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Introduction by the Organisers

During the last twenty years there has been considerable activity and progress
in the study of Banach spaces of analytic functions and their operators such as
composition operators, multiplication operators and related natural classes of op-
erators on these spaces. By use of the theory of analytic functions it is often
possible to obtain very precise knowledge of the fine structure of these particular
operators, and that has repercussions for our understanding of all bounded linear
operators between Banach or Hilbert spaces. For example, the invariant subspace
problem for separable Hilbert spaces can be reduced to the study of the invariant
subspace structure of certain composition operators (E. Nordgren, P. Rosenthal
and F. S. Wintrobe, 1987) or certain multiplication operators (C. Apostol, H.
Bercovici, C. Foiaş and C. Pearcy, 1985).
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Therefore, questions concerning invariant subspaces were one of the major topics
in this mini–workshop. A. Atzmon considered in his first contribution scales of
Banach spaces of analytic functions on which the lattice of invariant subspaces
for the shift or the backward shift has no proper gaps. In his second talk he
reported on recent progress concerning the translation invariant subspace problem
on weighted ℓ2 spaces over Z. A. Aleman and S. Richter investigated relations
between the index dimM/zM of an invariant subspace M for the operator of
multiplication by the variable z on Hilbert spaces of analytic functions on the
unit disc D and the boundary behavior of the functions it contains, as well as the
connection between abstract properties of this operator and the boundary behavior
of functions in such Hilbert spaces of analytic functions.

Questions related to composition operators were the second major subject of
the meeting. W. Smith gave an equivalent formulation of the Brennan conjecture
concerning the derivative of conformal maps of the unit disc in terms of com-
pactness of certain weighted composition operators. Th. W. Gamelin related the
essential spectrum of composition operators on uniform algebras to the notion of
hyperbolic boundedness. E. Gallardo–Gutiérrez focused on the problem of char-
acterizing boundedness or compactness of composition operators on Hardy spaces
Hp(Ω) over simply connected domains Ω in the complex plane. In particular she
presented a complete characterization of symbols inducing bounded and compact
composition operators on Hp–spaces over Lavrientev domains (1 ≤ p < ∞). C.
Sundberg considered natural topologies on the set of composition operators on
Banach spaces of analytic functions on the unit disc, for which all composition
operators induced by analytic maps ϕ : D → D are bounded. M. Jury consid-
ered the C∗ algebra CΓ generated by the composition operators Cϕ, ϕ ∈ Γ, Γ
a non–elementary Fuchsian group, and obtained index theorems for certain sums
of weighted composition operators. His proofs involve the use of methods from
noncommutative geometry.

Spectral properties of generalized Cesàro operators and weighted averaging op-
erators on Hardy and weighted Bergman spaces were considered by E. Albrecht.

N. Feldman introduced the idea of interpolating measures for subnormal oper-
ators S, a natural generalization of the notion of bounded point evaluations. In
the case that S = Mz on P 2(µ) is pure, he gave a characterization of interpolating
measures. He also included some illuminating examples. W. T. Ross showed that,
for a finite, compactly supported positive measure µ, the set of cyclic multiplication
operators on L2(µ) coincides with the set Sµ of all multiplication operators Mφ

on L2(µ), φ ∈ L∞
i (µ), where L∞

i (µ) denotes the set of all µ–essentially bounded
functions that are one–to–one on a set of full µ-measure. He also showed that Sµ
has a common cyclic vector if and only if the continuous part of µ vanishes.

H. Jarchow discussed the problem of bounded extensions of bounded bilinear
forms with an application to H∞ and the disc algebra.

R. Mortini gave in his talk a complete characterization of all countably gener-
ated prime ideals in H∞: A nonzero prime ideal I in H∞ is countably generated
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if and only if either I = {f ∈ H∞; f(z0) = 0} for some z0 ∈ D or if I is the ideal

generated by the n-th roots of Sσ(z) = exp
(
− 1+σ̄z

1−σ̄z

)
for some σ ∈ ∂D.

N. Nikolski showed that the condition numbers of the worst N × N matri-
ces A satisfying a Besov space Bsp,q functional calculus behave asymptotically as
Ns/ det(A) for N → ∞. The proof depends on estimates of Besov analytic capac-
ities of N points subsets of the unit disc.

S. Shimorin discussed a new type of area theorems for univalent functions and,
as a consequence, obtained a new series of sharp integral inequalities. His work
was motivated by recent progress on Brennan’s conjecture.

For a scale of spaces of analytic functions in D including the Korenblum space,
A. Borichev obtained quantitative uniqueness theorems of the Lyubarski–Seip
type.

Motivated by Birkhoff’s ergodic theorem, F. Bayart and S. Grivaux have re-
cently introduced an interesting new concept in hypercyclicity, that of frequently
hypercyclic operators. In her talk, S. Grivaux gave some sufficient criteria in
terms of Banach space properties of the underlying space. K.-G. Grosse–Erdmann
showed that, for a frequently hypercyclic operator T , the operator T ⊕ T is hy-
percyclic. He also proved that an operator T on the space of entire functions
that commutes with the differentiation operator and that is not a multiple of the
identity is frequently hypercyclic.

On Wednesday morning a problem session chaired by Th. W. Gamelin had been
organized. Some of the problems discussed during that session are included at the
end of this report. Further open questions were pointed out in many of the talks.

This mini–workshop was organized by Ernst Albrecht (Saarbrücken), Jean Es-
terle (Bordeaux), Raymond Mortini (Metz) and Stefan Richter (Knoxville). Un-
fortunately, Jean Esterle was unable to participate. All the participants were
grateful for the hospitality and the stimulating atmosphere of the Forschungsin-
stitut Oberwolfach.
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Abstracts

Invariant subspaces for shifts and for backward shifts

Aharon Atzmon

Let X be an infinite dimensional complex Banach space and T a bounded linear
operator on X . Denote by Lat T the collection of all closed invariant subspaces
of T . A natural question is whether for every two elements M1, M2 such that
M1 ⊂ M2 and dimM2/M1 > 1, there exists an element M in Lat T such that
M1 ( M ( M2. If the answer is positive, we say that Lat T has no proper gaps.

We consider this problem for shifts and backward shifts on some classical Banach
spaces of analytic functions on the unit disc D.

For 1 ≤ p < ∞, and α ∈ R, we denote by Dp
α the Banach space of all analytic

functions f on D for which the norm

‖f‖ =
( ∞∑

n=0

|f̂(n)|p(n+ 1)α
)1/p

is finite, where f̂(n) denotes the n-th Taylor coefficient of f . For 1 ≤ p <∞, and
α > −1, we denote by Apα the Banach space of all analytic functions f on D for
which the norm

‖f‖ =
(∫

D

|f(z)|p(1 − |z|2)αdA(z)
)1/p

is finite, where dA denotes the area measure. The spaces Ap0 will be denoted by
Ap.

The shift S and the backward shift B defined on analytic functions f on D by

Sf(z) =zf(z), z ∈ D,

Bf(z) =z−1(f(z) − f(0)), z ∈ D \ {0},
are bounded linear operators on all these Banach spaces.

We prove the following results:

Theorem 1. Lat T has no proper gaps for the spaces Dp
α, α ≥ 0, p = 1, 2, and

for 1 ≤ p <∞, α > p− 1.

Theorem 2. Let E be a Banach algebra of holomorphic functions on D in which
the polynomials are dense, which is invariant under the shift S and the backward
shift B. If for some α ≥ 0,

‖zn‖ =O(nα), n→ ∞, and

log+ ‖Bn‖ =O(n1/2), n→ ∞,

then Lat S has no proper gaps.

Remark. In this case the elements of Lat S are closed ideals in E.

Theorem 3. LatB has no proper gaps for the spaces A2
α, α > −1, the spaces Ap,

1 < p ≤ 2, and the spaces Dp
α, 1 < p <∞, α < −1.
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Remarks. 1.) From the known results on the structure of S invariant subspaces
for the spaces Hp(D), 1 ≤ p <∞, and the structure of w∗ closed ideals in H∞(D),
it follows that Lat S has no proper gaps on Hp(D) for 1 ≤ p <∞, and by duality
the same holds true for LatB on these spaces.

2.) It is known that the problem whether Lat S has no proper gaps on the
Bergman space A2 is equivalent to the invariant subspace problem on Hilbert
space, and by duality, the same is true for the problem whether LatB has no
proper gaps for the Dirichlet space D2

1.

The proofs of Theorems 1–3 are given in [2] and are based on an invariant
subspace theorem in [1].

References

[1] A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces,
Acta Math. 144 (1980), 27–63.

[2] A. Atzmon, Maximal, minimal, and primary invariant subspaces, J. Funct. Anal. 185

(2001), 155–213.

Hilbert spaces of entire functions and translation invariant subspaces

Aharon Atzmon

Let ω = (ωn)n∈Z be a sequence of positive numbers such that for some constant
c > 0

(1) c−1 ≤ ω(n+ 1)

ω(n)
≤ c, ∀n ∈ Z,

and denote by ℓ2ω(Z) the Hilbert space of all sequences a = (a(n))n∈Z for which
the norm

‖a‖ =
( ∞∑

n=−∞

|a(n)|2ω2(n)
)1/2

is finite. The assumption (1) implies that ℓ2ω(Z) is translation invariant, and it is
an open problem whether for every such ω this space has a nontrivial translation
invariant subspace. The problem was reduced by Apostol [1] to the case that

logω(n) = o(|n|), n→ ±∞.

The answer is known to be positive if
∑∞
n=−∞

| logω(n)|
n2+1 < ∞ [2], when ω is non–

increasing and ω(n) = 1 for n ≥ 0 [6], when ω(−n)ω(n) = 1, ∀n ∈ Z, and the
sequence (logω(n))∞n=0 is concave [5], and when ω is even [4]. Our new results are:

Theorem 1. Assume that ω is a sequence which satisfies (1), ω(0) = 1, the
sequence (ω(n))∞n=0 is non–decreasing and

∑∞
n=1 n

−3/2 logω(n) <∞. If

lim sup
n→∞

n−1/2 logω(−n) < 0

then ℓ2ω(Z) has a nontrivial translation invariant subspace.
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To state our second result, we introduce a notation. For a sequence ω that
satisfies (1), we denote by ω∗ the sequence on Z+ defined by

logω∗(n) =
n3/2

π

∞∑

j=1

logω(j)

j3/2(n+ j)
, n ∈ Z+ .

Theorem 2. Let ω be a sequence that satisfies (1), the sequence (logω(n))∞n=0 is
concave and non–negative, and one of the following two condition holds:

(a)
∑∞
n=1 n

−2 log(n) <∞.
(b) logω(n+ 1) + logω(n− 1) − 2 logω(n) = O(n−1), n→ ∞.

If
∑∞

n=1 n
−3/2 log(n) = ∞, and ω(−n)ω∗(n) = O(1), n → ∞, then ℓ2ω(Z) has a

nontrivial translation invariant subspace.

The proofs of the theorems are based on sampling theorems for Hilbert spaces
of entire functions of zero exponential type introduced in [3].
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Interpolating Measures for Subnormal Operators

Nathan S. Feldman

If µ ∈M+(K) is a positive regular Borel measure supported on a compact set K
in the complex plane, then let R2(K,µ) denote the closure of Rat(K), the rational
functions with poles off K, in L2(µ). If we define SK,µ = Mz on R2(K,µ), then
SK,µ is a typical rationally cyclic subnormal operator. When K is polynomially
convex, then R2(K,µ) = P 2(µ), the closure of the analytic polynomials in L2(µ),
and Sµ := SK,µ will be a cyclic subnormal operator.

If λ ∈ K, then λ is a bounded point evaluation (b.p.e.) for SK,µ = Mz on
R2(K,µ) if there is a constant C > 0 such that |f(λ)| ≤ C‖f‖L2(µ) for all f ∈
Rat(K). This is equivalent to requiring that the densely defined linear operator
A : Rat(K) → C given by A(f) = f(λ) extends to an (onto) bounded linear
operator A : R2(K,µ) → C (the extension is also called A).

Thomson’s Theorem [1] says that if Sµ = Mz on P 2(µ) is pure, then b.p.e.’s
always exist for Sµ. However it is known (see [2]) that b.p.e.’s need not exist for
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R2(K,µ) spaces. We are looking to generalize the idea of a b.p.e. for a R2(K,µ)
space to the notion of an interpolating measure for any subnormal operator.

For a measure ν ∈ M+(K), ν will be an interpolating measure for SK,µ = Mz

on R2(K,µ) if the densely defined map A : Rat(K) → L2(ν) defined by A(f) = f
extends to be an (into and) onto bounded linear operator A : R2(K,µ) → L2(ν).

Question 1. If K is a compact set in the complex plane and µ a measure on K,
then does SK,µ = Mz on R2(K,µ) have an interpolating measure?

For an arbitrary operator S on a Hilbert space H, a measure ν is said to be
an interpolating measure for S if there exists an (into and) onto bounded linear
operator A : H → L2(ν) such that AS = NνA, where Nν = Mz on L2(ν).

Question 2. If S is a subnormal operator, then does S have an interpolating
measure? If not, which subnormal operators have interpolating measures?

Theorems. (a) If Sµ = Mz on P 2(µ) is pure and G is the set of b.p.e.’s for Sµ,
then a measure ν is an interpolating measure for Sµ if and only if ν is a discrete
measure carried by G whose atoms form a P 2(µ) interpolating sequence.

(b) If S = Mz on H2(G) where G = D \ [0, 1], then Lebesgue measure on [0, 1]
is an interpolating measure for S.

(c) If S = Mz on L2
a(D)⊥ is the dual of the Bergman operator, then for any

compact set K ⊆ D, ν = area measure on K is an interpolating measure for S.

Question 3. Are there bounded regionsG in C such that S = Mz on the Bergman
space L2

a(G) has a continuous interpolating measure that is supported on ∂G?
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Common cyclic vectors for normal operators

William T. Ross

(joint work with Warren Wogen)

It is well known that every bounded normal operator on a separable Hilbert space
is unitarily equivalent to a multiplication operator Mφ : L2(µ) → L2(µ), Mφf =
φf , where µ is a positive, finite, compactly supported measure in the plane, and
φ ∈ L∞(µ), the µ-essentially bounded functions.

Using a beautiful theorem of Bram [4], along with the change of variables for-
mula and the Stone-Weierstrass theorem, one can show [6] that the cyclic multi-
plication operators on L2(µ) are

Sµ := {(Mφ, L
2(µ)) : φ ∈ L∞

i (µ)}.
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Here ‘cyclic’ means that there is an f ∈ L2(µ) such that

∨
{φnf : n = 0, 1, · · · } = L2(µ),

and L∞
i (µ) are the µ-essentially bounded functions that are one-to-one on a set of

full µ-measure. We ask the question: Does Sµ have a common cyclic vector? In
other words, is there a single f ∈ L2(µ) so that

∨
{φnf : n = 0, 1, · · · } = L2(µ)

for every φ ∈ L∞
i (µ)?

Such common cyclic vector problems have been explored before [3, 8] but usually
for classes of operators of the form M∗

φ , where φ is a non-constant multiplier of
some reproducing kernel Hilbert space of analytic functions on a planar domain.
The main theorem from these papers is that this class of operators has a common
cyclic vector and the vector takes the form

f =

∞∑

j=1

cjkλj
,

where kλj
are the reproducing kernels for the Hilbert space.

Our main common cyclic vector theorem is the following:

Theorem 1. Suppose µ = µd+µc, is the decomposition of µ into its discrete part
µd and its continuous part µc. Then Sµ has a common cyclic vector if and only if
µc ≡ 0.

The proof that Sµd
has a common cyclic vector, as well as some other results,

was shown in [7] using Borel series. In [6], we show, using construction involving
Szegö’s theorem, that Sm, where m is standard Lebesgue measure on the unit
circle T , does not have a common cyclic vector. We then use this result to show,
by using the theory of Lebesgue spaces [5], that Sµc

(assuming µc 6≡ 0) does not
have a common cyclic vector. The result now follows from the decomposition

(Mφ, L
2(µ)) ≃ (Mφ, L

2(µd)) ⊕ (Mφ, L
2(µc)).

Since Sm does not have a common cyclic vector, one can ask as to whether
or not there is some interesting subclass of Sm that does have a common cyclic
vector. We have the following positive result:

Theorem 2. Let A be the class of φ ∈ C1+ǫ(T ) for some ǫ > 0, such that φ is
injective, except possibly for a finite number of points, and such that the derivative
of φ never vanishes. Then A has a common cyclic vector.

The proof of this theorem involves some estimates of harmonic measure and a
generalization of Szegö’s theorem from [1, 2].
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Branching point area theorems for univalent functions

Serguei Shimorin

Area methods are a classical tool in the theory of univalent functions. Such topics
as Grunsky, Goluzin, or Schiffer-Tammi inequalities are in fact different modifi-
cations of the Polynomial Area Theorem which in turn reduces to an appropriate
application of the Green formula. Recent progress (due to Hedenmalm and the
author) in estimating integral means of the derivatives of univalent functions (see
[2], [1]) was based on the use of area inequalities combined with techniques of
Bergman spaces. This is an inspiration for taking a new look on area methods in
the theory of conformal mappings.

The classical polynomial area theorem for univalent functions can be formulated
as follows: if ψ is a function univalent in the unit disk D of the complex plane C,
and p is a Laurent polynomial

p(z) =
m∑

n=0

pn
zn
,

then the composition p(ψ) written as a Laurent series converging for z near T = ∂D

p(ψ(z)) =

+∞∑

k=−∞

ckz
k

satisfies

(1)
[
p(ψ), p(ψ)

]
≤ 0,

where
[
·, ·

]
is the indefinite inner product defined as

(2)
[
g, g

]
=

∑

k∈Z

k|ck|2 for g(z) =
∑

k∈Z

ckz
k.
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It is well-known that the polynomial area theorem is equivalent to different mod-
ifications of the Grunsky inequalities and Goluzin inequalities which are usually
more important for the applications than the area theorem itself. In fact, the
derivation of Grunsky or Goluzin inequalities from the area theorem reduces to
an effective (in appropriate sense, say, for rational functions p written in the form
of sums of partial fractions) calculation of the positive and negative parts of the
decomposition of p(ψ) with respect to the above indefinite norm.

A new type of area theorems is obtained by considering branching point com-
positions with univalent functions. More precisely, we consider functions of the
form

(3) p(z) = (z − µ1)
θ1 . . . (z − µn)

θnq(z),

where µ1, . . . , µn ∈ ψ(D), “branching multiplicities” θk are from the interval (0, 1),
and q are rational functions with poles in ψ(D). The main point of the study is an
analysis in the two-sided Dirichlet space on the unit circle supplied with the natural
indefinite inner product. As a result, we obtain a new series of sharp integral
inequalities. We discuss also branching point versions of Grunsky and Goluzin
inequalities. In order to formulate them in an economical form, we introduce an
abstract language of domination of kernel functions. This language gives a better
understanding of even such classical topics as Goluzin-Lebedev inequalities for
univalent functions.
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Asymptotics of Condition Numbers of Large Matrices

Nikolai Nikolski

How to bound the resolvent of a matrix or an operator in terms of its ”spectral
data”? For instance, for N ×N matrices acting on CN the question is, given a set
ΥN of N ×N invertible matrices, how to find a function ΦN such that

‖T−1‖ ≤ ΦN (δ)

for every T ∈ ΥN , where δ stands for the minimum modulus of the eigenvalues of
T , δ = min |λi(T )|? how the best possible majorant ΦN looks like? how it behaves
as N −→ ∞? does it always exist?

It is well-known that, to be meaningful, these questions require a kind of nor-
malization. In numerical analysis, the usual normalization is to replace ‖T−1‖
by the condition number CN(T ) = ‖T ‖ · ‖T−1‖ and then look for an estimate
for CN(T ) in terms of ‖T ‖/δ. An equivalent approach is simply to include the
normalization condition ‖T ‖ ≤ 1 into the definition of Υ.
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Here, we use the second kind of normalization conditions and consider operators
T : X −→ X acting both on finite dimensional Banach/Hilbert space X , dimX =
N < ∞ (”N × N matrices”) and on infinite dimensional ones. In order to have
a more flexible classification of these operators than those given by the standard
normalization ‖T ‖ ≤ 1, we consider families Υ of operators obeying a functional
calculus over a function space (algebra) A, i.e.

‖f(T )‖ ≤ C‖f‖A
for every polynomial f . Let AC be the set of all such operators. Using this func-
tional calculus classification for N ×N matrices, we should consider as a true pa-
rameter for asymptotics of inverses or condition numbers not the dimension N but
the degree of the minimal annihilating polynomial of T , n = deg(mT ) ≤ N . That
is why we can pass for free from N ×N matrices to infinite dimensional algebraic
operators of degree ≤ n on an arbitrary Banach/Hilbert space X . Recall that T is
algebraic if there exists a polynomial p 6= 0 such that p(T ) = 0; we write the mini-
mal annihilating polynomial in a monic form, mT (z) = mσ(z) =

∏
1≤k≤n(λk − z),

where σ = {λ1, . . . , λn} is the spectrum σ(T ) of T (consisting of eigenvalues of T ,
with possible multiplicities as they occur in the minimal polynomial).

Given a function space A on the unit disc D = {z ∈ C : |z| < 1}, a constant
C ≥ 1, and a family σ = {λ1, . . . , λn} in D\{0}, we denote Υ(mσ, AC) the set of
all algebraic operators T such that T ∈ AC and mσ(T ) = 0. In order to measure
the size of inverses and condition numbers we use the following quantities

ϕ(mσ , AC) = sup{‖T−1‖ : T ∈ Υ(mσ, AC)},
Φn(∆, AC) = sup{ϕ(mσ, AC) : σ ⊂ {z : 1/∆ ≤ |z| ≤ 1}, card(σ) ≤ n} =

= sup{‖T−1‖ : T ∈ AC , r(T
−1) ≤ ∆, deg(T ) ≤ n},

where r(·) stands for the spectral radius. If A is a Banach algebra, then the
worst operator realizing the sup in ϕ(mσ, A1) is the quotient operator S/mσA of
the shift operator S : A −→ A, Sf = zf acting on A/mσA, or equivalently, its
adjoint operator S∗f = 1

z (f − f(0)) (the backward shift) acting on the subspace
(A/mσA)∗ =Kmσ

⊂ A∗,

Kmσ
= span

( 1

1 − λz
: λ ∈ σ

)
,

with an obvious modification in the case of multiplicities in σ = {λ1, . . . , λn} (m

times repeated λ gives the series 1
(1 − λz)j

, 1 ≤ j ≤ m).

Notice also that the standard normalization ‖T ‖ ≤ 1 is equivalent to the condi-
tion T ∈ A1, where ‖ ·‖A is the uniform norm ‖ ·‖∞ for the case of a Hilbert space

X , ‖f‖∞ = max|z|≤1|f(z)|, and is the Wiener class norm ‖f‖W =
∑

k≥0 |f̂(k)| for
the case of an arbitrary Banach space X .

The case of all N -dimensional operators (matrices) acting on a Banach space,
T : X −→ X , dimX = N , was considered by J.J.Schäffer (1970) who, answer-
ing a question of B.L. van der Waerden, has showed that ‖T−1‖ · |det(T )| ≤
kN‖T ‖N−1 for every invertible N × N matrix T , where kN ≤

√
eN . It follows
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that ‖T−1‖ ≤
√
eN(r(T−1))N for every contraction ‖T ‖ ≤ 1 on a N -dimensional

Banach space X . E.Gluskin, M.Meyer, and A. Pajor (1994) gave another proof
to Schäffer’s result and disproved a Schäffer conjecture about the lower esti-
mate showing by a probabilistic method that kN is not bounded and moreover,

kN ≥ c1
loglog(N)

√
N

log(N) . The same paper contains a stronger counterexample by

J. Bourgain giving kN ≥ c2
√

N
log(N) . Finally, H. Queffelec (1994), using a deter-

ministic (number theory) approach, proved that Schäffer’s inequality is sharp, i.e.,

kN ≥ c3
√
N .

In our approach, considering an operator T in Υ(AC ,mσ), we begin with an
observation that ‖T−1‖ ≤ C · inf‖f‖A, where f runs over all solutions to the
Bezout equation zf +mσg = 1. In the case when A is a Banach algebra, it leads
to a two sided estimate a · capA(σ) ≤ ϕ(mσ, AC) ≤ b · capA(σ), where a, b > 0 are
constants and capA stands for the A-zero capacity (at z = 0)

capA(σ) = inf{‖f‖A : f(0) = 1, f |σ = 0}.
Therefore, in order to estimate ϕ(mσ , AC), or to know asymptotics for Φn(∆, AC)
as ∆ −→ ∞ and/or n −→ ∞, we need to bound capA(σ) or the following maximal
capacities, an annular and a circular ones,

κn(∆, A) = sup{capA(σ) : σ ⊂ {z : 1/∆ ≤ |z| ≤ 1}, card(σ) ≤ n},
κn(∆, A) = sup{capA(σ) : σ ⊂ {z : |z| = 1/∆}, card(σ) ≤ n}.

This idea applying to the analytic Besov spaces A = Bsp,q (s ≥ 0, 1 ≤ p, q ≤ ∞)
gives the following estimates

capBs
p,q

(σ) ≤ c
(card(σ))s

|mσ(0)| , κn(∆, Bsp,q) ≤ c∆nns

for s > 0, where c = c(s, q), and

capBs
p,q

(σ) ≤ c
(log(card(σ)))1/q

|mσ(0)| , κn(∆, B
s
p,q) ≤ c∆n(log(n))1/q

for s = 0, where c > 0 is a numerical constant. It is also shown that for s > 0
these estimates are asymptotically sharp, namely

k

2s+1
ns ≤ lim

∆−→∞

κn(∆, A)

∆n
≤ lim

∆−→∞

κn(∆, A)

∆n
.

The corresponding inequalities for the inverses and condition numbers are imme-
diate consequences of these estimates.

Recall that Besov classes functional calculi are applied for the following opera-
tors.

(1) The set Υ of Hilbert space power bounded operators supk≥0 ‖T k‖ = a.

Here, V.Peller’s B0
∞,1 calculus (1982) is applied, which implies ‖T−1‖ ≤ const ·

a2 log(deg(T ))
|mT (0)| .
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(2) A similar bound holds for Banach space Tadmor-Ritt operators T : X −→
X , ‖R(λ, T )‖ ≤ C|λ − 1|−1 for |λ| > 1, by using a P.Vitse’s B0

∞,1 functional
calculus (2004).

(3) The set of Banach space Kreiss operators T defined by the resolvent estimate
‖R(λ, T )‖ ≤ C(|λ|−1)−1 for |λ| > 1. In this case, we use P.Vitse’s B1

1,1 functional
calculus (2003), which gives an asymptotics ∆nn (up to constants do not depending
on ∆ and n) for the capacity κn(∆, B

1
1,1) and for inverses/condition numbers

Φn(∆, (B
1
1,1)C), where as before n = deg(T ), ∆ > 1. A higher growth of the

resolvent ‖R(λ, T )‖ ≤ C(|λ| − 1)−s, s > 1, leads to a Bs1,1 calculus (V. Peller;
P. Vitse), and hence to the corresponding estimates for inverses and condition
numbers in terms of the Bs1,1 capacity (which is of the order of ∆nns).

(4) The set of Hilbert space operators T satisfying C = supk≥1 ‖T k‖/kβ <

∞, β > 0. By yet another Peller’s theorem (1982), T obeys a B2β
∞,1 functional

calculus. Therefore, ‖T−1‖ ≤ c
(deg(T ))2β

|mT (0)| , for every algebraic operator of this

class. For β < 1/2, this is better than an estimate which follows from an l1A(kβ)-
functional calculus (and, consequently, is true for all Banach space operators sat-
isfying supn≥1 ‖T k‖/kβ < ∞). By the way, for β > 1/2, the obvious l1A(kβ)-
functional calculus can not be improved even for operators on a Hilbert space:
there exists a Hilberts space operator satisfying supk≥1 ‖T k‖/kβ < ∞ such that
the norm f 7−→ ‖f(T )‖ is equivalent to ‖f‖l1A(kβ) (N.Varopoulos, 1972).

We also consider yet another series of function spaces, namely,

lqA(wk) =
{
f =

∑

k≥0

f̂(k)zk : ‖f‖lqA(wk) =
( ∑

k≥0

∣∣f̂(k)
∣∣qwqk

)1/q}
,

where wk > 0 such that limk w
1/k
k = 1, 0 < infk

wk+1

wk
≤ supk

wk+1

wk
< ∞ and

1 ≤ q ≤ ∞. It is shown that

caplqA(wk)(σ) ≤ γq(card(σ))

|mσ(0)| ,

where γq(n) is defined in terms of the so-called Lagrange transform of the weight
sequence (wk)k≥0; in particular, for wk = kβ , k ≥ 1 (w0 = 1), γq(n) ≤ nβ for q ≥ 2

and γq(n) ≤ anβ+ 1
q
− 1

2 + b for 1 ≤ q < 2, where a, b > 0 are constant depending

only on q and β. As a corollary one can get an estimate
∥∥T−1

∥∥ ≤ bCnβ+(1/2)

|mT (0)| ,

where b > 0 is a constant depending on (wk), for every Banach space operator T
with deg(T ) ≤ n and C = supk≥1 ‖T k‖/kβ <∞.

Previous results can be viewed as bounding ‖1/z‖A/mσA

/
‖1/z‖H∞/mσH∞ . We

also briefly consider the problem of comparison of the norms a 7−→ ‖a‖A/mσA,
where A is a function Banach algebra on D, and a 7−→ ‖a‖H∞/mσH∞ for an
arbitrary function a on σ. This is a kind of the Nevanlinna-Pick interpolation
problem for a function algebra A. In fact, we consider three function algebras
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only, namely, B1
1,1, W , B0

∞,1, and obtain estimates for the quantity

kn(A) = sup
{ ‖a‖A/mσA

‖a‖H∞/mσH∞

: a ∈ A, a 6= 0, σ ⊂ D, card(σ) ≤ n
}
.

We show that for all three algebras kn is equivalent to n despite the fact that
these (strictly) embedded algebras B1

1,1 ⊂ W ⊂ B0
∞,1 ⊂ H∞

⋂
C(D) are quite

different. For instance, ‖zn‖B1
1,1

is equivalent to n as n −→ ∞, but for three other

algebras ‖zn‖ is bounded; the constants describing the asymptotics of the worst
norm ‖T−1‖ as T ∈ AC , n = deg(T ) −→ ∞, also behave differently for all three
algebras (namely, as it follows from the preceding results, they are of the order of
log(n+ 1),

√
n, and n, respectively).

The results of this talk will be published in ”Algebra i Analiz” (St. Petersburg
Math. Journal), 2005.

Uniqueness theorems for Korenblum type spaces

Alexander Borichev

(joint work with Yuri Lyubarskii)

Given a topological space X of analytic functions in the unit disc D and a class E
of subsets E of D, we call a non-decreasing positive function M : [0, 1) → (0,∞) a
minorant for the pair (X, E) and write M ∈ M(X, E) if

f ∈ X, E ∈ E ,
log |f(z)| ≤ −M(|z|), z ∈ E, (1)

imply that f = 0.
Clearly, M(X, E) 6= ∅ implies that E ⊂ U(X), where U(X) is the family of the

uniqueness subsets E for the space X : E ∈ U(X) if and only if

f ∈ X, f
∣∣E = 0 =⇒ f = 0.

Suppose that H∞ ⊂ X ⊂ A(λ), for some λ, where

A(λ) =
{
f ∈ Hol(D) : sup

z∈D

|f(z)|/λ(|z|) <∞
}
.

Then a simple argument shows that the class M(X,U(X)) is empty. The reason
is that the class U(X) contains subsets E ⊂ D which are not massive enough: E
may be the union of clusters Ej of nearby points in such a way that the estimate
(1) on x ∈ Ej implies a similar estimate (with M replaced by M/2) on the whole
Ej . That is why we need to consider only elements in the family U(X) which
are sufficiently separated. In [3], the authors deal with the case X = H∞, and
consider the class SU(H∞) of hyperbolically separated subsets E of D that are
uniqueness subsets for H∞. They prove that

M ∈ M(H∞,SU(H∞)) ⇐⇒
∫

0

dt

tM(1 − t)
<∞.
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Here we work with the scale of spaces

Ar
s =

{
f ∈ Hol(D) : log |f(z)| ≤ r logs

1

1 − |z| + cf
}
, r, s > 0,

As =
⋃

r<∞

Ar
s.

We have H∞ ⊂ As ⊂ A1 ⊂ At, 0 < s < 1 < t, where A1 is the so called
Korenblum space,

A1 =
{
f ∈ Hol(D) : |f(z)| ≤ cf

(1 − |z|)c′f
}
.

The uniqueness subsets for As are described by Korenblum [2] (1975, s = 1)
and Seip [5] (1995, s > 0). For 0 < s < 1, we define SU(As) as the class of
hyperbolically separated subsets E of D that are uniqueness subsets for As.

Theorem 1. For regular M , 0 < s < 1,

M ∈ M(As,SU(As)) ⇐⇒
∫

0

dt

tM(1 − t)
<∞.

For s = 1, no hyperbolically separated subset of D belongs to U(A1). The results
of Korenblum and Seip do not give a complete description of U(Ar

1), r < ∞.
However, there is only a small gap between necessary conditions and sufficient
conditions. In particular, it is known that every U(Ar

1) contains hyperbolically
separated subsets. We define SU(A1) as the class of E ⊂ D such that for every r
there exists a hyperbolically separated subset Er of E such that Er ∈ U(Ar

1).

Theorem 2. For regular M ,

M ∈ M(A1,SU(A1)) ⇐⇒
∫

0

dt

tM(1 − t)
<∞.

For s > 1, we introduce

ρs(z) = (1 − |z|)
(
log

1

1 − |z|
)(1−s)/2

,

and say that E is s-separated if for some ε > 0,

|λ− µ| ≥ ερs(λ), λ, µ ∈ E, λ 6= µ.

We define SU(As), s > 1, as the class of E ⊂ D such that for every r there exists
an s-separated subset Er of E such that Er ∈ U(Ar

s).

Theorem 3. For regular M , s > 1,

M ∈ M(As,SU(As)) ⇐⇒
∫

0

(
log

1

t

)s−1 dt

tM(1 − t)
<∞.

Remarks. 1. In Theorems 1–3, when the integrals diverge, we can find E ∈
SU(As) and f ∈ H∞ \ {0} satisfying the estimate (1).

2. Our result should be compared to that by Pau and Thomas [4] concerning
M(H∞, E), for some special classes E ⊂ SU(H∞).
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3. By duality, using a method of Havinson [5], we can deduce from Theorem 2
a result on approximation by simple fractions with restrictions on coefficients in
the space C∞

A = C∞(T) ∩H∞.

Question. How to get analogous results for the Bergman space (no description
of uniqueness subsets is known yet), for the spaces Ar

s, 0 < s < 1?
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Ergodic linear measure-preserving transformations of Banach spaces

Sophie Grivaux

(joint work with Frédéric Bayart)

The topic of this talk is the study of the dynamics of bounded linear operators
on a separable complex Banach space X . The results presented here are taken
from [3]. We concentrate on the measure-theoretic point of view: under which
conditions on X and T ∈ B(X) can T be viewed as an ergodic measure-preserving
transformation of (X,B,m), where m is a probability measure on X? We under-
take this study with an aim at frequent hypercyclicity questions. The notion of
frequent hypercyclicity was introduced in [1]:

Definition 1. An operator T on X is said to be frequently hypercyclic provided
there exists a vector x such that for every non empty open subset U of X , the set
of integers n such that T nx belongs to U has positive lower density. In this case,
x is called a frequently hypercyclic vector for T .

This is a more restrictive notion than the classical hypercyclicity (see for in-
stance [6]), the main difference being the lack of Baire Category methods in the
study of frequent hypercyclicity theory. This lead us to develop in [1] the measure-
theoretic method we alluded to above, which was inspired by the works of Flytzanis
([5]) and Bourdon and Shapiro ([4]). A major role in such questions is played by
the eigenvectors associated to eigenvalues of T of modulus 1:

Definition 2. Let T be a bounded operator on X and σ a probability measure
on the unit circle T = {λ ∈ C ; |λ| = 1}. We say that T has a σ-spanning set of
unimodular eigenvectors if for every σ-measurable subset A of T with σ(A) = 1,
the eigenspaces ker(T − λI), λ ∈ A, span a dense subspace of X . If the measure
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σ can be chosen to be continuous (i.e. σ({λ}) = 0 for every λ ∈ T), then we say
that T has a perfectly spanning set of unimodular eigenvectors.

The starting point of our investigation here is the following result of [1]: let T be
a bounded operator on a separable Hilbert space H . If T has a perfectly spanning
set of unimodular eigenvectors, then T is frequently hypercyclic, because it admits
an invariant gaussian measure with respect to which T is weak-mixing. We obtain
extensions of this result to the Banach space setting. The possibility of such
extensions depends on two features of the pair (X,T ): the geometry of X (its type,
Fourier-type, whether it contains c0 or not. . . and the possibility to parametrize
the unimodular eigenvector fields in a regular way: if the unimodular eigenvectors
are σ-spanning, there exists a countable family of functions Ei : (T,B, σ) → X
such that ||Ei(λ)|| ≤ 1 for i ≥ 1 and sp[Ei(λ) , i ≥ 1] = ker(T −λ) for every λ ∈ T

([2]). “Regularity” means that the functions Ei can be chosen to be Lipschitz, or
α-Hölderian, etc. . .

Theorem 3. Under one of the following assumptions, T admits an invariant non-
degenerate gaussian measure with respect to which it is weak-mixing. In particular
T is frequently hypercyclic.

(1) if X has type 2 (no regularity assumption on the Ei’s)
(2) if X is arbitrary and the Ei’s are Lipschitz (no assumption on the space)
(3) if X does not contain a copy of c0 and the Ei’s are α-Hölderian for some

α > 1
2 (mixed assumptions)

(4) if X is a p-convex and p′-concave Banach lattice for some 1 < p ≤ 2 and
the Ei’s are α-Hölderian for some α > 1

2 − 1
p′ : for instance for the spaces

Lp(µ), 1 < p ≤ 2.

We do not know if these assumptions are really necessary: if T ∈ B(X) has a
perfectly spanning set of unimodular eigenvectors, is it always true that T admits
a non-degenerate gaussian measure with respect to which it is weak-mixing? Is it
always frequently hypercyclic?

We also investigate the converse assertion, which is known to be true in the
Hilbert space case ([5]):

Theorem 4. Let X be a space of cotype 2, and T ∈ B(X). Suppose that there
exists a non-degenerate invariant gaussian measure m for T . Then the unimodular
eigenvectors of T span a dense subspace of X. If T is ergodic (or weak-mixing,
which is the same in this context) with respect to m, then the unimodular eigen-
vectors of T are perfectly spanning. This does not remain true on general Banach
spaces.

We conclude by recalling the main open question in hypercyclicity, which mo-
tivated this study (T is weak-mixing on (X,B,m) if and only if T × T is ergodic
on (X ×X,B ⊗ B,m⊗m)): if T is hypercyclic on X , is T ⊕ T hypercyclic on the
direct sum X ⊕X?
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On frequent hypercyclicity

Karl-Goswin Grosse-Erdmann

(joint work with Antonio Bonilla and Alfredo Peris)

Motivated by Birkhoff’s ergodic theorem, F. Bayart and S. Grivaux have recently
introduced an interesting new concept in hypercyclicity, that of frequently hyper-
cyclic operators.

We recall that a vector x in a topological vector space X is called hypercyclic
for a (continuous and linear) operator T on X if its orbit {x, Tx, T 2x, . . .} is dense
in X , that is, if the orbit meets every non-empty open subset U of X ; see [6]. Now,
Bayart and Grivaux call x frequently hypercyclic for T if its orbit meets every non-
empty open subset U of X ’often’ in the sense that each set {n ∈ N : T nx ∈ U}
has positive lower density. The operator T is called frequently hypercyclic if it
possesses a frequently hypercyclic vector. This new notion has been thoroughly
investigated by Bayart and Grivaux [1], [2].

We report here on joint work with Antonio Bonilla [3], [4] and with Alfredo
Peris [7]; we address some problems posed by Bayart and Grivaux, and we present
new examples of frequently hypercyclic operators on spaces of analytic functions.

In the sequel, we let X denote an F-space, that is, a complete and metrizable
topological vector space, and we assume that X is separable.

A. Question 4.8 of [2] asks if every frequently hypercyclic operator T on X has the
property that the operator T ⊕ T , acting on X ×X , is hypercyclic. This question
was motivated by the ’Great open problem in hypercyclicity’, due to D. Herrero,
that asks if the same property holds for all hypercyclic operators.

Theorem 1 ([7]). For any frequently hypercyclic operator T on X the operator
T ⊕ T is hypercyclic.

The proof uses, in an essential way, a theorem of Erdös and Sárközy by which
the difference set A−A of any set A of positive lower density has bounded gaps.

B. Weighted backward shift operators on the sequence space ℓp, 1 ≤ p < ∞, are
defined by T (xn) = (wn+1xn+1), where w = (wn) is a positive bounded sequence.



2064 Oberwolfach Report 36/2005

In [2] it is shown that
∑∞
n=1

1
(w1...wn)p < ∞ is a sufficient condition for frequent

hypercyclicity of T , while the following condition (C) is shown to be necessary:
there exists a sequence (nk) of positive lower density such that

∞∑

k=1

1

(w1 . . . wnk
)p
<∞.

In Conjecture 2.10 of [2] it is suggested that condition (C), in fact, characterizes
frequent hypercyclicity of T . This is not the case.

Example ([7]). There exists a weighted backward shift operator that satisfies
condition (C) but that is not frequently hypercyclic.

The characterization of frequently hypercyclic weighted backward shifts remains
an open problem.

C. It is well known that the set of hypercyclic vectors of a hypercyclic operator is
always residual. In contrast, Bayart and Grivaux [2] have shown that there exist
frequently hypercyclic operators for which the set of frequently hypercyclic vectors
is non-residual. In fact, we have the following.

Theorem 2 ([3]). Under weak conditions (see Theorems 6.1 and 6.5 of [3]) on a
frequently hypercyclic operator T its set of frequently hypercyclic vectors is of first
category in X.

As a consequence, all known frequently hypercyclic operators T have this prop-
erty; it is an open problem if a set of frequently hypercyclic vectors can be of
second category.

We also study another notion of ’bigness’. It is an immediate consequence of
the residuality of the set of hypercyclic vectors that every element in the under-
lying space can be written as a sum of two hypercyclic vectors. For frequent
hypercyclicity the situation is more complicated.

Examples ([3]). There are frequently hypercyclic operators for which every vector
is the sum of two frequently hypercyclic vectors, while there are other frequently
hypercyclic operators for which this is not the case.

D. One of the most remarkable results in hypercyclicity, due to Godefroy and
Shapiro [5], states that every operator on the space H(C) of entire functions that
commutes with the differentiation operator is hypercyclic, unless it is a multiple of
the identity. This contains, in particular, MacLane’s result that the differentiation
operator itself is hypercyclic, and Birkhoff’s result that the translation operator
f 7→ f(· + 1) is hypercyclic. We improve the result of Godefroy and Shapiro to
frequent hypercyclicity.

Theorem 3 ([4]). Let T be an operator on H(C) that commutes with the dif-
ferentiation operator and that is not a scalar multiple of the identity. Then T is
frequently hypercyclic.
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Brennan’s conjecture for weighted composition operators

Wayne Smith

Brennan’s conjecture concerns integrability of the derivative of a conformal map
τ of the unit disk D. The conjecture is that, for all such τ ,

∫

D

(1/|τ ′|)pdA <∞

holds for −2/3 < p < 2. Simple examples show this range can not be extended.
The conjecture was formulated and established for −2/3 < p < 1+ δ, where δ > 0
is small, by J. E. Brennan in [1]. The range for which the conjecture is known has
recently been extended to −2/3 < p ≤ 1.782 by S. Shimorin [2].

We show that Brennan’s conjecture is equivalent to a statement about weighted
composition operators. Let τ be as above and let φ be an analytic self-map of D.
Define, for f analytic on D,

(Aϕ,pf)(z) =

(
τ ′(φ(z))

τ ′(z)

)p
f(φ(z)).

There are always choices of φ that makeAϕ,p bounded on the Bergman space L2
a(D).

We are interested in the set of p for which there is a choice of φ (depending on
τ) that makes Aϕ,p compact on L2

a(D). We show that this happens if and only if
(1/τ ′)p ∈ L2

a(D); see [3]. Thus Brennan’s conjecture is equivalent to such a choice
of φ existing for the range −1/3 < p < 1, and this is known for −1/3 < p ≤ .891.
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Composition Operators on Uniform Algebras

T. Gamelin

(joint work with P. Galindo, M. Lindström)

Let A and B be uniform algebras, with spectrum MA and MB respectively. A
unital homomorphism from A to B can be viewed as a composition operator Cφ :
A→ B, where φ : MB → MA is the restriction of the dual of the homomorphism
to MB. We are interested in comparing composition operators from A to B in
the essential operator norm. We are also interested in the essential spectrum of
composition operators on A (unital endomorphisms of A), and in relating the
essential spectrum to the notion of hyperbolic boundedness introduced in [GGL1].

The pseudohyperbolic metric ρ(z, w) = |z − w/|1 − z̄w| on the open unit disk
in the complex plane induces a pseudohyperbolic metric ρA on MA by ρA(x, y) =
sup ρ(f(x), f(y)), where the supremum is taken over all f ∈ A satisfying ||f || < 1.
The Gleason parts of A are the open pseudohyperbolic balls of radius 1 in MA.

(See [Kö].)
A subset E of MA is hyperbolically bounded if it is contained in a finite number

of pseudohyperbolic balls of radius strictly less that 1.

Theorem 1. Let A be a uniform algebra, and let φ be a self-map of MA that
induces a composition operator Cφ on A. The following statements are equivalent.
(i) There is a decomposition of MA into disjoint clopen subsets E1, . . . , Em such
that the iterates of φ converge uniformly on each Ej in the pseudohyperbolic metric
to an attracting cycle in Ej for φ.
(ii) There is n ≥ 1 such that the nth iterate φn(MA) under φ is a hyperbolically
bounded subset of MA.
(iii) The essential spectral radius of Cφ is strictly less than 1, that is, the essential
spectrum of Cφ does not meet the unit circle.

The equivalence of (i) and (ii) is proved in [GGL1], and the equivalence with
(iii) is proved in [GGL2]. These results have a long history (see [Ka], [Kö], [Kl],
[Zh]), and they are closely related to those of P. Gorkin and R. Mortini [GM].
Recent work of J. Feinstein and H. Kamowitz [FK] establishes the equivalence of
(i) and (iii) for unital semi-simple Banach algebras.

Two composition operators Cφ and Cψ from A to B are in the same norm
vicinity if ||Cφ − Cψ || < 2. This occurs if and only if there is r < 1 such that

ρA(φ(y), ψ(y)) ≤ r for all y ∈ MB. Norm vicinities are clopen in the uniform
operator norm.

Two composition operators Cφ and Cψ from A to B are in the same hyperbolic
vicinity if there is a subset Y of MB that is norming for B, a subset E of Y , and
an r < 1 such that ρA(φ(y), ψ(y)) ≤ r for all y ∈ E, and φ(Y \E and ψ(Y \E are
hyperbolically bounded in MA. The following two theorems are proved in [GGL2].

Theorem 2. Let A and B be uniform algebras, and let φ and ψ be maps from
MB to MA that induce a composition operators Cφ and Cψ from A to B. Then Cφ
and Cψ belong to the same hyperbolic vicinity if and only if there is a subalgebra
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of A of finite (linear) codimension such that the restrictions of Cφ and Cψ to the
subalgebra belong to the same norm vicinity.

Theorem 3. Hyperbolic vicinities are clopen with respect to the essential operator
norm.
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Composition operators on Hardy spaces of a simply connected domain

Eva A. Gallardo-Gutiérrez

(joint work with Maŕıa J. González and Artur Nicolau)

Let Ω be a simply connected domain properly contained in the complex plane C

with locally rectifiable boundary ∂Ω. Let τ be a Riemmann map that takes the
open unit disc D onto Ω. For 1 ≤ p < ∞, the Hardy space Hp(Ω) consists of
holomorphic functions F on Ω such that the norm

‖F‖pp =
1

2π
sup

0<r<1

∫

τ({|z|=r})

|F (w)|p |dw|

is finite. Here, |dw| denotes the arc-length measure on ∂Ω. Although this norm
depends on the choice of the Riemann map, it is not hard to see that any other
Riemann map induces an equivalent norm on Hp(Ω)(see [1]).

If Φ is a holomorphic map on Ω, that takes Ω into itself, then the equation

CΦ F = F ◦ Φ

defines a composition operator CΦ on the space H(Ω) of all holomorphic functions
on Ω. In case that Ω is the open unit disc D, Littlewood [2] proved in 1925 that any
composition operator CΦ is bounded on any Hardy space Hp(D); a result known
as Littlewood Subordination Principle. In the eighties, Shapiro [4] characterized
the compactness of CΦ on Hp(D) in terms of the Nevanlinna counting function for
Φ.
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Recently, Shapiro and Smith [5] have shown that the geometry of the domain
Ω plays an important role in the boundedness and compactness of CΦ on Hp(Ω).
In particular, they prove that the condition of boundedness for the derivative of
the Riemann map τ and its reciprocal actually characterizes the domains Ω for
which every composition operator is bounded in Hp(Ω). Moreover, Hp(Ω) sup-
ports a compact composition operator if and only if ∂Ω has finite one-dimensional
Hausdorff measure.

The aim of our work is to relate the geometry of the domain Ω to the fact that
boundedness (respectively compactness) of CΦ on Hp(Ω) can be characterized in
terms of a Nevanlinna type condition for Φ in Ω. If δ(z, ∂Ω) denotes the distance

from z to the boundary of Ω, we consider the function ÑΦ,Ω associated to Φ in Ω
by

ÑΦ,Ω(w) =





∑

z∈Φ−1{w}

δ(z, ∂Ω) if w ∈ Φ(Ω)

0 if w /∈ Φ(Ω).

The function ÑΦ,D is closely related to the classical Nevanlinna counting func-
tion, and both Littlewood’s Subordination Principle an Shapiro’s Compactness

Theorem can be restated in terms of ÑΦ,D.

The advantage of considering the function ÑΦ,Ω is that precisely the geometry
of the domain Ω plays a fundamental role to determine what symbols Φ induce
bounded and compact composition operators on Hp(Ω). Roughly speaking, we
show that whenever the boundary of Ω is, in some sense, quasi smooth, bounded
and compact composition operators on Hp(Ω), 1 ≤ p <∞ are completely charac-
terized with a condition similar to that one in the already known spaces Hp(D).

In particular, we show that for any simply connected domain Ω, under the extra
hypotheses that Φ is a finitely-valent symbol, the Littlewood type inequality

ÑΦ,Ω(w) . δ(w, ∂Ω), (w ∈ Ω)

is necessary for CΦ to be bounded in Hp(Ω), for any 1 ≤ p <∞. Moreover, we also
prove that the corresponding “little-oh” condition is necessary for the compactness
of CΦ on Hp(Ω), 1 ≤ p < ∞. Nevertheless, Littlewood type inequality does not
suffice for characterizing boundedness of composition operators CΦ, even induced
by univalent symbols.

On the other hand, we show that Littlewood type inequality is sufficient, without
any extra assumption on the valence of the symbol Φ, if we impose a geometrical
condition on the domain: ∂Ω is a Lavrentiev curve. On the contrary, it is no longer
necessary if we drop the extra assumption on Φ of being finitely-valent. The key
point is a link between the geometry of the underlying domain Ω and the symbol
inducing the composition operator.

Finally, we relate both facts, characterizing those symbols inducing bounded
and compact composition operators on Hp(Ω), whenever Ω is a Lavrentiev domain.
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Comparing topologies on the space of composition operators

Carl Sundberg

(joint work with Eero Saksman)

Consider the set of analytic composition operators

C = {Cφ ; φ : D → D analytic}
where D is the unit disk in the complex plane. If X is a Banach space of analytic
functions in D for which all Cφ ∈ C act boundedly on X then we consider the
topology τX naturally induced on C by considering it as a subspace of B(X). We
consider among others the cases where X is the Hardy space H2, the standard
weighted Bergman space

A2
α =

{
f analytic in D ; ‖f‖2

A2
α

=
α+ 1

π

∫

D

|f(z)|2dA(z) <∞
}

for α > −1, the Hardy space H∞, and the Bloch space B. Some of our main
results:

(i) τH2 is strictly finer than τA2
α
.

(ii) τH∞ is strictly finer than τH2 .
(iii) For all α, β > −1, τA2

α
= τA2

β
.

(iv) τH2 and τB are not comparable.

Our results have obvious relevance to the study of isolation in C in the various
topologies τX , see e.g. [1, 2, 3, 4, 6]. Our results also ‘explain’ known relationships
concerning compactness, e.g. if Cφ − Cψ acts as a compact operator on H2 then
it also acts as a compact operator on A2

α [5].
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Analytic contractions, nontangential limits, and the index of invariant

subspaces

Stefan Richter

(joint work with Alexandru Aleman, Carl Sundberg)

Surprising results of Apostol, Bercovici, Foias, and Pearcy from the mid 1980s
implied that the structure of the invariant subspace lattice of the Bergman shift
differs drastically from the Beurling lattice of invariant subspaces of the unilateral
shift acting on the Hardy space H2, [4]. In fact, a solution to the invariant sub-
space problem would be found if one could decide whether or not the Bergman
lattice has proper gaps. The constructions of Apostol, Bercovici, Foias and Pearcy
use dual algebra techniques and they are valid for many contractive multiplication
operators Mζ acting on Hilbert spaces of analytic functions such that the powers
Mn
ζ converge to zero in the strong operator topology. For the Bergman space

a function theoretic approach to these results was given by Hedenmalm [7], also
see [8]. The main point is that the Bergman lattice contains invariant subspaces
M of arbitrary index, i.e. dimM/ζM can be any positive integer or even be
infinite. Hedenmalm used interpolating and sampling sequences to construct in-
variant subspaces of high index. On the other hand there has been some indication
in the literature that invariant subspaces containing functions that are sufficiently
regular near the boundary of the unit disc always must have index 1, [9, 10, 1].

In this work we investigate the connection between nontangential limiting be-
haviour of functions in a Hilbert space of analytic functions and the structure of
the invariant subspace lattice of the multiplication operator Mζ . In fact, by ana-
lyzing the set where ratios of functions in the space have nontangential limits we
find a sufficient condition for the existence of invariant subspaces with high index
that in many cases is also necessary.

Let H be a Hilbert space of analytic functions on the open unit disc D such that
the operatorMζ of multiplication with the identity function ζ defines a contraction
operator. Let k denote the reproducing kernel of H and let g be a nonzero function
in H. Then for every λ ∈ D and f ∈ H one easily checks the fundamental inequality

∣∣∣∣
f

g
(λ)

∣∣∣∣
2

≤
(

(1 − |λ|2)|| f

1 − λζ
||2

) (
(1 − |λ|2) ||kλ||

2

|g(λ)|2
)
.

By use of a unitary dilation of Mζ one shows that the first factor of the right
hand side of the inequality is bounded by a positive harmonic function. Hence the
meromorphic function f/g is in the Hardy space H2(Ω) for every subregion Ω ⊆ D
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where the second factor of the right hand side is bounded. We are thus lead to
define

∆(H) = {z ∈ ∂D : nt- lim sup
λ→z

(1 − |λ|2) ||kλ||
2

|g(λ)|2 <∞},

where we have used the prefix ”nt” to abbreviate the word nontangential. By the
above remarks together with some classical results of Privalov and Caratheodory
it is not hard to prove that the definition of ∆(H) is independent of g 6= 0 (up to
sets of linear Lebesgue measure 0), and that f/g has nontangential limits a.e. on
∆(H). In fact, ∆(H) is the largest set with this property:

Theorem 1. If H be a Hilbert space of analytic functions on D such that ||Mζ || ≤
1, then up to sets of measure 0 the set ∆(H) is the largest subset of ∂D such that
for every f, g ∈ H, g 6= 0, the meromorphic function f/g has nontangential limits
a.e. on ∆(H). We say that H admits nontangential limits on ∆(H).

For our applications of Theorem 1 we need to have a description of ∆(H) in
terms of the norm on H instead of the reproducing kernel. For this reason we asso-
ciate the set Σ(H) with H. It is the smallest set that carries the spectral measure of
the unitary summand of the minimal co-isometric extension of Mζ . More precisely,
if S∗⊕R denotes the minimal co-isometric extension of the contraction Mζ , R uni-
tary, S∗ a backward shift of some multiplicity, then it turns out that the spectral
measure of R is absolutely continuous, and we set Σ(H) = {z ∈ ∂D : w(z) > 0},
where w ∈ L1(∂D) is chosen so that w(z)|dz| is a scalar valued spectral measure for
R. In the Sz. Nagy Foias theory of contractions R has been called the *-residual
part of the minimal unitary dilation of Mζ , and Σ(H) has also been denoted by
Σ∗(Mζ), see [5].

It is easy to see that Σ(H) has Lebesgue measure 0, if and only if ||ζnf || → 0 for
all f ∈ H as n→ ∞. Furthermore, it turns out that one always has ∆(H) ⊆ Σ(H)
a.e..

Theorem 2. Let H be a Hilbert space of analytic functions on D such that ||Mζ || ≤
1 and dimH/ζH = 1.

If there is a c > 0 such that for all f ∈ H and all λ ∈ D we have
∥∥∥
ζ − λ

1 − λζ
f
∥∥∥ ≥ c||f ||,

then ∆(H) = Σ(H) a.e. and the following four conditions are equivalent:
(1) there exists an invariant subspace M of Mζ of index > 1,
(2) |∆(H)| = 0, i.e. H does not admit nontangential limits on any set of positive
measure,
(3) ‖ζnf‖ → 0 for some f ∈ H, f 6= 0,
(4) ‖ζnf‖ → 0 for all f ∈ H, i.e. |Σ(H)| = 0.

For i = 1, 2, 3 the implications (i+ 1) ⇒ (i) follow under the weaker hypothesis
that the constant c in the theorem may depend on the point λ ∈ D. In fact, it is
trivial that (4) implies (3). The implication (3) ⇒ (2) easily follows from a classical
theorem of Khinchin and Kolmogorov (see Theorems A3 and A4 of [6]). The proof
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that (2) implies (1) uses results from the theory of dual algebras together with the
information gained from Theorem 1. The implications (2) ⇒ (3) and (3) ⇒ (4) are
false in the larger generality that we just alluded to, but at this point we do not
know whether conditions (1) and (2) are equivalent in this more general setting.
For so-called analytic P 2(µ)-spaces conditions (1)-(4) are equivalent, this has been
proven in [2].

The proofs of Theorems 1 and 2 along with further details and results will
appear in [3].
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Some examples concerning boundary behavior and index in Hilbert

spaces of analytic functions

Alexandru Aleman

(joint work with Stefan Richter, Carl Sundberg)

By a Hilbert space of analytic functions on the unit disc D we mean, as usual,
a Hilbert space H continuously contained in the Fréchet space of all analytic
functions in D. We shall assume throughout that the operator of multiplication by
the independent variable (Mz)f(z) = zf(z) is bounded on H , its spectrum equals
the closed unit disc and that

(1) dimH/(Mz − λ)H = 1

for all λ ∈ D. Clearly, by Fredholm theory this number is actually independent
of the choice of λ ∈ D. If M ⊂ H is a closed invariant subspace for Mz then the
restriction Mz|M will share the above properties except possibly the relation (1).
In fact, in the mid ’80s Apostol, Bercovici, Foiaş and Pearcy proved that there are
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natural examples of such spaces H and Mz-invariant subspaces M ⊂ H such that
the index of M defined by

indM = dimM/zM

can equal any prescribed positive integer or even ∞. Spaces of Bergman type are
a particular class of spaces where their results apply. These are Hilbert spaces
of analytic functions as above where the norm is given by integration against a
positive measure carried by D, i.e.

‖f‖2 =

∫

D

|f |2dµ.

In contrast to this situation, it is well known that every nonzero invariant subspace
of the Hardy space or the standard weighted Dirichlet spaces has index one. Recall
that these spaces are contained in the usual Nevanlinna class, while spaces of
Bergman type always contain functions of unbounded characteristic. This leads
to the natural question whether invariant subspaces of Hilbert spaces of analytic
functions contained in the Nevanlinna class always have index one? The answer
to this question is negative and it follows from more recent work of Esterle [1].
There is however a quite subtle connection between boundary behavior and index
which occurs in the context of spaces of Bergman type.

Theorem 1. Let M be a closed invariant subspace of the Bergman-type space H
such that M contains a dense subset S with the property that there exists a set E of
positive Lebesgue measure on the unit circle such that whenever f, g ∈ S, f, g 6= 0
the meromorphic function f/g has nontangential limits a.e. on E. Then M has
index one.

There are a number of results from the 90’s which seem to indicate that for the
standard Bergman space the same conclusion should hold under weaker assump-
tion. For example, the following question appeared to be reasonable:

Does the conclusion of the theorem still hold if M contains one nonzero function
which has nontangential limits on a set of positive measure on the unit circle?

In [2] we have shown that the answer is negative in general. The result is a
consequence of our study of majorization functions for invariant subspaces of the
Bergman spaces. On the other hand, we show that the answer is affirmative when
the set in question has closed subsets with positive measure and finite entropy.

To motivate the second problem, let us return for a moment to the standard
Hardy and Bergman spaces. On H2 the operator Mz is an isometry while on any
space of Bergman type, Mz is a contraction and Mn

z → 0 in the strong operator
topology. Do these operator-theoretic properties of Mz on a Hilbert space of
analytic functions influence the boundary behavior of the functions in the space
and the index of invariant subspaces? Surprisingly, an affirmative answer can be
obtained under the (mild) regularity assumption that

inf{‖(z − λ)(1 − λ̄z)−1f‖/‖f‖ : λ ∈ D, f ∈ H, f 6= 0} > 0.

This is the content of the main results in [3] and we shall omit the details here.
What we want to point out is that without regularity assumptions, the above
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question has at its turn a negative answer even for operators that are in some
sense close to isometries.

Example 2. There exists a Hilbert space of analytic functions on D with the
following properties:
(i) The selfcommutator M∗

zMz −MzM
∗
z has rank 2,

(ii)For every f ∈ H \ {0} we have lim infn ‖znf‖ > 0,
(iii) H contains functions that have no nontangential limits on any set of positive
measure on the unit circle,
(iv) There are invariant subspaces for Mz on H of arbitrary index.
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Hahn-Banach Extension of Bilinear Forms

Hans Jarchow

Given two Banach spaces X and Y , let L2(X × Y ) be the Banach space of all
(bounded) bilinear forms on X ×Y , where X and Y are given Banach spaces. We
say that (X,Y ) has the bilinear extension property (BEP) if, no matter how we choose

Banach spaces X̃ and Ỹ containing X , resp. Y , as subspaces, each β ∈ L2(X×Y )

is the restriction of some β̃ ∈ L2(X̃ × Ỹ ). Our aim is to figure out under which
conditions a pair of Banach spaces has BEP.

With each β ∈ L2(X × Y ) we associate the operator uβ ∈ L(X,Y ∗) defined by
〈uβ(x), y〉 = β(x, y) (for x ∈ X and y ∈ Y ). The resulting map L2(X × Y ) →
L(X,Y ∗) : β 7→ uβ is an isometric isomorphism. This trivial observation links our
topic with operator ideals. In the new setting, tools like factorization and trace
duality are available.

We use standard notation and facts of Banach space theory. The ideals we are
going to work with can be derived by means of certain standard procedures from
the classical Banach ideals Πp of p-summing operators, Ip of p-integral operators
and Γp of p-factorable operators (1 ≤ p ≤ ∞). The procedures are the formation
of compositions A ◦ B, of quotients A−1 ◦ B and A ◦ B−1 of quasi-Banach ideals
A and B, and the formation of the dual ideal Ad and the trace dual A∗ of a given
quasi-Banach ideal A. Details can be found in [7], [4], and [3].

Among the best known relations are Π∗
p = Ip∗ , I∗

p = Πp∗ , Γ∗
p = Πd

p ◦ Πp∗ , and

[Πd
p ◦ Πp∗ ]

∗ = Γp. These relations are even isometric with respect to canonical
norms on the involved ideals, but we skip such details.

1Author partially supported by the Swiss National Science Foundation
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We shall use the short hand notation X ∈ A to indicate that the identity
operator of a given Banach space X belongs to A(X,X), where A is a quasi-
Banach ideal.

The ideal Γ∗
2 will be important. It can be represented in various ways. First,

Γ∗
2(X,Y ) consists of all operators u : X → Y which admit a factorization u :

X
w→ H

v→ Y where v∗ and w belong to Π2. This amounts to a factorization

kYu : X → L∞(µ)
w−→ L1(µ) → Y ∗∗ where µ is a probability measure and

kY : Y →֒ Y ∗∗ is the canonical embedding. In addition, Γ∗
2 coincides with the

quotient ideal Γ−1
2 ◦ I1 ◦ Γ−1

2 ([7], 17.5.2).
The following is a straightforward consequence of the extension property of

L∞(µ) (for µ finite, say), see e.g. [4]. By ⊗π we refer to the formation of projective
tensor products.

Proposition 1. Let X and Y be Banach spaces. The following statements are
equivalent:

(i) (X,Y ) has BEP.

(ii) X ⊗π Y is a subspace of X̃ ⊗π Ỹ whenever X is a subspace of X̃ and Y is

a subspace of Ỹ .
(iii) L(X,Y ∗) = Γ∗

2(X,Y
∗).

A Banach space operator is approximable if it can be approximated, uniformly
on compact sets, by finite rank operators. By (iii) of the preceding proposition,
every operator X → Y ∗ is approximable whenever (X,Y ) has BEP.

Corollary 2. . If (X,X∗) has BEP, then dim X <∞.

In fact, the canonical map kX : X →֒ X∗∗ belongs to Γ∗
2 iff dim X <∞.

Application of trace duality to Proposition 1.(iii) yields:

Proposition 3. If (X,Y ) has BEP, then Γ2(Y
∗, X) = I1(Y

∗, X).

The converse is true if X or Y ∗ has the metric approximation property. But it
is not clear what happens in the in general case.

The preceding result has an interesting consequence. Recall that a Banach
space X is said to verify GT (‘Grothendieck’s Theorem’) if L(X, ℓ2) = Π1(X, ℓ

2); cf.
[8]. In such a case, we will also write X ∈ GT , and we say that X is a GT-space,
etc.

Proposition 4. If (X,Y ) has BEP, then X∗ and Y ∗ verify GT.

In fact, combine Dvoretzky’s Theorem on spherical sections and the fact that
the ideal Π1 of 1-summing operators is the injective hull of I1 to get that every
operator Y ∗ → ℓ2 is 1-summing, that is, Y ∗ verifies GT. By symmetry, X∗ ∈ GT .

It is not known if GT spaces necessarily do have cotype 2. Let us write Z ∈
GT ∧ C2 if Z is a cotype 2 space verifying GT.

Under suitable additional assumptions, Proposition 3 has a converse. From
Corollary 1 we get:



2076 Oberwolfach Report 36/2005

Proposition 5. Suppose that X∗ and Y ∗ are in GT∧C2. (X,Y ) has the BEP iff
every operator X → Y ∗ is approximable.

It suffices to require that X∗ and Y ∗ satisfy GT, have cotype 2 and that one of
them embeds into a Banach space having cotype 2 and the approximation property.

Another case where the converse of Proposition 4 holds occurs if a certain weak
form of lattice structure is available. Recall that a Banach space is said to have the
property gℓ2 if every 1-summing operator from that space into ℓ2 factors through
an L1-space. gℓ2 is a self-dual property, and it is shared by every Banach lattice.
The terminology refers to the paper [5] by Y. Gordon and D.R. Lewis. We shall
write X ∈ GT ∧ gℓ2 if the Banach space X verifies both, GT and gℓ2. It is easy to
see that this happens iff L(X, ℓ2) = Γ1(X, ℓ

2). Compare also with [4], 17.11 and
17.12.

Proposition 6. For every Banach space X the following are equivalent:

(i) X∗ verifies GT.
(ii) (X,Y ) has BEP, for every L∞- space Y .
(iii) (X,Y ) has BEP, for every Banach space such that Y ∗ ∈ GT ∧ gℓ2.

Since (X,Y ) has BEP iff (Y,X) does, we may also state that for Y ∗ to verify
GT it is necessary and sufficient that (X,Y ) has BEP whenever X∗ ∈ GT ∧ gℓ2.

Moreover:

Proposition 7. If X∗ ∈ GT ∧ gℓ2 and Y ∗ ∈GT, then (X,Y ) has BEP.

In fact, every operator u : X → Y ∗ is now in Γ−1
2 ◦ (Π1 ◦ Γ∞) ◦ Γ−1

2 = Γ−1
2 ◦

I1 ◦ Γ−1
2 = Γ∗

2.
Actually, we can do better. We use ⊗ε to signalize the formation of injective

tensor products. It is obvious that (X,Y ) has BEP if the Banach spaces X and
Y satisfy X ⊗π Y = X ⊗ε Y . It is a deep result of G. Pisier that every Banach
space of cotype 2 is contained in an infinite dimensional Banach space P such that
P ⊗π P = P ⊗ε P and both, P and P ∗ verify GT∧C2; see [8]. In combination
with Proposition 6, this leads to

Corollary 8. Suppose that X∗ ∈ GT ∧ gℓ2. Then L(X,Z) = Π2(X,Z) for every
cotype 2 space Z.

The announced improvement of Proposition 6 is now part of

Proposition 9. The following statements on a Banach space X are equivalent.

(i) If Y ∗ ∈ GT ∧ C2, then (X,Y ) has BEP.
(ii) Every operator from X into any cotype 2 space is 2-summing.

But even in this case, we do not know whether X∗ must have cotype 2.
By results of J. Bourgain [1], [2], Proposition 7 applies if X = Y equals H∞,

or the disk algebra A. Recall that A and H∞ do not have the property gℓ2 ([6]).
Also, Proposition 7 applies if we take X = Y to be a subspace of C(K) such that
C(K)/X is reflexive; see [4], Ch.15. It is well-known that C(K)/X even has gℓ2 in
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such a case. Of course, we can also choose X from the first and Y from the second
group of examples, etc.

We conclude by another easy consequence of Pisier’s results:

Proposition 10. If X and Y are cotype 2 spaces. Then (X,Y ) has BEP iff

X ⊗ε Y = X ⊗π Y .
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C*-algebras generated by composition operators

Michael T. Jury

A theorem of Coburn [1] computes the C*-algebra generated by the unilateral shift
on the Hardy space H2, and shows that this C*-algebra contains the compact op-
erators K and computes the quotient C∗(S)/K ∼= C(∂D). Motivated by this result,
and the success of C*-algebra methods in the study of Toeplitz operators generally,
it is natural to investigate the C*-algebras generated by families of composition
operators acting on spaces of analytic functions, and in particular to ask whether
it is possible to extract single-operator information (such as Fredholmness and
the Fredholm index) from C*- or K-theory invariants. Here we consider the C*-
algebra CΓ generated by the set of composition operators {Cγ : γ ∈ Γ}, acting
on the Hardy space H2, where Γ is a non-elementary discrete group of Möbius
transformations of the unit disk D (i.e. a Fuchsian group.) Our main theorem is
the following [2]:

Theorem 1. If Γ is a non-elementary Fuchsian group, then the C*-algebra CΓ

contains the unilateral shift S, and hence the algebra of compact operators K.
Moreover, there is an exact sequence

0 → K → CΓ → C(∂D) × Γ → 0
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With this exact sequence in hand, we obtain an element of the Ext group
Ext(C(∂D) × Γ,K). It is then natural to ask which Ext-class is obtained, and
for a topological formula for the pairing of this class with the K-theory group
K1(C(∂D) × Γ). Such a formula, together with a method for determining the
spectrum of an element of C(∂D) × Γ, would amount to an index formula for
elements of CΓ analogous to the winding number formula for the Fredholm index
of Toeplitz operators on the circle. In this setting, however, the spectral problem
seems intractable, and standard topological techniques are unavailable for the
computation of the index pairing since the relevant topological space would be
Γ\S1, which is pathological. However in some special cases, though the spectral
problem is still open, we can make some progress on the computation of the index
pairing. In particular, by appeal to techniques of noncommutative geometry, in
particular a computation of the Chern-Connes character of the Ext-class arising
of the extension and the pairing of (periodic) cyclic cohomology with K-theory,
we obtain the following result:

Theorem 2. Let Γ be as above, and moreover assume Γ is cocompact and torsion-
free. If f =

∑
fγ [γ] is invertible in C(∂D) × Γ and f−1 =

∑
gγ [γ], then the

operator T =
∑
Tfγ

Uγ ∈ CΓ is Fredholm, and

ind(T ) =
∑

γ∈Γ

−1

2πi

∫

∂D

gγ−1(γ−1(z))dfγ(z)

In the case where Γ is elementary (e.g. finite cyclic) we can replace CΓ with the
C*-algebra generated by the operators Cγ and the unilateral shift, and since the
spectral theory of the crossed product C(∂D) × Zn is easily worked out, we get
the following index theorem:

Theorem 3. Let γ(z) = λz where λ is a primitive nth root of unity. Then the
operator

n−1∑

j=0

Tfj
Cjγ

is Fredholm if and only it the determinant

h(z) =

∣∣∣∣∣∣∣∣∣

f0(z) f1(z) · · · fn−1(z)
fn−1(λz) f0(λz) · · · fn−2(λz)

...
...

f1(λ
n−1z) · · · · · · f0(λ

n−1z)

∣∣∣∣∣∣∣∣∣

is nowhere vanishing on ∂D, in which case the Fredholm index of T is −1/n times
the winding number of h around the origin.

The problem of computing C*-algebras generated by composition operators is
still very much open. Recent work of Kriete, MacCluer and Moorhouse [3] consid-
ers the case of the C*-algebra generated by the shift and a single non-automorphic
linear-fractional composition operator; in this case the quotient C∗(S,Cϕ)/K can
be computed explicitly and is a type I C*-algebra. On the other hand, the Ext
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class obtained in Theorem 1 above coincides (at least up to scalar multiplies) with
the class recently constructed by J. Lott [4], and it may be possible to obtain
more satisfactory index results by considering this class in the context of that
construction.
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Spectral properties of generalized Cesàro operators

Ernst Albrecht

(joint work with Len Miller, Michael M. Neuman, Vivien G. Miller)

The spectral picture of the classical Cesàro operators C0, C1 and C∞ on ℓ2(N0),
L2(0,∞) and L2(0, 1), given by

C0(a) :=
( 1

n+ 1

n∑

j=0

aj

)∞

n=0
, a = (an)

∞
n=0 ∈ ℓ2(N0),

(Ckf)(t) :=
1

t

∫ t

0

f(s)ds , f ∈ L2(0, k), k = 1,∞,

has been computed by Brown, Halmos and Shields in [4]. In [2, 3], Aleman and
Siskakis initiated the study of integral operators of the type Sg, where g is holo-
morphic on the unit disc D and

(Sgf)(z) :=
1

z

∫ z

0

f(ζ)g(ζ)dζ ,

on Hardy and weighted Bergman spaces. For g(ζ) ≡ (1−ζ)−1 the operator C := Sg
(on the Hardy spaceH2 ) is unitarily equivalent to C0. The operator C is known to
be subnormal on H2 [6] and, for 1 < p <∞, −1 < α <∞, it is subdecomposable
on the Hardy spaces Hp and the weighted Bergman spaces Lp,αa on the disc [9, 5].
See [7] for the theory of subdecomposable operators.

Various special cases have been considered by Young [10, 11] for the Hilbert
spaces H2 and L2

a. In [1] we show the following generalization of a result of Young
to the non Hilbert space situation.

Theorem 1. Suppose that g(z) =
∑m
j=1

aj

1−bjz
+ h(z) where bj, 1 ≤ j ≤ m, are

distinct points on the unit circle ∂D, |aj | > 0 for each j, and h ∈ H∞(D). Then
for every α ≥ −1 and p > 1,
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(i) Sg ∈ L(Lp,αa ) has point spectrum

σp(Sg|Lp,α
a

) =

{
g(0)

n
: ℜ

(
aj
g(0)

)
<

2 + α

np
, 1 ≤ j ≤ m

}
,

and each eigenvalue of Sg is simple.
(ii) If h(0) = 0, then σp(Sg|Lp,α

a
) is finite.

(iii) σ(Sg|Lp,α
a

) = σp(Sg|Lp,α
a

) ∪ ⋃m
j=1Dj , where Dj = D

(
p aj

2(2+α)

)
, for each j,

1 ≤ j ≤ m.
(iv) Sg has essential spectrum σe(Sg) =

⋃m
j=1 ∂Dj. Moreover, if λ ∈ ρe(Sϕ)

then ind(λ − Sg) = −∑m
j=1 χDj

(λ).

For further (in particular local) spectral properties of such operators we refer
to [8].

It is also shown, that for g(ζ) ≡ 1+ζ
1−ζ the operator Sg is hyponormal on H2,

which gives a partial answer to a question of Aleman and Siskakis [2].
In joint work (in progress) with V. G. Miller we investigate local spectral prop-

erties of operators generalizing the continuous Cesàro operators C1 and C∞ and
of certain generalized averaging operators on Hp.
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Countably generated prime ideals in H∞

Raymond Mortini

(joint work with Pamela Gorkin)

We report on joint work with Pamela Gorkin [3] on the structure of prime ideals
in the algebra H∞ of bounded analytic functions in the open unit disk. In 1984,
Gorkin [2] and Mortini [5], [6], independently confirmed a conjecture of J. Kelleher
[4] and F. Forelli [1] by showing that a nonzero prime ideal in H∞ is finitely
generated if and only if it is a maximal ideal of the form M(z0) = {f ∈ H∞ :
f(z0) = 0} for some z0 ∈ D. These maximal ideals actually are principal ideals;
they are generated by the single function z−z0. In Mortini’s thesis [5] an example
of a non-maximal, countably generated prime ideal is given: it is the ideal I =
I(S, S1/2, S1/3, . . . ) generated by the n-th roots of the atomic inner function S(z) =

exp
(
− 1+z

1−z

)
. This was the first explicit example of a non-maximal prime ideal in

H∞. Are there any other countably generated prime ideals in H∞, apart from
those given by inner rotations of the function S? For |σ| = 1, let Sσ(z) = S(σz)
be the atomic inner function with singularity at the point σ. In [3] we confirm
the conjecture [8] that a nonzero prime ideal I in H∞ is countably generated if

and only if either I = M(z0) for some z0 ∈ D or if I = I(Sσ, S
1/2
σ , S

1/3
σ , . . . ) for

some σ ∈ C with |σ| = 1. The proof uses maximal ideal space techniques and
is based on some factorization theorems for Blaschke products and on Suarez’s
result [9] that H∞ is a separating algebra. It is pointed out that the situation in
H∞ + C is different: here there exist no countably generated prime ideals at all.
We also recall that in the disk-algebra A(D), or more generally, in any analytic
trace A = C ∩ H∞ of a C∗-algebra C with C ⊆ C ⊆ QC, a prime ideal P is
countably generated if and only if P = (0) or M(z0) = {f ∈ A : f(z0) = 0} for
some z0 ∈ D (see [7]).

In the final part we draw attention to a not so well-known result that in a
commutative unital Banach algebra any countably generated closed ideal actually
is finitely generated. We present Udo Klein’s elegant Baire category argument to
prove that assertion.
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List of open problems

The following list contains some of the problems which were posed during the
problem session of the workshop.

1. Aharon Atzmon: Two problems

1.1. A problem about closed ideals in H∞.

Problem 1. Let I1, I2 be closed ideals in H∞ (of the unit disc), such that I1 ⊂ I2
and dim I2/I1 > 1. Does there exist a closed ideal J of H∞ such that I1 ( J ( I2?

From the known results on the structure of w∗ closed ideals in H∞, it follows
that the answer is positive if we assume that the ideals I1 and I2 are w∗ closed,
and in this case one can choose J to be also w∗ closed. Using the results in [1],
one can show that the same holds true if we assume only that I1 is w∗ closed. It
is also shown in [1], that either we have a positive solution for the pair of ideals
I1, I2, or there exists a point λ in the unit circle such that (z − λ)I2 ⊂ I1. This
implies that one can always find a closed invariant subspace J of H∞ that satisfies
I1 ( J ( I2.

1.2. A problem about invariant subspaces of the backward shift on the

Bergman spaces Ap. For 1 ≤ p < ∞, let Ap denote the Bergman space of all
holomorphic functions on the unit disc D which are in Lp(D). It is well known
that this is a closed subspace of Lp(D) on which the backward shift is a bounded
operator.

Problem 2. Assume that 1 ≤ p < ∞, and that M1,M2 are two invariant sub-
spaces for the backward shift on Ap such that M1 ⊂ M2 and dimM2/M1 > 1.
Does there exist an invariant subspace M of B such that M1 ( M ( M2?
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2. Stefan Richter: Questions concerning the boundary behaviour of

functions in the space H2
d

For d ≥ 1 the space H2
d is a space of analytic functions on Bd, the open unit ball

of Cd. It is defined by the reproducing kernel kλ(z) = 1
1−〈z,λ〉 , where 〈z, λ〉 =

∑n
i=1 ziλi for λ, z ∈ Bd. If we use multi-index notation, then one checks that for

f(z) =
∑
j∈Nd

0
f̂(j)zj the norm on H2

d is given by ||f ||2 =
∑

j∈Nd
0
|f̂(j)|2 j!

|j|! . H
2
d

is contained in H2(∂Bd), the Hardy space of the ball, and the multiplier algebra
M(H2

d) is contained in H∞(Bd). For d > 1 these inclusions are proper.
The space H2

d and the operator tuple Mz = (Mz1 , . . . ,Mzd
) is important for

the operator theory of d−contractions, i.e. tuples T = (T1, . . . , Td) of commuting

Hilbert space operators that satisfy ||∑d
i=1 Tixi||2 ≤ ∑n

i=1 ||xi||2. For example,
Drury proved the following von Neumann-type inequality:

||p(T )|| ≤ ||p||M(H2
d
)

for all d−contractions T and polynomials p(z) = p(z1, . . . , zd). Here || · ||M(H2
d
)

denotes the multiplier norm on H2
d , see [1]. More recently, H2

d has appeared in the
work of many authors. There are now a dilation theorem and a commutant lifting
theorem for d−contractions, results on Nevanlinna-Pick interpolation for M(H2

d),
and Beurling-type theorems for the invariant subspaces of Mz.

In order to refine these recent results it would be good to know more about the
function theory of H2

d . For example, since H2
d ⊆ H2(∂Bd) it follows that functions

in H2
d for almost every z ∈ ∂Bd have limits if z is approached from within a so-

called Koranyi region, [3]. For d > 1 one should be able to say more. For the first
question we think of the one variable classical Dirichlet space as it is contained in
H2.

Problem 1. Work out the details of a capacity theory for H2
d , and prove that

functions in H2
d have nontangential limits everywhere on ∂Bd except perhaps a set

of ”capacity 0”.

Let M0 be the set of representing measures for the ball algebra, i.e. all those
measures µ ≥ 0 that are supported in ∂Bd and satisfy

∫
fdµ = f(0) for every

f analytic in Bd and continuous on Bd. In [2], Lemma 2.2, it was shown that
for every f ∈ H2

d and λ ∈ Bd one has |f(λ)|2 ≤ 2Re〈fkλ, f〉 − ||f ||2, i.e. |f |2
has a pluriharmonic majorant, and it follows that H2

d is contained in the closure
of the polynomials in Lumer’s Hardy space, [3]. Furthermore, if for r < 1 we
write fr(z) = f(rz), then we obtain

∫
|fr|2dµ ≤ ||f ||2 for every f ∈ H2

d and every
µ ∈ M0. One deduces that for every µ ∈ M0 fr converges in L2(µ) as r → 1−.
This suggests

Problem 2. If f ∈ H2
d , then does f have radial limits outside of sets that are

”totally null” (see [3]), i.e. is there a set E with µ(E) = 0 for every µ ∈ M0 and
such that f(rz) converges for every z ∈ ∂Bd \ E as r → 1−?
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3. Wayne Smith: Distribution of mass by a Bergman function

Let L1
a be the Bergman space of functions analytic on the unit disk D with

norm ‖f‖1 =
∫

D
|f |dA. For ε > 0, let Σε = {z : | arg z| < ε}.

Conjecture. For every ε > 0 there exists a δ > 0 such that if f ∈ L1
a and

f(0) = 0, then ∫

f−1(Σε)

|f |dA > δ‖f‖1.

This conjecture has applications to the theory of extremal dilatations of quasi-
conformal mappings; see [1]. An equivalent formulation first appeared in [2] where
it was established when ε ≥ π

2 − η, some η > 0. In [1] the conjecture was shown to

hold for all univalent f ∈ L1
a and all ε > 0. The conjecture fails when formulated

for Lpa, any p > 1; see [1].
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4. Raymond Mortini: Problems concerning the Corona property and

interpolating Blaschke Products

Problem 1 Let Ω ⊆ C be a domain such that A = H∞(Ω) contains a noncon-
stant function. Then A is a point separating uniform algebra. It is still unknown
whether Ω has the corona property, that is whether Ω is dense in the maximal
ideal space (or spectrum) M(A) of A. Equivalently:

Let f1, . . . , fN ∈ A. Suppose that
∑N
j=1 |fj | ≥ δ > 0 in Ω. Does there exist

gj ∈ A such that 1 =
∑N

j=1 gjfj?

For the unit disk D the answer is yes and that was proven by Carleson in his
famous Corona Theorem. It is also known that each finitely connected domain
supporting non-constant bounded analytic functions has the corona property. A
class of infinitely connected domains for which the answer is known, are the so
called Denjoy domains. These are domains of the form Ω = C \K, where K ⊆ R

is a compact subset of the reals. Astonishingly, it is also not known whether the
Corona Theorem is true for the domains Ω = C \ (K × S), where K and S are
compact subsets of the reals. A quite general class of domains for which the answer
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is yes are bounded domains for which the diameters of the components of C \ Ω
are bounded away from zero. See [1] and [2] for additional informations.

Let us also mention that in several complex variables it is still not known
whether the unit ball Bn and the polydisk Dn have the corona property.

Problem 2 One of the important open questions in the theory of bounded
analytic functions in the unit disk is the following problem of J.B. Garnett and
P.W. Jones:

Can every Blaschke product be uniformly approximated by interpolating Blasch-

ke products?

It is easy to see that the class F of finite products of interpolating Blaschke
products has this property. In [6] it was shown that any Blaschke product having
its zeros in a cone does belong to the closure of F .

Earlier, in 1996, Garnett and Nicolau [3] showed that the linear hull of the set
of interpolating Blaschke products is dense in H∞(D). Then Oyma [8] and O’Neill
[7] proved that every function of norm less than 1/27 lies in the closed convex hull
H of the interpolating Blaschke products. It is not known whether the whole unit
ball of H∞ lies in H.

Good candidates for counter–examples in the Garnett–Jones approximation
problem could be the so called universal Blaschke products (see [4]); these are
inner functions B such that for a given sequence (zn) tending to the boundary of
D the set {B( z+zn

1+znz
) : n ∈ N} is locally uniformly dense in the closed unit ball B

of H∞. They have the property that for any f ∈ B there exists m ∈M(H∞) such
that B ◦Lm = f ; here Lm is the Hoffman map of D onto the Gleason part P (m) of
m. On the other hand, interpolating Blaschke products b have the property that
for every m, b ◦Lm = b∗F , where b∗ is an another interpolating Blaschke product
(respectively a unimodular constant) and F an invertible outer function bounded
away from zero by a fixed constant depending only on the uniform separation con-
stant of b (see [5]). Thus, in some sense, these universal functions seem to be ”far
away” from interpolating Blaschke products.

References

[1] T. W. Gamelin: Lectures on H∞(D), Univ. Nac. de la Plata, Facultad de Ciencias Exactas,
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5. Alexandru Aleman: Cyclic multiplicity of spaces of analytic

functions

By a Hilbert space of analytic functions on the unit disc D we mean a Hilbert space
H continuously contained in the Fréchet space of all analytic functions in D such
that the operator of multiplication by the independent variable (Mz)f(z) = zf(z)
is bounded on H , its spectrum equals the closed unit disc and that

dimH/(Mz − λ)H = 1 , z ∈ D.

Recall that a set S ⊂ H generates H if the linear span of the polynomial multiples
of the functions in S is dense in H . If S is singleton {x}, we say that Mz|H is cyclic
and that x is a cyclic vector for this operator. The above condition on the range of
Mz−λ is in general necessary but not sufficient for cyclicity. Atzmon (Proc. Amer.
Math. Soc. 129 (2001), no. 7, 1963–1967) produced the first example of a Banach
space of analytic functions (actually an ideal of the well known Wiener algebra)
that satisfies this condition but is not cyclic, in fact it cannot be generated by any
finite set. Examples of Hilbert spaces of analytic functions where Mz is not cyclic
appear in some unpublished work of Sundberg and Aleman and Sundberg. These
are essentially based on the construction of zero sequences for weighted Bergman
spaces which contain subsequences that are not zero-sequences for the same space.
It is not known whether these spaces are generated by a finite set or not. More
generally, the problem is to find examples of Hilbert spaces of analytic functions
on the unit disc as above, that are not finitely generated.

6. Carl Sundberg: When is the difference of two composition

operators on H2 compact?

Let φ, ψ : D → D be analytic, where D is the unit disk in the complex plane,
and denote by Cφ, Cψ the respective composition operators induced on the Hardy
spaceH2. We ask for a characterization of pairs φ, ψ for which Cφ−Cψ is compact.

The question was completely answered by Jennifer Moorhouse [1] in the case
when H2 is replaced by any of the standard weighted Bergman spaces A2

α. Her
answer can be stated in the following way: Cφ − Cψ is compact on A2

α iff “the

reproducing kernels think that C∗
φ−C∗

ψ is compact”, i.e. iff
∥∥(C∗

φ−C∗
ψ) kλ

‖kλ‖

∥∥ → 0

as |λ| → 1, where kλ is the reproducing kernel for A2
α at λ.

On the other hand it is known that the composition operator Cφ is compact on

H2 iff “the reproducing kernel thinks it is”, i.e. iff
∥∥Cφ kλ

‖kλ‖

∥∥ → 0 as |λ| → 1, where

now of course kλ denotes the reproducing kernel for H2 at λ ([4]). We are led to
conjecture that this statement is true for differences of composition operators on
H2 as well:

Conjecture. Suppose φ, ψ are such that
∥∥(Cφ −Cψ) kλ

‖kλ‖

∥∥ → 0 as |λ| → 1. Then

Cφ − Cψ is compact.
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In addition to the papers already mentioned we list some others where this
question is considered.
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