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Introduction by the Organisers

Major areas and results represented at the workshop are:

I. Methods in harmonic analysis

(a) Multilinear analysis: this is an outgrowth of the method of ”tile decomposi-
tion” which has been so successful in solving the problems of the bilinear Hilbert
transform. Recent progress involves the control of maximal trilinear operators and
an extension of the Carleson-Hunt theorem.

(b) Geometry of sets in Rd : This includes recent progress on the interaction
of Fourier analysis and geometric combinatorics related to the Falconer distance
problem.

(c) Singular integrals: A break trough has been obtained on singular integrals
on solvable Iwasawa AN - groups, which require a new type of Calderón-Zygmund
decomposition, since the underlying spaces have exponential volume growth. Fur-
ther significant progress involves the theory of operator-valued Calderón-Zygmund
operators and their connection to maximal regularity of evolution equations.
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(d) Oscillatory integrals, Fourierintegral operators and Maximal operators: This
includes estimates of maximal operators related to polynomial polyhedra and their
relations with higher dimensional complex analysis, sharp estimates for maximal
operators associated to hypersurfaces in R3, estimates for degenerate Radon trans-
forms and linear and bilinear estimates for oscillatory integral operators, as well
as optimal Sobolev regularity for Fourier integral operators.

II. Applications to P.D.E.

(a) Dispersive linear and non-linear equations: Far reaching new approaches to
dispersive estimates for Schrödinger equations via coherent state decompositions
and a related new phase space transform adapted to the wave operator were in-
troduced. Further significant progress includes Lp- estimates respectively blow up
rates for eigenfunctions and quasimodes of elliptic operators on compact manifolds
with and without boundary, and related problems for globally elliptic pseudodif-
ferential operators, and well-posedness of the periodic KP-I equations. All these
results are based in part on important ideas in harmonic analysis (such as I(d)
above).

(b) Schrödinger operators with rough potentials: This includes quantitative
unique continuation theorems and their relations with spectral properties and the
study of embedded eigenvalues of Schrödinger operators.

The meeting was attended by 50 participants. The official program consisted
of 23 lectures, and left sufficiant room for further activities, such as self-organised
sessions and discussions among groups of participants. The organisers made an
effort to include young mathematicians, and greatly appreciate the new joint pro-
gram of the Oberwolfach Institute and the american NSF, which allowed to invite
several outstanding young scientists from the United States.
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Abstracts

Quantitative unique continuation theorems

Carlos E. Kenig

We discussed three quantitative unique continuation theorems at infinity. The
first theorem, for second order elliptic equations, is joint work with Bourgain,
[2], and was a key step in our proof of Anderson localization for the continuous
Bernoulli model in higher dimensions, a problem posed by Anderson, [1]. The
second theorem,[3], for second order parabolic equations, settles a conjecture of
Landis-Oleinik, [6], and extends results of Escauriaza-Seregin-Sverak, [5], which
have had applications to the regularity of solutions to the Navier-Stokes equa-
tions. This is joint work with Escauriaza, Ponce and Vega. The third theorem,[4],
also joint work with the same authors, deals with dispersive equations and can be
thought of as an extension to non-linear Schődinger equations of Hardy’s uncer-
tainty principle, [7].
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Singular integral of Iwasawa AN groups

Waldemar Hebisch

Let G be a connected, complex semisimple Lie group with Cartan decomposition
KAN . We can identify AN with the symmetric space G/K via mapping x 7→
x−1K. In this way we get right invariant Riemannian metric on AN . We use left
Haar measure on AN . Let Xi be right invariant vector fields on AN , such that
Xi(e) form an orthonormal basis of the tangent space to AN at e. Put

L = −
∑

X2
i

L is essentially self-adjoint on C∞
c (AN).
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Then Riesz transforms XiL
−1/2 are bounded on Lp, 1 < p ≤ 2 and of weak

type (1, 1).
The proof develops ideas which appeared first in [1]. There are two main ingre-

dients. First we show that on all amenable Lie groups we have “good” singular
integral theory (called Calderón–Zygmund property in [1]).

Second is an estimate on the gradient of heat kernel. Namely, define heat
kernel pt by the formula e−tLf = pt ∗ f (where e−tL is the semigroup of operators
generated by L). We have

‖Xipt‖L1 ≤ Ct−1/2

Note, that only the gradient estimate depend on the specific structure of our
groups. Since the singular integral part works on amenable groups, we can get
estimates for Riesz transforms on other groups, once we prove that gradient of
heat the heat kernel – it is likely the gradient estimate holds on all amenable
groups, however we can only prove it in a number of specific cases.

Proof of the gradient estimate uses simple relation between pt and heat kernel
on the symmetric space and explicit formulas available on the symmetric space.
The main difficulty here is that on symmetric space simple formulas use radial
symmetry, which is destroyed by passage to AN . For derivatives in one direction
(corresponding to sum of all positive roots) we get needed estimate computing
derivative of basic spherical function φ0 in two different ways: one using Harish-
Chandra integral formula, the second using asymptotic expansion of φ0. We extend
the estimate to other direction using asymptotic properties of geodetics.

References
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Optimal Sobolev regularity for Fourier integral operators on Rd

Malabika Pramanik

(joint work with Andreas Seeger)

We investigate the Lp-Sobolev regularity of a class of Fourier integral operators
on Rd, d ≥ 3, that arise from averaging and that have, at worst, one-sided fold
singularities. Using a deep Fourier transform estimate of Wolff [26] and Laba-Wolff
[11] associated to the light cone, we show that under appropriate “nonvainishing
curvature conditions” , an FIO of the above type maps Lp to Lp

(d−2)/p for large

p. This gain in regularity is optimal, but the range of p is not. We discuss several
applications of this result, in particular when the operator under consideration is
an X-ray transform associated to a rigid line complex or convolution with respect
to a measure along curves in Euclidean space or on the Heisengroup group.
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Boundedness problem for maximal operators associated to non-convex

hypersurfaces

Isroil A. Ikromov

One of the classical results of real analysis is E.M. Stein’s maximal theorem for
spherical means on Euclidean space IRn+1(n ≥ 2). The 2-dimensional case was
later dealt with by J. Bourgain [1]. These results became the starting point for
the study of various classes of maximal operators associated to subvariaties, such
as maximal operators defined by

Mg(x) = sup
t>0

∣∣∣∣
∫

S

g(x− ty)ψ(y)dσ(y)

∣∣∣∣ , (1)

where S is a smooth hypersurface, ψ is a fixed non-negative function in C∞
0 (S)

and dσ is the surface measure on S. For instance, A. Greenleaf [3] proved that
M is bounded on Lp(IRn+1), if n ≥ 2 and p > n+1

n , provided S has everywhere
non-vanishing principal curvature and is star-shaped with respect to the origin.
Moreover, he proved that if at every point of the surface there exist at least
k(k ≥ 2) non-vanishing principal curvatures then the maximal operator is bounded
for any p > k+1

k . The analogical result was obtained by C.D. Sogge [4] in a more
difficult case k = 1.

In contrast, the case where the Gaussian curvature vanishes at some points is
still widely open, and sharp results for this case are known only for particular
classes of surfaces. A result of general nature given by C.D. Sogge and E.M. Stein
in [5] shows that if the Gaussian curvature of S does not vanish of infinite order at
any point of S then M is bounded on Lp in a certain range p > p(S). However, an
estimate for the exponent p(S) in that paper is in general far from being optimal.

It is well-known that the Lp−estimates of the maximal operator (1) are strongly
related to the decay of the Fourier transform of measures carried on S, i.e. to
oscillatory integrals of the form

∫

S

ei(ξ,x)ψ(X)dσ, (2)

where ψ(X)dσ(X) is a compactly supported density on S.
But, the decay of the oscillatory integral (2) as |ξ| → ∞ can be rather low.

Another important idea, introduced in [5] and applied in several subsequent arti-
cles, is to ”damp” the oscillatory integral (2), by multiplying the amplitude a by
a suitable power of the Gaussian curvature on S, in order to obtain the ”optimal”
decay of order |ξ|−n/2 (as |ξ| → ∞).

We consider the problem in a case of analytic hypersurfaces. Let S ⊂ IRn+1 be
an analytic hypersurface. Denote by A(X) the matrix of a second fundamental
form defined on the surface S. It is well known that if S is an analytic hypersurface,
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then A(X) is a symmetric matrix-valued real analytic function, and also one can
define a symmetric matrix A(X)∧A(X), where ”∧ ” is an exterior product of the
matrices.

We consider two functions defined as follows:

Λ1(X) := tr(A(X)2), Λ2(X) = tr((A(x) ∧A(X))2),

where ”tr” is a trace of the matrix defined by convolution with the first funda-
mental form of the surface.

Note that if S is an analytic hypersurface then the both Λ1(X) and Λ2(X) are
analytic functions on the surface. The damping factors are defined by the following
formula:

Λ(X) := Λ1(X)
q1
2 Λ2(X)

q2
4 ,

where q1, q2 are fixed positive real numbers satisfying the conditions: q1 + q2 = 1,
q2 > 0.

Theorem 1. Let S be an analytic hypersurface in IRn+1 and ψ be a fixed
non-negative smooth function with compact support on S and M be a maximal

operator defined by relation (1). If Λ−β
1 ∈ L1

loc(S), where β is a fixed positive
real number, and also Λ2(X) 6≡ 0 then the maximal operator M is bounded on
Lp(IRn+1), whenever p > 2+ 3

2β . In other words, under the conditions the estimate

p(S) ≤ p(β) holds.
Following a standard approach (see e.g. [5]), Theorem 1 will be shown by

embedding M respectively linearizion of M into an analytic family of operators.
More precisely, for z ∈ C with Re(z) > −β define a measure dσz(X) =

Λ(X)zψ(X)dσ(X) on S as well as the corresponding maximal operator:

Mzf(x) = sup
t>0

∣∣∣∣
∫

S

f(x− ty)dσz(y)

∣∣∣∣ .

It is easy to see that for any z ∈ C and f ∈ C∞
0 (IRn+1) the inequality Mzf(x) ≤

MRe(z)|f(x)| holds. Since the ψ(x)dσ(x) is a positive Borel measure. It easily
follows from our assumption on S that if Re(z) ≡ q > −β and q2 is sufficiently
small positive then due to Hölder inequality Λz is a locally integrable function on
S. Thus, Mq(Mz) is bounded on L∞(IRn+1) for these values of z.

Once, we can show the L2−boundedness of Mq(Mz) for q > 3
2 due to the

following Statements and Sobolev’s embedding theorem [5].
Theorem 2. If S is an analytic hypersurface, (q1, q2, q) : q1 + q2 = 1, q2 > 0,

q > 3
2 are fixed real numbers, and ψ ∈ C∞

0 (IRn+1) then there exists an ε > 0 such
that the following inequality

∣∣∣∣
∫

S

ei(x,ξ)Λ(X)qψ(X)dσ(X)

∣∣∣∣ ≤ const
‖ψ‖L1

3(IR
n+1)

|ξ| 12+ε

holds.
From Theorem 2 as a simple consequences, we obtain
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Corollary 3. If S is an analytic hypersurface and (q1, q2, q) : q1 + q2 = 1,
q2 > 0, q > 3

2 are fixed real numbers, then the Fourier transform of the measure
dσα satisfies

|∇ ˆdσq(ξ)| ≤ C(1 + |ξ|)−( 1
2+ε),

for some ε > 0.
Then Theorem 1 follows from Stein’s interpolation theorem for an analytic

family of operators Mz.

Some sharp results.

Our sharp results are connected to the three-dimensional case. Let S be a
hypersurface in IR3 given as the graph of a smooth function c + f at the origin
with f(0) = 0 and ∇f(0) = 0. Denote by h(f) the height of the function by
Varchenko terminology [7]. We introduce the number

P (S, (0, 0, c)) = inf{p : ∃U(0, 0, c) ∀ψ ∈ C∞
0 (U(0, 0, c))M is bounded onLp},

where U(0, 0, c) is a neighborhood of the point U(0, 0, c).
Theorem 4. (I.A. Ikromov, M. Kempe, D. Müller.) Let n = 2 and f be a

smooth function with h ≥ 2 and c 6= 0 and S be a hypersurface given as the graph
of the function c+ f . Then P (S, (0, 0, c)) = h(f).

Let’s consider some applications of the theorem.
Let S ⊂ IR3 be a smooth hypersurface. We fix S0 ⊂ S a bounded peace of the

hypersurface and for 0 ≤ ψ ∈ C∞
0 (S0) we define a measure by dσ(x) := ψ(x)dS(x).

Consider the Fourier transform d̂σ(ξ). Let’s write ξ = λω, where λ ∈ IR+ and
ω ∈ S2 where S2 is the unite sphere centered at the origin. We fix ω ∈ S2 and
define so-called oscillation index by

β(ω) = inf{α : ∀ψ ∈ C∞
0 (S0) d̂σ(λω) = O(λα)(asλ→ +∞)}

By the analogy we define an oscillation index at a fixed point x0 ∈ S

β(x0) = inf{α : ∃Uα(x0) 6= ∅ ∀ψ ∈ C∞
0 (Uα(x0)) d̂σ(λnx0) = O(λα)(asλ→ +∞)},

where nx0 is the unite normal to S at x0

Theorem 5. (Ikromov I.A., M. Kempe, D. Müller.)Let S0 ⊂ S ⊂ IR3 be a fixed
piece of the smooth hypersurface S. If for any ω ∈ S2 the inequality β(ω) ≤ −1/2
holds then the associated maximal operator is Lp bounded for any p > 2.

Theorem 6. (Ikromov I.A., M. Kempe, D. Müller.)Let x0 ∈ S be a fixed point
of the smooth hypersurface in IR3 with property β(x0) ≤ −1/2 then p(S, x0) ≤ 2.
Moreover, if 0 /∈ Tx0S and β(x0) = −1/2 then p(S, x0) = 2.

The Theorems 5 and 6 show that the analogy of A. Greenleaf result [3] holds
in the critical case.
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Well-posedness theorems for the KP-I initial value problem on T × T

and R × T

Alexandru Ionescu

(joint work with C. E. Kenig)

I discussed some joint work with C. E. Kenig on local and global well-posedness
theorems for the KP-I initial value problem on T × T and R × T.

Let T = R/(2πZ). The subject of my talk was the Kadomstev-Petviashvili I
initial value problem

(1)

{
∂tu+ ∂3

xu− ∂−1
x ∂2

yu+ u∂xu = 0;

u(0) = φ,

on T×T and R×T. KP-I equations, as well as KP-II equations in which the sign
of the term ∂−1

x ∂2
yu in (1) is + instead of −, arise naturally in physical contexts as

models for the propagation of dispersive long waves, with weak transverse effects.
The KP-II initial value problems are much better understood from the point of
view of well-posedness, due mainly to the Xs

b method of J. Bourgain [1]. For
instance, the KP-II initial value problem is globally well-posed in L2, on both
R × R and T × T (J. Bourgain [1]).

On the other hand, it has been shown in [4] that KP-I initial value problems are
badly behaved with respect to Picard iterative methods in the standard Sobolev
spaces, since the flow map fails to be C2 at the origin in these spaces. Due to this
fact, the well-posedness theory of these equations is more limited. For example,
global well-posedness of the KP-I initial value problem (1) in the natural energy
space Z1(R × R) remains an open problem. It is known, however, that the KP-I
initial value problem on R×R is globally well-posed in the “second” energy space
Z2(R×R) (C. E. Kenig [3]). On T×T, the KP-I initial value problem is known to
be globally well-posed in the “third” energy space Z3(T × T) (J. Colliander [2]).

The energy spaces Zs, s = 0, 1, 2, . . ., are related to the (formal) conservation
laws of the KP-I equation. For g ∈ L2(T × T) or g ∈ L2(R × T) let ĝ denote its
Fourier transform. For s = 0, 1, 2, . . . we define

Zs(T × T) ={g : T × T → R : ĝ(0, n) = 0 for any n ∈ Z \ {0} and

||g||Zs
(3)

= ||ĝ(m,n)[1 + |m|s + |n/m|s]||L2(Z×Z) <∞},(2)
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and

Zs
(3)(R × T) ={g : R × T → R :

||g||Zs
(3)

= ||ĝ(ξ, n)[1 + |ξ|s + |n/ξ|s]||L2(R×Z) <∞}.(3)

Our main theorem concerns global well-posedness of the KP-I initial value prob-
lem in Z2(T × T) and Z2(R × T). In the theorem below assume S = T or S = R,
and H−1 denotes the standard Sobolev space.

Theorem 1. Assume that φ ∈ Z2(S × T). Then the initial value problem

(4)

{
∂tu+ ∂3

xu− ∂−1
x ∂2

yu+ u∂xu = 0 on S × T × R;

u(0) = φ,

admits a unique solution u ∈ C(R : Z2(S×T))∩C1(R : H−1(S×T)). In addition,
u ∈ L∞(R : Z2(S × T)), ∂xu ∈ L1

loc(R : L∞(S × T)), and the mapping φ → u is
continuous from Z2(S × T) to C([−T, T ] : Z2(S × T)) for any T ∈ [0,∞).

In addition, we prove that sufficiently high Sobolev regularity is globally pre-
served by the flow. We also prove local well-posedness theorems in certain spaces
larger than the energy space Z2.

As in [3], our proofs are based on controlling ||∂xu||L1
tL∞

x,y
locally in time, where

u is a solution of (4). The main difficulty is that the Strichartz estimates of
J.-C. Saut [5] for the free KP-I flow on R × R, which are the main tool in [3],
fail in periodic settings. We replace these Strichartz estimates with certain time-
frequency localized Strichartz estimates, which are still sufficient for our purpose.
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Hardy’s Uncertainty Principle

Michael Cowling

(joint work with M. Sundari)

This is an account of joint work with M. Sundari, from IIT Roorkee.
Hardy’s Uncertainty Principle states that, if f ∈ L1(Rn),

|f(x)| ≤ e−α|x|2 ∀x ∈ R
n

|f̂(ξ)| ≤ e−β|ξ|2 ∀ξ ∈ R
n

and αβ > 1/4 (here the Fourier transformation involves e±ix·ξ), then f = 0. If
αβ = 1/4, then f has to be a Gaussian. This and other related results are described
and often proved in the recent survey of this and other Uncertainty Principles by
G.B. Folland and A. Sitaram [1].

This result can be generalised in several ways: Rn may be replaced by other Lie
groups (in which case the Fourier transform estimate needs to be appropriately
interpreted), or the result may be phrased in terms of operators.

Suppose that K is a kernel operator on L2(Rn), that is, there exists a locally
integrable function k on Rn × Rn such that

Kf(x) =

∫

Rn

k(x, y)f(y) dy ∀f ∈ L2(Rn).

In particular we may consider the heat operator Pt; the Fourier transform version
is

(Ptf)ˆ(ξ) = e−t|ξ|2 f̂(ξ) ∀ξ ∈ R
n,

and the kernel version is

Ptf(x) =

∫

Rn

pt(x, y)f(y) dy,

where pt(x, y) = c(t)e−|x−y|2/4t; here c(t) depends on the dimension n and t.
One generalisation of Hardy’s Uncertainty Principle is the following.

Theorem 1. Suppose that K is a kernel operator on L2(Rn), and that

|k(x, y)| ≤ ps(x, y) ∀x, y ∈ R
n

|K| ≤ Pt

in the sense of operators, that is, ‖Kf‖2 ≤ ‖Ptf‖2 for all f in L2(Rn), and that
s < t. Then K = 0.

It is interesting to speculate whether this holds in more general contexts, such
as subriemannian manifolds. Such a result cannot hold on a compact manifold,
but when heat can escape to infinity “fast enough” then it might.

One strategy for dealing with this problem begins with work of A. Hulanicki [2],
who studied the algebra of operators generated by a sublaplacian on a Lie groupG.
Here we may consider the heat operator Pt and the associated convolution kernel
pt; we let Γp(G) be the closure in Lp(G) of the linear span of the various pt, for t
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in R
+. Then Γ1(G) is a Banach ∗-algebra, and from the abstract theory of these,

there is a Gelfand transform, and a Plancherel Theorem for Γ2(G). Essentially

the Gelfand transform maps Pt to the function p̂t : λ 7→ e−tλ2

on R+ (or a subset
thereof), and the Plancherel Theorem states that

‖f‖2 =
(∫ ∞

0

|f̂(λ)|2 dµ(λ)
)1/2

,

for some measure µ. It is possible to identify µ for stratified Lie groups: if G is a
stratified group of homogeneous dimension Q, then dµ(λ) = cλQ−1 dλ.

The following observation is very familiar to operator algebraists but not to
harmonic analysts.

Theorem 2. The orthogonal projector E from L2(G) to Γ2(G) extends to a map
from convolution operators on L2(G) to an appropriate completion of Γ1(G), and
this map is a conditional expectation.

One way of tackling Hardy’s Uncertainty Principle on Lie groups is to observe
that (in many cases), if F is a convolution operator with kernel f , and

|f(x)| ≤ ps(x)

|F| ≤ Pt

where s < t, then translates of f satisfy a similar equality, but where ps is replaced
by ps′ where s < s′ < t. Further, Ef(e) = f(e). Thus if one can establish that
an Uncertainty Principle holds in Γ1(G), and that E preserves the estimates for f
and F , then one can establish an Uncertainty Principle for G.

We can show the following.

Theorem 3. Suppose that the Lie group G has a normal subgroup N such that
G/N is isomorphic to R. Then Hardy’s Uncertainty Principle holds in Γ1(G).

Further, there are many cases in which we can establish that the conditional
expectation E behaves nicely relative to kernel estimates and operator estimates
(these latter are never a problem). So we are able to extend the range of groups
for which Hardy’s Uncertainty Principle is known to hold.

Interestingly enough, we have trouble with nilpotent groups, such as the Heisen-
berg group; however work of S. Thangavelu [3] shows that Hardy’s Theorem holds
in this context too.
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A phase space transform adapted to the wave equation

Daniel Tataru

(joint work with Dan Geba)

A natural way to study pseudodifferential and Fourier integral operators is by
means of phase space transforms. This is easiest to understand within the frame-
work of the S0

00 calculus, where the localization occurs on the unit scale both
in position and in the frequency. This corresponds precisely to the Bargmann
transform,

Tu(x, ξ) = cn

∫

Rn

eiξ(x−y)e−
(x−y)2

2 u(y)dy

The Bargmann transform is an isometry from L2(Rn) into L2(Cn) so an inverse
for it is provided by the adjoint operator. This inverse is not uniquely determined
since T is not onto. Precisely, the range of T consists of those functions satisfying
a Cauchy-Riemann type equation, i∂ξv = (∂x − iξ)v. The connection with the S0

00

type calculus is provided by the following simple result:

Theorem 1. Let A : S(Rn) → S′(Rn) be a linear operator. Then A ∈ OPS0
00 if

and only if the kernel K of TAT ∗ satisfies

|K(x1, ξ1, x2, ξ2)| ≤ cN(1 + |x1 − x2| + |ξ1 − ξ2|)−N

This provides an easy way to study the calculus and the L2 boundedness of
OPS0

00 pseudodifferential operators. One can also talk about S0
00 type Fourier

integral operators, etc. For more details and further development of these ideas
we refer the reader to [7].

On the other hand, in the study of the wave equation with rough coefficients
one is naturally led to consider wave packets, see Smith [6]. These are exact or
approximate solutions to the wave equation which are localized in position and
frequency on dual scales.

In the initial data space, the wave packets correspond to what is called the
second dyadic decomposition. Precisely, we begin with a dyadic decomposition in
frequency; then, each dyadic annulus of size pλ is subdivided into sectors of angle
λ−

1
2 . Thus the Fourier space is partitioned into parallelepipeds which at frequency

λ have size λ × (λ
1
2 )n−1. Then for each such parallelepiped one considers an

equipartition of the physical space into rectangles on the dual scale λ−1×(λ−
1
2 )n−1.

One can decompose any initial data set for the wave equation into a discrete
almost orthogonal superposition of localized initial data on the above scale. Then
the wave packets are essentially obtained by transporting those initial data along
the corresponding Hamilton flow.

The aim of this talk is to introduce a phase space transform adapted to the
scales described above,

Tu(x, ξ) =

∫

Rn

u(y)φx,ξ(y)dy
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where for each (x, ξ) the coherent state φx,ξ has the phase space localization de-
scribed above. Via an inversion formula this leads to a continuous (even smooth)
counterpart of the discrete second dyadic decomposition for the initial data. In
different contexts similar ideas were pursued earlier in Cordoba-Fefferman [2], Fol-
land [3].

Then we consider the associated classes of symbols, and characterize the corre-
sponding pseudodifferential operators using our phase space transform as in The-
orem 1 above. Of course, in the kernel bounds the Euclidean distance in the phase
space is replaced by the distance with respect to the Riemannian metric associated
to the new localization scales. This analysis is not entirely straightforward as it
shares some of the features of the S1,1 calculus, see Hörmander [4].

Starting with a suitable class of canonical transformations we introduce the
Fourier integral operators adapted to this geometry. For these we discuss the
calculus and the L2 boundedness properties.

Finally we consider evolution equations governed by first order operators with
real almost homogeneous symbols,

(Dt +A(t, x,D))u = 0, u(0) = u0

We show that the generated evolution operators are in effect Fourier integral oper-
ators associated to the canonical transformations generated by the Hamilton flow.
In the case of the Bargmann transform and the S00 calculus this analysis was
carried out in [5]. For related work we refer the reader to Bony [1].

As an application we consider the question of constructing parametrices for half-
wave evolutions with rough coefficients. Following the spirit of the paradifferential
calculus we regularize the coefficients on a frequency dependent scale to obtain a
modified evolution which fits within our setup. On the other hand we show that
the original and the modified evolutions are close in the L2 sense.
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Wave packets and boundary value problems

Hart F. Smith

(joint work with Chris D. Sogge)

This abstract reports on the authors’ work establishing sharp bounds on the Lp

norm of eigenfunctions (and more generally spectral clusters) on two-dimensional
manifolds with boundary. It is part of a more general program of applying the
Cordoba-Fefferman wave packet transform to the study of Lp bounds on solutions
to the wave equation on manifolds with boundary.

The Cordoba-Fefferman transform at frequency scale λ is defined by

(Tλf)(x, ξ) = λ
n
4

∫
e−i〈ξ,y−x〉g(λ

1
2 (y − x)) f(y) dy

=

∫
gx,ξ(y) f(y) dy

where we fix a Schwartz functions g with ‖g‖L2 = (2π)−
n
2 . A direct calculation

shows that T ∗
λTλf = f , or that

f(y) =

∫
(Tλf)(x, ξ) gx,ξ(y) dx dξ

In or work we take support(ĝ) ⊆ {|η| ≤ 1}, so that if f̂ is localized in ξ then so is
Tλf .

This transform has seen applications in the study of dispersive estimates for
wave equations, for example [4] and more recently [2], where it is a useful tool since
it essentially conjugates a wave operator to differentiation along the Hamiltonian
flow. Precisely, if P is a real, first order pseudodifferential operator, then

Tλ(Pf) = DP Tλf + T̃λf

where DP is the Hamiltonian vector field of P , and T̃λ is a modified Cordoba-
Fefferman transform, in that the function g depends in a uniform way on (x, ξ).
(We assume here that ξ is localized to |ξ| ≈ λ.)

Suppose now that we are given A(x,Dx) a self-adjoint second order differential
operator on a manifold M with boundary, and consider the wave equation

D2
t u = A(x,Dx)u

with Dirichlet or Neumann conditions at ∂M .
We work in geodesic normal coordinates such that M = {xn ≥ 0}, in which

case

A(x,Dx) = D2
n +

n−1∑

i,j=1

aij(x′, xn)DiDj

We then extend aij(x′, xn) evenly across xn = 0, by considering aij(x′, |xn| ),
and extend u oddly (Dirichlet) or evenly (Neumann). The extended function u
satisfies the extended wave equation, so that we have eliminated the boundary, but
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at the expense of dealing with a wave equation with coefficients with a Lipschitz
singularity. In the model case of the disc a11 = (1 − |x2| )−1 ≈ 1 + |x2|.

After factoring the wave equation as a product of half-wave equations, we are
led to considering a first-order hyperbolic equation Dt −P , where the elliptic, real
symbol p(x, ξ) is even in xn and smooth on xn ≥ 0.

If we conjugate P by Tλ, then error terms arise that are large in a small neigh-
borhood of the set xn = 0. The resulting errors, however, are integrable along
geodesics transverse to this set. The result is that, if one microlocalizes to the set
where |ξn| ≈ θλ (which corresponds to bicharacteristics that meet ∂M at angle
between θ and 2θ) then one has good control of the errors on a strip of length θ.
Consequently, one can establish Lp bounds on such strips for solutions to the wave
equation, such as Strichartz estimates.

Our interest is in establishing Lp bounds on spectral clusters on compactM . We
restrict attention to the case of dimension n = 2. Suppose given an orthonormal
basis of eigenfunctions

A(x,D)φj = −λ2
jφj .

Then a spectral cluster of frequency λ is of the form f =
∑

λj∈[λ,λ+1]

cjφj .

The case n = 2 of Sogge [3] says that, for compact M without boundary, then

‖f‖Lp ≤ λ2( 1
2− 1

p )− 1
2 ‖f‖L2 , p ≥ 6 .

On the other hand, Grieser [1] observed in his thesis that for the disk this esti-
mate fails for p < 8; the counter-examples are Bessel function eigenfunctions that
concentrate near the boundary |x| = 1.

Our recent work shows that the examples of Grieser are worst case.

Theorem. Let M be a two-dimensional compact manifold with boundary, and
A(x,Dx) a second-order elliptic operator which is self-adjoint in some smooth
volume form. Then for spectral clusters we have

‖f‖Lp ≤ λ2( 1
2− 1

p )− 1
2 ‖f‖L2 , p ≥ 8 .

We establish the estimate on f by establishing Lp
xL

2
t bounds on the solution

u to the wave equation with initial data f . If f is a spectral cluster then u is
essentially periodic, and one gets similar bounds on u in Lp

xL
2
t (M × [0, 1]).

It turns out that to establish this estimate it is sufficient to prove bounds
uniformly on strips of length θ in x1 for the part uθ of u microlocalized to ξ2 ≈ θλ .
For p > 6, the localization to small angles leads to a gain over the estimates of
Sogge,

‖uθ‖Lp
xL2

t
≤ C θ

1
2− 3

pλ2( 1
2− 1

p )− 1
2 ‖f‖L2 .

In our case the norm on the left must be taken over a set of the form |x1 − c| ≤ θ,
and adding this estimate over the ≈ θ−1 such strips leads to bounds on M for the
piece of u microlocalized to angle θ from tangent:

‖uθ‖Lp
xL2

t (M×[0,1]) ≤ C θ
1
2− 4

pλ2( 1
2− 1

p )− 1
2 ‖f‖L2 .
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If p > 8, the series is summable over dyadic values of θ (in the proof one need

consider only θ ≥ λ−
1
3 ), and the desired bound follows. For p = 8 one needs

appropriate orthogonality of the terms uθ, which involves bounding the leakage of
energy from one angle to another. Again, however, it suffices to bound this leakage
on strips of length θ in x1, and consequently the Cordoba-Fefferman transform can
be used to yield the desired bound.
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Littlewood-Paley theory for matrix weights

Svetlana Roudenko

(joint work with M. Frazier, F. Nazarov)

We study weighted norm inequalities with matrix valued weights on vector-valued
generalized function spaces. Namely, if M is the cone of non-negative-definite
m×m complex-valued matrices, then the matrix weight W is a locally integrable
map W : Rn → M, and the main question we are interested in is under what
condition on W and for which indices α, p, q, the following norm equivalence holds:

(1) ‖~f ‖Ḟ αq
p (W ) ≈ ‖~sQ(f)‖ḟαq

p (W ).

Here, ~f = (f1, ..., fm)T : R
n → C

m, {~sQ(f)}Q - wavelet-type coefficients of ~f

and the space Ḟαq
p (W ) is matrix-weighted (homogeneous1) Triebel-Lizorkin space

together with its discrete analog (coefficient or sequence space) ḟαq
p (W ) (see defi-

nitions below).
The original motivation comes from work of Nazarov, Treil and Volberg in

[5], [4] and [6], where authors seek the boundedness of the Hilbert transform on
Lp(W ) and to obtain it, split the problem into two steps: (i) obtaining a ‘good’
coefficient space (with Haar coefficients) for Lp(W ) (the sequence Triebel-Lizorkin
space f02

p ) and (ii) showing that the Hilbert transform has a ‘good’ representation
(almost diagonal) in that coefficient space. The condition on the matrix weight
they require for (i) is W ∈ Ap, which is

(2) ‖W‖Ap = sup
Q

(
1

|Q|

∫

Q

(
1

|Q|

∫

Q

‖W 1/p(t)W−1/p(y)‖p dt

)p′/p

dy

)p/p′

<∞,

1all results hold similarly for the inhomogeneous space F αq
p , for brevity of definitions we use

homogeneous spaces in this note
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where the supremum is over all cubes Q ⊆ R
n, p′ = p/(p − 1) is the conjugate

index, and the norm inside the integral is the matrix operator norm. (This is
an equivalent formulation of the matrix Ap condition, see [3]; here, it is easy
to see that for a scalar weight (2) reduces to the well-known Muckenhoupt Ap

condition.) Since Lp ≈ F 02
p (Littlewood-Paley square function representation of

an Lp function), and Fαq
p ≈ fαq

p , see [1], step (i) raises the question whether the
previous equivalence holds with matrix weights, i.e. whether (1) holds.

Another motivation comes from the fact that the scale of Tribel-Lizorkin spaces
includes not only Lebesque spaces (Lp ≈ F 02

p ) but also Sobolev (W k,p ≈ F k2
p ),

Hardy (Hp ≈ F 02
p , p < 1), and several other important spaces. Therefore, by ob-

taining (1), one can get the matrix-weighted characterization of sequence spaces of
Sobolev, Hardy and other spaces (and as a consequence, almost diagonal operators
will be bounded on these matrix-weighted spaces).

Now we turn to definitions. The Triebel - Lizorkin space Ḟαq
p (W ) is the col-

lection of all vector-valued distributions ~f = (f1, ..., fm)T with fi ∈ S′/P(Rn)2,
1 ≤ i ≤ m, such that

‖~f ‖Ḟ αq
p (W ) =

∥∥∥∥∥∥

(
∑

ν∈Z

(
2να‖W 1/p(ϕν ∗ ~f ) ‖

)q
)1/q

∥∥∥∥∥∥
Lp(Rn)

<∞,

where ϕν(x) = 2νnϕ(2νx) for ν ∈ Z and ϕ ∈ S(Rn) with supp ϕ̂ ⊆ { 1
2 ≤ |ξ| ≤ 2}

and |ϕ̂(ξ)| ≥ c > 0 for 3
5 ≤ |ξ| ≤ 5

3 .

The discrete Triebel-Lizorkin space ḟαq
p (W ) is the collection of all sequences

~s = {~sQ}Q, where each ~sQ = ((sQ)1, (sQ)2, . . . , (sQ)m)T , such that

‖~s ‖ḟαq
p (W ) =

∥∥∥∥∥∥∥




∑

Q

(
|Q|−α/n−1/2‖W 1/p~sQ ‖χQ

)q




1/q
∥∥∥∥∥∥∥

Lp(Rn)

<∞.

(In the case when q = ∞, the ℓq (quasi-)norm is replaced with the supremum over
ν ∈ Z.)

Before we state the main result, we need to define the reverse Hölder property
for matrix weights and extend the definition of the Ap class for p < 1.

A matrix weight W satisfies the reverse Hölder condition of order p, W ∈
(RH)p, if there exist c, δ > 0 such that

(3)

(
1

|Q|

∫

Q

‖W 1/p(t)~x ‖p(1+δ) dt

)1/(1+δ)

≤ c
1

|Q|

∫

Q

‖W 1/p(t)~x ‖p dt

for all ~x ∈ Cm and all cubes Q. In other words, W ∈ (RH)p if the scalar weights

w~x(t) = ‖W 1/p(t)~x ‖p satisfy a uniform reverse Hölder condition.

2modulo polynomials
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Let 0 < p ≤ 1. Then W ∈ Ap, if

(4) ‖W‖Ap = sup
Q

ess sup
y∈Q

1

|Q|

∫

Q

∥∥∥W 1/p(t)W−1/p(y)
∥∥∥

p

dt <∞,

where the supremum is over all cubes Q ⊆ Rn. Observe that in the scalar case (4)
reduces to the A1 condition (independent of p).

Theorem 1. Suppose 0 < p < ∞, 0 < q ≤ ∞, α ∈ R. Then the equivalence (1)
holds if W ∈ (RH)p for 1 < p <∞ and if W ∈ Ap for p ≤ 1.

Now we make some comments about the proof. The scalar result of this theorem
was obtained in [1] under the doubling condition on the weight (i.e., w(2Q) ≤
cw(Q), where Q is dyadic and w(Q) =

∫
Q
w(t) dt). It is not surprising that

in the matrix case stronger conditions than doubling are required (i.e. (RH)p

and even more strong Ap). For example, in the case of matrix-weighted Besov
spaces we are able to construct a counterexample that for small enough p3 a norm
equivalence similar to (1) but with matrix-weighted Besov spaces fails for non-
Ap doubling matrix weight (see [2]). (The matrix weight is doubling of order p,

if w~x(2Q) ≤ cw~x(Q) uniformly on ~x, where w~x(t) = ‖W 1/p(t) ~x‖p.) The proof
is different from the scalar case, since many scalar techniques simply fail in the
matrix case (e.g., see introduction in [6]). The crucial idea in the proof comes from
discretizing the matrix weight W into the reducing operators AQ and then proving
a similar to (1) equivalence with reducing operators instead of a matrix weight:

(5) ‖~f ‖Ḟ αq
p (AQ) ≈ ‖~sQ(f)‖ḟαq

p (AQ).

In fact, this equivalence is practically the scalar case and holds just under the
doubling condition on matrix weight W . (For any finite dimensional matrix
W (t), there exists a sequence {AQ} of reducing operators such that ‖AQ~x‖ ≈(

1
|Q|
∫

Q
‖W 1/p(t)~x ‖ dt

)1/p

with equivalence constants independent of ~x and Q,

see [6] for p > 1 and [2] for 0 < p ≤ 1.) For the rest of the proof we establish the
relation between the matrix-weighted spaces and spaces with reducing operators.
This part also answers the question of Volberg in [6] where he asks for a conditions

on W under which the equivalence ḟ02
p (W ) ≈ ḟ02

p (AQ) holds. The following chain
of equivalences holds:

Ḟαq
p (W ) ≈ Ḟαq

p (AQ) ≈ ḟαq
p (AQ) ≈ ḟαq

p (W ),

where the first equivalence holds if W ∈ (RH)p for 1 < p < ∞ and W ∈ Ap for
0 < p ≤ 1, the second if W is a doubling matrix weight (of order p), and the third
holds for any W if p = q, for W ∈ (RH)p if 1 < p < ∞ and p 6= q, and W ∈ Ap

for 0 < p ≤ 1 and p 6= q.

3less than the doubling exponent of the matrix weight
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Two problems related to polynomial polyhedra

Alexander Nagel

(joint work with Malabika Pramanik)

We study two kinds of problems whose solutions seem to rely on an understand-
ing of the geometric properties of sets defined by real or complex polynomials. We
establish the Lp-boundedness of maximal averages over certain families of mono-
mial polyhedra. We also obtain estimates for the Bergman kernel on the diagonal
in certain model domains, including the so-called cross of iron domain.

1. Maximal Averages

Let On =
{
x = (x1, . . . , xn) ∈ Rn

∣∣∣ xj > 0, 1 ≤ j ≤ n
}

denote the positive

octant in Rn. If p = (p1, . . . , pn) ∈ Rn, the monomial Fp : On → (0,∞) is defined
by Fp(x) = xp1

1 · · ·xpn
n . We study maximal averages over a family of polyhedra

generated by a finite number of such monomials.
Thus let R = {q1, . . . ,qd} ⊂ Rn, let δ̄ = (δ1, . . . , δd) ∈ Rd

+, and put

BR(x; δ̄) = BR(x; δ1, . . . , δd) =
{
y ∈ On

∣∣∣Fqj
(y) − Fqj

(x) < δj , 1 ≤ j ≤ d
}
.

For any e = (e1, . . . , en) ∈ Rn and any measurable set E ⊂ On, put

me(E) =

∫

E

ye1
1 · · · yen

n

dy1 · · · dyn

y1 · · · yn
.

Note that if 1̄ = (1, . . . , 1), then m1̄(E) = |E|, the Lebesgue measure of E. If
the vectors {q1, . . . ,qd} do not lie in any closed half-space1 of Rn, then the set
B(x; δ̄) is a relatively compact subset of On, and so me(BR(x; δ̄) is finite. For
f ∈ L1

loc(On), put

MR,e[f ](x) = sup
δ̄∈Rn

+

1

me

(
BR(x; δ̄)

)
∫

BR(x;δ̄)

|f(y)| ye1
1 · · · yen

n

dy1 · · · dyn

y1 · · · yn
.

1This means that for all 0 6= η ∈ Rn there exists j so that the inner product 〈η, qj〉 < 0.
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Theorem 1: Assume that the vectors R = {q1, . . . , qd} ⊂ R
n do not lie in any

closed half-space of Rn. Also assume that the vector e does not belong to the linear
span of any subset of (n− 1) of the vectors {q1, . . . , qd} ⊂ Rn. Then the maximal
operator MR,e is a bounded operator on Lp(On) for 1 < p ≤ ∞.

Recall that the strong maximal function on Rn is defined by

Mst[f ](x) = sup
x∈Q

1

|Q|

∫

Q

|f(y)| dy,

where the supremum is take over the set of all rectangles Q with sides parallel to
the axes which contain x. Jessen, Marcinkiewics, and Zygmund [2] showed that
Mst is bounded on Lp(Rn) for 1 < p ≤ ∞. Such rectangles are clearly special
cases of monomial polyhedra, so in general, if e = 1̄, the maximal operator MR,e

dominates the strong maximal function.
The proof of Theorem 1 depends showing that there is a constant ǫ > 0 so that

if B(x; δ̄) is a monomial polyhedron as defined above, then under the hypotheses
of the theorem, there is an n-tuple {qi1 , . . . ,qin

} ⊂ R and constants 0 < αk < βk

such that

BR(x; δ) ⊂
{
y ∈ On

∣∣ 0 < αk < Fqik
(y) < βk, 1 ≤ k ≤ n

}

and

me

(
BR(x; δ)

)
≥ ǫme

({
y ∈ On

∣∣ 0 < αk < Fqik
(y) < βk, 1 ≤ k ≤ n

})
.

With this geometric information, one can dominate MR,e by a sum of a finite
number of strong maximal functions, and the Lp-estimates of the theorem then
follow from [2].

2. Estimates for the Bergman kernel

If Ω ⊂ Cn, the Bergman projection is the orthogonal projection PΩ : L2(Ω) →
A2(Ω) = L2(Ω) ∩ O(Ω) from L2(Ω) onto the closed subspace of square integrable
holomorphic functions. This operator is given by integration against the Bergman
kernel BΩ : Ω × Ω → C:

PΩ[f ](z) =

∫

Ω

f(w)BΩ(z, w) dw.

Many of the elementary properties of the Bergman kernel can be found in [3], and
there is considerable interest in obtaining estimates for |B(z, w)|. In particular,
the value of the Bergman kernel on the diagonal of Ω×Ω is given by the solution
of an extremal problem. Thus if z ∈ Ω, then

BΩ(z, z) = sup
{
|f(z)|2

∣∣∣ f ∈ A2(Ω) and ||f ||A2(Ω) ≤ 1
}
.

For model domains of the form

Ω =
{
z ∈ C

n+1
∣∣∣ℜe[zn+1] >

d∑

j=1

|Pj(z1, . . . , zn)|2
}



1702 Oberwolfach Report 30/2005

where {P1, . . . , Pd} are holomorphic monomials, one wants estimates for |BΩ(zδ, zδ)|
where zδ = (a1, . . . , an, δ +

∑d
j=1 |Pj(a)|2). The objective is to obtain sharp esti-

mates which are uniform in the base point a = (a1, . . . , an) ∈ Cn and in δ, which
is the distance to the boundary.

To understand the possibile difficulties that arise in finding uniform estimates,
consider the special case of the cross of iron domain Ω† =

{
z ∈ C3

∣∣ℜe[z3] > Q(z)
}
,

where Q(z) = |z1|6+|z2|6+|z1z2|2. Herbort [1] showed that for points zδ = (0, 0, δ)
directly above the origin one has the estimate

BΩ†

(
(0, 0, δ); (0, 0, δ)

)
≈ 1

δ3 log
(
δ−1
) .

On the other hand, if (a1, a2) 6= (0, 0), the boundary point (a1, a2, Q(a)) is strictly
pseudoconvex, and so for small δ it is known that

BΩ†

(
(a1, a2, δ +Q(a)); (a1, a2, δ +Q(a))

)
≈ 1

δ4
.

The problem is to reconcile these two estimates, since the point (a1, a2) can be
arbitrarily close to the origin (0, 0).

Some results in this direction have been obtained by Tiao [5] and by McNeal
[4]. We obtain the following uniform estimates.

Theorem 2: Let aδ =
(
a1, a2, δ +Q(a)

)
. Then

BΩ†(aδ, aδ) ≈






(|a1|2+|a2|2)3
δ4 if δ

1
3 . |a1|2 + |a2|2

1
δ3

(
|a1|2+|a2|2

δ
1
3

+

[
log+

(
δ1/3

|a1a2|

)−1
])

if

{
|a1|2 + |a2|2 . δ

1
3

δ
1
2 . |a1a2|

1
δ3

(
|a1|2+|a2|2

δ1/3 +
[
log+

(
1
δ

)−1
])

if

{
|a1|2 + |a2|2 . δ

1
3

|a1a2| . δ
1
2

The proof of Theorem 2 uses a scaling argument and an analysis of the Bergman
kernel evaluated at the point (1, 1) of the monomial polyhedron

Ω(δ) =
{

(w1, w2) ∈ C
2
∣∣∣ |w3

1 − 1| < δ1, |w3
2 − 1| < δ2, |w1w2 − 1| < δ3

}
.

For some values of the parameters {δ1, δ2, δ3}, Ω(δ) can be approximated by a poly-
disk, but for other values, in appropriate coordinates the domain Ω(δ) is essentially
the product of a disk with an annulus, and this accounts for some occurrences of
the logarithm term.
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Energy functionals and flows in Kähler geometry

D. H. Phong

(joint work with Jacob Sturm)

1 Main results

In this lecture1, we focus on the problem of the convergence of the Kähler-Ricci
flow. LetX be a compact complex manifold of dimension n with complex structure

J and Kähler form ω0 =
√
−1
2

∑n
j,k=1 g

0
k̄j
dzj ∧ dz̄k. The Kähler-Ricci flow is the

non-linear parabolic flow for the Kähler form ω =
√
−1
2

∑n
j,k=1 gk̄jdz

j ∧ dz̄k given
by

ġk̄j = −(Rk̄j − µgk̄j), gk̄j(0) = g0
k̄j .(1)

Here V =
∫

X
ωn and µ = 1

V n

∫
X
Rωn, where Rk̄j = −∂j∂k̄ logωn, R = gjk̄Rk̄j

are respectively the Ricci and the scalar curvature of the metric gk̄j . The initial
Kähler form ω0 is assumed to satisfy the cohomological condition µω0 ∈ c1(X).
Since Rk̄j is always in c1(X), it is readily seen that the Kähler-Ricci flow preserves
the Kähler class of the metric. Thus

gk̄j = g0
k̄j + ∂j∂k̄φ, Rk̄j = µgk̄j + ∂j∂k̄h,(2)

where φ = φ(t), h = h(t) are scalar functions. With φ suitably normalized, the
Kähler-Ricci flow can then be rewritten as the following parabolic Monge-Ampère
equation

φ̇ = log
det(g0

k̄j
+ ∂j∂k̄φ)

det g0
k̄j

+ µφ− h(0).(3)

The maximum principle implies that sup0≤t≤T |φ| ≤ CT , so general estimates for
complex Monge-Ampère equations [12] imply that the Kähler-Ricci flow exists for
all time [1]. In this aspect, it is better behaved than the most general Ricci flow of

1Lecture at the Real Analysis Workshop at Oberwolfach, July 4-9, 2005. Research supported
in part by National Science Foundation grants DMS-02-45371 and DMS-01-00410. Authors’
addresses: Department of Mathematics, Columbia University and Department of Mathematics,
Rutgers University.
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R. Hamilton. The main question about the Kähler-Ricci flow concerns the long-
time behavior of the flow, and in particular when it converges. The cases µ < 0
and µ = 0 have been completely resolved in [1], so henceforth we assume that
µ > 0.

The stationary points of the Kähler-Ricci flow are Kähler-Einstein metrics,
Rk̄j = µgk̄j , and the flow is expected to converge if and only if X admits a Kähler-
Einstein metric. According to a well-known conjecture of Yau [13], the existence
of Kähler-Einstein metrics should be equivalent to the stability of X in the sense
of geometric invariant theory. It is a major open problem in Kähler geometry to
relate such notions of stability to the convergence of the Kähler-Ricci flow. In fact,
when µ is positive, the Kähler-Ricci flow has been shown to converge only when
X = CP1 [7, 4], and when the metric g0

k̄j
has positive biholomorphic sectional

curvature [5, 2]. This last assumption is extremely strong, since it implies that
X = CPn. In this work, we establish the following theorem. Let (A) and (B) be
the following conditions.

(A) The Mabuchi energy functional νω0(φ) is bounded below;
(B) There is no complex structure J ′ in the closure of the diffeomorphism group

orbit of J which admits more independent holomorphic vector fields than J .

Theorem 1 Assume that the Riemann curvature tensor is bounded along the
flow. Then
• If (A) holds, then limt→∞ ||Rk̄j −µgk̄j ||(s) = 0, where || · ||(s) denotes the Sobolev
norm of order s with respect to the metric gk̄j(t);
• If both (A) and (B) hold, and if the diameter of X remains uniformly bounded
along the flow, then the flow converges exponentially fast in C∞ to a Kähler-
Einstein metric.

The condition (A) is clearly a type of stability condition, since the notion of
K-stability is defined by the asymptotic behavior of the Mabuchi functional along
certain degenerations of X [11, 6]. The condition (B) is a different type of sta-
bility condition, which is certainly necessary if the moduli of admissible complex
structures for X is to be Hausdorff. It makes here its first appearance in relation
to the convergence of the Kähler-Ricci flow.

In complex dimension 2, the assumption of uniformly bounded curvature can
be relaxed:

Theorem 2 Assume that dimX = 2, that (A) and (B) are satisfied. Assume
that the scalar curvature R and the diameter of X remain bounded along the flow.
Assume further that the condition (C) below holds:

(C) The initial metric g0
k̄j

has positive Ricci curvature and its traceless curvature

operator is 2-nonnegative.
Then the flow converges exponentially fast in C∞ to a Kähler-Einstein metric.
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The condition (C) was introduced in [9] where it was shown to be preserved by
the Kähler-Ricci flow in dimension 2. The 2-nonnegativity of the traceless curva-
ture operator is the Kähler analogue of a condition introduced in the Riemannian
setting by H. Chen [3]. The uniform boundedness of the scalar curvature and of
the diameter have been established by Perelman in as yet unpublished work. Un-
der no stability conditions, the Kähler-Ricci flow can exhibit solitonic behavior.
For this, see N. Sesum [10] and references therein.

2 Key estimates and stability

The proof of Theorems 1 and 2 can be found in [9]. Here we stress only two
estimates where stability plays a major role. Let h be the function defined in (2),
and set Y (t) = ||∇h||2(0). Then the first key estimate is

Ẏ ≤ −2λtY + 2λtFut(πt(∇h)) −
∫

X

|∇h|2(R− µn)ωn

−
∫

X

∇jh∇k̄h(Rk̄j − µgk̄j)ω
n,

(4)

where λt is the lowest strictly positive eigenvalue of the Laplacian ∇k̄∇k̄ on
T 1,0(X), πt is the orthogonal projection with respect to gk̄j(t) on holomor-

phic vector fields, and Fut(V ) =
∫

X(Wh)ωn is the Futaki invariant defined on

W ∈ H0(X,T 1,0). This estimate shows that crucial to the exponential decay of
Y (t) is a stricly positive lower bound for λt along the Kähler-Ricci flow. This is
provided in turn by the following estimate. Assume that J satisfies condition (B).
Fix V > 0, D > 0, δ > 0, Ck. The second key estimate asserts that there exists
C > 0 so that

||∂̄W ||2 ≥ C||W ||2, W ⊥ H0(X,T 1,0),(5)

for all Kähler metrics with volume ≤ V , diameter ≤ D, injectivity radius ≥ δ,
and sup|α|≤k|DαRiem| ≤ Ck. This estimate follows in turn from a Kähler version
of the Cheeger-Gromov-Hamilton compactness theorem for C∞ bounded geome-
tries (see Theorem 4 in [9]). The above bounds insure the exponential decay of
Y (t), and hence, the equivalence of all metrics gk̄j(t) for t large enough. This
equivalence is crucial to deriving the convergence of gk̄j(t) from the convergence
of ||Rk̄j − µgk̄j(t)||(s).
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Endpoint estimates for some degenerate Radon transforms in the

plane

Jong-Guk Bak

The purpose of this talk is to give a brief survey on the problem of endpoint Lp−Lq

estimates for the Radon transform in the plane associated to some degenerate
phase functions.

Phong and Stein [9] studied the Lp − Lq mapping properties of the Radon
transform defined by

(Rf)(x, t) =

∫ ∞

−∞
f(y, t+ S(x, y))ψ(x, t, y)dy

where S(x, y) =
∑n−1

k=1 akx
kyn−k, n ≥ 2, and ψ is a smooth cutoff function sup-

ported near the origin in R3.
Assume a1 6= 0 and an−1 6= 0. Let ∆n be the trapezoid (a triangle when n = 2)

in the plane with vertices O = (0, 0), O′ = (1, 1), A = (2/(n + 1), 1/(n + 1),
A′ = (n/(n+ 1), (n − 1)/(n + 1)). A homogeneity argument shows that for R to
be bounded from Lp(R2) to Lq(R2), it is necessary that (1/p, 1/q) lies in ∆n. In
the nondegenerate case, i.e. when n = 2, it was known that R is of strong type
(p, q) if and only if (1/p, 1/q) is in ∆2. Also, in the translation-invariant case, i.e.
when S(x, y) = (x − y)n, it was known that R is of strong type (p, q) if and only
if (1/p, 1/q) is in ∆n (this result was implicit in [5]).

When n ≥ 3, Phong and Stein [9] proved that R is of strong type (p, q) if
(1/p, 1/q) is on the open segment (A,A′). On the other hand Seeger [10] proved
that R is of strong type (p, q) if (1/p, 1/q) is on the open segment (O,A). Since the
estimate is trivial when p = q, by duality and interpolation it follows that R is of
strong type (p, q) if (1/p, 1/q) is in ∆n \{A,A′}. Thus the only remaining question
is the boundedness of R at the point A for n ≥ 3. All of these positive results
were obtained based on an approach involving certain oscillatory integral estimates
(and analytic interpolation), which also yield optimal Sobolev space estimates for
R.
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In [1] the remaining question at A was answered in the affirmative. Namely, it
was proved that R is of strong type (p, q) at the critical point (1/p, 1/q) = A =
(2/(n+1), 1/(n+1). The proof was an adaptation of a multilinear proof by Oberlin
[8] of the optimal L3/2−L3 estimate for the convolution operator associated to the
circle, namely the one whose kernel is the arc length measure on the unit circle in
the plane. The proof is reduced to certain multilinear estimate for characteristic
functions and hinges on the so-called “multilinear trick” of Christ [4], which is a
multilinear version of a bilinear real interpolation theorem of Lions and Peetre (see
[3]). It also crucially depends on the fact that the index q is a positive integer and
that R is a positive operator. (In particular, this method does not seem to imply
any result on Sobolev estimates.)

This result was generalized in [2] to the so-called non-semi-translation-invariant
case. This means that in the definition of R the phase function t + S(x, y) is
replaced by a smooth function G(x, t, y). The optimal result was proved under the
hypotheses of the so-called left finite type n and right finite type m, together with
some auxiliary hypotheses. (For a precise statement of this result see [2].)

Lee [6] considered the problem of extending the result in [1] to the case of
real-analytic phase functions S(x, y). Write

S(x, y) =
∑

α,β>0

aα,β x
αyβ

and let ∆ be the closed convex hull of the set

{Aα,β : aα,β 6= 0} ∪ {O,O′}
where Aα,β = ((α + 1)/(α+ β + 1), α/(α + β + 1)). (The set ∆ is closely related
to the Newton polygon for S(x, y).) Lee proved that if ψ has a sufficiently small
support near the origin, R is of strong type (p, q) if and only if (1/p, 1/q) is in
∆. He succeeded in obtaining this general result by a clever argument combining
the results of [2] and certain other Lp − L2 estimate via analytic interpolation.
(See [7] for an even more general result of his for smooth phase functions.) Seeger
[10] had earlier proved the boundedness of R in the interior of ∆, and Yang [11],
independently of Lee’s work, obtained the result at all points except the vertices
of ∆.
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A maximal trilinear operator

Christoph Thiele

(joint work with Ciprian Demeter, Terence Tao)

We discuss a hierarchy of maximal operators, starting with the one sided Hardy
Littlewood maximal operator in one dimension

Mf(x) = sup
ǫ>0

1

ǫ

∫ ǫ

0

|f(x+ t)| dt

This operator satisfies the trivial bound ‖Mf‖∞ ≤ ‖f‖∞. A refined geometric
tool, the Vitali covering lemma, allows one to lower the exponent and obtain
‖Mf‖p ≤ ‖f‖p for 1 < p ≤ ∞. For our hierarchy of maximal operators, the
general goal will be to lower exponents of Lp boundedness as far as possible. An
application of the Hardy Littlewood maximal operator is to prove the Lebesgue
differentiation theorem for f ∈ Lp, namely that

lim
ǫ→0

1

ǫ

∫ ǫ

0

f(x+ t) dt

exists for almost every x and is equal to f(x). This is trivial on the dense subclass of
continuous functions, and then can be extended to all of Lp using the corresponding
bound on the Hardy Littlewood maximal operator.

Considering large ǫ, we also study the discrete averages

Mf(n) = sup
N≥1

1

N

N∑

n=1

|f(n+m)|

By a simple transference argument, the Lp bounds for the discrete object are the
same as for the continuous object. There is however no immediate sense in asking
for limits of averages as N → ∞, as these limits either are trivially zero for f ∈ lp

with p < ∞ or need not exist if f ∈ l∞. However, there is a meaningful variant
in ergodic theory. Let X,µ be a probability space and T a measure preserving
transformation. Then there is a maximal operator

Mf(x) = sup
N≥1

1

N

N∑

n=1

|f(T n(x))|
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which again by easy transference satisfies the same Lp bounds as the previous
maximal operators. Also one has a theory of limits of averages

1

N

N∑

n=1

f(T n(x))

as N → ∞, which exist almost everywhere for f ∈ Lp with p ≥ 1 by Birkhoff’s
ergodic theorem. Again one proves this first in a dense subclass and then extends
this to all of Lp using bounds on the maximal operator. There is in general no
nice dense subclass such as continuous functions on the real line, but for the above
averages one has a nice Hilbert space proof for functions in L2 which can be used
as the dense subclass. In L2, the limit of the averages equals the projection onto
the space of functions invariant under T .

Next, we consider the maximal operator

M(f, g)(x) = sup
ǫ

1

ǫ

∫ ǫ

0

|f(x+ t)g(x+ 2t)| dt

The parameter 2 in the second argument is quite arbitrary, any other number
different from 1 and 0 would give a similar object. In the discrete analogue, the
parameter will have to be an integer. Trivially, this operator is pointwise bounded
by M(f)‖g‖∞ and possibly a constant times ‖f‖∞M(g), which by interpolation
immediately gives bounds

‖M(f, g)‖r ≤ C‖f‖p‖g‖q

with 1/r = 1/p + 1/q and 1 < p, q ≤ ∞ and 1 < r ≤ ∞. A deep theorem by
M. Lacey [9] states that one can relax the last condition to 2/3 < r. Somewhat
surprisingly, despite the positivity of the operator, one uses non-positive tools
such as time frequency analysis as in the closely related proof of boundedness of
the bilinear Hilbert transform [10] and a Fourier theoretic lemma of Borgain [2].
No geometric proof of Lacey’s theorem is known. One has convergence of the
corresponding bilinear averages for ǫ → 0 by extending the result from the case
of continous functions. In ergodic theory, by the same transference principle as
above, one has the same estimates as in Lacey’s theorem for the maximal operator

M(f, g)(x) = sup
N

1

N

N∑

n=1

|f(T n(x))g(T 2n(x))|

Convergence almost everywhere of the averages

1

N

N∑

n=1

f(T n(x))g(T 2n(x))

then follows in the region of exponents in Lacey’s theorem from extension of the
result for f, g ∈ L∞, which is a deep Fourier analytic result by Bourgain [3].
Averages such as this one and multilinear analogues

1

N

N∑

n=1

f1(T
n(x))f2(T

2n(x)) . . . fm(Tmn(x))
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appear in Furstenberg’s theory of return time theorems and his proof [6] of Sze-
meredi’s theorem [11] of existence of long arithmetic progressions in sets of integers
of positive density. Recently, Green and Tao have used a weighted version of this
result to prove existence of long arithmetic progressions in the set of primes, which
form a set of positive density in the almost primes.

In joint work with Ciprian Demeter and Terence Tao we study the maximal
operator

M(f, g, h)(x) = sup
ǫ

1

ǫ2

∫ ǫ

0

∫ ǫ

0

f(x+ t)g(x+ u)h(x+ t+ u) dt du

and obvious variants of higher order. This operator is pointwise bounded by
CM(f)M(g)‖h‖ and symmetric estimates, so it trivially satisfies the bounds

‖M(f, g, h)‖s ≤ C‖f‖p‖g‖q‖h‖r

whenever

1/s = 1/p+ 1/q + 1/r

and 1 < p, q, r,≤ ∞ and 1/2 < s ≤ ∞. Using the approach of Lacey, we are
able [4] to relax the last condition to 2/5 < s. Using a purely geometric approach
[5] , we can give a different proof of this result for 1/2 − ǫ < s < ∞. This new
approach uses subsets of integers of low complexity, such as those having a small
sum set or a small difference set. By the Balog-Szemeredi-Gowers theorem, we
use the version in [7], sets with small sum set are closely related to sets with small
difference sets, which is a crucial ingredient in the proof.

Again, there is a related theorem for a maximal operator in ergodic theory, and a
theorem by Assani [1] assures convergence almost everywhere of the corresponding
ergodic averages in a dense subclass.
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A generalization of the Carleson-Hunt theorem

Camil Muscalu

(joint work with Xiaochun Li)

The goal of my lecture was to describe the main result obtained jointly with
Xiaochun Li in [14]. In this short abstract we will briefly present this theorem.

First of all, let us recall that the maximal Carleson operator is the sub-linear
operator defined by

(1) Cf(x) := sup
N∈IR

∣∣∣∣
∫

ξ<N

f̂(ξ)e2πixξdξ

∣∣∣∣ ,

where f is a Schwartz function on IR and the Fourier transform is defined by

(2) f̂(ξ) :=

∫

IR
f(x)e−2πixξdx.

The following result of Carleson and Hunt [1], [7] is a classical theorem in Fourier
analysis.

Theorem 1. The operator C maps Lp → Lp boundedly, for every 1 < p <∞.

This statement, in the particular weak type L2 → L2,∞ special case, was the
main ingredient in the proof of Carleson’s fameous theorem which states that the
Fourier series of a function in L2(IR/Z) converges pointwise almost everywhere.

For n ≥ 1, let now consider m(= m(ξ)) in L∞(IRn) a bounded function, smooth
away from the origin and satisfying

(3) |∂αm(ξ)| .
1

|ξ||α|

for sufficiently many multi-indices α. Denote by Tm the n-linear operator defined
by

(4) Tm(f1, ..., fn)(x) :=

∫

IRn
m(ξ)f̂1(ξ1)...f̂n(ξn)e2πix(ξ1+...+ξn)dξ

where f1, ..., fn are Schwartz functions on the real line IR. The following statement
of Coifman and Meyer [2] is also a classical theorem in analysis.

Theorem 2. Tm maps Lp1 × ...×Lpn → Lp boundedly, as long as 1 < p1, ..., pn ≤
∞, 1

p1
+ ...+ 1

pn
= 1

p and 0 < p <∞.
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Now, for N ∈ IRn and m as before satisfying (3), denote by τNm(ξ) := m(ξ−N)
the translated symbol and by Cm the maximal operator defined by

(5) Cm(f1, ..., fn)(x) := sup
N∈IRn

∣∣∣∣
∫

IRn
τNm(ξ)f̂1(ξ1)...f̂n(ξn)e2πix(ξ1+...+ξn)dξ

∣∣∣∣

where as before f1, ..., fn are Schwartz functions on IR.
The purpose of the paper [14] was to study the Lp boundedness properties of this

Carleson type operator Cm. A simpler version of this operator appeared recently in
the study of the bi-Carleson operator in [21] and [22]. The main theorem obtained
in [14] is the following.

Theorem 3. Cm maps Lp1 × ...×Lpn → Lp boundedly, as long as 1 < p1, ..., pn ≤
∞, 1

p1
+ ...+ 1

pn
= 1

p and 0 < p <∞.

Clearly, Theorem 3 contains both Coifman-Meyer theorem and Carleson-Hunt
theorem as special cases.
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Fourier zeros of boolean functions

Mihail N. Kolountzakis

(joint work with Evangelos Markakis, Aranyak Mehta)

Let G be the discrete group {0, 1}k and f : G→ {0, 1}. Such a function is usually
called a boolean function and such functions are often studied in the context of
computational complexity [1, 2, 3, 4].

The Fourier Transform of such a function is defined by

f(ξ) =
1

|G|
∑

x∈G

(−1)ξ·xf(x), (ξ ∈ G).

It is easy to see that f̂(0) equals the average value of f . In certain approaches to
learning such functions (see, for instance, [3, 4]) it is significant to know what is

the the first Fourier non-zero according to the natural weight |ξ| =
∑k

k=1 ξj , i.e.
the quantity

m(f) = min{|ξ| : ξ 6= 0, f̂(ξ) 6= 0]}.
For the particular case of symmetric boolean functions f , i.e. functions satisfying

f(π(x)) = f(x) for all vectors x ∈ G and permutations π of {1, . . . , n}, it was
known [3] that if f is not constant and not a parity function (f(x) = x1 + · · · +
xk mod 2 or f(x) = x1 + · · · + xk + 1 mod 2) then m(f) ≤ 3

31k.
In this work we prove that, under the same assumptions, (f not constant and

not parity) we have that

m(f) ≤ Ck/ log k.

Our proof relies on a characterization [3] of functions f with a large value of
m(f). If fi is the value f takes for inputs of weight equal to i, the 0− 1 sequence
f0, f1, . . . , fk determines f and if m(f) = N then it must satisfy the recurrence
relation ∑

j

(
N

j

)
fj+ν = 2N f̂(0), (ν = 0, 1, . . . , k −N − 1).

On this we apply repeatedly Lucas’ theorem for well chosen primes and also use a
probabilistic interpretation of the fact M(f) = N .
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Traces of Sobolev Spaces with Variable Exponents

Lars Diening

(joint work with Peter Hästö)

From the point of boundary value problems it is important to study the trace
spaces of the natural energy space. Indeed, a partial differential equation is in
many cases solvable if and only if the boundary values are in the correspond-
ing trace space. In the case of electrorheological fluids [6] the energy space is a
Sobolev space with variable exponent, namely W 1,p(·). These spaces are defined
as follows: For an open set Ω ⊂ Rm let p : Ω → [1,∞) be a measurable bounded
function, called a variable exponent on Ω with p+ := esssupp(x) < ∞. Further,
let p− := essinfp(x). The variable exponent Lebesgue space Lp(·)(Ω) consists of all
measurable functions f : Ω → Rm for which the modular

̺Lp(·)(Ω)(f) =

∫

Ω

|f(x)|p(x) dx

is finite. Then ‖f‖Lp(·)(Ω) = inf
{
λ > 0: ̺Lp(·)(Ω)(f/λ) ≤ 1

}
defines a norm

on Lp(·)(Ω). The space W 1,p(·)(Ω) is the subspace of Lp(·)(Ω) such that |∇f | ∈
Lp(·)(Ω). The norm ‖f‖W 1,p(·)(Ω) = ‖f‖Lp(·)(Ω) + ‖∇f‖Lp(·)(Ω) makes W 1,p(·)(Ω) a

Banach space. For basic properties of Lp(·) and W 1,p(·) we refer to [3, 4].
We are interested in domains Ω with Lipschitz boundary but for sake of sim-

plicity we assume that Ω is just the halfspace H = R
n×(0,∞). The corresponding

results for Lipschitz domains can than be achieved via flattening of the bound-
ary by local Bi-Lipschitz mappings. We simply write Rn instead of Rn × {0} for
the boundary of H. The trace space of W 1,p(·)(H) is naturally defined to be the
quotient space of the traces of functions from W 1,p(·)(H), i.e.

‖f‖trW 1,p(·)(H) = inf
{
‖F‖W 1,p(·)(H) : F ∈W 1,p(·)(H) and trF = f

}
.

Note that the trace trF is well defined, since every F ∈W 1,p(·)(H) is in W 1,1
loc (H).

Although this definition is very natural, it depends on the exponent p in the
interior of the domain. We will show however that if p is globally log-Hölder
continuous (see below) then the definition of trace space depends only on the
values of p on the boundary.
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We say that the exponent p is globally log-Hölder continuous if there exist
constants c > 0 and p∞ ∈ (1,∞) such that for all points |x− y| < 1

2 and all points
z holds

|p(x) − p(y)| ≤ c

log(1/|x− y|) , |p(z) − p∞| ≤ c

log(e+ |z|) .

Let us denote by P(Ω) the class of globally log-Hölder continuous variable ex-
ponents p on Ω ⊂ Rm with 1 < p− ≤ p+ < ∞. This condition appears quite
naturally in the context of variable exponent spaces: For example by [1, 2] we
know that the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Ω) if
p ∈ P(Ω). Global log-Hölder continuity is the best possible modulus of continuity
to imply the boundedness of the maximal operator, see [1, 5]. If the maximal
operator is bounded, then it possible to use the technique of mollifiers. Our result
is the following:

Theorem 1. Let p1, p2 ∈ P(H) with p1|Rn = p2|Rn . Then with equivalence of
norms we have trW 1,p1(·)(H) = trW 1,p2(·)(H).

Especially, the definition of the trace space for regular p does only depend on
the values of p on the boundary. The theorem is proved by use of the following
extension theorem:

Theorem 2. Let p ∈ P(Rn+1). Then there exists a bounded, linear extension
operator E : W 1,p(·)(H) →W 1,p(·)(Rn+1).

Although the definition of the trace space above is very natural it is not so
useful for deciding if a function is a W 1,p(·)-trace. For this purpose it is better to
have an intrinsic norm. In the classical case the trace space of W 1,q(H) is given

by the fractional Sobolev space W 1− 1
q ,q(Rn) with intrinsic norm

∫

Rn

∫

Rn

|f(x) − f(y)|q
|x− y|n+q−1

dy dx <∞.

It is our aim to generalize this result to variable p. However, the usual approach
by means of the semi group of translations does not work in our case: First,
translations are continuous on Lp(·) if and only if p is constant. Second, p(x, t)
depends on x ∈ Rn and t ∈ [0,∞), so it is not possible to find a fixed space X
such that T (t) : X → X for a semi group T . Therefore, our approach is rather
based on mollifiers and oscillations than of translations and differences. Our result
is the following:

Theorem 3. Let p ∈ P(Rn+1). Then the function f belongs to the trace space
trW 1,q(·)(H) if and only if

∫

Rn

|f(x)|p(x)dx+

∫ 1

0

∫

Rn

(
1
rM

♯
Bn(x,r)f

)p(x)

dx dr <∞,

where M ♯
Bn(x,r)f denotes the mean oscillation of f over the ball Bn(x, r) ⊂ Rn.
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Lp-estimates for the wave equation associated to the Grušin operator

Ralf Meyer

Let L be a positive essential selfadjoint differential operator of second order on a
smooth manifold M of dimension d. Consider the following Cauchy problem for
the wave equation associated to L on M .

∂2v

∂t2
+ Lv = 0, v|t=0 = f,

∂v

∂t
|t=0 = g

The solution to this problem is formally given by

v(t, x) := cos(t
√
L)f(x) +

sin(t
√
L)√

L
g(x), (x, t) ∈M × R.

The functions of L are defined by the spectral theorem and the above expression
for v makes sense at least for f, g ∈ L2(Rd).

The smoothness properties of the solution v for fixed time t can be measured
in terms of Sobolev norms ‖f‖Lp

α
:= ‖(1 + L)α/2f‖Lp addepted to L. Especially

we are interested in estimates of the following kind

(1) ‖ cos(t
√
L)f‖Lp

−α
≤ Cp,t‖f‖p

holds if α ≥ α(d, p).

(2)
∥∥∥

sin(t
√
L)√

L
g
∥∥∥

Lp
−α

≤ Cp,t‖g‖p

holds if α+ 1 ≥ α(d, p).

For L = −∆ and M = R
d we have the usual Cauchy problem on the Euclidean

space. For this case estimates have been established by S. Sjöstrand [10], A. Miy-
achi [6] and J. Peral [8]. J. Peral and A. Miyachi showed 1980 that the estimates
1, 2 hold with α(d, p) := (d− 1)|1/p− 1/2|.

It is well known (see J. J. Duistermaat [2]) that if the wave equation for a
general L is strictly hyperbolic one can express the solutions in terms of elliptic
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Fourier integral operators. A. Seeger, C. D. Sogge and E. M. Stein [9] showed that
local analogues of the estimates from Miyachi and Peral hold true for a wide class
of Fourier integral operators.

Let Hm denote the 2m + 1-dimensional Heisenberg group. The vector fields
Xj := ∂xj − 1

2yj∂u, Yj := ∂yj + 1
2xj∂u, U := ∂u form a natural basis for the Lie

algebra of left-invariant vector fields. The sub-Laplacian

LH := −
m∑

j=1

(X2
j + Y 2

j )

is non-elliptic. Nevertheless is LH an hypoelliptic operator, since it is an Hörman-
der type operator [5]. The problem in studying the associated wave equation to
this operator is the lack of strict hyperbolicty and so smoothness properties of
the solutions cannot be obtained by using Fourier integral operator methods. In
1999 D. Müller and E. M. Stein showed that the estimates (1), (2) hold true with
α(d, p) > (d− 1)|1/p− 1/2| and d := 2m+ 1 the Euclidean dimension of Hm.

On R2 the Grušin operator G is defined by

G := −(∂2
x + |x|2∂2

u).

V. V. Grušin studied this and similar operators in 1970 [4]. As in the Heisenberg
case the associated wave equation is not strictly hyperbolic, since G is degenerate-
elliptic. In contrast to the sub-Laplacian LH the Grušin operator is not translation
invariant. Since G is homogenous of degree 2 with respect to the automorphic
dilations (x, u) 7→ (rx, r2u), r > 0 we can restrict to t = 1. To prove the estimates
(1), (2) for G and α(p, d) > |1/p− 1/2| it suffices to prove the case p = 1. In this
case we have to show uniform L1-estimates for the integral kernels of the operators
cos(

√
L)/(1+L)α/2, sin(

√
(L))/(

√
L(1+L)α/2). Instead of these operators we can

also study the operator

exp(i
√
G)

(1 +G)α/2
=: mα(G)

with integral kernel Kmα(G). We have to show that

‖Kmα(G)(x1, u1, x, u)‖L1(x,u)

is uniformly bounded in x1 and u1.
Since G is translation invariant with respect to u we only have to consider

u1 = 0. The speed of propagation of the wave is finite and so if x1 is large enough
the support of the wave propagator ofG lies in a set where G is an elliptic Operator
and the wave equation is strictly hyperbolic. In this case we can use the theorem
of A. Seeger, C. D. Sogge and E. M. Stein together with some scaling arguments.

The case where x1 is smaller than a constant C is left. Here we have the
following theorem.



1718 Oberwolfach Report 30/2005

Theorem 1. Let C > 0.

sup
x1≤C

‖Kmα(G)(x1, 0, x, u)‖L1(x,u) <∞

holds if α > 1/2.

Observe that on the polarized Heisenberg group H̃m, which is isomorphic to
the Heisenberg group Hm the sub-Laplacian is L̃H = −∑m

j=1(∂
2
pj

+(∂qj + pj∂u)2).

So we can get the integral kernel of mα(G) by integrating the kernel of mα(L̃H)
with respect to the q variable. One can try to prove the theorem by this fact. The
kernel of mα(L̃H) can be given as a infinite sum over one dimensional oscillatory
integrals and so for G one ends up with two dimensional oscillatory integrals which
unfortunetly turn out to be very hard to understand.

For the proof of the theorem we therefore derive a formula for the kernels that in-
volve only one dimensional integrals. Here we use the fact that G = (iU)(−iGU−1)
with U := ∂u. The operator iU is easy to understand. The operator −iGU−1 can
be written as a sum over so called spectral projection operators to rays. Here we
follow an idea by R. S. Strichartz [11], who as carried out these calculations for
the sub-Laplacian on the Heisenberg group.

Further information about the Grušin operator can be found in [3]. Since multi-
plier theorems are connected with wave equation estimates one should also mention
a result from M. Cowling and A. Sikora for the sub-Laplacian on the SU(2) [1].
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Analytic Embedding in the unit ball of C
n

Stefanie Petermichl

(joint work with Sergei Treil, Brett Wick)

The Carleson Embedding Theorem is an important result in function theory on
the unit disk. This result says that:

Theorem Let µ be a non-negative measure in D. Then the following are
equivalent:

(i) The embedding operator

J : L2(T) → L2(D, µ),

with J (f)(z) = f(z) denoting the harmonic extension, is bounded.
(ii)

C(µ)2 := sup
z∈D

‖J kz‖2
L2(µ) = sup

z∈D

‖Pz‖L1(µ) <∞,

where kz(ξ) = (1−|z|2)1/2

1−ξz , the reproducing kernel for the Hardy space

H2(D).
(iii)

I(µ) := sup

{
1

r
µ(D ∩Q(ξ, r)) : r > 0, ξ ∈ T

}
<∞,

where Q(ξ, r) := {z ∈ C : |z − ξ| < r}.
Moreover, the following expressions are equivalent C(µ) ≈ I(µ) ≈ ‖J ‖.

Property (iii) is typically taken as the definition of a Carleson measure on D.

It will be more convenient for us to work with the second definition of a Carleson
measure, i.e., µ is a Carleson measure if and only if

sup
λ∈D

∫

D

|kλ(z)|2dµ(z) < +∞,

or equivalently

sup
λ∈D

∫

D

Pλ(z)dµ(z) < +∞.

with the obvious change when considering the ball B. Here kλ(z) is the (nor-
malized) reproducing kernel for the Hilbert space H2(S) and Pλ(z) is the Poisson
kernel. We also want to emphasize that it is sufficient to only check this supremum
over the points that are in the supp µ.

We present a simple proof of the following theorem:
Theorem If either of the following conditions are satisfied,

1. supλ∈D

∫
D
|kλ(z)|2dµ(z) ≤ C or

2. supλ∈supp µ

∫
D
|kλ(z)|2dµ(z) ≤ C′,
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then ∫

D

|f(z)|2dµ(z) ≤ 2eC′‖f‖2
H2(D),

for all analytic f .

It is clear the second condition on the measure µ implies the first on µ.
We also present a simple proof of the n-dimensional analogue of the theorem

on the disk.
Theorem If either of the following conditions are satisfied,

1. supλ∈B

∫
B
|kλ(z)|2dµ(z) ≤ C or

2. supλ∈supp µ

∫
B
|kλ(z)|2dµ(z) ≤ C′,

then ∫

B

|f(z)|2dµ(z) ≤ e
(2n)!

(n!)2
C′‖f‖2

H2(B),

for all analytic f .

The outline of the proof for the theorem on the disk is as follows, (the outline
for the ball is almost identical):
Note that the function

ϕ(λ) = −
∫

D

Pλ(z)dµ(z)

is bounded if and only if the measure µ is Carleson. But, in fact more can be said,
this function is sub-harmonic, i.e.

∆ϕ(λ) ≥ 0.

We will use it to construct a smoother measure

dν := ∆λϕ(λ) ln
1

|λ |dA(λ)

whose Carleson norm is easy to bound:

‖ν‖C ≤ e‖ϕ‖∞ = e‖µ‖C.
We will then proceed to prove the inequalities as follows

∫

D

|f(z)|2dµ(z) ≤ c

∫

D

|f(λ)|2dν(λ) ≤ e‖ϕ‖∞‖f‖2
2 = e‖µ‖C‖f‖2

2

Thus, the discussion in this paper provides a new simple proof of part of the
analytic Carleson Embedding Theorem for the unit disk in C and obtains the best
known constant. The previous best constant was obtained by N. Nikolskii using
the Schur test to estimate the norm of the embedding operator.

With this new proof of the Carleson Embedding Theorem, it is also possible to
obtain better estimates in the interpolation of analytic H2(D) functions. Some of
the previous estimates for the norm of the interpolation operators depended upon
the estimates obtained by Nikolskii for the norm of the embedding operator. One
can consult the texts [4] or [5] for the connections between the Carleson Embedding
Theorem and the solution to the interpolation problem for analytic functions.
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The proof on the disk also indicates how one can prove an analogous theorem
on the unit ball in Cn. One needs to replace the Laplacian with the invariant
Laplacian and the Poisson kernel with the invariant Poisson kernel.
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Generalized Gaussian Estimates and Applications to

Calderon-Zygmund Theory

Peer Christian Kunstmann

We present a survey on results that use generalized Gaussian estimates of the
following form

(1) ‖1
B(x,t

1
2m )

e−tA1
B(y,t

1
2m )

‖p→q ≤ C t−
n

2m ( 1
p− 1

q )e−b( |x−y|2m

t )
1

2m−1

where (e−tA)t>0 is an analytic semigroup in L2(Rn) and 1 ≤ p < q ≤ ∞. In partic-
ular, we address boundedness of H∞–calculi and boundedness of Riesz transforms.
Most of the talk is based on joint work with Sönke Blunck. For p = 1 and q = ∞,
(1) reduces to a usual Gaussian estimate of order 2m: the operators e−tA have
kernels k(t, x, y) that satisfy

(2) |k(t, x, y)| ≤ C t−
n

2m ( 1
p− 1

q )e−b( |x−y|2m

t )
1

2m−1
.

The use of (2) (and more general Poisson type estimates) in establishing weak
type (1, 1) results has its origins in [7, 6]. There are several classes of operators A
on Rn for which (2) fails in general but (1) still holds for suitable p and q.

Example 1. Schrödinger operators A = −∆ − V where V ≥ 0 belongs to a
pseudo-Kato class and p and q = p′ depend on the form bounds of the potential
(cf. [10]), here m = 1.

Example 2. Uniformly elliptic operators of order 2m in divergence form with
bounded measurable coefficients (cf. [5]). In case 2m < n we have p = 2n

n+2m ,

q = p′ = 2n
n−2m , and those values are known to be optimal for n ≥ 5.
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Example 3. Uniformly elliptic second order operators with singular lower order
terms (cf. [9] and the literature cited there). Here m = 1 and p and q depend,
e.g., on certain form bounds for the lower order terms.

The first application of (1) in the context of singular integrals is in [2]. At
the center of our talk is the following weak type (p, p) result, the first one ever in
Calderon-Zygmund theory which is not restricted to p = 1.

In (4) and (5), B denotes an arbitrary closed ball with radius r, and kB denotes
the ball with same center as B but radius kr.

Theorem 1 (cf. [3]). Let (Ω, d, µ) a space of homogeneous type and dimension
n. Let 1 ≤ p < 2 < q ≤ ∞ and let T : L2(Ω) → L2(Ω) be bounded. Suppose that
there is an approximation of the identity (Sr)r>0 satisfying

‖Srf‖2 ≤ C‖f‖2 (r > 0)(3)

‖1(k+1)B\kBSr1B‖p→q ≤ µ(B)
1
q − 1

p gr(k) k = 0, 1, 2, . . .(4)

‖1(k+1)B\kBT (I − Sr)1B‖p→2 ≤ µ(B)
1
2− 1

p gr(k) k = 4, 5, . . .(5)

where the gr are functions satisfying supr>0

∑
k k

n−1gr(k) < ∞. Then T is of
weak type (p, p).

Observe that (4) is an on– and off–diagonal estimate whereas (5), which cor-
responds to the weakened form of the Hörmander condition given in [6], is an
off–diagonal estimate.

Sketch of Proof.
One first observes that (4) and (5) imply the pointwise estimates

(6) Np′,r(S
∗
rf) ≤ CMq′f and Np′,r((T (I − Sr))

∗f) ≤ CM2f,

where Ns,rg(x) := µ(B(x, r))−
1
s ‖g1B(x,r)‖s and Msg(x) := supr>0Ns,rg(x) =

(M(|g|s)(x))1/s. Then let f ∈ Lp and consider an Lp-Calderon-Zygmund decom-
position at height α > 0: f = g+

∑
j bj with bj supported in balls Bj = B(xj , rj)

with the finite intersection property. We have

Tf = Tg +
∑

j

TSrjbj +
∑

j

T (I − Srj )bj = Tg + h1 + h2

where Tg is treated as usual. If we show

(7) ‖
∑

j

Srjbj‖2
2 ≤ Cα2‖

∑

j

1Bj‖2
2,

then, by L2-boundedness of T and properties of the decomposition,

µ({x : |h1(x)| > α}) ≤ Cα−2‖
∑

j

Srjbj‖2
2 ≤ C

∑

j

µ(Bj) ≤ Cα−p‖f‖p
p.

For the proof of (7) we take φ ∈ L2, ‖φ‖2 = 1, and write (essentially)
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|〈φ, Srj bj〉| = |〈S∗
rj
φ, bj〉| ≤ CNp′,rj (S

∗
rj
φ)(xj)αµ(Bj)

≤ Cα

∫

Bj

Np′,rj (S
∗
rj
φ) ≤ Cα

∫

Bj

Mq′φ.

Thus, by boundedness of Mq′ on L2 and finite intersection,

(8) |〈φ,
∑

j

Srjbj〉| ≤ Cα

∫
(Mq′φ)(

∑

j

1Bj ) ≤ Cα‖
∑

j

1Bj‖2,

and (7) follows. The estimation for h2 is similar. �

Pascal Auscher [1] showed that, using Kolmogorov’s inequality in the last step
of (8), the assertion of Theorem 1 remains true for q = 2. We thus obtain the
following version of a result in [3].

Theorem 2. Let A satisfy (1) where 1 ≤ p ≤ 2 ≤ q ≤ ∞ and assume that A
has a bounded H∞–calculus in L2(Rn). Then A has a bounded H∞–calculus in
Lr(Rn) for any r ∈ (p, q).

This generalizes the case p = 1, q = ∞ proved in [7]. In [3], Theorem 1 was
applied to prove the following result on Riesz transform type operators.

Theorem 3. Let A satisfy (1) where 1 ≤ p < 2 ≤ q ≤ ∞. Let α ∈ (0, 1) and
suppose that B : D(A) → L2(Rn) is a linear operator such that (1) holds for

tαBe−e±iθtA in place of e−tA where θ ∈ (0, π/2). If BA−α is bounded on L2(Rn)
then BA−α is of weak type (p, p).

This generalizes the case p = 1, q = ∞ proved in [6]. At the end we indicate
how (1) may be obtained for elliptic non-divergence operators A in with bounded
measurable coefficients of the form

(9) Au(x) =
∑

|α|≤2m

aα(x)∂αu(x).

Also for this class of operators it is known that (2) fails in general. Assume
that A is of the form (9) and that, for some p0 ∈ (1,∞), −A with domain W 2m

p0

generates an analytic semigroup in Lp0(Rn). Denote by p+ the supremum over all
r ∈ (1,∞) such that −Ar with domain W 2m

r generates an analytic semigroup in
Lr, and let q+ := ∞ if n ≤ 2mp+, q+ := np+

n−2mp+
otherwise. Denote by p− the

infimum over all r ∈ (1,∞) such that the semigroup e−tA (originally defined on
Lp0) acts boundedly in Lr. For this situation, the following is proved in [8].

Theorem 4. The operator A satisfies (1) for all p− < p < q < q+. Moreover, −A
with domain W 2m

p generates an analytic semigroup in Lp(Rn) for any p ∈ (p−, p+).

This is based on perturbation arguments and an extension of Theorem 3 to the
case α = 1. Similar results hold, e.g., for Dirichlet systems on bounded domains
Ω ⊆ Rn (cf. [8]).
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Blowup rates of eigenfunctions and quasimodes

Christopher Sogge

(joint work with John Toth and Steve Zelditch)

We consider boundaryless Riemannian manifolds (M, g) of dimension n ≥ 2.
To understand analysis in this setting important objects are:

• Geodesic flow (classical system)
• The behavior of eigenfunctions at high energies (quantum system).

Recall that if ∆ = ∆g is the associated Laplace-Beltrami operator the spectrum
is discrete, −∆ej(x) = λ2

jej(x), where 0 ≤ λ1 ≤ λ2 ≤ · · · . We assume, in what

follows, that the eigenfunctions are L2 normalized.
One expects that the “geometry” (M, g) should be encoded in both of these

objects and our goal is to understand to what extent the correspondence principle
is true. This says that long term properties of geodesic flow should influence the
behavior of eigenfunctions at high energies, and that the behavior of high energy
modes should dictate certain properties of geodesics.

One issue is to see what sort of geometries allow and preclude blowup of Lp-
norms of eigenfunctions. Recall that one has the sharp estimates [So1], [So2]

(1) ‖χλf‖p ≤ Cλmax{n(1/2−1/p)−1/2,
n−1

2 (1/2−1/p)}‖f‖p, p ≥ 2.
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if χλf =
∑

|λ−λj |≤1 ej(f), with ej(f) begin the projection of f onto the eigenspace

of ∆ with eigenvalue λ2
j . The Lp-estimates for finite p were obtained in [So2], while

the L∞ bounds are much older and go back to Avakumovič [Av] and Levitan [Le].
Since χλ reproduces eigenfunctions ej(x) when |λ−λj | ≤ 1, (1) of course yields

(2) ‖ej‖p ≤ Cλmax{n(1/2−1/p)−1/2,
1
2 (1/2−1/p)}.

While these estimates are sharp for the standard sphere [So1], unlike the bounds
in (1), one does not expect (2) to be sharp in general.

Note that for p ≥ 2, n(1/2 − 1/p) − 1/2 > n−1
2 (1/2 − 1/p) if and only if

p > 2(n+ 1)/(n− 1), while the two exponents agree for this value of p. Therefore,
to study this problem there are three cases to consider:

• p > 2(n+ 1)/(n− 1)
• 2 < p < 2(n+ 1)/(n− 1)
• p = 2(n+ 1)/(n− 1)

Presumably, in order to get improved bounds for the second range, one would have
to assume that there are no stable closed geodesics. For the first range (cf. [DG])
one would expect that one would have to assume that through any point there
can only be a set of measure zero of closed geodesics. The 3rd case seems very
difficult, and, in order to improve (2) for this exponent, one would expect that
both of these conditions are necessary.

Zelditch and the author were able to prove results for the first case in [SZ].
To describe these results, we need to make a couple of definitions. First, given
x ∈ M we let Λx be the set of unit directions ξ ∈ S∗

xM for which the geodesic
passing through x returns to x in finite time. We say that x is a recurrent point
for geodesic flow if |Λx| > 0.

A main result in [SZ] then is that if x is not a recurrent point, then |ej(x)| =

o(λ
(n−1)/2
j ), which is an improvement over the O(λ

(n−1)/2
j ) sup-norm estimates in

(2). It was also shown that M has no recurrent points then ‖ej‖∞ = o(λ
(n−1)/2
j ).

By interpolation with the L2(n+1)/(n−1)-estimate in (2), one also gets that ‖ej‖p =

o(λ
n(1/2−1/p)−1/2
j ), p > 2(n+ 1)/(n− 1).

In [SZ] this result was used to show that for a generic class of metrics on any

manifold M one has ‖ej‖2 = o(λ
(n−1)/2
j ). Zelditch and the author also were

able to classify real analytic manifolds with the maximum blowup rate, ‖ej‖∞ =

Ω(λ
(n−1)/2
j ).

One could ask whether one always has the maximum blowup rate ej(x) =

Ω(λ
(n−1)/2
j ) at recurrent points. This turns out to be false. It was shown in [SZ]

that there are manifolds M with recurrent points x so that ej(x) = o(λ
(n−1)/2
j ).

Thus, in order to get converse results, one must consider other types of func-
tions. One natural generalization of eigenfunctions, of course, is quasimodes.

It was shown in [STZ] that the o(λ
(n−1)/2
j ) bounds for non-recurrent points

and the o(λ
(n−1)/2
j ) sup-norm bounds when there are no recurrent points also hold
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when ej(x) is replaced by a quasimode. There are several definitions of quasimodes
in the literature, but the most natural one, (which works for our results) seems to
be the following. We say that {ψjk

} is a sequence of quasimodes corresponding to
the eigenvalues λjk

if ‖ψjk
‖2 = 1 and for dimensions n = 2, 3

‖(∆ + λ2
jk

)ψjk
‖2 ≤ C,

for some uniform constant C. In higher dimensions, one also has to assume (be-
cause of the Sobolev embedding theorem) that ‖Πλjk

ψjk
‖∞ ≤ C, if Πλjk

is the

projection onto frequencies [2λjk
,∞) for

√
−∆. Note that when n = 2 or 3

‖Piλjk
f‖∞ ≤ C‖(∆ + λ2

jk
)f‖2, so, in this case, the 2nd condition is superfluous.

We also have results in the other direction. For instance we are able to obtain
results for certain types of blowdown points for geodesic flow. Recall that a point
x ∈ M is a blowdown point if Λx = S∗

xM and if there is a time ℓ so that every
geodesic starting at x returns to x in time ℓ. This gives rise to a map Gℓ

x : S∗
xM →

S∗
xM where, if ξ is the initial direction of the geodesic, η = Gℓ

x(ξ) is the direction
of the resulting geodesic at time ℓ. In the simplest case where Gℓ

x is the identity
map, Toth, Zelditch and the author show that there is a sequence of quasimodes

with ‖ψλjk
‖∞ = Ω(λ

(n−1)/2
jk

), which is the maximum blowup rate. Other results
of this type hold for manifolds like the triaxial ellipsoid that have a finite number
of fixed point for Gℓ

x.
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Dispersive estimates and absence of positive eigenvalues

H. Koch

(joint work with D. Tataru)

Let W be a potential which decays at infinity. Then the Schrödinger operator

−∆Rn −W

has continuous spectrum [0,∞). In addition its spectrum may contain eigenval-
ues which could be positive, negative of zero. It is well known that under weak
assumptions like

(1) lim
|x|→∞

|x||W (x)| = 0

there are no positive eigenvalues. The argument is based on Carleman type esti-
mates. In this work we derive dispersive Carleman inequalities and use them to
prove nonexistence of positive eigenvalues under Lp conditions on the potential.

More precisely we study

(2) (−∆ − V )u = Wu

assuming
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Assumption 1, the long range potential. The following inequalities hold.

(3) |V | + |x||DV | + |x|2|D2V | ≤ c,

(4) lim inf
|x|→∞

V > 0,

and

(5) τ0 := − lim inf
|x|→∞

x · ∇V
4V

< 1/2.

Assumption 2, the short range potential. The potential W can be de-
composed as W = W1 +W2 where

(6) W1 ∈ Ln/2 + L(n+1)/2

(7) lim sup
|x|→∞

|x||W2(x)| < δ.

Theorem Assume that V and W satisfy Assumptions 1 and 2, let τ1 > τ0
and assume that δ is sufficiently small. Let u ∈ H1

loc(R
n) satisfy (2) and (1 +

|x|2)τ1− 1
2u ∈ L2. Then u ≡ 0.

This extends previous results by Ionescu and Jerison [1]. The exponents in (6)
are sharp: below n/2 there are compactly supported eigenfunctions (see [2]) and
above (n+ 1)/2 there is a very different counter example by Ionescu and Jerision
[1].

Given a measurable function f and the Sobolev space W s,q we define the norm

‖f‖lpW s,q =




∞∑

j=1

‖f‖p
W s,q({2j−1≤|x|≤2j+1})




1/p

with the obvious modification for p = ∞. The key estimate of the proof of the
Theorem is contained in the following inequality for τ >> 1 and ε << 1.

‖eh(ln(|x|))v‖
l2W

1
n+1

,
2(n+1)

n−1
+ ‖eh(ln(|x|))ρv‖L2 ≤

c inf
f1+f2=(−∆−V )v

‖eh(ln(|x|))ρ−1f1‖L2 + ‖eh(ln(|x|))f2‖
l2W

− 1
n+1

,
2(n+1)

n+3

(8)

where ρ is given by

(9) ρ =

(
h′(ln(|x|))

|x|2 +
h′(ln(|x|))2h′′+(ln(|x|))

|x|4
) 1

4

and where h satisfies

(10) h′ǫ(t) = τ1 + (τe
t
2 − τ1)

τ2

τ2 + ǫet
.

This inequality contains two parts: An L2 part, which follows by several point-
wise estimates and integration by parts. This part depends on convexity properties
of the weight. Then there is an Lp part, which essentially is an application of the
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dispersive estimates of [3]. Both parts can be generalized to suitable operators
with variable coefficients and gradient potentials.
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On the Mixed Boundary Value Problem for Laplace’s Equation in

Planar Lipschitz Domains

Loredana Lanzani

(joint work with R. Brown, L. Capogna)

1. Introduction

We let Ω denote a Lipschitz graph domain in the plane, that is

Ω = {(x1, x2) : x2 > φ(x1)}
where φ : R → R is a Lipschitz function with φ(0) = 0, and consider the following
simple partition of the boundary, namely ∂Ω = N ∪D, where we have defined:

(1.1) D := {(x1, φ(x1)) : x1 < 0} , N := {(x1, φ(x1)) : x1 ≥ 0}.
By the mixed problem for Lp(dσ), we mean the following boundary value problem

(1.2)






∆u = 0 in Ω
u = fD on D
∂u
∂ν = fN on N
(∇u)∗ ∈ Lp(∂Ω, dσ)

where we assume that the Neumann data fN is in Lp(N, dσ), and the Dirichlet
data has one derivative in Lp that is, dfD/dσ ∈ Lp(D, dσ). Here, (∇u)∗ is the
non-tangential maximal function of the gradient and dσ denotes arc-length.

Even though, as it should be expected, the mixed problem has deep connections
with the Neumann problem:

(1.3)






∆u = 0 in Ω
∂u
∂ν = FN , on ∂Ω
(∇u)∗ ∈ Lp(∂Ω, dσ)

and the regularity problem:

(1.4)






∆u = 0 in Ω
u = FD, on ∂Ω
(∇u)∗ ∈ Lp(∂Ω, dσ)
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it is well known that the mixed problem is far from being a mere superimposition
of (1.3) and (1.4). Indeed, whereas (1.3) and (1.4) are known to be solvable in
Lp(dσ) for 1 < p < 2 + ǫ(M) with ǫ(M) > 0, see Jerison and Kenig [5], Dahlberg
and Kenig [4] and Verchota [7] (here, M denotes the Lipschitz constant of the
domain, that is M = ||φ′||L∞(R)), simple examples show that the Mixed problem

is, in general, not solvable in L2(dσ), not even in the smooth domain category, see
[3].

The mixed problem has many applications to Physics, see Sneddon [6], and its
study in PDEs has a rich history, see Azzam and Kreyszig [1] and Brown, Capogna
and Lanzani [3] for a review of some of the most relevant results. Here we recall
the following theorem of Brown [2], which is most directly related to our purposes.

Theorem 1. (Brown) Suppose Ω ⊂ R2 is a Lipschitz graph domain satisfying a
crease condition, that is Ω = {(x1, x2) : x2 > φ(x1)} and, for D and N as in (1.1),
there exist two constants δD ≥ 0, δN ≥ 0 such that

(1.5) δD + δN > 0 ; φ′(x1) ≥ δN a.e. N ; φ′(x1) ≤ −δD a.e. D.

Then, the mixed problem (1.2) is uniquely solvable in L2(dσ) and, moreover, we
have

(1.6) ‖(∇u)∗‖L2(∂Ω,dσ) ≤ C(M, δD, δN )

(
‖fN‖L2(N,dσ) +

∥∥∥∥
dfD

dσ

∥∥∥∥
L2(D,dσ)

)
,

where M denotes the Lipschitz constant of the domain.

As is easily seen, the crease condition imposes: (1) a positive lower bound on
the size of the Lipschitz constant (in particular, smooth domains do not satisfy
the crease condition) and (2) geometric convexity of the domain (e.g. a concave
wedge does not satisfy the crease condition and in fact the mixed problem for a
concave wedge with N and D as in (1.1) is not solvable in L2(dσ), see Brown [2])).
Our goal is to remove the crease condition. To this end, we have the following
partial result [3]

Theorem 2. (Brown, Capogna, Lanzani) Let Ω be a Lipschitz graph domain with
N and D as in (1.1). Assume Ω has Lipschitz constant M less than 1.

Then, there exists a constant p0 = p0(M), 1 < p0 < 2, so that for 1 < p < p0,
if fN ∈ Lp(N, dσ) and dfD/dσ ∈ Lp(D, dσ), the mixed problem (1.2) for Lp(dσ)
has a unique solution. The solution satisfies

(1.7) ‖(∇u)∗‖Lp(∂Ω,dσ) ≤ C(p,M)

(
‖fN‖Lp(N,dσ) +

∥∥∥∥
dfD

dσ

∥∥∥∥
Lp(D,dσ)

)
.

2. Comments on proofs

The proof of Theorem 2 is obtained by interpolating a weighted mixed problem
in L2 where the weight is given by |X |ǫ for ǫ > 0, and a weighted mixed problem

in the atomic Hardy space H1 with weight given by |X |ǫ′ for ǫ′ < 0. (In both
cases, X stands for points in the boundary of Ω). In order to solve the weighted
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L2 and H1 endpoint problems, we observe that there is a holomorphic vector field
α, namely:

α(z) ≈ zǫ , where z := x1 + ix2

such that the following Rellich-type identity and boundary estimates:

(2.1)

∫

∂Ω

|∇u(X)|2α(X) · ν(X) − 2α(X) · ∇u(X)
∂u

∂ν
(X) dσ(X) = 0;

(2.2) α(X) · ν(X) ≈ −|X |ǫ , X ∈ N ;

(2.3) α(X) · ν(X) ≈ |X |ǫ , X ∈ D

hold for the outer unit normal vector ν and for any harmonic function u such that
(∇u)∗ ∈ L2(∂Ω , |X |ǫdσ). (The restriction on the size of the Lipschitz constant:
M < 1 is needed in order to obtain (2.2) and (2.3)). Once (2.1)-(2.3) have been es-
tablished, the proof follows by combining conformal map methods with techniques
that were essentially developed in Brown [2] and Dahlberg-Kenig [4]. We refer to
[3] for the complete proof and a list of related open questions.
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Linear and bilinear estimates for oscillatory integral operators related

to restriction to hypersurfaces

Sanghyuk Lee

We are concerned with the oscillatory integral operator defined by

Tλf(z) =

∫
eiλφ(z,y)a(z, y)f(y)dy, (z, y) ∈ R

n+1 × R
n, n ≥ 1,

where a ∈ C∞
0 (R2n+1) and φ ∈ C∞ on the support of a. The operator Tλ can be

thought of as variable coefficient generalization of restriction operator in the sense
that the optimal decay estimates

(1) ‖Tλf‖q ≤ Cλ−
n+1

q ‖f‖p
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implies the corresponding Lp-Lq boundedness of the adjoint of Fourier restriction
to {∇zφ(z0, y) : y ∈ B(y0, ǫ)} for a small ǫ > as long as a(z0, y0) 6= 0 (see [9, 12]).

In connection with Bochner-Riesz conjecture, it was asked in [9] whether it
is possible to obtain (1) for q > (2n + 2)/n, (n + 2)/q ≤ n(1 − 1/p) under the
assumption that on the support of a rank(∂2

zyφ) = n and if θ ∈ Sn is the unique
direction for which ∇y〈∂zφ, θ〉 = 0, then

(2) det(∂2
y〈∂zφ, θ〉) 6= 0.

When n = 1, this was proven by Hörmander [9] generalizing the earlier result
due to Carleson and Sjölin [6]. In higher dimensions (n ≥ 2), Stein [17] proved it
for q ≥ (2n + 4)/n. Later, it was shown by Bourgain [3, 5] that there are phase
functions for which it is impossible to obtain (1) for q < (2n+ 4)/n when n ≥ 2 is
even. In R3 he further showed that (1) fails generically for q < s for some 3 < s < 4
and he obtained a positive result beyond the Stein’s result with simpler phases.
Recently, Wisewell [25] obtained more concrete range of failure in all dimension
bigger than 2 using quadratic phases.

We extend the estimate (1) by imposing an elliptic type condition which was
used in the study of restriction problem [23]. Precisely,

Theorem 1. Suppose φ satisfies rank(∂2
zyφ) = n and (2), and ∂2

y〈∂zφ(z0, y), θ〉 has
eigenvalues of the same sign. Then, for q ≥ 2(n+3)/(n+1), (n+2)/q ≤ n(1−1/p)
and any ǫ > 0,

(3) ‖Tλf‖q ≤ Cλ−
n+1

q +ǫ‖f‖p.

It is also important to consider operator defined by homogeneous phase func-
tions of degree one. This kind of operators naturally appear in the study of Fourier
integral operators related to wave equations. In view of restriction to conic sur-
faces, a natural generalization of (2) to homogeneous is that if θ ∈ Sn is the unique
direction for which ∇y〈∂zφ, θ〉 = 0, then

(4) rank ∂2
y〈∂zφ, θ〉 = n− 1.

Under this condition, the optimal L2-L(2n+2)/(n−1) estimate was obtained in [13].
Theorem 2. Let n ≥ 2. If φ satisfies rank(∂2

zyφ) = n, (4) and all eigenvalues of

∂2
y〈∂zφθ〉 have the same sign, then for q ≥ 4 if n = 2 or q ≥ 2(n + 3)/(n + 1) if
n ≥ 3, and (n+ 1)/q ≤ (n− 1)(1 − 1/p), (3) holds.

When n = 2, the elliptic condition is actually unnecessary. For n = 3, up to ǫ-loss
it establishes best possible estimates corresponding to the restriction to the cone,
which is due to Wolff [26].

Both Theorem 1 and Theorem 2 are consequences of bilinear estimates (Theo-
rem 3 and Theorem 4 below) which are variable coefficient generalizations of bilin-
ear L2-restriction estimates for hypersurfaces [11, 19, 24, 26]. For related subjects
and applications of bilinear estimates readers are referred to [4, 7, 8, 10, 11, 20, 22]
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and references contained therein. For i = 1, 2, define

Tif(x, t) =

∫
eiλφi(x,t,ξ)ai(x, t, ξ)f(ξ)dξ, (x, t) ∈ R

n × R,

where ai is compactly supported smooth function and φi is a smooth function on
the support of ai satisfying that

∂tφi(x, t, ξ) = qi(x, t, ∂xφi(x, t, ξ)).(5)

We assume φi is defined only on the support of ai.

Theorem 3. Suppose φi satisfies (5), rank ∂2
xξφi = n and det ∂2

ξξqi 6= 0, and
suppose

〈∂2
xξφi(∂ξq1 − ∂ξq2), [∂

2
xξφi]

−1[∂2
ξξqi]

−1(∂ξq1 − ∂ξq2)〉 6= 0

for i = 1, 2 (each function may has different variable in case the domains of
functions do not coincide). Then for any ǫ > 0 and q ≥ (n+ 3)/(n+ 1),

(6) ‖T1fT2g‖q ≤ Cλ−
n+1

q +ǫ‖f‖2‖g‖2.

We also consider operators defined by homogeneous phases and generalize the
bilinear restriction estimates for conic surfaces [11, 18, 26] to a variable coefficient
version.

Theorem 4. Let n ≥ 2. Suppose φi is a homogeneous function of degree 1 in
ξ satisfying (5), rank ∂2

xξφi = n and the Hessian matrix ∂2
ξξqi has maximal rank

n− 1, and suppose

〈ηi/|ηi|, ∂ξq1(x1, t1, η1) − ∂ξq2(x2, t2, η2)〉 6= 0.

for i = 1, 2. Then for any ǫ > 0 and q ≥ (n+ 3)/(n+ 1), (6) holds.

Theorem 3 and 4 can serve as bilinear substitutes in variable coefficient settings
as bilinear restrictions to hypersurfaces do. Hence these may be applied to various
situations arising by variable coefficient generalization. Especially it is possible
to obtain improved regularity properties of a class of Fourier integral operators
studied in [13].
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Calderon-Zygmund operators with operator-valued kernels and

evolution equations

Lutz Weis

For a Calderon-Zygmund operator

Tf(u) =

∫
k(u, v)f(v) dv u /∈ suppf

on a Bochner space Lp(R
n, X), 1 < p < ∞, with a kernel of bounded linear

operators k(u, v) on the Banach space X , the usual Calderon-Zygmund theory
still ensures that T is bounded on the whole Lp(R

n, X) scale for 1 < p < ∞, if T
is bounded on Lq(R

n, X) for a single q ([BCP]). However, if X is not a Hilbert
space there is nothing special about the space L2(X) and it is just as hard to prove
boundedness on L2(X) as it is to prove boundedness on Lp(X). This difficulty
was overcome by J. Bourgain ([Bou]) and T. Figiel ([Fig]) for scalar-valued kernels
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k(u, v) by developing a Paley-Littlewood decomposition of Lp(R
n, X) for UMD-

spaces X . A Banach space has the UMD-property if the Hilbert transform extends
to a bounded operator on L2(R, X). This holds for all subspaces and quotient
spaces of a Lq(Ω)-space, 1 < q < ∞, in particular for the usual reflexive Hardy
and Sobolev spaces.
Motivated by applications to evolution equations (e.g. maximal regularity [W],
sums of closed operators [KW], H∞-functional calculus for sectorial operators
[KW], [KKW]) a theory for translation invariant operators T with operator-valued
kernels was developed in recent years ([W], [StW], [AB], [GW], [HW1]). The
crucial difference to the scalar case treated in [Bou] and [Fig] is, that boundedness
assumptions on Fourier-multiplier functions and kernels cannot be expressed in the
operator norm (this was observed by G. Pisier (cf. [AB]), but have to be replaced
by R-boundedness. If X = Lq(Ω), q < ∞, a sequence of operators Tj on X is
R-bounded if there is a constant C <∞ such that for all xj ∈ X

∥∥∥∥
(∑

j

|Tjxj |2
)1

2
∥∥∥∥

Lq(Ω)

≤ C

∥∥∥∥
(∑

j

|xj |2
)1

2
∥∥∥∥

Lq(Ω)

For general Banach spaces X this classical square function estimate can be ex-
pressed in terms of Rademacher averages which are an important tool in the ge-
ometry of Banach spaces. The resulting inequality

E

∥∥∥∥∥∥

∑

j

rjTjxj

∥∥∥∥∥∥
≤ CE

∥∥∥∥∥∥

∑

j

rjxj

∥∥∥∥∥∥

may be seen as an extension of Kahane’s contraction principle for random series.
By now it is well established, that such R-boundedness assumptions are fulfilled
in the context of large classes of elliptic and parabolic partial differential operators
[DHP], [DDHPV], [KuW], [KKW] and Stokes operators ([NS], [KKW]) and they
have proven to be very useful e.g. in establishing maximal regularity.
In the talk we gave a short survey on the interplay of boundedness results for
Calderon-Zygmund operators with problems in evolution equations. Then we pre-
sented some joint work with T. Hytönen ([HW2]) and C. Kaiser ([KaW]) on the
T 1-theorem for Calderon-Zygmund operators with operator-valued kernels and its
application to wavelet decompositions of Lp(R

n, X).
Suppose that the kernel k(u, v) defines a bilinear form K : S(Rn)×S(Rn) → B(X)
such that for φ, ψ ∈ S(Rn) with suppφ ∩ suppψ = ∅ we have

K(φ, ψ) =

∫ ∫
ψ(u)k(u, v)φ(v) dudv.
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Furthermore, we replace the standard boundedness assumptions on the kernel k
by the R-boundedness e.g. of the following sets of operators in B(X):

{|u− v|n k(u, v) : u 6= v}
{
|u− v|n+γ

|v − v0|γ
(k(u, v) − k(u, v0)) : |u− v| > 2 |v − v0| > 0

}

{
|u− v|n+γ

|u− u0|γ
(k(u, v) − k(u0, v)) : |u− v| > 2 |u− u0| > 0

}

for some γ ∈ (0, 1] and all u0, v0. In place of ”weak boundedness”, we assume now
that

{R−nK(φ
( · − u0

R

)
, ψ
( · − u0

R

)
) : R > 0, u0 ∈ R

n}

is R-bounded in B(X) for all bump functions φ and ψ in the unit ball. Then a
special T 1 theorem holds: If X has UMD and if T 1 = 0, T ′1 = 0 (which can be
defined in a similar way as in the scalar case), we obtain a bounded operator T
on Lp(R

n, X), 1 < p <∞, H1(R
n, X) and BMO(Rn, X) (cf. [HW2]).

As a consequence we can improve a result of T. Figiel (see [KaW]): if φ and ψ are
smooth wavelets generating frames φj,k(u) = 2−nj/2φ(2−ju − k), φj,k in L2(R

n),
then for every R-bounded sequence Mj,k ∈ B(X) the wavelet decomposition

Lf =
∑

j

∑

k

Mj,k〈ψj,k, f〉φj,k

converges unconditionally in Lp(R
n, X) with 1 < p <∞ and in H1(R

n, X).

We also have some interpretations of ”T 1 ∈ BMO” which are sufficient to obtain
a bounded operator T in Lp(R

n, X) for 1 < p <∞. In general, they are somewhat
technical but they reduce to a quite natural understanding of ”T 1 ∈ BMO(A)”
if the operators involved belong to a subspace A of B(X) which also has the
UMD property (e.g. a Schatten class Sp with 1 < p < ∞ or the Hille-Tamarkin
operators). Necessary and sufficient conditions for the boundedness of T are ap-
parently unknown, even in the Hilbert space case. The problem is of course the
boundedness of paraproducts (see also [NPTV]).
Tb-theorems of a similar nature are presented in [H]. For boundedness results for
pseudo-differential operators with operator-valued symbols which are also based on
R-boundedness and which have applications to non-autonomous evolution equa-
tions, see [PS].
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[DDHPV] R. Denk, G. Dore, M. Hieber, J. Prüß and A. Venni, New thoughts on old results of
R.T. Seeley, Math. Ann. 328 (2004), 545-583.

[Fig] T. Figiel, Singular integral operators: a martingale approach. In: P.F.X. Müller, W.
Schachenmayer (eds.) Geometry of Banach spaces, London Math. Soc. Lecture Note
Ser. 158, Cambridge University Press, (1990).

[GW] M. Girardi and L. Weis, Operator-valued Fourier multiplier theorems on Lp(X) and
geometry of Banach spaces, J. Funct. Analysis 204 (2003), 320–354.

[H] T. Hytoenen, An operator-valued Tb-theorem, preprint.
[HW1] T. Hytoenen and L. Weis, Singular convolution integrals with operator-valued kernels,

to appear in Math. Zeit.
[HW2] T. Hytoenen and L. Weis, A T (1) theorem for integral transformations with operator

valued kernels, submitted.
[KaW] C. Kaiser and L. Weis, Wavelet transform for functions with values in UMD spaces,

submitted.
[KW] N. J. Kalton and L. Weis, The H∞-calculus and sums of closed operators, Math.

Ann., 321 (2001), no. 2, 319–345.
[KKW] N. J. Kalton, P. Kunstmann and L. Weis, Perburbation and interpolation results for

the H∞ calculus with applications to partial differential equations, to appear in Math.
Ann.

[KuW] P. Kunstmann and L. Weis: Maximal Lp Regularity for parabolic equations, Fourier
multiplier theorems and H∞ functional calculus, in : Functional Analytic Methods
for Evolution Equations (Levico), 65–312 Lecture Notes in Mathematics 1855.

[NPTV] F. Nazarov, G. Pisier, S. Treil and A. Volberg, Sharp estimates in vector Carleson
imbedding theorem and for vector paraproducts, J. Reine Angew. Math. 542 (2002),
147–171.

[NS] A. Noll and J. Saal, H∞-for the Stokes operator on Lp-spaces, Math. Z. 244, 651–688.
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