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Introduction by the Organisers

The workshop Explicit Methods in Number Theory was organised by Henri Cohen
(Talence), Hendrik W. Lenstra (Leiden), and Don B. Zagier (Bonn) and was held
July 17–23, 2005. Three previous workshops on the topic had been held in 1999,
2001, and 2003. The goal of this meeting was to present new methods and results
on concrete aspects of number theory. In many cases, this included computational
and experimental work, but the primary emphasis was placed on the implications
for number theory rather than on the computational methods employed.

There was a ‘mini-series’ of five 1-hour morning talks given by Bas Edixhoven,
Johan Bosman, Robin de Jong, and Jean-Marc Couveignes on the topic of com-
puting the coefficients of modular forms. Let

∆ = q
∏

n≥1

(1 − qn)24 =
∑

n≥1

τ(n)qn

be Ramanujan’s tau function, a newform of weight 12 for SL2(Z). The speakers
exhibited a method to compute τ(p) for p prime in time polynomial in log p.

Some of the other main themes included:
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• Modular forms, q-expansions, and Arakelov geometry
• Rational and integral points on curves and higher-dimensional varieties
• Integer factorization
• Counting points on varieties over finite fields
• Class groups of quadratic and cubic fields and their relationship to geom-

etry, analysis, and arithmetic.

As always in Oberwolfach, the atmosphere was lively and active, providing an
ideal environment for the exchange of ideas and productive discussions. This meet-
ing was well-attended—with over 50 participants from a variety of backgrounds
and with broad geographic representation from all continents, including a number
of younger researchers. There were 30 talks of various lengths, and ample time
was allotted for informal collaboration.
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Generating Subfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1858



Explicit Methods in Number Theory 1803

Abstracts

On the computation of the coefficients of a modular form, I:
introduction

Bas Edixhoven

(joint work with Jean-Marc Couveignes, Robin de Jong)

The following text is based on notes taken by Bjorn Poonen. I thank him for
letting me use his notes. The responsibility for mistakes in this text is mine.
As this text has been edited shortly after the conference, it also reflects some
comments from and discussions with the audience.

Let

∆ = q
∏

n≥1

(1 − qn)24 =
∑

n≥1

τ(n)qn

with q = e2πiz for z ∈ H (the upper half plane). This ∆ is a newform of weight
12 for SL2(Z).

If one has the factorization of n, one can easily compute τ(n) in terms of the
τ(p) for primes p dividing n. (If one can compute the coefficient σk−1(n) of the
Eisenstein series Ek, one can go backwards, and factor n. It’s not clear that one
can do this for τ .)

Theorem 1 (Deligne 1969). For all primes ℓ, there is a unique continuous semisim-
ple representation

ρℓ : Gal(Q/Q) → GL(Vℓ)

where Vℓ is a 2-dimensional Fℓ-vector space, unramified outside ℓ, such that for
all primes p 6= ℓ,

det(1 − xFrobp |Vℓ) = 1 − xτ(p) + x2p11

in Fℓ[x].

Later Deligne showed also that |τ(p)| < 2p11/2. (Hecke had proved |τ(p)| =
O(p6), with an explicit constant, and this will suffice for our purposes.)

Aim of the project:

(1) To show that ρℓ can be computed in time polynomial in ℓ.
(2) To show that for big primes p, the value of τ(p) can be computed in time

polynomial in log p. (Question of René Schoof)

The first can be used to do the second. We claim that these can be done in
deterministic polynomial time, but our presentation will use randomness.

Theorem 2 (Swinnerton-Dyer and Serre 1972). For ℓ /∈ {2, 3, 5, 7, 23, 691}, we
have Im ρℓ ⊇ SL(Vℓ); i.e.,

Im(ρℓ) = {g ∈ GL(Vℓ) : det g is an 11-th power}.
In what follows we will suppose that ℓ /∈ {2, 3, 5, 7, 23, 691}.
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Theorem 3 (Deligne 1969). The dual representation V ∨
ℓ is contained in the 11th

étale cohomology group H11(E10
Q,et

,Fℓ) of the 11-dimensional variety that is the

10-th fibered power of the universal elliptic curve over the j-line. Also,

V ∨
ℓ = H1(j-line

Q,et, Sym10(R1π∗Fℓ)).

Let Xℓ be the modular curve X1(ℓ), and let Jℓ be its Jacobian. Then Vℓ ⊂
Jℓ(Q)[ℓ]. We have

Xℓ(C) = Γ1(ℓ)\(H ∪ P1(Q))

where Γ1(ℓ) is the inverse image in SL2(Z) of the subgroup

(
1 ∗

1

)
of SL2(Z/nZ).

This is related to the fact that ∆ is congruent modulo ℓ to a weight 2 form of
level ℓ. The genus of Xℓ is about ℓ2/24. Let Tℓ ⊂ End(Jℓ) be the Hecke algebra,
generated by the Tn, n ≥ 1, and 〈a〉, for a ∈ F×

ℓ . As a Z-module, it is free of rank
gℓ. Then

Vℓ =
⋂

1≤i≤(ℓ2−1)/6

ker
(
Ti − τ(i), Jℓ(Q)[ℓ]

)
:

this follows from a multiplicity 1 result and a result of Jacob Sturm bounding the
number of i needed.

Strategy: Choose an effective divisor D = P1 + · · · + Pgℓ
of degree gℓ on Xℓ,Q

and a map f : Xℓ,Q ։ P1
Q. Then:

X1(C)gℓ → Jℓ(C) = Cgℓ/Λℓ

(Q1, . . . , Qgℓ
) 7→ [Q1 + · · · +Qgℓ

−D] =

gℓ∑

i=1

∫ Qi

Pi

(ω1, . . . , ωgℓ
),

where the ωi are newforms, normalized by a1(ωi) = 1, and Λℓ = H1(Xℓ(C),Z).
Since the induced map Symgℓ Xℓ → Jℓ is a birational morphism, with some luck,
for all nonzero x ∈ Vℓ, there exists a unique effective D′

x = Qx,1 + · · · + Qx,gℓ

of degree gℓ with [D′
x − D] = x, and D′

x is disjoint from the poles of f . The
uniqueness of D′

x satisfying [D′
x − D] = x is equivalent to h0(Xℓ,Q,Lx(D)) = 1,

where Lx is the line bundle corresponding to x.
Consider the polynomial

Pℓ :=
∏

x∈Vℓ−{0}
(T −

∑

i

f(Qx,i)) ∈ Q[T ]

of degree ℓ2 − 1. One could use a variant
∏

lines L⊂Vℓ

(T −
∑

06=x∈L

∑

i

f(Qx,i)),

which has degree ℓ+ 1.
Now Pℓ can be approximated in C[T ], or computed modulo p in Fp[T ] for many

p.
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Theorem 4. (not completely written up yet) There exists an explicit c (maybe
c = 16) such that for all ℓ, one can choose D and f so that the logarithmic height
of the coefficients of Pℓ are O(ℓc).

The proof of this theorem is the subject of lectures 3 and 4 of this series.
Choice of D: We will do this on Xℓ redefined as X1(5ℓ), and with D over Q(ζℓ)

(this not change anything above significantly).
Idea: Specialize to Xℓ,Fℓ

. As x 0, Lx  OXℓ,Fℓ
. For a place of Q over ℓ, the

kernel of reduction modulo ℓ in Vℓ is a line if ℓ ∤ τ(ℓ), and is Vℓ if ℓ | τ(ℓ).
Note: Gal(Q/Q(ζℓ)) acts transitively on Vℓ−{0}, and fixesD, so h0(Xℓ,Q,Lx(D))

is independent of x. All we need is that h0(Xℓ,Fℓ
,O(D)) = 1. Equivalently by

Riemann-Roch and Serre duality, we need h0(Xℓ,Fℓ
,Ω(−D)) = 0.

Let X1, X2 be the two components of Xℓ,Fℓ
, and let Σ = X1 ∩ X2. Then

X1 → X1(5)
Fℓ

x
∼→ P1

Fℓ
. The curve X1 has an equation yℓ−1 = f(x) where f has

degree ℓ− 1 and simple zeros, and Σ is the set of zeros of y. Then D = D1 +D2

with D1 on X1 and D2 on X2.
Recipe for D1: distribute the multiplicities 0, 1, . . . , ℓ− 2 over the ℓ− 1 zeros of

x on X1. For D2: — 0, 0, 1, 2, . . . , ℓ− 3.

Characterizing characteristic 0 function fields

Bjorn Poonen

Consider first-order formulas in the language of rings. We will not give a precise
definition of first-order formula here, but loosely speaking it is an expression built
up from the symbols +, ·, 0, 1,=, (, ), the logical relations ∧ (“and”), ∨ (“or”), ¬
(“not”), the quantifers ∀ (“for all”) and ∃ (“there exists”), and variables x, y, z, . . . .
For instance,

(∀y)(∃z)(∃w) (x · z + 1 + 1 = y2) ∨ ¬(z = x+ w)

is a first-order formula. In this example, the variables y, z, w are bound by quan-
tifiers, and the variable x is free. A first-order formula in which all variables
are bound by quantifiers is called a first-order sentence. From now on, it will be
understood that formulas and sentences are first-order formulas and sentences.

If we fix a ring R, then it is understood that the variables represent elements in
R. (In contrast, second-order logic allows variables ranging over subsets.) Then
for each assignment of elements of R to the free variables, we get a truth value.
In particular, a sentence has a truth value for each ring R.

It is important, especially when trying to transfer results from one ring to
another, to know whether a ring-theoretic property can be expressed by the truth
of a first-order sentence. For example, it is a basic theorem of model theory that
a sentence true for one algebraically closed field of characteristic 0 is true for
all algebraically closed fields of characteristic 0; it is because of this that many
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theorems proved for C using analytic methods are known to hold for arbitrary
algebraically closed fields of characteristic 0.

By compactness, there does not exist a sentence that for each field K is true
if and only if K is of characteristic 0. We prove that, on the other hand, there is
a sentence with this property if we consider only finitely generated fields, that is,
fields that are finitely generated (as a field) over the prime subfield. Such fields
are the finite extensions of rational function fields Fp(t1, . . . , tn) or Q(t1, . . . , tn).

Theorem 1. There is a sentence that is true for all finitely generated fields of
characteristic 0, and false for all finitely generated fields of characteristic > 0.

The proof makes use of two earlier results. To state these, we need a few
definitions.

Definition 2. The Kronecker dimension of a finitely generated field K is

KrdimK :=

{
trdeg(K/Fp), if charK = p > 0

trdeg(K/Q) + 1, if charK = 0.

A global field is a finitely generated field K with KrdimK = 1; such a field is either
a number field (finite extension of Q) or a global function field (function field of a
curve over a finite field).

Definition 3. The Pfister form 〈〈a1, . . . , an〉〉 is the diagonal quadratic form in 2n

variables whose coefficients are
∏

i∈S ai as S ranges through subsets of {1, . . . , n}.
For example, 〈〈a, b〉〉 is the quadratic form

x2
1 + ax2

2 + bx2
3 + abx2

4.

Among other things, R. Rumely proved our Theorem 1 for global fields:

Theorem 4 ([Rum80]). There is a sentence that is true for all number fields and
false for all global function fields.

Rumely’s idea was to build on work of J. Robinson to define the family of
valuation rings of a global field K in a uniform first-order way, and then to observe
that a global field is a number field if and only if the intersection of the valuation
rings is not a field.

F. Pop, as part of his work on the “elementary equivalence versus isomorphism”
problem for finitely generated fields, discovered that recent work on isotropy of
Pfister forms could be used to characterize fields of given Kronecker dimension:

Theorem 5 ([Pop02]). For each n ∈ N and finitely generated field K, we have
KrdimK ≤ n if and only if either

• 2 = 0 and [K : K2] ≤ 2n, or
• 2 6= 0 and every Pfister form 〈〈a1, . . . , an+2〉〉 over K(

√
−1) represents 0

over K(
√
−1).

Thus, for each n ∈ N, there is a sentence σn that for a finitely generated field K
holds if and only if KrdimK = n.
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Definition 6. If φ is a first-order formula with n + 1 free variables, then for
any field K, the set of ā ∈ Kn+1 satisfying φ is a subset A ⊆ Kn+1. We have
a projection Kn+1

։ Kn that discards the last coordinate. The fibers of the
composition A →֒ Kn+1

։ Kn form a family of subsets of K. Such a family will
be called a definable family of subsets. We will call it a uniformly definable family of

subsets in the situation where we have a definable family of subsets of K for many
different fields K, and the formula that defines it is independent of K.

Now we list the main steps in the proof of Theorem 1. It suffices to find a
sentence that works for the finitely generated fields with

√
−1 ∈ K, so we assume

this from now on. In the case where charK = 0, we let k be the relative algebraic
closure of Q in K, so k is a number field. With this notation, the following steps
give a proof that there is a uniformly definable family F of K such that whenever
K is a finitely generated field of characteristic 0 containing

√
−1, we have k ∈ F .

(1) Prove that there exists an elliptic curve E over Q such that E(Q) is infinite
and E(K) = E(k). The key here is to reinterpret E(K) as the set of k-
rational maps Alb V 99K Ek where AlbV is the Albanese variety of a
k-variety V with function field K, and Ek = E ×Q k.

(2) Observe that for such E, the set of values of the rational function x/y (a
uniformizing parameter at ∞ for a Weierstrass model) on E(K) is a subset
R of k such that R ∩ Q is p-adically dense in a neighborhood of 0 in Qp

for all primes p.
(3) Ratios of elements from this R form a subset S of k such that S ∩ Q is

p-adically dense in Qp for all primes p.
(4) For t ∈ K,

t ∈ k ⇐⇒ ∀s1, s2, s3 ∈ S, 〈〈s1, s2, t− s3〉〉 represents 0 over K.

(5) For each (a, b) ∈ K2, we get a curve E : y2 = x3 + ax + b over K, and a
subset of K defined in the previous step. These form a uniformly definable
family F of subsets indexed by (a, b) ∈ K2. If (a, b) define the special E
described in the first step, then the corresponding subset of K equals k.

Now, given any finitely generated field K containing
√
−1, we can say that

charK = 0 if and only if there exists a subset S ∈ F such that S is a field and
KrdimS = 1 and S is a number field. The conditions on S can be expressed in a
first-order sentence, because of Theorems 4 and 5. This completes the sketch of
the proof of Theorem 1.

With a lot more work, one can find also a formula with one free variable that
for any finitely generated field K defines the relative algebraic closure k of the
prime field in K, and a formula φn(x1, . . . , xn) with n free variables that holds in
a finitely generated field K for elements x1, . . . , xn if and only if x1, . . . , xn are
algebraically dependent over k.

One can also prove some geometric analogues, for function fields over alge-
braically closed or other large fields: these geometric analogues will appear in a
joint paper with F. Pop.
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Computing zeta functions of surfaces

Kiran S. Kedlaya

We describe an ongoing project with two MIT undergraduates (Tim Abbott
and David Roe) to compute the zeta function of a smooth projective surface over
the field Fp, for p a small prime, by adapting the Griffiths-Dwork algorithm for
computing Picard-Fuchs equations of pencils of smooth projective hypersurfaces
over C [3, §5], in the spirit of the author’s algorithm for computing zeta functions
of hyperelliptic curves [7]. (The technique can be applied more generally to smooth
toric hypersurfaces over finite fields of small characteristic; see for example [5, §5]
for the analogue of the Griffiths-Dwork algorithm.)

Let X be the smooth projective surface defined by the homogeneous polyno-
mial Q(w, x, y, z) of degree d, and choose a lift Q(w, x, y, z) to a homogeneous
polynomial over Zp of degree d. The zeta function of X can be obtained as

ζX(t) =

4∏

i=0

det(1 − Ft,Hi(X))(−1)i+1

for any Weil cohomology Hi. By Lefschetz, in fact we have

ζX(t) =
1

(1 − t)(1 − pt)(1 − p2t) det(1 − Ft,H2
prim(X))

,

where H2
prim(X) denotes the primitive part of H2(X).

For our computations, we use Berthelot’s rigid cohomology [1], [2]; in this case
H2

prim(X) can be identified (via a Gysin map) with the algebraic de Rham coho-

mology of the affine variety U = P3
Qp

\ V (Q) over Qp. The cohomology of the

latter can be described (following Griffiths) as follows. Write

Ω = wdx ∧ dy ∧ dz − xdw ∧ dy ∧ dz + ydw ∧ dx ∧ dz − zdw ∧ dx ∧ dy.
Then every 3-form on U has the form PΩ/Qm for some integer m ≥ 4/d and
some homogeneous polynomial P of degree md− 4. The cohomology space is the
quotient of the space of these forms by the space spanned by relations of the form

mAwQΩ −AQwΩ

Qm+1
,

for A a homogeneous polynomial of degree md− 3, and similarly with w replaced
by x, y, z. (The subscript denotes partial differentiation.) This gives efficient
algorithms for computing a basis of cohomology and for expressing an arbitrary
form as a linear combination of basis elements plus an exact form.
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The action of Frobenius on the rigid cohomology is given by the ring ho-
momorphism F on the weak completion (in the Monsky-Washnitzer sense) of
Zp[w, x, y, z,Q

−1]0 (degree zero part) defined by

F (w) = wp

F (x) = xp

F (y) = yp

F (z) = zp

F (Q−1) = (Q−1)p(1 + (F (Q)(Q−1)p − 1))−1;

the point here is that (F (Q)(Q−1)p − 1) is divisible by p, so we may expand
(1 + (F (Q)(Q−1)p − 1))−1 as a geometric series. (One can also compute this
inverse using a Newton iteration, but we do not need enough terms of the series
to make this worth doing.)

Since one wishes to perform a finite computation, one cannot compute F ex-
actly; instead, one must retain enough terms so that when one applies F to a
basis of cohomology, reduces, and extracts a matrix for Frobenius, the resulting
characteristic polynomial is close enough to the right answer that the right answer
is uniquely determined by some size estimates (derived optimally using the Weil
conjectures). There is a subtlely here in that the reduction of some PΩ/Qm may
have worse denominators than does P , since one divides by as much as (m − 1)!
in the course of doing the reduction. However, the experience of [7] and the com-
parison theorem between rigid and de Rham cohomology suggest that because of
massive cancellation, the true precision loss is closer (in valuation) to logpm than
to m/(p − 1); we are still in the process of determining the precise nature of the
cancellation in this situation.

In the interim, we have made some computations to gauge the feasibility of this
approach, using a combination of the packages Singular [6] (for calculations using
Gröbner bases) and Magma [4] (for other calculations). It seems that computing,
say, the full zeta function of a degree 4 surface over a small Fp may be tractable
via this approach, while a degree 5 surface looks much less so because of space
constraints. However, one does extract some useful information by computing
the Frobenius matrix modulo a small power of p; for instance, this can be used to
determine the Newton polygon and to bound from above the number of roots which
are equal to p times roots of unity, thus limiting the (geometric) Picard number
of the surface via the easy half of Tate’s conjecture. In particular, we expect to be
able to produce many examples of degree 5 surfaces over F2 with geometric Picard
number 1; this would answer a question of Voloch (private communication).
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Annihilation of Sha on Jacobians

E. Victor Flynn

(joint work with Nils Bruin)

We discuss work on the problem of determining the free rank of the Mordell-Weil
group J(K) of an Abelian variety J over a number field K. Due to failures of
the local-to-global principle, the bounds obtained from Selmer groups need not
be sharp. The Shafarevich-Tate group of J over K measures this failure and the
standard exact sequence

0 → J(K)/mJ(K) → S(m)(J/K) → X(J/K)[m] → 0

gives the relation between the Selmer group and J(K)/mJ(K).
If δ ∈ S(m)(J/K) does come from an element in J(K)/mJ(K), one can show

this by exhibiting a point P ∈ J(K) that maps to δ. Since such a point is of finite
height, one can find it in finite time. The converse is harder to decide. Suppose
that δ ∈ S(m)(J/K) represents a suspected non-trivial element in X(J/K)[m].
Since we do not have an upper bound on the smallest height of a possible point
P ∈ J(K) that maps to δ, a failure to find such a point does not prove that δ is
not in the image of J(K).

Several methods are available to refine the bounds on #J(K)/mJ(K) and thus
possibly decide if δ ∈ S(m)(J/K) represents a non-trivial element in X(J/K):
comparing bounds obtained from different descents (see [11], for example), deeper
descents (as in [5], [9]), the use of isogenous Abelian varieties, and visualisation
(as in [1], [2], [7], [4], [8]).

Of these methods, the last is the most amenable to generalisation to the Ja-
cobian J of a higher genus curve. We can construct another Abelian variety B
such that the product J × B has a non-trivial isogenous Abelian variety A. The
relevant groups for product varieties are easily expressed in terms of the factors:

(J ×B)(K) ≃ J(K) ×B(K)

S(m)(J ×B/K) ≃ S(m)(J/K) × S(m)(B/K)
X(J ×B/K) ≃ X(J/K) × X(B/K).

It follows that rkA(K) = rkJ(K) + rkB(K). By comparing S(m)(A/K) and
S(m)(J ×B/K) one may be able to conclude that X(J ×B/K)[m] is non-trivial
and a further analysis may allow the conclusion that X(J/K)[m] is non-trivial.

We focus on annihilation by base field extension, which is a special case of
visualisation, where A is taken to be the Weil restriction of scalars of J with
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respect to a suitable extension L of K in the following way. Let δ ∈ S(m)(J/K)
represent a non-trivial element δ ∈ X(J/K)[m], in which case we have X(J/K) ⊂
H1(K, J). We take L to be an extension such that the restriction of δ from
Gal(K/K) to Gal(K/L) is trivial. In particular, we apply this method to Jacobians
of hyperelliptic curves.

The term visualisation originates from Mazur and refers to the fact that the
homogeneous spaces represented by the relevant elements of S(m)(J/K) occur as
fibres of the map A→ B. This description of the homogeneous spaces is considered
so explicit that the homogeneous space is visualised. Given an short exact sequence
of Abelian varieties

0 → J → A→ B → 0,

one defines the visualised subgroup of H1(K, J) by

0 → VisK(J → A) → H1(K, J) → H1(K,A) → H1(K,B).

It is straightforward to check that for δ ∈ S(m)(J/K), one can only expect to prove
that the class δ of δ in X(J/K) is non-trivial via comparison with S(m)(A/K) if
δ ∈ VisK(J → A). If that is the case, by abuse of terminology we will say that δ
is visualised in A.

For example, using the field extension from Q to Q(
√
−3), we can show the

following.

Example 1. Let J be the Jacobian over Q of

C : y2 = x5 − 81x− 243.

Then J(Q) = {0} and X(J/Q)[2] = (Z/2Z)2.

Independently of visualisation methods, if C is a curve of genus 2 with a rational
Weierstrass point then δ ∈ H1(K, J [2]) has a degree 4 del Pezzo surface Vδ related
to it. If δ ∈ S(2)(J/K) and Vδ has no rational points then δ represents a non-trivial
element of X(J/K)[2]. We can use the Brauer-Manin obstruction on del Pezzo
surfaces of degree 4 to infer information about X(Jac(C)/K)[2] for curves C of
genus 2. In fact, we exploit an example in [3] of a violation of the Hasse principle
on a degree 4 del Pezzo surface to obtain the following explicit infinite family.

Proposition 2. Let Cℓ,λ : Y 2 = ℓ
(
X2 − 2

)(
X − λ+2

λ+1

)(
X − λ

)(
X − 3λ+4

2λ+3

)
,

and let Jℓ,λ be the Jacobian of Cℓ,λ. There exists a nontrivial member of
X(J−2k,− 13

8
/Q)[2] for any k of the form

(1) k = 80(t5 − t+ 1)2
(
(t5 − t+ 1)2 + 10

)2
+

(
(t5 − t+ 1)2 − 10

)4
,

for any t ∈ Q. Furthermore, J−2k,− 13
8

is absolutely simple.

There are also infinite families of nontrivial X(J/Q)[2] in [6] and [10], but the
nature of our examples (being a familiy of twists) and the method of proof (using
the Brauer-Manin obstruction on degree 4 del Pezzo surfaces) is quite different.
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As a consequence, we recover a proof of [2, Proposition 2.3] that any element of
H1(K, J) represented by δ ∈ H1(K, J [2]) can be visualised in an Abelian variety
of dimension at most d22d. In fact, we prove the small improvement that if δ ∈
S(2)(J/K) and C has at least dimJ rational Weierstrass points then it can be
visualised in an Abelian variety of dimension at most d22d−1.

Conditional on the conjecture that the Brauer-Manin obstruction is the only
obstruction for del Pezzo surfaces having rational points, it would follow that
one can either show that δ represents a non-trivial element in H1(K, J) by local
methods or the Brauer-Manin obstruction on Vδ, or δ can be visualised in an
Abelian variety of dimension 4. This is better than than the general bound of 32
on the visualisation dimension.
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Computing maximal orders of quaternion algebras

John Voight

Let F be a number field, specified in the usual way in bits by an irreducible poly-
nomial over Q, and let ZF be its maximal order, encoded by a Z-basis. It is well-
known that the problem of computing ZF given F is deterministic polynomial-time
equivalent to the problem of given a positive integer finding its largest squarefree
divisor. We prove an analogous statement in a noncommutative setting.
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A quaternion algebra over F is a central simple F -algebra with dimF A = 4, or
equivalently an F -algebra which is generated by α, β ∈ A such that

α2 = a, β2 = b, αβ = −βα

for some a, b ∈ F ∗, denoted A =

(
a, b

F

)
. A quaternion algebra is encoded in bits

by the pair a, b. A ZF -lattice of A is a finitely generated ZF -submodule Λ of A
satisfying FΛ = A. An order of A is a ZF -lattice which is also a subring; an order
is maximal if it is not properly contained in any other order. We specify an order
O by a Z-basis.

We are therefore interested in the following problem (O): Given A, find a
maximal order O ⊂ A. We prove the following theorem.

Theorem. Problem (O) for any fixed F is probabilistic polynomial-time equivalent
to the problem of factoring integers.

The implication (⇐) follows from the work of [1, Theorem 5.3]; their algorithm
works in the more general setting of semisimple algebras over Q. We are able to
provide an algorithm which is simpler and may run more efficiently for the specific
case of quaternion algebras over number fields.

To prove the implication (⇒), we suppose that we wish to factor the integer
a ∈ Z>0. Then we select an appropriate b ∈ ZF /aZF such that the quaternion

algebraA =

(
a, b

F

)
has the property that a maximal orderO ⊂ A has discriminant

d(O) ⊂ ZF whose norm yields a proper factor of a. The choice of b requires a
random choice which is analogous to finding a nonresidue modulo a prime, a
problem which has satisfactory probabilistic polynomial-time solutions but for
which no deterministic polynomial-time algorithm is known. For the details of the
proof, we refer the reader to [2].
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[1] Gábor Ivanyos and Lajos Rónyai, Finding maximal orders in semisimple algebras over Q,
Comput. Complexity 3 (1993), 245–261.

[2] John Voight, Quadratic forms and quaternion algebras: Algorithms and arithmetic, Ph.D.
thesis, University of California, Berkeley, 2005.

Ratios of factorial and algebraic hypergeometric functions

Fernando Rodriguez-Villegas

Chebychev in his work on the distribution of primes numbers used the following
fact

un :=
(30n)!n!

(15n)!(10n)!(6n)!
∈ Z, n = 0, 1, 2, . . .

This is not immediately obvious (for example, this ratio of factorials is not a
product of multinomial coefficients) but it is not hard to prove. The only proof I
know proceeds by checking that the valuations vp(un) are non-negative for every
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prime p; an interpretation of un as counting natural objects or being dimensions
of natural vector spaces is far from clear.

As it turns out, the generating function

u :=
∑

ν≥1

unλ
n

is algebraic over Q(λ); i.e. there is a polynomial F ∈ Z[x, y] such that

F (λ, u(λ)) = 0.

However, we are not likely to see this polynomial explicitly any time soon as its
degree is 483, 840 (!).

What is the connection between un being an integer for all n and u being
algebraic? Consider the more general situation

un :=
∏

ν≥1

(νn)!γν ,

where the sequence γ = (γν) for ν ∈ N consists of integers which are zero except
for finitely many.

We assume throughout that γ is regular, i.e.,
∑

ν≥1

νγν = 0,

which, by Stirling’s formula, is equivalent to the generating series u :=
∑

ν≥1 unλ
n

having finite non-zero radius of convergence. We define the dimension of γ to be

d := −
∑

ν≥1

γν .

To abbreviate, we will say that γ is integral if un ∈ Z for every n = 0, 1, 2, . . ..
We can now state the main theorem of the talk.

Theorem 1. Let γ 6= 0 be regular; then u is algebraic if and only if γ is integral
and d = 1.

One direction is fairly straightforward. If u is algebraic, by a theorem of Eisen-
stein, there exists an N ∈ N such that Nnun ∈ N for all n ∈ N. It is not hard to
see that in our case if such an N exists then it must equal 1. To see that d = 1
we need to introduce the monodromy representation.

The power series u satisfies a linear differential equation Lu = 0. After possibly
scaling λ this equation has singularities only at 0, 1 and ∞. Indeed, u is a hyper-
geometric series. Moreover, these singularities are regular singularities precisely
because we assumed γ to be regular.

If we let V be the space of local solutions to Lu = 0 at some base point not 0, 1
or ∞ then analytic continuation gives a representation

ρ : π1(P
1 \ {0, 1,∞}) −→ GL(V ).

We let the monodromy group Γ be the image of ρ and let B,A, σ be the mon-
odromies around 0,∞, 1, respectively, with orientations chosen so that A = Bσ.
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The main use of the monodromy group for us is the fact that u is algebraic if and
only if Γ is finite.

As it happens the multiplicity of the eigenvalue 1 for B is d and it is also true
that the corresponding Jordan block of B is of size d. Hence, Γ is not finite if
d > 1.

To prove the converse we appeal to the work of Beukers and Heckman [1] who
extended Schwartz work and described all algebraic hypergeometric functions. Let
p and q be the characteristic polynomials of A and B respectively. In our situation
p and q are relatively prime polynomials in Z[x] (which are products of cyclotomic
polynomials). Their work tells us that Γ is finite if and only if the roots of p and
q interlace in the unit circle.

The key step in the proof of this beautiful fact is to determine when Γ fixes
a non-trivial positive definite Hermitian form H on V (which guarantees that Γ
is compact). I explained in my talk how H can be defined using a variant of a
construction going back to Bezout. Consider the two variable polynomial

p(x)q(y) − p(y)q(x)

x− y
=

∑

i,j

Bi,jx
iyk

and define the Bezoutian of p and q as

Bez(p, q) = (Bi,j).

We need two facts about this matrix. First, the determinant of Bez(p, q) equals
the resultant of p and q (in passing I should mention that this is a useful fact
computationally since the matrix is of smaller size than the usual Sylvester matrix).
Second, note that Bez(p, q) is symmetric. Hence it carries more information than
just its determinant as it defines a quadratic form H . It is a classical fact (due to
Hermite and Hurwitz) that the signature of H has a topological interpretation.

Consider the continuous map P1(R) → P1(R) given by the rational function
p/q. Since P1(R) is topologically a circle we have H1(P1(R),Z) ≃ Z and the
induced map H1(P1(R),Z) → H1(P1(R),Z) is multiplication by some integer s,
which is none other than the signature of H . In particular, H is definite if and
only if the roots of p and q interlace on R. A twisted form of this construction and
analogous signature result can be applied to the hypergeometric situation; in this
way we recover the facts about the Hermitian form fixed by Γ proved by Beukers
and Heckman.

Finally, to make the connection with the integrality of γ we define the Landau
function

L(x) := −
∑

ν≥1

γν{νx}, x ∈ R

where {x} denotes fractional part. It is simple to verify that

vp(un) =
∑

k≥1

L
(
n

pk

)
.
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Landau [2] proved a nice criterion for integrality: γ is integral if and only if
L(x) ≥ 0 for all x ∈ R.

Write

p(t) =

r∏

j=1

(t− e2πiαj ), q(t) =

r∏

j=1

(t− e2πiβj ),

where r = dimV and 0 ≤ α1 ≤ α2 ≤ · · · ≤ αr < 1 and 0 ≤ β1 ≤ β2 ≤ · · · ≤ βr < 1
are rational.

The function L satisfies a number of simple properties: it is locally constant (by
regularity), periodic modulo 1, right continuous with discontinuity points exactly
at x ≡ αj mod 1 or x ≡ βj mod 1 for some j = 1, . . . , r and takes only integer
values. More precisely,

L(x) = #{j | αj ≤ x} − #{j | 0 < βj ≤ x}.
Away from the discontinuity points of L we have

L(−x) = d− L(x).

In particular, L(x) ≥ 0 if and only if L(x) ≤ d.
It is now easy to verify that if d = 1 and L(x) ≥ 0 then the roots of p and

q must necessarily interlace on the unit circle finishing the proof. (Some further
elaboration would also yield the other implication in the theorem independently
of our previous argument.)

As a final note, let me mention that the examples in the theorem are a case
of the ADE phenomenon; up to the obvious scaling n 7→ dn for some d ∈ N,
they come in two infinite families A and D, which are easy to describe, and some
sporadic ones (10 of type E6, 10 of type E7 and 30 of type E8).
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On the computation of the coefficients of a modular form, II: explicit
calculations

Johan Bosman

(joint work with Bas Edixhoven)

Many thanks go to John Voight for making and supplying me the notes that he
took from my talk about this subject.

Let τ(n) be defined by ∆(q) = q
∏

n≥1(1 − qn)24 =
∑

n≥1 τ(n)qn. We wish to

calculate τ(p) mod ℓ. For all ℓ, there exists a representation ρ : Gal(Q/Q) →
Gal(Kℓ/Q) → GL2(Fℓ) such that tr(Frobp) ≡ τ(p) mod ℓ and det(Frobp) ≡
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p11 mod ℓ for p 6= ℓ. For ℓ ≥ 11, there exists a 2-dimensional subspace Vℓ ⊂
Jac(X1(ℓ))[ℓ] such that ρ is given by the action of Gal(Q/Q) on Vℓ.

Let f1, . . . , fg be a basis of newforms for the modular forms space S2(Γ1(ℓ)).
This space is isomorphic to H0(X1(ℓ),Ω

1) by f 7→ f(dq/q). We have J1(ℓ)(C) ∼=
Cg/Λ where Λ = {

∫
γ
(f1, . . . , fg)dq/q : [γ] ∈ H1(X1(ℓ)(C),Z)} is a lattice.

We have

φ : X1(ℓ)
g → Cg/Λ ⊃ Vℓ

(Q1, . . . , Qg) 7→
g∑

i=1

∫ Qi

0

(f1, . . . , fg) dq/q.

If we choose Y1(ℓ) ⊂ X1(ℓ) to be the moduli space of pairs (E,P ) where E is an
elliptic curve and P is a point on E of order ℓ, then this gives us a model for X1(ℓ)
over Q in which the cusp at 0 is rational. Hence the map φ is defined over Q in
this setting.

For each x ∈ Vℓ we want to approximate Q ∈ X1(ℓ)
g such that φ(Q) = x.

Pick a random Q and compute φ(Q). Then draw a small vector from φ(Q) in the
direction of x. Getting the Jacobian matrix, we then find a Q′ such that φ(Q′)
is closer to x. Repeat this step until we are really close. Once in a neighborhood
of x, we use Newton-Raphson iteration. We use a low calculation precision until
we get in the Newton-Raphson part, where we start increasing the precision. This
way the first part of the approximation can be performed much faster than the
NR part, in spite of the fact that it needs more steps.

What we need to show is that we can calculate fi(z) and
∫ z

0
fi(z)(dq/q) to a

high precision.
Let F be the standard fundamental domain for the action of SL2(Z) and let f be

a newform. Write z = γz′ with γ ∈ SL2(Z) and z′ ∈ F . This is for computational
reasons: in SL2(Z) we can do exact calculations and in the upper half plane we
want to stay away from the real line.

Because f is a newform, there is a character ǫ : (Z/ℓZ)∗ → C∗ such that

f
(

az+b
cz+d

)
= ǫ(d)(cz+d)2f(z) for all matrices in Γ0(l). Furthermore, Γ0(ℓ)\SL2(Z)

has the following set of coset representatives:

S =

{(
1 0
0 1

)}
∪

{(
0 −1
1 j

)
: j ∈ {−(ℓ− 1)/2, . . . , (ℓ+ 1)/2}

}
.

So if we write γ = γ1γ2 with γ1 ∈ Γ0(ℓ) and γ2 ∈ S, then the calculation of f(γz)
is reduced to the calculation of f(γ2z).

Now, S · F is a fundamental domain for Γ0(ℓ)\H, in which 0 is the only cusp
apart from ∞. If ℑz ≫ 0, then |q| ≪ 1 so

∑
n an(f)qn converges rapidly, so we can

calculate f(z). This works if z is not near the cusp 0. If z ∈ S · F is near 0, then
we have an Atkin-Lehner operator on S2(Γ1(ℓ)) by (wℓf)(z) = ℓz−2f(−1/ℓz). If

f is a newform, then wℓf = cf f̃ , where f̃ =
∑
an(f)qn, the complex conjugate

and cf is a constant depending on f .
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Plug in a value of z such that ℑz ≫ 0, ℑ(−1/ℓz) ≫ 0 to get cf . For points in

S · F near the cusp 0, −1/ℓz is near ∞, so we can calculate f̃(−1/ℓz). From this
we can get wℓf(−1/ℓz), hence also f(z).

With similar tricks plus some more we can also calculate integrals of modular
forms to a high precision (think of at least hundreds of decimals).

Given ψ ∈ Q(X1(ℓ)) (quotients of two modular forms of the same weight), we
obtain

Pℓ =
∏

Q∈Vℓ\{0}
(X −

g∑

i=1

ψ(Qi)) ∈ Q[X ].

We can approximate Pℓ ∈ R[X ]. Using continued fractions, we find rational num-
bers near the coefficients. If |p/q − α| ≪ 1/q2, then we are psychologically con-
vinced that α = p/q, although a mathematical proof still lacks. This polynomial
should define the field of definition of a nonzero point in Vℓ and its splitting field
should be Kℓ.

We do this for ℓ = 13, ℓ = 17.
We also have another polynomial

P ′
ℓ =

∏

L∈P1(Vℓ)

(X −
∑

Q∈L\{0}

∑

i

ψ(Qi))

which gives the extension PGL2(Fℓ).
Multiplication by n on Vℓ gives a map x 7→ ψn(x) in Q[x]/Pℓ(x), which we want

to calculate. The cycle type of Frobp acting on Vℓ is the same as the decomposition
type of Pℓ mod p. One ends up with a set of candidate matrices M for ρ(Frobp).
Find an r such that M r = nI for all candidates. Then, in Fp[x]/(Pℓ), the congru-

ence ψn ≡ xpr

mod Pℓ holds. If you do this for sufficiently many p, one can use
LLL to find the polynomial ψn.

We can use this to calculate τ(p) mod ℓ if ρ(Frobp) has its eigenvalues in Fℓ.
Factor Pℓ in Fp[x], say Pℓ(x) = P1 . . . Pk. Then n is an eigenvalue of ρ(Frobp) iff
xp ≡ ψn mod Pi for some i.

Polynomial Selection for NFS I

Thorsten Kleinjung

In this talk some aspects of the polymonial selection step for the (general) number
field sieve (NFS) were discussed ([2], [1]). The NFS is currently the best known
algorithm for factoring integers (at least heuristically). Given an integerN the first
step of NFS, called polymonial selection step, consists in finding two irreducible
coprime polynomials f, g ∈ Z[x] sharing a common root modulo N . The runtime
of NFS depends on the quality of the polynomials f and g. For this talk we use
the size of the absolute value of the coefficients of f and g as a first approximation
for the quality, leading to the following problem:
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Problem: Given df and dg find two irreducible coprime polynomials f, g ∈ Z[x]
of degree df resp. dg with a common root modulo N such that the absolute value
of their coefficients is as small as possible.

Except for one method of P. Montgomery there are good solutions for this
problem only if one of the polynomials is linear (wlog dg = 1). It is easy to find

polynomials whose coefficients are of size df +1
√
N . By generating many polynomials

in this way one may hope to find some among them which have smaller coefficients.
A method of P. Montgomery and B. Murphy ([2]) allows to construct polynomials
such that the first two coefficients of f are ”small”. So far g has always been
monic.

In the first part of this talk the Montgomery-Murphy method was generalized
to non monic linear polynomials g. Fixing the leading coefficients of f and g, this
allows to construct f and g if a certain congruence is solvable. In this case the size
of the coefficients can be bounded as in the method of Montgomery and Murphy.
The second part explained how to exploit the non monicness by considering many
polynomial pairs simultaneously. More precisely, for a small l: dl

f polynomial pairs
depending on df l values are considered. A method for quickly approximating the
third coefficients of the polynomials f was given. This only depends on the df l
values as above. The effort to identify good pairs among the dl

f polynomial pairs

considered above is O(d
l
2 log d).
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Polynomial Selection for NFS II

Daniel Bernstein

I discussed the smoothness of the values (a− bm)(a5 + f4a
4b+ ...+ f0b

5) that
appear in the number-field sieve. In particular, I mentioned choosing pairs (a, b)
to produce the smallest values; using superelliptic integrals to approximate the
number of pairs (a, b); using smoothness probabilities for ideals to approximate
smoothness probabilities for a − bx; using power series to approximate Dirichlet
series; handling more general notions of smoothness; and, as a future possibility
to explore, generalizing to (a− bm+ cm2)(. . .).
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Automorphic forms and rational homology spheres

Frank Calegari

(joint work with Nathan Dunfield)

In 1900, Poincare made the following conjecture (updated into modern language):

Conjecture 1. Let M be a compact connected orientable three manifold. Suppose
that H1(M,Z) = {1}. Then M ≃ S3.

Poincare himself found a counterexample. The manifold S3 admits an action

of the group Ã5, a double cover of A5, and the quotient space M has trivial
first homology. Any compact connected M with H1(M,Z) = {1} is known as a
homology sphere. If the weaker condition H1(M,Q) = {1} is satisfied then one
says that M is a rational homology sphere. One has the following conjecture.

Conjecture 2 (Virtual Betti Number Conjecture). Let M be a compact connected
orientable three manifold with π1(M) infinite. Then there exists a finite cover

M̃ →M such that b1(M) := dimH1(M,Q) > 0.

This conjecture implies the virtual Haken conjecture, and thus can be considered
very difficult. Assuming geometrization one may assume that M is hyperbolic, but
even in this case the problem seems very difficult. One approach that has been
suggested is to try and prove that any sufficiently big M will have non-trivial first
Betti number, for some concept of “big”. Clearly one can ask that M has large
volume (defined topologically by Mostow Rigidity), but this is not sufficient as can
be seen by considering examples arising from Dehn surgery. A recent suggestion
was to talk manifolds with sufficiently large injectivity radius r(M). One defines
r(M) as the supremum over real numbers r such that for every x ∈M there exists
a ball of radius r centered at x inside M that does not intersect itself. Since every
M has a cover with arbitrarily large injectivity radius, this would suffice to prove
the conjecture.

Our main result is that this hope is too optimistic, namely, we construct a
particularM and coversMn of arbitrarily large injectivity radius with b1(Mn) = 0.
Our proof that b1(Mn) = 0 actually requires us to use some as yet unknown
conjectures from number theory (such as the GRH), but even with this caveat
one should conclude conjecture 2 is unlikely to fall by the optimistic approach
mentioned above.

The link to number theory is through automorphic forms. Certain hyperbolic
manifolds (arithmetic manifolds) have homology which corresponds to spaces of
automorphic forms. Moreover, these automorphic forms can in certain situations
be associated to Galois representations, due to a result of Taylor [1]. The precise
nature of our Mn imply that one can control the ramification behavior of these
Galois representations, and with some work one can show that such Galois repre-
sentations do not exist. This implies that the homology is trivial, and that Mn is
a rational homology sphere. The precise result we prove is the following:
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Theorem 3. Let D be the (unique) quaternion algebra over K = Q(
√
−2) ramified

at π and π, where 3 = ππ. Let O be a maximal order of D. Let m be a maximal bi-
ideal of O trivial away from π. Finally, let Bn be the complex embedding of 1+mn

into SL2(C), and let Mn = H/(Bn ∩ O×). The manifolds Mn have arbitrarily
large injectivity radius as n → ∞. Moreover, assuming the Langlands conjecture
for GL2(AK) and the GRH, Mn is a rational homology sphere for all n.
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Cohen–Lenstra heuristics for 4–ranks of class groups of quadratic
number fields

Jürgen Klüners

(joint work with Étienne Fouvry)

Let K = Q(
√
D) be a quadratic number field of discriminant D. Denote by ClD

the ordinary class group of K and by CD the narrow class group of K. We remark
that these two groups are always the same if D < 0. For a prime ℓ we denote
by rkℓ(A) := dimFℓ

(A/Aℓ) the ℓ–rank of an abelian group A. Furthermore we
introduce the 4–rank rk4(A) := rk2(A

2). A special case of the Cohen–Lenstra
heuristics [1, p.57] states for odd primes ℓ:

lim
X→∞

∑
0<D≤X ℓrkℓ(ClD)

∑
0<D≤X 1

= 1 + ℓ−1

and

lim
X→∞

∑
0<−D≤X ℓrkℓ(ClD)

∑
0<−D≤X 1

= 2,

where the sums are over discriminants D of quadratic fields. This result is only
proven for ℓ = 3 as a consequence of the Davenport–Heilbronn theorem [2]. The
original paper [1] does not state anything about the 2–part of the class group. By
genus theory it is clear that rk2(CD) = ω(D) − 1, where ω counts the number of
prime factors. We remark that rk2(CD)− 1 ≤ rk2(ClD) ≤ rk2(CD). By averaging
the corresponding expressions we get

∑

0<±D≤X

2rk2(ClD),
∑

0<±D≤X

2rk2(CD) ∼ cX logX,

for some positive constant c and for X tending to infinity.
Frank Gerth [4] put forward the idea to consider Cl2D instead of ClD. With this

new interpretation he conjectures the analogous results for rk2(Cl2D) = rk4(ClD),
i.e.

(2) lim
X→∞

∑
0<D≤X 2rk4(ClD)

∑
0<D≤X 1

= 1 + 1/2
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and

(3) lim
X→∞

∑
0<−D≤X 2rk4(ClD)

∑
0<D≤X 1

= 2.

The goal of our talk will be to prove these two formulas, i.e.

Theorem 1. Formulae (2) and (3) are true.

Let us state the main ideas of the proof. In order to simplify we assume that
D < 0 and D ≡ 1 mod 4. Then we get the following formula which was already
known by Redei [6].

Theorem 2.

2rk4(CD) =
1

2
#{b | b > 0 squarefree, b | D, (b|(−D/b) = 1},

where the symbol (a|b) = 1 iff x2 − ay2 − bz2 = 0 has a non-trivial solution.

After doing suitable transformations we arrive at the sum:

Theorem 3.

(4)
∑

−D≤X
D≡1 mod 4

2rk4(CD) =
1

2

∑

ab≤X
ab≡3 mod 4

µ2(ab)(a|b),

where µ denotes the Moebius µ-function.

Then we use the fact that (a|b) = 1 iff a is a square mod b and b is a square
mod a. This condition can be expressed using Legendre symbols and we finally
arrive at

Theorem 4. ∑

−D≤X
D≡1 mod 4

2rk4(CD) =

1

2

∑

m1m2n1n2≤x
m1m2n1n2≡3 mod 4

µ2(m1m2n1n2)

2ω(m1m2n1n2)
(−1)(n1−1)(m2−1)/4

(m1

n1

)(m2

n2

)
.

The task of the proof will be to compute the asymptotics of this sum. It will
turn out that the main term corresponds to the four choices:

n1 = 1 = n2, n1 = 1 = m2,m1 = 1 = n2, and m1 = 1 = m2.

For the rest of the sum we show that it can be bounded by O(x log(x)−1/2+ǫ) for
all ǫ > 0 using Siegel-Walfisz theorem and large sieve techniques introduced by
Heath-Brown [5].
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Class numbers, elliptic curves, and hyperelliptic curves

Dongho Byeon

Cohen and Lenstra conjectured that the probability a prime p divides the class
numbers of imaginary quadratic fields is

1 −
∞∏

i=1

(1 − 1

pi
)

and the probability a prime p divides the class numbers of real quadratic fields is

1 −
∞∏

i=2

(1 − 1

pi
).

However nothing is known. The best known quantitative result for imaginary
quadratic fields is;

(Soundararajan) If g ≥ 3 is an odd positive integer, then the num-
ber of imaginary quadratic fields whose absolute discriminant is
≤ X and whose ideal class group has an element of order g is

≫ X
1
2+ 1

g −ǫ, for any ǫ > 0.

and for real quadratic fields is;

(Yu) If g ≥ 3 is an odd positive integer, then the number of real
quadratic fields whose absolute discriminant is ≤ X and whose

ideal class group has an element of order g is ≫ X
1
g −ǫ, for any

ǫ > 0.

Let D > 0 be the fundamental discriminant of the real quadratic field Q(
√
D)

and h(D) be its class number. In this talk, applying Stewart and Top’s result
on square free sieve to Mestre’s work (or Leprévost’s work) on ideal class groups
and elliptic curves (or modular hyperelliptic curves), we improve Yu’s result for
g = 5, 7, 11, 23, 29.
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Theorem 1. If g = 5 or 7,

#{0 < D < X |h(D) ≡ 0 (mod g)} ≫ X
1
2 .

Theorem 2.

#{0 < D < X |h(D) ≡ 0 (mod 11)} ≫ X
1
3

#{0 < D < X |h(D) ≡ 0 (mod 23)} ≫ X
1
5

#{0 < D < X |h(D) ≡ 0 (mod 29)} ≫ X
1
6 .

Finite coverings and rational points

Michael Stoll

1. Introduction

The purpose of this talk is to put forward a conjecture. The background is
given by the following

Basic Question.

Given a (smooth projective) curve C over a number field k, can we determine
explicitly the set C(k) of rational points?

One possible approach to this is to consider an unramified covering D
π→ C that

is geometrically Galois. By standard theory, there are only finitely many twists

Dj
πj→ C of this covering (up to isomorphism over k) such that Dj has points

everywhere locally, and

C(k) =
∐

j

πj(Dj(k)) .

Moreover, the set of these twists is computable (at least in principle).
In particular, if it turns out that there are no such twists, then this proves that

C(k) is empty. More generally, in this way, we obtain restrictions on the possible
location of rational points inside the adelic points of C.

2. The Conjecture

Let me now state a conjecture that essentially says that this approach provides
all the information that it possibly can.

Let us define a residue class on C to be a subset X of the adelic points C(Ak) =∏
v C(kv) of the form

X =
∏

v∈S

Xv ×
∏

v/∈S

C(kv)

with a finite set S of places, where Xv is an open and closed subset of C(kv).
There will be two versions of the conjecture, a weaker and a stronger one.
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Main Conjecture (weak version).

If X ⊂ C(Ak) is a residue class such that X ∩ C(k) = ∅, then there exists an

unramified covering D
π→ C such that for all twists Dj

πj→ C, we have πj(Dj(Ak))∩
X = ∅.

In other words, we can actually prove that X ∩C(k) = ∅ using some unramified
covering.
Main Conjecture (strong version).

Same as before, but we require the unramified covering D → C to be abelian.

Here are some consequences.

• The weak version implies that we can decide if C(k) = ∅: we search
for a point by day and run through the coverings by night (they can be
enumerated), until one of the two attacks is successful.

• When C(k) is empty, the strong version is equivalent to saying that the
Brauer-Manin obstruction is the only obstruction against rational points
on C.

3. Evidence

Now I want to give some evidence for these conjectures.
First a few general facts.

• The strong conjecture is true for curves of genus zero. (Use Hasse Principle
and weak approximation.)

• Let C be a curve of genus 1, with Jacobian E. If C represents an element
of X(k,E) that is not divisible, then the strong conjecture is true for C.
It is true for E if and only if the divisible subgroup of X(k,E) is trivial.

• Similarly, if C is of genus ≥ 2 and Pic1
C is a non-divisible element in

X(k, J) (where J is the Jacobian of C), then the strong conjecture holds
for C.

• If C → A is a nonconstant morphism into an abelian variety A such that
A(k) is finite and X(k,A)div = 0, then the strong conjecture is true for C.
(Stoll, partial results by Colliot-Thélène and Siksek in the context of the
Brauer-Manin obstruction)

• Bjorn Poonen has heuristic arguments supporting an even stronger version
of the conjecture in case C(k) is empty.

From this and by other means, we get a number of concrete examples.

• The strong conjecture is true for all modular curves X0(N), X1(N) and
X(N) over Q. (Use Mazur and W. Stein’s tables)

• Computations have shown the strong conjecture to hold for all but 1488
genus 2 curves of the form y2 = f(x), where f has integral coefficients
of absolute value at most 3, such that the curve does not have a rational
point (here k = Q). Under the assumption that X(k, J)div = 0 for the
Jacobian J of such a curve, the strong conjecture holds for 1383 out of
these 1488 curves. Assuming in addition the Birch and Swinnerton-Dyer
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conjecture (plus standard conjectures on L-series), the strong conjecture
holds for 42 of the remaining 105 curves. We hope to be able to deal with
the other 63 curves in due course. (Bruin, Stoll)

• Successful Chabauty computations verify the strong conjecture for residue
classes defined in terms of just one place v.

There are also some relative statements that allow us to conclude that some
version of the conjecture holds for one curve, if we know it for one or more other
curves.

• If either version of the conjecture holds for C/K, where K/k is a finite
extension, and C(K) is finite, then it holds for C/k. (Stoll)

• If C(k) is finite and D → C is a nonconstant morphism, and either version
of the conjecture holds for C, then it also holds for D. (Stoll, partial result
by Colliot-Thélène in the context of the Brauer-Manin obstruction)

• If D → C is an unramified covering, C(k) is finite, and the weak version
of the conjecture holds for all twists Dj , then it also holds for C. (Stoll)

This allows us to show that one of the two versions holds for a given curve in
many cases.

We can also use these results to prove a statement of a somewhat different
flavor.

• If the weak conjecture holds for y2 = x6 + 1 over all number fields k, then
it also holds for all hyperelliptic curves of genus ≥ 2 (and many more,
perhaps all curves with g ≥ 2) over any number field. (Use Bogomolov-
Tschinkel)

4. More Conjectures

Let me state two more rather plausible conjectures.
“Strong Chabauty” Conjecture.

Assume that C → A is a nonconstant morphism into an abelian variety such that
the image of C is not contained in a proper abelian subvariety. Also assume that
rankA(k) ≤ dimA − 2. Then there is a set of places v of k of density 1 and
a zero-dimensional subscheme Z ⊂ C such that C(kv) intersects the topological
closure of J(k) in J(kv) only in points from Z.

The motivation for this conjecture comes from the fact that in this situation,
the system of equations for the intersection is overdetermined. Hence you do not
expect solutions unless there is a good reason for them.

• If C satisfies assumptions and conclusion of the above conjecture, and
X(k,A)div = 0, then the strong version of the main conjecture is true
for C. (Stoll)

“Eventually Small Rank” Conjecture.

Let C be a curve of genus ≥ 2. Then there is some n ≥ 1 such that for all twists
Dj of the multiplication-by-n covering of C with Dj(Ak) 6= ∅, the Jacobian of Dj

has a factor A such that rankA(k) ≤ dimA− 2.
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Since the genus of the Dj grows rapidly with n, this essentially says that one
does not expect Mordell-Weil ranks to be large compared to the dimension.

• Assume
(1) X(k,A)div = 0 for all abelian varieties,
(2) the “Strong Chabauty” conjecture,
(3) the “Eventually Small Rank” conjecture.
Then the weak version of the main conjecture holds for all curves over k,
and C(k) can be determined.
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On the computation of the coefficients of a modular form, III:
Application of Arakelov intersection theory

Robin de Jong

(joint work with Jean-Marc Couveignes, Bas Edixhoven)

Let X/Q be a smooth proper curve of genus g > 0, let D be an effective divisor
of degree g on X , and let f : X → P1 be a non-constant morphism. Let UD be
the open subvariety of x in Pic0(X) such that there is a unique effective divisor
D′

x such that x = [D′
x − D]. On UD(Q) we have a natural Weil height function

hD,f sending x 7→ h(
∑

i f(Qx,i)) if D′
x =

∑
i Qx,i, where h is the usual naive

height function on P1. The object of the present lecture is to prove the following
theorem.
Theorem. There is a second natural Weil height function h̃D,f : UD(Q) → R
and there are effectively computable functions B1 = B1(X) and B2 = B2(X,D, f)
such that

(i) hD,f (x) ≤ h̃D,f (x) +B1(X) for allx ∈ UD(Q)

and

(ii) h̃D,f (x) ≤ B2(X,D, f) for all torsion pointsx ∈ UD(Q) .

The first estimate should be seen as providing an effective comparison between two
different but equivalent height functions, and the second estimate should be seen
as expressing the idea that the height of a torsion point x is small independent of x
(compare with the Neron-Tate height, which is always zero on torsion points). The

construction of h̃D,f is done using Arakelov intersection theory [1] [2]. Explicitly,
we find

B1(X) =
g

[K : Q]

∑

σ

logGσ,sup(Xσ) + log g ,

where K is any number field over which K is defined, and where the Gσ,sup(Xσ)
are the sups of the Arakelov-Green function [1] [2] on the compact Riemann sur-
faces Xσ associated to X/K using the various complex embeddings σ of K. The
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number B1(X) is independent of the choice of K. Next we find that B2(X,D, f)
is deg f/[K : Q] times

−1

2
(D,D−ω) + 4g2

∑

s

δs log #k(s)

+
1

2
deg detRp∗ω +

∑

σ

log ‖ϑ‖σ,sup + (f∗∞, D) +
g

2
[K : Q] log(2π) .

Here K is so large as to have X,D, f and x defined over K, and so that X has
semi-stable reduction over K. The intersections are Arakelov intersections on a
regular semi-stable model of X over K. The various other terms occurring have
their usual meaning as in say [2]. Again, the whole expression for B2 is indepen-
dent of the choice of K.

Recall that Bas Edixhoven has proved in an earlier lecture that for X = X1(l)
one can choose D, f such that Vl \ {0} is in UD. Using our explicit formulas
for B1, B2, he will prove in a subsequent lecture that the naive height of the
coefficients of the polynomial Pl(T ) =

∏
x∈Vl\{0}(T − ∑

i f(Qx,i)) ∈ Q[T ], where

againD′
x =

∑
iQx,i, is bounded by a polynomial in l. This, in turn, is instrumental

in proving that the running time of our proposed algorithm for computing τ(p)
mod l is at worst polynomial in l.
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Solvability of polynomial equations over finite fields

Neeraj Kayal

We investigate the complexity of the following polynomial solvability problem:
given a finite field Fq and a set of polynomials f1, f2, · · · , fm ∈ Fq[x1, x2, · · · , xn]
of total degree at most d determine the Fq-solvability of the system f1 = f2 =
· · · = fm = 0. That is, determine whether there exists a point ā ∈ Fn

q such that

f1(ā) = f2(ā) = · · · = fm(ā) = 0

This problem is easily seen to be NP-complete even when the field size q is
as small as 2 and the the degree of each polynomial is bounded by d = 2. Here
we investigate the deterministic complexity of this problem when the number of
variables in the input is bounded. We show that for a fixed number of variables,
there is a deterministic algorithm for this problem whose running time is bounded
by a polynomial in d, m and log q.
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Random matrix theory and Heegner points

Mark Watkins

Fix a rational elliptic curve E. Random matrix theory gives a rather precise
estimate for the number of d with |d| < D such that the twisted curve Ed has even
analytic rank at least two. This number is conjectured to be asymptotically equal
to cED

3/4(logD)bE where bE depends on the rational 2-torsion structure of E and
the squareness of its discriminant, and cE is rather mysterious [1]. This prediction
comes first from the RMT-based heuristic that the probability that L(Ed, 1) ≤ x
is like c

√
x(logD)3/8 for small x, and then a discretisation of values of L(Ed, 1) via

the Birch–Swinnerton-Dyer formula, using the fact that the analytic value of Xd

is square (and Xd = 0 corresponds to a curve of analytic rank 2 or more). For
odd twists there is no precise prediction from random matrix theory; we have the
RMT-based heuristic that the probability that L′(Ed, 1) ≤ x is like cx3/2(logD)3/8

but have little understanding of how to discretise the values of L′(Ed, 1).
The data of Rubinstein [2] lend credence to the estimate in the even rank case;

with a data set of 2398 curves, they consider negative fundamental discriminants
up to 108 that satisfy a Heegner-type hypothesis, and suggest that the exponent
of D is 0.75 ± 0.01 and bE is within 0.1 of its predicted value. The calculation
method of Rubinstein involves weight-3/2 modular forms, and can compute up
to D in time D3/2 näıvely, or in time D1+ǫ using convolution methods. For odd
twists, Elkies [3] has done experimentation up to 107 for the congruent number
curve using Heegner points; his method adds up (on the complex torus) the images
of the h conjugates under the modular parametrisation map, and sees if it is close
to a torsion point. This takes D3/2 time, and there does not seem to be any
possibility to improve this via convolution techniques.

Elkies now suggests a different method to identify odd twists that (are likely
to) have analytic rank 3 or more. The idea is to compute the Heegner point
modulo p for many small primes p, which is possible in some cases due to the fact
that under appropriate conditions the complex multiplication points on X0(N) are
supersingular points mod p. If the computed point is the image of a torsion point
for many primes p, then we might guess that it really is a torsion point (a similar
idea can also be used to test for divisibility of the Heegner point).

We fix a rank zero elliptic curve E and run over small p up to some limit,
say (logD)3. We then run over all negative fundamental discriminants that both
satisfy a Heegner hypothesis and have p inert in the corresponding quadratic field.
For each of these, we compute the images of the supersingular points of X0(N)
modulo p on Ed modulo p. This step might be difficult in general, but for specific
curves like X0(11) or X0(32) it is not too problematic. Then we wish to know the
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multiplicity of each of these images in an appropriate Heegner sum. This is given
by counting embeddings of the imaginary quadratic field into the endomorphism
algebra of the supersingular point, which is in turn given by the Fourier coefficient
of a Θ-series of a translate of a rank 3 lattice. This last fact should allow us to
use convolution techniques and reduce the running time to D1+ǫ, but we have not
yet determined if the method is practical. There are other theoretical directions
that can be pursued; for instance, we can try to study p-adic weight-3/2 modular
forms via repeating the above argument modulo higher powers of p.
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On the computation of the coefficients of a modular form, IV: the
Arakelov contribution

Bas Edixhoven

(joint work with Jean-Marc Couveignes, Robin de Jong)

Recall Xℓ := X1(5ℓ). Let Bℓ := B1+B2, where B1, B2 are as in Robin’s lecture.
Then

Bℓ =
g

[K : Q]

∑

σ

logGσ,sup + log g +
1

[K : Q]
(f∗∞, D) − deg f

2[K : Q]
(D,D − ω)

+
4g2 deg f

[K : Q]

∑

s

δs log #k(s) +
deg f

2[K : Q]
deg detRp∗ω +

g deg f

2
log(2π)

+
deg f

[K : Q]

∑

σ

log ‖θ‖σ,sup.

The polynomial we want to compute is Pℓ =
∏ℓ2−1

i=1 (T−αi) with h(αi) ≤ Bℓ, where

h is the absolute naive height on P1(Q). The expression above is independent of
the field K, as long as Xℓ has stable reduction over OK and D is defined over K.
We take K = Q(ζ5ℓ).
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We need to show that there exists c such that Bℓ = O(ℓc). We have

(1) g = O(ℓ2).
(2) [K : Q] = 4(ℓ− 1) ≥ ℓ.
(3) deg f = O(ℓ2).
(4)

∑
s δs log #k(s) = O(ℓ log ℓ) + O(l3) = O(l3): contributions only from s|ℓ

and s|5, respectively; there are O(ℓ) supersingular points with s|ℓ, and
O(ℓ2) with s|5.

(5) deg detRp∗ω = [K : Q]habs,Falt(Jℓ) = O(ℓ3 log ℓ), where habs,Falt is the
absolute Faltings height. Short sketch: Let vol′ be volume with respect to
the inner product for which the basis ω1, . . . , ωg is orthonormal. Then

hK(Jℓ,K)

[K : Q]
≤ hQ(Jℓ,Q) ≤ − log vol

R ⊗ S2(Γ1(5ℓ),Z)

S2(Γ1(5ℓ),Z)
= − log vol

R ⊗ T∨

T∨

= log vol
R ⊗ T

T
≤ log vol′

R ⊗ T

T
− g

2
log π + 2πg

= O(ℓ2 log ℓ),

where the last step comes from bounds on the coefficients an(ωi). Remark:
Abbes-Ullmo did X0(squarefree N), but we needed X1.

(6) ∑

σ

log ‖θ‖σ,sup = [K : Q] log ‖θ‖sup = O(ℓℓ4(log ℓ)2ℓ6),

where the ℓ comes from [K : Q], the ℓ4(log ℓ)2 comes from log(det Im τ),
and the ℓ6 comes from log(e···|θ|). (As of Tuesday, this no longer depends
on Bost’s preprint, but does depend on unpublished work of us!)

(7) ∑

σ

logGσ,sup = [K : Q] logGsup = O(ℓℓ8),

with a non-effective constant. Remark: There is a submitted article by
Jorgenson and Kramer in which bounds on Green functions are given that
imply that logGsup is bounded uniformly in ℓ.

The bound ℓ8 uses a result of Franz Merkel. Let X be a compact
Riemann surface, and µ a positive 2-form (volume form) with

∫
X µ = 1.

Let X = U (1) ∪ · · · ∪ U (n) be an open covering, and let z(i) : U (i) → C be
a holomorphic function such that z(i)(U (i)) ⊃ D(1) (the closed unit disk).

For 0 ≤ r ≤ 1, let U
(i)
r := {x ∈ U (i) : |z(i)(x)| < r}. Fix 0 < r1 < 1 and

suppose

(a)
⋃

i U
(i)
r1 = X

(b) For all i, µ ≤ c1|dz(i)dz(i)| on U
(i)
1 .

(c) For all i, j, we have

sup
U

(i)
1 ∩U

(j)
1

∣∣∣∣
dz(i)

dz(j)

∣∣∣∣ ≤M.
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Then

logGsup ≤ n(c4 + c9c1 + c7 logM),

where c4, c7, c9 depend only on r1.
Application to Xℓ(C). Replace Xℓ by X(5ℓ), together with its action

of SL2(Z/5ℓZ). We can take c1 = O(ℓ3). We have q1/5ℓ = e2πiz/5ℓ. There
are ≈ ℓ2 cusps. This gives ≈ ℓ2 disks. Small disks: we need O(ℓ4) of them.
The choice M = 5 is good.

(8) − 1
2 (D,D − ω) = O(ℓℓ4ℓ8), where the O(ℓ) comes from [K : Q], the ℓ4

comes from g2, and the ℓ8 comes from the Green functions.
(9) (f∗∞, D) = O(ℓℓ4ℓ8) similarly.

Conclusion: Bℓ = O(ℓ14).
Also log #R1p∗Lx(D) ≤ O(ℓ15), and the left hand side is at least the sum of

log #k(s) over s such that D′
x is not unique over k(s).

Functions, reciprocity and the obstruction to divisors on curves

Samir Siksek

(joint work with Martin Bright)

Let K be a perfect field, C a smooth projective curve over K, and f a non-
constant element of the function field K(C). We define

Gf (k) :=
∏

P∈C(K)

Norm
K(P )/K

(K(P )∗)ordP (f).

The product makes sense since all but finitely many of the terms are {1}, and the
result is clearly a subgroup of K∗. Our first theorem defines a homomorphism
from the Picard group Pic(C) to the quotient group K∗/Gf(K) In essence, this
means that we are doing descent on the Picard group of the curve.

Theorem 2. With notation as above, f induces a unique homomorphism

φ : Pic(C) → K∗/Gf (K)

satisfying the following property: if
∑
mjQj is a divisor on C whose support is

disjoint from the poles and zeros of f , then the class [
∑
mjQj ] of this divisor in

Pic(C) is mapped, by φ, to the coset represented by
∏

f(Qj)
mj

in the group on the right-hand side.

This theorem subsumes many earlier results, by various authors, whereby cer-
tain functions on a curve C are shown to induce homomorphisms from the Jacobian
J into groups of the form, say, L∗/L∗q, where L is some finite K-algebra, and q is
some positive integer.

Now let K be a number field. We denote by IK the idèle group of K, and
ClK := IK/K

∗ the idèle class group of K. Again let C be a curve defined over
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K and let f be a non-constant element of the function field K(C) satisfying the
following property: there is some P ∈ C(K) such that ordP (f) = ±1. The
condition on f forces the group

∏

P∈C(K)

Norm
K(P )/K

( Cl
K(P )

)ordP (f)

to be an open subgroup of finite index in ClK . The Existence Theorem of class
field theory then asserts the existence of a unique finite abelian extension L/K
(the class field of K beloging to this group) such that

Norm
L/K

(CL) =
∏

P∈C(K)

Norm
K(P )/K

( Cl
K(P )

)ordP (f).

By abuse of language, we call L the class field of K belonging to the function
f . The reader is warned that for almost all functions f the class field L will be
the same as K. In this case the discussion below is true though certainly not
interesting. To get useful information about the curve one needs a carful choice of
function (or functions) with non-trivial class fields.

It turns out that the construction of Theorem 2 induces the following commu-
tative diagram

Pic(C)
φ−−−−→ K∗/Norm(L∗)

i

y i

y
∏

υ∈M(k) Pic(Cυ)
φ̂−−−−→ IK/Norm(IL)

θ−−−−→ Gal(L/K)

where M(K) is the set of primes of K, the i denote obvious diagonal maps and θ
is the Artin map. We know from the Artin Reciprocity Theorem that θ ◦ i = 1.
We deduce that the image of Pic(C) in

∏
Pic(Cυ) (under the diagonal map) is

contained in the kernel of the map
∏

Pic(Cυ)
θ◦φ−−→ Gal(L/K).

This fact is perhaps theoretically interesting, though certainly useless for practical
purposes; the problem is that the kernel of the map θ ◦ φ is too large to compute.

We now write φ̂ = (φυ)υ where φυ are the obvious local maps, and we write
θ =

∏
θυ where θυ are the local Artin maps. It turns out that θυ ◦ φυ = 1 for

all but finitely many primes υ; we let B ⊂ M(K) be the set of exceptions. We
now deduce that the image of Pic(C) in

∏
Pic(Cυ) (under the diagonal map) is

contained in the kernel of the map

∏

υ∈B

Pic(Cυ)

Q

υ∈B θυ◦φυ−−−−−−−−→ Gal(L/K).

We now let n = [L : K]. Thus we obtain a meaningful homomorphism
∏

υ∈B

Pic(Cυ)/nPic(Cυ) −→ Gal(L/K)
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whose kernel contains the image of Pic(C)/nPic(C). The good thing is that
PicCυ/nPic(Cυ) is finite and computable and that this allows us to compute the
kernel.

Now an element of Pic(Cυ)/nPic(Cυ) does not have a well-defined degree, but
it does have a well-defined degree modulo n. If 0 ≤ r < n, we denote by

(Pic(Cυ)/nPic(Cυ))r

to be the subset of elements that have degree r modulo n. This subset contains
the images of

Picr(C), Picr+n(C), Picr+2n(C), . . .

in Pic(Cυ)/nPic(Cυ). We immediately obtain the following theorem.

Theorem 3. Consider the induced map

∏

υ∈B

(Pic(Cυ)/nPic(Cυ))r −→ Gal(L/K).

The subset of elements of the set on the left-hand side sent to 1 under this map
is finite. If this subset is empty then Picr(C), Picr+n(C), Picr+2n(C), . . . are all
empty.

Finally we give an example to show that the above scenario is realistic.

Example. Let C/Q be the genus 1 curve given by

C : y2 = −727x4 − 104x3 + 92x2 + 4x− 4.

The curve C has points everywhere locally. We would like to show that C does
not have any rational points. Take

f =
x+ 16/53

x
;

in this case it is possible to show that L = Q(i). We identify Gal(L/K) with
µ2 = {1,−1}.

Primes Basis for Pic(Cp)/2 Pic(Cp) φ(P ) (θp ◦ φ)(P )

p = ∞ P0 = (−0.3018 . . . , 0.0003 . . .) −0.00028 −1

p = 2
P0 = (2−1, 2−2 + 1 + 2 + · · · ) 1 + 25 + · · · 1
P1 = (2−4 + · · · , 2−8 + · · · ) 1 + 28 + · · · 1

We see that the “Kernel” of (
∏

p Pic(Cp)/2 Pic(Cp))1 → {1,−1} is empty. Thus

C(Q) = ∅.
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Integral points on congruent number curves

Michael A. Bennett

(joint work with P.G. Walsh)

If N is a positive integer, then N is a congruent number, that is, there exists a
right triangle with rational sides and area N , precisely when the elliptic curve

EN : y2 = x3 −N2x

has infinitely many rational points. In this talk, we address the question of whether
curves of the shape EN possess integral points of infinite order, provided we know
they have rational points with this property. We will concentrate on the case
where N = 2apb for a and b nonzero integers and p an odd prime. Since EN is
rationally isomorphic to Em2N for each nonzero integer m, and since both E1 and
E2 have rank 0 over Q, we may suppose, without loss of generality, that b is odd.

¿From now on, we will fix p to be an odd prime number, and a and b to be
nonnegative integers. We are interested in describing the integer solutions (x, y),
with, say, y > 0 to the Diophantine equation.

(5) y2 = x(x+ 2apb)(x − 2apb).

A solution (x, y) (with y > 0) to (5) will be called primitive if either

min{ν2(x), a} ≥ 2 or min{νp(x), b} ≥ 2.

¿From the above remarks, clearly it is enough to determine all primitive integer
solutions. These correspond to the S-integral points on Ep and E2p, where S =
{2, p}.

Our main result is that all solutions are as follows. First, we have the following
sporadic solutions; in each case b = 1.

(6)

p a x p a x p a x p a x
3 1 −3 3 3 25 7 3 −7 29 0 284339
3 1 −2 5 0 −4 7 4 −63 41 6 42025
3 1 12 5 0 45 11 1 2178
3 1 18 5 2 25 17 5 833
3 1 294 7 1 112 17 7 16337
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The remaining solutions come in a number of families, many of which are,
presumably, infinite.

(7)
(
2a−1

)2 − ps2 = −1, a odd, b = 1, x = p2s2.

(8) r4 + s4 = pb, a = 1, x = −(2rs)2.

(9) p2 − 2s2 = −1, a = 0, b = 1, x = s2.

(10) r4 + 6r2s2 + s4 = pb, a = 0, x = −(r2 − s2)2.

(11) p2b ± 6pb + 1 = 8s2, a = 1, x =
1

2

(
pb ± 1

)2
.

(12) r4 + 12r2s2 + 4s4 = pb, a = 1, x = −2(r2 − 2s2)2.

(13) p2r4 − 2s2 = 1, p ≡ 1 mod 8, a = b = 1, x = 2 (pr)2.

(14) 22(a−2) + 3 · 2a−1 + 1 = ps2, a ≥ 3, b = 1, x = p
(
2a−2 + 1

)2
.

An almost immediate corollary is that, if N = 2apb where p ≡ ±3 mod 8 is
prime, p 6= 3, 5, 11, 29, then

EN (Z) = {(0, 0), (±N, 0)} .

Note here that, according to Monsky [3], we have that p ≡ 5, 7 mod 8 are
congruent, while the same is true for 2p, when p ≡ 3, 7 mod 8. These follow from
Heegner and mock-Heegner point analysis.

The main method of proof is an elementary reduction of the problem to certain
quartic Diophantine equations which may be treated by a variety of methods,
classical and otherwise. We note further, that we may absolutely bound b in the
above families, arguing as in Ellenberg [2] to “solve” families of ternary equations
of Fermat-type. This is work in progress.

Finally, we should mention that an algorithm to solve equation (5) for fixed a, b
and p has recently been given by Draziotis and Poulakis [1], using Wildanger’s
algorithm to solve a unit equation over a quartic field. As the above classification
indicates, this is unnecessary.
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Local Galois module structure for Artin-Schreier extensions of
degree p

Bart de Smit

(joint work with Lara Thomas)

Let L/K be a Galois extension of local fields with [L : K] = p = char(K). Let G
be the Galois group and A ⊂ B the extension of valuation rings. By the normal
basis theorem, L is free of rank 1 as a module over the group ring K[G]. The
valuation ring B is free of rank 1 over A[G] if and only if L/K is unramified.
Let us assume that L/K is totally ramified, i.e., that the ramification index is p.
Let k be the resdue field of A, which is also the residue field of B. We let r be
the ramification number of L/K, so the filtration of G with ramification groups
satisfies Gr 6= Gr+1.

The multiplier ring of B, or the associated order of B, is defined as R = {x ∈
K[G] : xB ⊂ B}. Note that R is the endomorphism ring of B as an A[G]-
module. It is a complete local ring, which is free of rank p as an A-module. We
let e = dimk(mR/m

2
R) be the embedding dimension of R, and we will show that

it is tightly related to the number of R-module generators of B.
We first present a slight strengthening and an independent proof of a result of

Aiba and Lettl [1, 4], whose characteristic 0 analog is given in [2]:

B is a free R-module ⇐⇒ e ≤ 3 ⇐⇒ s | p− 1.

Here s is the remainder of r when we divide by p, which satisfies 0 < s < p.
Our second result says that when s 6= p− 1 the embedding dimension e of R is

exactly 2d+ 1, where d is the minimal number of R-module generators of B.
The proof uses the combinatorics of balanced sequences, which turns out to be

encoded by the Hirzebruch continued fraction [3]. One can rewrite this in terms
of the usual continued fraction [5] and obtain the following: If

−r/p = x0 +
1

x1 +
1

.. .

. . .

xn−1 +
1

xn

with x0, . . . , xn ∈ Z, and x1, . . . , xn−1 ≥ 1 and xn ≥ 2, then

d =
∑

i<n odd

xi.

This also gives rise to a polynomial time algorithm that given p and r computes d
and e.
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Hecke operators and class numbers

Nicole Raulf

Let K be an imaginary quadratic number field of class number one and denote its
ring of integers by O and the set of units of O by O∗. Furthermore, let q = [a, b, c]
denote a primitive quadratic form whose coefficients belong to O and whose dis-
criminant is an element of Ω := {d ∈ O \ {0} : d ≡ x2 mod 4, d no square}.
Remember that primitive means that the ideal generated by the coefficients of q is
equal to O. For d ∈ Ω let hd be the class number of primitive quadratic forms, i. e.
imposing the usual equivalence relation on primitive quadratic forms, hd is the
number of inequivalent primitive quadratic forms of discriminant d. Furthermore,
for d ∈ Ω consider Pell’s equation t2 − du2 = 4, t, u ∈ O. ǫd is the fundamental
solution of this equation and ζd is a root of unity of maximal order which can be

written in the form ζd = t1+u1

√
d

2 , t21 − du2
1 = 4. If we write ζd = eπi/md , then

md ∈ {1, 2, 3}. Having introduced all notations, we can now state the theorem.

Theorem 1. For v ∈ O \ {0} we have:

∑

|du2|≤x

hd log |ǫd|
md

∼




1

4|v|2
∑

d∈O/O∗,
d|v

|d|2


 x2 as x→ ∞

where we sum over all d ∈ Ω and u ∈ O/O∗ such that |du2| ≤ x and ∃t ∈ O so

that t2 − du2 = 4v and | t+u
√

d
2
√

v
| 6= 1.

This mean value theorem is proved with the help of Hecke operators. The Hecke
operators we work with act on PSL2(O) - invariant functions on the upper half -
space H3. The upper half - space H3 is equipped with the hyperbolic metric and
the corresponding Laplace operator is denoted by ∆. When trying to express the
trace of the Hecke operator Tv, v ∈ O \ {0}, on a fixed eigenspace of −∆ in terms
of hd and log |ǫd|, the following L - series appears:

Lv(s) :=
∑

d∈Ω

∑

u

hd log |ǫd|
md|du2|s ,

where the u - summation extends over all u ∈ O \ O∗ such that ∃t ∈ O with

the property t2 − du2 = 4v and | t+u
√

d
2
√

v
| 6= 1. The discussion shows that Lv(s)

converges absolutely for Re s > 2 and has an analytic continuation for Re s ≥ 3/2
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except for a simple pole at s = 2. Hence a Tauberian theorem implies the theorem
stated above.
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Class invariants in a non-archimedean setting

Reinier Bröker

The theory of complex multiplication provides us with a means of explicitly com-
puting the Hilbert class field H = H(K) of an imaginary quadratic number field
K. Let D = disc(K) < 0 be the discriminant of K and define

EllD(C) = {E/C |E is an elliptic curve over C with End(E) ∼= OK}∼=
as the finite set of elliptic curves E/C with endomorphism ring isomorphic to the
ring of integers OK of K. We have the following theorem, usually called the first
main theorem of complex multiplication.

Theorem. For [E] ∈EllD(C) we have H = K(j(E)). Moreover the polynomial,

fD =
∏

[E]∈EllD(C)

(X − j(E)) ∈ Z[X ]

has integer coefficients.

The polynomial fD is usually called the Hilbert class polynomial. We are interested
in efficiently computing this polynomial.

The degree of fD equals the class number of K and hence grows exponentially
in log |D|. Since any algorithm computing fD has to write down the answer, this
shows that there can’t exist a polynomial time algorithm that computes fD.

The classical algorithm of evaluating the modular function j : H → C in points
τ ∈ H corresponding to the ideal classes of the class group Cl(O) can be improved
in two ways. Firstly, one can work in a non-archimedean setting as explained in
[1]. This avoids the problem of rounding errors that might occur when expanding
the product

fD =
∏

[E]∈EllD(C)

(X − j(E)) ∈ Z[X ].

The second improvement is inspired by the fact that even for moderately small
discriminants D, the coefficients of fD are already huge. As example, for D = −31
we get coefficients of 16 digits. We can save a constant factor in the size of the
coefficients by using other (‘smaller’) functions than the j-function.
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Let f be a modular function (over Q) of level N ≥ 1. Writing O = Z[τ ] with
τ ∈ H, we have

f(τ) ∈ HN ,

with HN the ray class field of conductor N . If we have K(f(τ)) = K(j(τ)), then
f(τ) is called a class invariant . We want to use ‘smaller’ function than j, because
the coefficients of the corresponding polynomial will then be smaller than those of
fD.

Over the complex numbers, the modern tool to investigate class invariants is
Shimura’s reciprocity law (1970). It tells us if a given value f(τ) is a class invariant,
and if so, in which points τ ′ ∈ H we should evaluate f to compute the conjugates
of f(τ) under Gal(H/K) ∼= Cl(O). The computation of f(τ) is easily done if we
know the Fourier expansion of f .

We also want to use class invariants in a p-adic setting. For this we need a
substitute of the evaluation of a function via its Fourier expansion. We note that
a modular function f of level N is an element of the function field of the modular
curve X(N) over Q(ζN ). Hence, we can express f as a rational function in j and
the x-coordinates of an elliptic curve with j-invariant j.

As example, consider an elliptic curve E/Qp given by Y 2 = X3 + aX + b. The
cube root γ2 of j with integral Fourier expansion is a modular function of level 3.
For 3 6 |D, the function γ2 yields class invariants. The coefficients of the minimal
polynomial are a factor 3 smaller than the coefficients of fD. We will write γ2 in
terms of 3-torsion points. Let c1, . . . , c4 be the roots of the 3-division polynomial
for E. A cube root of j(E) is given by

(1)
−48a

2a− 3(c1c2 + c3c4)
.

Note that this expression depends on an ordering of c1, . . . , c4. We indeed get
three distinct cube roots of j(E).

Expression (1) enables us to work with cube roots of j over Qp. We can ex-
plicitly compute the action of the coprime to 3 ideals of O on the cube roots of
j(E). This allows to decide which cube root of j(E) is contained in H , by checking
which one is invariant under Gal(H3/H) ∼= (O/3O)∗/O∗. If we find one that is
contained in H , we can also compute its conjugates under Gal(H/K) ∼= Cl(O).

This approach works in general for any modular function f of level N ≥ 1.
However, we do have to write f in terms of N -torsion points. This may not be so
easy, and perhaps even worse, we may have to factor the N -th division polynomial
ΨN of degree O(N2). Hence, the gain in speed by considering ‘smaller’ functions
might be lost.

One can work with modular polynomials to avoid this problem. The classical
modular polynomial relates j(τ) and j(pτ). There exist similar polynomials re-
lating f(τ) and f(pτ), where we require that p does not divide the level N of f .
Using these modular polynomials, we are currently able to work with the classical
Weber-f function of level 48. Using normal computer power, we can now relatively
easily compute the Hilbert class field of fields with discriminant up to −1010.
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Explicit computations on the Manin conjectures

Ronald van Luijk

Even though finding the set of rational points on a curve could be very hard,
once the set is known, it is easy to describe. If it is not a finite set, then the
genus g of the curve is at most 1. In case g = 0 we can give a parametrization
of the curve and in case g = 1 the set naturally carries the structure of a finitely
generated group, for which we can give a set of generators.

For a higher-dimensional variety X ⊂ Pn over a number field k it is not so
easy to describe the set X(k) of rational points. To this extend we define a
counting function NU for any open subset U of X , based on a height function
H : Pn(k) → R>0. For k = Q the height function is defined by

H(x) = max
i

(|xi|) when





x = [x0 : x1 : . . . : xn]
xi ∈ Z
gcd(x0, . . . , xn) = 1

and for higher degree number fields we use the standard generalization. The
counting function NU : R>0 → Z≥0 is defined by

NU (B) = #{x ∈ U(k) : H(x) ≤ B}.
We want to understand the asymptotic behavior of NU as B tends to infinity. For
some easy to understand varieties X we find that there exists an open subset U
of X such that we have

NU (B) ≈ CBa(logB)b,

where C is some constant, a is a number such that the canonical sheaf ωX is
isomorphic to O(−a), and b+1 is the rank of the Néron-Severi group NS(X) of X .
The conjecture of Batyrev and Manin states that if the canonical divisor ofX ⊂ Pn

k

is isomorphic to O(−a) for some a > 0, then there exists a finite field extension l
of k, an open subset U ⊂ X , and a constant C such that with b = rankNS(Xl)− 1
we have

(15) NUl
(B) ≈ CBa(logB)b.

Even though Batyrev and Tschinkel found a counter example to this conjecture
in dimension 5, there is a lot of evidence for the case of dimension 2. We look at
the degenerate case of a = 0, namely those of trivial canonical sheaf, in particular
the case of K3 surfaces. Martin Bright has computed NX(B) for many diagonal
quartic surfaces X and B up to 106. Especially those with low Néron-Severi rank
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tend to have too few points with low height to extrapolate from. We use the
quartic surface in P3 given by

w(x3 + y3 + z3 + x2z + xw2) = 3x2y2 − 4x2yz + x2z2 + xy2z + xyz2 − y2z2,

which has Néron-Severi rank 1 even over the algebraic closure. With a program
written by Michael Stoll, based on a variation of an algorithm by Noam Elkies,
we computed all points of height at most 15000, of which there turn out to be 46
that do not lie on the two rational curves given by xw = 0. Let U be the open
subset outside these two rational curves. Then NU (B) appears to grow like logB,
rather than being bounded as one would conclude from (15). One explanation
would be that the factor Ba in (15) comes from an integral

∫
Ba−1db, which for

a = 0 yields logB instead of Ba. This potentially leads to an extension of the
Manin conjecture to K3 surfaces.
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On the computation of the coefficients of a modular form, V:
computational aspects

Jean-Marc Couveignes

This talk is the continuation of the ones by Johan Bosman, Bas Edixhoven
and Robin de Jong. I will address the problem of computing torsion divisors, with
prescribed Hecke action, on modular curves (e.g. divisor classes in the linear space
Vℓ image of the modulo ℓ Galois representation ρℓ attached to the Ramanujan τ -
function). We need algorithms that can be proven to be polynomial time.

We have three possible strategies for doing this. We first may calculate complex
approximations for the divisors we are interested in. The difficulty is then to show
that we can perform efficient and stable numerical computations in the jacobian of
modular curves, in deterministic polynomial time in both the level and the required
accuracy. These computations should include addition/subtraction in the jacobian
and the explicit solution to the inverse Jacobi problem. This has been done in [1]
for the curves X0(p) when p tends to infinity. Adapting these methods to the
case of X1(5p) would suffice for the computation of the Ramanujan τ function.
A second possibility would be to fix an auxiliary small prime p and compute the
torsion divisors we are interested in modulo p. We may then Hensel lift these
divisors and obtain good p-adic approximations. The third method which I want
to present in this talk computes the divisors modulo many different small primes
p and then recovers the actual divisors in characteristic zero by Chinese remainder
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theorem. It is slightly less efficient than the previous one. But it is simpler to
explain.

It should be stressed that the efficiency of all these methods depends on the
bound on the height of torsion divisors that was presented by Edixhoven and de
Jong. Indeed, this bound controls the accuracy (resp. the number of auxiliary
primes p) we need.

As far as the complex analytic method is concerned, the bound is also necessary
to prove the numerical stability of the algorithm. As far as the modulo p method is
concerned, there could be some instability also : namely if one of the divisors we are
looking for becomes special when reduced modulo p. The bound by Edixhoven and
de Jong shows that the number of such bad primes p is bounded by a polynomial
in ℓ.

The description and proof of the algorithm goes in four steps.

(1) define and compute some explicit model for the curve X1(ℓ) or some small
covering Xℓ of it.

(2) provide enough information on this curve (in particular its singularities) to
be able to compute in its jacobian using what is known as the Brill-Noether
algorithm.

(3) construct elements in the ℓ-Sylow subgroup of the group of Fq-points of
the jacobian of X1(ℓ).

(4) using Hecke operators, construct a point in Vℓ = ∩n≥2 Ker(Tn − τ(n)).

We now detail these four steps.
(1) — The modular curve X(2)1(ℓ)

Let ℓ ≥ 5 be a prime. We set dℓ = ℓ2−1
4 and mℓ = ℓ−1

2 . We denote by
Xℓ = X(2)1(ℓ) the moduli of elliptic curves with full 2-torsion plus one non-trivial
ℓ-torsion point.

Let λ be an indeterminate and form the Legendre elliptic curve with equation
y2 = x(x− 1)(x− λ). Call Tℓ(λ, x) the ℓ-division polynomial of this curve. It has

degree 2dℓ = ℓ2−1
2 in x and dℓ in λ. We denote by Tℓ(Λ, X, Y ) = Tℓ(

Λ
Y ,

X
Y )Y 2d the

associated homogeneous polynomial and call Cℓ ⊂ P2 the corresponding projective
curve. This is a singular plane model for Xℓ.

The morphism φ : Xℓ → X1(ℓ) corresponding to forgetting the 2-torsion struc-
ture is Galois with group S3. The six corresponding automorphisms extend to P2

and Cℓ in a way compatible with the maps Xℓ → Cℓ and Cℓ ⊂ P2. The group is
generated by the two transpositions τ(0,∞) and τ(0,1) defined in homogeneous coor-
dinates by τ(0,∞) : [Λ, X, Y ] → [Y,X,Λ] and τ(0,1) : [Λ, X, Y ] → [Y −Λ, Y −X,Y ].

(2) — Singularities on Cℓ

The only possible singularities of Cℓ lie on one of the three lines with equations
Λ = 0, Y = 0 and Λ−Y = 0. We study the branches at infinity on Cℓ through the
associated Tate’s elliptic curves and deduce the 2dℓ roots of Tℓ(λ, x) in the field
Q{{λ−1}} of Puiseux series in λ−1. We introduce Tate’s q-parameter, defined
implicitly by j = 1

q + 744 + · · · . For a and b integers such that either b = 0 and

1 ≤ a ≤ ℓ−1
2 or 1 ≤ b ≤ ℓ−1

2 and 0 ≤ a ≤ ℓ−1 we consider the ℓ-torsion point ζa
ℓ q

b
ℓ
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on the Tate curve with parameter q and call xa,b the corresponding expansion of

x as a series in λ
−1
ℓ . We find

xa,b = −4ζa
ℓ 2

−8b
ℓ λ1− 2b

ℓ +O(λ1− 2b+1
ℓ )

if b 6= 0 and xa,0 =
−4ζa

ℓ

(1−ζa
ℓ )2 λ + O(1). We call Σ∞ = [1, 0, 0] the unique singular

point at infinity and for every 1 ≤ b ≤ ℓ−1
2 we call σ∞,b the point above Σ∞ on Xℓ

associated to the orbit {x0,b, x1,b, · · · , xℓ−1,b} for the inertia group. We call µ∞,a

the point on Xℓ corresponding to the expansion xa,0. The ramification index of
the covering map λ : Xℓ → X(2) is ℓ at σ∞,b and 1 at µ∞,a.

The genus of Xℓ is gℓ = (ℓ−3)2

4 = (mℓ − 1)2. The arithmetic genus of Cℓ is

ga = (m2
ℓ + mℓ − 1)(2m2

ℓ + 2mℓ − 1). We now compute the conductor of Cℓ.
Locally at Σ∞ the curve Cℓ consists of mℓ branches (one for each place σ∞,b) that

are cusps with equations
(

X
Λ

)ℓ
= −22ℓ−8b

(
Y
Λ

)2b
+ · · · . The conductor of this later

cusp is σ∞,b times (ℓ− 1)(2b− 1) which is the next integer to the last gap of the
additive semigroup generated by ℓ and 2b. The conductor of the full singularity
Σ∞ is now given by Gorenstein’s formula [5, Theorem 2] and is

∑

1≤b≤mℓ

{b(4m2
ℓ + 4mℓ − 1) − 2mℓ − (2mℓ + 1)b2} · σ∞,b.

The full conductor Cℓ is the sum of this plus the two corresponding terms to the
isomorphic singularities Σ0 and Σ1. Some authors call it the adjunction divisor.

The degree deg(Cℓ) of Cℓ is 2mℓ(2m
3
ℓ + 4m2

ℓ − 2mℓ − 1). So we have δ(Cℓ) =
mℓ(2m

3
ℓ + 4m2

ℓ − 2mℓ − 1) and we check that ga = gℓ + δ(Cℓ).
(2’) — The Brill-Noether algorithm
Let p 6∈ {2, 3, ℓ} be a prime. Le Cp be the field of p-adics and Fp its residue

field. We embed Q in Cp and also in C. In particular ζℓ = exp(2iπ
ℓ ) and 2

1
ℓ are

well defined as p-adic numbers.
We set hℓ = 3mℓ(mℓ +1). Let Shℓ = H0(P2,OP2(hℓ)) the linear space of degree

hℓ homogeneous polynomials in Λ, X , and Y . Let Hhℓ be the space of hℓ-forms
on Xℓ. If mℓ ≥ 8 then the dimension of Hhℓ(Cℓ) is greater than 2gℓ and the
restriction map ρ : Shℓ → Hhℓ contains Hhℓ(Cℓ) according to the residue theorem.
So we have a description of Hhℓ(Cℓ) as a subspace of Shℓ .

A place p of the field Fq(Xℓ) is represented in the following way. Le P be an

Fq-point on Xℓ above p. If P lies on one of the lines with equations Λ = 0, Y = 0
and Λ−Y = 0 then it is one of the σ’s or one of the µ’s and we already know how
to call it.

Otherwise, P is a smooth point and may be regarded as a point on the affine
part of the plane curve Cℓ. Let rp be the degree of p which is also the degree
of Fq(P ) over Fq. The point P can be given by its affine coordinates λ and
x. We call rλ the degree of Fq(λ(P )) over Fq and set rx/λ = rp/rλ. We call
Fp(λ) ∈ Fq[λ] the unitary, irreducible polynomial with degree rλ that cancels
λ(P ). We call Gp(λ, x) ∈ Fq[λ, x] = Fq[λ][x] the unique polynomial with degree
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rx/λ in x and degree < rλ in λ such that the coefficient of xrx/λ is 1 ∈ Fq[λ] and
Gp(λ(P ), x(P )) = 0.

So we can represent forms and divisors on our modular curve. For every form
in Hhℓ(Cℓ) we can compute its divisor. And given a divisor, we can compute the
subspace of Hhℓ(Cℓ) consisting of forms that vanish at this divisor. This is enough
to compute in the jacobian Jℓ of Xℓ.

(3) — The ℓ-Sylow subgroup of J1(ℓ)(Fq)
Recall there is a covering map φ : Xℓ → X1(ℓ) corresponding to forgetting the 2-

torsion structure. This induces two morphisms φ∗ : J1(ℓ) → Jℓ and φ∗ : Jℓ → J1(ℓ)
such that φ∗ ◦ φ∗ = [6] on J1(ℓ).

We denote by Jℓ ⊂ Jℓ the image of ν = φ∗ ◦ φ∗. This is a subvariety of Jℓ

isogenous to J1(ℓ). The restriction of ν to Jℓ is multiplication by 6. The maps
φ∗ and φ∗ induce Galois equivariant bijections between the N -torsion subgroups
J1(ℓ)[N ] and Jℓ[N ] for every prime to 6 integer N .

For any finite field k and abelian variety A/k and prime integer n, we denote
by A[n∞](k) the n-Sylow subgroup of A(k). We note Nq the number of Fq-points
in J1(ℓ)(Fq) and set Nq = LqMq where Mq is prime to ℓ and Lq is a power of ℓ.
We check the map [Mq] ◦ ν = φ∗ ◦Mq ◦ φ∗ : Jℓ(Fq) → Jℓ[ℓ

∞](Fq) is surjective.
By Eichler-Shimura and results of Manin, Shokurov, Merel, Cremona, [6, 7, 2,

4], for q = pk a power of a prime p 6= ℓ, the number of Fq-rational points on J1(ℓ)
is computed in time polynomial in ℓ, p, and k.

Starting from elements in Jℓ(Fq) and applying the operator [Mq] ◦ φ∗ ◦ φ∗, we
construct elements in the group Jℓ[ℓ

∞](Fq).
(4) — projecting into the Ramanujan subgroup

We choose an integer 6̂ such that 66̂ is congruent to 1 modulo Lq. We set

T̂n = [6̂]◦φ∗ ◦Tn ◦φ∗ and notice that T̂n ◦φ∗ = φ∗ ◦Tn on J1(ℓ)[ℓ
∞]. This way, the

map φ∗ : J1(ℓ)[ℓ
∞](Fq) → Jℓ[ℓ

∞](Fq) becomes a bijection of Hecke modules. The
forecoming calculations are more naturally described in J1(ℓ)[ℓ

∞](Fq) but they
will be performed in Jℓ[ℓ

∞](Fq).
We call A the algebra of endomorphisms of J1(ℓ)/Fp generated by the operators

Tn for all prime integers n. We set B = A[Fp] where Fp is the p-Frobenius operator.
We assume the polynomial X2 − τ(p)X + p11 splits modulo ℓ and call a and b

the two roots in Zℓ which we assume to be distinct modulo ℓ. The method can be
easily adapted in the inert case.

We call V a
ℓ ⊂ Vℓ the eigenspace associated to a and V b

ℓ the eigenspace associated
to b. We denote ma the maximal ideal in B generated by ℓ, the Tn−τ(n) and Fp−a.
For every integer n ≥ 2 we call An(X) ∈ Z[X ] the characteristic polynomial of Tn

acting on modular forms of weight 2 for Γ1(ℓ). We factor An(X) = bn(X)(X −
τ(n))en in Fℓ[X ] with bn(X) unitary and bn(τ(n)) 6= 0 ∈ Fℓ. We set q = pka where
ka > 0 is an integer that kills a in (Z/ℓZ)∗ and observe that V a

ℓ = V a
ℓ (Fq). The

ℓ-Sylow subgroup J1(ℓ)[ℓ
∞](Fq) of J1(ℓ)(Fq) is contained in J1(ℓ)[Lq](Fq). We set

Lq = ℓwq . The polynomial factorization An(X) = bn(X)(X − τ(n))en modulo ℓ
lifts modulo Lq as An(X) = Bn(X)Cn(X).
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We call Πa the composite map of (Fp − [b mod Lq])
2g(X1(ℓ)) and all Bn(Tn) for

all n primes such that 2 ≤ n ≤ ℓ2. The image of J1(ℓ)[ℓ
∞](Fq) by Πa contains

V a
ℓ = J1(ℓ)[ma] and is killed by m

2wqg(X1(ℓ))
a .

Given a non-zero element x in the image of J1(ℓ)[ℓ
∞](Fq) by Πa, we can test

whether it is killed by ma by applying to it all the generators ℓ and Tn − τ(n) for
n ≤ ℓ2. If we always obtain zero this shows that x is in V a

ℓ . Otherwise we produce
some non zero element in mx and we replace x by this element and iterate. This
process stops after at most 2g(X1(ℓ))wq steps and produces a non-zero element x
in V a

ℓ . We proceed in a similar way with V b
ℓ and find a generating set for Vℓ.
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Computations in non-commutative Iwasawa theory of elliptic curves

Tim Dokchitser

(joint work with Vladimir Dokchitser)

Recently a “Main Conjecture of non-commutative Iwasawa theory” has been for-
mulated by J. Coates, T. Fukaya, K. Kato, R. Sujatha and O. Venjakob [1]. Take a
number field F , an elliptic curve E/F , and an extension F∞/F whose Galois group
Γ is a compact p-adic Lie group, not necessarily commutative. With some restric-
tions on F,Γ and E, the conjecture predicts a relation between the non-abelian
Euler characteristic (defined by the authors) of twists E ⊗ τ of E in F∞/F , and
special values of L-functions L(E, τ, s)|s=1. We want to provide some of the first
numerical evidence in favour of their conjecture.

Namely, take F = Q, Fn = Q(µpn , pn√
m) and F∞ =

⋃
n Fn. Then F∞/F is

Galois and its Galois group is possibly the simplest non-commutative compact
p-adic Lie group,

Γ = Gal(F∞/F ) ∼=
{( ∗ ∗

0 1

)
∈ GL2(Zp)

}
.
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This Lie group is 2-dimensional, and its first layer Gal(F1/Q) is of order p(p− 1);
it is somewhat similar to a dihedral group of order 2p. It is not hard to see that

The regular representation of Gal(F1/Q) ∼= σ ⊕ ρp−1 .

Here σ is the regular representation of Gal(Q(µp)/Q and ρ is a sum of p− 1 one-
dimensional characters; ρ is irreducible of dimension p − 1. The representations
ρ and σ arise naturally when one describes L-functions of E over the subfields of
F1, for instance

L(E/F1, s) = L(E, σ, s)L(E, ρ, s)p−1

L(E/Q(µp), s) = L(E, σ, s)
L(E/Q( p

√
m, s) = L(E, s)L(E, ρ, s)

The Main Conjecture of [1] predicts relations between the non-abelian Euler char-
acteristics (algebraic side) with special values of twisted L-functions (analytic side),

L(E, σ, 1) = χnon-ab(E ⊗ σ) · (finite computable correction term),
L(E, ρ, 1) = χnon-ab(E ⊗ ρ) · (finite computable correction term).

See [1], 5.6-5.10 and the penultimate paragraph of the paper for the precise for-
mulation. Using results from non-abelian and from cyclotomic Iwasawa theory, we
can prove the following relation between these Euler characteristics:

Theorem. Assume that E/Q has good ordinary reduction at p > 3, the cyclotomic
µ−invariant of E/Q(µp) is zero, and that E/Q(µp) has trivial p∞-Selmer group.
Then

χnon-ab(E ⊗ σ) = 1 ⇐⇒ χnon-ab(E ⊗ ρ) = 1.

In combination with the main conjecture, this gives explicit relations between
the p-parts of the suitably modified values L(E, σ, 1) and L(E, ρ, 1). We test these
predictions numerically for p = 3, 5 and 7 for various elliptic curves and find that
the computations support the main conjecture.

Next, I discussed one specific example that comes out of the computations (joint
with V. Dokchitser, J. Coates and R. Sujatha).

Let E be the elliptic curve y2 + y = x3 − x2 (conductor 11) over Q and p = 3.
The curve has Mordell-Weil rank 0 and the question is for which m does E acquire
rational points over the field Q( 3

√
m) or, more generally, over Q( 3n√

m).
Using results from cyclotomic Iwasawa theory, it is not hard to see that over the

field Q(µ3n) the curve has rank 0 and trivial X[3], so the question is also equivalent
to the same one for E over Fn (which is the Galois closure Q( 3n√

m,µ3n), as above).
The answer depends on whether m is divisible by 11 (the only prime of bad

reduction) and by anomalous primes in Mazur’s terminology. A prime number

q 6= 11 is anomalous for E/Q if the reduction Ẽ(Fq) has a non-trivial 3-torsion
point. For instance, this happens for q = 23, 59, 71. Then one can show:

(I) If m is neither divisible by 11 nor by any anomalous primes (e.g. m =
2, 3, 5, 6, 7, ...), then over the field Fn the curve E has rank 0 and trivial X[3].

(II) If m is not divisible by 11 but divisible by an anomalous prime (e.g. m =
29, 53, 2·29, ...), then either the Mordell-Weil rank of E/Q( p

√
m) is positive or X[3]
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is non-trivial over this field. However, we do not have a criterion how to distinguish
between these two cases for a given m, and it would be very interesting to have at
least a heuristical prediction of what to expect.

(III) Perhaps the most interesting case is the following: if m is divisible by 11
but not by anomalous primes, then one can show that the Mordell-Weil rank of
E/Q( 3n√

m) is ≤ n. On the other hand, a root number computation shows that the
order of vanishing of L(E/Q( 3n√

m), s) at s = 1 is ≥ n. Thus, Tate’s generalisation
of the Birch-Swinnerton-Dyer conjecture [3] predicts that both inequalities are
equalities. This means that on every step from Q( 3n√

m) to Q( 3n+1√
m) the rank

goes up by exactly 1, so E acquires exactly one new generator in the Mordell-Weil
group (for every n ≥ 1 !). It would be very interesting to have some kind of
algebraic construction of these points to explain this curious phenomenon.
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Computational verification of the Birch and Swinnerton-Dyer
conjecture for individual elliptic curves

William A. Stein

(joint work with G. Grigorov and A. Jorza and S. Patrikis and
C. Tarniţǎ-Pǎtraşcu)

The L-function L(E, s) of an elliptic curve E over Q is a holomorphic function
on C that encodes deep arithmetic information about E. This project is about a
connection between the behavior of L(E, s) at s = 1 and the arithmetic of E.

We use theorems and computation to attack the following conjecture for many
specific elliptic curves of conductor up to 1000:

Conjecture 1 (Birch and Swinnerton-Dyer). The order of vanishing ords=1 L(E, s)
equals the rank r of E, the group X(E) is finite, and

L(r)(E, 1)

r!
=

ΩE · RegE ·∏p cp · #X(E)

(#E(Q)tor)2
.

For more about Conjecture 1, see [Lan91, Wil00] and the papers they reference.
Henceforth we call it the BSD conjecture.

Definition 2 (Analytic X). If E has rank r, let

#X(E)an =
L(r)(E, 1) · (#E(Q)tor)

2

r! · ΩE · RegE ·∏p cp
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denote the order of X(E) predicted by Conjecture 1. We call this the analytic
order of X(E).

Conjecture 3 (BSD(E, p)). Let (E, p) denote a pair consisting of an elliptic curve
E over Q and a prime p. We also call the assertion that ords=1 L(E, s) equals the
rank r, that X(E)[p∞] is finite, and

ordp(#X(E)[p∞]) = ordp(#X(E)an)

the BSD conjecture at p, and denote it BSD(E, p).

The BSD conjecture is invariant under isogeny.

Theorem 4 (Cassels). If E and F are Q-isogeneous and p is a prime, then
BSD(E, p) is true if and only if BSD(F, p) is true.

Proof. See [Cas65, Mil86, Jor05]. �

One way to give evidence for the BSD conjecture is to compute #X(E)an and
note that it is the square of an integer, in accord with the following theorem:

Theorem 5 (Cassels). If E is an elliptic curve over Q and p is a prime such that
X(E)[p∞] is finite, then #X(E)[p∞] is a perfect square.

Proof. See [Cas62, PS99]. �

Below we use the notation of [Crea] to refer to specific elliptic curves over Q.

Conjecture 6 (Birch and Swinnerton-Dyer ≤ 1000). For all optimal curves of
conductor up to 1000 we have X(E) = 0, except for the following four rank 0
elliptic curves, where X(E) has the indicated order:

Curve 571A 681B 960D 960N
#X(E)an 4 9 4 4

Theorem 7 (Cremona). Conjecture 1 is true for all elliptic curves of conductor
up to 1000 if and only if Conjecture 6 is true.

Proof. In the book [Cre97], Cremona computed #X(E)an for every curve of con-
ductor up to 1000. By Theorem 4 it suffices to consider only the optimal ones,
and the four listed are the only ones with nontrivial #X(E)an. �

In view of Theorem 7, the main goal of this paper is to obtain results in support
of Conjecture 6. Combining our results, we obtain the following theorem.

Theorem 8. Suppose that E is a non-CM elliptic curve of rank ≤ 1, conductor
≤ 1000 and that p is a prime. If p is odd, assume further that the mod p repre-
sentation ρE,p is irreducible and p does not divide any Tamagawa number of E.
Then BSD(E, p) is true.

For example, if E is the elliptic curve 37A, then according to [Cre97], all ρE,p

are irreducible and the Tamagawa numbers of E are 1. Thus Theorem 8 asserts
that the full BSD conjecture for E is true.



1850 Oberwolfach Report 32/2005

There are 18 optimal curves of conductor up to 1000 of rank 2 (and none of
rank > 2). For these E of rank 2, nobody has proved that X(E) is finite in even
a single case. We exclude CM elliptic curves from most of our computations. The
methods for dealing with the BSD conjecture for CM elliptic curves are different
than for general curves, and will be the subject of another paper. Similar remarks
apply to BSD(E, p) when ρE,p is reducible.
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The Brauer-Siegel theorem

H.M. Stark

I want to return to the origins of the study of class-numbers of CM fields by
studying zeta functions of fields K with the property that ζK(0) has two real zeros
β2 < β1 < 1, both near to s = 1. In the applications, K is normal over Q and
in fact the two principal applications come with K being (i) a biquadratic field
containing two quadratic subfields with Siegel zeros and (ii) a normal extension of
Q with a real double zero of ζK(s) within (for = example) (log logD)−10 of s = 1.
Here D is the absolute value of the discriminant of K.

Our principal tool is the exact formula relating zeros and primes. Recall that
ζK(s) satisfies a functional equation

ξK(s) = ξK(1 − s)

where

ξK(s) =

(
D

22r2πn

)s/2

Γ(s/2)r1Γ(s)r2ζK(s)s(s− 1)
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is an entire function of order one with Hadamard product,

ξK(s) = eA+Bs
∏

ρ

(
1 − s

ρ

)
es/ρ = eA+B′s

∏′

ρ

(
1 − s

ρ

)

where A and B are constants (depending on K and ρ runs through the non-trivial
zeros of ζK(s). The first product over ρ is absolutely convergent. If we group the

ρ in some manner so that
∑′

ρ
1/ρ converges (conditionally) then

B′ = B +
∑′

1/ρ

and in the second product
∏′

ρ groups the ρ in the same way.

Let Fc(x) be an even real-valued function whose two-sided Laplace transform

F̂c(w) =

∫ ∞

−∞
Fc(x)e

−wx dx,

converges absolutely at least in the strip |Re(w)| ≤ 1/2. We also desire that

Fc(x) ≥ 0

for all x. The variable c is a positive real scaling factor. It follows that F̂c(w) is
even. Our first example of a function is

Fc(x) = Ec(x) =
c√
π

exp(c2x2)

which gives

Êc(w) = exp

(
w2

4c2

)
.

We evaluate the integral on the vertical line Re(s) = 2,

1

2πi

∫

(2)

ξ′K
ξK

(s)Êc(s− 1/2) ds,

in the usual two ways. One way moves the line of integration leftwards to the line
Re(w) = −1 and picks up the residues. Applying the functional equation brings
us back to Re(w) = 2 and in this manner, we get

1

2πi

∫

(2)

ξ′K
ξK

(s)Êc(s− 1/2) ds =
1

2

∑′

ρ

ress=ρ Êc(s− 1/2) +B′ = Ec(0)

=
1

2

∑′

ρ

= exp

(
(ρ− 1/2)2

4c2

)
+

c√
π
B′.

Serious homework problem. The integrals are absolutely convergent and
indeed, very rapidly so. So is the sum of the residues. But B′ is not unique.
Explain.
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In [3], it was shown, without the use of an integration, that when
∑′

means

that ρ and 1 − ρ are grouped together, B′ = 0. We use this grouping. Evaluating
the integral from the other side of the equation leads to the following:

1

2
(logD)Ec(0) + exp

(
1

16c2

)
=

1

2

∑

ρ

exp

(
(ρ− 1/2)2

4c2

)
+R

where R is a collection of the remaining terms all of which are positive real. The
exp(1/(16c2)) term comes from the s = 0, 1 pair. On the right side, we single out
the β1, 1 − β1 pair and the β2, 1 − β2 pair. For convenience, set β0 = 1 and

aj = exp

(
(βj − 1/2)2

4c2

)

for j = 0, 1, 2. Our identity now reads

1

2
(logD)Ec(0) + a0 = a1 + a2 + Z +R

where Z is the sum over the remaining zeros. Any further real zeros and all zeros
with Re(ρ) = 1/2 make positive real contributions to the right-hand side. We can
transfer these contributions from Z to R, and in this way we get a fundamental
inequality,

(16)
1

2
(logD)Ec(0) + a0 > a1 + a2 + Z̃

where Z̃ is a sum over those zeros ρ which are neither real, nor on the line
Re(s) = 1/2. These zeros represent violations of the “Modified Generalized Rie-
mann Hypothesis” (MGRH), if they exist.

We have
a0 > a1 > a2

always, nevertheless, if we choose the scaling factor c to be small enough [certainly,
we will need c so small that a2 > 1/2(logD)Ec(0) and then smaller still], we can
arrange in both our principal applications that

(17)
1

2
(logD)Ec(0) + a0 < a1 + a2

Thus the obstruction to an effective proof that class-numbers of CM fields go to ∞
as the field varies or to an ineffective improvement of Siegel’s theorem lies in the
possible existence of normal extensions of Q whose zeta functions violate MGRH.
Further analysis [4], leads to many such zeros very near to s = 1.

A possible attack on this difficulty comes from the analytic discriminant bound
methods which orginated in very crude form in [3] with the realization that with
B′ = 0, the expansion for ξ′K(s)/ξK(s) yields an estimate for logD which is better
than the Minkowski bounds. The method was tremendously improved by Odlyzko
who took account of the zeros of ζK(s), as well as the primes of K, and then by
Serre who proved the current best known bounds under the assumption of GRH
by introducing the Weil formulas into the analysis. A way was then found to take
account of zeros violating MGRH in a positive way. The new wrinkle was to find
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functions Fc(x) such that for some a ≥ 1/2, Re = F̂c(w) ≥ 0 for all w in the
strip |w| ≤ a. See Odlyzko [1] and Poitou [2]. The use of such a function would

eliminate all the terms in Ẑ from consideration in our fundamental inequality (1),
but the cost is to lower the size of a0, a1, a2 to a point where it appears we can no
longer arrange to get the contradiction in (2) for any c. The best I have managed
so far for the classic Siegel zero problem is with a value of a just slightly less than
β2 − 1/2.
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Theta null points of canonical lifts

Robert Carls

Our research is inspired by results of J.-F. Mestre who proposed the following
generalisation of Gauss’ arithmetic geometric mean (AGM)

a(n+1)
u =

1

2g

∑

v∈(Z/2Z)g

√
a
(n)
v+ua

(n)
v , u ∈ (Z/2Z)g.

Mestre introduced a point counting algorithm for ordinary hyperelliptic curves over
a finite field of characteristic 2 based on the generalised AGM formulas. An opti-
mised version of his algorithm is described in [4]. One of our aims is to broaden the
understanding of Mestre’s algorithm in order to generalise it to arbitrary residue
field characteristic. The generalised AGM formulas can be deduced from a trans-
formation formula for complex analytic theta functions (see [3, Ch. IV, Th. 2])
which describes their behaviour under the doubling of the period matrix. In order
to use Mestre’s formulas over the 2-adic numbers one has to apply the Lefschetz
principle.

Our method yields equations satisfied by the canonical theta null point of a
canonical lift over a 2-adic ring. The canonical theta null point is defined in terms
of the canonical theta structure. The proof is done by purely algebraic means in-
volving an algebraic version of the above mentioned theta transformation formula
which is proven in [5]. In contrast to Mestre’s formulas ours are integral. This
allows one to keep track of the reduction modulo 2.

According to the theory of complex multiplication the invariants of a simple
abelian variety with CM generate a certain class field of the reflex field of the
endomorphism algebra. In Section 2 we compute Hilbert class fields of certain
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imaginary quadratic fields using canonical theta null points. A 2-adic CM method
for abelian surfaces using Igusa invariants instead of canonical theta null points is
described in [2].

The results of Section 1 were proven with the help of Bas Edixhoven. I owe
thanks to B. Moonen, F. Oort and M. Raynaud who contributed to the proof of
the existence of the canonical theta structure.

1. The main results

Let R be a complete noetherian local ring with perfect residue field k of char-
acteristic p > 0. Assume that R admits an automorphism σ lifting the p-th power
Frobenius automorphism of k. Let A be an abelian scheme over R of relative di-
mension g having ordinary reduction and let L be an ample symmetric line bundle
of degree 1 on A. Fix j ≥ 0. Suppose we are given an isomorphism

(Z/pjZ)g
R

∼→ A[pj ]et(18)

where A[pj ]et denotes the maximal étale quotient of A[pj ].

Theorem: Assume that A is a canonical lift. There exists a canonical theta
structure of type (Z/pjZ)g

R for the pair
(
A,L⊗pj

)

depending on the isomorphism (18).

For a proof of the above theorem see [1]. Now let p = 2. In the following we
assume that A is a canonical lift. Let [xu]u∈(Z/2jZ)g

R
denote the theta null point of

A with respect to the canonical theta structure for (A,L⊗2j

).

Theorem: There exists a unique ω ∈ R∗ such that for all u ∈ (Z/2jZ)g
R we

have

x2
u = ω

∑

v∈(Z/2Z)g
R

σ(xv+u)σ(xv).

A proof of the above theorem is going to be published. Taking j = 1 and setting

a(n)
u =

1

2gω
x2

u and a(n+1)
u = σ(xu)2

one obtains Mestre’s generalised AGM formulas. We remark that in the case that
k = Fq is a finite field the constant ω of the above theorem is expected to be related
to the product of the invertible eigenvalues of the q-Frobenius endomorphism of
AFq .

2. Example

Let Zq denote the Witt vectors with values in a finite field Fq of characteristic
2. Let E be an elliptic curve over Zq having ordinary reduction. Let σ ∈ End(Zq)
denote a lift of the 2nd-power Frobenius automorphism of Fq. Assume that E is
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a canonical lift. Let L = O(0E) where 0E denotes the zero section of E. There
exists a unique isomorphism

(Z/2Z)Zq

∼→ E[2]et.(19)

Hence there exists a canonical theta structure of type (Z/2Z)Zq for the pair

(E,L⊗2). By our second theorem there exists an ω ∈ Z∗
q such that the coordinates

of the theta null point [x0, x1] satisfy the equations

x2
0 = ω

(
σ(x0)

2 + σ(x1)
2
)

and x2
1 = 2ωσ(x0)σ(x1).

We set µ = x1

x0
. Rewriting the above equations in terms of µ we get

µ2
(
σ(µ)2 + 1

)
= 2σ(µ).(20)

Suppose [Fq : F2] = 2. Equation (20) implies that

(µ2 + µ+ 2) · (µ4 + 4µ3 + 5µ2 + 2µ+ 4) = 0.

Let L = End0(E) = End(E) ⊗ Q. If the j-invariant of EF4 equals 1 then L =
Q(

√
−7). Note that L has class number 1 and the polynomial x2 + x + 2 is

reducible over L. If EF4 cannot be defined over F2 then we have L = Q(
√
−15)

which has class number 2. The polynomial x4 + 4x3 + 5x2 + 2x+ 4 generates the
Hilbert class field of Q(

√
−15).
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Mersenne primes and class field theory

Bas Jansen

The Lucas-Lehmer test is an algorithm to check whether a number of the form
M = 2p − 1, with p an odd positive integer, is prime. The algorithm produces a
sequence of p− 1 numbers modulo M , starting with the starting value 4 and each
time squaring the previous number and subtracting 2. Then the last number is
zero modulo M if and only if M is prime. Lehmer observed that if the last number
is zero then the penultimate number can be either PLUS or MINUS 2(p+1)/2 mod-
ulo M . Gebre-Egziabher showed that if you start your sequence with 2/3 instead
of 4, then the test also works, and the sign will be plus if and only if p is 1 modulo
4 (p > 5). In my talk I generalize this result.
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The Lucas-Lehmer test can be formulated in a little bit more general way.

Let p ∈ Z>1 odd,
M = Mp = 2p − 1,
s ∈ Z/MZ and
s1 = s, si+1 = s2i − 2 for i ∈ {1, . . . , p− 1}.

Then we have the following theorem.

Theorem:

sp−1 = 0 ⇔





M is prime
&(

s− 2
M

)
=

(
−s− 2

M

)
= 1.

Lehmer’s observation.

Lehmer observed that we can obtain a sign from the Lucas-Lehmer test. Namely
first note that

sp−1 = s2p−2 − 2 = s2p−2 − 2p+1 =

(sp−2 − 2(p+1)/2)(sp−2 + 2(p+1)/2).

Hence then we see that

sp−1 = 0 ⇒ sp−2 =





plus
or

minus



 2(p+1)/2.

Starting values in big field.

The starting values 4, 10 and 2
3 are all elements of Q. We can create starting

values in a much bigger field.

For every

s ∈
⋃

n>0

Q(
n
√

2)

there exists integer k = ks such that

(s modMp) has a natural meaning

whenever

gcd(p, k) = 1.



Explicit Methods in Number Theory 1857

Namely, write

s = (2ed)−1 ·
n−1∑

i=0

ci
n
√

2
i

(e, d, ci ∈ Z with e ≥ 0 and d odd).

Pick k = n · order(2 mod d).

Let an ≡ 1 modMp, then (2a)n ≡ 2 modMp. We define

(smodMp) := (2e · d modMp)
−1 ·

n−1∑

i=0

(ci 2a·i modMp).

Definition of ǫs(p).

For s ∈ ⋃
n>0 Q(n

√
2) we define

Ps = {p : gcd(p, ks) = 1, sp−1 = 0 for s1 = (s modM)}.

Define

ǫs : Ps → {+1,−1}
by

sp−2 = ǫs(p) · 2(p+1)/2.

Example.

P4 = P10 = P2/3 = {p > 2 : 2p − 1 prime} = {3, 5, 7, 13, 17, 19, . . .}.

ǫ4(5) = +1 because s1 = (4 mod 31), s2 = 14, s3 = 196 − 2 = 8 = +2(5+1)/2.

A generalisation of G-E result.

Let s ∈ K =
⋃

n>0 Q(n
√

2),

m = [Q(s,
√

2,
√

4 − s2) : Q],
d ∈ Z>0 such that d · s ∈ OK ,
c = odd part of radical(d) and

N = order(m
√

2 mod c).

Then we have the following theorem.
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Main theorem: If
4 − s2 ∈ (K∗)2,

then ∀p, q ∈ Z>4m ∩ Ps we have

ǫs(p) = ǫs(q) ⇐ p ≡ q mod N.

Example s = 2
3 .

We have 4 − (2
3 )2 = 32

9 = (4
√

2
3 )2,

m = 2,
d = 3,
c = odd part of radical(3) = 3 and

N = order(
√

2 mod 3) = 4.

¿From the fact that N = 4 G-E result follows.

Now we give two corollaries which follow easily from the main theorem.

Corollary: Let s = 626
363 . Let p ∈ Ps = {p > 2 : 2p − 1 prime}. Then

ǫs(p) = 1 ⇔ p ≡ 1, 7, 9, 13 mod20.

Corollary: Let s = − 14
75 + 32

25

√
2. Let p ∈ Ps = {p > 2 : 2p − 1 prime}. Then

ǫs(p) = −1 ⇔ p 6= 3, 5.

Generating Subfields

Mark van Hoeij

(joint work with Jürgen Klüners)

Let K/k be a finite separable field extension of degree n. We describe an
algorithm that computes all subfields of K that contain k. We assume that a
primitive element α of K/k is given as well as its minimal polynomial f ∈ k[x].
The main result is that all subfields can be presented as intersections of a small
number of subfields, and that those subfields can be calculated efficiently. The
concepts of principal and generating subfields are introduced.

1. The main theorem

Let K̃ be a field containing K and f = f1 · · · fr be the factorization of f over
K̃ where the fi ∈ K̃[x] are irreducible and monic, and f1 = x− α. We define the

fields K̃i := K̃[x]/(fi) for 1 ≤ i ≤ r. We denote elements of K as g(α) where g is
a polynomial of degree < n, and define for 1 ≤ i ≤ r the embedding

φi : K → K̃i, g(α) 7→ g(x) mod fi.

Note that φ1 is just the identity map id : K → K̃. We define for 1 ≤ i ≤ r:

Li := Ker(φi − id) = {g(α) ∈ K | g(x) ≡ g(α) mod fi}.
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The Li are closed under multiplication, and hence fields, since φi(ab) =
φi(a)φi(b) = ab for all a, b ∈ Li.

Theorem 1. If L is a subfield of K/k then L is the intersection of Li, i ∈ I for
some I ⊆ {1, . . . , r}.
Proof. Let fL be the minimal polynomial of α over L. Then fL divides f since
k ⊆ L, and fL =

∏
i∈I fi for some I ⊆ {1, . . . , r} because L ⊆ K̃. We will prove

L = {g(α) ∈ K | g(x) ≡ g(α) mod fL} =
⋂

i∈I

Li.

If g(α) ∈ L then h(x) := g(x) − g(α) ∈ L[x] is divisible by x − α in K[x]. The
set of polynomials in L[x] divisible by x − α is (fL) by definition of fL. Then
h(x) ≡ 0 mod fL and hence g(x) ≡ g(α) mod fL. Conversely, g(x) mod fL is in
L[x] (mod fL) because division by fL can only introduce coefficients in L. So if
g(x) ≡ g(α) mod fL then g(α) ∈ K ∩ L[x] = L.

By separability and the Chinese remainder theorem, one has g(x) ≡ g(α) mod
fL if and only if g(x) ≡ g(α) mod fi (i.e. g(α) ∈ Li) for every i ∈ I. �

We can choose for K̃ any field that contains K (the set S := {L1, . . . , Lr} is

independent of this choice). The most convenient choice is to take K̃ = K, but in

some situations it might be better to let K̃ be some completion of K (this would

save time on the factorization of f over K̃, but it complicates computing the Ker
in the definition of Li since this would then have to be done with LLL techniques
instead of linear algebra over k. So if one has very efficient factoring code [3] then

taking K̃ = K might still be the best choice).

Definition 2. We call the fields L1, . . . , Lr the principal subfields of K/k. A set
S of subfields of K/k is called a generating set of K/k if every subfield of K/k
can be written as

⋂
T for some T ⊆ S. Here

⋂
T denotes the intersection of all

L ∈ T , and
⋂ ∅ refers to K. A subfield L of K/k is called a generating subfield if

it satisfies the following equivalent conditions

(1) The intersection of all fields L′ with L ( L′ ⊆ K is not equal to L.

(2) There is precisely one field L ( L̃ ⊆ K for which there is no field between

L and L̃ (and not equal to L or L̃).

The field L̃ in condition (2) is called the field right above L. It is clear that L̃
is the intersection in condition (1), so the two conditions are equivalent.

The field K is a principal subfield but not a generating subfield. A maximal
subfield of K/k is a generating subfield as well. Theorem 1 says that the principal
subfields form a generating set. By condition (1), a generating subfield can not be
obtained by intersecting larger subfields, and must therefore be an element of every
generating set. In particular, a generating subfield is also a principal subfield.

If S is a generating set, and we remove every L ∈ S for which
⋂{L′ ∈ S|L ( L′}

equals L, then what remains is a generating set that contains only generating
subfields. It follows that
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Proposition 1. S is a generating set if and only if every generating subfield is in
S.

Suppose that K/k is a finite separable field extension and that one has poly-
nomial time algorithms for factoring over K and for linear algebra over k (for

example when k = Q). Then applying Theorem 1 with K̃ = K yields a generating
set S with r ≤ n elements in polynomial time. We may want to minimize r by
removing all elements of S that are not generating subfields. Then r ≤ n− 1. In
principle there are 2r subsets of S to be considered, which may be substantially
more than the number of subfields. So we design the algorithm in Section 2 in
such a way that it finds each subfield only once. This way, when S is given, the
cost of computing all subfields is proportional to the number of subfields.

2. Intersections

In this section we describe an algorithm to compute all subfields of K/k by
intersecting elements of a generating set S = {L1, . . . , Lr}. The complexity is
proportional to the number of subfields of K/k. Unfortunately there exist families
of examples where this number is more than polynomial in n.

To each subfield L of K/k we associate a tuple e = (e1, . . . , er) ∈ {0, 1}r, where
ei = 1 if and only if L ⊆ Li.

Algorithm AllSubfields
Input: A generating set S = {L1, . . . , Lr} for K/k.
Output: All subfields of K/k.

(1) Let e := (e1, . . . , er) where e1 = 1 if Li = K and ei = 0 otherwise.
(2) ListSubfields := [K].
(3) Call NextSubfields(S,K, e, 0).
(4) Return ListSubfields.

The following function returns no output but appends elements to ListSubfields,
which is used as a global variable. The input consists of a generating set, a sub-
field L, its associated tuple e = (e1, . . . , er), and the smallest integer 0 ≤ s ≤ r for
which L =

⋂{Li | 1 ≤ i ≤ s, ei = 1}.

Algorithm NextSubfields
Input: S,L, e, s.

For all i with ei = 0 and s < i ≤ r do

(1) Let M := L ∩ Li.
(2) Let ẽ be the associated tuple of M .
(3) If ẽj ≤ ej for all 1 ≤ j < i then append M to ListSubfields and call

NextSubfields(S,M, ẽ, i).

Subfields that are isomorphic but not identical are considered to be different in
this text. Let m be the number of subfields of K/k. Since S is a generating set,
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all subfields occur as intersections of L1, . . . , Lr. The condition in Step (3) in
Algorithm NextSubfields holds if and only if M has not already been computed
before. So each subfield will be placed in ListSubfields precisely once, and the
total number of calls to Algorithm NextSubfields equals m. For each call, the
number of i’s with ei = 0 and s < i ≤ r is bounded by r, so the total number of
intersections calculated in Step (1) is ≤ rm. Step (2) involves testing which Lj

contain M . Bounding the number of j’s by r, the number of subset tests is ≤ r2m.

Theorem 3. Given a generating set for K/k with r elements, Algorithm AllSub-
fields returns all subfields by computing at most rm intersections and at most r2m
subset tests, where m is the number of subfields of K/k.

Thus the cost of computing all subfields is bounded by a polynomial times the
number of subfields.
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