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Introduction by the Organisers

Topological and variational methods have been at the core of nonlinear analysis
for a long time and are still experiencing major new developments. They have had
enormous new applications in the study of boundary value problems for nonlin-
ear differential equations, in analyzing complicated (possibly infinite-dimensional)
dynamics, phase transition and pattern formation, to name a few.

The workshop was mainly dedicated to variational methods for nonlinear elliptic
and parabolic differential equations and systems with a special emphasis on

• Morse theory, Lusternik-Schnirelmann theory
• nonlinear Schrödinger equations
• singularly perturbed equations and their stable solutions
• multi-peak type solutions, both positive and sign-changing
• symmetry and nodal properties of solutions to elliptic boundary value

problems
• long-time dynamics for semilinear parabolic equations

The workshop was attended by 47 mathematicians from 17 countries (from the
Americas, Asia, Australia, Europe). During the five days 27 talks were delivered,
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both from leading researchers as well as young mathematicians. There was plenty
of time for discussions and cooperative work in small groups outside the scheduled
lecture time. This led to a fruitful and intensive scientific exchange between the
participants. Many open problems were discussed and many collaborative projects
were started or continued during this week. Many of the abstracts below list some
open problems, thus guiding future research. We received a great deal of positive
feedback from the participants and are sure that this workshop will lead to further
collaboration between the participants.

It is our pleasure to thank the administration and staff of the MFO for their effi-
cient work and their hospitality which was essential for the stimulating atmosphere
during the workshop.
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Abstracts

Nonlinear Schrödinger Equations with Potentials Vanishing at Infinity

Antonio Ambrosetti

We discuss some recent results dealing with the existence of solutions of the fol-
lowing elliptic problem on Rn

(NLSε)

{
−ε2∆u + V (x)u = K(x)up,
u ∈W 1,2(Rn), u > 0,

In the sequel we will always assume that n ≥ 3.
We will focus on potentials V , K which decay to zero at infinity, referring for

results dealing with other cases to the forthcoming book [2] and the references
therein. Precisely we assume

(V) ∃ α, a1, a2 > 0 :
a1

1 + |x|α ≤ V (x) ≤ a2,

(K) ∃β, a3 > 0 : 0 < K(x) ≤ a3

1 + |x|β .

Our first result deals with the existence of solutions of (NLSε) for every ε > 0.
Set

σ = σn,α,β =

{
n+2
n−2 −

4β
α(n−2) , if 0 < β < α

1 otherwise.

Theorem 1. [1, Thm. 1] Let (V ) hold with 0 < α < 2, (K) hold with β > 0 and
suppose that σ < p < n+2

n−2 . Then for every ε > 0, (NLSε) has a solution which is
a ground-state, namely has minimal energy.

For the application to Quantum Mechanics, it is also interesting to study the
existence of solutions to (NLSε) for ε≪ 1, and their behavior as ε→ 0.

Theorem 2. [1, Thm. 3] Under the same hypotheses of Theorem 1, the ground
states concentrate at the global minimum of the auxiliary potential

Q(x) := [V (x)]θ [K(x)]−2/(p−1), θ =
p+ 1

p− 1
− n

2
.

Remark. If σ < p < n+2
n−2 then Q has indeed a global minimum.

Theorem 2 can be improved handling a broader class of potentials.

Theorem 3. [4] Let 1 < p < n+2
n−2 and suppose that V and K are smooth and

satisfy

(V1) ∃ a,A > 0, such that
a

1 + |x|2 ≤ V (x) ≤ A,

(V2) ∃ A1 > 0 : |V ′(x)| ≤ A1, ∀ x ∈ R
n.
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(K1) ∃ κ > 0 : 0 < K(x) ≤ κ, |K ′(x)| ≤ κ, ∀ x ∈ R
n.

Moreover, let x0 be an isolated stable stationary point of Q. Then for ε ≪ 1,
(NLSε) has a solution concentrating at x0.

We conclude this presentation with a result dealing with the case of radial
potentials. Consider the problem

(NLSε,r)

{ −ε2∆u+ V (|x|)u = up,

u ∈ W 1,2

rad
(Rn), u > 0,

and set

M(r) = rn−1V ℓ(r), ℓ =
p+ 1

p− 1
− 1

2
.

Theorem 4. [5] Let p > 1 and let V ≥ 0 be radial, smooth, with bounded V ′.
Suppose there exist r0 ≥ 0 and a1, a2 > 0 such that

a1

r2
≤ V (r) ≤ a2, ∀ r > r0.

Moreover, let r∗ > r0 be a strict maximum or minimum of M . Then for ε ≪ 1,
(NLSε,r) has a radial solution concentrating at the sphere of radius r∗.

This latter result improves a previous one [3] because V is allowed to be zero
for r < r0 and to decay to zero at infinity.
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On Some Weighted Hardy-Sobolev Inequality

Zhi-Qiang Wang

Consider a family of weighted Hardy-Sobolev type inequalities due to Caffarelli,
Kohn and Nirenberg (1984): There is S(a, b) > 0 such that for all u ∈ C∞

0 (RN ),
it holds

(1)

∫

RN

|x|−2a|∇u|2 dx ≥ S(a, b)

(∫

RN

|x|−bq|u|q dx
)2/q
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for N ≥ 3:

(2) −∞ < a <
N − 2

2
, 0 ≤ b− a ≤ 1, q =

2N

N − 2 + 2(b− a) .

These inequalities extend to D1,2
a (RN ) := C∞

0 (RN )
||·||

with respect to the norm

||u||2a =

∫

RN

|x|−2a|∇u|2dx,

and have the associated Lagrange equation

(3) −div(|x|−2a∇u) = |x|−bquq−1, x ∈ R
N

which is a prototype of more general anisotropic type nonlinear elliptic PDEs with
multiple singularities and degeneracies. The Lp (p > 1) version of the inequalities
are given by replacing each 2 with p in (1) and (2). The questions we are concerned
with include symmetry property of extremal functions (i.e., ground state solutions
of the PDEs) and Hardy-Sobolev inequalities with remainder terms.

• Symmetry and symmetry breaking of extremal functions. Due to the
work of Aubin (1976), Talenti (1976), Gidas-Ni-Nirenberg (1981), Lieb (1983),
Caffarelli-Gidas-Spruck (1989) and Chou-Chu (1993), for a ≥ 0, a ≤ b < a + 1,
all extremal functions of the inequalities are radially symmetric. Some recent
work have partially clarified the symmetry property of extremal functions for the
remaining parameter region. Horiuchi (1997) gives the existence of extremal func-
tions for a < b < a+ 1 and a = b ≥ 0, and nonexistence of extremal functions for
a = b < 0.

Theorem 1. (Catrina-Wang, 2000, 2001) There is a function h(a) defined for
a ≤ 0, satisfying h(0) = 0, a < h(a) < a + 1 for a < 0, and a + 1 − h(a) → 0
as −a → ∞, such that for (a, b) satisfying a < 0 and a < b < h(a), the extremal
functions for S(a, b) are non-radial.

The symmetry breaking of extremal functions was observed independently by
Willem (2003) for the case 0 < b − a << 1. The curve h(a) was sharpened by
Felli-Schneider (2003) to h(a) = 1 + a− N

2 (1− N−2−2a√
(N−2−2a)2+4(N−1)

).

Theorem 2. (Catrina-Wang, 2001) All positive solutions in D1,2
a (RN ) of (3) sat-

isfy, up to dilations, a modified inversion symmetry: |x|N−2−2au(x) = u(|x|−2x).

Theorem 3. (Catrina-Wang, 2001) Let c ∈ (0, 1) fixed. For sufficiently large −a,
the extremal function to S(a, a+ c) is unique up to dilations and rotations, and is
axially symmetric about a line through the origin.

Theorem 4. (Lin-Wang, 2004) For (a, b) satisfying a < 0 and a < b < h(a), any
extremal function u to S(a, b) is axially symmetric about a line through the origin.
Moreover, up to a rotation, u(x) only depends on the radius r and the angle θN

between the xN -axis and ~ox, and on each sphere {x ∈ RN | |x| = r}, u is strictly
decreasing as the angle θN increases.
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The symmetry property of the nonradial extremal functions were also studied
by Smets-Willem (2003) by using the polarization method.

The symmetry breaking property has been proved for the Lp-version (N >
p > 1) of the Caffarelli-Kohn-Nirenberg inequalities by Byeon-Wang (2002) and a
result similar to Theorem 1 still holds. This was also studied by Smets and Willem
(2003) by using a different method.

• Sharp versions of the improved Hardy inequalities. When restricted
to bounded domains, the right hand side of (1) can add additional terms, i.e.,
Hardy-Sobolev inequalities with remainder terms. The following is the improved
weighted Hardy inequality which gives the sharp version of the improved Hardy
inequality due to Brezis-Vazquez (1997) and Vazquez-Zuazua (2000), as well as
generalizes theirs to the weighted versions. These inequalities are useful tools for
elliptic and parabolic equations having singular potentials.

Theorem 5. (Wang-Willem, 2003) Let N ≥ 1, a < N−2
2 , and Ω ⊂⊂ BR(0) for

some R > 0. Then there exists C = C(a,Ω) > 0 such that for all u ∈ C∞
0 (Ω)

(4)

∫

Ω

|x|−2a|∇u|2dx−
(
N − 2− 2a

2

)2 ∫

Ω

|x|−2(a+1)u2dx

≥ C
∫

Ω

(
ln
R

|x|

)−2

|x|−2a|∇u|2dx.

When 0 ∈ Ω the inequality is sharp in the sense that
(
ln R

|x|

)−2

can not be replaced

by g(x) ln
(

R
|x|

)−2

with g satisfying |g(x)| → ∞ as |x| → 0.

Theorem 6. (Wang-Willem, 2003) Let N ≥ 1, a ≤ N−2
2 , and Ω ⊂ BR(0) or

Ω ⊂ RN \BR(0) for some R > 0. Then for all u ∈ C∞
0 (Ω)

(5)

∫

Ω

|x|−2a|∇u|2dx−
(
N − 2− 2a

2

)2 ∫

Ω

|x|−2(a+1)u2dx

≥ 1

4

∫

Ω

(
ln
R

|x|

)−2

|x|−2(a+1)u2dx.

When 0 ∈ Ω (Ω is an exterior domain, reps.) the inequality is sharp in the sense

that
(
ln R

|x|

)−2

can not be replaced by g(x) ln
(

R
|x|

)−2

with g satisfying |g(x)| → ∞
as |x| → 0 (as |x| → ∞, reps.). The best constant 1

4 is sharp.

• Further questions. We close up by proposing a few concrete open questions.
1.) The symmetry of extremal functions for parameters a ≤ 0, h(a) ≤ b < a+1.

The conjecture is that all extremal functions in this region are radially symmetric.
2.) For the Lp version, N > p > 1, when a = b < 0 it is not known whether

extremal functions exist. The conjecture is that a non-existence result holds.
3.) For the Lp (p > 1) case, it seems a sharp version of the improved Hardy

inequality like (4) is not known yet.



Topological and Variational Methods for Differential Equations 1609

References

[1] F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg Inequalities, Comptes Ren-
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A variational problem for the spatial segregation of reaction–diffusion
systems and related problems

Susanna Terracini

What follows is the extended abstract of the talk based on results published in the
following joint papers:

1. M. Conti, S. Terracini, G. Verzini, Nehari’s Problem and Competing Species

Systems, Ann. Inst. H. Poincaré, AN 19, 6 (2002) 871–888
2. M. Conti, S. Terracini, G. Verzini, An optimal partition problem related to

nonlinear eigenvalues, Journal of Funct. Anal. 198, 1 (2003) 160-196
3. M. Conti, S. Terracini, G. Verzini, A variational problem for the spatial segre-

gation of reaction–diffusion systems, Indiana Univ. Math. J., to appear
4. M. Conti, S. Terracini, G. Verzini, On a class of optimal partition problems

related to the Fuč́ık spectrum and to the monotonicity formulae, Calc. Var.
Partial Differential Equations 22 (2005), no. 1, 45–72s

5. M. Conti, S. Terracini, G. Verzini, Asymptotic estimates for the spatial segre-

gation of competitive systems, preprint

The minimization problem

Let Ω be a bounded open, regular, connected subset of RN (N ≥ 2) and let us
call segregated state a k–tuple U = (u1, . . . , uk) ∈ (H1(Ω))k where

ui(x) · uj(x) = 0 i 6= j, a.e. x ∈ Ω.

We define the internal energy of U as

J(U) =
∑

i=1,··· ,k

{∫

Ω

(
1

2
d 2

i (x) |∇ui(x)|2 − Fi(x, ui(x))

)
dx

}
,

Our first goal is to minimize J among a class of segregated states subject to some
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boundary and positivity conditions. We consider the following assumptions:

• On the boundary data φi’s: φi ∈ H1/2(∂Ω), φi ≥ 0, and

φi · φj = 0, ∀i 6= j, a.e.on∂Ω

• On the diffusions di’s and the fi’s: di ∈ W 2,∞(Ω), di > 0 on Ω
(A1) fi(x, s) is Lipschitz in s, uniformly in x,

fi(x, 0) ≡ 0

(A2) there exists bi ∈ L∞(Ω) such that both

|fi(x, s)| ≤ bi(x)s ∀x ∈ Ω s ≥ s̄ >> 1,
∫

Ω

(
d2

i (x)|∇w(x)|2 − bi(x)w2(x)
)
dx > 0 ∀w ∈ H1

0 (Ω).

The last assumption ensures the coercivity of the functional.

Surprisingly enough, the minimizer of J turns out to be unique in the globally
convex case:

Theorem 1. Assume moreover that

di ≡ dj , ∀i, j
∂2Fi

∂s2
(x, s) < 0, ∀x ∈ Ω

Then, for each fixed boundary data, there is an unique minimizer.

Now we seek the extremality conditions associated to the minimization problem.
Denote

ûi = ui −
∑

h 6=i

uh

and similarly

f̂(x, ûi) =
∑

j

fj(x, ûi)χsupp(uj) =






fi(x, ui) if x ∈ supp(ui)
−fj(x, uj) if x ∈ supp(uj),

j 6= i.

Theorem 2. Let U be a minimizer. Then, for every i, we have, in distributional
sense,

−∆ûi ≥ f̂(x, ûi)

The class S
Next we introduce a special functional class, which will be shown to contain

both the extremals of the minimization problem and the limits of reaction–diffusion
systems as the interspecific competition rate tends to infinity.

S =

{
(u1, · · · , uk) ∈ (H1(ω))h : ui ≥ 0, ui · uj = 0 if i 6= j

−∆ûi ≥ f̂ (x , ûi), ∀i = 1 , . . . , k

}
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Proposition 3. If m(x) = 2

lim
y→x

y∈supp(ui)

∇ui(y) = − lim
y→x

y∈supp(uj )

∇uj(y) .

We first consider the problem of regularity. To this aim, we define the following
subclass of S:

S∗M,h(ω) =





(u1, · · · , uh) ∈ (H1(ω))h :

ui ≥ 0,
ui · uj = 0 if i 6= j

−∆ui ≤ M ,
−∆ûi ≥ −M






Theorem 4. Let M > 0 and k be a fixed integer. Let U ∈ S∗M,k(Ω): then U is
Lipschitz continuous in the interior of Ω.

Suitable variants and extensions of the the monotonicity formula by Alt, Caf-
farelli and Friedman turn out to be the key point in this analysis.

A class of competition–diffusion systems

Consider a system of k competing densities:





−∆ui(x) = −κui(x)
∑

j 6=i

uj(x) + fi(x, ui) x ∈ Ω

ui(x) = φi(x) x ∈ ∂Ω
ui(x) > 0 x ∈ Ω

We are interested in the asymptotics as κ→∞.

Theorem 5. Let Uκ = (u1,κ, ..., uk,κ) be a solution of the system at fixed κ. Let
κ→∞: then, there exists U such that, for all i = 1, . . . , k:

(1) up to subsequences, ui,κ → ui strongly in H1

(2) if i 6= j then ui · uj = 0 a.e. in Ω

(3) −∆ûi ≥ f̂(x, ûi).

• The class S is the limiting class of the solutions of competition–diffusion
systems, as the interspecific competition rates tends to infinity

A perturbed monotonicity lemma

Letf be a smooth function f(r) : [0,∞) → (0,∞) such that f(r) = 1/rN−2

when r > 1 and ∆f(|x|) := 2m(|x|) is bounded and vanishes outside the ball of
radius 1. Now we are ready to prove

Lemma 6. Let N ≥ 2 and let (u1, . . . , uk) be a solution of the system such that
ui > 0 for all i. Let h ≤ k be any integer, let h′ < β(h,N) and define

Φ(r) =

h∏

i=1

1

rh′ Φi(r)
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where

Φi(r) =

∫

B(0,r)

[
f(|x|)

(
|∇ui(x)|2 + u2

i (x)
∑

1≤j≤k

j 6=i

aijuj(x)
)
−m(|x|)u2

i (x)
]
dx .

Then there exists r′ = r(h′) > 1 such that Φi > 0 and Φ is an increasing function
in [r′,∞).

As a consequence of the perturbed monotonicity formula we have a Liouville–
type result:

Theorem 7. Let k ≥ 2 and let U = (u1, . . . , uk) be a solution of




−∆ui(x) = −ui(x)

∑

j 6=i

aijuj(x) x ∈ RN

ui(x) ≥ 0 x ∈ RN

for every i. Let α ∈ (0, β(k,N)) such that

max
i=1,...,k

sup
x∈RN

|ui(x)|
1 + |x|α <∞.

Then, k − 1 components annihilate and the last is a nonnegative constant.

As a further consequence we can prove equi–hölderianity with respect to κ and
obtain asymptotic estimates for the both the two–density and the many–density
problems.
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Solution Set Splitting at Low Energy Levels in Nonlinear Schrödinger
Equations with Periodic and Symmetric Potentials

Nils Ackermann

Schrödinger Equations of the type

(1) −∆u(x) + V (x)u(x) = |u(x)|p−2u(x)

with p in the subcritical range (2, 2∗) are known to admit solutions u lying in
H1(RN ) if V ∈ L∞(RN ) satisfies ess inf V > 0 and V is 1-periodic in xi for
i = 1, 2, . . . , N [4]. The associated variational functional

J(u) :=
1

2

∫

RN

(|∇u(x)|2 + V (x)u(x)2) dx− 1

p

∫

RN

|u(x)|p dx

is bounded below on the set K of nonzero solutions of (1), which coincides with
the set of nonzero critical points of J .

Denote c0 := inf J(K) and

Kc := { u ∈ K | J(u) ≤ c }
for c in R. Note that the periodicity of V implies invariance of J under the action
⋆ of ZN on H1(RN ), defined by translation: (a⋆u)(x) := u(x−a) for a in ZN and
x in RN . Assuming that

(2) for some ε > 0 the set Kc0+ε/ZN is finite,

In 1991 Coti Zelati and Rabinowitz proved existence of solutions that are near
to sums of translates of a certain initial solution, where the translations must be
sufficiently large [2]. This class of solutions is commonly known as multibump
solutions.

The only example where (2) is proved to hold was given by Kabeya and Tanaka
[3]: They build a parameter dependent potential Vµ such that (2) is true for µ
large enough. No explicit estimate is given for this range.

If c ∈ R we say that the solution set splits at the level c if the following holds:

(Sc)
There is a compact subset K of Kc such that Kc = ZN ⋆ K and
K ∩ (ZN\{0}) ⋆K = ∅.

Note that (Sc1) implies (Sc2) if c2 ≤ c1. Our result in [1] states that two-bump
solutions with a sign change can be constructed if the solution set splits at the level
c0. In that paper we also gave two parameter dependent examples that satisfy (Sc)
for some c > c0. Again we could not estimate the range of admissible parameters.

In the work presented here we give an explicit condition on V that implies (Sc)
for some c > c0. Namely we prove:

Theorem 1. Suppose that V ∈ C2. Fix some ε > 0. There are positive constants
C1, C2 and C3 that depend only on ε, minV , maxV and p, and that can be
estimated explicitly, with the following property: Define g : R

+
0 → R

+
0 by

g(r) := C3

∫
Br(0) e−C1|x| dx

∫
RN\Br(0) e−C2|x| dx

.
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Also define for i ∈ { 1, 2, 3, . . . , N } and r ≥ 0

Γi := sup |∂2
i V |, γi(r) := min{−∂2

i V (x) | |xi| ≤ r }.
If for every i ∈ { 1, 2, 3, . . . , N }

• V is even in xi

• there is Ri > 0 such that

Γi ≤ γi(Ri)g(Ri) ,

then the solution set splits at the level 2c0 − ε.
We also present a simple way to construct examples that satisfy these assump-

tions.
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Uniqueness theorems in the calculus of variations by the method of
transformation groups

Wolfgang Reichel

A classical problem in the calculus of variations is to determine if a given functional
L : A→ R has at most one critical point in the class A of admissible elements. A
prototype functional is

L[u] =

∫

Ω

L(x, u,∇u).

In [2], [3] uniqueness results are given. Consider a one-parameter group {gǫ}ǫ∈R

of transformations gǫ : A → A with g0 = Id and gǫ+δ = gǫ ◦ gδ. The group is
called a variational symmetry if L[gǫu] = L[u] for all u ∈ A, ǫ ∈ R or equivalently
d
dǫL[gǫu]|ǫ=0 = 0 for all u ∈ A. Emmy Noether’s [1] famous result of 1918 says
that a variational symmetry leads to a conservation law.

As an obvious generalization one defines a variational subsymmetry as a one-
parameter group s.t. L[gǫu] ≤ L[u] for all ǫ ≥ 0 and all u ∈ A or equivalently
d
dǫL[gǫu]|ǫ=0 ≤ 0 for all u ∈ A. Simple examples are the negative gradients flow
or, if available, the parabolic flow with ǫ as time. For the purpose of uniqueness
theorems one sharpens this concept to a strict variational subsymmetry with respect
to u0 ∈ A, i.e., d

dǫL[gǫu]|ǫ=0 < 0 for all u ∈ A \ {u0}. This is the basis for showing
that u0 is the only (possible) critical point of the functional L.
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Specific examples of one parameter groups are transformation groups described
as follows. Consider a flow in Rn+1 given by

Ẋ = ξ(X,U), X(0) = x ∈ R
n, U̇ = φ(X,U), U(0) = u ∈ R

with a smooth vectorfield ξ and a smooth function φ. The solution at time ǫ ∈ R

is denoted by (χǫ(x, u), ψǫ(x, u)). If u : Ω → R is a given function then the
flow maps (x, u(x)) onto (x̃, ũ) = (χǫ(x, u(x)), ψǫ(x, u(x)). In order to find the
functional between (x̃, ũ) one needs to invert the expression x̃ = χǫ(Id×u)(x) as
shown

x
χǫ(Id×u)−−−−−−→ x̃, x

[χǫ(Id×u)]−1

←−−−−−−−−− x̃.
This leads to the following formula for the transformed function gǫu : Ωǫ → R

(1) gǫu(x̃) = ũ(x̃) = ψǫ(Id×u)[χǫ(Id×u)]−1(x̃), x̃ ∈ Ωǫ,

where Ωǫ is the flow-deformation of Ω at time ǫ. If u ∈ Lip(Ω) then gǫu ∈ Lip(Ωǫ).
From now on we will work in the space A = Lip0(Ω) of Lipschitz-functions with
zero-boundary data.

Definition 1. Let ξ, φ be the infinitesimal generators of the transformation group
{gǫ}ǫ∈R.

(i) u0 ∈ Lip0(Ω) is called a fixed point of the group {gǫ}ǫ∈R if gǫu0 = u0 on
their common domain of definition. This is equivalent to φ(x, u0(x)) −
∇u0(x) · ξ(x, u0(x)) = 0 in Ω.

(ii) The group {gǫ}ǫ∈R is called domain contracting if Ωǫ ⊂ Ω, Ω 6= Ωǫ for
ǫ > 0. This is equivalent to ξ(x, 0) · ν(x) ≤ 0, 6≡ 0 for all x ∈ ∂Ω.

In the presence of a fixed point u0 the group-action of a domain contracting
(half)-group {gǫ}ǫ≥0 can be extended to map Lip0(Ω) into itself by setting gǫu(x) =

u0(x) if x ∈ Ω \ Ωǫ and ǫ > 0.

Theorem 2 (cf. [2]). Let L[u] =
∫
Ω L(x, u,∇u) for u ∈ A = Lip0(Ω). Sup-

pose {gǫ}ǫ≥0 is a transformation group with fixed point u0 which is moreover do-
main contracting and a strict variational subsymmetry w.r.t. u0. Let furthermore
L(x, u, p) as a function (x, u, p) ∈ Ω × R × Rn → R be convex in the gradient-

variable p. Then u0 is the only strong C1
0 (Ω) ∩W 2,1

0 (Ω)-critical point of L, where
strong means that the Euler-Lagrange equation holds pointwise a.e. in Ω.

The proof is based on the rate-of-change formula for strong solutions of the
Euler-Lagrange equation. This identity is sometimes called Noether’s identity or
Pohožaev’s identity:

d

dǫ
L[gǫu]

∣∣
ǫ=0

=

∫

Ω

ξ · ∇xL+ φ∂uL+ (∇φ−Dξ∗∇u) · ∇pL+ LDiv ξ dx

=

∫

Ω

div
(
ξL+ (φ − ξ · ∇u)∇pL

)
dx =

∮

∂Ω

(ξ · ν︸︷︷︸
≤0

) (L −∇pL · (∇u−∇u0))︸ ︷︷ ︸
≤0

ds
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Example A: Let Ω, ∂Ω 6= ∅ be a bounded open subset of an n-dimensional
Riemannian manifold (M, g) without boundary. Consider the problem

(2) −∆u = λu + |u|p−1u in Ω, u = 0 on ∂Ω

Theorem 3 (cf. [2]). Suppose there exists a conformal vectorfield ξ on Ω, i.e.,
a vector-field such that Dξ + Dξ∗ = mult. Id |TxM and suppose div ξ ≤ 0, 6≡ 0.
Moreover, let Ω be conformally contractible, i.e., pos. invariant under the flow
Ẋ = ξ(X). If p ≥ n+2

n−2 and λ ≤ 1
p−1

∆ div ξ
div ξ then u ≡ 0 is the only strong C1

0 (Ω) ∩
W 2,1(Ω)-solution of (2).

Remarks. (a) In Rn the class of conformally contractible domains is larger than
the class of star-shaped domains. Examples can be found in [2], [3].

(b) If the scalar curvature R of M is constant then the quantity ∆ div ξ
div ξ = R/(1−n).

The uniqueness results obtained in this way for the sample manifolds Rn, §n,Hn

are sharp for p = n+2
n−2 and n ≥ 4.

(c) The condition of ξ being conformal can be relaxed to Dξ+Dξ∗ ≥ −2M(x) Id,

where M(x) is some scalar function. Uniqueness holds for p ≥ − div ξ+2M(x)
− div ξ−2M(x) pro-

vided −2M(x) ≥ div ξ. For Euclidean Rn this idea is due to Schaaf, [4].

Example B: The following example is similar to Example A. Consider for m ∈ N

(3) −∆mu = λu + |u|p−1u in Ω, u = ∇u = . . . = Dm−1u = 0 on ∂Ω

Theorem 4 (cf. [3]). Let Ω ⊂ Rn be bounded and conformally contractible.

(1) If λ < 0 and p ≥ n+2m
n−2m then u ≡ 0 is the only C2m(Ω)-solution of (3).

(2) If λ < 0 and 1 < p < n+2m
n−2m and u is a C2m(Ω)-solution of (3) then either

u ≡ 0 or

‖u‖p−1
∞ ≥ −λ 2m(p+ 1)

2n− (p+ 1)(n− 2m)
.

Example C: Finally let us consider an example with uniqueness of the nontrivial
solution.

(4) −∆mu = λ(1 + |u|p−1u) in Ω, u = ∇u = . . . = Dm−1u = 0 on ∂Ω

Theorem 5 (cf. [3]). Let Ω ⊂ Rn, n > 2m, be a bounded conformally contractible
domain with conformal vector-field ξ s.t. div ξ ≤ 0 in Ω. Let p > n+2m

n−2m and λ ≥ 0.

(1) If m = 1 or m ≥ 2 and Ω = B1(0) then there exists λ̄ > 0 such that (4)
has a unique positive solution for λ ∈ [0, λ̄].

(2) Suppose p ≥ 2. If m = 1 and div ξ < 0 in Ω or m ≥ 2 and no further
restriction on div ξ then there exists λ̄ > 0 such that (4) has a unique
solution for λ ∈ [0, λ̄].

Remarks. (a) Under the same restrictions on n,m, p and λ the result holds for
f(x, s) = 1 + λ|s|p−1s and f(x, s) = λes. In particular (2) holds for f(x, s) = λes

if n > 2m.
(b) Part (1) of the theorem generalizes to all those bounded domains Ω where the
positivity preserving property of (−∆)m holds.
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Open Problem. Can one extend the result of Theorem 5 to the critical case
p = n+2m

n−2m or not? For m = 1 results were obtained by Schaaf [4].
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Spikes for the Gierer-Meinhardt System – Analysis and Numerical
Simulation

Matthias Winter

We consider two typial types of Turing systems [9] which have both been sug-
gested by Gierer and Meinhardt [2].

First, the Activator-Inhibitor Model

(GM1)





at = ǫ2∆a− a+ a2

h

τht = D∆h− h+ a2

where a = a(x, t), h(x, t) are the concentrations of two morphogens, the activator
and inhibitor; ǫ2, D > 0 are the diffusivities and τ ≥ 0 is a time-relaxation
constant. We study (GM1) on a bounded, smooth domain Ω ⊂ R2 with Neumann
boundary conditions.

Second, the Activator-Substrate Model

(GM2)

{
at = ǫ2∆a− a+Aha2 in Ω,

τht = D∆h+ 1− µh− ha2 in Ω,

where a = a(x, t) and h(x, t) are the concentrations of activator and substrate.
In addition to the constants above, here we have the feedrate A. Special cases
are the Schnakenberg Model (µ = 0) and the Gray-Scott Model (µ = 1).

Numerical simulations frequently show spikes, i.e. steady states, where the
activator is concentrated in narrow regions around finitely many points

for ǫ2

D small enough. Often these spiky patterns are numerically stable. Some
references for such numerical simulations are H. Meinhardt [3], T. Kolokolnikov,
M.J. Ward et. al. [6], [7]. J.E. Pearson [8]. We now present one time-dependent
numerical simulation for the activator-inhibitor system using the Finite Element
Simulation Software FEMLAB (Winter 2005).
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We choose the system (GM1) with ǫ2 =0.001,D =0.01, τ = 1.

In this simulation we observe unstable rings and the final state consists of 9.5
spikes.

What can be said about the number of spikes in general?
We analyze the weak-coupling case

ǫ2

|Ω| << 1,
D

|Ω| >> 1.

Our first results gives existence, asymptotic profile and positions of multiple

spikes. Set ηǫ = |Ω|
2πD ln

√
|Ω|
ǫ .

Assume that limǫ→0 ηǫ = η0 ∈ [0,∞] \ {K}.

Theorem 1. ( [12]) For ǫ small enough and D large enough, there exists a steady
state (aǫ, hǫ) of (GM1) with

(1) aǫ(x) = ξǫ

(∑K
j=1 w

(
x−P ǫ

j

ǫ

)
+ o(1))

)
uniformly for x ∈ Ω̄.
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(2) hǫ(x) = ξǫ(1 + o(1)) uniformly for x ∈ Ω̄.

• Profile: w is the unique solution (ground state) of

{
∆w − w + w2 = 0, w > 0 in R2,
w(0) = maxy∈R2 w(y), w(y)→ 0 as |y| → ∞.

• Amplitude: ξǫ →∞ as ǫ→ 0.
• Positions: P ǫ

j → P 0
j as ǫ→ 0, j = 1, . . . ,K.

The Proof of Theorem 1 uses Green’s function, Liapunov-Schmidt reduction
and asymptotic analysis.

The second theorem answers the question of how many spikes can be (linearly)
stable. Assume that

lim
ǫ→0

ηǫ = lim
ǫ→0

|Ω|
2πD

ln

√
|Ω|
ǫ

= η0 ∈ (0,∞) \ {K}.

Theorem 2. ( [12]) For ǫ small enough, we have for the K−spike solution (aǫ, hǫ)
of Theorem 1:

If K < η0, there exist 0 < τ1 ≤ τ2, such that (aǫ, hǫ) is stable for τ < τ1 or
τ > τ2.

If K > η0 and K > 1, the solution (aǫ, hǫ) is unstable for all τ ≥ 0.
If 1 = K > η0, the solution (aǫ, hǫ) is unstable for τ large enough.

A generalization of Theorem 2 to (GM2) is now given. The formula for the
maximum number K of stable spikes (for τ = 0) is as follows:

(GM1) (GM2) Gray-Scott (GM2) Schnakenberg

η0

(
η0
α0

)1/2

− 2η0

(
η0
α0

)1/2

with

η0 = lim
ǫ→0

|Ω|
2πD

ln

√
|Ω|
ǫ

, α0 = lim
ǫ→0

ǫ2
∫

R2 w
2

A2|Ω| .

This has been proved in [14] for the Gray-Scott Model and in Wei/Winter (2005)
for the Schnakenberg Model.

The Proof of Theorem 2 consists of deriving and analyzing a nonlocal eigen-
value problem (NLEP) to understand the O(1) eigenvalues. Here [10] and [1] play
an important role. Further, some conditions for the positions of the spikes are
explored which are related to o(1) eigenvalues.

We have also prove existence and stability of asymmetric spikes (small and
large amplitude) [15], [17]. Compare the simulation
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where the central spike is much smaller than the rest.
The strong-coupling case D = 1 has been studied in [11], [13].
Finally, instabilities of spikes arising by saturation have been investigated in

the shadow system case [16].
Recent surveys of the state of the art have been given in [4], [5].
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Existence of Conformal Metrics with Constant Q-Curvature

Andrea Malchiodi

(joint work with Zindine Djadli and Cergy Pontoise)

On four dimensional manifolds there exists a conformally covariant operator, the
Paneitz operator, which enjoys analogous properties to the Laplace-Beltrami op-
erator on surfaces, and to which is associated a natural concept of curvature. This
operator, introduced by Paneitz, [5], [6], and the corresponding Q-curvature, in-
troduced in [1], are defined in terms of Ricci tensor Ricg and scalar curvature Rg

of the manifold (M, g) as

(1) Pg(ϕ) = ∆2
gϕ+ divg

(
2

3
Rgg − 2Ricg

)
dϕ;

(2) Qg = − 1

12

(
∆gRg −R2

g + 3|Ricg|2
)
,

where ϕ is any smooth function on M . The behavior (and the mutual relation) of
Pg and Qg under a conformal change of metric g̃ = e2wg is given by

(3) Pg̃ = e−4wPg; Pgw + 2Qg = 2Qg̃e
4w.

Apart from the analogy between (3) and the transformation law of the Gauss
curvature in 2D (after a conformal transformation), we have an extension of the
Gauss-Bonnet formula which is the following

(4)

∫

M

(
Qg +

|Wg|2
8

)
dVg = 4π2χ(M).

Here Wg denotes the Weyl tensor of (M, g). In particular, since |Wg|2 dVg is a
pointwise conformal invariant, it follows that the integral of Qg over M is also a
conformal invariant, and we denote it by kP .

We consider the problem of finding conformal metrics on M with constant Q-
curvature. By (3) (and after a normalization of the volume), we have to solve the
following equation

(5) Pgu+ 2Qg = kP e
4u on M.

This equation is indeed variational and solutions can be found as critical points of
the following functional

(6) II(u) =

∫

M

uPgudVg + 4

∫

M

QgudVg − kP log

∫

M

e4udVg,

defined on the Sobolev space H2(M).
Concerning (5), the only result in the literature was given in [3] (see also [2]

for a different proof), where the authors prove existence under the assumptions
that Pg is positive-definite (apart on the constants) and that kP < 8π2. The key
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ingredient for the proof is the following inequality, which extends a result due to
D.Adams for the case of flat domains

(7) log

∫

M

e4(u−u)dVg ≤ C +
1

8π2

∫

M

uPgudVg.

Here u denotes the average of u on M and Pg is assumed to be positive definite.

We are able to extend the result in [3] proving the following theorem.

Theorem 1. Suppose ker Pg = {constants}, and assume that kP 6= 8kπ2 for
k = 1, 2, . . . . Then M admits a conformal metric with constant Q-curvature.

We remark that our assumptions are conformally invariant and generic, so the
result applies to a large class of four manifolds. Also, by a result in [4], the set
of solutions (which is non-empty) is bounded in Cm(M) for any integer m. We
also notice that Theorem 1 does not cover some cases of locally conformally flat
manifolds with positive Euler characteristic, by (4).

Our assumptions include those made in [3] and one (or both) of the following
two possibilities

(8) kP ∈ (8kπ2, 8(k + 1)π2), for some k ∈ N;

(9) Pg possesses k (counted with multiplicity) negative eigenvalues.

In these cases the functional II is unbounded from below, and hence it is necessary
to find extrema which are possibly saddle points. This is done using a new minimax
scheme, which depends on kP and the spectrum of Pg (in particular on the number

of negative eigenvalues k).
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A class of self-dual partial differential equations and its variational
principles

Nassif Ghoussoub

Most equations arising on the interface between Riemmanian geometry and quan-
tum field theory (e.g. Yang-Mills, Chern-Simon, Seiberg-Witten and Ginzburg-
Landau) have dual or/and selfdual versions which enjoy very special features: They
are obtained variationally as minima of the corresponding action functionals, yet
they are not derived as Euler-Lagrange equations but as zeroes of certain non-
negative Lagrangians. We show that a similar phenomenon of self-duality is quite
prevalent among partial differential equations and systems, including some of the
most basic ones.

We then use such self-dual features, to develop a systematic approach for a vari-
ational resolution of these equations. We establish a general variational principle
which identifes the minimal value for this class of equations, and therefore allow
for their derivation and their resolution even though they are outside the scope of
Euler-Lagrange theory.

Our concept of self-duality extend the examples from QFT in many ways. For
one, squares are replaced by general convex functions, and one can substitute
the elementary method for completing squares by the Legendre-Fenchel duality
formula: i.e., for a convex lower semi-continuous function φ on a Banach space
X and its Legendre transform φ∗ on X∗, we have φ(x) + φ∗(p) − 〈x, p〉 ≥ 0 with
equality if and only if p ∈ ∂φ(x), where ∂φ denotes the subdifferential operator.
Our self- (or antiself-) dual equations can be written in the following form:

(1)

{
L(u,Γu+ Λu) + 〈Bu,Λu〉 = 0
ℓi(Biu)− 1

2 〈Biu,RiBiu〉 = 0 for i = 1, ...,m

where L is a Lagrangian on X×X∗ with X being a reflexive Banach space, (ℓi)
m
i=1

are boundary Lagrangians on Hilbert spaces H1, . . . , Hm on which act self-adjoint
operators R1, . . . , Rm. The pair B : X → X and Γ : D(Γ) ⊂ X → X∗ are linear
operators while the operator Λ : D(Λ) ⊂ X → X∗ is not necessarily linear. Our
framework requires the following conditions:

(1) The pair (B,Γ) is skew-adjoint modulo a “boundary operator”

B := (Bi)
m
i=1 : D(B) ⊂ X → Πm

i=1Hi.

That is, if we have a Stokes-type formula of the form:

(2) 〈Bx,Γy〉+ 〈By,Γx〉 =
m∑

i=1

〈Bix,RiBiy〉 for x, y ∈ D(Γ) ∩D(B).

(2) The operator Λ : D(Λ) ⊂ X → X∗ is weak-to weak continuous on its
domain in such a way that x→ 〈Bx,Λx〉 is weakly lower semi-continuous
on D(Λ).

(3) The Lagrangian L is a convex lower semi-continuous functional on X×X∗

which satisfies the following B-antiselfduality: L(x, p) = L∗(−B∗p,−Bx)
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for (x, p) ∈ X ×X∗, where L∗ denotes the Fenchel-Legendre transform in
both variables.

(4) Each ℓi is convex lower semi-continuous on the Hilbert space Hi satisfying
the Ri-selfduality property ℓi(si) = ℓ∗i (Risi) for si ∈ Hi i = 1, ...,m.

Equations (1) are true differential equations because selfduality and the limiting
case in the Legendre-Fenchel duality, allow us to rewrite them as:

(3)

{
−(B∗Λu+B∗Γu,Bu) ∈ ∂L(u,Γu+ Λu)

RiBiu ∈ ∂ℓi(Biu) i = 1, . . . ,m

where ∂L is the subdifferential of L. We obtain solutions for (1) by simply minimiz-

ing the functional I(u) = L(u,Γu+Λu)+ 〈Bu,Λu〉+
m∑

i=1

ℓi(Biu) on an appropriate

subset of X . The key here is that under these conditions, the functional I can
be written –after completing the squares– as a sum of non-negative terms: I0(u) =
L(u,Γu+Λu)+〈Bu,Γu+Λu〉, and Ii(u) = ℓi(Biu)− 1

2 〈Bix,RiBix〉 for i = 1, . . . ,m
where the cross product 〈Bu,Γu〉 has been added to complete the square in I0,
then subtracted in its boundary form. The boundary Lagrangians ℓi are then used
to complete the squares (in the opposite direction) for the boundary cross-products
〈Bix,RiBix〉. Under appropriate coercivity conditions, the minimal value of I is
zero and is attained and so the same holds for each one of the functionals I0, Ii
(i = 1, ..,m). The identities thus obtained then lead to the equations (1) above
which include naturally occuring boundary conditions. The required variational
principles are normally easy to formulate, as the basic self (or anti-self) dual La-
grangian is often of the form L(x, p) = φ(x) + φ∗(±p) where φ is a convex lower
semi-continuous function. But the richness of the theory comes from iterating the
above Lagrangians with appropriate operators and from the diversity of bound-
ary conditions that one can capture. Here is a sample of self and anti-selfdual
equations.

1) Transport equation: Consider

(4)

{
~a · ~∇v + a0v = v|v|p−2 + f on Ω ⊂ Rn

v = 0 on Σ+

where p > 1, ~a is a smooth vector field such that 1
2
~∇ · ~a − a0 ≥ δ > 0 on Ω,

and where Σ± = {x ∈ ∂Ω;±~a(x) · n̂(x) ≥ 0} are the entrance and exit sets. The
minimum on L2(Ω) of the functional

I(u) = φ(u) + φ∗(~a · ~∇u+ a0u) +
1

2

∫

Ω

(
1

2
~∇ · ~a− a0)|u|2dx

+
1

2

∫

Σ+

|u|2|~a · n̂|dσ +
1

2

∫

Σ−

|u|2|~a · n̂|dσ

– where φ(u) := 1
p

∫
Ω
|u|pdx +

∫
Ω
ufdx – is equal to zero, and is attained at a

solution for (4).
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2) Incompressible Stationary Navier-Stokes equation: Consider

(5)






(u · ∇)u− f = ν∆u−∇p on Ω
divu = 0 on Ω
u(x) = 0 on ∂Ω

where ν > 0 and f ∈ Lp(Ω; R3). The minimum on X = {u ∈ H1
0 (Ω); div(u) = 0}

of the functional I(u) = Ψ(u) + Ψ∗(−(u · ∇)u + f) −
∫
Ω〈f, u〉dx – where Φ(u) =

ν
2

∫
Ω

Σ3
j,k=1(

∂uj

∂xk
)2 dx – is equal to zero and is attained at a solution of (14).

3) Cauchy-Riemann equations: Consider

(6)

{
(∂u

∂x ,
∂v
∂x ) = ∂φ(∂v

∂y ,−∂u
∂y ) on Ω ⊂ R2

−J~n · ~∇v ∈ ∂ψ(u) on ∂Ω.

where Ω is simply connected, φ is a convex lsc function on L2(Ω) × L2(Ω) and
ψ is any convex lsc function on L2(∂Ω). The minimum on W 1,2(Ω; R2) of the
functional

I(u, v) =

∫ ∫

Ω

{φ(
∂v

∂y
,
∂u

∂y
) + φ∗(

∂u

∂x
,−∂v

∂x
)}dxdy +

∫

∂Ω

(ψ(u) + ψ∗(−J~n · ~∇v))dσ.

is equal to zero and is attained at a solution of (6).
4) Nonlinear Laplace equation: Consider

(7)

{
∆u ∈ ∂φ(u) on Ω ⊂ Rn

− ∂u
∂n ∈ ∂ψ(u) on ∂Ω

where φ (resp., ψ) are convex functions on L2(Ω) (resp., L2(∂Ω)). The minimum
of I(u) =

∫
Ω(φ(u) + φ∗(∆u) + |∇u|2)dx +

∫
∂Ω(ψ(u) + ψ∗(− ∂u

∂n ))dσ is again zero
and is attained at a solution of (7).

What is remarkable is that evolution equations associated to selfdual equations
–such as the following– are themselves selfdual.

∂u

∂t
+ Γu(t) + Λu(t) + f(t) ∈ −∂φ(t, Bu(t)) on [0, T ]× Ω(8)

Riu(t) ∈ ∂ψi(u(t)) on [0, T ]× ∂Γi(9)

S1u(0) ∈ ∂χ1(u(0)) on Ω(10)

S2u(T ) ∈ ∂χ2(u(T )) on Ω(11)

Examples of self-dual evolution equations include Gradient flows for convex func-
tions such as the Heat equation and porous media [5], but also:

5) Anti-Hamiltonian systems: Consider

(12)






−ẋ(t) ∈ ∂2Φ(x(t), y(t))
−ẏ(t) ∈ ∂1Φ(x(t), y(t))

−y(0)−A1x(0) ∈ ∂ψ1(x(0))
y(T )−A2x(T ) ∈ ∂ψ2(x(T )).
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where Φ (resp., ψ1, ψ2) are convex lower semi-continuous on Rn ×Rn (resp., Rn)
and A1, A2 are anti-symmetric matrices on Rn. The minimum of the functional

I(x, y) =

∫ T

0

Φ((x(t), y(t)) + Φ∗(−ẏ(t),−ẋ(t))dt

+ ψ1(x(0)) + ψ∗
1(−y(0)−A1x(0)) + ψ2(x(T )) + ψ∗

2(y(T )−A2x(T )).

on A2([0, T ]; R2n) = {u = (x, y) : [0, T ]→ R2n; u̇ ∈ L2
R2n}, is zero and is attained

at a solution of (12).
6) Hamiltonian systems: Consider

(13)






ẋ(t) ∈ ∂2Φ(x(t), y(t))
−ẏ(t) ∈ ∂1Φ(x(t), y(t))
y(0) ∈ ∂ψ1(x(0))

−x(T ) ∈ ∂ψ2(y(T )).

where Φ (resp., ψ1, ψ2) are convex lower semi-continuous on Rn ×Rn (resp., Rn)
and A1, A2 are anti-symmetric matrices on Rn. The minimum of the following
functional

I(x, y) =

∫ T

0

Φ((x(t), y(t)) + Φ∗(−ẏ(t), ẋ(t)) + 2〈x(t), ẏ(t)〉)dt

+ ψ1(x(0)) + ψ∗
1(y(0)) + ψ2(y(T )) + ψ∗

2(−x(T )).

on A2([0, T ]; R2n) = {u = (x, y) : [0, T ]→ R2n; u̇ ∈ L2
R2n}, is zero and is attained

at a solution of (13).
7) The incompressible Navier-Stokes evolution: Consider






∂u
∂t + (u · ∇)u− f = ν∆u −∇p on [0, T ]× Ω

divu = 0 on [0, T ]× Ω
u(t, x) = 0 on [0, T ]× ∂Ω
u(0, x) = u0(x) on Ω.

where ν > 0 and f ∈ Lp(Ω; R3). The minimum of

I(u) =

∫ T

0

{
Ψ(u(t)) + Ψ∗(−(u(t) · ∇)u(t) + f − u̇(t))−

∫

Ω

〈f(t), u(t)〉dx
}
dt

+

∫

Ω

{
1

2
(|u(0, x)|2 + |u(x, T )|2)− 2〈u(0, x), u0(x)〉+ |u0(x)|2

}
dx

–where Ψ is as in (5)– is zero and is attained and is attained at a solution of (14).
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Sign Changing Solutions of Semilinear Elliptic Equations: Symmetry
and Critical Exponent Problems

Filomena Pacella

We consider semilinear elliptic problems of the type

(1)

{
−∆u = f(|x|, u) in B

u = 0 in ∂B

where B is either a ball or an annulus centered at the origin in RN , N ≥ 2 and
f : B × R→ R is a C1,α-function.

We are interested in symmetry properties of classical solutions of (1).
A famous result in this direction was obtained in 1979 by Gidas-Ni-Nirenberg

in [3] using the moving plane device [6]. However to be applied this method requires
some convexity assumptions on the domain, the positivity of the solution and some
monotonicity of the nonlinearity f in the x-variable. Indeed counterexamples to
the radial symmetry of solutions can be given if some of these conditions fail.
Nevertheless for some nonlinearities and for certain types of solutions some partial
symmetry is anyway expected.

A first result in this direction was obtained in [4] in a simple way, exploiting the
Morse index of the solution. More precisely in [4] it is proved that if f is strictly
convex than any solution of (1) with Morse index is foliated Schwarz symmetric
which means essentially that it is axially symmetric and monotone in the angular
coordinate. Though the result of [4] applies in a variety of problems and does not
require the positivity of the solution there are cases when one would like to have
information on the symmetry of solutions of higher Morse index.

Moreover there are problems when the nonlinear term is not strictly convex. A
sample case of this situation arises if f(|x|, s) = p|s|p−1, p > 1 and we want to
study sign changing solutions. Indeed these solutions have Morse index greater
than one.

A result in collaboration with T. Weth ( [5]) which covers this case, at least if
p ≥ 2, has been recently obtained and allows to consider solutions of any Morse
index, if the dimension is sufficiently large.

More precisely the results are the following

Theorem 1. If f(|x|, s) has a convex derivative f ′(|x|, s) = ∂f
∂s (|x|, s), for every

x ∈ B, then every solution of (1) with Morse index j ≤ N has at least N − (j − 1)
orthogonal symmetry hyperplanes.
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Theorem 2. If f ′(|x|, s) is strictly convex in the second variable then every so-
lution of (1) with Morse index less than or equal to N − 2 has infinitely many
symmetry hyperplanes.

Theorem 3. Under the same hypothesis of Theorem 1, any solution of (1) with
Morse index less than or equal to 2 is foliated Schwarz symmetric.

If the nonlinearity does not depend explicitly on the x-variable then some results
on the nodal sets are also obtained ( [5]).

Several other questions remain open. Among these we would like to single out
the following two:

i) What symmetry results can be proved in symmetric domains other than the
ball or the annulus, in particular if the domain is only invariant for a discrete
group of symmetries?

ii) If u has Morse index two and changes sign, is it also antisymmetric?
As far as we know the second question has been answered, up to now, only in

some particular cases, concerning asymptotic problems ( [2], [7]).
In the work in progress [2] we consider an almost critical problem of the type

(2)

{
−∆u = |u|p∗−2−εu in B

u = 0 in ∂B

where p∗ = 2N
N−2 , ε > 0, and B is the ball in RN , N ≥ 3.

Using a careful blow-up analysis made in [1] we are able to prove that, for ε
sufficiently small, any nodal solution of (2) with low energy is foliated Schwarz
symmetric and antisymmetric with respect to the hyperplane orthogonal to the
symmetry axis.
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Boundary blow-up solutions with interior layers and spikes

Yihong Du

Consider the problem

(1) −ǫ2∆u = f(x, u) := u(u− a(x))(1 − u) in Ω, u|∂Ω =∞,
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where Ω is a bounded smooth domain in RN , 0 < a(x) < 1 on Ω, and ǫ > 0 is
a (small) constant. We want to understand the solutions and their properties of
problem (1) when ǫ is small.

Problem (1) arises from a number of applications, such as mathematical biology
(a limiting case of the FitzHugh-Nagumo model) and material science (Allen-Cahn
equation). Usually Neumann boundary conditions are considered. In such a situa-
tion, the trivial solutions 0 and 1 are stable (as steady-states of the corresponding
parabolic problem), and hence it is generally called a “bistable problem”.

Problem (1) with Dirichlet boundary conditions has also been extensively stud-
ied. We consider here the explosive boundary condition and our results demon-
strate that for small ǫ, the solutions and their properties are not affected greatly
by the boundary conditions. In the following, we describe some recent results of
Y.Du, Zongming Guo and Feng Zhou [DGZ].

Definition. We say uǫ is a minimizer solution to (1) if it is a solution to (1) and
there is a sequence {βn} with βn →∞ as n→∞ such that uβn

ǫ → uǫ in C1
loc(Ω),

where uβn
ǫ is a minimizer of

inf
{ǫ2

2

∫

Ω

|Dw(x)|2 −
∫

Ω

F (x,w)dx, w − βn ∈ H1
0 (Ω)

}
,

where F (x, t) =
∫ t

0
f(x, s)ds. Clearly uβn

ǫ is a solution of the problem

−ǫ2∆u = f(x, u) in Ω, u|∂Ω = βn.

Remark: We can show that for any ǫ > 0, (1) has a minimizer solution.

Theorem 1. Let uǫ be a minimizer solution to (Pǫ) and denote A = {x ∈ Ω :
a(x) < 1/2}, B = {x ∈ Ω : a(x) > 1/2}. Then, as ǫ→ 0,

uǫ →
{

1, uniformly on any compact subset of A,
0, uniformly on any compact subset of B.

Remark: Theorem 1 implies that, if ∂A ∩ ∂B 6= ∅, then any minimizer solution
of (1) undergoes a sharp transition near ∂A ∩ ∂B.

Theorem 2. Let Ω1 and Ω2 be two open sets so that Ω1 ∩ Ω2 = ∅, Ωi ⊂⊂ Ω,
i = 1, 2, a(x) < 1/2 if x ∈ ∂Ω1 and a(x) > 1/2 if x ∈ ∂Ω2. Here Ω1 or Ω2 can be
empty. Then (1) has a solution vǫ satisfying, as ǫ→ 0,

vǫ →
{

1, uniformly on any compact subset of (A\Ω2) ∪ Ω1,
0, uniformly on any compact subset of (B\Ω1) ∪Ω2.

Remark: Theorem 2 tells us that (1) has solutions which have no transition layers
near some designated components of the set {x ∈ Ω : a(x) = 1/2}.
Remark: Note that if Ω1 = Ω2 = ∅, Theorem 2 becomes Theorem 1. In fact, vǫ

is a “local” minimizer solution of (1).

To describe our results on solutions with spikes, we need some preparations.
Assume that b ∈ (0, 1/2) is a constant. It is known that the following problem has
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a unique solution Ub:{
−∆u = fb(u) := u(u− b)(1− u), u > 0 in RN ,
u(0) = maxx∈RN u(x), lim|x|→∞ u(x) = 0.

We denote Uǫ,x0,b(x) = Ub(
x−x0

ǫ ).
Suppose that a(x) > 1/2 for x ∈ ∂Ω. Then using Theorem 2 we can show that

(1) has a positive solution w∗
ǫ such that w∗

ǫ → 0 as ǫ → 0. If a(x) < 1/2 for
x ∈ ∂Ω, then by Theorem 2, we can show that (1) has a solution w∗∗

ǫ satisfying
w∗∗

ǫ → 1. Note that both w∗
ǫ and w∗∗

ǫ have boundary layers but not interior layers.
Our next results show that there are new solutions of (1) with interior peaks

superimposed on w∗
ǫ or w∗∗

ǫ .

Theorem 3. Suppose that a(x) > 1/2 for x ∈ ∂Ω and A = {x ∈ Ω : a(x) <
1/2} 6= ∅. Let x1, . . . , xk ∈ A be any sequence of strict local maximum points of
a(x), or a sequence of strict local minimum points of a(x), and denote ai = a(xi).
Then there is an ǫ0 > 0 such that for ǫ ∈ (0, ǫ0], (1) has a solution of the form

u∗ǫ = w∗
ǫ + Σk

i=1Uǫ,xǫ
i ,ai

+ ωǫ,

where as ǫ→ 0,

xǫ
i → xi, i = 1, . . . , k,

∫

Ω

(ǫ2|Dωǫ|2 + |ωǫ|2) = o(ǫN ).

Theorem 4. Suppose that a(x) < 1/2 for x ∈ ∂Ω and B = {x ∈ Ω : a(x) >
1/2} 6= ∅. Let x1, . . . , xk ∈ B be any sequence of strict local maximum points of
a(x), or a sequence of strict local minimum points of a(x), and denote ai = a(xi).
Then there is an ǫ0 > 0 such that for ǫ ∈ (0, ǫ0], (1) has a solution of the form

u∗∗ǫ = w∗∗
ǫ − Σk

i=1Uǫ,xǫ
i,1−ai

+ ωǫ,

where as ǫ→ 0,

xǫ
i → xi, i = 1, . . . , k,

∫

Ω

(ǫ2|Dωǫ|2 + |ωǫ|2) = o(ǫN ).

Remark: Theorems 3 and 4 tell us that we can construct a new solution for (1)
by putting a peak upward near a strict extremum point of a(x) in A to the solution
w∗

ǫ , or by putting a peak downward near a strict extremum point of a(x) in B to
w∗∗

ǫ .

The proofs of Theorems 1 and 2 use ideas of Dancer and Yan [DY1]: For small ǫ,
the global minimizer uǫ(x) of the corresponding energy functional for the problem

−ǫ2∆u = f(x, u) in Ω, u|∂Ω = 0,

must be close to 1 when a(x) < 1/2, and close to 0 when a(x) > 1/2.
But the corresponding functional is usually undefined for (1) as the solution

has infinite boundary values. To overcome this difficulty, we use the notion of
minimizer solution of (1) defined above. We can show that for each fixed n, uβn

ǫ
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develops certain interior layers as ǫ → 0, and the formation of these layers is
uniform in n as ǫ→ 0.

For the proof of Theorems 3, our strategy is to find a solution for (1) of the
form w∗

ǫ + w with w ∈ H1
0 (Ω). This amounts to solving the problem

−ǫ2∆w = h(x,w) in Ω, w|∂Ω = 0, (8)

where

h(x, t) = hǫ(x, t) = f(x,w∗
ǫ (x) + t)− f(x,w∗

ǫ (x)).

We firstly use a variational approach: For each small ǫ, let H = Hǫ be the
completion of C∞

0 (Ω) under the norm

‖u‖ǫ :=
( ∫

Ω

(
ǫ2|Du|2 − ft(x,w

∗
ǫ )u2

)
dx
)1/2

.

We can show that H ⊂ H1
0 (Ω) and critical points of I(u) in H are solutions of (8),

where

I(u) = (1/2)

∫

Ω

(ǫ2|Du|2 − ft(x,w
∗
ǫ )u2)dx−

∫

Ω

G(x, u)dx,

G(x, t) =
∫ t

0
g(x, s)ds and g(x, u) is a suitable modification of h(x, u)− ft(x,w

∗
ǫ ).

The proof is then completed by the so called reduction method, which reduces
the problem to finding critical points of some C1-map Z → ω(Z) ∈ H defined for
Z ∈ Dδ, where

Dδ = {Z = (z1, z2, . . . , zk) : zi ∈ Bδ(xi), i = 1, 2, . . . , k},
and xi, i = 1, . . . , k, are strict local minimum (or maximum) points of a(x) in A.
The proof of Theorem 4 is similar.
Open Question: Construct peak solutions off solutions with interior layers. This
requires a much better understanding of the interior layers of solutions obtained
in Theorems 1 and 2, which seems a rather challenging problem in 2 or higher
dimensions, and is an important question in its own right.

References

[APL] A. Aftalion, M. del Pino and R. Letelier, Multiple boundary blow-up solutions for
non-linear elliptic equations, Proc. R. Soc. Edinb. 133A (2003), 225-235.

[ACH] S. Ai, X. Chen and S.P. Hastings, Layers and spikes in non-homogeneous bistable
reaction-diffusion equations, Trans. Amer. Math. Soc., (to appear).

[DY1] E.N. Dancer and S. Yan, Construction of various types of solutions for an elliptic
problem, Calc. Var. PDE. 20 (2004), 93-118.

[DY2] E.N. Dancer and S. Yan, Multi-layer solutions for an elliptic problem, J. Differential
Equations, 194 (2003), no. 2, 382–405.

[DG] Y. Du and Z.M. Guo, Boundary layer and spike layer solutions for a bistable elliptic
problem with generalized boundary conditions, preprint, 2004.

[DGZ] Y. Du, Z.M. Guo and Feng Zhou, Boundary blow-up solutions with interior layers and
spikes in a bistable problem, preprint, 2004.

[DuY] Y. Du and S. Yan, Boundary blow-up solutions with a spike layer, J. Differential
Equations 205 (2004), 156-184.

[UNY] M. Urano, K. Nakashima and Y. Yamada, Transition layers and spikes for a bistable
reaction-diffusion equation, preprint, 2004.



1632 Oberwolfach Report 29/2005

Stability of Poisson Equilibria

Claudia Wulff

(joint work with George W. Patrick and Mark Roberts)

This is a short introduction to some results published in [8].
Energy methods for determining the stability of equilibria of Hamiltonian sys-

tems ẋ = J∇h(x) are based on the general principle that, since the symplectic
structure matrix J is invertible, an equilibrium xe of a Hamiltonian system is a
critical point of the Hamiltonian. Due to energy conservation it is therefore Lya-
punov stable if the Hessian of the Hamiltonian is definite at the equilibrium. The
Energy-Casimir method is an extension of this principle to equilibrium points of
Poisson systems (defined below). It originated with the work of Arnold on the
stability of equilibria of incompressible fluids [1]. Since then it has been used very
extensively in applications to rigid bodies [4], elasticity theory [10] and fluids [3].
In this paper we first present a topological generalisation of the energy method and
then use this to obtain a significant generalisation of the Energy-Casimir method.
We apply our method to obtain new stability results for ‘underwater vehicles’,
modelled as rigid bodies in ideal irrotational fluids.

A Poisson manifold is a manifold X with a Poisson bracket {·, ·} defined on the
space of smooth functions on X , see e.g. [6]. A Poisson system with Hamiltonian
h : X → R is characterized by the fact that the time-evolution of any smooth
function f : X → R along trajectories of the Poisson system satisfies ḟ = {f, h}.
Poisson systems arise by symmetry reduction of Hamiltonian systems with sym-
metry. Examples include the Euler equations of ideal fluid dynamics, for which the
symmetry group is the particle relabelling group [3], and the Kirchhoff equations
for the symmetry reduced dynamics of underwater vehicles in ideal irrotational
fluids, for which the symmetry group is a Euclidean group (see e.g. [3, 4]). Rela-
tive equilibria of symmetric Hamiltonian systems are equilibria of the symmetry-
reduced Poisson system and hence their stability modulo the symmetry group can
be studied with the methods described below.

Locally Poisson systems take the form ẋ = J(x)∇h(x), like Hamiltonian sys-
tems, but the matrix J(x) is x-dependent and in general not invertible. Hence an
equilibrium of a Poisson system is not necessarily a critical point of the Hamilton-
ian. Therefore the energy method for Hamiltonian systems described is in general
not applicable. Other conserved quantities of Poisson systems have to be taken
into account as well:

The flow of a Poisson system on a Poisson manifold X generated by a Hamil-
tonian h preserves both h and the symplectic leaves of X . The symplectic leaf of
x ∈ X is the set of all points in X which can be connected to x by concatenations
of trajectories of Poisson systems. In the case of a Poisson system which is a
symmetry reduced Hamiltonian system the invariant symplectic leaves originate
from the conserved quantities associated to continuous symmetries of Hamilton-
ian systems by Noether’s Theorem [6]. To test for stability the Energy-Casimir
method can be applied if there is a Casimir C, ie a function which is constant on
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symplectic leaves, such that xe is a critical point of h+C. Stability follows if this
critical point is a local extremum.

When is it possible to find a Casimir C such that xe is a critical point of h+C?
One case is when xe is a regular point of X , which means that locally the foliation
into symplectic leaves is non-singular. Using this fact Arnold [1,2] and Libermann
and Marle [5] show that if xe is regular and is a local extremum of the restriction of
h to the symplectic leaf L(xe) through xe, then xe is stable on all of X . Examples
show that this is not true in general, see [5]. In such cases it is natural to ask
whether there exists a space between L(xe) and X such that xe is stable if it is an
extremal point of the restriction of h to this intermediate space. In this paper we
show that there is such a space. More generally we answer a challenge posed by
Weinstein [11] when, referring to the interaction between Poisson structures and
stability, he wrote: “As yet there is no general theory for this kind of analysis”.

Our results in this paper are based on a topological generalisation of the en-
ergy method extending a results by Montaldi [7]. This topological method can
be applied to a continuous flow on a locally compact topological space X which
has conserved quantities with values in another topological space. In the case of
Poisson systems the conserved quantities are the Hamiltonian h and the quotient
map to the space of symplectic leaves. An equilibrium xe is stable if the leafspace
is Hausdorff at L(xe) and xe is an isolated point in the fibre of the restriction of h
to L(xe). Thus the condition that xe be regular in the result of Arnold, Libermann
and Marle can be relaxed to the leafspace being Hausdorff at L(xe). However in
applications, such as Poisson systems which arise by symmetry reduction of Hamil-
tonian systems with non-compact, non-abelian symmetry groups, this condition is
often not satisfied. In particular it is violated in the examples from fluid dynamics
we mentioned earlier. If the leafspace is not Hausdorff then h must isolate xe

in a larger subset T2(xe) which depends only on the ”non-Hausdorff-ness” of the
leafspace.

We recover and generalise the Energy-Casimir method for Poisson equilibria:
we will see that it suffices to make the assumptions of the Energy-Casimir method
on a subset of the Poisson manifold X which contains T2(xe).

Moreover we identify a necessary condition for the Energy-Casimir method to
apply, namely that the Poisson equilibrium must be tame. If T2(xe) is a man-
ifold this means that ∇h|T2(xe)(xe) = 0. However Poisson systems obtained by
symmetry-reduction of Hamiltonian systems with Euclidean symmetry generally
have some equilibria which are not tame (wild). The Energy-Casimir method can
not be applied to these. Other methods then have to be used which only yield
weaker stability (Nekhoroshev stability) [9].
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Asymptotic behaviour of the Kazdan-Warner solution in the annulus

Massimo Grossi

Let us consider the following problem

(1)






−∆u = up in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω is a smooth bounded domain of RN , N ≥ 2. It is a well known fact that
if 1 < p < N+2

N−2 for N ≥ 3, there exists a solution to (1) in any domain Ω ⊂ RN .

On the other hand, if p ≥ N+2
N−2 , using the Pohozaev identity (1) does not have any

solution in H1
0 (Ω) provided Ω is starshaped with respect to some point. However,

if Ω is not starshaped, we can have solution for any p > 1, as stated in the following
classical result,

Theorem, (Kazdan and Warner, [KW]): Let Ω be an annulus. Then (1)
admits a radial solution for any p > 1.

In ( [NN]) Ni and Nussbaum proved the uniqueness of this solution in the class
of the radial functions.

Here we study the asymptotic behaviour of this solution as p→∞.
One of the main result of the paper is that there is no concentration phenomenon

as p goes to infinity. This is in sharp contrast with similar semilinear perturbed
problems and also with problems involving the same nonlinearity in R2 (see ( [AG]),
( [EG]), ( [RW1])).

Our first result concerns the convergence of the solution up of (1). In the rest
of the paper Ω will denote the annulus Ω = {x ∈ RN : 0 < a < |x| < b}.
Theorem 1. Let up the unique radial solution of (1). Then, as p→∞,

(2) up(|x|)→ ω(|x|) in C0(Ω),
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with

(3) ω(|x|) =
2

a2−N − b2−N






a2−N − |x|2−N for a ≤ |x| ≤ r0

|x|2−N − b2−N for r0 ≤ |x| ≤ b
for N ≥ 3

and

(4) ω(|x|) =
2

log b− log a






log |x| − log a for a ≤ |x| ≤ r0

log b− log |x| for r0 ≤ |x| ≤ b
for N = 2

Finally r0 is given by

(5) r0 =






(
a2−N +b2−N

2

) 1
2−N

if N ≥ 3

√
ab if N = 2

Note that ω is not differentiable at r0 and ω(r0) = max
r∈[a,b]

ω(r)=1.

¿From Theorem 1 we deduce the following sharp Sobolev inequality for radial
functions in the annulus,

Theorem 2. Let Ω be the annulus Ω = {x ∈ RN : 0 < a < |x| < b}. Then, for
any radial function u ∈ H1

0 (Ω) the following inequality holds,

(6)

∫

Ω

|∇u|2 ≥ Cp

(∫

Ω

up

) 2
p

, for any p > 1

where

(7) Cp →
{
ωN

4(N−2)
a2−N−b2−N if N ≥ 3
8π

log b−log a if N = 2

as p→∞. Here ωN denotes the area of the unit sphere in RN .

Observe that Theorem 1 implies that ||up||∞ → 1. Next results gives a more
precise estimate.

Theorem 3. The following estimate holds

(8) ||up||∞ = 1 +
log p

p
+
γ

p
+ o

(
1

p

)

where γ = lim
r→r0

1
2ω

′(r)2 =






log

[
(N − 2)22

2
2−N

(a2−N+b2−N)2 N−1
N−2

(a2−N−b2−N )2

]
if N ≥ 3

log
[

2
ab(log b−log a)2

]
if N = 2
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We point out that Theorems 2 and 3 are proved using the ”global” convergence
result in Theorem 1. Moreover the proofs of these results just use elementary
arguments.

We remarked that the limit function ω(r) in Theorem 1 is not differentiable at
r = r0. Actually,

it is interesting to study more carefully the behaviour of the solution up(r) near
the maximum r0. This leads to analyze the ”local” convergence of the solution
up(r) near its maximum. In order to do this we use a blow-up procedure used
in [AG]. Then, up to a suitable scaling, it is possible to associate to (1) the
following limit problem defined in all R,

(9) −u′′ = eu in R

The existence of a ”limit problem” could suggest to use perturbative methods
in order to deduce existence results to (1) for p large when Ω is a non-spherical
domain (for example the case where Ω has one hole). This leads to the following
open problem,

Open problem:
Let Ω ⊂ RN with N ≥ 3 be a domain with one hole. Then, for p large enough,
does it exist a solution up to (1) with the following properties:
i)up converges to a harmonic function in Ω \M , where M is a suitable N − 1-
dimensional manifold contained in Ω,
ii)up → 1 on M?
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On The Number of Interior Peak Solutions for a Singularly Perturbed
Neumann Problem

Juncheng Wei

The main theme of this talk is the concentration phenomena of the following
singularly perturbed elliptic problem

(1) ǫ2∆u− u+ up = 0, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω
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where ǫ > 0 is a constant, Ω is a bounded smooth domain in RN with its unit
outward normal ν, and p satisfies 1 < p < N+2

N−2 for N ≥ 3 and 1 < p < ∞ for
N = 2.

Although problem (1) takes a classical form of singular perturbations, the tradi-
tional techniques in that area did not seem helpful as the error terms appeared in
the inner and outer expansions are exponentially small in ǫ > 0. In the pioneering
work [10, 11], Ni and Takagi studied the following “energy” functional in H1(Ω)

(2) Eǫ[u] =
1

2

∫

Ω

(ǫ2|∇u|2 + u2)− 1

p+ 1

∫

Ω

up+1
+ , where u+ = max{u, 0}

and showed that the least energy solution uǫ exists and that for each ǫ > 0 suf-
ficiently small, uǫ has exactly one (local) maximum point Pǫ in Ω̄, and H(Pǫ) →
maxP∈∂ΩH(P ), whereH(P)isthemeancurvaturefunction .

Since the publication of [10] and [11], problem (1) has received a great deal of
attention and significant progress has been made. More specifically, solutions with
multiple boundary peaks as well as multiple interior peaks have been established.
It turns out that a general guideline is that while multiple boundary spikes tend to
cluster around the local minimum points of the boundary mean curvature H(P ),
the location of the interior spikes are governed by the distance between the peaks as
well as the boundary of ∂Ω.In particular, it was established in Gui and Wei [3] that
for any two given integers k ≥ 0, l ≥ 0 and k + l > 0, problem (1) has a solution
with exactly k interior spikes and l boundary spikes for every ǫ sufficiently small.
(For k = 0 or l = 0, this has been established independently in [1], [2] and [4].)

Ni ( [8], [9]) made the following conjecture:
Ni’s Conjecture: Under some generic conditions on Ω, for each fixed integer

m = 1, ..., N − 1, there exists pm > 1 such that for 1 < p < pm and ǫ sufficiently
small, problem (1) admits a solution uǫ concentrating on a m−dimensional subset
of Ω.

A first breakthrough towards Ni’s conjecture came from [7], where they showed
that along a subsequence of ǫn → 0, there exists solutions concentrating on the
whole ∂Ω. This shows that Ni’s conjecture is true when m = N − 1. Later
Malchiodi [6] constructed concentrating solutions on a geodesics of the boundary
of a three-dimensional domain, and Wei and Yang [12] showed the existence of
concentrating solutions in a line intersecting the boundary of a two-dimensional
domain.

Two basic questions remain open:
Open Q1: Suppose we have the following energy bound: Eǫ[uǫ] ≤ CǫN−m, can
we show that the concentration set is m−dimensional?
Open Q2: Given ǫ small, can we obtain a lower bound on the number of the
solutions in terms of ǫ?

We answer both questions in the following theorem. In fact, we shall include a
slightly more general equation than (1), namely,

(3) ǫ2∆u− u+ f(u) = 0, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.
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where f satisfies the following conditions (f1)-(f2):

(f1): f ∈ C1,σ for some 0 < σ ≤ 1 and f(u) ≡ 0 for u ≤ 0, f(0) = f
′

(0) = 0.
(f2): The following equation

(4) ∆w − w + f(w) = 0, w > 0 in RN , w(0) = max
y∈RN

w(y), w → 0 at ∞

has a solution w(y) and w is nondegenerate.
We now state our main result

Theorem 1. (Lin-Ni-Wei, [5]) Let f satisfy assumptions (f1)-(f2). Then there
exists an ǫ0 > 0 such that for 0 < ǫ < ǫ0 and any positive integer K satisfying

(5) 1 ≤ K ≤ αN,Ω,f

ǫN (| ln ǫ|)N
,

where αN,Ω,f is a constant depending on N,Ω and f only, problem (3) has a
solution uε which possesses exactly K local maximum points Qε

1, ..., Q
ǫ
K such that

uǫ(x) =
∑K

j=1 w(
x−Qǫ

j

ǫ ) + o(1), and we have the following energy estimate

(6) Eǫ[uǫ] ∼ ǫNK.
The Morse index of uǫ is at least K.

Remark: The constant αN,Ω,f can be made more precise in terms of N, σ and
the packing constant of Ω. See [5].

Our first corollary answers Q1 negatively:

Corollary 2. For each real number m ∈ (0, N), there exists a solution uǫ to (3)
with the following energy bound: Eǫ[uǫ] ∼ ǫN−m. When m = N , we have a solution
uǫ with the following energy estimate: Eǫ[uǫ] ∼ (| ln ǫ|)−N .

Our second corollary answers Q2 positively:

Corollary 3. For ǫ sufficiently small, problem (3) has at least

[
αN,Ω,f

ǫN | ln ǫ|N

]
number

of positive solutions.

Our results suggest the following revised questions:
Revised Open Question 1: Suppose we have the following energy bound

Eǫ[uǫ] ≤ CǫN−m,

and that the concentration set is connected, can we show that the (limiting)
concentration set is m−dimensional?

Revised Open Question 2: Given ǫ small, can we obtain an optimal bound
on the number of the solutions in terms of ǫ?
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Braids and parabolic dynamics

Robert C.A.M. Vandervorst

(joint work with R.W. Ghrist, J.B. van den Berg)

1.1. Consider a scalar uniformly parabolic PDE, ut = uxx + g(x, u, ux), or more
generally ut = f(x, u, ux, uxx), where 0 < λ ≤ ∂uxx

f ≤ λ−1 uniformly. Assume
that g is of smoothness class C1. For simplicity we use periodic boundary condi-
tions; hence x ∈ S1. We view the equation as an evolution equation on the curve
u(·, t): as t increases, the graph of u evolves in the (x, u) plane.

It is a well-known fact (going back to Sturm, but revived and extended con-
siderably by Matano [22], Brunovsky and Fiedler [9], Angenent [2], and oth-
ers) that there is a comparison principle. Specifically, let u1(t) and u2(t)
be solutions. Then the number of intersections of the graphs of u1 and u2,
z(t) := #

{
x : u1(x, t) = u2(x, t)

}
, is a weak Lyapunov function for the dynam-

ics: z is non-increasing. Furthermore, at those particular times t for which the
graphs of u1(t) and u2(t) are tangent, the function z decreases strictly, even in
the case where the tangencies are of arbitrarily high order [2]. These facts are all
at heart an application of classical maximum principle arguments which have a
geometric interpretation; Parabolic dynamics separates tangencies monotonically.

Using this comparison principle (also known as lap number or zero crossing
techniques), numerous authors have analyzed its dynamics in varying degrees of
generality. We note in particular the papers of Angenent and Henry [5], [16], in
which the comparison principle is used to show that the dynamics is often Morse-
Smale, and the paper of Fiedler and Rocha [13], in which the global attractor for
the dynamics is roughly classified. In this context we also mention the work by
Fiedler and Mallet-Paret [12].
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1.2. Our contribution is a globalization of the comparison principle using topo-
logical braid theory. For a motivating example, consider again a pair of evolving
curves u1(t) and u2(t) in the (x, u) plane. If we lift these curves to the three-
dimensional (x, u, ux) space, we no longer have intersecting curves, unless t is such
that the planar graphs of u1 and u2 intersect tangentially. The graphs of u1 and
u2 in the (x, u, ux) space are instead an example of a closed braid on two strands.
What was the intersection number of their projections is now the linking number
of the pair of strands.

We therefore see that the comparison principle takes on a linking number inter-
pretation (a fact utilized in a discrete setting by LeCalvez [20] and Angenent [4]
and for geodesics by Angenent in [3]). After lifting solutions u1 and u2 to the
(x, u, ux) space, the comparison principle says that the linking number is a non-
increasing function of time which decreases strictly at those times at which the
curves are tangent.

1.3. Our goal is to produce a forcing theory for the dynamics of parabolic
equations, and, as we shall relate, more general discrete systems. For simplicity,
we focus on forcing stationary solutions, though periodic and connecting orbits
are likewise accessible. Say that one has found a skeleton of stationary curves
{v1, v2, . . . , vm} for a particular representative of the above equation. How many
and which types of other stationary curves are forced to be present?

Since the skeleton of known fixed curves v = {v1}mi=1 lifts to a braid, the prob-
lem is naturally couched in braid-theoretic terms: given a braid v fixed by a
particular uniform parabolic PDE, which other classes of braids u are forced to
exist as stationary curves? In this context, the forcing theory is reminiscent of
Boyland’s theory of “braid types” for periodic orbits of two-dimensional homeo-
morphisms [8]: a braid-theoretic version of the Nielsen-Thurston theory for surface
homeomorphisms. In [3] Angenent develops a similar theory using flat knot types
to find closed geodesics on closed 2-manifolds.

The spirit of our forcing theory is as follows:

• Given a fixed braid v, construct the configuration space of all n-strand
braids u which have v as a sub-braid.
• Use the braid-theoretic comparison principle to decompose this space into

isolating blocks for the parabolic dynamics corresponding to distinct braid
classes.
• Define a Conley index for these relative braid classes which depends only on

the topology of the braids, and not on the analytic details of the dynamics.
• Prove Morse-type inequalities for forcing stationary curves in the PDE

from a nontrivial braid index.

This is the basic recipe, modulo the frequent discretization needed to ensure
the compactness necessary for the Conley index. Section 1 gives a rough outline of
the index definition. Topological and dynamical features are outlined in Section 2.
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1. Definitions and discretizations

2.1. There are two types of braids to consider: topological and discretized.
Roughly speaking, a topological braid on n strands is an embedding of n disjoint
arcs into D2× [0, 1] transverse to the discs D2×{x} for all x. Given a braid β, its
braid class {β} is the equivalence class of isotopic braids. Braid classes possess
a group structure for which generators are strand crossings in a planar projection
and concatenation of the braids forms the group operation [7].

The class of discretized braids are best visualized as piecewise-linear braid
diagrams. A discretized braid, u, on n strands of period p, is determined by
np anchor points: u = {uα

i }. Superscripts α = 1 . . . n refer to strand num-
bers, and subscripts i = 1 . . . p refer to spatial discretizations. One connects the
anchor point uα

i to uα
i−1 and uα

i+1 via straight lines. Since “height” is deter-

mined by slope, all crossings in the braid diagram are of the same type.1 Since
we employ periodic boundary conditions on the x variable, all of the braids are
closed: left and right hand endpoints of strands are abstractly identified (per-
haps by a nontrivial permutation of the strands). Denote by Dn

p the set of all
n-strand period p discretized braids. For topological braids, a singular braid
arises when any strands intersect. Since all of the braids we consider are lifts of
graphs u, the only possible intersection is that which occurs when two strands
are tangent in the projection. For a discretized braid u, the singular braids are
defined to be those braids at which anchor points on two different strands co-
incide in a non-transverse fashion (looking at neighboring points): specifically,

Σ =
{
u : uα

i = uβ
i for some i and α 6= β, and (uα

i−1 − uβ
i−1)(u

α
i+1 − uβ

i+1) ≥ 0
}
.

The set Σ carves Dn
p into components: these are the discretized braid classes,

denoted [u].
2.2. Discretizing the first equation in the standard way would yield a family

of nearest-neighbor coupled equations of the form d
dtui = ui−1 − 2ui + ui+1 +

g̃i(ui, ui+1) in which uniform parabolicity would manifest itself in terms of the
derivatives of the right hand side with respect to the first and third variables.
Instead of explicitly discretizing the PDE, we use the broadest possible category
of nearest neighbor equations for which a comparison principle holds: these are
related to the monotone systems of, e.g., [12, 17, 23] and others.

A parabolic relation of period p is a sequence of maps R = {Ri : R3 → R},
i = 1...p, such that ∂1Ri > 0 and ∂3Ri ≥ 0 for every i. These include discretiza-
tions of uniform parabolic PDE’s, as well as a variety of other discrete systems [21],
including monotone twist maps [20]. The small amount of degeneracy permitted
(∂3Ri = 0, or ∂1Ri = 0) does not affect the manifestation of a comparison princi-
ple. Given a discretized braid u = {uα

i } and a parabolic relationR, one evolves the
braid according to the equation d

dt (u
α
i ) = Ri(u

α
i−1, u

α
i , u

α
i+1). Stationary curves

correspond to a braid u such that Ri(u) = 0 for all i. The parabolic relation R
induces a flow on Dn

p which respects a braid-theoretic comparison principle.

1These are examples of Legendrian braids from contact geometry.
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Lemma 1. Let R be any parabolic relation and u ∈ Σ any singular braid. Then
the flow line u(t) of R passing through u = u(0) leaves a neighborhood of Σ in
forward and backward time so as to strictly decrease the algebraic length of u(t) in
the braid group as t passes through zero.

2.3. Given the discretizations of the braid classes and the dynamics, one is left
with a conveniently finite dimensional problem. For purposes of a forcing theory,
we use relative braids. Given a period p braid v, denote by Dn

p rel v the space
of all n strand, period p discretized braids which have v as a sub-braid.

In this context, the simplest version of Conley’s index can be defined for braid
classes (see [10] for an introduction to the Conley index). To do so, it must be
shown that the braid classes [u rel v] are isolated in the sense that (informally)
no flow lines within [u rel v] are tangent to the boundary of this set. It follows
from Lemma 1 that [u rel v] is isolated for the flow assuming that the braid class
is proper, i.e., no free strands of u can “collapse” onto v or onto each other.
Furthermore, to ensure compactness, we assume that the braid class [u rel v] is
bounded.

The homotopy braid index of [u rel v] is defined as the Conley index of
the braid class, computed as follows. Choose any R which fixes v. Define E to be
those braids on the boundary of [u rel v] along which evolution under the flow
of R exits the braid class. The homotopy braid index is defined to be the pointed
homotopy class2 ([u rel v]) := ([u rel v]/E , {E}) . As this is simply the Conley
index of the isolating block [u rel v] under the flow of R, it is easy to show that
h([u rel v]) is well-defined and independent of the choice of R (so long as it is
parabolic and fixes v) as well as the choice of v within its braid class [v]. Although
the homotopy type of a quotient of a braid class seems difficult to compute, the
homology CH∗([u rel v]) is both efficacious and computable. 3

2. A few theorems

3.1. The homotopy braid index has both topological and dynamical impli-
cations. The most important result about the index is the following invariance
theorem:

Theorem 2 ( [14]). The homotopy braid index is an invariant of topological braid
pairs.

Otherwise said, any two discretizations of a topological braid pair have identical
homotopy indices, regardless of the period of the discretization used. The proof of
this theorem involves a singular perturbation argument applied to a “stabilization
operator” on discretized braids. While the precise topological content of the index
is as yet unclear, a duality operator on braids was discovered and analyzed in [14].

2We omit a few technicalities concerning the rare cases in which the discretized braids get

“locked” because of too-coarse discretization: see [14] for details.
3The theorems about the index h were predicated by rigorous computer experiments of M.

Allili. Recently the index of more complicated braids has been calculated using rigorous homology
computations in collaboration with S. Day.
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This has the pleasant corollary that, roughly speaking, adding a full twist to a
braid class shifts the homotopy index up two dimensions (a dimension shift on the
homology level; a double suspension on the homotopy level).

3.2. The dynamical consequences of the index are forcing results. A simple
example: given any parabolic relation R which has as a stationary solution braid.
Then, by adding free strands that yield a nontrivial braid index, there must be
some invariant set for R within this braid class. At this point, one uses Morse
theory ideas: if R is a gradient flow, then there must be a stationary solution
of the form of the grey strand. If the flow is not of gradient type, then finer
information can still detect stationary and/or periodic curves. By iterating the
process of adding free strands and computing a nontrivial index, one can go quite
far. The following forcing theorem (for gradient-type R) is a very general forcing
theorem:

Theorem 3 ( [14]). Let R be a parabolic recurrence relation which (i) is of gra-
dient type, and (ii) is dissipative (roughly, that large solutions are “repelled” from
infinity). If R fixes a discretized braid v which is not in the trivial braid class
(that is, if it has any crossings whatsoever), then there are an infinite number of
distinct braid classes for multiple periods which arise as stationary solutions of R.

3. Open problems

The dynamical implications of the braid Conley index are one direction of re-
search. Here one can also think of extending the theory to arbitrary braids and
their natural dynamics; Cauchy-Riemann equations. This is subject of current
research. The topological issues however are just as interesting. To list a few:

(1) What is the relation between the braid Conley index and the algebraic
properties of positive braids. Can the algebraic structure of the braid
group be used to compute the index?

(2) The structure of the braid classes both discrete and continuous; for com-
puting the index one often needs to decide how many connected compo-
nents a discrete braid class has. One conjecture is that if the total number
of discretization points is 1+ # of intersections in the braid diagram, then
there is only one component?

(3) For dics diffeomorphisms the index can be used to find periodic points. In
the area preserving case the index provides more information than Nielsen-
Thurston theory. Are there situations in the general case where the index
can also provide additional information?

(4) In [14] an extensive application of the braid Conley index to fourth order
equations is given. It applies when such equations can be reduced; twist
property. This reduction property is proved for a large class of equations.
Numerical evidence suggests that this reduction is always possible, see
[24]. Can the theory be extended to fourth order conservative equations
in general?
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Mean field equations and Green functions on torus

Chang Shou Lin

In the talk, I want to consider the equation

(1) ∆u+ 8πeu = 8πδ0 on T,

where T is a torus, and δ0 is the Dirac measure with the singularity at 0. For
simplicity, the fundamental cell of T is denoted as {sω1 + tω2 | |s| ≤ 1

2 , |t| ≤ 1
2},

where ω1 = 1 and ω2 = a+ ib with b > 0. By adding a constant to u, equation (1)
can also be written as

(2) ∆u+ 8π

(
eu

∫
eu
− 1

|T |

)
= 8π(δ2 −

1

|T |),

where |T | is the area of torus. Usually, an equation similar to (2) is called a mean
field equation. Clearly, equation (2) is invariant under adding a constant c to u.
Hence, a solution is normalized by

(3)

∫

T

udx = 0

If we let

(4) u = v − 8πG(x),

where G(x) is the Green function with the singularity at 0.

−∆G(x) = δ0 −
1

|T | ,(5)

∫

T

G(x)dx = 0.

Then v(x) satisfies

(6) ∆v + 8π

(
e−8πG(x)

∫
e−8πG(x)ev

− 1

|T |

)
= 0 on T

It is obvious that equation (6) is the Euler-Lagrange equation of the nonlinear
function J :

(7) J(φ) =
1

2

∫
|∇φ|2dx− 8π log

∫

T

e−8πGeφdx.

We want to talk about motivations for studying equation (1). The first one
comes from conformal geometry. The problem can generally be posed as the
followings: Given N singular points p1, . . . , pN and −2 < αj for j = 1, 2, . . . , N ,
we want to find a metric ds2 = eu|dx|2 such that the Gaussian curvature ds2 is
equal to 1 on T \{p1, . . . , pN}, and

eu = |z − pj |αj +O(1) for z near pj .



1646 Oberwolfach Report 29/2005

The problem is equivalent to solving

(8) ∆u+ ρeu =

N∑

j=1

2παjδpj
,

where

ρ =

N∑

j=1

2παj.

Clearly, when N = 1 and αj = 4. Equation (8) is the same as equation (1). Of
course, the conformal metric with conical singularity at p1, . . . , pN might not exist.
For example, if αj < 0 for all j, then the equation (8) does not have a solution. In
general, the existence for equation (8) is an interesting problem. For example, we
can prove for the case N = 1, and 0 < ρ 6= 8π, equation (8) does have a solution
for any torus T . For a proof for this or more general situations, see [1,2,4,5].

The second motivations comes from the self-dual equation of the Chern-Simons
model. Let p1, . . . , pN be vortex points of the equation, the equation can be written
as a second order elliptic equation:

(9) ∆v +
1

κ2
ev(1 − ev) = 4π

N∑

j=1

δpj
on T.

For the Chern-Simons model, when κ→ 0, there are two types of solutions:

(1) v → 0 uniformly on T \{p1, . . . , pn} as κ→ 0,
(2) v → −∞ a.e as κ→ 0.

Solutions of first type resembles topological solutions in R2 and the other one
resembles non-topological solutions in R2. For solutions of type (2), actually,
there might have complicated phenomenon. For N = 2 and p1 = p2 = 0, Nolasco-
Tarantello [6] obtained a sequence of solutions vk = G + wk + ck, where ck is a
constant and

∫
wk = 0, such that either

1. wk uniformly converges to w in C2 and w is a minimizer of the nonlinear
equation J of (7).

or,

2. wk → −∞ uniformly in C2
loc(T \{q}) for some point q 6= 0, and e−8πGewk

R

e−8πGewk

tends to the Dirac measure δq. In this case there exists no minimizer of
J(u).

In short, Nolasco-Tarantello obtained the following results.

Theorem 1. (Nolasco-Tarantello) ωk uniformly converges if and only if a mini-
mizer of J exists.

1. Main Theorems

Generally, the mean field equation can be written as

(10) ∆u+ ρ

(
h(x)eu

∫
h(x)eu

− 1

|Σ|

)
= 0 on Σ,
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where Σ is a compact Riemann surface, and h(x) ≥ 0. Here h(x) can be allowed
to have isolated zeros. As mentioned in Introduction, the zero of h(x) comes from
the prescribed singularities. At each zero x0 of h(x), we assume

h(x) = |x− x0|2αh̃(x) for x near x0,

where α is a positive integer and h̃(x) > 0 in a neighborhood of x0. It is well-
known that if ρ 6= 8πm, m ∈ N , then solutions of (10) is uniformly bounded, Thus
the classic degree of Leray-Schauder can be well-defined. Denote it by dρ. Then
we have

Theorem 2. Suppose h(x) > 0 and ρ 6= 8πm. Let χ(Σ) be the Euler Character-
istic of Σ. Then

dρ =

{
1 if ρ < 8π
(−χ(Σ) + 1) . . . (−χ(Σ) +m)

m!
if 8mπ < ρ < 8(m+ 1)π

If h(x) might have zeros somewhere, the index formulas can not be expressed
so nicely. See [3]. In general, if ρ 6= 8πm, then the degree depends only on the
topology of the underlying manifold Σ, but, if ρ = 8mπ, then the geometry become
important. For example, for equation (1), we can prove.

Theorem 3. There exists a solutions for equation (1) if and only if the Green
function has extra critical points other than three half-periods.

Theorem 4. There exists a minimizer for the nonlinear function J , if and only
if there exists a global minimum points of G, which is not a half period.

For equation (1), it is important to know the number of critical points of G(x),
and the problem of degeneracy or non-degeneracy for critical points of G is related
to the bubbling analysis for equation (1). From the numberical computations, we
propose the following two open problems:

Problem 1. the Green function has five critical points at most.

Problem 2. the Green function has five critical points if and only if all half-
periods are non-degenerate saddle points.
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Nonlinear Elliptic Equations with Critical Hardy Potential

Michel Willem

We consider first the problem

(1)






−∆pu− λ
|u|p−2

|x|p u = f(x) in Ω,

u = 0 on ∂Ω,
lim

|x|→∞
u(x) = 0

where Ω ⊂ RN is not necessarily bounded and 0 ∈ Ω. When Ω is bounded,
this problem was considered by Azorero and Peral. We describe the lower semi-
continuity approach due to P. Sintzoff (see [2]).

When 1 < p < N and

λ <

(
N − p
p

)p

, f ∈ (D1,p
0 (Ω))′,

there exists a least energy solution. Let us remark that, when p 6= 2, the natural
functional is not convex and, for some f ∈ D(Ω), there exists a non minimizing
solution.

An open problem is to describe the multiplicity of the solutions of (1) e.g. when
Ω is a ball.

We consider next the Hardy inequality for exterior domains :

(2) ‖u
δ
‖pLp(Ω) ≤ Cp(Ω)‖∇u‖pLp(Ω).

The exterior domain Ω ⊂ RN has a C2 compact boundary and

δ(x) = dist(x, ∂Ω).

It is proved in [1], that (2) holds if and only if 1 < p 6= N . (When Ω is bounded,
it was proved by Marcus, Mizel and Pinchover that (2) holds for any p > 1.)

Let us define

λp(Ω) = inf
{
‖∇u‖pLp(Ω) : u ∈ D1,p

0 (Ω), ‖u
δ
‖Lp(Ω) = 1

}
.

In [1] we prove that

λp(Ω) < min

{
|N − p

p
|p, |p− 1

p
|p
}

⇒ λp(Ω) is achieved.

An open problem is to prove (or disprove) the converse.
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Liouville-type theorems for superlinear parabolic problems

Pavol Quittner

We consider classical solutions of semilinear parabolic problems of the form

(1)






ut −∆u = f(x, t, u,∇u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where f has superlinear growth in u and Ω is an open set in RN . Under suitable
additional assumptions on f , Ω and u0, problem (1) possesses a unique solution
defined on the maximal time interval [0, T (u0)).

Let δ > 0 and let ‖ · ‖∞ denote the norm in L∞(Ω). It turns out that a priori
estimates of the form

(2) ‖u(·, t)‖∞ ≤ C(‖u0‖∞, δ), 0 < t < T (u0)− δ,
play a very important role in the study of the asymptotic behavior of solutions
of (1). Such estimates can be used in the study of positive and sign-changing
equilibria (see [12], [1], [2] and the references therein), connecting orbits between
equilibria (see [5], [1], [2]), nontrivial periodic solutions (see [12]), blow-up rate
(see [6]), continuity of the maximal existence time T (u0) (see [11]), completeness
of blow-up (see [13], [14], [9]) or optimal control problems governed by superlinear
parabolic equations and systems (see [3]).

It is known that estimate (2) is not true in the critical and supercritical cases,
in general (for example, if Ω is starshaped and f = |u|p−1u, p(N − 2) ≥ N + 2).
On the other hand, estimate (2) was proved in [11] for a large class of superlinear
functions f = f(x, u) with subcritical growth. The proof in [11] was based on
energy arguments. If energy methods cannot be used and the function f behaves
like up (p > 1) for large u, then one can still use rescaling arguments (see [15],
[14]). However, this approach is restricted to positive solutions and it also requires
nonexistence of positive bounded solutions of the limiting equation

(3) ut −∆u = up, x ∈ R
N , t ∈ (−∞,∞),

(and the corresponding problem in a halfspace).
Problem (3) possesses (bounded radial) positive steady states if and only if

p(N − 2) ≥ N + 2. This suggests the following conjecture:

Conjecture 1. Positive solutions of (3) exist if and only if p(N − 2) ≥ N + 2.

The nonexistence of bounded positive solutions of (3) follows from [4] provided
p(N − 1)2 < N(N + 2). If p(N − 2) < N + 2 then the nonexistence of positive
solutions of (3) satisfying additional requirements was proved in [8], [7] and [10].
In particular, the following theorem follows from [10].

Theorem 2. Bounded positive radial solutions of (3) exist if and only if p(N −
2) ≥ N + 2.
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In [9], a generalization of the following Liouville type theorem was proved and used
in the proof of completeness of blow-up for problems with indefinite nonlinearities.

Theorem 3. Let p > 1. Then the equation

(4) ut −∆u = x1u
p, x = (x1, x2, . . . , xN ) ∈ R

N , t ∈ (−∞,∞),

does not possess bounded positive solutions.
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The Morse complex for infinite dimensional manifolds

Pietro Majer

(joint work with Alberto Abbondandolo)

A useful approach to Morse theory is the so-called Morse complex approach.
The idea consists in introducing the free Abelian group Mk(f) generated by all the
critical points x with Morse index m(x) = k of a given Morse function f : M → R,
and in defining a boundary operator ∂k : Mk(f)→Mk−1(f) by counting the orbits
in the intersections of unstable and stable manifolds of critical points, with respect
to the negative gradient flow of f (notice that the intersection of the unstable man-
ifold of x and the stable manifold of y has generically dimension m(x) −m(y)).
When M is a compact manifold, the homology of this chain complex - the Morse
complex of f - is isomorphic to the singular homology of M . This approach works
also in the infinite dimensional setting considered by Palais and Smale in the six-
ties: a Morse function on an infinite dimensional Hilbert manifold, having critical
points of finite Morse index, and satisfying the Palais-Smale compactness condi-
tion. When f is also bounded below, the homology of the Morse complex is again
isomorphic to the singular homology of the ambient manifold. Otherwise, the
Morse complex depends on the behavior of f at infinity, but its homotopy type is
still considerably stable (for instance, two functions which have bounded uniform
distance have homotopically equivalent Morse complexes). Actually, an appropri-
ate level of generality consists of flows on Banach manifolds, having hyperbolic
rest points of finite Morse index, admitting a Lyapunov function, and satisfying
the analogue of the Palais-Smale condition (see [5]).

The Morse complex approach is very promising when critical points have infi-
nite Morse index and co-index (critical points of this sort are invisible for classical
infinite dimensional Morse theory). This fact was exploited by Floer, who applied
this idea to a Cauchy-Riemann type PDE arising in Hamiltonian dynamics. One
could try to apply this idea to the abstract negative gradient flow of a smooth
functional: the hope is that, although the stable and unstable manifolds of critical
points are infinite dimensional, their mutual intersections may be finite dimen-
sional. This idea has little chances to work without additional structures: for
instance, we have proved in [6] that if f is a smooth Morse function on a Hilbert
manifold M , with critical points of infinite Morse index and co-index, then we can
associate an arbitrary integer a(x) to every critical point x, and find a metric g on
M such that the unstable manifold of x and the stable manifold of y (with respect
to the gradient flow determined by f and g) intersect transversally in a manifold
of dimension a(x)− a(y), for every pair of critical points x, y.

On a Hilbert space there is a natural class of functions which appear frequently
in variational problems, namely those consisting of the sum of a non-degenerate
quadratic form and of a nonlinear term with compact gradient. In this case, there
is a well-defined notion of relative Morse index, and the Morse complex approach
works (see [1]). The fact that the Hilbert space is naturally equipped with a
splitting into two linear subspaces is essential here.



1652 Oberwolfach Report 29/2005

When trying to extend these ideas to functions defined on manifolds, the first
problem is to determine those flows having stable and unstable manifolds inter-
secting in finite dimensional submanifolds. This question is reduced to the study
of operators of the form d/dt − A(t), where A : R → L(H) is a path of bounded
operators on the Hilbert space H , converging to hyperbolic operators for t→ ±∞.
The study of the Fredholm property for such operators involves the notions of Fred-
holm pairs of linear subspaces, and of compact perturbation of a linear subspace
(see [4] for a characterization of the Fredholm property for these operators, and for
examples showing how many things can be wrong when H is infinite dimensional).

These results have allowed us to develop a complete Morse complex approach
for quite a general class of gradient-like flows on a Hilbert manifold M (see [3]).
The extra structure here is a fixed subbundle of the tangent bundle M , or more
generally of an essential subbundle (that is, defined only up to compact perturba-
tions). In order to deal with the question of finite dimensionality and orientability
of intersections of unstable and stable manifolds, one has to understand the prop-
erties of some infinite dimensional Grassmannians, and of suitable determinant
bundles over them (this aspect of the theory is extensively treated in [2]).
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Energy bounds for entire nodal solutions of autonomous elliptic
equations via the moving plane method

Tobias Weth

We give a new lower bound for the energy of sign changing solutions of the pure
critical exponent problem

(1) −∆u = |u| 4
N−2u, u ∈ D1,2(RN ), (N ≥ 3).

Here D1,2(RN ) denotes the completion of the space C∞0 (RN ) of test functions with
respect to the norm ‖u‖2 =

∫
RN |∇u|2 dx, hence it is the largest space where the

corresponding energy functional

u 7→ Φ(u) =
1

2

∫

RN

|∇u|2 dx− 1

2∗

∫

RN

|u|2∗

dx
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is well defined. Problem (1) plays a crucial role in the study of problems in con-
formal geometry like the Yamabe problem and the prescribed scalar curvature
problem. It also arises as a ’limiting problem’ in the study of Palais-Smale se-
quences of the energy functional associated with the Dirichlet problem

(2) −∆u = λu + |u| 4
N−2u in Ω, u = 0 on ∂Ω,

on a smooth, bounded domain Ω with a parameter λ ≥ 0. The set of positive
solutions of (1) was completely classified and computed in celebrated papers by
Aubin, Talenti, and Gidas-Ni-Nirenberg more than 25 years ago. This set forms an
N + 1-dimensional critical manifold of Φ in D1,2(RN ) at the energy level 1

N S
N/2,

where S is the best Sobolev constant for the embedding D1,2(RN ) →֒ L2∗

(RN ).
Much less understood is the set of sign changing solutions of (1). Ding [4] proved
that there is a sequence (un)n of (conformally non-equivalent) sign changing so-
lutions with Φ(un) → ∞. In fact, one can construct multiple sequences of this
type, and the number of such sequences increases with the space dimension N ,
see [2, Section 3]. A well known and often used observation is the energy doubling
of sign changing solutions of (1): Every sign changing solution u ∈ D1,2(RN ) of
(1) satisfies Φ(u) > 2

N S
N/2. Our following result states that this bound is not

sharp.

Theorem 1. There is an ε0 > 0 such that Φ(u) ≥ 2
N S

N/2 + ε0 for every sign

changing solution u ∈ D1,2(RN ) of (1).

This improved bound is obtained by a contradiction argument. Assuming by
contradiction that there is a sequence of sign changing solutions un of (1) such that
Φ(un) → 2

N S
N/2, we first transform this sequence into a convenient form, using

the conformal invariance of (1). The transformed sequence consists of solutions
having two bumps of opposite sign, and the distance of the bumps tends to infinity
as n→∞. For large n, we then exclude the existence of such solutions by a variant
of the moving plane method, thus obtaining a contradiction.
The new bound can be used to find new solutions for problem (2) with λ = 0 in
some special domains Ω. This work is in preparation. For λ = 0, sign changing
solutions of (2) have so far only been obtained for domains Ω with an involution
symmetry, see [3] and the references therein.
The argument given above yields similar improved lower energy bounds for nodal
solutions of other autonomous equations on RN . As an example we mention the
nonlinear Schrödinger equation

−∆u+ u = f(u), u ∈ H1(RN )

with a superlinear and subcritical nonlinearity f .
An interesting different type of results concerning the set of sign changing solutions
of (1) in dimension three is due to Bahri and Chanillo, see [1] and Professor Bahri’s
article in this report. They analyse the change in topology near sign changing
critical points at infinity of the functional Φ.
We close this abstract by mentioning some open problems.
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1. What is the optimal value of ε0 ? Does there exist an energy minimizer
within the set of sign changing solutions of (1) ?

2. Are there sign changing solutions of (1) which (modulo conformal trans-
formations) do not have an O(2)-symmetry ?

3. Is every bounded sign changing solution of −∆u = |u| 4
N−2u on RN con-

tained in the energy spaceD1,2(RN ) ? This open problem has been pointed
out by Professor Bahri.
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Symmetrization and Symmetry of Critical Points

Jean van Schaftingen

Let Ω ⊂ RN be a ball or an annulus, and consider the problem of finding a function
u : Ω→ R and λ ∈ R such that

(1)

{
−∆u = λf(|x|, u) in Ω,

u = 0 on ∂Ω.

When f(|x|, ·) is continuous and |f(|x|, s)| ≤ C(1 + |s|p), with 1 ≤ p < (N +
2)/(N − 2), the critical points of the functional

ϕ : H1
0(Ω)→ R : u 7→ −

∫

Ω

F (|x|, u) dx

(the function F is defined by F (|x|, s) =
∫ s

0 f(|x|, σ) dσ), restricted to the unit ball

∂B(0, µ) = {u ∈ H1
0(Ω) : ‖∇u‖22 = µ}

are solutions of (1).
When f(|x|,−s) = −f(|x|, s) and f(|x|, s)s > 0 for every x ∈ Ω and for every

s ∈ R \ {0}, then for every µ > 0, ϕ|∂B(0,µ) has infinitely many critical points [2].
An important tool of the proof is the Krasnoselskii genus, defined, for every closed
set A ⊂ ∂B(0, µ) such that −A = A, by

γ(A) = inf{m ≥ 0 : there exists an odd map h ∈ C(A,Sm−1)}.
If one defines

Γk = {A ⊂ ∂B(0, µ) : A is closed, −A = A and γ(A) ≥ k}
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and

βk = inf
A∈Γk

sup
u∈A

ϕ(u),

then the existence result can be restated more precisely as: For every k ≥ 1, there
is u ∈ ∂B(0, µ) such that ϕ(u) = βk and uk is a critical point of ϕ|∂B(0,µ), and
βk → 0 as k →∞.

Since the problem (1) is invariant under rotations, there is a natural ques-
tion about the symmetry of the solutions whose existence has been proved. We
prove that there exist solutions which share many properties of the solutions ob-
tained previsously which are invariant under some isometries. In order to state
the result, we need the notion of cap symmetrization (also called foliated Schwarz
symmetrization [3]), defined as follows: If u : Ω→ R is measurable and e ∈ SN−1,
then the cap symmetrization u∗ of u with respect to e is the unique function such
that for every r > 0 and c ∈ R,

∂B(0, r) ∩ {x ∈ Ω : u∗(x) > c}
is a geodesic ball in ∂B(0, r) centered around re, and has the same N − 1–
dimensional Hausdorff measure as

∂B(0, r) ∩ {x ∈ Ω : u(x) > c}.
Our main result is then: For every 1 ≤ k ≤ N , there is uk ∈ ∂B(0, µ) such
that ϕ(uk) = βk and uk is a critical point of ϕ|∂B(0,µ), and u∗k = uk [4]. If the
solution uk is not radially symmetric, then the level βk is degenerate and βN = βk.
Typically, our result should then only give one or two distinct critical levels with
axially symmetric critical points.

The proof is based on the fact that for every sequence (Am)m≥1 in Γk such
that supu∈Ak

ϕ(u) → βk, there exists a sequence (um)m≥1 such that um ∈ Am

and um converges to a critical point. In general, one can assume that γ(Am) = k.
Therefore, there exist an odd map hm ∈ C(Am, S

k−1) ⊂ C(Am, S
N−1), and we

could define A∗
m as the H1(Ω)–closure of the cap symmetrizations of functions

u ∈ Am with respect to hm(u). The set A∗
m is thus the closure of the image by

an odd mapping of Am. If this mapping was continuous, then one would have
γ(A∗

m) ≥ γ(Am) = k. Unfortunately, the mapping u 7→ u∗ is not continuous in
H1

0(Ω) when N ≥ 3 [1,4]. Moreover, ‖∇u∗‖2 ≤ ‖∇u‖2, and there is no equality in
general, so that A∗

m 6⊂ ∂B(0, µ) in general.
This problem can be circumvented by approximating the cap symmetrization

by continuous transformations. For a closed halfspace H ⊂ RN with ∂H ∋ 0, let
σH denote the reflection with respect to ∂H , and let the polarization of u : Ω→ R
with respect to H be the function uH : Ω→ R defined by

uH(x) =

{
max

(
u(x), u(σH(x))

)
if x ∈ Ω ∩H,

min
(
u(x), u(σH(x))

)
if x ∈ Ω \H.

The polarizations are continuous transformations of H1
0(Ω). Moreover, ‖∇uH‖2 =

‖∇u‖2 and ϕ(uH) = ϕ(u).
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The symmetrizations can be used to approximate the cap symmetrizations: If ·∗
denotes the cap symmetrization with respect to e ∈ SN−1, there exists a sequence
of closed halfspaces (Hn)n≥1 such that for every u ∈ Lp(Ω),

uH1...Hn → u∗

in Lp(Ω) as n→∞ [3,6]. Moreover, a sufficient condition on the sequence (Hn)n≥1

can be provided so that

uH1...Hn → u∗

in Lp(Ω) as n→∞ for every u ∈ Lp(Ω) [4]. (This condition is satisfied by almost
every sequence (Hn)n≥1.) Using this condition, it is possible to construct a set
A#

m such that for every v ∈ A#
m, there is u ∈ Am, ℓ ≥ 1 and (Hi)1≤i≤ℓ such that

v = uH1...Hℓ and ‖v−u∗‖p ≤ 1/m, where ·∗ is the symmetrization with respect to
hm(u). Therefore,

γ
(
A#

m

)
≥ k,

and there is a critical point which is a limit of points in the sets A#
m. By construc-

tion this critical point is invariant under some cap symmetrization.
The essential assumptions for this result are that ϕ is defined on a C1,1–

submanifold of a Sobolev space on a radial domain, that ϕ satisfies the Palais-
Smale condition at the level βk and that ϕ(uH) ≤ ϕ(u). The method is applica-
ble to Neumann boundary conditions, and also works for cylindrical domains [4].
There are similar results for other minimax principles as the mountain pass Lemma
and the linking Theorem [5].
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Elliptic Problems of Ambrosetti-Prodi Type

Shusen Yan

(joint work with E.N.Dancer)

We consider the following problem of Ambrosetti-Prodi type:

(1)

{
−∆u = g(u)− sϕ1(x), in Ω,

u = 0, on ∂Ω,

where s > 0 is a positive parameter, Ω is a smooth bounded domain in RN ,
ϕ1(x) > 0 is the eigenfunction of −∆ in Ω with Dirichlet boundary condition

corresponding to the first eigenvalue λ1, limt→+∞
g(t)

t = µ > λ1, limt→−∞
g(t)

t =
ν < λ1. Here µ = +∞ and ν = −∞ are allowed.

In the pioneering paper [1], Ambrosetti and Prodi showed that if 0 < ν < λ1 <
µ < λ2, the second eigenvalue of −∆ in Ω with Dirichlet boundary condition,
and g(t) is convex, then (1) has exactly two solutions for s > 0 large enough. If
+∞ > µ > λ2, it was proved by Hofer [3] and Solimini [5] that if s is large enough,
then (1) has at least four solutions for large s.

The results in [1, 3, 5] suggests that (1) have more solutions if (ν, µ) contains
more eigenvalues. In [4], Lazer and McKenna made a conjecture that if µ = +∞
and g(t) does not grow too rapidly, then (1) has an unbounded number of solutions
as s→ +∞.

There was no result on the Lazer and McKenna conjecture in partial differential
equation setting till recently. Breuer, McKenna and Plum [2], showed that (1) has
at least four solutions if g(t) = t2 and Ω is a rectangle in R2.

We will show that for some typical nonlinearities, such as g(t) = |t|p, 1 <
p < (N + 2)/(N − 2) if N ≥ 3, 1 < p < +∞ if N = 2, or g(t) = tp+ + λt,
where t+ = t if t ≥ 0, t+ = 0 if t < 0, λ ∈ (−∞, λ1), N ≥ 3 and 1 < p <
(N + 2)/(N − 2), the Lazer and McKenna conjecture is true. We prove this
conjecture by constructing solutions with many sharp peaks near some maximum
points of the first eigenfunction ϕ1(x) in Ω.

We are not able to prove that the Lazer and McKenna conjecture is true for
g(t) = tp+ +λt if N = 2. The main reason is that for N ≥ 3 and g(t) = tp+ +λt, we
use the solution of the following problem to build up a multipeak solution for (1):

(2)

{
−∆u = (u− 1)p

+, u > 0 in RN ,

u ∈ D1,2(RN ).

But if N = 2, (2) has no solution.
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Morse lemma at infinity for the sign-changing Yamabe problem

Abbas Bahri

We consider a toy problem on S3:

(2) 6u− 8∆u = u5

where the sign of u is not prescribed.
This problem ist known to have infinitely many solutions (W. Y. Ding) and

infinitely many asymptots which are weighted combinations of these solutions
properly scaled, translated and rotated.

We provide then a normal form for the functional associated to (1) near these
asymptots and establish a formula for the difference of topology induced by suitable
combinations of these asymptots.

This result uses the following conjecture:
There exists c(p) > 0 such that for all u ∈ Rp, for all a1, . . . , ap ∈ R3

sup
k

∣∣∣∣u
t ∂A

∂ak
i

u

∣∣∣∣+ |Au|2 ≥ c(p)
∑ u2

i

|ai − aj |2

where A = (αij)i,j=1,...,p is given by αij =

{
0 i = j

|ai − aj |−1 i 6= j

We think that there are continuous forms of this inequality as the number of
points tends to infinity.

Two remarkable consequences of this work are the following:

(1) An important piece of the difference of topology is provided by the ”fiber”-
bundle:

{u ∈ R
p − {0} : utAu < 0}

↓
(S3)p

∗

where

(S3)p
∗ = {(a1, . . . , ap) : ai ∈ S3 such that ai 6= aj for i 6= j}

(2) The exit set from the asymptots into the variational space does not depend
on the precise form of the functions involved in the definition of each
asymptot, but rather on the value of utAu where u is the ”direction vector”
corresponding to the sign of these functions at infinity.
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Open problems:
1. The topology of S

A formula for the difference of topology related to the asymptot
∑

ωi follows
from our results. The formula is not totally obvious, but parts of it are already
clear, as the exploration of the normal form of

P =
∑

ω̄i(˜̃aj)ω̄
∞
j εij −

∑
cijε

3
ij

shows. A quantity very close to P is P∞,

P∞ =
∑

ω̄∞
i ω̄∞

j εij −
∑

cijε
3
ij .

Thinking of εij as

1√
λiλj |ai − aj |

,

we get

P =

(
· · ·

ω̄∞
j√
λj

· · ·
)
A





...
ω̄∞

i√
λi

...




−
∑

cijε
3
ij .

We thus see that an important piece for this difference of topology is

S = {u ∈ R
p − {0}s.t.(Au, u) ≤ 0}.

This seems not to be quite true at first glance, since u =





...
ω̄∞

i

/√
λi

...



, so that

the sign of ui = ω̄√
λi

is prescribed. However, if we combine all the asymptots∑±ωi, with all possible signs in front of the ωi’s, the differences of topology of
each of this family of asymptots should “convex-combine” and give

((
S3
)p
∗ ×

(
R

P − {0}
)
, S
)

as one important piece of this difference of topology. Another piece will be provided
by the zero sets of the ωi’s and a last piece is less explicit, more related to the
relative position of ∇ω̄∞(ai) with respect to ∇ω̄∞

j .
It is an important open problem to explore the topology of S.

2. Non critical asymptots
A natural question follows from our program in 1. Assume that we have only

“masses” ω̄i such that ω̄∞
i is positive. Then, it is fairly obvious that such com-

binations of ω̄i do not build a genuine asymptot since tuAu is negative on them.
The same observation holds if ω̄∞

i are all negative. The result should hold as well
when there are many more negative (or positive) contributions than contributions
of the opposite sugn.
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We want to understand the critical configurations as the number of points tends
to +∞ and we want to relate them to discrete as well as continuous geometrical
problems on S3.

3. Establish the discrete inequality and continuous forms of the dis-
crete inequality

The discrete inequality |Au|2 + |tu ∂A
∂xγ

i

u| ≥ c
∑ u2

i

|xi−xj |2 is a key hypothesis in

the proof of our Morse Lemma at infinity. The proof of this conjecture for p = 3
by Y. Xu is quite involved. One would like to prove this inequality for every p and
to describe continuous forms of this inequality (as the number of points tends to
+∞).

4. Singular and Regular solutions of Yamabe-type problems

We have established in [1] a link between regular and singular solutions to
Yamabe-type equations.

This link is complicated to state (Proposition 10 of [1]). In words, some ob-
ject built part of singular solutions, part of regular solutions and their stable
and unstable manifolds does not change under homotopies of the domain Ωt (for
the Dirichlet Yamabe problem in R3) for which each piece (regular or singular)
changes. A similar phenomenon is described in Contact Form Geometry ([1]).

We believe that it is important to explore this link. For geometers, the set of
singular solutions is partly described in terms of Configuration Spaces ( of Ω). For
Analysts, (see [2]), very early on, the existence of smooth solutions is derived using
properties of the barycenter spaces (of Ω).

Clearly, there are composite objects, part configuration spaces, part barycenters
which should be glued up in order to understand better each piece. This general
idea underlies all our work since [2] and [3]. It is natural for us to explore the
link more. A very difficult conjecture (Conjecture A) for Yamabe-type problems
is for example stated in [1]. Any insight here could turn out to be important in
the study of regular solutions for the Yamabe problem (under Direchlet boundary
conditions) on contractible domains of R3.
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Brouwer Degree for Nodal Blow-up

Bernold Fiedler

(joint work with Hiroshi Matano)

Consider solutions u = u(t, x) of scalar parabolic equations

ut = uxx + λu + |u|p−1u

on 0 < x < π with Dirichlet boundary conditions. Assume p > 1 and λ > m2.
For solution profiles u(t, . ) with exactly m + 1 intervals of strict monotonicity
let u1, . . . , um denote the m extrema at positions 0 < x1 < · · · < xm < π. We
consider ancient solutions u(t, . ) → 0 for t → ∞, defined globally in backwards
time.

Theorem 1. Choose u1, . . . , um ∈ R ∪ {±∞}, not all finite, such that 0 <
u1 > u2 <> . . . . Then there exists an ancient solution with prescribed extrema
u1, . . . , um, precisely, at blow-up time.

Theorem 2. Choose σ0, . . . , σm > 0 such that σ0 + σ2 + · · · = σ1 + σ3 + · · · = 1.
Then there exists 0 < θ < π and an ancient solution with extrema at positions
x1, . . . , xm, precisely, at blow-up time, such that x0 = 0, xm+1 = π and

xj+1 − xj =

{
θσj for j = 0, 2, . . . even
(π − θ)σj for j = 1, 3, . . . odd

Extremal values satisfy 0 < u1 > u2 <> . . . but are not prescribed.

Remarks.

(i) The proof uses elementary Brouwer degree for maps which encode extremal
values uj and positions xj , respectively.

(ii) Theorem 1 loses track of positions xj , and Theorem 2 loses track of ex-
tremal values uj .

(iii) Analogous results hold for 0 > u1 < u2 >< . . . and for nonstrict inequal-
ities.

(iv) As a curiosity, for finite uj , we note that there exist unique linear com-
binations of sinx, . . . , sin(mx) with prescribed uj on σj , respectively. A
similar “shape interpolation” result holds true for the first eigenfunctions
of Sturm-Liouville problems of Dirichlet type.

Open Problem: Marry theorems 1 and 2 !

Critical exponents for uniformly elliptic extremal operators

Patricio Felmer

A cornerstone in the study of nonlinear elliptic partial differential equations is

(1) ∆u+ up = 0, u ≥ 0 in R
N ,

for which a complete description of the solutions depending on the exponent p
is known. The main result is the existence of a number p∗N = (N + 2)/(N − 2),
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known as critical exponent, such that when 1 < p < p∗N no non-trivial solution to
equation 1 exists, when p = p∗N then, up to scaling, equation 1 possesses exactly one

solution whose behavior at infinity is like |x|−(N−2) and when p > p∗N then equation
1 admits radial solutions with behavior at infinity like |x|−α, for α = 2/(p− 1).

In the proof of these basic results various important tools has been adapted
and developed, such as the celebrated Pohozaev identity, energy integrals, the
moving planes technique based on the maximum principle, the Kelvin transform
and Harnack inequalities. In this respect the work by Pohozaev [6], Caffarelli,
Gidas and Spruck in [1], Gidas and Spruck [5] and Chen and Li [2] have been
fundamental.

In the recent article [3], the author and Quaas consider a similar equation but
replacing the Laplacian by a Pucci’s maximal operator

(2) M+
λ,Λ(D2u) + up = 0, u ≥ 0 in R

N ,

p > 1 and 0 < λ ≤ Λ. We recall the definition of Pucci’s maximal operator:
consider the set SN

λ,Λ of symmetric matrices satisfying λI ≤ A ≤ ΛI and define

M+
λ,Λ(M) = sup

A∈SN
λ,Λ

tr(AM).

While the Pucci’s maximal operator shares many properties with the Laplacian,
like homogeneity, maximum principle and others, they divert from it in a funda-
mental manner. In fact the Pucci’s maximal operator does not have divergence
form and it does not possesses the equivalent of the Kelvin transform, prevent-
ing the use of many crucial tools in the analysis of the equation. Using different
techniques in [3] the author and Quaas considered the problem restricted to the
radially symmetric case and prove the existence of a critical exponent p∗ playing
the role of the critical exponent p∗N for the Laplacian.

In the case of the operatorM+
λ,Λ, the dimension like number

(3) Ñ+ =
λ

Λ
(N − 1) + 1

plays an important role. In fact, it is proved in [3] that the critical exponent p∗

satisfies

max{ Ñ+

Ñ+ − 2
, p∗N} < p∗ <

Ñ+ + 2

Ñ+ − 2
.

The Pucci’s extremal operators represents somehow the simplest version of a
fully non-linear, autonomous uniformly elliptic operator. It is the purpose of this
report to present results of critical exponents, in the case of radially symmetric
solutions, for an extense class of extremal operators, extending and deepening the
understanding started in [3].

We consider a set A ⊂ SN
λ,Λ satisfying PAP−1 ∈ A, for all A ∈ A and for all

orthogonal matrix P . Then, we define the maximal operator

MA(M) = sup
A∈A

tr(AM)
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In [4] we consider the nonlinear equation

(4) MA(D2u) + up = 0, u ≥ 0 in R
N .

We prove the existence of a critical exponent p∗A that determine the range of p > 1
for which we have existence or non-existence of radial solution to 4. More precisely,
we prove the following

Theorem 1. Let MA be a maximal operator as defined above. Then there are
two dimension like numbers N∞ ≤ N0 depending on the operator MA. Assume
that N∞ > 2 then there is a critical exponent p∗A such that

(5) max{ N∞
N∞ − 2

, p0} < p∗A < p∞,

where

p0 =
N0 + 2

N0 − 2
p∞ =

N∞ + 2

N∞ − 2
,

and such that:
i) If 1 < p < p∗A then there is no non-radial solution to 4.
ii) If p = p∗A then there is a unique radial solution of 4 whose behavior at infinity

is like r−(N∞−2).
iii) If p∗A < p then there is a unique radial solution to 4 whose behavior at

infinity is like r−α.
In ii) and iii) uniqueness is meant up to scaling.

Remark 2. The results discussed in this report are stated for maximal operators.
Analogous results can be obtained for minimal operators.

Theorem 1, i) may be seen as a Liouville type theorem for radially symmetric
solutions. Liouville type theorems are the on the basis of existence results in
bounded domains via degree theory. Actually, the success of this approach depends
on a priori bounds for the positive solutions of the equation, and these a priori
bounds are obtained by a blow-up technique and a Liouville type theorem.

In this direction we may state the following

Open Problem. Let p∗A be the critical exponent found in Theorem 1.
1) Let u ≥ 0 be a C2 solution of

MA(D2u) + up∗
A = 0, in R

N

then u is radially symetric?
2) Let u ≥ 0 be a C2 solution of

MA(D2u) + up = 0, in R
N

with 1 < p < p∗A, is u ≡ 0?
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Sign-changing multi-bump solutions for NLS with steep potential wells

Kazunaga Tanaka

(joint work with Yohei Sato)

We consider the existence and multiplicity of solutions of the following nonlinear
Schrödinger equations:

(Pλ) −∆u+ (λ2a(x) + 1)u = |u|p−1u in R
N , u ∈ H1(RN ).

Here p ∈ (1, N+2
N−2 ) if N ≥ 3, p ∈ (1,∞) if N = 1, 2 and a(x) ∈ C(RN ,R) is

non-negative on RN . We consider multiplicity of solutions (including positive and
sign-changing solutions) when the parameter λ is very large.

For a(x) we assume

(a1) a(x) ∈ C(RN ,R), a(x) ≥ 0 for all x ∈ RN and the potential well Ω =
int a−1(0) is a non-empty bounded open set with smooth boundary ∂Ω
and a−1(0) = Ω, where a−1(0) = {x ∈ RN ; a(x) = 0}.

(a2) 0 < lim inf |x|→∞ a(x) ≤ supx∈RN a(x) <∞.

When λ is large, the potential well Ω plays important roles and the following
Dirichlet problem appears as a limit of (Pλ):

−∆u+ u = |u|p−1u in Ω, u = 0 on ∂Ω.(1)

We remark that solutions of (Pλ) and (1) can be characterized as critical points of

Ψλ(u) =

∫

RN

1

2
(|∇u|2 + (λ2a(x) + 1)u2)− 1

p+ 1
|u|p−1 dx,(2)

ΨΩ(u) =

∫

Ω

1

2
(|∇u|2 + u2)− 1

p+ 1
|u|p+1 dx.(3)

Bartsch and Wang [3] and Bartsch, Pankov and Wang [4] (see also [2]) studied such
a situation firstly. Their assumptions on a(x) and nonlinearity are more general
and as a special case of their results we have
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(1) There exists a least energy solution uλ(x) of (Pλ). Moreover uλn
(x) con-

verges strongly to a least energy solution of (3) after extracting a subse-
quence λn →∞.

(2) When N ≥ 3 and p ∈ (1, N+2
N−2 ) is close to N+2

N−2 , there exists at least cat(Ω)

positive solutions of (Pλ) for large λ. Here cat(Ω) denotes Lusternik-
Schnirelman category of Ω.

(3) For any n ∈ N, there exists λ(n) ≥ 1 such that (Pλ) has n pairs of
(possibly sign-changing) solutions ±u1,λ(x), · · · ,±un,λ(x) for λ ≥ λ(n).
Moreover they converge to distinct solutions ±u1(x), · · · ,±un(x) of (1)
after extracting a subsequence λk →∞.

Here we remark that in [3], [4] they consider mainly the case where Ω is connected.
In this paper we consider the case where Ω consists of multiple connected com-

ponents: Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωℓ and we consider the multiplicity of positive and
sign-changing solutions for large λ.

We have studied the multiplicity of positive solutions in our previous paper [11]
(also independently by Cao and Noussair [8]) and it is shown that for any choice
of components Ωk1 , Ωk2 , · · · , Ωkm

, there exists a positive solution uλ(x) of (Pλ)
for large λ such that after extracting a subsequence λ→∞,

uλn
(x) →

{
ui(x) in Ωi (i ∈ {k1, · · · , km}),
0 in RN \ (Ωk1 ∪ · · · ∪ Ωkm

strongly in H1(RN ). Here ui(x) is a least energy solution of

(4) −∆u+ u = |u|p−1u in Ωi u = 0 on∂Ωi.

In particular, (Pλ) has at least 2ℓ − 1 positive solutions for large λ.
It is natural to ask the existence of a sequence of solutions of (Pλ) converging

to solutions of (4) in each Ωi, which may not be least energy solutions. For the
sake of simplicity, we assume that Ω consists of 2 components, that is,

(5) Ω = Ω1 ∪ Ω2.

When Ω = Ω1 ∪ Ω2, we have two limit problems (4) which are corresponding to

ΨΩi
(u) =

∫

Ωi

1

2
(|∇u|2 + u2)− 1

p+ 1
|u|p+1 dx : H1

0 (Ωi)→ R (i = 1, 2)

It is well-known that each functional has an unbounded sequences of critical points

(u
(i)
j (x))∞j=1 ⊂ H1

0 (Ωi) (i = 1, 2). For a given pair (u
(1)
j1

(x), u
(2)
j2

(x)) we study

the existence of a sequence of solutions uλ(x) ∈ H1
0 (RN ) which converges to

(u
(1)
j1

(x), u
(2)
j2

(x)) after extracting a subsequece. Here we give a partial answer

to this problem. More precisely, we try to find a solution uλ(x) ∈ H1
0 (RN ) which

converges to (u
(1)
1 (x), u

(2)
j2

(x)) as λn →∞, where u
(1)
1 (x) is a mountain pass solu-

tion of (4) in Ω1 and u
(2)
j2

(x) is a minimax solution of (4) in Ω2.

To find an unbounded sequence of critical values of a functional I(u) ∈ C1(E,R)
defined on an infinite dimensional Hilbert space E, the Z2-symmetry of I(u), that
is, I(±u) = I(u) for all u ∈ E, plays an important role. We remark that Ψλ(u) ∈
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C1(H1(RN ),R) and a functional Ψ̃(u1, u2) = ΨΩ1(u1) + ΨΩ2(u2) ∈ C1(H1
0 (Ω1)×

H1
0 (Ω2),R) corresponding to (4) in Ω1 ∪ Ω2 have different symmetries; Ψλ(u) is

Z2-symmetric and Ψ̃(u1, u2) is (Z2)
2-symmetric, that is,

Ψλ(su) = Ψλ(u) for all s ∈ Z2 = {−1, 1}, u ∈ H1(RN ),

Ψ̃(s1u1, s2u2) = Ψ̃(u1, u2) for all s1, s2 ∈ {−1, 1},
(u1, u2) ∈ H1

0 (Ω1)×H1
0 (Ω2).

Note that Z2-action on Ψλ(u) is corresponding to the following action on Ψ̃(u1, u2):

Ψ̃(su1, su2) = Ψ̃(u1, u2) for all s ∈ {−1, 1}, (u1, u2) ∈ H1
0 (Ω1)×H1

0 (Ω2)

and and there are no symmetries of Ψλ(u) corresponding to the following Z2-

symmetry of Ψ̃(u1, u2):

(6) Ψ̃(u1,±u2) = Ψ̃(u1, u2).

We also remark that solutions (u
(1)
1 (x), u

(2)
j2

(x)) are obtained using group action

(6). Thus to construct solutions uλ(x) converging to (u
(1)
1 (x), u

(2)
j2

(x)), we need to
develop a perturbation theory from symmetry and in this paper we use ideas from
Ambrosetti [1], Bahri-Berestycki [5], Struwe [13] and Rabinowitz [12] (See also
Bahri-Lions [6], Tanaka [14] and Bolle [7]). In these papers perturbation theories
are developed for elliptic problem: −∆u = |u|p−1u + f(x) in a bounded domain
Ω.

Theorem 1. Assume (a1)–(a2) and (5). Then there exists a sequence of min-
imax values bk = infσ∈Λk

max
θ∈S

n(k)
+

ΨΩ2(σ(θ)) for ΨΩ2(u) whose corresponding

critical points are connectable with mountain pass critical point for ΨΩ1(u). More
precisely, for any k ∈ N there exists λ(k) ≥ 1 such that for any λ ≥ λ(k), (Pλ)
has a solution uλ(x) such that

(1) Ψλ(uλ)→ cmp + bk as λ→∞, where cmp is a minimax value given by the
mountain pass theorem.

(2) For any given sequence λn → ∞, we can extract a subsequence λnℓ
→

∞ such that uλnℓ
(x) converges to a function u(x) strongly in H1(RN ).

Moreover u(x) satisfies (4) in Ω1∪Ω2, u = 0 in RN \ (Ω1 ∪Ω2) and u > 0
in Ω1.

(3) Moreover ΨΩ1(u|Ω1) = cmp, ΨΩ2(u|Ω2) = bk.

Remark 2. (i) Minimax values bk are defined using ideas from [1,5,12,13].
(ii) In the proof the discreteness of critical values due to Dancer [9, 10] plays an
important role.
(ii) When N = 1, we can show a stronger result. More precisely, any given pair

(u
(1)
j1
, u

(2)
j2

) of limit problems are connectable, that is, there exists a solution uλ(x)

which converges to u
(i)
ji

(x) in Ωi (i = 1, 2).

Next we deal with positive solutions. Our result is under the influence of [3].
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Theorem 3. Assume (a1)–(a2), (5) and N ≥ 3. Then there exists a p1 ∈ (1, N+2
N−2)

and λ1 ≥ 1 such that for p ∈ (p1,
N+2
N−2) and λ ≥ λ1, (Pλ) possesses at least

cat(Ω1) + cat(Ω2) + cat(Ω1 × Ω2) positive solutions.

Remark 4. (i) We remark that cat(Ω1 ∪ Ω2) = cat(Ω1) + cat(Ω2) and the argu-
ment of Bartsch and Wang [3] ensures the existence of at least cat(Ω1) + cat(Ω2)
positive solutions, which converges to a positive solution in one of the components
and to 0 elsewhere after extracting a subsequence. Our Theorem 3 ensures addi-
tional cat(Ω1×Ω2) positive solutions, which converges to positive solutions in both
components Ω1, Ω2.
(ii) We conjecture that (Pλ) has at least cat(Ω1) + cat(Ω2) + cat(Ω1) × cat(Ω2)
positive solutions for large λ.
(iii) we can also show the existence of cat(Ω1×Ω2) sign-changing solutions which
converge to positive solutions in Ω1 and negative solutions in Ω2.
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On the Brezis-Nirenberg Problem

Florin Catrina

(joint work with Richard Lavine)

Let B1(0) be the unit ball in RN , and consider the problem

(1)






− div(|x|−2a∇u) = |x|−bpup−1 + λ|x|−2(a+1)+cu

u(x) > 0 in B1(0)

u ∈ Da(B1(0))

The constants a, b, p, and N satisfy the conditions:

a <
N − 2

2
, a ≤ b ≤ a+ 1, p =

2N

N − 2(1 + a− b) , c > 0.
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When dealing with radial solutions, can allow: a − N−2
2 < b ≤ a + 1. The space

Da(B1(0)) is the Hilbert space obtained by the completion of C∞
0 (B1(0)) with

respect to the inner product

(u, v)a =

∫

B1(0)

|x|−2a∇u · ∇v dx.

For a = b = 0 and c = 2, the problem (1) becomes

(2)






−∆u = up−1 + λu

u(x) > 0 in B1(0)

u ∈ D0(B1(0))

with p = 2N
N−2 being the critical Sobolev exponent. The problem (2) has been

studied in [1] and the following intriguing fact was noticed.

Theorem 1. Denote by λ1 = λ1(N) the first eigenvalue in

−∆ϕ = λϕ, ϕ = 0 on ∂B1(0)

(a) for N ≥ 4 problem (2) has solution if and only if λ ∈ (0, λ1), and
(b) for N = 3 problem (2) has solution if and only if λ ∈ (λ1/4, λ1).

Due to the Gidas-Ni-Nirenberg result (see [5]) any solution of (2) is radial, i.e.
u(x) = u(|x|), and one may employ a Pohozaev type argument adjusted for ODE’s
in order to prove the nonexistence of solutions in the situation (b) of Theorem 1.

In this work we fill in a gap between previous existence and nonexistence results
due to Nicolaescu [6] and, Chou and Geng [4]. We give the precise range of the
parameter λ so that (1) has radial solution. We also give a new characterization
of the lower bound for nonexistence, as well as a procedure for finding a sharp
”Pohozaev factor” in the nonexistence argument. One should emphasize that the
moving plane arguments of [5] break down in the weighted situation of the problem
(1) and nonradial solutions should also be expected (see [2]). We state below the
result and mention an alternative way of getting to the sharp Pohozaev identity.

Theorem 2. For ν = N−2−2a
c let Z±(ν) be the first positive zero of the Bessel

function of the first kind J±ν(x), and let

λ1 =
( c

2
Z+(ν)

)2

, λ∗ =
( c

2
Z−(ν)

)2

.

(a) For 1 ≤ ν, problem (1) has a solution if and only if λ ∈ (0, λ1).
(b) For 1 > ν, λ1 > λ∗ > 0 and problem (1) has solution if and only if λ ∈ (λ∗, λ1).

By symmetry reduction, problem (1) becomes

(3)






− urr −
N − 2a− 1

r
ur = r2a−bpup−1 + λrc−2u

u(x) > 0 in (0, 1)

u ∈ Da,R(0, 1)
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Let u(r) = r−
N−2−2a

2 v(− ln r) with t = − ln r. Problem (3) transforms to

(4)





− vtt +

(
N − 2− 2a

2

)2

v = vp−1 + λe−ctv

v(t) > 0 in (0,∞), v ∈ H1
0 (0,∞)

By rescaling we can choose N − 2− 2a = 1 so that the equation (4) becomes

−vtt +
1

4
v = vp−1 + λe−ctv

Multiplying by the ”Pohozaev factor” φvt −
φt

2
v for some differentiable φ. Rear-

ranging terms:

d

dt

(
φv2

t

2
− φtvtv

2
+ v2

(
φtt

4
− φ

8
+
λe−ctφ

2

)
+
φ

p
vp

)

= v2

(
φttt

4
− φt

4
+ λe−ctφt −

λce−ctφ

2

)
+
p+ 2

2p
φtv

p.

We write φ as the product of two factors φ(t) = f(t) · g(t) to get

d

dt

{
1

2
W [v, f ]W [v, g] +

v2

4

[(
ftt −

1

4
f + λe−ctf

)
g

+

(
gtt −

1

4
g + λe−ctg

)
f

]
+
fg

p
vp

}

=
v2

4

[
g
d

dt

(
ftt −

1

4
f + λe−ctf

)
+ f

d

dt

(
gtt −

1

4
g + λe−ctg

)

+ 3gt

(
ftt −

1

4
f + λe−ctf

)
+ 3ft

(
gtt −

1

4
g + λe−ctg

)]

+
p+ 2

2p
(ftg + fgt)v

p.

Here W [v, f ](t) = v(t)ft(t)− vt(t)f(t) is the Wronskian.
The above identity suggests to take the factors f and g as solutions of the linear

equation

(5) −ftt +
1

4
f = λe−ctf

We then obtain the reduced identity

d

dt

(
W [v, f ]W [v, g] +

2

p
vpfg

)
=
p+ 2

p
vp(fg)t

which by integration from 0 to ∞ yields

−v2
t (0)f(0)g(0) =

p+ 2

p

∫ ∞

0

vp(fg)t dt
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If the left hand side is nonpositive, while the right hand side is positive, we get
the desired contradiction. These sign conditions reveal the sharp range for the
parameter λ so that (4) has no solution.

There is an alternative way of obtaining the reduced identity. Namely, by
combining equations (4) and (5) one gets

d

dt
W [v, f ] = vp−1f

Similarly for a different eigenfunction g,

d

dt
W [v, g] = vp−1g

Combining by the Product Rule one gets

d

dt
(W [v, f ]W [v, g]) = vp−1 (fW [v, g] + gW [v, f ])

which is a slightly different form of the reduced identity.
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On the joint actions of diffusion and spatial heterogeneity on single
and multiple species

Yuan Lou

We first study the effects of diffusion and spatial heterogeneity on the total
population size of a single species, and consider

(1.1a) µ∆θ + θ
[
m(x)− θ

]
= 0 in Ω θ > 0 in Ω,

(1.1b)
∂θ

∂n
= 0 on ∂Ω,

where the migration rate µ is assumed to be a positive constant, the function
θ = θ(x, µ) represents the density of the species at location x, and m(x) denotes
its local intrinsic growth rate. The habitat of the species Ω is a bounded region in
RN with smooth boundary ∂Ω, and n is the outward unit normal vector on ∂Ω.

We assume that
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(A) m(x) is non-constant, bounded and measurable, and
∫
Ωm(x) dx > 0.

For solutions of (1.1), the following results hold.

Theorem 1. Suppose that assumption (A) holds.

(a) For every µ > 0, the problem (1.1) has a unique positive solution θ(x, µ)
such that θ ∈W 2,p(Ω) for every p ≥ 1.

(b) As µ → 0+, the solution θ(x, µ) → m+(x) in Lp(Ω) for every p ≥ 1; as
µ→∞, the solution θ(x, µ)→ 1

|Ω|
∫
Ωm(x) dx in W 2,p(Ω) for every p ≥ 1.

(c) If m(x) is Hölder continuous in Ω, then θ ∈ C2(Ω̄). Moreover, θ(x, µ) →
m+(x) in L∞(Ω) as µ → 0, and θ(x, µ) → 1

|Ω|
∫
Ωm(x) dx in C2(Ω) as

µ→∞.

In view of Theorem 1, we introduce the function

(1.2) F (µ) ≡






∫

Ω

m+(x) dx, µ = 0,

∫

Ω

θ(x, µ)dx, µ > 0,

∫

Ω

m(x) dx, µ =∞,

which can be interpreted as the total population size of the species.

Theorem 2. [1] Suppose that assumption (A) holds.

(a) The function F (µ) satisfies F (µ) > F (∞) for every µ ∈ (0,∞).
(b) If m(x) ≥ 0 in Ω, then for every µ ∈ (0,∞), F (µ) satisfies

(1.3) F (0) = F (∞) < F (µ).

Part (a) of Theorem 2 implies that spatial heterogeneity increases the popula-
tion size of species; Part (b) of Theorem 2 implies that when m(x) is non-negative,
the total population size is minimized at µ = 0 and µ = ∞, and maximized at
some intermediate value µ∗.

If the function m(x) changes sign, we have

Theorem 3. [1] Suppose that Ω = (0, 1), m ∈ C2[0, 1], m changes sign, and
m(x) = 0 has only nondegenerate roots in [0, 1]. Then there exist positive constants

µ0 and c0 such that F (µ)− F (0) ≥ c0µ 2
3 for every µ ∈ (0, µ0). Thus,

(1.4) F (∞) < F (0) < sup
0<µ<∞

F (µ).

Theorems 2 and 3 suggest that the total population size of species is usually
maximized at some intermediate migration rate, and it turns out that this fact
has interesting applications to multiple species in the context of ecological inva-
sions. In this connection, we apply Theorems 2 and 3 to study the Lotka-Volterra
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competition-diffusion model

(1.5)






∂u

∂t
= µ∆u+ u [m(x)− u− bv] in Ω× (0,∞),

∂v

∂t
= ν∆v + v [m(x)− cu− v] in Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x),

where u(x, t) and v(x, t) represent the population densities of competing species
1 and 2 with respective migration rates µ and ν, the function m(x) represents
their common intrinsic growth rate, and b and c are inter-specific competition
coefficients. We shall assume that µ, ν, b, and c are positive constants, the growth
rate m(x) satisfies (A), and u0 and v0 are non-negative functions that are not
identically equal to zero.

For the last two decades there has been tremendous interest, by both mathe-
maticians and ecologists, in two-species Lotka-Volterra competition models with
spatially heterogeneous interactions.

When both µ and ν are sufficiently small [2] or both are sufficiently large,
the function m(x) is positive,and 0 < b, c < 1, then (1.5) has a unique, globally
asymptotic stable positive steady state. Hence, it seems reasonable to expect
that for other ranges of migration rates, the dynamics of (1.5) still should be
well behaved; e.g., the two competing species can coexist. However, as we shall
see later, given any non-constant positive function m(x), there exists a set of
parameters b, c ∈ (0, 1) and µ, ν > 0 such that one of the semi-trivial steady
states of (1.5) is the global attractor of (1.5). Therefore, the joint action of spatial
heterogeneity and diffusion can drive one of the species to extinction.

We start by studying the joint effects of migration and spatial heterogeneity
on the invasion of the species 2 when it is rare. The case of species 1 is simi-
lar. Mathematically, this is equivalent to studying the stability of the semi-trivial
steady state (θ, 0) of (1.5), where θ = θ(x, µ) is the unique positive solution of
(1.1). We are interested in the case 0 < c < 1. As an application of Theorem 2,
the stability of (θ, 0) when c ∈ (0, 1) can be described by

Theorem 4. [1] If assumption (A) holds and m(x) is non-negative, then there
exists some constant c∗ = c∗(m,Ω) ∈ (0, 1) such that the following results hold.

(a) For every c ∈ (0, c∗), the steady state (θ, 0) is unstable when µ > 0 and
ν > 0.

(b) For every c ∈ (c∗, 1), there exists ν̄ = ν̄(c,m,Ω) > 0 such that (i) for
every ν ∈ (0, ν), the steady state (θ, 0) is unstable when µ > 0; (ii) for
every ν > ν̄, the steady state (θ, 0) changes stability at least twice as µ
increases from 0 to ν.

Remark 5. The most interesting case is when c∗ < c < 1 and ν > ν̄, where the
followings hold.
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(a) If b > 1, it is well known that without migration, species 2 always drives
species 1 to extinction. However, Theorem 4 shows that with migration,
for some ranges of migration rates, species 2 may fail to invade when rare.

(b) If b < 1, it is well known that, without migration, species 1 always coexists
with species 2. Surprisingly, as shown in Theorem 6, for certain migration
rates, species 2 is able to drive species 1 to extinction for arbitrary initial
conditions.

For every c > 0, define

(1.6) Σc =
{
(µ, ν) ∈ (0,∞)× (0,∞) : (θ, 0) is linearly stable

}
.

By Theorem 4, the set Σc is non-empty for every c ∈ (c∗, 1).

Theorem 6. [1] If assumption (A) holds and m(x) is non-negative, then for
every c ∈ (c∗, 1), there exists b∗ = b∗(c,Ω,m) ∈ (0, 1] such that if b ∈ (0, b∗) and
(µ, ν) ∈ Σc, then (θ, 0) is globally asymptotically stable.

We conjecture that Theorem 6 holds with b∗ = 1.
For the case when m(x) changes sign, the stability of (θ, 0) can be described

similarly.
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