers

m∑

j=0

dimπj(M)⊗Q

grow exponentially. It is shown in [2, 3] that every closed manifold M with π1(M)
finite is either rationally elliptic or rationally hyperbolic. “Most” manifolds with
finite fundmamental group are rationally hyperbolic. We refer to [2, 3, 8] for more
information on rationally elliptic and hyperbolic manifolds.

3. Main result. Consider a closed Riemannian manifold (M, g) with π1(M)
finite, and let H : [0, 1]×T ∗M → R be a C2-smooth Hamiltonian function meeting
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the following assumption: There exists rH > 0 and a function f : [0,∞)→ R with
f ′(rH) 6= 0 such that

(4) H(t, q, p) = f (|p|) for |p| ≥ rH .
The flow ϕt

H of the time-dependent vector field XH given by ω (XHt
, ·) = −dHt (·)

is defined for all t ∈ [0, 1]. We abbreviate ϕH = ϕ1
H .

Theorem 1. Let (M, g) and H be as above. If M is rationally elliptic, then

(5) sfibre(ϕH ; rH) ≥ 1.

If M is rationally hyperbolic, then

(6) vfibre(ϕH ; rH) ≥ f ′(rH) rH C1

for some positive constant C1 depending only on (M, g).

Discussion 1. (i) There are rationally elliptic manifolds for which all the numbers
in (3) are 1, see Discussion 2 (i) below. The estimate (5) is thus sharp.

(ii) If H is C∞-smooth, then htop(ϕH ; rH) ≥ vfibre(ϕH ; rH) by Yomdin’s the-
orem and (2), so that (6) yields a positive lower bound for htop(ϕH ; rH). This
bound implies and is implied by the estimate

htop(g) ≥ C1(M, g)

for the topological entropy of the geodesic flow on the unit sphere bundle ∂D(1)
of a C∞-smooth Riemannian metric g on a rationally hyperbolic manifold, which
is due to Gromov and Paternain (see [8, Corollary 5.21]).

(iii) Theorem 1 extends well-known results from the study of geodesic flows, see
[8, Corollary 3.9 and Chapter 5]: These results imply Theorem 1 if there exists an
ǫ > 0 such that H = 1

2 |p|2 on D(rH) \D(rH − ǫ).
(iv) As the identity mapping illustrates, the assumption f ′(r) 6= 0 in (4) is

essential.

(v) Assume that all geodesics of (M, g) are closed. This is so, e.g., for the
canonical Riemannian structures on compact rank one symmetric spaces. In this
situation one can define a compactly supported twist-like symplectomorphism ϑ
on T ∗M , see [9, 10]. For this map one computes s

(
ϑ
)

= sfibre

(
ϑ
)

= 1, so that
Corollary 1 is sharp. The estimate (5) implies that sfibre(ϕ; r) ≥ 1 for each sym-
plectomorphism in the symplectic isotopy class of ϑ and r large enough. This
complets the main result of [4]. ♦

The proof of Theorem 1 is along the following lines. Using an idea from [4]
we first show that fiberwise volume growth is a consequence of the growth of
the dimension of certain Floer homology groups. Applying the isotopy invariance
of Floer homology and a recent result of Abbondandolo and Schwarz [1], these
homology groups are seen to be isomorphic to the homology of the space of based
loops in M not exceeding a certain length. Their dimension can be estimated from
below by results of Gromov and Serre.
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Tire track geometry and flotation problems

Serge Tabachnikov

There are three motivation for this work.
First, a bicycle leaves two tracks on the ground, the front wheel track Γ and the

rear one γ (smooth plane curves). The relation between them is that the positive
tangent segment of fixed length L (the length of the bicycle frame) at every point
of γ has its end-point on Γ; see [5]. Generically, given two tire tracks, one can
determine the direction of motion. The problem is to describe pairs of closed
convex curves Γ and γ such that the direction of motion cannot be determined.
An example is a pair of concentric circles of radii R and r with R2 = r2 +L2. Are
there other examples?

The second motivation comes from flotation theory. S. Ulam [6] asked whether
the round ball is the only solid of uniform density that floats in equilibrium in
all positions. This is an open problem, and one may ask about its 2-dimensional
analog (a uniform cylindrical log). Surprisingly, this problem is equivalent to
the previous one. This flotation problem has attracted substantial attention; see
[1, 2, 3, 8].

The third motivation comes from the theory of billiards. The dual (or outer)
billiard is a discrete-time dynamical system outside a smooth closed convex curve
γ: two points, x and y, are related by the dual billiard map if xy is tangent to γ
and the tangency point bisects the segment xy. Can it be that the dual billiard
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map has an invariant curve different from the circle such that all the segments xy
have the same length, say, 2L? This problem is equivalent to the previous two.
For inner billiards, an analogous problem was studied by Gutkin [4].

A closed convex plane curve Γ is called a bicycle curve if two points x and y
can move around Γ so that the lengths of the arc xy and of the chord xy remain
constant. The ratio ρ of the arc length xy to the perimeter length of Γ is called
the rotation number. The problem is whether circles are the only bicycle curves.
This talk is based on [7].

Let me describe some of the results. There is a functional space of bicycle curves
with ρ = 1/2. Consider a closed piece-wise smooth curve γ having a total rotation
of π and without inflection points; γ has an odd number of cusps. Place a segment
of length 2L so that it is tangent to γ in its mid-point and move it around γ. The
end-points of the segment will trace a closed curve, and for L sufficiently large,
this is a bicycle curve with rotation number 1/2.

There is a number of necessary conditions a bicycle curve must satisfy. Assume
that the total perimeter length is 2π. Then every arc of length 2πρ must contain
a curvature extremum (for ρ arbitrarily small this implies that Γ is a circle). The
total number of curvature extrema is not less than 6. If ρ = 1/3 or 1/4 then Γ is
a circle.

A bicycle curve Γ is uniquely characterized by the angle α(x) made by the
segments xy with Γ (the two angles are equal; x is an arc-length parameter on Γ).
This function satisfies the equation

sinα(x+ πρ)− sinα(x − πρ) = L(α′(x+ πρ) + α′(x − πρ)),

and the study of this equation is an interesting problem on its own right.
Consider infinitesimal deformations of a circle as a bicycle curve with rotation

number ρ. One has a mode-locking phenomenon: such a (non-trivial) deformation
exists if and only if n tan(πρ) = tan(nπρ) for some integer n ≥ 2. This equation
has no solutions for rational ρ.

A discrete version of a bicycle curve is called a bicycle (n, k)-gon: this is a
convex equilateral n-gon whose k-diagonals have equal lengths. The problem again
is whether regular n-gons are the only examples.

In some situations, this is indeed the case: bicycle (n, 2), (2n+ 1, 3), (2n+ 1, n)
and (3n, n)-gons are regular. On the other hand, for even n and odd k, there exist
1-parameter families of (non-regular) bicycle (n, k)-gons.

The problem of infinitesimal deformations of regular n-gons as bicycle (n, k)-
gons has the following solution: such a non-trivial deformation exists if and only
if

tan
(
kr
π

n

)
tan

(π
n

)
= tan

(
k
π

n

)
tan

(
r
π

n

)

for some 2 ≤ r ≤ n− 2.
This equation is interesting to study on its own right. If n is even and k is

odd, one may set r = n/2, and this corresponds to the deformations mentioned
above. There are other solutions. For example, if n = 2(k + r) and n divides
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(k+1)(r+1), then (n, k, r) is a solution (discovered by B. Csikos and communicated
by R. Connelly). Do these solutions correspond to actual deformations?
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Normal forms and the Nonlinear Schrödinger approximation to water
waves

C. Eugene Wayne

(joint work with G. Schneider)

The study of waves on the surface of an inviscid fluid undergoing irrotational
motion has a very long history. In particular, the study of nonlinear effects on
periodic wave trains dates back to the work of Stokes in the 1840’s [1]. However, the
partial differential equations describing this system are so complicated that their
solutions are understood only in very special circumstances. The complication
of the underlying equations, coupled with the importance of wave phenomena
in applications lead to the development of a host of approximate equations that
model the motion of such waves. Probably the most famous of the equations is the
Kortewg-de Vries (KdV) equation which models the motion of small amplitude,
long-wavelength waves. These model equations were typically derived by a formal
asymptotic analysis and despite the ubiquity and importance of these equations
for a great while there were few attempts to mathematically analyze how good
an approximation they actually provided. A major step in their justification was
taken by W. Craig [2] who showed that solutions of the water wave problem for
certain classes of initial data could be well approximated by the Korteweg-de Vries
equation or the Boussinesq equation.

In this talk I described a part of an on-going research program with Guido
Schneider to give a mathematical justification for the approximating equations of
water waves in a variety of different physical settings. In an earlier work [3] we
showed that general long wavelength, small amplitude initial data for the water
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wave problem can be described by the solutions of a pair of uncoupled KdV equa-
tions, one describing the left moving part of the solution and the other describing
the right moving part.

In the present work [4] we are investigating the approximation of slowly varying
periodic wave trains. In 1968, Zakharov argued that if one considered the modu-
lation of a small amplitude wave train with wave number k0 and frequency ω(k0),
the surface elevation, η, should be approximated by

η(x, t) = ǫA(ǫ[x+ cgt], ǫ
2t)ei[k0x+ω(k0)t] + complex conjugate

where the amplitude function A(X,T ) is a solution of the nonlinear Schrödinger
equation (NLS)

∂TA = iν1∂
2
XA+ iν2A|A|2 .

The goal of our present research is to show that the Zakharov approximation does
give an accurate approximation to the water wave problem over the very long time
scale of O(ǫ−2) which the formal calculation indicates is appropriate.

In this talk I focused on one particular aspect of this approximation problem,
the construction of a normal form for the partial differential equation that describes
how the difference between the true solution and the NLS approximation evolves.

Denotes the true solution of the water wave problem by v(x, t) and the NLS
approximation by ǫψNLS. We formally write the water wave problem as

∂tv = Λv +B(v, v) + . . .

In our representation of the water wave problem v is a vector valued function with
three components, Λ is a diagonal operator whose eigenvalues are given in the
Fourier transform representation by 0, −ω(k) and ω(k), where

ω(k) = i sgn(k)
√
k tanh(k) .

If we now write the true solution as the sum of approximation ǫψNLS given by
the NLS equation, plus a correction ǫβR, i.e., if we write v = ǫψNLS + ǫβR, with
β ≥ 2, then the “correction” term R satisfies the equation

∂tR = ΛR+ ǫ(B(ψNLS , R)) + ǫβB(R,R) + ǫ−βRes(ǫNLS) .

(For simplicity we have assumed that the bilinear term B is symmetric in its
arguments.) The “residue” ǫ−βRes(ǫNLS) describes the amount by which the
formal approximation fails to satisfy the original equation at any given instant of
time, and by modifying the original approximation by terms of O(ǫ2) or higher,
one can make this term arbitrarily small without changing the fact that the leading
order approximation is given by the solution of the NLS equation. The nonlinear
term can be controlled by the use of Gronwall’s inequality. From the explicit
form of the operator Λ that appears in the water wave problem we know that it
generates a uniformly bounded semi-group. Thus, if it were not for the presence of
the terms ǫB(ψNLS , R) in the equation for R it would be straightforward to show
that solutions of this equation remained of order one for the long times (O(ǫ−2))
of interest in this problem and thus that the true solution v is given by the NLS
approximation plus higher order corrections.
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Our goal is to remove these terms by means of a normal form transformation.
In the water wave problem the Fourier transform of the bilinear terms can all be
written as integrals of the form

B̂(ψNLS , R)(k) =

∫
b̂(k, k − ℓ, ℓ)ψ̂NLS(k − ℓ)R(ℓ)dℓ ,

and thus we look for a normal form transformation of the formR = w+ǫM(ψNLSw),
where

M̂(ψNLS , R)(k) =

∫
m̂(k, k − ℓ, ℓ)ψ̂NLS(k − ℓ)R(ℓ)dℓ .

If we now use the equation for ∂tR to derive the evolution equation for w, we find
that all the terms of O(ǫ) vanish if we choose the kernel function m̂ to satisfy

m̂(k, k − ℓ, ℓ) =
2b(k, k − ℓ, ℓ)

i(ω(k)− ω(k − ℓ)− ω(ℓ))
.

From an analytic point of view the difficulty now arises in determining whether
or not the denominator of this expression vanishes, given the form of ω(k) that
occurs in the water wave problem. At first sight it appears that since k and ℓ can
range over the entire real line there will inevitably be zeros in the denominator,
however, by taking advantage of special features of the problem, such as the exact

formulas for the numerator b̂ (which can cancel zeros in the denominator if it

happens to vanish for the same values of k and ℓ) and by using the fact that ψ̂NLS

is strongly localized in Fourier space, which further restricts the values of k and
ℓ that one must consider, we have shown that one generates a well defined and
bounded normal form transformation on certain spaces of analytic functions.

One must now show that one can solve the resulting partial differential equations
for the transformed variables w in these function spaces over the long time scales
of relevance for this problem but we believe that can also be done and will yield
a proof of the validity of Zakharov’s approximation of such modulated, periodic
wave trains by the solution of the nonlinear Schrodinger equation. This in turn
implies that all the phenomena known to occur in the NLS equation can also be
seen, at least approximately, in the dynamics of water waves.
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Noncontractible periodic orbits in cotangent bundles

Joa Weber

We report on results obtained in [6]. LetM be a closed connected smooth manifold
of finite dimension.

Its cotangent bundle T ∗M carries the canonical symplectic form Ω = −dθ,
where θ denotes the Liouville form. A function H ∈ C∞(S1× T ∗M,R) is called a
Hamiltonian. Throughout S1 is identified with R/Z and we think ofH as a smooth
function on R×T ∗M , (t, q, p) 7→ H(t, q, p) =: Ht(q, p), satisfying Ht+1 = Ht. The
Hamiltonian vector field XHt

is determined by the identity dHt(·) = Ω(XHt
, ·).

Our main object of interest is the set of 1-periodic orbits

P(H) := {z ∈ C∞(S1, T ∗M) | ż(t) = XHt
(z(t)), ∀t ∈ S1}.

It coincides with the set of critical points of the symplectic action functional

AH(x, y) =
∫ 1

0
〈y(t), ẋ(t)〉 − H(t, x(t), y(t)) dt. Here x is a smooth loop in M

and t 7→ y(t) ∈ T ∗
x(t)M depends smoothly on t ∈ S1.

Let us choose, in addition, a Riemannian metric on M and denote by DT ∗M
the open unit disk cotangent bundle. Given a homotopy class α of free loops in
M , let ℓα be the smallest length of periodic geodesics representing α.

Theorem 1. Every compactly supported H ∈ C∞(S1×DT ∗M,R) which satisfies

sup
S1×M

H =: −c ≤ −ℓα

admits a 1-periodic orbit z whose projection to M represents α and AH(z) ≥ c.
In comparison to the contractible case the search for noncontractible periodic

orbits has a short history. First steps have been taken by Gatien-Lalonde [3] and
by Biran-Polterovich-Salamon [2] which both impose rather strong conditions on
the Riemannian manifold. For instance, Theorem 1 is proved in [2] in case that
M is either the euclidean torus Tn = Rn/Zn or of negative sectional curvature.

Theorem 1 holds with S1 replaced by the interval [0, 1]. In the noncontractible
case the inequality in Theorem 1 is sharp. The zero section OM = M in the
inequality cannot be replaced by an arbitrary smooth section. (See [6].)

Idea of proof. It suffices to show nontriviality of action filtered Floer homology

HF(c,∞)
∗ (H ;α), because its chain groups are generated by P(c,∞)(H ;α), the set of

1-periodic orbits of action strictly larger than c whose projections to M represent
α. Here we need to assume that c is not element of the action spectrum S(H ;α) :=
AH(P(−∞,∞)(H ;α)). A limit argument takes care of the other case. Throughout
all homologies will be with Z2-coefficients.

A standard method to prove nontriviality of Floer homology is to prepare a
Hamiltonian sandwich: construct functions f ≤ H ≤ h whose Floer homology is
known to be nontrivial and such that the continuation homomorphism

σhf : HF(c,∞)
∗ (f ;α)→ HF(c,∞)

∗ (h;α),
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Figure 1. Idea of proof of Theorem 1

which is associated to a homotopy Fs from f to h satisfying the monotonicity
condition ∂sFs ≥ 0, is nonzero. These so called monotone homomorphisms pre-
serve action windows, are independent of the choice of the monotone homotopy
and satisfy σhf = σhHσHf . This implies nontriviality. For later use let us call a
homotopy Fs action-regular if the boundary c of the action window is – throughout
the homotopy – a regular value of AFs

(restricted to the appropriate component
of the free loop space).

Since f and h cannot take care of all possible Hamiltonians H at once, we
construct sequences fk and hδ as indicated in Figure 1. Calculation of their
Floer homologies relies on the fact that continuation homomorphisms associated
to action-regular homotopies are isomorphisms. The main point is then to con-
struct action-regular homotopies from fk and hδ, respectively, to convex radial
Hamiltonians (smooth symmetric convex functions of |p|). The reason is that we
can extend the main result of [4] (see also [5] and [1]), namely

HF(−∞,a)
∗ (1

2 |p|2;α) ≃ H∗(La
αM),

to general convex radial Hamiltonians. Here the right hand side denotes singular
homology of a sublevel set of the free loop space component LαM with respect to

the classical action S0(x) = 1
2

∫ 1

0
|ẋ(t)|2 dt.

Convenient tools for book keeping all these Floer homologies simultaneously
are symplectic homology SH←− of DT ∗M and relative symplectic homology SH−→ of

(DT ∗M,M), respectively. The result of our calculation is presented by the com-
mutative diagram in Figure 1. Here ι denotes the natural inclusion of a sublevel
set and Λα is the set of lengths of all periodic geodesics representing α. The mono-
tone homomorphisms descend to a homomorphism T and a ∈ (ℓα, c] \ Λα implies

T 6= 0. Hence HF(a,∞)
∗ (H ;α) 6= 0 for every element a of the open and dense subset

(ℓα, c] \ (Λα ∪ S(H ;α)) of (ℓα, c]. �

A consequence of Theorem 1 is that the relative Biran-Polterovich-Salamon
capacity cBPS(DT ∗M,M ;α) equals ℓα. In the terminology of [2] this means that
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every α 6= 0 is symplectically essential. Therefore we obtain the following two
multiplicity results (both are proved in [2] for symplectically essential α).

Theorem 2. Let H : T ∗M → R be a smooth Hamiltonian which is proper and
bounded from below. Suppose that the sublevel set {H < c} contains M . Then for
every α 6= 0 there exists a dense subset Sα ⊂ (c,∞) such that the following is true.
For every s ∈ Sα, the level set {H = s} contains a periodic orbit z = (x, y) of H

with [x] = α and
∫ 1

0
〈y(t), ẋ(t)〉dt > 0.

Note that the period of the orbit in the previous theorem is not specified.
Moreover, the theorem is not true in case α = 0 as the example of the euclidean
torus and the Hamiltonian H(x, y) = 1

2 |y|2 shows.
The following corollary of Theorem 2 is related to Weinstein’s conjecture: given

a symplectic manifold (N,ω) and any compact hypersurface Q ⊂ N of contact
type, then the characteristic foliation of Q has a closed leaf.

Recall that Q is of contact type if there exists a smooth vector field Z with
LZω = ω, defined on a neighbourhood U of Q and pointing outward along Q.
The characteristic line bundle is given by LQ := ker (ωcan |TQ). The associated
foliation is called characteristic foliation and its leaves characteristics. The Reeb
vector field is a nonvanishing section of LQ inducing its canonical orientation,
thereby orienting the characteristics.

Theorem 3. Let M ⊂ W ⊂ T ∗M be an open set with compact closure and
smooth boundary Q = ∂W of contact type. Let the characteristic line bundle LQ

be equipped with its canonical orientation. Then for every α 6= 0 the characteristic
foliation of Q has a closed leaf z ⊂ Q with j#[z] = α, where j : Q →֒ T ∗M → M
is the composition of inclusion and projection.

We refer to [6] for references concerning the history of Theorem 3.
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2003), math.SG/0304383. To appear in Geom. Funct. Anal.

[5] C. Viterbo, Functors and computations in Floer homology with applications, Part II,
Preprint (1996, revised 2003).

[6] J. Weber, Noncontractible periodic orbits in cotangent bundles and Floer homology, Preprint
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Holomorphic foliations and 3-dimensional Reeb dynamics

Chris Wendl

Many interesting results in the dynamics of Reeb vector fields on contact 3-mani-
folds arise from the following construction: Consider, for some 3-manifold M with
contact form λ, a 2-dimensional foliation of R×M such that every leaf is the image
of some embedded pseudoholomorphic curve of finite energy, and the foliation is
invariant under the natural R-action on R ×M . Such “finite energy foliations”
have been constructed for generic contact forms on the tight 3-sphere by Hofer,
Wysocki and Zehnder [2]. Due to the intimate connection between holomorphic
curves and Reeb orbits, it follows for example that generic Reeb vector fields in this
setting admit exactly either two or infinitely many periodic orbits. Holomorphic
foliations derived from Giroux’s open book decompositions of contact 3-manifolds
have also been used by Abbas, Cieliebak and Hofer [1] to prove the Weinstein
conjecture for planar contact structures.

We discuss a program for extending these existence results to a general the-
ory in which embedded holomorphic curves of low Fredholm index in 3-manifolds
are analyzed via the foliations that they generate. These constructions exhibit a
wealth of powerful stability and compactness phenomena, which can be summa-
rized by the motto, “if holomorphic curves are everywhere, it’s hard to kill them.”
Such phenomena have led Hofer to suggest using existing foliations to create new
ones via a homotopy and stretching argument, which leads to the notion of a
concordance: a holomorphic foliation of a cylindrical symplectic cobordism that
interpolates between R-invariant foliations for two distinct contact forms. In prin-
ciple, this can be used to define an equivalence relation for holomorphic foliations,
and it is then interesting to ask: given M and a contact structure ξ, what is the
set of all concordance classes of foliations on (M, ξ)? One can regard this problem
as a distinctly 3-dimensional version of Symplectic Field Theory, with Floer-type
algebras used to distinguish concordance classes of foliations; a rough outline of
this theory is given in [3], and the analytical foundations are currently being devel-
oped [4]. As an application, we conjecture that there is only one concordance class
of foliations on the tight 3-sphere, but more than one for a certain overtwisted
contact structure on S1 × S2. The answers to such questions seem to be related
to the topology of the underlying manifold, and may also yield insights into Reeb
dynamics.

As a step toward the development of this program, we prove the existence of
finite energy foliations for every overtwisted contact structure. This is another
example of the motto mentioned above: in this case, one starts with a foliation on
S3, cuts out certain pieces to form a foliation with totally real boundary condi-
tions, then performs surgery on the region that has been removed. The foliation
with boundary converges to a new foliation under a twisting process, and com-
pactness in this setting arises from a uniquely 3-dimensional argument, using the
topological constraints imposed by the existing foliation and its associated Reeb
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dynamics. This result is also one step in a program suggested by Hofer for prov-
ing the Weinstein conjecture in dimension three. Details of the argument and an
outline of the wider program may be found in [3].
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Nonequilibrium steady-states for Hamiltonian and stochastic systems

Lai-Sang Young

(joint work with Jean-Pierre Eckmann)

The material of this talk is based on [1].
As models of generalized conduction or transport in one dimension, we consider

chains of dynamical systems in which transfer of energy is mediated by tracer
particles. Coupling the two ends of the chain to unequal tracer-heat reservoirs
and allowing the system to settle down to a nonequilibrium steady state, we seek
to derive macroscopic conduction laws (such as the distribution of energy, heat
flux, and tracer flux) from the microscopic dynamics.

We introduce a class of models that can be seen as an abstraction of certain
types of mechanical models. These models are simple enough to be amenable to
analysis, and complex enough to have fairly rich dynamics. They have in common
the following basic set of characteristics: Each model is made up of an array of
identical cells that are linearly ordered. Energy is carried by two types of agents:
storage receptacles (called “tanks”) that are fixed in place, and tracer particles
that move about. Direct energy exchange is permitted only between tracers and
tanks. The two ends of the chain are coupled to infinite reservoirs that emit tracer
particles at characteristic rates and characteristic temperatures; they also absorb
those tracers that reach them. To allow for a broad range of examples, we do not
specify the rules of interaction between tracers and tanks. All the rules considered
in this paper have a Hamiltonian character, involving the kinetic energy of tracers.
Formally they may be stochastic or purely dynamical, resulting in what we will
refer to as stochastic and Hamiltonian models.

Via the models in this class, we seek to clarify the relation among several
aspects of conduction, including the role of conservation laws, their relation to
the dynamics within individual cells, and the notion of “local temperature”. We
propose a simple recipe for deducing various macroscopic profiles from local rules.
Our recipe is generic; it does not depend on specific characteristics of the system.
When the local rules are sufficiently simple, it produces explicit formulas that
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depend on exactly 4 parameters: the temperatures and rates of tracer injection at
the left and right ends of the chain.

For demonstration purposes, we carry out this proposed program for two ex-
amples, one stochastic and the other Hamiltonian. Our main stochastic example,
dubbed the “random-halves model”, is particularly simple: A clock rings with
rate proportional to

√
x where x is the (kinetic) energy of the tracer; at the clock,

energy exchange between tracer and tank takes place; and the rule of exchange
consists simply of pooling the two energies together and randomly dividing – in an
unbiased way – the total energy into two parts. Our main Hamiltonian example
is a variant of the model studied in [2]. Here the role of the “tank” is played
by a rotating disk nailed down at its center, and stored energy is ω2 where ω is
the angular velocity of the disk. Explicit formulas for the profiles in question are
correctly predicted in all examples.

In terms of methodology, this paper has a theory part and a simulations part.
The theory part is rigorous in the sense that all points that are not proven are
isolated and stated explicitly as “assumptions” (see the next paragraph). It also
serves to elucidate the relation between various concepts regardless of the extent to
which the assumed properties hold. Simulations are used to verify these properties
for the models considered.

Our main assumption is in the direction of local thermodynamic equilibrium, a
phenomenon widely accepted in physics. For our stochastic models, a proof of this
property seems within reach though technically involved; no known techniques
are available for Hamiltonian systems. Two extra assumptions are needed to
make the Hamiltonian study viable. The first is ergodicity; it is easy to “improve
ergodicity” via model design, harder to mathematically eliminate the possibility
of all (small) invariant regions. The second is the near perfect mixing within cells.
Our prediction of energy profiles etc. are for the idealized limit when such mixing
is perfect, i.e. before a tracer exits a site the loss of memory is complete.

Under these assumptions, explicit formulas for stored energy and tracer density
profiles along the chain are predicted, as are energy and tracers (mass) trans-
ported per unit time. Agreement between results of simulations and predictions
is excellent.
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