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Neil Trudinger (Canberra)

July 24th – July 30th, 2005

Abstract. The workshop dealt with partial differential equations in geome-
try and technical applications. The main topics were the combination of non-
linear partial differential equations and geometric measure theory, conformal
invariance and the Willmore functional, and regularity of free boundaries.

Mathematics Subject Classification (2000): 35 J 60, 35 J 35, 58 J 05, 53 A 30, 49 Q 15.

Introduction by the Organisers

The workshop Partial differential equations, organised by Tom Ilmanen (ETH
Zürich), Reiner Schätzle (Universität Tübingen) and Neil Trudinger (Australian
National University Canberra) was held July 24-30, 2005. This meeting was well
attended by 46 participants, including 6 females, with broad geographic reprensen-
tation. The program consisted of 15 talks and 9 shorter contributions and left
sufficient time for discussions.

New results combining partial differential equations and geometric problems were
presented in the area of minimal surfaces, free boundaries and singular limits,
for example the construction of branched minimal surfaces, the regularity of free
boundaries in the wake of the monotonicity formula of Weiss and a proof of a
conjecture of De Giorgi.

A major part of the leading experts of partial differential equations with conformal
invariance attended the workshop. Here new results were presented in conformal
geometry, for the Yamabe problem, the Paneitz operator and the Willmore func-
tional.
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Abstracts

A PDE Construction of a Class of Stable Branched Minimal
Immersions

Leon Simon

(joint work with Neshan Wickramasekera)

This talk described recent joint work [SW05] with Neshan Wickramasekera, whose
papers [Wic04a], [Wic04b] establish a rather complete regularity and compactness
theory for stable branched minimal immersions of dimension n in Rn+1 near points
of density less than 3. One of the main theorems discussed here (Theorem 2) can
be viewed as a confirmation of the fact that there is a rather rich class of such
stable branched minimal immersions in Rn+1.

The case n = 2 is also of interest, although if n = 2 other techniques for gener-
ating branched minimal immersions with isolated branch points are available—for
example modifications of the method [CHS84] can be used to prove quite general
existence theorems in case n = 2 which complement the result for symmetric data
proved in Theorem 2.

The approach here is to first look for a function u0(x, y) = u0(re
iθ , y) on the

cylinder D × Rn−2 (D = {x ∈ R2 : |x| ≤ 1}) which has prescribed bounded
smooth boundary data ϕ0(e

iθ, y) on ∂D × Rn−2 and which is a stationary point
(i.e. a solution of the Euler-Lagrange equation) for the functional

F0(v) =

∫

Ω

4r2
√

1 + (4r2)−1|Dxv|2 + |Dyv|2 dxdy.

Observe that this functional maps to the non-parametric area functional under
the transformation T : (reiθ , y) 7→ (r2e2iθ, y), and so u(reiθ , y) = u0(r

1/2eiθ/2, y)
will be a two-valued function with graph G which is a minimal hypersurface,
and G will have branch points along the (n − 2)-dimensional C1 submanifold
{(0, y, u0(0, y)) : y ∈ Rn−2}, assuming that u0(re

iθ , y) is C1 across the singular
axis r = 0.

To get started we observe that the degenerate functional F0 can be approxi-
mated by the non-degenerate functionals Fδ of the form

Fδ(v) =

∫

Ω

4r2δ

√

1 + (4r2δ )−1|Dxv|2 + |Dyv|2 dxdy,

where, for δ ∈ (0, 1
2 ), rδ is a smooth function of the variables x = (x1, x2) with

rδ ≡ r for r ≥ δ and δ ≥ rδ ≥ δ/2 for r ∈ [0, δ). As discussed in [SW05], stan-
dard quasilinear elliptic PDE methods then guarantee the existence of uniformly
bounded (independent of δ) smooth solutions uδ(re

iθ , y) with boundary data ϕ0.
The key point then is to discuss what happens near r = 0 as δ ↓ 0. In general a
discontinuity occurs at r = 0 as we let δ ↓ 0. On the other hand u0 = limδj↓0 uδj

(for a suitable sequence δj ↓ 0) is a smooth function on (D \ {0})×Rn−2 by stan-
dard quasilinear elliptic estimates away from the singular axis {0} × Rn−2. By a
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similar approximation procedure we can dispense with the requirement that the
boundary data ϕ0 of u0 is smooth and instead take ϕ0 to be an arbitrary bounded
continuous function.

The first main result gives a precise analysis of the structure of G = graphu
above a point (0, y0) where u0 is discontinuous. Here G denotes closure of G as a
subset of Rn+1.

Theorem 1. Suppose u0 as above is discontinuous at some point (0, y0) ∈ {0} ×
Rn−2, and ρ0 ∈ (0, 1

4 ]. Then there is a ρ1 ∈ (0, ρ0] and a point (0, y1, t1) ∈
Bρ0(0, y0) × R such that Bρ1(0, y1, t1) ∩ ({0} × Rn−2 × R) ⊂ G, G (as an n-
dimensional integer multiplicity varifold in Rn+1) has a unique tangent cone C at
(0, y1, t1) of the form

C = |H1| + |H2|,
where H1, H2 are distinct n-dimensional half-spaces meeting at angle 6= π along the
common boundary {0}×Rn−2×R, |Hj | is the multiplicity 1 varifold corresponding
to Hj, and

G ∩Bρ1(0, y1, t1) = L1 ∪ L2,

where each Lj is an embedded C∞ manifold-with-boundary, with boundary ∂Lj

(taken in the open ball Bρ1(0, y1, t1)) given by ∂Lj = Bρ1(0, y1, t1)∩({0}×Rn−2×
R), Lj has the tangent half-space Hj at the point (0, y1, t1), and (L1 \ ∂L1)∩ (L2 \
∂L2) = ∅.

The proof uses results for stable minimal hypersurfaces from [SS81], Allard’s
boundary regularity theorem [All75], and modifications of classical quasilinear
elliptic PDE theory, in particular the gradient estimates of [BDM69], [Tru72],
[Sim76]. A direct corollary of the above is the following general existence theorem
for symmetric boundary data.

Theorem 2. If the boundary data ϕ0 satisfies the Zk symmetry condition ϕ0◦Sk =
ϕ0 for some odd k ≥ 3, where Sk(reiθ , y) = (rei(θ+2π/k), y), then the solution u0

above can be selected so that u0 ◦Sk = u0, and then u(reiθ, y) = u0(r
1/2eiθ/2, y) is

a C1,α(D × Rn−2) ∩ C0(D × Rn−2) two-valued function such that u ◦ Sk = u and
for each σ ∈ [ 12 , 1)

sup
0<|x|<σ, y∈Rn−2

|x|−α|Dxu(x, y)| ≤ C,

where α = α(k, n, σ,M) ∈ (0, 1/2) and C = C(k, n, σ,M) > 0, with M any upper
bound for sup∂C |ϕ0|. In particular, the closure of G in D × Rn−2 × R is a C1,α

stable branched immersion given explicitly by the covering map

Φ(reiθ , y) = (reiθ , y, u0(r
1/2eiθ/2, y))

which is 4π-periodic in the θ variable and which has boundary values

(eiθ, y, ϕ0(e
iθ/2, y))

at r = 1.
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Theorem 2 evidently follows directly from Theorem 1 because the construction
of u0 (described in [SW05]) guarantees that u0 can be selected so that u0◦Sk = u0,
and u (as a two-valued function) inherits the same symmetry, so Sk(G) = G, where
Sk(eiθ, y, t) = (ei(θ+2π/k), y, t), and hence Sk(H1∪H2) = H1∪H2 because H1∪H2

is a tangent cone of G. But this is of course impossible because Sk(H1) is a union
of k distinct half-spaces and k ≥ 3.

There is also a version of Theorems 1,2 for the q-valued case when u(reiθ, y) =
u0(r

1/qeiθ/q, y), where u0 is a stationary point of the functional

F(v) =

∫

Ω

(qrq−1)2
√

1 + (qrq−1)−2|Dxv|2 + |Dyv|2 dxdy.

We refer to [SW05] for the precise statements.
Acknowledgement Partly supported by DMS-0406209 at Stanford University

and a Humboldt Research Award at Albert Einstein Institut (Potsdam) and Freie
Universität (Berlin)
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An estimate for conformal surfaces with bounds on the Willmore
energy

Ernst Kuwert

(joint work with Reiner Schätzle)

The Willmore energy of an immersed surface f : Σ → Rn is the integral

W (f) =
1

4

∫

Σ

|H |2 dµg,

where µg is the measure associated to the induced metric g, and H is the mean
curvature vector. Here we consider only closed surfaces, and denote by βn,p the
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infimum of the Willmore energy in the class of oriented surfaces of genus p ∈ N0. It
is well-known that βn,0 = 4π, the value being attained only by round spheres. The
existence result of L. Simon implies βn,p > 4π, whereas comparison surfaces show
that βn,p < 8π, see [1]. By a result of Li and Yau, immersions with W (f) < 8π will
in fact be embeddings, and we will work in this range. The Willmore conjecture
says that β3,1 = 2π2, and a proposed proof can be found in [3].

The main geometric feature of the Willmore functional is its invariance with
respect to the Möbius group of Rn, i.e. we have

0 /∈ f(Σ), f̂ =
f

|f |2 ⇒ W (f̂) = W (f).

In the following, we assume p ≥ 1 and denote by g0 the unique constant curvature
metric conformal to g with µg0(Σ) = µg(Σ). Writing g = e2ug0 we have

−∆gu+Kg0e
−2u = Kg.

Theorem 1. Let f : Σ → Rn be an immersion of a closed, oriented surface of
genus p ≥ 1, where n ≤ 4. Suppose that W (f) ≤ ωn,p − δ for some δ > 0, where
ω3,1 = 8π and in general ωn,p ≤ 8π satisfies the following additional restrictions:

(1) ωn,p − 4π ≤ ∑k
i=1(βn,pi − 4π) for any partition p = p1 + . . . + pk with

1 ≤ pi < k.
(2) ω4,p ≤ β4,p + 8π

3 .

Then, after applying a suitable Möbius transformation, we have the estimate

‖u‖L∞(Σ) ≤ C(p, δ).

Remarks:

(a) If βn,p ≥ 6π for all p (which is expected), then ωn,p = 8π.
(b) After dilating to achieve unit area and also translating, one obtains the

estimate

‖f‖W 2,2(Σ,g0) ≤ C(p, δ, g0).

(c) For p = 1, one can show that the set of conformal structures obtained
from surfaces as in the theorem is a bounded subset of the moduli space.

For the proof of the theorem, we need the almost graphical decomposition from
[1] for surfaces with small second fundamental form in L2. The second main in-
gredient is the theory of complete conformal immersions with second fundamental
form in L2 due to S. Müller and V. Sverak [2].
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Singular sets of vectorial elliptic problems

Giuseppe Mingione

(joint work with Frank Duzaar, Erlangen & Jan Kristensen, Oxford)

Let me consider an elliptic system of the type

(1) div a(x, u,Du) = 0 ,

where the vector field a : Ω×RN ×RnN → RnN is assumed to be C1 with respect
to the last variable, and satisfying the following growth, ellipticity, and Hölder
continuity assumptions:

(2)























|a(x, v, z)| ≤ L(1 + |z|p−1)

ν(1 + |z|2) p−2
2 |λ|2 ≤ 〈az(x, v, z)λ, λ〉 ≤ L(1 + |z|2) p−2

2 |λ|2

|a(x, u, z) − a(y, v, z)| ≤ Lω(|x− y| + |u− v|)(1 + |z|p−1) .

Here Ω ⊂ Rn is a bounded open subset, n ≥ 2, N ≥ 1, x, y ∈ Ω, u, v ∈ RN and
z, λ ∈ RnN , while ω : R+ → (0, 1) is a bounded, concave modulus of continuity
such that ω(s) ≤ sα, for α ∈ (0, 1). Moreover 0 < ν < L, and p > 1. Partial C1,α-
regularity of solutions takes place, in the sense that if u ∈ W 1,p(Ω,RN ) is a weak
solution to (1), then there exists an open subset Ωu ⊂ Ω such that |Ω \ Ωu| = 0,

and Du ∈ C0,α
loc (Ωu,R

nN ). See [1] and related references.
Now, let me consider an integral functional of the Calculus of Variations

(3) F(v) :=

∫

Ω

F (x, v,Dv) dx .

Here F : Ω×RN ×RnN → R is an integrand, which I assume to be C2 with respect
to the last variable, and satisfying

(4)























ν|z|p ≤ F (x, v, z) ≤ L(1 + |z|p)

ν(1 + |z|2) p−2
2 |λ|2 ≤ 〈Fzz(x, v, z)λ, λ〉 ≤ L(1 + |z|2) p−2

2 |λ|2

|F (x, u, z) − F (y, v, z)| ≤ Lω(|x− y| + |u− v|)(1 + |z|p)
with a similar notation as for (2). Once again, if u ∈ W 1,p(Ω,RN ) is a local
minimizer of F , then there exists an open subset Ωu ⊂ Ω such that |Ω \ Ωu| = 0,

and Du ∈ C
0,α/2
loc (Ωu,R

nN).
Moreover, for both minima and solutions, the so called higher integrability

holds: there exists an explicitly computable number s ≡ s(L/ν) > p, such that

(5) Du ∈ Ls
loc(Ω,R

nN ) .

In a rougher form, such regularity results are known since the beginning of the
eighties. A natural problem is now proving that the singular set of u

Σu := Ω \ Ωu ,
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actually has Hausdorff dimension dimH(Σu) strictly less than n; see [3], Question
(a), page 117. As for systems, the following results are essentially contained in
[5, 6], taking into account the later improvements in [2, 4].

Theorem 1. Let u ∈ W 1,p(Ω,RN ) be a weak solution to the system (1), under
the assumptions (2). Then
(R1): In general

dimH(Σu) ≤ n− min{2α, s− p} .
(R2): If either n ≤ p+ 2, or if u is already locally Hölder continuous in Ω, then

dimH(Σu) ≤ n− 2α .

(R3): If a(x, u,Du) ≡ a(x,Du), then the estimate in (R2) holds again.
(R4): In the case p = 2 all the previous inequalities become strict and, as for the
cases treated in (R2)-(R3), it follows that Hn−2α(Σu) = 0.

The number s in (R1) is the higher integrability exponent from (5). (R3)
tells us that the possibility of “reducing” the dimension of the singular sets is
determined in a quantitative way by the regularity of a(x, z) with respect to x.
This helps explaining (R1)-(R2): when dealing with a complete vector field of the
type a(x, u, z), the system (1) can be view as div b(x,Du) = 0, where b(x, z) ≡
a(x, u(x), z). At this point the Hölder continuity of x→ b(x, z) is lost, since u(x)
may exhibit high irregularity. Nevertheless, it is possible to use (5) to bound the
oscillations of u(x), and getting (R1). Accordingly, in the low dimensional case
n ≤ p + 2, it is possible to prove that u is a-priori more regular on large subsets,
and (R2) follows. The proof rests on a combined application of Gehring’s lemma,
interpolation methods, and difference quotients technique: at the end Du is in
a suitable Fractional Sobolev space. In turn, this implies the estimate on the
singular set via abstract measure theoretical arguments.

As for minima, the following results have been proven in [4]:

Theorem 2. Let u ∈ W 1,p(Ω,RN ) be local minimizer of the functional F , under
the assumptions (4). Then
(R5): In general

dimH(Σu) ≤ n− min{α, s− p} .
(R6): If either n ≤ p+ 2, or if u is already locally Hölder continuous in Ω, then

dimH(Σu) ≤ n− α .

(R7): If F (x, v, z) ≡ f(x, z) + g(x, v), and g is a bounded function, then the
estimate in (R6) holds again.
(R8): In the case p = 2 all the previous inequalities become strict and, as for the
cases treated in (R6)-(R7), it follows that Hn−α(Σu) = 0.

Here we again prove that Du is in a suitable Fractional Sobolev space, but the
implementation is this time completely different. Indeed, due to the Hölder con-
tinuity assumption in the second variable (4)3, the functional F does not posses
the related Euler-Lagrange system in general, and it is not possible to use any
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test function technique. On the contrary, in [4] we introduce a new,“variational
difference quotient method”, based on the minimality of u, and a delicate itera-
tion/interpolation procedure in the setting of Fractional Sobolev spaces. Moreover,
certain ad hoc Calderón-Zygmund type estimates for general non-linear elliptic sys-
tems must be derived and used. The result of Theorem 2 was not known even for
C∞ integrands F (x, v, z), see the Introduction of [4].

Let me finally consider the following Dirichlet problem:

(6)







−div a(x, u,Du) = 0 in Ω
u = u0 on ∂Ω

u0 ∈ C1,α(Ω,RN ) , ∂Ω is C1,α regular .

It is known that even if ∂Ω and u0 are such regular, there exist in general bound-
ary irregular points, but, surprisingly enough, the existence of even one regular
boundary point for Du was not known. In [2] such a gap is partially filled, by
extending at the boundary the estimates from Theorem 1. We have

Theorem 3. Let u ∈ W 1,p(Ω,RN ) be a weak solution to (6), under the assump-
tions (2), with α > 1/2. Moreover, assume that either n ≤ p+ 2, or a(x, u,Du) ≡
a(x,Du). Then almost every boundary point x ∈ ∂Ω, in the sense of the usual
surface measure, is a regular point, i.e. the gradient is C0,α-regular in a neighbor-
hood of x, relative to Ω. Moreover, when p = 2, we can allow the borderline case
α = 1/2.

In [2] we introduce a new, interpolation-like technique for treating fractional dif-
ference quotients, working without testing the system, but via a direct comparison
method. I feel that such a technique may be of its own interest.
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Convexity in Carnot groups

Valentino Magnani

We give an account of recent results and open questions related to the notion of
convexity in Carnot groups. A Carnot group G is a connected, simply connected
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graded nilpotent Lie group equipped with a system of left invariant horizontal
vector fields X1, X2, . . . , Xm, spanning the first layer V1 of the Lie algebra and
satisfying the Lie bracket generating condition, [8]. These vector fields give the
horizontal directions at each point of the space and define the so-called Carnot-
Carathéodory distance, [9].

Let Ω be an open subset of G. A function u : Ω −→ R is H-convex if its
restriction t −→ u(x exp(tX)) is convex with respect to t, where X ∈ V1, x ∈ Ω
and γ(t) = x exp(tX) is the unique integral curve ofX passing through x, namely, a
horizontal line. This notion has been proposed by Caffarelli and Cabré and studied
by Danielli, Garofalo and Nhieu, [5], see also [12]. Recall that horizontal lines
constitute a special subset of (sub-Riemannian) geodesics. However, extending
convexity of u to all geodesics of the group would yield a trivial notion, [13].

A first regularity property shows that H-convex functions which are locally
bounded above are locally Lipschitz with respect to the Carnot-Carathéodory
distance, [14]. Balogh and Rickly have shown that H-convex functions in the
Heisenberg group are automatically locally bounded above, [2]. Recently, Rickly
has shown that measurable H-convex functions are locally bounded above in any
Carnot group and that the measurability assumption can be removed if the step is
not greater than two, [17]. A detailed study of H-convex functions and H-convex
sets in Carnot groups can be found in [16]. Here we mention that it is still not
clear whether H-convex functions are locally bounded above in arbitrary Carnot
groups.

The following estimates for continuous H-convex functions have been achieved
in [5],

sup
y∈Bξ,r

|u(y)| ≤ C

∫

Bξ,λr

|u(y)| dy(1)

‖∇Hu‖L∞(Bξ,r) ≤
C

r

∫

Bξ,λr

|u(y)| dy.(2)

where λ > 1 is a fixed number, C > 0 depends on the group and ∇Hu =
(X1u, . . . , Xmu).

Convexity in Carnot groups can be also introduced in the viscosity sense, ac-
cording to the following definition by Lu, Manfredi and Stroffolini, [12]. An upper
semicontinuous function u : Ω −→ R is said to be v-convex if for every x ∈ Ω and
every ϕ ∈ C2(Ω) being greater than or equal to u in a neighbourhood of x and
such that u(x) = ϕ(x), we have ∇2

Hϕ(x) ≥ 0. The horizontal Hessian ∇2
Hϕ(x) has

elements 1
2 (XiXj +XjXi)(ϕ(x)), for every i, j = 1, . . . ,m. Through comparison

with subelliptic cones, whose existence and uniqueness in the Heisenberg group
is provided by results of Bieske, [3], estimates (1) and (2) for v-convex functions
have been obtained in [12]. By recent results of Wang, [22], these estimates have
been further extended to Carnot groups, [11].

A natural question concerns the equality between v-convexity and H-convexity.
A first positive answer has been achieved in the Heisenberg group, [2], then dif-
ferent proofs have been given in arbitrary Carnot groups, [11], [14], [16], [21].
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Precisely, an upper semicontinuous function is v-convex if and only if it is H-
convex.

Concerning second order regularity results, a natural question is extending
the classical Aleksandrov-Busemann-Feller differentiability theorem to H-convex
functions. A way to reach this result is showing that the second order distribu-
tional derivatives XiXju, i, j = 1, . . .m, of an H-convex function u are measures,
namely u ∈ BV 2

H(Ω). In fact, as it is shown by Ambrosio and the author [1],
if u ∈ BV 2

H(Ω), then for a.e. x ∈ Ω there exists a unique polynomial P[x] of
homogeneous degree less than or equal to two satisfying

1

r2

∫

Bx,r

|u− P[x]| −→ 0.

Here P[x] is the second order approximate differential of u at x. By a standard

method, [7], it can be shown that functions in BV 2
H(Ω), satisfying (1) and (2)

have a.e. pointwise second order differential. Then an important issue is study-
ing whether H-convex functions belong to BV 2

H(Ω). The H-convexity easily im-
plies that the symmetrized second order derivatives (XiXju+XjXiu)/2 are mea-
sures, then proving that XiXju are measures is equivalent to showing that so are
[Xi, Xj ]u and we arrive at the following problem:

(3) Is it true that [Xi, Xj ]u are measures when u is an H-convex function?

This is an open question in arbitrary Carnot groups. A positive answer in Heisen-
berg groups has been given by Gutiérrez and Montanari, [10], and its extension
to step two Carnot groups has been established by Danielli, Garofalo, Nhieu
and Tournier, [6]. Trudinger has achieved a further extension to free divergence
Hörmander vector fields of step two, [20]. The interesting feature of this approach
is in finding a suitable subelliptic nonlinear operator satisfying a monotonicity
property. In the Euclidean case, Trudinger and Wang obtained this property for
k-Hessian operators applied to k-convex functions, [18], [19]. For a real symmetric
matrix A we define

Fk(A) =
∑

1≤i1<i2<···<ik≤n

Mi1i2i3...ik
(A)

where Mi1i2i3...ik
(A) are the k-minors on the diagonal of the matrix. A function

u ∈ C2(Ω) is k-convex if Fj [u] := Fj(∇2u) ≥ 0 for every j = 1, . . . , k. The

monotonicity theorem, as proved in [18], shows that functions u, v ∈ C2(Ω)∩C(Ω)
satisfying u ≤ v on Ω, u = v on ∂Ω and such that u + v is 2-convex yield the
inequality

∫

Ω

Fk[v] ≤
∫

Ω

Fk[u].

The proof follows immediately from both integration by parts and the free diver-
gence formula

∑n
j=1

(

∂xj ∂rijFk

)

(∇2u) = 0. In Heisenberg groups the correspond-

ing operator satisfying a monotonicity theorem has been found in [10] and it has
the form

F2[u] = F2(∇2
Hu) + 12n(∂tu)

2.
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Then its form has been extended to two step Carnot groups in [6], obtaining

F2[u] = F2(∇2
Hu) +

3

4

∑

1≤i<j≤m

(

[Xi, Xj]u
)2

.

As observed in [20], these operators possess a free divergence formula. In fact,
defining G2(A) = F2(A) + 1

2

∑

i<j(aij − aji)
2 and noting that F2[u] = G2(X

2u),

where X2u = (XiXju)ij is the nonsymmetrized horizontal Hessian, one finds

m
∑

j=1

Xj (
(

∂rijG2

)

(X2u)) = 0,

then the monotonicity theorem easily follows for more general free divergence, two
step Hörmander vector fields, [20]. As a consequence of this theorem, the estimate

∫

Ω′

F2(∇2
Hu) +

3

4

∑

1≤i<j≤m

(

[Xi, Xj ]u
)2

≤ C

(∫

Ω

|u|
)2

(4)

can be achieved for a function u ∈ C2(Ω), satisfying Fj(∇2
Hu) ≥ 0 for j = 1, 2,

where Ω′ is compactly contained in Ω and C depends on dist(Ω′, ∂Ω). Now, to
establish that [Xi, Xj ]u ∈ L2

loc(Ω) when u is H-convex, we introduce the following
definition. According to [20], we say that a function u ∈ C2(Ω) is k-convex with
respect to the vector fields Xj (or simply k-convex) if Fj(∇2

Hu) ≥ 0 for any
j = 1, . . . , k. The larger class of locally summable k-convex functions is obtained by
closure of C2 smooth k-convex functions with respect to L1

loc-convergence. Hence,
estimate (4) shows that locally summable 2-convex functions satisfy [Xi, Xj ]u ∈
L2

loc(Ω). Now we notice that in Carnot groups a function u ∈ C2(Ω) is H-convex
if and only if ∇2

Hu ≥ 0, therefore by a suitable smooth convolution it can be
seen that the class of locally summable m-convex functions coincides with that of
locally Lipschitz H-convex functions. As a result, in step two Carnot groups any
H-convex function u has the property [Xi, Xj ]u ∈ L2

loc(Ω).
Now, it would be desirable having a characterization of the L1

loc-limits of k-
convex functions analogous to the case k = m. Here it is helpful the following
distributional characterization of H-convex functions in step two Carnot groups.
A Radon measure µ such that ∇2

Hµ ≥ 0 is defined by an L1
loc-limit of smooth H-

convex functions, [14]. The problem of extending this characterization to higher
step Carnot groups relies on the validity of the key identity

(5) XiXjθ(x) = XiXjθ(x
−1)

for mollifiers θ such that θ(x) = θ(x−1). Presently, this identity holds in step
two Carnot groups, whereas it is not known in groups of higher step. The same
approach of [14] and equality (5) easily imply that locally summable k-convex
functions can be characterized in distributional sense, as in Lemma 2.2 of [19].

Second order differentiability can be extended to k-convex functions. In fact,
among the gradient estimates obtained in [20] for k-convex functions, it is shown
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that

sup
Ω′

|u(x) − u(y)|
d(x, y)α

≤ C ‖u‖L1(Ω) ,

under the condition k > (Q − 1)m/(Q + m − 2). As a consequence, arguing as
in [4], from the fact that [Xi, Xj]u ∈ L2

loc(Ω) and the approximate second or-
der differentiability of functions in BV 2

H(Ω), the classical Aleksandrov-Busemann-
Feller’s theorem extends to k-convex functions in step two Carnot groups, when
k > (Q− 1)m/(Q+m− 2), [20].
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Expanding and contracting surfaces

Oliver C. Schnürer

Abstract. We show that convex surfaces become round under expanding and
contracting curvature flows.

We consider families of convex embedded surfaces Mt in R3 that evolve accord-
ing to

Ẋ = −Fν,
where X is the embedding vector, ν the outer unit normal, and the normal velocity
F is a symmetric function of the principal curvatures λ1 and λ2. We will assume
that all convex surfaces considered here are closed and embedded into R3.

1. Contracting Flows

For normal velocities of homogeneity one, i. e. for normal velocities positive
homogeneous of degree one in the principal curvatures, there are several results
that show convergence to a round point for convex hypersurfaces, see e. g. [4] for
the mean curvature flow, F = H = λ1+. . .+λn, or [1]. A surface is said to converge
to a round point, if it converges to a point and, after appropriate rescaling, to a
round sphere.

Ben Andrews showed that convex surfaces converge to round points under Gauß
curvature flow [2].

We generalize this result to other normal velocities of homogeneity larger than
one [5].

Theorem 1.1. Any family of closed strictly convex surfaces Mt, flowing according
to

Ẋ = −|A|2ν,
converges to a round point in finite time.

The proof is based on the following observation.

Theorem 1.2. For any family Mt of closed strictly convex surfaces, flowing ac-
cording to Ẋ = −|A|2ν,

max
Mt

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2

is non-increasing in time.

Note especially that this quantity is not scaling invariant.
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2. Expanding Flows

For normal velocities of homogeneity minus one, starshaped hypersurfaces con-
verge to round spheres at infinity [3], i. e. they converge to infinity and, after
appropriate rescaling, to round spheres.

Our result for expanding surfaces addresses the inverse Gauß curvature flow [6].

Theorem 2.3. Any family of closed strictly convex surfaces Mt, flowing according
to

Ẋ =
1

K
ν,

converges to a round sphere at infinity in finite time.

Once again, the main ingredient of the proof is a monotone quantity.

Theorem 2.4. For surfaces Mt solving the inverse Gauß curvature flow,

max
Mt

(λ1 − λ2)
2

λ1
2λ2

2

is non-increasing in time.

3. Monotone Quantities

The monotonicity of the quantities mentioned above is a direct consequence of
the maximum principle.

In the following table, we have a few other normal velocities F and quantities w
such that maxMt w is monotone during the respective flows. In order to find these
quantities, we used an algorithm that checks for symmetric rational functions of
the principal curvatures that

• w ≥ 0 with equality at umbilic points,
• umbilic points are the only critical points,
• w has an appropriate scaling behavior,
• the evolution equation of w is such that we can apply the maximum prin-

ciple to prove monotonicity.
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Table 1

H2 (λ1 + λ2)
3(λ1 − λ2)

2

(

λ1
2 + λ2

2
)

λ1λ2

H3

(

λ1
2 + λ1λ2 + λ2

2
)

(λ1 + λ2)
2(λ1 − λ2)

2

(

λ1
2 − λ1λ2 + λ2

2
)

λ1λ2

H4

(

λ1
2 + λ1λ2 + λ2

2
)

(λ1 + λ2)
6(λ1 − λ2)

2

λ1
2λ2

2

|A|2 + βH2,
0 ≤ β ≤ 5

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2

trA3

(

3λ1
2 + 2λ1λ2 + 3λ2

2
)

(λ1 − λ2)
2

λ1λ2

tr |A|α,
α = 2, 4, 5, 6

(

λ1
α−2 + λ2

α−2
)

(λ1 + λ2)(λ1 − λ2)
2

λ1λ2

H |A|2 (λ1 + λ2)
2(λ1 − λ2)

2

λ1λ2

|A|4
(

λ1
4 + 2λ1

3λ2 + 4λ1
2λ2

2 + 2λ1λ2
3 + λ2

4
)

(λ1 − λ2)
2

(λ1 + λ2)λ1λ2

−H
2

K2

(λ1 − λ2)
2

(λ1 + λ2)λ1λ2

−|A|2
K2

(λ1 − λ2)
2

(λ1 + λ2)λ1λ2

−H
3

K3

(λ1 + λ2)(λ1 − λ2)
2

(

λ1
2 + λ2

2
) (

λ1
2 + λ1λ2 + λ2

2
)

λ1
3λ2

3
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Shock Reflection and Free Boundary Problems for Degenerate Elliptic
Equations

Mikhail Feldman

(joint work with Gui-Qiang Chen)

When a plane shock hits a wedge head on, it experiences a reflection and then a
self-similar reflected shock moves outward as the original shock moves forward in
time. Experimental, computational, and asymptotic analysis have shown that var-
ious patterns of reflected shocks may occur, including regular and Mach reflection
[1, 5, 6, 7, 8, 10]. However, there has been no rigorous mathematical result on the
global existence and structural stability of shock reflection, especially for potential
flow which has widely been used in aerodynamics. Such problems involve sev-
eral difficulties in the analysis of nonlinear partial differential equations including
equations of elliptic-hyperbolic mixed type, free boundary problems, degenerate
ellipticity along the sonic line, and corner singularities.

In this work we prove existence of a shock reflection solution for potential flow,
in case when a wedge angle is close to π

2 . Potential flow equation for self-similar

solutions, in self-similar variables (ξ, η) = (
x

t
,
y

t
), is

div (ρ(|Dϕ|2, ϕ)Dϕ) + 2ρ(|Dϕ|2, ϕ) = 0,

with

ρ(|Dϕ|2, ϕ) = H(ργ−1
0 − ϕ− 1

2
|Dϕ|2),

where ϕ(ξ, η) is the pseudo-velocity potential, H(s) = s1/(γ−1), and γ > 1, ρ0 > 0
are constants. Equation is elliptic-hyperbolic mixed, which is elliptic if and only
if

|Dϕ| <
√

2(γ − 1)

γ + 1
(ργ−1

0 − ϕ).

For a regular reflection solution, the hyperbolic part of the solution can be com-
puted explicitly. Thus unknown is the ellipticity region Ω+, and the solution ϕ
in Ω+. The boundary of Ω+ consists of the shock curve, location of which is un-
known, and the known part, which includes the sonic line. Ellipticity is expected
to degenerate along the sonic line. We reformulate the problem as a free boundary
problem for a modified equation, which is elliptic, with ellipticity degenerating
at the sonic line. Free boundary condition is derived from the Rankine-Hugoniot
condition on the shock curve. We solve this free boundary problem, using an iter-
ation scheme of [2, 3]. On each step, an “iteration free boundary” is given, and we
solve a boundary value problem for the degenerate elliptic equation. In particular,
we obtain C1,1 estimates of the solution near the sonic line, at which ellipticity
degenerates. These estimates use the nonlinear structure of elliptic degeneracy,
and a scaling technique similar to [4, 9]. A fixed point ϕ of the iteration procedure
is a solution of the free boundary problem for the modified equation. Then we
prove, by a careful gradient estimate, that ϕ satisfies the original potential flow
equation.
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Concentration phenomena for Liouville’s equation

Michael Struwe

Let Ω be a bounded domain of R4 and let uk be solutions to the equation

(1) ∆2uk = Vke
4uk in Ω,

where Vk → 6 uniformly in Ω as k → ∞ and with

(2)

∫

Ω

Vke
4uk dx ≤ Λ <∞

uniformly in k. Geometrically, the solutions uk to (1) correspond to conformal
metrics gk = e2ukgR4 on Ω having Q-curvature Qk = Vk/2.

Equation (1) is the fourth order analogue of Liouville’s equation

(3) −∆uk = Vke
2uk in Ω ⊂ R2.

with Vk → 1 uniformly in Ω as k → ∞. Thus, for problem (1), (2) we may expect
similar results to hold as have been obtained by Brezis-Merle [2], Li-Shafrir [7] in
the two-dimensional case, where a striking quantization is observed due to the fact
that all solutions u of the limit equation

(4) −∆u = e2u on R2,

∫

R2

e2u dx <∞,

giving rise to conformal metrics g = e2ugR2 on R2 with Gauss curvature K ≡ 1, by
a result of Chen-Li [4] up to scaling are given by the function u(x) = log( 2

1+|x|2 )

which is induced by stereographic projection of the standard sphere.
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In contrast to the two-dimensional case, in 4 dimensions there is a much greater
abundance of solutions to the corresponding limit equation

(5) ∆2u = 6e4u on R4

than can be obtained by pull-back of the spherical metric on S4. In fact, by a
result of Chang-Chen [3] for any α ∈]0, 16π2] there exists a solution uα of (5)
of total volume

∫

R4 6e4uα dx = α. Only the solutions that achieve the maximal

volume
∫

R4 6e4u dx = 16π2 up to scaling again are of the form u(x) = log( 2
1+|x|2 ).

In particular, there are solutions uk to (1) with Vk ≡ 6 such that uk(0) → ∞ while
uk(x) → −∞ for all x 6= 0 and

∫

Ω
Vke

4uk dx→ 0 as k → ∞.
There is a further complication in the four-dimensional case, illustrated by the

following simple example. Consider the sequence (vk) on R4, defined by letting
vk(x) = wk(|x1|), where w′′′′

k = 6e4wk on [0,∞[ with wk(0) = w′
k(0) = w′′′

k (0) = 0,
and w′′

k (0) = −k, k ∈ N. Given Λ > 0, we can find a sequence of radii Rk → ∞
as k → ∞ such that

∫

BRk
(0) 6e4vk dx = Λ. After scaling uk(x) = vk(Rkx) + logRk

we then obtain a sequence of solutions uk to equation (5) on Ω = B1(0) such that
uk(x) → ∞ for all x ∈ S0 = {x ∈ Ω; x1 = 0} and uk(x) → −∞ away from S0 as
k → ∞. Scaling back, from (uk) we reobtain the normalized functions vk which
however fail to converge to a solution of the limit problem (5) and develop an
interior layer on the hypersurface {x ∈ R4; x1 = 0}, instead.

The following concentration-compactness result in [1], obtained jointly with
Adimurthi and Frederic Robert, therefore seems best possible.

Theorem 1. Let Ω be a bounded domain of R4 and let (uk)k∈N be a sequence of
solutions to (1), (2) as above.

Then either i) a subsequence (uk) is relatively compact in C3,α
loc (Ω), or ii) there

exist a subsequence (uk) and a closed nowhere dense set S0 of vanishing measure
and at most finitely many points x(i) ∈ Ω, 1 ≤ i ≤ I ≤ CΛ, such that, letting

S = S0 ∪ {x(i); 1 ≤ i ≤ I},
we have uk → −∞ uniformly locally away from S as k → ∞. Moreover, there is
a sequence of numbers βk → ∞ such that

uk

βk
→ ϕ in C3,α

loc (Ω \ S),

where ϕ ∈ C4(Ω \ {x(i); 1 ≤ i ≤ I}) is such that

∆2ϕ = 0, ϕ ≤ 0, ϕ 6= 0,

and

S0 = {x ∈ Ω \ {x(i); 1 ≤ i ≤ I}; ϕ(x) = 0}.
Finally, near any point x0 ∈ S where supBr(x0) uk → ∞ for every r > 0 as k → ∞,

in particular, near any concentration point x(i), there exist points xk → x0 and
suitable radii rk → 0 such that after scaling we have

(6) vk(x) = uk(xk + rkx) + log rk ≤ 0 ≤ log 2 + vk(0) on BL(0)
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for any L > 0 and sufficiently large k. As k → ∞ then either a subsequence vk → v
in C3,α

loc (R4), where v solves the limit equation (5), or there holds vk → −∞ almost
everywhere and there is a sequence of numbers γk → ∞ such that a subsequence

vk

γk
→ ψ in C3,α

loc (R4),

where ψ ≤ 0 is a non-constant quadratic polynomial.

We regard Theorem 1 as a first step towards a more complete description of the
possible concentration behavior of sequences of solutions to problem (1), (2).

Considering (1) as a system of second order equations for uk and ∆uk, re-
spectively, it is possible to obtain some partial results in this regard from the
observation that (2) provides uniform integral bounds for ∆uk up to a remainder
given by a harmonic function. The latter component may be controlled if one
imposes, for instance, Navier boundary conditions uk = ∆uk = 0 on ∂Ω. In fact,
in this case J. Wei [14] has shown (in the notation of Theorem 1) that S0 = ∅ and

that at any concentration point x(i) the rescaled functions vk → v in C3,α
loc (R4),

where v is the profile induced by stereographic projection.
As shown by Robert [12], the same result holds if for some open subset ∅ 6= ω ⊂

Ω we have the a-priori bounds

||(∆uk)−||L1(Ω) ≤ C, ||(∆uk)+||L1(ω) ≤ C,

for all k ∈ N, where s± = ±max{0,±s}. Also in the radially symmetric case there
is a complete description of the possible concentration patterns; see [12].

In the geometric context similar results hold for the related problem of describ-
ing the possible concentration behavior of solutions to the equation of prescribed
Q-curvature on a closed 4-manifold M . Here the bi-Laplacian in equation (1) is
replaced by the Paneitz-Branson operator and Vk again may be interpreted as be-
ing proportional to the Q-curvature of the metric gk = e2ukgM . In the case when
M = S4, Malchiodi-Struwe [10] have shown that any such sequence (gk) of metrics
when Vk converges uniformly to some smooth limit V0 > 0 either is relatively com-
pact or blows up at a single concentration-point where a round spherical metric
forms after rescaling. Further compactness results and references can be found in
[9].

Related results on compactness issues for fourth order equations can be found
in Hebey-Robert-Wen [6] and Robert [11].
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A fully nonlinear version of the Yamabe problem

Matthew J. Gursky

In this talk we discuss the problem of prescribing symmetric functions of the
eigenvalues of the Ricci curvature for a conformal metric.

If A = 1
n−2

(

Ric− 1
2(n−1)R g

)

denote the Weyl-Schouten tensor (Ric = Ricci, R

= scalar curv.); then given a conformal metric gu = e−2ug we have

Au = A+ ∇2u+ du⊗ du− 1

2
|∇u|2g.

The model problem we describe in detail is prescribing the elementary symmetric
polynomians of the eigenvalues of Au; i.e. given f ∈ C∞, we want to find gu =
e−2ug s.t.

σ
1/k
k

(

λ
(

A+ ∇2u+ du⊗ du− 1

2
|∇u|2g

))

= fe−2u.(∗)

The talk is organized as follows: (I) ellipticity, (II) variational properties, (III)
estimates, (IV) existence results.

Theorem 1 (with J. Viaclovsky). If k > n
2 , Mn 6= Sn, (Mn, g) ”admissible”,

there always exist solutions of (∗). Moreover the solution space is compact.
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Critical regularity for elliptic equations from Littlewood-Paley theory

Denis Labutin

We prove a general theorem on local regularity improvement for critical linear
elliptic equations. The main point and value of the theorem is that it allows to
derive the full (C∞

loc-) regularity for critical nonlinear equations and systems. The
theorem states:

Theorem 1. Suppose u ∈ W s,p(B), V ∈ Ln/(α−β−γ)(B), where α, β, γ ≥ 0,
α > β + γ, and

Lu+ P (V (x)Qu) = 0.

Here L,P,Q ∈ Ψα,β,γ are Ψdo, L is elliptic. Assume that α − β ≥ s ≥ γ and
γ > s− n

p > α− β − n.

Then u ∈W s,p+ε
(

B1/2

)

for some ε = ε(α, β, γ, n, p).

Despite the theorem allows to deduce the full regularity of many critical non-
linear problems, it is not an a-priori estimate. Namely, it is claimed that

‖u‖W s,p+ε

(

B1/2

)

≤ C(u),

where C depends on the profile of u, not just ‖u‖W 1,p . The meaning of the theorem
is that in critical problems the regularity is improved without any assumptions on
the structure of the nonlinearity, if the nonlinearity is in Lp with ∞ > p > 1.

Analytic aspects of the Toda system

Guofang Wang

(joint work with J. Jost, C.-S. Lin)

In this talk, we address the analytic aspects of the 2-dimensional (open) Toda
system (Toda lattice) for SU(N + 1)

(1) −∆ui =

N
∑

j=1

aije
uj ,

for i = 1, 2, · · · , N , where K = (aij)N×N is the Cartan matrix for SU(N + 1)
given by

















2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
· · · · · · · · · · · · · · · · · ·

0 · · · · · · −1 2 −1
0 · · · · · · 0 −1 2

















.

The Toda system is a very natural generalization of the Liouville equation

(2) −∆u = 2eu.
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Both equations are completely integrable and important in integrable systems
theory. The Liouville equation and the Toda system arise naturally from many
mathematical problems and many physical models. In Chern-Simons theories, the
Liouville equation is closely related to Abelian models, while the Toda system is
related to non-Abelian models. See for instance the books [5] and [10] and the
references therein.

We want to generalize all analytic results for the Liouville equation to the Toda
system. However, many known results for the Liouville equation heavily depend
on the maximum principle, which is not valid for the Toda system. On the other
hand, solutions of the Toda stsyem are closely related to geometric objects, flat
connections and holomorphic curves into CPn. With these geometric intepreta-
tions, we can overcome the mentioned difficulty-without maximum principle.

First of all, we established a Moser-Trudinger type inequality for the Toda
system in [6].

Thereom 1. Let Σ be a closed surface with area 1. Define a functional ΦN :
(H1(Σ))N → R by

ΦM (u) =
1

2

N
∑

i,j=1

∫

Σ

aij(∇ui∇uj + 2Miuj) −
N
∑

i=1

Mi log

∫

Σ

exp(

N
∑

j=1

aijuj).

Then, the functional has a lower bound if and only if

(3) Mj ≤ 4π, for j = 1, 2, · · · , N.

Then, we classified all entire solutions of the Toda system with finite energy,
which are obstruction of the compactness of the solutions. These are usually called
“bubbles”.

Thereom 2. Any C2 solution u = (u1, u2, · · · , uN ) of (1) in R2 with
∫

R2 e
uj <∞

for any j = 1, 2, · · · , N comes from a rational curve into CPN .

When N = 1, it is the classifaction result of Chen-Li in [1]. Any rational curve
in CPN can be transformed to

φ0(z) = [1, z, · · · ,
√

(

N
k

)

zk, · · · , zN ],

by a holomorphic isometry, which is an element of PSL(N + 1,C). Hence the
space of solutions of (1) with energy is equivalent to PSL(N+1,C)/PSU(N+1).
The dimension of the solution space is N2 + 2N. Theorem 2 can be restated in a
geometric way as follows:

Thereom 3. Any totally unramified holomorphic map φ from C to CPN satisfying
a finite energy condition can be compactified to a rational curve.
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Very recently, we gave in [8] a more precise asymptotic behavior of “blow-up”.
For simplicity, we only consider the case N = 2. To describe it, we assume that
there is a sequence of solutions uk = (uk

1 , u
k
2) of

(4)

{

−∆uk
1 = 2euk

1 − euk
2

−∆uk
2 = 2euk

2 − euk
1

in B2.

Here Br denotes a disk of radius r and center 0. Suppose that uk bubbles off, i.e.,
maxx∈B2{uk

1, u
k
2} → ∞ as k → ∞. More precisely we assume that

(a) 0 is the only blow-up point of uk.
(b) max∂B2 u

k
i − min∂B2 u

k
i ≤ c for i = 1, 2.

(c)
∫

B2
euk

i dx ≤ c for i = 1, 2 and any k.

Assume that λk = λk
1 := maxB2 u

k
1 ≥ maxB2 u

k
2 =: λk

2 . Let xk be the maximum
point of uk

1 . Set vk = (vk
1 , v

k
2 ) by

vk
i (x) = ui(ǫkx+ xk) − λk for i = 1, 2,

where ǫk = e−
1
2λk . Since we only consider the case that the bubble is a solution

of the Toda system, we may further assume that

(d) vk
2 (0) is bounded from below.

Then, there exists a solution v0 = (v0
1 , v

0
2) of the Toda system

{

−∆v0
1 = 2ev0

1 − ev0
2 ,

−∆v0
2 = 2ev0

2 − ev0
1 ,

in R2

such that vk
i − v0

i converges to zero in C2
loc(R

2).
Now we state our result.

Thereom 4. Let uk = (uk
1 , u

k
2) be a sequence of solutions to (4). Suppose that

that (a)-(d) hold. Then there exist two constants r0 > 0 and c > 0 independent
of k, such that

(5) |uk
i (x) − λk − v0

i (ǫ−1
k (x− xk))| < c in Br0

for i = 1, 2.

When N = 1, this was proved in [9] by using the method of moving planes.
The Harnack inequality for solutions follows from Theorem 5. We also obtained
various existence results in [8].

Thereom 5. Let Σ be a Riemann surface with Gaussian curvature K and N = 2.
Suppose that

(6) min{∆log h1(x),∆log h2(x)} + 4π − 2K(x) > 0.
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Then there is a solution u = (u1, u2) of

(7)
−∆u1 = 2ρ1

(

h1eu1
R

Σ
h1eu1

− 1
)

− ρ2

(

h2eu2
R

Σ
h2eu2

− 1
)

−∆u2 = 2ρ2

(

h2eu2
R

Σ
h2eu2

− 1
)

− ρ1

(

h1eu1
R

Σ
h1eu1

− 1
)

,

for ρ1 ∈ (0, 4π] and ρ2 ∈ (0, 4π].

When N = 1, this is a result of [4]. See also [2] and [3].
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Forth order approximation of harmonic maps from surfaces

Tobias Lamm

In a recent research project [4] we study a regularization of the Dirichlet energy
for maps from a smooth and compact Riemannian surface (M, g) into a smooth
and compact Riemannian manifold (N, h), which we assume to be isometrically
embedded into some Rl. More precisely we consider the functional

Eε(u) :=

∫

M

(|Du|2 + ε|∆u|2),(1)

for every ε > 0, where ∆ is the Laplace-Beltrami operator of (M, g). One of
the reasons why it is interesting to study Eε is that for every ε > 0, Eε satis-
fies the Palais-Smale condition and critical points of Eε are smooth. Because of
these facts we study sequences uε (ε → 0) of critical points of Eε with uniformly
bounded energy. Due to this uniform bound we already know that there exists a
subsequence εk → 0 such that uεk

⇀ u0 weakly in W 1,2(M,N). After proving
the so called δ0-estimates and using the result of Sacks & Uhlenbeck [11] on the
removability of point singularities of harmonic maps with finite energy, we are
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actually able to show that u0 is a smooth harmonic map. Because of the phe-
nomenon of bubbling it is well known that the above mentioned weak convergence
can not be improved to yield strong convergence in general. What we can show is
that there exist at most finitely many points x1, . . . , xp ∈ M such that uεk

→ u0

in Cm
loc(M\{x1, . . . , xp}, N), for all m ∈ N, and, by performing a blow-up at xi,

i ∈ {1, . . . , p}, we show that there exists a non-trivial harmonic two-sphere ωi, a
sequence of points xi

k ∈ M , xi
k → xi, and a sequence of radii tik ∈ R+, tik → 0,

such that uεk
(xi

k + tik·) → ωi in Cm
loc(R

2, N), where here and in the following we
always identify ωi : S2 → N and ωi : R2 → N with the help of the stereographic
projection. By iterating this, one can actually find all non-trivial harmonic two-
spheres which separate at xi. The most difficult task, in this situation, is to show
that there is no energy-loss during this process (this is the so called energy iden-
tity). This means that in the limit the energy Eεk

(uεk
) is given as the sum of the

Dirichlet energy of the weak limit u0 and the Dirichlet energies of the non-trivial
harmonic two-spheres, which we obtain by rescaling.

Theorem 1. Let (M2, g) be a smooth, compact Riemannian surface without bound-
ary and let N = Sl−1 →֒ Rl be the standard sphere. Moreover let uε ∈ C∞(M,N)
(ε→ 0) be a sequence of critical points of Eε with uniformly bounded energy. Then
there exists a sequence εk → 0 and at most finitely many points x1, . . . , xp ∈ M
such that uεk

→ u0 weakly in W 1,2(M,N) and in Cm
loc(M\{x1, . . . , xp}, N), for all

m ∈ N, where u0 : M → N is a smooth harmonic map.
By performing a blow-up at each xi, 1 ≤ i ≤ p, one gets that there exist at most
finitely many non-trivial smooth harmonic maps ωi,j : S2 → N , 1 ≤ j ≤ ji, se-
quences of points xi,j

k ∈ M , xi,j
k → xi, and sequences of radii ti,jk ∈ R+, ti,jk → 0,

such that

max{ t
i,j
k

ti,j
′

k

,
ti,j

′

k

ti,jk

,
dist(xi,j

k , xi,j′

k )

ti,jk + ti,j
′

k

} → ∞, ∀ 1 ≤ i ≤ p, 1 ≤ j, j′ ≤ ji, j 6= j′,

(2)

εk

(ti,jk )2
→ 0 ∀ 1 ≤ i ≤ p, 1 ≤ j ≤ ji,(3)

limk→∞ Eεk
(uεk

) = E0(u0) +

p
∑

i=1

ji
∑

j=1

E0(ω
i,j)(4)

and
∫

BR0(xi)

(|Dwji

k |2 + εk|∆wji

k |2) →
∫

BR0(xi)

|Du0|2, ∀1 ≤ i ≤ p,(5)

where wji

k = uεk
−∑ji

j=1(ω
i,j(

·−xi,j
k

ti,j
k

) − ωi,j(∞)),

0 < R0 <
1

2
min{inj(M),min{dist(xi, xj)|1 ≤ i 6= j ≤ p}}

is some number and ∞ is identified with the north pole of S2 by stereographic
projection.
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In the existing literature there are quite a few different approaches for the re-
gularization of the Dirichlet energy for maps from surfaces, or the approximation
of harmonic maps from surfaces. Here we mention a few of them.
Sacks & Uhlenbeck [11] studied a p-harmonic approximation and used it to prove
the existence of minimal immersions of two-spheres. The statement corresponding
to (4) above, for the p-harmonic approximation was shown to be true for general
target manifolds N by Chen & Tian [1] if one consideres minimizing sequences.
To our knowledge the case of an arbitrary sequence of critical points of the p-
approximation is still open.
Struwe [12] considered the harmonic map heat flow (and also Palais-Smale se-
quences for the Dirichlet energy with tension field converging to zero in L2) and
proved (4) in this case with ≥ instead of =. Later, the energy identity was estab-
lished by Qing [10], Ding & Tian [2], Wang [13] and Lin & Wang [7].
Jost [3] considered a mountain-pass sequence and proved the energy identity in
this situation.
Parker [9] proved the energy identity for sequences of harmonic maps and showed
that the energy identity is wrong for general Palais-Smale sequences.
Lin & Rivière [5], [6] proved the energy identity for sequences of stationary har-
monic maps in higher dimensions.
Recently, Lin & Wang [8] studied a Ginzburg-Landau type approximation of har-
monic maps and showed the energy identity and no-neck property for this approx-
imation.

The main step in the proof of Theorem 1 consists of showing the energy identity
in the presence of one bubble. This is done by using the special structure of the
target and by deriving estimates in Lorentz spaces for sequences of critical points
of the functional Eε.
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Singular perturbation limit of phase separation problem

Yoshihiro Tonegawa

There are many physical models in materials sciences where two different phases
(say, phase A and B) co-exist with some separating interface between them. Tradi-
tionally, interface is a hypersurface with the obvious notion of area, normal vector
field, curvatures, etc. However, it is sometimes desirable to consider a “diffused
interface”, where the traditional interface is replaced by a region of small thick-
ness. To describe it, one introduces a scalar function u which is suitably smooth,
and u(x) ≈ 1 (or − 1) indicates position x is occupied by phase A (alternatively
B), and region where u ≈ 0 may be considered as the diffused separating interface.
The reason to adopt such formulation is partly practical: numerically, it is easier
to handle scalar functions than parametrized hypersurfaces. Often, it is also easy
to incorporate other interacting fields such as flow fields in this formulation. One
can heuristically introduce the notion of ‘normal vector field’ and ‘curvature’ for
the diffused interface as well. On the other hand, it is an interesting mathematical
challenge to check that these heuristics are in fact correct. Here, we briefly report
the recent advances on the understanding of the model when the surface tension
is the dominant force for the separation of the two phases, or alternatively, when
the dominant energy comes from the area of the interfaces.

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with smooth boundary. For a scalar
function u defined on Ω, define

Eε(u) =

∫

Ω

ε

2
|∇u|2 +

W (u)

ε
dx,

where ε > 0 is a small parameter. With a suitable side condition such as volume
constraint

∫

Ω u dx = m, minimize Eε among all u satisfying the integral condi-
tion. One can establish the existence of a minimizer uε by the direct method of
minimization. One can expect that uε has the feature that most of uε(x) is close
to ±1, and there is a transition region with thickness of O(ε), and the energy
Eε(uε) corresponds to the area of the transition. As ε→ 0, the transition of uε is
expected to approach to an area minimizing hypersurface with the given volume
fraction constraint, so in particular, it should be a constant mean curvature hy-
persurface. This has been proved in the 80’s in the framework of Γ-convergence
as in [6, 11] and others. We cite the related two time-dependent problems, one is
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the Allen-Cahn (AC) equation

ε
∂uε

∂t
= ε∆uε −

W ′(uε)

ε

and the other is the Cahn-Hilliard (CH) equation

∂uε

∂t
= ∆(−ε∆uε +

W ′(uε)

ε
).

With suitable initial and boundary condtions, one has the following energy equal-

ities, where we write vε = −ε∆uε + W ′(uε)
ε .

d

dt
Eε(u) = −1

ε

∫

(fε)
2 for AC, = −

∫

|∇fε|2 for CH.

It is proved under various assumptions that interface regions of the Allen-Cahn
equation converge to the mean curvature flow when we take the limit ε→ 0. In the
setting of varifold, Ilmanen [5] proved that the limit interface is a mean curvature
flow in the sense of Brakke [3]. The integrality of the limit is proved [12], so the
Allen-Cahn limit has all the measure-theoretic properties satisfied by the solution
constructed initially by Brakke. One may also consider the following questions,
naturally motivated by the AC and CH as well as Geometric Measure Theory:
given a sequence of functions {uε} with uniform energy bounds Eε(uε) ≤ C and
either (1) 1

ε ||fε||2L2 ≤ C, or (2) ||fε||W 1,p ≤ C, characterize the (subsequential)

limit measure limε→0
ε
2 |∇uε|2 + W (uε)

ε dx. The condition (1) is motivated by AC

and it is expected that the bound should serve as an L2 mean curvature bound.
The condtion (2) is motivated by CH, and is suitably interpreted as a Sobolev
mean curvature bound. With (2) and p > n

2 , I proved that the limit measure is an
integral varifold with bounded Lq mean cuvature, and the condition p > n

2 gives
q > n− 1 [4, 13, 14]. The related result for the sharp interface case is discussed in
[9]. Under the assumption (1), recently (a) with the radially symmetric assumption
[2] (b) with the monotone assumption in one direction and n = 3 [7] and finally
(3) with no assumption n = 3 [8], it is proved that the limit interface is an
integral varifold with bounded L2 mean curvature. The important ingradient for
the proof is to establish the monotonicity formula for the properly scaled energy,
which is analogous to those appearing in the theory of varifold [1]. As an effort
to understand the energy Eε, I also studied the property of the limit measure
of stable critical points [15] and showed that the limit measure is a stationary
integral varifold with generalized L2 second fundamental form A. The stability of
the measure is expressed in terms of A, just like smooth minimal surfaces. Even
though we do not know in general that the support of the limit measure is smooth,
we also can show that the Schoen’s inequality for stable minimal hypersurfaces hold
in terms of A. Such inequality was the essential tool for the regularity theory of
stable minimal hypersurfaces [10]. For n = 2, the support of the limit measure
is a disjoint union of lines. For n = 3, tangent cones at every points are single
planes with possible multiplicities. It is an interesting open problem to show that
the support of limit measure is smooth for n ≤ 7, which we expect it to be true.
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Two phase free boundary regularity problem for Harmonic measure
and Poisson kernel

Tatiana Toro

(joint work with Carlos Kenig)

Several approaches have been used to study 2-phase free boundary regularity prob-
lems. Motivated by applications to the flow of liquids in models of jets and cavities,
Alt, Caffarelli and Friedman consider the functional

J(v) =

∫

B

(

|∇v|2 +Q+(x)χ{v>0} +Q−(x)χ{v<0}

)

dx

where B is an open set in Rn, Q± are smooth functions in B such that Q+−Q− ≥
c > 0, and v ∈ K and

K = {v ∈ L1
loc(B),∇v ∈ L2(B), v = u0 ∈ ∂B} where u0 ∈ L1

loc(B),∇u0 ∈ L2(B).

Theorem 1. [1] There exists u ∈ K such that J(u) = infv∈K J(v). The function
u satisfies

∆u = 0 in B ∩ ∂{u > 0} and (u+
ν )2 − (u−ν )2 = Qx −Q− on ∂{u > 0}.
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Moreover

• If n = 2 the free boundary ∂{u > 0} is smooth.
• If n ≥ 3 there exists a closed set S ⊂ ∂{u > 0} such that Hn−1(S) = 0

and ∂{u > 0}\S is smooth.

The main tool in the proof of this theorem is the following monotonicity formula.
Let x0 ∈ ∂{u > 0} and r0 > 0 such B(x0, r0) ⊂ B then for 0 < r < r0 the quantity

1

r4

∫

B(x0,r)

|∇u+|
|x− x0|n−2

dx

∫

B(x0,r)

|∇u−|
|x− x0|n−2

dx

increases with r.

Theorem 2. [6] If n = 3 and u is as above then ∂{u > 0} is smooth.

Theorem 3. [11] If n ≥ 4, and u is as above then the reduced boundary ∂∗{u > 0}
is smooth and Σ = ∂{u > 0}\∂∗{u > 0} has Hausdorff dimension at most n− 3.

The main additional tool in the proof of the last 2 theorems was Weiss’ mono-
tonicity formula (see [10], [11]) which states that for 0 < s < r < r0 and x0 as
above if Q± = λ± where λ± are constants and if

φ(r) =
1

rn

∫

B(x0,r)

(

|∇u|2 + λ+χ{v>0} + λ−χ{v<0}

)

dx− 1

rn+1

∫

∂B(x0,r)

u2

then

φ(r) − φ(s) =

∫ r

s

t−n

∫

∂B(x0,r)

2

(

∇u · x− x0

|x− x0|
− u

r

)2

dHn−1dt.

This monotonicity formula yields that the blow up limits of minimizers are homo-
geneous functions of degree 1.

There exist similarities between this problem and the area minimizing problem
in codimension one. Hence a big open question in this area is whether the singular
set Σ above has Hausdorff dimension at most n− 7.

The free boundary regularity problem for harmonic measure and Poisson kernel
lies between this problem and the one addressed by Bishop, Carleson, Garnett,
Jones and Makarov in a series of papers in the late eighties (see [3], [4], [5]). They
proved that for a domain Ω ⊂ R2 if ω+ (resp. ω−) denotes the harmonic measure of
Ω (resp. Ωc) with fixed pole then if ω+ and ω− are mutually absolutely continuous
then ∂Ω contains a Lipschitz piece.

Along these lines we prove the following results (see [8]).

Theorem 4. Let Ω ⊂ Rn be a δ-Reifenberg flat domain for δ > 0 small enough

depending only on n. Let ω± be as above. Assume that h = dω−

dω+
satisfies log h ∈

VMO(dω+). Then Ω is a Reifenberg flat domain with vanishing constant. In
particular if Hn(∂Ω) <∞ then ∂Ω is rectifiable.

Theorem 5. Let Ω ⊂ Rn be a 2-sided chord arc domain. Assume that log h± ∈
VMO(dσ), where h± = dω±

dσ . Then Ω is locally Reifenberg flat with vanishing
constant. Furthermore −→n ∈ VMO(dσ), where −→n denotes the measure theoretic
normal to ∂Ω.
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Corollary 1. Let Ω ⊂ Rn be a bounded 2-sided chord arc domain. Assume that
log h+ ∈ Ck,α(∂Ω) for some k ≥ 0 and log h− ∈ VMO(dσ), then Ω is a Ck+1,α

domain.

Under the above hypothesis logh+ ∈ VMO(dσ) and by Theorem 5, Ω is locally
Reifenberg flat with vanishing constant. Hence by Alt and Caffarelli’s result in the
case k = 0 or by Kinderlehrer and Nirenberg’s work in the case k ≥ 1 we conclude
that Ω is a Ck+1,β domain (see [2] and [9]). In fact we can take β = α by [7].

References

[1] W. Alt, L. Caffarelli & A. Friedman, Variational problems with two phases and their free
boundaries, Trans. Amer. Math. Society 282 (1984), 431–461.

[2] W. Alt & L. Caffarelli, Existence and Regularity for a minimum problem with free boundary,
J. Reine Angew. Math. 325 (1981), 105–144.

[3] C. Bishop, A characterization of Poissonian domains, Ark. Mat. 29 (1991), 1–24.
[4] C. Bishop, L. Carleson, J. Garnett & P. Jones, Harmonic measure supported on curves,

Pacific J. Math 138 (1989), 233–236.
[5] C. Bishop & P. Jones, Harmonic measure and arc length, Ann. of Math. 132 (1990), 511–

547.
[6] L. Caffarelli, D. Jerison & C.Kenig Global energy minimizers for free boundary problems and

full regularity in three dimensions, Noncompact problems at the intersection of geometry,
analysis, and topology, Contemp. Math. Amer. Math. Soc. 350 (2004), 83–97.

[7] D. Jerison, Regularity of the Poisson Kernel and Free Boundary Problems, Colloquium
Mathematicum, 60–61, (1990), 547–567.

[8] C. Kenig & T. Toro Free boundary regularity below the continuous threshold: 2-phase prob-
lems to appear in J. Reine Angew. Math.

[9] D. Kinderlehrer & L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm.
Sup. Pisa 4 (1977), 373-391.

[10] G. Weiss Partial regularity for the minimum problem with free boundary, Journal of Geom.
Anal. 9,(1999), 317–326.

[11] G. Weiss Partial regularity for weak solutions of an elliptic free boundary problem, Comm.
Partial Diff. Equations. 23,(1998), 439–455.

On a modified conjecture of De Giorgi

Matthias Röger

(joint work with Reiner Schätzle)

We study the Γ-convergence of functionals arising in the Van der Waals-Cahn-
Hilliard theory. The corresponding limit functional is given as the sum of the
area and the Willmore functional. The problem under investigation was proposed
as modification of a conjecture of De Giorgi and partial results were obtained by
several authors. We prove here the modified conjecture in dimensions n = 2, 3.

Let a set Ω ⊂ Rn, a standard double well potential W (t) := (1 − t2)2 be given
and define for ε > 0 functionals Fε : L1(Ω) → R,

Fε(u) :=

∫

Ω

(ε

2
|∇u|2 +

1

ε
W (u)

)

dLn +

∫

Ω

1

ε

(

− ε∆u+
1

ε
W ′(u)

)2

dLn
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if u ∈ L1(Ω) ∩W 2,2(Ω) and Fε(u) := ∞ if u ∈ L1(Ω) \W 2,2(Ω).

Further put σ :=
∫ 1

−1

√
2W , and for X = 2XE − 1 with E ⊆ Ω and ∂E ∩Ω ∈ C2

define

F(X ) := σHn−1(∂E ∩ Ω) + σ

∫

∂E∩Ω

|~H∂E |2dHn−1.

Our goal is to prove in small space dimensions a modification of a conjecture of
De Giorgi (see [4]), as stated in the following theorem.

Theorem 1 (Modified De Giorgi Conjecture). Let n = 2, 3. For any X = 2XE −1
with E ⊂ Ω, ∂E ∩ Ω ∈ C2,

Γ(L1(Ω)) − lim
ε→0

Fε(X ) = F(X )

holds.

Compared to the original conjecture of De Giorgi the structure of the approxi-
mate functionals Fε is different in the choice of the double well potential and, more
importantly, in the the second term of Fε, where instead of the ‘energy density’
ε
2 |∇u|2 + 1

εW (u) the factor 1
ε appears.

The Γ-convergence of the first part of the functionals Fε to the first term of F ,
which is basically the area functional, was already proved by Modica and Mortola
[7] see also [8]. The second part of F is up to a constant identical to the Willmore
functional.

The modified De Giorgi conjecture as stated above has attracted much attention
over the years. Bellettini and Paolini [2] (see also [1]) have proved the limsup-
estimate necessary for the Gamma-convergence. Loreti and March considered
in [6] the gradient flows corresponding to the functionals Fε, F and proved the
convergence as ε→ 0 by formal asymptotic expansions.

The liminf-estimate turns out to be the difficult part in the proof of the Mod-
ified De Giorgi Conjecture and only recently partial results were obtained. In [1]
Bellettini and Mugnai proved the Gamma-convergence for rotationally symmetric
data in R2 and Moser proved in [9] the liminf-estimate in three space dimensions
if the data are monotone in one direction. The lower semi-continuity of F , which
is a necessary condition for F being a Γ-limit, follows from a result of Schätzle
in [10], where the lower semi-continuity of the Willmore functional under weak
convergence of currents is shown.

To prove the liminf estimate in space dimensions n = 2, 3 for general data we
combine the approach of Hutchinson and Tonegawa in [5], [11] with arguments
used by Chen in [3]. We consider

X = 2XE − 1 with ∂E ∩ Ω in C2,

uε ∈W 2,2(Ω), uε → X in L1(Ω)

and define energy measures µε and discrepancy measures ξε,

µε :=
(ε

2
|∇uε|2 +

1

ε
W (uε)

)

Ln, ξε :=
(ε

2
|∇uε|2 −

1

ε
W (uε)

)

Ln.
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The main step in the proof of lower semi-continuity is to deduce that µε converges
to a rectifiable varifold µ with σ−1µ having integral multiplicity and with weak

mean curvature ~Hµ ∈ L2(µ) satisfying the liminf estimate
∫

Ω

| ~Hµ|2 dµ ≤ lim inf
ε→0

∫

Ω

1

ε

(

− ε∆u+
1

ε
W ′(u)

)2

dLn.

The major challenge in this part is the control of the discrepancy measures, which
is much more delicate here as in [5], [11] and which requires a careful analysis and
some additional arguments.
From a result in [10] relating the mean curvature of the limit varifold to the local
geometry given by ∂E it follows that

~H∂E = ~Hµ

holds Hn−1-almost everywhere on ∂E. In addition from [7] we obtain

Hn−1⌊∂E ≤ σ−1µ

and we arrive at the liminf estimate

F(X ) ≤ lim inf
ε→0

Fε(uε).
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Multiplicity results for the prescribed Q-curvature

Mohameden Ould Ahmedou

Keywords: Critical point at infinity, Gradient flow, Morse inequalities.
Mathematics Subject classification 2000: 58E05, 35J65, 53C21, 35B40.

On a riemannian 4-manifold, (M, g), the Paneitz-Operator is defined by:

P 4
g ϕ = ∆2

gϕ− divg

(

2

3
Rgg − 2Ricg

)

dϕ,

where Rg and Ricg resp. the sclar and Ricci curvature.
This operator enjoys many nice properties, in particular it is conformally invariant
that is

Pgw = e−4wPg for gw = e2wg.

It is a natural extension of the Laplace-Beltrami Operator on surfaces and gives
rise to a fourth order conformal invariant: the so-called Q-Curvature defined by:

Qg =
1

12
(−∆gRg +R2

g − 3 |Ricg|) .

The Q-curvature transforms in a very nice way under conformal change of metric,
namely if g′ = e2wg, then Qg and Qg′ are related by the following relation:

P 4
gw + 2Qg = 2Qg′e4w2Qg .

The Paneitz-Operator for manifolds of dimension ≥ 4, has been obtained by T.
Branson, it is defined defined by:

Pn
g u = ∆2

gu− divg (anRgg + bnRicg) du +
n− 4

2
Qn

gu,

where Qn
g = −1

2(n−1)∆gRg + cnR
2
g − 2

(n−2)2 |Ricg|
2
.

The Paneitz operator has been subject of intensive studies, see please the lectures
notes of A. Chang [Chang 05].

The Paneitz operator Pn
g , n ≥ 5 is also conformally invariant, indeed if g̃ = ϕ

4
n−4 g

then for all ψ ∈ C∞(M) there holds:

Pn
g (ψϕ) = ϕ

n+4
n−4Pn

g̃ (ψ).

In particular for ψ = 1 we have:

(1) Pn
g (ϕ) =

n− 4

2
Qn

g̃ϕ
n+4
n−4 .

In view of equation (1) a natural question arises: Can we prescribe the conformal
invariant Q? That is for a given function K defined on (M, g), does there exist a
metric g̃ ∈ [g] with Qg̃ = K?

Setting g̃ := u
4

n−4 g with u > 0 the problem is equivalent to solving the following
equation:

(2) Pn
g (ϕ) =

n− 4

2
Kϕ

n+4
n−4
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The equation (2) has a variational structure, the solutions are critical points of the
Euler-Lagrange functional. The space of variation is the Sobolev space H2(M).

However due to the noncompactness of the embedding H2(M) to L
2n

n−4 (M), the
Euler functional does not satisfy the ”Palais-Smale condition” which leads to the
failure of the classical existence mechanisms of the variational theory.
In this talk we consider the case where the manifold M is the standard sphere
(Sn, gc), where due to Kazdan-Warner type obstructions, the above question
amounts to find conditions on K to insure existence of solution to the above
equation.
In previous works in collaboration with Z. Djadli and A. Malchiodi, [Djadli-
Malchiodi-OuldAhmedou1], [Djadli-Malchiodi-OuldAhmedou2], we gave an Euler-
Hopf type criterium to insure existence of solutions on 5 and 6 dimensional spheres
and in this talk we report on new progess concerning the multiplicity of solutions.
More precisely we adress the question of providing a lower bound on the numbers
of metrics with prescribed Q-curvature. Such a lower bound has to be found in
connection with the existence of critical point at infinity for the associated Euler
Lagrange functional. Actually the existence of such noncompact ends explains the
main difficulty in dealing with the problem, however it turns out that such non-
compact orbits of the gradient can be treated as usual critical point once a Morse
Lemma at infinity is performed as A. Bahri and J.M. Coron [Bahri-Coron 1991]
did for the scalar curvature problem. In particular their topological contribution
to the level sets of the functional can be computed. In this work we prove that,
under generic conditions conditions on K that this topology at infinity is a lower
bound for the number of metrics in the conformal class of gc having prescribed Q-
curvature. Such an inequality between the number of solutions and the topology
induced by the noncompacts orbits of the gradient flow can be seen as a general-
ization of the well known Morse inequalities to this noncompact framework.
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Convergence of equilibria of thin elastic films

Stefan Müller

(joint work with Maximilian Schultz)

The relation between three-dimensional nonlinear elasticity and theories for lower-
dimensional objects such as rods, beams, membranes, plates and shells has been an
outstanding question since the very beginning of the research in elasticity. In fact
there is a large variety of lower-dimensional theories. They are usually obtained
by making certain (strong) apriori assumptions on the form of the solutions of
the full three-dimensional problem and hence their rigorous range of validity is
typically unclear. As highlighted already in the work of Fritz John, a key point
is the geometric nonlinearity in elasticity, i.e the invariance of the elastic energy
under rotations. In particular thin elastic objects can undergo large rotations even
under small loads and this prevents any analysis based on a naive linearization.

The first rigorous results were only obtained in the early 90’s using a variational
approach which guarantees convergence of minimizers to a suitable limit problem.
In this talk we discuss the convergence of (possibly non-minimizing) stationary
points of the elastic energy functional. To set the stage let us first review the
variational setting. Consider a cylindrical domain Ωh = S× (−h/2, h/2), where S
is a bounded subset of R2 with Lipschitz boundary. To a deformation v : Ωh → R3

we associate the elastic energy (per unit height)

(1) Eh =
1

h

∫

Ωh

W (∇v) dz.

We assume that the stored-energy density function W satisfies the following con-
ditions:

W (RF ) = W (F ) ∀R ∈ SO(3) (frame indifference),(2)

W = 0 on SO(3),(3)

W (F ) ≥ c dist2(F, SO(3)), c > 0,(4)

W is C2 in a neighbourhood of SO(3).(5)

Here SO(3) denotes the group of proper rotations. The frame indifference implies

that there exists a function W̃ defined on symmetric matrices such that W (∇v) =

W̃ ((∇v)T∇v), i.e. the elastic energy depends only on the pull-back metric of v.
To discuss the limiting behaviour as h → 0 it is convenient to rescale to a

fixed domain Ω = S × (−1/2, 1/2) by the change of variables x = (z1, z2, hz3) and
y(x) = v(z). With the notation

(6) ∇hy = (∂1y, ∂2y,
1

h
∂3y) = (∇′y,

1

h
∂3y)

we have

(7) Eh(v) = Ih(y) =

∫

Ω

W (∇hy) dx.
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The variational approach leads to a hierarchy of limiting theories depending on the
scaling of Ih. More precisely we have for h→ 0 in the sense of Gamma-convergence

(8)
1

hβ
Ih Γ−→ Iβ .

This implies, roughly speaking, that minimizers of Ih (subject to suitable boundary
conditions or body forces) converge to minimizers of Iβ , provided Ih evaluated on
the minimizers is bounded by Chβ . Gamma-convergence was first established by
LeDret and Raoult for β = 0 [5], then for all β ≥ 2 in [3, 4] (see also [8, 9] for
results for β = 2 under additional conditions). For 0 < β < 5/3 convergence was
recently obtained by Conti and Maggi [2], see also [1]. The exponent β = 5/3 is
conjectured to be relevant for the crumpling of elastic sheets [6, 10, 2].

Here we focus on the case β = 2 which leads to Kirchhoff’s geometrically nonlin-
ear bending theory. For the limit problem the natural class of admissible functions
is given by W 2,2 isometric immersions from S to R3, i.e.,

(9) A :=
{

y ∈W 2,2(Ω,R3) : ∂3y = 0, (∇′y)T∇′y = Id
}

.

The limiting energy functional is

(10) I2(ȳ) =

{

1
24

∫

S
Q2(A) dx1dx2, if y ∈ A,

+∞, else.

Here A is the second fundamental form and Q2 is a quadratic form which can be
computed from the linearization ∂2W/∂2F (Id) of the 3d energy at the identity. If
W = 1

2dist2(F, SO(3)) then simply Q2(A) = |A|2.
In this talk we consider convergence of equilibria for the case β = 2. Instead of

considering the reduction from 3d to 2d we focus on the simpler limit from 2d to
1d. Thus we start from a thin strip

(11) Ωh = (0, L) × (−h/2, h/2)

and after the rescaling (z1, z2) = (x1, hx2), ∇h = (∂1,
1
h∂2) we consider the func-

tional

(12) Jh(y) =

∫

Ω

W (∇hy) − h2g(x1) · y dx.

The corresponding Gamma-limit is given by

(13) J2(ȳ) =

∫ L

0

1

24
Eκ2 − g · ȳ dx1,

where

(14) ȳ : (0, L) → R2, ȳ′ =

(

cos θ

sin θ

)

, κ = θ′,

and where J2 takes the value +∞ if ȳ is not of the above form (here we took the
liberty to identify maps on Ω which are independent of y2 with maps on (0, L)).
It is convenient to fix one endpoint by requiring ȳ(0) = 0. Integrating the linear
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term by parts we easily see that the Euler-Lagrange equation corresponding to the
limit functional is given by

(15) − 1

12
Eθ

′′

+ g̃ ·
(− sin θ

cos θ

)

= 0, g̃(x1) =

∫ x1

L

g(ξ) dξ.

Theorem 1. Assume that (2 – 5) hold, that the energy W is differentiable and
the derivative DW is globally Lipschitz. Let y(h) be a sequence of stationary points
of Jh (subject to the boundary condition y(h)(0, x2) = (0, hx2) at x1 = 0 and to
natural boundary conditions on the remaining boundaries). Assume that

(16)

∫

Ω

W (∇hy
(h)) ≤ Ch2.

Then

y(h) → ȳ in W 1,2(Ω; R2),(17)

∂2ȳ = 0, ∂1ȳ =

(

cos θ

sin θ

)

(18)

and θ solves (15).

Remarks. 1. An easy application of the Poincaré inequality shows that the
estimate (16) holds automatically for minimizers.
2. Mielke [7] used a centre manifold approach to compare solutions in a thin strip
to a 1d problem. His approach gives a comparison already for finite h, but it
requires that the nonlinear strain (∇hy)

T∇hy is close to the identity in L∞ (and
applied forces g cannot be easily included).

The proof uses in particular the quantitative rigidity estimate in [3] and a
compensated compactness argument.
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Beltrami Systems and the Hilbert-Smith Conjecture

Gaven J. Martin

1. Introduction

We show how uniqueness for solutions to the n–dimensional Beltrami systems
(the governing equations for the theories of non-linear elasticity and conformal
geometry) is obtained from our solution to the Hilbert-Smith conjecture on topo-
logical transformation groups in the uniformly elliptic setting.

To being with consider two material bodies Ω and Ω′. Each has a microstruc-
ture. Such microstructures define maps (G on Ω and H on Ω′) from the domain
into S(n), the space of n× n positive definite matrices of determinant equal to 1.
Thus at each point of Ω and Ω′ we have an oriented lattice structure, but no canon-
ical scale. The mappings G and H are only assumed bounded and measurable.
Bounded means there are no infinitely thin microcrystals and gives us ellipticity.
In most interesting applications the microstructure will not be continuous as it
will jump along some interface and these interfaces may be of fractal nature and
occur at all scales.

We consider the problem of deforming the elastic body (Ω, G) into (Ω, H). Such
a deformation will be an orientation preserving homeomorphism (by the principle
of interpenatrability of matter) f : Ω → Ω′ taking the microstructure of Ω to that
of Ω′. The first order PDEs describing this are the Beltrami systems,

(1) Df t(x)H(f(x))Df(x) = J(x, f)2/nG(x), a.e. Ω

Here Df(x) is the differential matrix of f and J(x, f) the Jacobian determinant.
These equations, although first order, are highly nonlinear and with only measur-
able coefficients. To fix ideas, we study solutions only in the natural Sobolev class
W 1,n

loc (Ω,Ω′) of functions whose first order derivatives are locally Ln integrable.
Surprisingly, in two dimensions, when written in complex notation, the equa-

tions (1) are equivalent to the linear Beltrami equation,

(2) fz(z) = µ(z)fz(z), a.e. Ω

for some bounded measurable Beltrami coefficient µ with ‖µ‖∞ = k < 1. This
equation is intimately connected with conformal geometry, Teichmülller spaces
and so forth. Existence, uniqueness and optimal regularity are all completely
understood, and considerable progress has been made on the degenerate elliptic
case ‖µ‖∞ = 1. See [1] for all of this.

In higher dimensions nothing is known concerning existence beyond the classical
results of Weyl-Schouten from the 1920’s where G and H are smooth and the
associated Weyl-Schouten tensor vanishes. Rather more is known about regularity
and higher integrability, and this is also explained in [1]. Optimal regularity has
not been proven, but is conjectured to depend precisely upon the Lp–norms of the
spin operator acting on forms.
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2. Uniqueness

Suppose we have two homeomorphic solutions g, h : Ω → Ω′ solving (1). Higher
integrability and some regularity results quickly imply that the map f = g−1 ◦ h :
Ω → Ω lies in W 1,n

loc (Ω,Ω) and satisfies the PDE

(3) Df t(x)G(f(x))Df(x) = J(x, f)2/nG(x), a.e. Ω

Moreover, the space Γ of all homeomorphic W 1,n
loc solutions to (3) forms a locally

compact topological transformation group acting effectively on Ω. This group is
actually the conformal group with respect to the measurable conformal structure
induced by G. Here ellipticity proves local compactness since the conformal group
is uniformly quasiconformal.

In this situation it is natural to ask if the group Γ is a Lie group. In fact this was,
more or less, Hilbert’s 5th problem [3]. The 5th problem has been solved under
the assumption that Γ is locally euclidean by Gleason and Montgomery/Zippin
[3]. The general problem (when Γ is assumed to act on a locally euclidean space)
is now known as the Hilbert-Smith conjecture. We announced the solution to this
conjecture in the case that Γ is quasiconformal in [2] using a key result of Yang
[4] which bounds (from below) the Hausdorff dimension of any invariant metric
as well as the structure theory which reduces the problem to the case of the p-
adics. Control on the dimension of invariant metrics is provided by the ellipticity
of the PDEs (3) via known distortion results from the theory of quasiconformal
mappings. Thus we conclude our group is a Lie group.

The point here is that if g = h on a nonempty set X ⊂ Ω, then f = identity
on X and so Γ0 = 〈f〉 will be a compact Lie group. Unlike the p-adics, nontrivial
compact Lie groups have nontrivial elements of finite order. However any element
of finite order in Γ0 is the identity on X and so from Smith theory, X must locally
look like a subset of a homology manifold of even co-dimension. In particular, X
cannot be of dimension n− 1 or open. Returning to our original problem we find
we have proven

Theorem 1. Suppose g, h ∈ W 1,n
loc (Ω,Ω′) are solutions to (1) and g = h on a set

X of topological dimension at least n− 1. Then g ≡ h. This is best possible.

That this is best possible follows since g = identity and h a rotation agree on
the fixed point set of h, satisfy (1) with G ≡ In, and which could be a codimension
2 sphere (of Hausdorff dimension as close to n as we might like if we accept a worse
G).

Acknowledgement Research supported in part by the Marsden Fund, New
Zealand.
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Mean curvature and minimal surfaces in CR manifolds

Andrea Malchiodi

(joint work with Jih-Hsin Cheng, Jenn-Fang Hwang and Paul Yang)

LetM be a three dimensional manifold. A contact structure ξ onM is a completely
non-integrable two-dimensional distribution, while a contact form Θ is a non-zero
1-form on M which annihilates ξ. We will always assume Θ to be oriented, namely
that dΘ(u, v) > 0 if (u, v) is an oriented basis of ξ. The Reeb vector field associated
to Θ is the unique vector field T such that Θ(T ) = 1 and such that dΘ(T, ·) = 0.

A CR structure compatible with ξ is an endomorphism J : ξ → ξ such that
J2 = −Id. We assume that also J is oriented, namely that for every non-zero
vector field X , the couple (X, JX) is an oriented basis of ξ.

A CR manifold (or pseudo-hermitian) is a manifold endowed with a CR struc-
ture and with a global contact form Θ. This gives rise to a natural volume form

V (Ω) =

∫

Ω

Θ ∧ dΘ

and to a metric on ξ called Levi form

LΘ(v, w) = dΘ(v, Jw).

We now recall the definition of the Tanaka-Webster connection and the as-
sociated curvature. Let e1 be a field in ξ with unit length, namely such that
LΘ(e1, e1) = 1, and let e2 = Je1, so that (e1, e2) is an oriented basis of ξ. Let
{Θ, e1, e2} be the triple of forms dual to {T, e1, e2}. Then we have the structure
equations

(S1) dΘ = 2e1 ∧ e2;

(S2) de1 = −e2 ∧ ω mod Θ; de2 = e1 ∧ ω mod Θ.

The Tanaka-Webster connection is defined by

∇p.h.e1 = ω ⊗ e2, ∇p.h.e2 = −ω ⊗ e1,

while the Tanaka-Webster curvature is given by

dω(e1, e2) = −2W.

Given a function f and a vector field V tangent to ξ we define the subgradient of
f and the subdivergence of V as

∇bf = (e1f)e1 + (e2f)e2; divbV = LΘ(∇p.h.
e1

V, e1) + LΘ(∇p.h.
e2

V.e2).

We have also the sublaplacian of f which is given by

∆bf = divb(∇bf)
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For the Heisenberg group H1 we have the standard choices

ê1 =
∂

∂x
+ y

∂

∂z
, ê2 =

∂

∂y
− x

∂

∂z
, T̂ =

∂

∂z
, Θ̂ = xdy − y dx+ dz.

Now, given a regular surface Σ ⊆ M3, we define a notion of (pseudo)-mean
curvature. If p ∈ Σ and if TpΣ 6= ξ(p), we define e1(p) as the unique (up to the
sign) unit vector belonging to TpΣ ∩ ξ(p), and e2(p) = J(p)e1(p). Then we define
the (p)-mean curvature H in three equivalent ways

(1): as a second variation of the volume: if Σ is the boundary of an open set
Ω, then for a variation of Ω (or of Σ) in the direction fe2 we have

δfe2V (Ω) =

∫

Σ

fΘ ∧ e1; δfe2

∫

Σ

Θ ∧ e1 = −
∫

Σ

fHΘ ∧ e1

(2): viewing Σ as a level set: if Σ = {ψ = 0}, then

H = −divb

( ∇bψ

|∇bψ|

)

(3): using the Tanaka-Webster connection: similarly to the curvature of a
curve in the plane

∇p.h.
e1

e1 = He2.

For the Heisenberg group the first two definitions coincide with those in [CDG],
[DGN], [Pau]. Moreover, the area element Θ ∧ e1 coincides with the three dimen-
sional Hausdorff measure of Σ, considered in [B] and in [FSS].

Graphs in the Heisenberg group. Let u : Ω ⊆ R2 → R be a smooth function, and
let Σ be the graph of u

Σ =
{

(x, y, u(x, y)) | (x, y) ∈ R2
}

.

Recall that e1 ∈ TΣ ∩ ξ, and for a graph it is given by

e1 =
1

D



−(uy + x)





1
0
y



+ (ux − y)





0
1
−x







 ,

where

D =
[

(ux − y)2 + (uy + x)2
]

1
2 .

One also finds that

H =
1

D3
{(uy + x)2uxx − 2(uy + x)(ux − y)uxy + (ux − y)2uyy},

so the equation H ≡ 0 is

(∗) (uy + x)2uxx − 2(uy + x)(ux − y)uxy + (ux − y)2uyy = 0

We have then the following classification result.
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Theorem A. ([CHMY], see also [CH] and [GP] for some extensions) The only
entire C2 smooth solutions to the equation (∗) are of the form

u = ax+ by + c (a plane with a,b,c being real constants);(1.1)

u = −abx2 + (a2 − b2)xy + aby2 + g(−bx+ ay)(1.2)

(a, b being real constants such that a2 + b2 = 1 and g ∈ C2).

The main ingredient for proving Theorem A is the analysis of the singular points
of Σ (or of u), which are given by

S(u) =
{

(x, y) ∈ R2 : ux − y = uy + x = 0
}

.

For a minimal graph we have the following characterization of the singular points.

Proposition Let Ω be a domain in the xy−plane. Let u ∈ C2(Ω) be a solution
of (∗). Let p0 be a singular point of u. Then either p0 is isolated in S(u) or
there exists a small neighborhood of p0 which intersects with S(u) in exactly a C1

smooth curve through p0.

The analysis of the singular points can also be employed to study surfaces with
bounded (p)-mean curvature in general 3-dimensional CR manifolds. We have
indeed the following result.

Theorem B. Let M be a pseudohermitian 3-manifold. Let Σ be a closed, con-
nected surface, C2 smoothly immersed in M with bounded p-mean curvature. Then
the genus of Σ is less than or equal to 1. In particular, there are no constant p-
mean curvature or p-minimal surfaces Σ of genus greater than one in M.
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Regularity of free boundaries in parabolic obstacle type problems

D. Apushkinskaya, Saarbrücken

(joint work with H. Shahgholian, Stockholm and N. Uraltseva, St. Petersburg)

This talk is inspired by a recent joint work with H. Shahgholian and N. Uraltseva
(see [1]-[3]), and it concerns the regularity properties of a free boundary in a
neighborhood of the fixed boundary of a domain for a parabolic obstacle problem
with zero constraint.

For parabolic equations the simplest obstacle problem can be formulated as
follows: let D be a domain in Rn, Q = D×]0, T [,

K = {w ∈ H1(Q) : w ≥ 0 a.e. in Q, w = φ on ∂′Q},
where φ be a nonnegative function defined on the parabolic boundary ∂′Q of the
cylinder Q. It is required to find a function u ∈ K such that

∫

D

∂tu(w − u)dx+

∫

D

DuD(w − u)dx+

∫

D

(w − u)dx ≥ 0

a.e. in t ∈]0, T [, and for all w ∈ K.
It is known that if u is a solution of this problem, then, in the sense of distri-

butions, u satisfies the equation

∆u− ∂tu = χΩ in Q,

where Ω = {(x, t) ∈ Q : u(x, t) > 0}, and χΩ is the characteristic function of
the set Ω. The set Ω = Ω(u) is called the noncoincidence set, while the set
Λ(u) = {(x, t) : u(x, t) = |Du(x, t)| = 0} is the coincidence set for the solution u;
Γ(u) = ∂Ω∩Λ(u) is the free boundary. The possibility must not be ruled out that
the free boundary Γ(u) and the fixed boundary ∂′Q meet at points where φ = 0.
Therefore, the points of contact may exist.

The regularity of the free boundary (far from ∂′Q) for this problem has been
investigated earlier only in the special case of the Stefan problem, where the bound-
ary and initial conditions guarantee the additional property ∂tu ≥ 0; see [4]. It
should be emphasized that results of [1]-[3] enable us to avoid any assumptions on
the time-derivative of solutions. Results for an elliptic problem related to our ones
can be found in [7]. It should be mentioned also a recent work [6] where a parabolic
free boundary problem without presence of the contact points was considered. Re-
sults for an elliptic free boundary problem without presence of the contact points
were obtained in [5]. Note that in [5]-[7] the more general free boundary problems
were treated, without the assumption about the nonnegativity of the solution.

Our main result says that the boundary of the noncoincidence set Ω is Lischitz
continuous near the part of the lateral surface of Q where the solution is equal to
zero. In particular, this implies that, locally, inside Q and near that part, the free
boundary is the graph of a C1,α-function.

Remark. Unfortunately, C1,α-regularity of the free boundary may fail to occur
at the points of contact between the free boundary and the fixed boundary. The
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counterexample, showing that in the t-direction the free boundary ∂{u > 0} may
intersect the fixed boundary transversally, can be found in [3].

Our arguments are based on the blow-up technique, in combination with various
monotonicity formulas, and on the result of the paper [2] concerning the global
solutions of the parabolic obstacle problem with zero constraint (i.e., the solutions
in the entire half-space {(x, t) ∈ Rn+1 : x1 > 0}. It should be emphasized that our
arguments do not require any additional assumptions on the free boundary.
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Regularity of stable branched minimal hypersurfaces

Neshan Wickramasekera

The goal of the work presented in this talk is to understand the local structure, in-
cluding the nature of singularities, of stable minimal hypersurfaces of a Euclidean
space (or more generally, of a smooth Riemannian manifold) of arbitrary dimen-
sion. In [SS81], R. Schoen and L. Simon developed a partial regularity theory
for n-dimensional stable minimal hyperpsurfaces assuming the (regular parts of
the) hypersurfaces are embedded and their singularities have locally finite (n−2)-
dimensional Hausdorff measure. Embeddedness guarantees that all tangent cones
to the hypersurface are multiplicity 1 cones. i.e. multiple “sheets” cannot come
together when passing to the weak limit of a sequence of geometric rescalings of
the hypersurface at any given (singular) point. Note however that stable minimal
hypersurfaces need not be embedded as is demonstrated by the simple example of
a pair of transversely intersecting hyperplanes. Once the embeddedness hypothesis
is removed, higher multiplicity and branching becomes a central issue. The sim-
plest such instance is when the multiplicity is 2, and the basic goal in that case is
to understand the nature of the hypersurface near a singular (i.e. non-immersed)
point (a branch point) at which the hypersurface has a multiplicity 2 hyperplane
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as one of its tangent cones. This has recently been accomplished in [Wic]. The
main regularity theorem of [Wic] (Theorem 1 below) explains fully the asymptotic
nature of a stable minimal hypersurface near a branch point with a multiplicity 2
tangent plane, assuming that the singular set has finite (n− 2)-dimensional Haus-
dorff measure. (The singular set consists only of “genuine” singularities, which
include branch points if any exist. Thus, the points of self-intersection, where the
hypersurface is immersed, are considered regular.) In stating this theorem and
subsequently, we use the following notation: Bn

ρ (0) denotes the open ball of the
n-dimensional Euclidean space with radius ρ and center the origin. Hn denotes
the n-dimensional Hausdorff measure.

Theorem 1. For each δ ∈ (0, 1), there exists a number ǫ ∈ (0, 1), depending only
on n and δ, such that the following is true. If M is an orientable immersed stable

minimal hypersurface of Bn+1
2 (0), with Hn−2 (singM) <∞, 0 ∈M, Hn(M)

ωn2n ≤ 3−δ
and

∫

M∩(Bn
1 (0)×R) |xn+1|2 ≤ ǫ, then M1 ∩ (Bn

1/2(0) × R) = graphu where M1 is

the connected component of M ∩ (Bn
1 (0) × R) containing the origin, u is either a

single valued or a 2-valued C1,α function on Bn
1/2(0) satisfying

‖u‖C1, α(Bn
1/2

(0)) ≤ C

(

∫

M∩(Bn
1 (0)×R)

|xn+1|2
)1/2

.

Here the constants C and α ∈ (0, 1) depend only on n and δ.

See the Appendix of [Wic] for the definition of the C1,α norm of u when u is a
2-valued function.

This theorem rules out, for instance, the possibility of having a sequence of
“necks” connecting two sheets and converging to a branch point of the hypersur-
face.

As an important corollary of this theorem, a compactness theorem (Theorem 2
below) for a class of singular stable minimal hypersurfaces is obtained, which in
particular confirms the expectation that a branched stable minimal hypersurface
cannot be approximated by a sequence of regular stable, minimal immersions.

Theorem 2. Let δ ∈ (0, 1). There exists σ = σ(n, δ) ∈ (0, 1/2) such that the fol-
lowing is true. Suppose Mk is a sequence of orientable stable minimal hypersurface

immersed in Bn+1
2 (0) with Hn−2(singMk) = 0 for each k and lim supk→∞

Hn(Mk)
ωn2n

≤ 3 − δ. Then there exists a stationary varifold V of Bn+1
2 (0) and a closed sub-

set S of spt ‖V ‖ ∩ Bn+1
σ (0) with S = ∅ if 2 ≤ n ≤ 6, S discrete if n = 7 and

Hn−7+γ(S) = 0 for every γ > 0 if n ≥ 8 such that after passing to a subsequence,
which we again denote {k}, Mk → V as varifolds and (spt ‖V ‖ \ S) ∩Bn+1

σ (0) is
an orientable immersed, smooth, stable minimal hypersurface of Bn+1

σ (0).
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In low dimensions, the “smallness of excess” hypothesis of Theorem 1 can be
dropped provided we assume that the mass ratio is sufficiently close to 2. Precisely,
we have the following:

Theorem 3. There exist fixed constants ǫ ∈ (0, 1), σ ∈ (0, 1), C ∈ (0,∞) and
α ∈ (0, 1) such that the following holds. If 2 ≤ n ≤ 6, M is an orientable immersed
stable minimal hypersurface of Bn+1

2 (0) with Hn−2 (singM) < ∞, 0 ∈ M and
Hn (M)
ωn2n ≤ 2 + ǫ, then for some orthogonal rotation q of Rn+1, either qM1 ∩

(Bn
σ (0)×R) = graphu where u is either a single valued or a 2-valued C1,α function

on Bn
σ (0) with

‖u‖C1, α(Bn
σ (0)) ≤ C

(

∫

q M∩(Bn
1 (0)×R)

|xn+1|2
)1/2

or there exists a pair of transverse hyperplanes P (1), P (2) of Rn+1 such that qM1∩
(Bn

σ (0) × R) = graph (p(1) + u(1)) ∪ graph (p(2) + u(2)), where P (1) = graphp(1),
P (2) = graphp(2), u(i) ∈ C1,α (P (i) ∩ (Bn

σ (0) × R);R) with

‖u(i)‖C1, α(P (i)∩(Bn
σ (0)×R)) ≤ C

(

∫

M∩(Bn
1 (0)×R)

dist2 (x, P )

)1/2

for i = 1, 2. Here M1 denotes the connected component of M ∩ (Bn
1 (0) × R) con-

taining the origin.

At a key stage of the proof of Theorem 1, a type of harmonic approximation is
used, where it is shown that whenever the L2-height excess relative to a (multi-
plicity 2) hyperplane of a stable minimal hypersurface is small in a cylinder, the
hypersurface in a smaller cylinder is well approximated by the graph of a “2-valued
harmonic” function. F. J. Almgren Jr. used multivalued harmonic functions in his
work on area minimizing currents (of arbitrary dimension and co-dimension), in
[Alm83], where harmonic meant Dirichlet energy minimizing. Under the weaker
hypothesis of stability, the two-valued approximating functions do not satisfy this
energy minimizing property. However, codimension 1 setting gives them a lot
more structure, and a sufficiently detailed, asymptotic description of the functions
is obtained in [Wic].

The work in [Wic] uses methods and results due to L. Simon [Sim93]; R. Hardt
and L. Simon [HS79]; R. Schoen and L. Simon [SS81]; F. J. Almgren Jr. [Alm83]
and the author [Wic04] at a number of crucial points. This work in fact should be
viewed as a generalization of the results of [Wic04]. To prove that a stable hyper-
surface, when it is weakly close to a multiplicity 2 hyperplane, is well approximated
by the graph of a 2-valued harmonic function of the type aforementioned, a blow-
up argument is used, where sequences of stable hypersurfaces are blown up off
(multiplicity 2) hyperplanes to produce the 2-valued harmonic functions. This
blow up procedure is based on the approximate graphical decomposition of the
hypersurface as in [SS81]. The next key step is to understand the asymptotics of
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these 2-valued approximating functions. The approach taken in analyzing these
functions is to use geometric arguments, aimed at proving excess decay estimates
for the graphs of the functions. To investigate the local regularity properties of
these functions at points where their graphs blow up to transversely intersecting
pairs of hyperplanes, and also to prove global decay estimates when the center
point is a branch point of the function, variants of powerful techniques developed
by Simon [Sim93] and Hardt and Simon [HS79] are used. In particular, a crucial
ingredient is an estimate for the radial derivatives of the blow-up limit due to
Hardt and Simon [HS79].

Another important technical ingredient of the analysis of the approximating
2-valued harmonic functions is the monotonicity of a frequency function, an idea
used first in a geometric setting by Almgren [Alm83]. Both the frequency function
directly associated with the two-valued function as well as the one associated with
the single valued function obtained by taking the difference between the two values
of the two-valued function are used in [Wic]. Either frequency function, for any
given center point, is monotonically non-decreasing as a function of the radius.
Thus, in particular, the points of the domain of the two-valued function may be
classified according to the values assumed by the limit of the frequency function
associated with the difference function. In a classical setting, e.g. if the function
were (single valued) harmonic, this limit is equal to the vanishing order of the
function at the point in question. In the setting of [Wic], it conveys analogous
information, which may be regarded as the order of contact between the “two
sheets” of the graph of the 2-valued function, (although admittedly at a branch
point one does not have a useful notion of two sheets) and it reveals the local
geometric picture of the graph; i.e. whether the graph locally consists of two
disjoint harmonic disks, or of two self intersecting harmonic disks or whether it is
branched. Furthermore, the rate of decay of the graph of the two valued function
to its (unique) multiplicity 2 tangent plane at a branch point depends only on n.
Said differently, there exists a fixed frequency gap, depending only on n, implying
that the order of contact at a branch point cannot be arbitrarily close to 1.

As further corollaries of Theorem 1 in low dimensions, the following pointwise
curvature estimate (Theorem 4) and the Bernstain type theorem (Theroem 5) are
obtained. For smooth stable minimal hypersurfaces of dimension up to 5, these
results were previously obtained (by entirely different methods) under weaker as-
sumption of arbitrary mass bound by R. Schoen, L. Simon and S.-T. Yau [SSY75].

Theorem 4. Let δ ∈ (0, 1). There exist positive numbers Γ and σ depending only
on δ such that if 2 ≤ n ≤ 6 and M is an immersed, stable minimal hypersurface
of Bn+1

2 (0) with second fundamental form A, satisfying Hn−2(singM) = 0 and
Hn(M)
ωn2n ≤ 3 − δ, then singM ∩Bn+1

σ (0) = ∅ and

supM∩Bn+1
σ (0) |A| ≤ Γ.
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Theorem 5. Let δ ∈ (0, 1). Suppose 2 ≤ n ≤ 6, M is a complete, non-compact

stable minimal hypersurface of Rn+1 satisfying
Hn (M∩Bn+1

R (0))

ωnRn ≤ 3 − δ for all
R > 0. Then M must be a union of at most 2 affine hyperplanes.

The existence of a rich class of stable branched minimal hypersurfaces of the
type considered in [Wic] has recently been established by L. Simon and the author
[SW].
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Lp-estimates for steady compressible fluids

Jens Frehse

(joint work with Sonja Goj and Mark Steinhauer)

We consider the equations for steady compressible fluids in R3

div (̺u) = 0,

∫

̺dx = M, ̺ ≥ 0,

−µ∆u− (µ+ 1)∇divu+ (u · ∇u)̺ = −∇̺γ + f̺+ g,

u = velocity field, ̺ = density.
Existence of solutions is known in important cases for γ > 3

2 . For γ < 3
2

estimates of the convective term and ̺γ are needed. The authors contribute to
this question by proving a uniform (local) Lq-estimate in the case

5/4 ≤ γ ≤ 5/3.

It states that

̺u∇u and ̺ ∈ L
6γ

5+2γ

loc

this covers the case of ”air”, where γ = 7/5(< 3/2).
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Conformally Invariant differential equations on 4-manifolds

Paul Yang

(joint work with Alice Chang)

In recent years there has been a lot of work on the Q-curvature equations, and many
people have asked about the geometric meaning of such equations. In this talk we
describe a program utilizing some of the recent work on the Q-curvature equations
and related σk equations to study a class of conformal structures in dimension four,
thus providing some motivation for the study of a family of nonlinear equations in
conformal geometry. Recall the decomposition of the Riemann tensor in dimension
four:

Rm = W ⊕ (1/2)A©∧ g,
where W is the Weyl tensor and A = Rc− R

6 g is the Schouten tensor, Rc is the
Ricci tensor and R the scalar curvature of the metric g. Recall that the Weyl
tensor transform by scaling under a conformal change in metric ḡ = e2wg, thus
the Schouten tensor contains all the derivative information in the conformal factor.

The well known conformal Laplacian L = −6∆ + R transforms under the con-
formal change of metric ḡ = u2g by: L̄φ = u3L(uφ) and it gives rise to the scalar
curvature equation: Lu = R̄u3. The existence theory is completed by the work of
Yamabe ([Y]), Trudinger ([T]), Aubin ([A]) and Schoen ([S]).

The fourth order Paneitz operator in dimension four is given by P = ∆2 +
δ{(2/3)Rg − 2Rc}d where δ is the divergence, and d is the deRham differential.
Under the conformal change in metric ḡ = e2wg, the Paneitz operator transforms
by P̄ = e−4wP, and it computes the Q-curvature of the conformal metric ḡ by

Pw + 2Q = 2Q̄e4w, Q =
1

12
{−∆R+ 6σ2(A)}.

In general dimensions, the existence of analogue of the Paneitz operator and
the corresponding Q-curvature equations has been worked out by Graham-Jenne-
Mason-Sparling ([GJMS]) using the ambient metric construction of Fefferman and
Graham ([FG]), and by Branson ([B]) using representation.

In dimension four the Q-curvature equation is closely connected with the Chern-
Gauss-Bonnet formula for a compact oriented manifold in dimension four:

8π2χ =

∫

|W |2 + σ2(A)dV.

This result may be extended to domains on the standard 4-sphere:

Theorem 1. ([CQY1]) Let g = e2wg0 be a complete conformal metric defined on
Ω ⊂ S4 satisfying the following curvature bounds: R ≥ c1 > 0, |∇R| ≤ c2, Rc ≥
−c3 and

∫

Ω
|Q|dV < ∞ then Ω = S4 \ {q1, . . . , qN} and 8π2χ(Ω) =

∫

Ω
QdV +

∑N
1 Ik, where Ik are isoperimetric constants attached to the end at qk.

It follows from the tranformation rules, the positivity of the operators L and P
are conformally invariant. The following is a conformally invariant set of critera:
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Theorem 2. ([G]) On a compact 4-manifold (M, g), if the conformal Lapla-
cian is positive, and

∫

σ2(A)dV > 0 then the Paneitz operator is positive, and
∫

σ2(A)dV ≤ 16π2, where equality holds only for the standard 4-sphere.

The positivity of the operators L and P gives strong control of the topology
and geometry of the 4-manifold in question. We say the metric g belongs to the
positive k-th cone (denoted by g ∈ Γ+

k ) if σi(Ag) > 0 for i = 1, 2, . . . , k.

Theorem 3. ([CGY1]) Under the same assumptions as Theorem 2, there exists a
conformal metric ḡ ∈ [g] and g ∈ Γ+

2 ; and except for the standard 4-sphere, given
any smooth positive function f , there is a conformal metric ḡ so that σ2(Ā) = f .

in It is also natural to consider 4-manifolds with boundary, then it is important
to find natural boundary conditions under which the foregoing considerations may
be extended. This work is being carried out in the forthcoming thesis of Sophie
Chen. In a different direction, the solvability of the remaining σk equations for
k = 3, 4 is a special case of the recent work of Gursky and Viaclovsky:

Theorem 4. ([GV]) If g ∈ Γ+
k , and (n/2) < k then there exists a conformal

metric ḡ for which σk(Ā) = 1.

It is a simple algebraic fact that in dimension four, the condition A ∈ Γ+
2

implies the positivity of the Ricci tensor. Consequently the conformal structures
in dimension four with positive operators L and P have finite fundamental group.
Thus up to a finite covering, we are considering simply connected 4-manifolds.
The important work of Donaldson and Freedman implies that such manifolds are
necessarily homeomorphic to two countable series of simply connected 4-manifolds:
(i) S4, and k(CP 2)#l(C̄P 2), where 0 ≤ k < 5l+ 4; (ii) k(S2 × S2). The simplest
one in this list is the 4-sphere and we have the following conformal sphere theorem:

Theorem 5. ([CGY2]) Assume (M4, g) has positive L operator and that
∫

σ2(A)dV ≥
∫

|W |2dV > 0,

then M is diffeomorphic to S4, RP 4 or CP 2 and the inequality is sharp, that is
the standard conformal structure on CP 2 realized the equality.

Thus it is natural to ask for a given 4-manifold whether it is possible to
find a conformal structure minimizing the quantity

∫

|W |2dV . This is a diffi-
cult question. The critical metrics for the functional

∫

|W |2dV are called Bach
flat metrics, and the Euler equation is the vanishing of the Bach tensor: Bij =
∇k∇lWkijl + (1/2)RklWkijl = 0. This class of metrics include the Einstein met-
rics, the conformally flat metrics, the self-dual or anti-self-dual metrics and Kahler
metrics of constant scalar curvature. There is recent advance on the structure of
Bach flat metrics by Tian and Viaclovsky:

Theorem 6. ([TV]) For a complete Bach flat 4-manifold satisfying a uniform
Sobolev constant, and the curvature decay condition |Rm(x)| = o(|r(x)−2 |), then
the volume of geodesic balls have an upper bound: Vol(Br) ≤ Cr4. Consequently
X is an ALE space.
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This previous result allows the construction of a bubble tree to describe the pos-
sible degeneration of a sequence of Bach flat Yamabe metrics. As a consequence,
it is possible to formulate a finiteness result for the diffeomorphic classes of four
dimensional conformal structures with positive operators L and P :

Theorem 7. ([CQY2]) Let A denote the class of compact Bach flat 4-manifolds
satisfying the following: (i) Y (M, g) ≥ c1 > 0, (ii)

∫

|W |2dV ≤ c2, (iii)
∫

σ2(A)dV
≥ c3 > 0, then A contains only finite number of distinct diffeomorphism classes.

It is reasonable to conjecture that there are no Bach-flat conformal structures in
dimension four with positive operators L and P other than the standard 4-sphere
satisfying the condition 16π2 − ǫ ≤

∫

σ2(A)dV ≤ 16π2 and it would be of interest
to determine such a constant. The following is a first step in this direction:

Theorem 8. ([CQY2]) There exists a positive ǫ so that the assertion above holds
for conformal structures belonging to the class A.
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Pure unrectifiability and universal singular sets in Tonelli’s classical
variational problem

Bernd Kirchheim

(joint work with M. Csörnyei, T. O’Neil, D. Preiss, S. Winter)

Given a Lagrangian

L : [a, b] × R2 → R

we consider the minimisation problem

E(u) =

∫ b

a

L(x, u(x), u′(x)) dx → min over u(a) = A, u(b) = B, u ∈W 1,1.

Important assumptions that are often imposed on the Lagrangian are

• (ω)-superlinearity: L(x, u, p) ≥ ω(p) ; ω′′ > 0, ω(0) = ω′(0) = 0 and
ω(x)/|x| → +∞ as |x| → ∞.

• (LS) L ∈ C∞ (L ∈ C3 classically needed assumption)
• (LC) L(x, u, ·) is convex ∀x, u.

One of the first results in the modern calculus of variations establishes the
existence of minimisers under the assumptions superlinearity and (LC). Beside
this, before 1923 Tonelli also proved his striking partial regularity result: su-
perlinearity, (LS) and strict (LC) ensure that for the minimiser u its derivative
u′ : [a, b] → [−∞,+∞] is continuous. In particular Su = {x : |u′(x)| = ∞} is
closed (and of measure zero) and it can be shown that u is smooth on [a, b] \ Su.

The question, whether Su can indeed be nonempty was answered in the positive
by Lavrienteff in 1926 and later Ball-Mizel ([BM]) and Davie ([D]), who showed
that any closed set of measure zero is the singular set Su for a suitably chosen but
nice Lagrangian L. See also [BGH] for more historical information.

Due to the superlinear growth, points x with |u′(x)| = ∞ cost lots of energy E
and can, therefore, only occur (x, u) is situated on the ground of a “steep valley”
(with vertical direction) in the (x, u) energy landscape. The natural question
arises, how many such locations can be at all created, even we do not require them
to belong to a single minimiser.

Definition 1 (J.M.Ball) The universal singular set of the Lagrangian L is the
union of the two sets USS±(L) defined as

{(x0, u0) : ∃(a,A, b, B)∃u minim. for E : u(x0) = u0, u
′(x0) = ±∞}

Ball-Nadirashvili (see [BN]) established in 1993 that USS(L) is a set of first
category, in 1994 Sychev ([S]) showed it is of planar measure zero, but no exam-
ples of infinite length were known. Here we answer the question of its Hausdorff
dimension by giving an essentially precise geometric characterization. We need
the following definitions

Definition 2 A Borel set E ⊂ R2 is purely unrectifiable ifH1(E∩im(φ)) = 0 for
any lipschitz curve φ : R → R2. We say that a lipschitz curve φ is a “non-climbing
graph” if φ′(t) 6= 0 and arg(φ′(t)) ∈ [−π/2, π/2) a.e.
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Note that, in particular, PU-sets can be of Hausdorff dimension two, although
Fubini’s theorem clearly implies that they are of planar measure zero. Much
more information on this kind of sets can be found in [ACP]. Armed with these
definitions, we obtain

Theorem 1 Let L have some superlinear growth and satisfy (LC). Then

H1(USS+(L) ∩ im(φ)) = 0

for every non-climbing graph φ.

Theorem 2 If any compact purely unrectifiable set S and any superlinearity ω
are given then a Lagrangian L with ω-growth, (LC) and (LS) can be found with
S ⊂ USS+(L).

It turns out that the difference between Theorem 1 and 2 can not be ignored,
i.e. universal singular sets are purely unrectifiable only when tested by a suitably
adapted class of curves.

Theorem 3 Given any fixed superlinearity ω one can find a 1-rectifiable set of
positive 1-measure E (essentially the graph of a Cantor function over its singular
points) and a Lagrangian L of ω-growth and satisfying (LC) and (LS) do exist
such that S ⊂ USS+(L).

Finally, there is also a characterization of pure unrectifiablity (with respect to
all curves φ) provided by

Theorem 1∗ If S is fixed and if for any ω we find a Lagrangian L with
ω-growth and S ⊂ USS+(L) then S is purely unrectifiable.

References

[ACP] G. Alberti, M. Csörnyei, D. Preiss, Structure of null sets in the plane and applications,
Proceedings of the European Congress of Mathematics 2004, EMS Publishing House, 3 –
22.

[BM] J. M. Ball, V. Mizel, One-dimensional variational problems whose minimizers do not
satsify the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325–388.

[BN] J. M. Ball, N. S. Nadirashvili, Universal singular sets for the one-dimensional varia-
tional problems, Calc. Var. PDE 1/4 (1993), 429–438.

[BGH] G. Buttazo, M. Giaquinta, S. Hildebrandt, One-dimensional variational problems.
An introduction, OUP 1998.

[D] A M. Davie, Singular minimisers in the calculus of variations in one dimension, Arch.
Rational Mech. Anal. 101 (1988), 161–177.

[S] M. Sychev, The Lebesgue measure of a singular set in the simplest problem in the calculus
of variations, Siberian Math. J. 35 (1994), 1220–1233.

Reporter: Ulrich Menne



1924 Oberwolfach Report 33/2005

Participants

Prof. Giovanni Alberti

alberti@mail.dm.unipi.it

alberti@dm.unipi.it

Dipartimento di Matematica
Universita di Pisa
Largo Bruno Pontecorvo,5
I-56127 Pisa

Gilles Angelsberg

Gilles.Angelsberg@math.ethz.ch

Departement Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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