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Introduction by the Organisers

The Mini-Workshop Gerbes, Twisted K-Theory and Conformal Field Theory orga-
nized by Branislav Jurčo (München), Jouko Mickelsson (Helsinki) and Christoph
Schweigert (Hamburg) was held August 14th – August 20th, 2005. The idea of this
mini-workshop was to bring together people working on different aspects of gerbes
(and related topics) to exchange different points of view, make the interactions
more intense and eventually establish new collaborations. Because of different
backgrounds of participants, the organizers asked Jarah Evslin and Hisham Sati
to prepare some expository lectures on M -theory, supergravity and superstrings
oriented towards a more mathematical audience. Also Christoph Schweigert pre-
pared an introduction on the use of gerbes and gerbe modules in the description
of D-branes in Wess-Zumino-Witten models and Dale Husemöller reported on the
point of view of stacks and gerbes in the form used in algebraic geometry following
Deligne’s exposition of nonabelian cohomology in LN 900.
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As equivalence classes of line bundles are geometric realizations of the second
integral cohomology classes, stably equivalence classes of bundle gerbes are geomet-
ric realizations of the third integral cohomology classes. Similarly to line bundle
that can be equipped with connection, gerbe can be equipped with connection and
curving (B-field). Taking this extra differential geometric structures into account
the relevant cohomology is the Deligne cohomology. Gerbes can be equipped with
modules, which are vector bundles twisted with the third integral cohomology class
in questions. These are the structures important in string theory when we want to
describe D-branes in topologically nontrivial backgrounds. D-brane charges are
conjecturally classified (at least in some situations) by the corresponding twisted
K-theory. This links very nicely K-theory to conformal filed theory. Similarly
higher versions of gerbes and their nonabelian generalizations are expected to be
useful for description of higher rank forms gauge theories and the conjectural M -
theory. As usually, this interaction between geometry, topology and theoretical
physics makes the subject attractive to researches with different backgrounds.

Gerbe and gerbe modules turn out to be a crucial input in the description of
the Wess-Zumino term in the presence of boundaries. The quantization of the
position of D-branes in string backgrounds with three-form fluxes actually arises
as a consequence of integrality properties of these modules. This was discussed in
talks of Christoph Schweigert and Krzyzstof Gawedzki who explained how gerbes
help to solve WZW conformal sigma models and how they provide an uniform and
effective treatment of classical and quantum theories without and with boundaries.
Closely related to WZW theory is the Chern-Simons gauge theory. The precise
relation between these two theories in the language of multiplicative bundle gerbes,
2-bundle gerbes and the corresponding Deligne cohomology classes was described
in the talk of Michael Murray.

In the same way as vector bundles give rise to class in the topological K-theory
of the manifold, gerbe modules give rise to a class in twisted K-theory. Twisted
K-theory has been proposed as the recipient of D-brane. Equivariant twisted K-
theory τKG(G) on a compact Lie group G can be endowed with the structure of a
ring. Due to a result of Freed Hopkins and Teleman this ring turns out to be the
Verlinde algebra, familiar from conformal field theory. More generally equivariant
twisted K-theory τKH(G) in the case when G/H is hermitian symmetric can be
related to the N = 2 chiral ring. This extension was discussed in the talk of Sakura
Schäfer-Nameki. Volker Braun in his talk showed some explicit computations in
twisted K-theory relevant for N = 1 supersymmetric Wess-Zumino-Witten mod-
els. Explicit construction of twisted equivariant K-classes using Dirac operators
related to supersymmetric WZW models was given in talk of Jouko Mickelsson.
A nice application of multiplicative bundle gerbes was given by Alan Carey. The
multiplicative structure gives rise to the fusion product on bundle gerbe D-branes.
Quantization functor relates these to the twisted equivariant K-classes.

Another aspect is the action of dualities on gerbes and gerbe modules and the
related twisted K-classes. In the case of circle and torus bundle, there has been a
lot of activity recently. In their talks Jarah Evslin and Hisham Sati introduced the



Mini-Workshop: Gerbes, Twisted K-Theory and Conformal Field Theory 2141

concept of duality how it is emerging in M -theory, supergravity and superstring
theory. They explained how anomaly cancellation and consistency of quantum field
theories under different dualities lead to the description of filed configurations in
terms of generalized cohomology theories (e.g. K-theory and elliptic cohomology).
Talk of Varghese Mathai was devoted to global aspects of T -duality and relations
to noncommutative geometry. T -duality for orbispaces from the point of view of of
stacks and gerbes introduced in talk of Dale Husemoller was presented by Ulrich
Bunke in his lecture. Peter Bouwknegt gave an overview of the topic of generalized
geometry and its relation to gerbes, T -duality and mirror symmetry.

Nonabelian gerbes, their relation to nonabelian cohomology and their applica-
tion to quantum theory was another topic presented in some lectures. Nonabelian
generalizations of bundle gerbes, their modules and differential geometry along
with an application to anomaly of five branes were presented by Paolo Aschieri
followed by the talk of Branislav Jurčo about simplicial description of nonabelian
bundle gerbes with connection and curving. Simplicial description leads naturally
to classification of bundle gerbes related to crossed modules. Closely related talk
was given by Danny Stevenson who described the string gerbe based on the recent
simplicial construction of the string group. He as well as Urs Schreiber in his talk
on nonabelian holonomy used the groupoid point of view to gerbes. A nonabelian
bundle gerbe can be thought as an example of a 2-bundle which comes together
with the concept of higher algebraic structures and categorification, subjects of
the lecture of Hendryk Pfeiffer.

We are very glad that there was a lot of interactions across the various groups of
researchers. Physicists and mathematicians enjoyed both the talks and the lively
after talks discussion. Also mini-workshop benefited a lot from the activity and
curiosity of young participants.
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Abstracts

M-Theory, Type II String Theory, and (Refinements of) Twisted
K-Theory

Jarah Evslin and Hisham Sati

Evslin Sati
This is a series of four lectures delivered by the two authors. The first two were

expository aimed mostly at introducing M-theory, supergravity and superstring
theories to the mathematics audience. The second two were research-oriented and
aimed at reporting the work of the authors on the subject of the workshop.

The different fields that usually occur in physics are generically described in
the language of vector bundles or principal bundles as sections or connections,
or as cohomology elements. Each field has a corresponding Lagrangian and an
equation of motion (EoM). One useful way of classifying the fields is via the spin,
which is integral for bosons and half-integral for fermions. Among the important
examples are the spinors, with the Dirac operators as the operators in question.
A supersymmetric theory is a theory of bosons and fermions, which enjoy, in
addition to the symmetries of the separated system, a symmetry that mixes the
two kinds called supersymmetry. A (non-)gravitational theory can have rigid or
global (local) supersymmetry.

Supergravity (=sugra) is basically built from combining a bosonic Lagrangian,
the Einstein-Hilbert Lagrangian, and a fermionic one, the Rarita-Schwinger La-
grangian. In addition to the symmetries that these Lagrangians might separately
have, one also introduces an extra symmetry – the supersymmetry– that varies
the fermions with respect to the bosons and vice versa, involving a local spinor
parameter, i.e. one that depends on coordinates of spacetime. One important
requirement of supersymmetry is the equality of the number of degrees of freedom
of the bosons and the fermions. For simple supergravity theory in four dimensions,
this condition is already satisfied by the Einstein-Hilbert and the Rarita-Schwinger
system. However, in higher dimensions, this is no longer the case as the dimension
of the spinors grows exponentially, whereas the dimension of the bosons is usually
polynomial. The mismatch in bosonic degrees of freedom is supplied by differential
forms. The most important such example is eleven-dimensional supergravity [1],
where the above form has degree three.

The field content of eleven-dimensional supergravity is (g, C3, ψ1), where g is
the metric tensor, C3 is the antisymmetric tensor field, usually called the C-field,
and ψ1 is the Rarita-Schwinger field, i.e. a fermion with spin 3/2. The Lagrangian
of this supergravity theory is rather simple compared to other higher-dimensional
supergravity theories. It is made of kinetic terms for the three fields involved, and
in addition contains an important piece dictated by supersymmetry, which the
Chern-Simons term, a topological term independent of the metric. If one includes
quantum effects of anomalies then one also adds a one-loop term made of C3 and
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some eight-dimensional polynomial in the Pontrjagin classes of the tangent bundle
of the eleven manifold (Y 11, g).

Varying the action of 11d sugra with respect to each of its field leads to a set of
three EoM’s: the Einstein equation for g, the Maxwell-like equation for C3, and the
Rarita-Schwinger equation for ψ1. Solving such differential equations in general
is a very difficult task; one usually does so only for a particular ansatz. Among
the interesting solutions are the membrane M2 and the fivebrane M5. These are
characterized by being BPS. This means that they are stable against perturbations
and thus do not receive quantum corrections. This essentially implies that such
solutions can be trusted in the quantum theory, i.e. at strong coupling.

M-theory is a quantum theory in eleven dimensions whose weak coupling limit
is classical eleven-dimensional supergravity. There is no intrinsic formulation of
the theory without using its limits. There are proposals for such definitions, e.g.
the matrix model, but they have their limitations, especially as far as topology
goes. M-theory also connects the various string theories through a web of duali-
ties, namely perturbative target space T-duality, and nonperturbative strong-weak
coupling S-duality. So one can try to study M-theory from its low energy limit,
i.e. eleven-dimensional supergravity, or from its connection to the duality web. In
the first approach, one uses the above BPS solutions as objects in M-theory itself.

The degree three field C3 is responsible for the nontrivial topology in M-theory.
In analogy to electromagnetism where the one-form potential (=connection) cou-
ples to the worldline of the electron, and its dual couples to the worldline of the
monopole, one has an analogous situation where C3, viewed as an electric poten-
tial, couples to the M2 worldvolume and the the dual potential C6, viewed as a
magnetic potential, couples to the worldvolume of the M5-brane. This is due to
the eleven-dimensional Hodge duality between G4 = dC3 and ∗G4 = dC6 + · · · ,
and follows directly from the EoM for C3.

In supergravity, the non-gravitational fields are usually taken to be differential
forms. However, upon taking anomalies into account and looking at the quantum
picture, such fields are expected to form classes in integral cohomology. However,
the situation is usually more subtle. For the case of G4 one gets a shifted quan-
tization condition G4 − λ

2 ∈ H4(Y 11; Z), where λ is half the Pontrjagin class of

TY 11.

Motivated by the E8 × E8 heterotic string theory on the boundary of Y 11,
Witten [2] showed that G4 can be interpreted as the class of an E8 bundle in eleven
dimensions. In [3] the question of supersymmetry of such a theory is analyzed and
an approximate construction of the 11d gravitino as a condensate of the gauge
theory fields was given.

The Kaluza-Klein dimensional reduction of eleven-dimensional supergravity
leads to type IIA supergravity theory, whose bosonic field content includes the
Ramond-Ramond (=RR) fields F2p, (p = 1, · · · , 5), and the Neveu-Schwarz
(=NSNS) field H3. The global dimensional reduction was performed in [4]. In
type II string theory on X10 one analogously has refinements of the cohomology
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description, except that in this case one is led instead to K-theory, K0(X10) for
type IIA and K1(X10) for type IIB. In the presence of H3, the corresponding
K-theories are twisted.

The reduction of the E8 above to ten dimensions leads to an LE8 bundle. This
was proposed first in [5] and interpreted in terms of gerbes in [4], where H3 serves
as the obstruction to lifting the loop group bundle to its central extension. This
bundle picture can be considered to be somewhat complementary to the twisted
K-theory view above. Adding a cosmological constant F0 leads necessarily to a
H3 which is trivial in cohomology, i.e. to H3 = dB2 [4].

Instead of looking at the fields, one can look at the story from a complemen-
tary point of view, namely via D-branes. The latter are in homology, and one
can go back and forth between cohomology and homology using Poincaré dual-
ity. There is an analogy with electromagnetism in this case and the branes act as
sources of charges that appear as delta-function violations of the the correspond-
ing Bianchi identities. This can be thought of as higher degree analog of Dirac
charge quantization for monopoles (and dyons). The Atiyah-Hirzebruch Spectral
Sequence (AHSS) serves as a tool to detect the difference between cohomology and
K-theory and is thus a powerful tool in the D-brane realization [6]. The classifica-
tion of D-branes and solitons, especially in type IIB string theory in this context
has been considered in [7] [8] [9] where further physical realizations are made and
a modification of the AHSS is proposed in order to describe the group of conserved
RR and NSNS charges.

The correspondence between M-theory and type IIA string theory holds at the
quantum level in the path integral formulation, i.e. at the level of the partition
functions [10]. The former is governed by the E8 gauge theory and the latter by
K-theory. The corresponding match for twisted K-theory was started in [4], where
a nontrivial M-theory circle bundle is considered, the NSNS field H3 nontrivial
in cohomology is added, and the corresponding vector bundles are taken not to
be lifted from the base. The construction of the K-theory torus is done as in the
untwisted case. Eta differential forms – the higher degree generalizations of the
eta invariant – make a very interesting appearance, perhaps for the first time in
string theory.

The partition function in [10] has an anomaly given the seventh integral Stiefel-
Whitney classW7. In [11] the vanishing of this anomaly was shown to be equivalent
to orientability of spacetime with respect to (complex-oriented) elliptic cohomol-
ogy E. Motivated by this, an elliptic cohomology correction to the IIA partition
function was defined. The generators of E were proposed as corresponding to M2
and M5-branes in the M-theory limit.

Other aspects of string theory also point further towards elliptic cohomology.
In the presence of background NSNS flux, the description of the RR fields of type
IIB string theory using twisted K-theory is not compatible with S-duality. In
[12] it was shown that other possible variants of twisted K-theory would still not
resolve this issue and a possible solution was proposed using elliptic cohomology.
Another evidence for elliptic cohomology is modularity in type IIB, where there
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is an elliptic curve that lifts the theory to twelve-dimensional F-theory. In [13] an
interpretation is given for this elliptic curve in the context of elliptic cohomology.

The above elliptic cohomology description in type II string theory can, at least
mathematically, be continued to M-theory via a Kunneth formula for E. One
can ask whether E will ultimately be the theory describing the fields of M-theory.
Related to this is trying to understand the nature of G4. For this purpose, the
Chern-Simons and the one-loop terms in the M-theory action were written in
[14] in terms of new characters involving the M-theory four-form and the string
classes. The latter are defined as analogs to the usual string class of rank four, i.e.
λi = pi/2. This suggests the existence of a theory of higher characteristic classes
where the Chern classes and the Chern characters are replaced by those new classes
and characters. In [15] this formalism is used to give a unified expression for the
class of G4 and its dual (called the Θ class in [16]) in analogy to the K-theoretic
quantization of the RR fields.
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Introduction to the WZW Theory and Bundle Gerbes

Christoph Schweigert

(joint work with Konrad Waldorf)

In this talk, I gave an introduction to the application of bundle gerbes and gerbe
modules in WZW theories. The goal was to show why bundle gerbes, gerbe mod-
ules and their holonomy are the natural and unavoidable language to describe the
Wess-Zumino (WZ) term in the action functional of these models.

The classical WZW model is defined by an action for maps from a two-dimen-
sional conformal manifold Σ to a Lie group G. In the present talk, only the case of
compact connected simple Lie groups G and oriented surfaces Σ was considered.
Conformal invariance of the quantized WZW model requires the addition of a WZ
term. In Witten’s original paper [8], this term was described as follows: fix a
three-dimensional manifold B with boundary Σ; extend the map g : Σ → G to a
map g̃ : B → G. Then

SWZ = k

∫

B

g̃∗H ,

where H is a closed biinvariant three-form on G. For this approach, however, the
condition H2(G) = 0 is needed for the existence of the extension g̃.

This condition is not fulfilled for the non simply-connected Lie group G =
Spin(4n)/Z2 × Z2. Simple current techniques [7] in the algebraic approach show,
however, that there should be two different conformal field theories that differ
“by a choice of discrete torsion”. This puzzle is naturally resolved by considering
the WZ term as the holonomy of an (equivariant hermitian bundle) gerbe on
G. (For the first formulation of this idea in terms of Deligne cohomology see
[6].) For this formulation, there is no obstruction in H2(G), and moreover the
possible connections on a gerbe with given Dixmier-Douady class form a torsor
overH2(G,U(1) ∼= Z2 which explains the existence of two different models. Hence,
already for the WZW models on closed surfaces Σ, gerbes and holonomies are
essential.

For the case of surfaces with boundaries, boundary conditions have to be speci-
fied. The naive approach would be to fix a submanifold ι : Q→ G and a two-form
ω on Q such that the pair (H,ω) is closed in the relative de Rham complex for
(G,Q). Again, one would have to choose extensions, leading to the obstruction
that g(Σ) should vanish in the relative homology H2(G,Q).

In view of the situation for closed surfaces, one immediately wonders whether
these obstructions are really needed. Moreover, algebraic results about boundary
conditions in conformal field theories with simple current modular invariants [1,
3] show that there are cases (e.g. the conjugacy class of the Lie group SO(3)
that is isomorphic to RP 2) where two different boundary conditions have the
same submanifold Q and two-form ω. Moreover, algebraic calculations in Gepner
models have shown [2] that a simple boundary condition, without Chan-Paton
multiplicities, can give rise to non-abelian gauge symmetries. The computation of
charges gives further hints that the idea to describe boundary conditions – also
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called D-branes – in terms of submanifolds with a two-form, possibly refined to a
U(1)-gauge theory on Q fails.

The solution is provided by gerbe modules [4, 5]. The obstructions can be
avoided, the situation for SO(3) is explained by the fact that gerbe modules with
fixed curvature form a torsor over the group of isomorphism classes of flat line
bundles on Q, which is isomorphic to Z2 for RP 2. Finally, it was shown by
Gawȩdzki in [5] that irreducible gerbe modules of higher rank, leading to non-
abelian gauge symmetries, can occur once the fundamental group is not cyclic.

The talk might therefore be summarized by saying that for the Lagrangian de-
scription of the WZW model on oriented surfaces, both with and without bound-
aries, gerbes, their holonomies and gerbe modules are crucial.
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[4] K. Gawȩdzki and N. Reis, WZW branes and gerbes, Rev. Math. Phys. 14 (2002) 1281–1334
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Holonomy and Aspects of Deligne-Cohomology for Nonabelian Gerbes

Urs Schreiber

Gerbes play a role in string theory mostly as gerbes with connection, namely as
structures that admit ‘parallel transport’ of strings and possibly of membranes.
This allows physicists to write down globally well-defined (‘anomaly free’) action
functionals for these objects.

According to an argument formalized by Aschieri and Jurčo [1] the endstrings
of certain membranes are in particular expected to couple to a nonabelian gerbe
with connection. While the concept of parallel transport as well as that of Deligne
classification is well-known for abelian gerbes with connection, its generalization
to the nonabelian case has only more recently emerged [2] within the context of
‘2-bundles’ [3], and has further been developed in [4].

In order to motivate this approach first reconsider ordinary G-bundles with
connection from the point of view of parallel transport. The most immediate
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definition of an ordinary G-bundle with connection over a space M in this sense
is in terms of its holonomy-functor

hol : P1(M) → G−Tor

which maps paths inM (really morphisms of the groupoid P1(M) of thin homotopy
equivalence classes of paths) to morphisms of G-torsors in a suitable smooth way.

Locally, on contractible open subsets Ui ⊂ M , such a functor is naturally iso-
morphic to a smooth local holonomy functor

holi : P1(Ui) → G

from paths to group elements. As is well known, these functors are specified by
local connection 1-forms

Ai ∈ Ω1(Ui,Lie(G)) .

On double intersections Uij = Ui ∩ Uj such functors are found to be related by
natural isomorphisms

holi
gij

→ holj

which induce the familar cocycle conditions on Ai and gij . Gauge transforma-
tions, coming from different choices of trivializations, correspond to natural iso-
morphisms of these fuctors.

This means that with respect to a good covering U = {Ui}i∈I of M , the global
holonomy functor hol : P1(M) → G−Tor defines an isomorphism class of functors
from the Čech-groupoid of U (whose objects are open sets and whose morphisms
are double intersections) to the category of local holonomy functors, which is best
thought of, equivalently, as a homotopy class of simplicial maps between the nerve
of the covering and that of the holonomy functor-category [5].

Now categorify this situation. Fix a smooth category G2 with strict group
structure, called a strict 2-group [6], and consider 2-holonomy 2-functors:

hol : P2(M) → G2−2Tor

that assign 2-morphisms of G2-2-torsors to surfaces in M . Given a piece of world-
sheet Σ of a ‘nonabelian string’, hol(Σ) is supposed to be the parallel transport of
a string across Σ.

What is the information encoded in the specification of such a 2-functor hol?
A combination of abstract diagrammatic reasoning together with some path space
analysis shows that such 2-functors specify nonabelian gerbes with connection and
curving whose fake curvature vanishes and which have a notion of surface holonomy
given by hol.

More in detail, the 2-functor hol is locally isomorphic to 2-functors

holi : P2(Ui) → G2

that are specified by pairs Ai ∈ Ω1(Ui,Lie(G)) and Bi ∈ Ω2(Ui,Lie(H)) satisfying
the fake flatness condition [7]

FAi
+ dt(Bi) = 0 .

(Here H
t
→ G is a crossed module of groups associated with G2.)
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These 2-functors are related on double overlaps by pseudonatural transforma-
tions

holi
gij

→ holj

which themselves are related on triple overlaps by modifications of pseudonatural
transformations

gik
fijk
→ gij ◦ gjk .

These modifications finally satify a tetrahedron coherence law on quadruple over-
laps.

In terms of the pairs (Ai, Bi) all these transformations and coherence laws
translate precisely into the cocycle conditions for a fake-flat nonabelian gerbe with
connection and curving (as displayed in [8], [9]).

As before, we can think of this situation as a 2-functor from the Čech 2-groupoid
of the covering U to the 2-category of local 2-holonomy 2-functors. One checks that
natural isomorphism of such an assignment correspond to gauge transformations
of the above cocycle data. Again [5], it is useful to think of this, equivalently, as
a homotopy class of simplicial maps between the respective nerves (now using the
notion of nerves of 2-categories as in [10]).

This establishes the notion of nonabelian gerbes/2-bundles with connection and
with holonomy. A little exercise in diagram-gluing produces an explicit formula for
computing nonabelian surface holonomy from local 2-forms {Bi} which generalizes
a similar formula well-known for abelian gerbes [11], [12].

While the classification of these objects in terms of classes of maps between
the Čech 2-groupoid and a 2-functor 2-category is available, it does not seem to
lend itself to computations. An efficient nonabelian generalization of the cocycle
description of abelian gerbes with connection in terms Deligne hypercohomology
would therefore be desireable.

It turns out that, at least at a ‘linearized’ level, such a description is obtainable
by suitably ‘differentiating’ all elements of the above discussion. In order to do so
the 2-path 2-groupoids P2(Ui) should be replaced by ‘2-path 2-algebroids’ p2(Ui),
the structure 2-group G2 similarly by a Lie 2-algebra p2(Ui), the 2-holonomy 2-
functor by a morphism

coni : p2(Ui) → g2

of 2-algebroids, the transition transformation gij by a respective 2-algebroid 2-
morphism gij and so on.

One technical complication for this program is that p-algebroids have yet to
be formulated in a convenient category-theoretic framework that would allow to
extract them by mere application of some p-functor from the above disucssion. But
for all semistrict Lie p-algebras as well as for 1-algebroids and certain 2-algebroids
it is known that they have a dual description in terms of p-term differential graded
algebras [13], [14]. These again fit naturally in p-categories whose 1-morphsims
are given by chain maps, 2-morphism by chain homotopies, and so on.

Using this dictionary, the entire above discussion translates into the study of
simplicial maps from Čech-simplices to categories of morphisms coni : p2(Ui) → g2

of dg-algebras. Using the differentials of p2(Ui) and g2 one naturally obtains a
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nilpotent operator Q which makes the sheaves Ln of dg-algebra n-morphisms into
a complex of sheaves

· · · → Ln Q
→ Ln−1 Q

→ Ln−2 → . . . .

One finds that a simplicial map from the Čech-groupoid to the category of alge-
broid morphisms is equivalent to a cochain in the hypercohomology complex

· · · → H0(U , L•)
D=δ±Q
→ H1(U , L•) → . . . ,

where δ is the Čech coboundary operator. Homotopies of such maps correspond
to shifts by D-exact terms.

One checks that in the abelian case this reduces to ordinary Deligne hyperco-
homology

H•(U , L•) → H•(U ,Ω•)

classifying abelian (p-)gerbes with (p + 1)connection. In the nonabelian case the
equation Dω = 0 provides an efficient tool for computing the linearized cocycle
conditions of these objects. It is however unclear if this generalized Deligne coho-
mology fully captures the classification of nonabelian gerbes, or if the linearization
involved looses information.

On the other hand, the algebroid formalism allows to handle objects with (weak)
structure Lie p-algebras that are not integrable to Lie p-groups and hence have
no proper p-gerbe analog. An interesting example for this is the semistrict Lie-2-
algebra sok(n) which is related to the String-group [15].
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Stacks and Gerbes

Dale Husemöller

My lecture was to be a report on Deligne’s exposition of the subject of nonabelian
cohomolgy in LN 900. In the process I used also the book of Gérard Lamoun and
Laurent Moret-Bailly on Champs algébraiques. A gerbe in the conference usually
ment a bundle gerbe, and this lecture was to report on the point of view of stacks
and gerbes in the form used in algebraic geometry. This point of view was present
in the lecture of U. Bunke.

The definition of fibre category π : E → B was introduced and the special case
of a groupoid E over a category considered. Examples were taken from bundles
and from principal G-bundles over (top) = B the category of topological spaces.

In discussions with U. Bunke we could give an equivalent formalism in terms of
psedudofunctors (or 2-functors) B → (cat) for fibre categories π : E → B. Both the
fibre category and the pseudofunctor approaches have their merits for examples
from topology which are currently under consideration.

Grothendieck topologies on a category T were introduced, and the related cat-
egories T ∨ of presheaves of sets and ShT of sheaves of sets were introduced. The
adjunction property of the inclusion ShT → T ∨ was also considered, and its rela-
tion to morphisms T ′ → T ′′ of topologies explained.

The definition of a stack π : E → T over a topology T as a fibre category which
is equivalent to the category of descent data relative to the topology on the base
was introduced. gerbes over T were defined as certain stacks of groupoids.

Examples were principal G-bundles over (top), and for a sheaf G of groups the
category of principal G-sheaves P (or torseurs) were considered as basic examples
of stacks.

Global Aspects of T-duality in String Theory and Twisted K-theory

Varghese Mathai

(joint work with P. Bouwknegt, A. Carey, J. Evslin, K. Hannabuss, M. Murray,
J. Rosenberg, D. Stevenson)

String theory is arguably the most exciting research area in modern mathematical
physics. It is known to the general public as the “Theory Of Everything”, thanks
to its great success in unifying Relativity and Quantum Field Theory, yielding
Quantum Gravity theory. The impact of string theory is not just felt in physics, but
it also has profound interactions with a broad spectrum of modern mathematics,
including noncommutative geometry, K-theory and index theory. In this talk, I
will give a brief survey of my joint papers on the global aspects of T-duality in
string theory and Twisted K-theory.

The theory of D-branes forms an important part of string theory. It arises
as the T-dual of open strings on a circle bundle, where the open strings in the
dual theory are no longer free to move everywhere in space, but are endowed
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with Dirichlet boundary conditions so that the endpoints are free to move only
on a submanifold known as a D-brane. For a link describing the mathematics
behind D-branes, cf. superstrings. Such D-branes come with (Chan-Paton) vector
bundles, and therefore their charge determines an element of K-theory, as was
argued by Minasian-Moore. In the presence of a nontrivial B-field but whose
Dixmier-Douady class is a torsion element of H3(M,Z), Witten argued that D-
branes no longer carry honest vector bundles, but they have a twisted or gauge
bundle. In the presence of a nontrivial B-field whose Dixmier-Douady class is
a general element of H3(M,Z), it was proposed in [12] that D-brane charges in
type IIB string theories are measured by the twisted K-theory that was described
earlier by Rosenberg, and the twisted bundles on the D-brane world-volumes were
elements in this twisted K-theory. In [11], using bundle gerbes and their modules, a
geometric interpretation of elements of twisted K-theory was obtained, and the the
Chern-Weil representatives of the Chern character was studied. This was further
generalized to the equivariant and the holomorphic cases in [10]. The relevance of
the equivariant case to conformal field theory was highlighted by the remarkable
result of Freed, Hopkins and Teleman that the twisted G-equivariant K-theory of
a compact connected Lie group G (with mild hypotheses) is graded isomorphic
to the Verlinde algebra of G, with a shift given by the dual Coxeter number and
the curvature of the B-field, where we recall that Verlinde algebra of a compact
connected Lie group G is defined in terms of positive energy representations of the
loop group of G, and arises naturally in physics in Chern-Simons theory which is
defined using quantum groups and conformal field theory.

Type I D-branes in the presence of an H-flux are studied in [8], where a geometric
interpretation of H2(M,Z2) is given in terms of stable isomorphisms of real bundle
gerbes, and the twisted KO theory is interpreted geometrically in terms of real
projective vector bundles.

One development is the novel discovery in [9, 6] of T-duality isomorphisms
in twisted K-theory and twisted cohomology and the character formulae relating
these. Briefly, T-duality defines an isomorphism between the twisted K-theory of
the total space of a circle bundle, to the twisted K-theory of the total space of a
“T-dual” circle bundle with “T-dual” twist, and with a change of parity. Similar
statements hold for twisted cohomology. One interesting consequence is that we
can construct fusion products in twisted K-theory and twisted cohomology, when-
ever the twist is a non-trivial decomposable cohomology class. Another interesting
consequence of our work is that it gives convincing evidence that a type IIA string
theory A on a circle bundle of radius R in the presence of an H-flux, and a type
IIB string theory B on a “T-dual” circle bundle of radius 1/R in the presence of a
”T-dual” H-flux, are equivalent in the sense that the string states of string theory
A are in canonical one to one correspondence with the string states of string theory
B. This is a fundamental property of type II string theories that was predicted
only in special cases earlier.

[7] studies the more general case of T-duality for principal torus bundles. The
new phenomenon that occurs here is that not all H-fluxes are T-dualizable, and
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this paper works out the precise class of T-dualizable H-fluxes. The isomophisms
in twisted K-theory and twisted cohomology also follow in this case.

In [5], we give a complete characterization of T-duality on principal 2-torus-
bundles with H-flux. As noticed in [7] for instance, principal torus bundles with H-
flux do not necessarily have a T-dual which is a torus bundle. A big puzzle has been
to explain these mysterious “missing T-duals.” Here we show that this problem is
resolved using noncommutative topology. It turns out that every principal 2-torus-
bundle with H-flux does indeed have a T-dual, but in the missing cases (which
we characterize), the T-dual is non-classical and is a bundle of noncommutative
tori. This suggests an unexpected link between classical string theories and the
“noncommutative” ones, obtained by “compactifying” along noncommutative tori.

In [4, 1], we give a complete characterization of T-duality for general principal
torus-bundles with H-flux, generalizing the results in [5] to higher rank torus bun-
dles. The striking new feature in the case when the rank of the torus bundle is
greater than or equal to 3 is that not every such torus bundle has a T-dual, either
classical or nonclassical. The simplest example is the rank 3 torus over a point.
We also define the action of the T-duality group GO(n, n,Z) on T-dual pairs of
principal torus bundles, where n is the rank of torus bundle, where GO(n, n,Z)
is the subgroup of GL(2n,Z) that preserves the bilinear pairing upto sign. All of
T-dual pairs in a given orbit of GO(n, n,Z) define physically equivalent type II
string theories.

In [3, 2], we initiate the study of C∗-algebras endowed with a twisted action of
a locally compact Abelian Lie group, and we construct a twisted crossed product,
which is in general a nonassociative, noncommutative, algebra. The properties
of this twisted crossed product algebra are studied in detail, and are applied to
T-duality in Type II string theory to obtain the T-dual of a general principal torus
bundle with general H-flux, which we will argue to be a bundle of noncommutative,
nonassociative tori. We also show that this construction of the T-dual includes all
of the special cases that were previously analysed.
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T -Duality for Orbispaces

Ulrich Bunke

(joint work with Thomas Schick)

The concept of T -duality has its origin in string theory. It is a relation between
one type of string theory on a certain target with another type of string theory on
a T -dual target. T -duality is related to various mathematical concepts like mirror
symmetry for Calabi-Yau manifolds, Fourier-Mukai transformations or Pontrjagin-
Takai-duality for crossed products.

In an ongoing project we study the topological aspects of T -duality in the
presence of an H-flux for spaces with torus actions. In the present talk we restrict
to U(1)-spaces. Let B be a space.

A pair (E, h) over B consists of a U(1)-principal bundle E → B and a class
h ∈ H3(E; Z).

We study a T -duality relation (E, h)
T
∼ (Ê, ĥ) between such pairs and the

construction of canonical isomorphism classes of T -dual pairs [Ê, ĥ] := T (E, h).
These investigations started with [1], and we refer to [2] for precise mathematical
definitions and results. For the case of higher-dimensional torus actions we refer
to [3] and the review of the literature therein.

The total space E of the U(1)-principal bundle is a free U(1)-space. The main
goal of the present talk is to show that the definitions and results extend to the
cases of non-free U(1)-actions with finite stabilizers essentially by a twist in the
language. Our results are documented in [4].

Analyzing the case E = U(1)/(Z/nZ) we came to the conclusion that the first

component of the T -dual (Ê, ĥ) := T (E, 0) has to be considered as a topological
stack locally modeled by quotients of spaces by finite groups. These stacks will
be called orbispaces. In the example we get Ê ∼= U(1) × [∗/Z/nZ]. In [4] we
show that the definition of the T -duality relation and the results about canonical
T -duals obtained in [2] extend to the case where B is an orbispace, E → B is a
U(1)-principal bundle in the category of orbispaces, and h ∈ H3(E; Z) is a class
in the natural extension of integral cohomology to orbispaces.
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Another aspect to T -duality (and a design criterion for the definition of the T -

duality relation) is the T -duality transformation T : h(E, h) → h(Ê, ĥ) in twisted
cohomology theories, in particular in twisted real cohomology and K-theory. In [4]
we show that any twisted cohomology theory has a Borel extension to orbispaces,
and this Borel extension is still T -admissible so that the T -duality transformation
is an isomorphism. This is fine for real cohomology, but for K-theory (as in
the equivariant case) there is a more natural extension to orbispaces. In is an
interesting open problem to decide whether the latter is also T -admissible.
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Nonabelian Bundle Gerbes

Paolo Aschieri

(joint work with Branislav Jurčo)

Abelian bundle gerbes are a higher version of line bundles. Complex line bundles
are geometric realizations of the integral 2nd cohomology classes H2(M,Z) on a
manifold, i.e. the first Chern classes. Similarly, abelian (bundle) gerbes are the
next level in realizing integral cohomology classes on a manifold, they are geometric
realizations of the 3rd cohomology classes H3(M,Z). One way of thinking about
abelian gerbes is in terms of their local transition functions [1]. Local “transition
functions” of an abelian gerbe are complex line bundles on double overlaps of open
sets satisfying cocycle conditions for tensor products over quadruple overlaps of
open sets. The nice notion of abelian bundle gerbe [2] is related to this picture.
Abelian gerbes and bundle gerbes can be equipped with additional structures, that
of connection 1-form, that of curving (this latter is the 2-form gauge potential that
corresponds to the 1-form gauge potential in line bundles) and of curvature (3-form
field strength whose de Rham cohomology class is the image in IR of the integral
third cohomology class of the gerbe).

Following [3], in this talk we have reported on the nonabelian generalization
of abelian bundle gerbes and their differential geometry. Nonabelian gerbes arose
in the context of nonabelian cohomology [4]. Their differential geometry –from
the algebraic geometry point of view– has been recently discussed in [5]. In [3]
we study the subject in the context of differential geometry. We show that non-
abelian bundle gerbes connections and curvings are very natural concepts in classi-
cal differential geometry. We believe that it is primarily in this context that these
structures can have mathematical physics applications.
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Since local transition functions of an abelian gerbe are complex line bundles (or
principal U(1) bundles), nonabelian gerbes should be built gluing appropriate non-
abelian principal bundles (called bibundles). Bibundles admit a local description
in terms of transition functions. This is the starting point for a local description
of nonabelian gerbes and of their differential geometry. While this local viewpoint
is usually the most suitable for calculations, only reaching a global description
of these geometric structures one can grab their full essence. This is even more
the case for the construction of a connection (and curving and curvature) on a
nonabelian bundle gerbe. A first achievement of our research is the definition
of connection one-form on a bibundle, this is a relaxed version of connection on
principal bundles. Nevertheless one can define the exterior covariant derivative
and curvature two-form of this connection, and prove a relaxed Cartan structural
equation and the Bianchi identity. We then proceed to our main results, the def-
inition of nonabelian bundle gerbes, and expecially of their connections, and the
proof that there always exist a connection. Finally the nonabelian curving 2-form
and the corresponding curvature 3-form compatible with the nonabelian bundle
gerbe connection are defined and their relations studied.

We have also briefly discussed twisted nonabelian bundle gerbes, see [6]. Fol-
lowing the correspondence between line bundles and abelian gerbes, we have
that abelian 2-gerbes are geometric realizations of the fourth integral cohomol-
ogy classes H4(M,Z). We recall that a twisted nonabelian bundle is a bundle
whose cocycle relations hold up to phases. These phases in turn characterize an
abelian gerbe. Similarly, twisted nonabelian gerbes are a higher version of twisted
bundles. The study of their properties shows that they are associated with abelian
2-gerbes in the same way that twisted bundles are associated with abelian gerbes.
This is a new way of looking at (twisted) nonabelian gerbes, namely as modules
for abelian 2-gerbes. Using global anomalies cancellation arguments we then see
that the geometrical structure underlying a stack of M5-branes is in general in-
deed that of a twisted nonabelian gerbe. We can also define connections, curvings
and curvature for the 2-gerbe and the twisted nonabelian gerbe. It turns out that
these structures have an interpretation as M5-branes gauge fields. A prominent
role is here played by the E8 group, indeed up to the 14th-skeleton E8 is homotopy
equivalent to the Eilenerg-MacLane space K(Z, 3), similarly BE8 ∼ K(Z, 4) and
therefore, if dimM ≤ 15, equivalence classes of E8 bundles on M are one to one
with homotopy classes [M,BE8] = [M,K(Z, 4)] = H4(M,Z).
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Classification of Nonabelian bundle Gerbes

Branislav Jurčo

This talk was a sequel to that of Paolo Aschieri. We continued the discussion
of nonabelian bundle gerbes and their differential geometry. The emphasis was on
classification using ideas from simplicial homotopy theory. The subject and some
ideas are very closely related to talks given by Hendryk Pfeiffer, Urs Schreiber and
Danny Stevenson.

Let us recall that given a crossed module, there is a notion of a crossed module
bundle gerbe; the bundle gerbe (equipped with a trivial module with the structure
group D) discussed in talk of P. Aschieri [1]. There are two points of view to a

crossed module H
α
→ D. It can be viewed either as a 1-category (actually a 1-

groupoid) which we will denote as C or as a 2-category (actually as a 2-groupoid)

which we will denote as C̃. In both cases we can form the corresponding nerves NC
and N C̃ and their respective geometric realizations |NC| and |N C̃|. Both points
of view appear to be useful.

Let us start with the simplicial space NC. Because of its origin in a crossed
module it is naturally a simplicial group and its geometric realization is a group. If
H and D are Lie groups then NC is a simplicial Lie group and |NC| is a topological

group. It has further interesting interpretations as the homotopy fiber of BH
Bα
→

BD or as the homotopy quotient D//H = EH ×α D of D by H . In other words
it is the classifying space of principal H-bundles with a chosen trivialization after
their structure group has been changed from H to D using the crossed module
map α. String group of [3], [4] is an example (see also talk of D. Stevenson).
As with any simplicial group we can form corresponding the classifying space
WNC. This brings as to the 2-category point of view. The classifying space
WNC appears to be equal equal to N C̃, the nerve of the 2-category C̃. This is the
origin of the following observation: There is one to one correspondence between
stable equivalence classes of (H → D)-crossed module bundle gerbes and principal
|NC|-bundles. Hence starting from from the universal |NC|-bundle we get also the
universal crossed module gerbe and vice versa.

Locally crossed module bundle gerbes are described as follows. Let us take
an open covering {Oα} of the manifold X . We can think of a simplicial space
N{Oα} whose n-th component is formed by disjoint unions of n-fold intersections
of Oαs. Then locally a crossed module bundle gerbe is given as a simplicial map
N{Oα} → WNC, i.e. as a simplicial NC-bundle. This description is useful for the
following reason. Namely although (in the case of a Lie crossed module) NC is a
simplicial Lie group |NC| is not necessarily a Lie group. So there is no differential
geometric connection on a principal |NC|-bundle. But we can introduce a notion
of a connection on a simplicial principal bundle when the structure group is a
simplicial Lie group. This is a collection of connections on the corresponding com-
ponents of the simplicial bundle which are properly compatible under the face and
degeneracy maps. Similarly we can introduce the B-field on a simplicial bundle.
In the case of a NC-bundle over N{Oα}, described above, these reproduce the
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crossed module bundle gebre connection and curving B-field on the corresponding
crossed module gerbe [2], [1].
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Quillen Superconnection, Supersymmetric WZW Model, and Twisted
K-Theory

Jouko Mickelsson

Gauge symmetry breaking in quantum field theory is described in terms of families
index theory. The Atiyah-Singer index formula gives via the Chern character coho-
mology classes in the moduli space of gauge connections and of Riemann metrics.
In particular, the 2-form part is interpreted as the curvature of the Dirac deter-
minant line bundle, which gives an obstruction to gauge covariant quantization in
the path integral formalism. The obstruction depends only on the K-theory class
of the family of operators.

In the Hamiltonian quantization odd forms on the moduli space become rele-
vant. The obstruction to gauge covariant quantization comes from the 3-form part
of the character. The 3-form is known as the Dixmier-Douady class and is also the
(only) characteristic class of a gerbe; this is the higher analogue of the first Chern
class (in path integral quantization) classifying complex line bundles.

The next step is to study familes of ’ operators’ which are only projectivly
defined; that is, we have families of hamiltonians which are defined locally in the
moduli space but which refuse to patch to a globally defined family of operators.
The obstruction is given by the Dixmier-Douady class, an element of integral third
cohomology of the moduli space. On the overlaps of open sets the operators are
related by a conjugation by a projective unitary transformation. This leads to the
definition of twisted K-theory.

In the present talk I will review the basic definitions of both ordinary K-theory
and twisted K-theory The construction of twisted (equivariant) K-theory classes
on compact Lie groups G is outlined using a supersymmetric model in 1 + 1
dimensional quantum field theory. The families of Fredholm operators are acting
in a tensor product of a ’bosonic’ and of a ’fermionic’ Fock space, both carrying
a representation of a central extension of the loop group LG. Finally, the Quillen
superconnection formula is applied to the projective family of Fredholm operators
giving a Chern character alternatively with values in Deligne cohomology on the
base G or in global twisted de Rham cocycles. The use of Quillen superconnection
has been proposed in general context of twisted K-theory by Daniel Freed but in
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this talk I will give the details in simple terms using the supersymmetric Wess–
Zumino-Witten model.

The case of G = SU(2) is computed (joint work with Juha-Pekka Pellonpää, to
be published) explicitly. Although one knows on general grounds that the class in
twisted cohomology obtained from the supeconnection is zero, it is interesting to
observe that the calculation gives a nonzero cocycle in ordinary cohomology, with
a coefficient in front of the 3-form which is given by the dimension of the SU(2)
representation on the lowest weight sector in the bosonic sector of the model.

WZW Models with Non Simply Connected Targets via Gerbes and
Gerbe Modules

Krzysztof Gawedzki

Bundle gerbes [10] and gerbe-modules [8, 1] find a natural application in analysis
of the two-dimensional sigma models of field theory. We shall sketch here, basing
on refs. [6, 7, 5], how they help to solve the quantum Wess-Zumino-Witten (WZW)
conformal sigma models [11] with non simply connected target groups pointing to
the geometric origin of the finite group cohomology that appeared in the algebraic
approach to such theories [3]. The geometric approach provides a uniform and
effective treatment of the classical as well as quantum theories, in the absence of
boundaries and in their presence. It should extend to the supersymmetric WZW
models and to the coset conformal field theories.

Gerbes, gerbe modules and branes. Bundle gerbes (of line bundles with uni-
tary connection) on manifoldM are geometric objects associated to a closed 3-form
H on M , called their curvature. Given H , gerbes G with curvature H exist if and
only if the periods of 1

2πH are integers. In the latter case, non (stably) isomorphic

gerbes are related by twists by elements of H2(M,U(1)).

Gerbe modules E on M are versions of vector bundles with unitary connection
twisted by line bundles entering a gerbe G on M . Finite rank G-modules exist if
and only if the curvature H of G is an exact form.

G-branes D in M are pairs (D, E) where D is a submanifold of M and E is a
GD-module on D of finite rank, where GD denotes the pullback of gerbe G to D.
We shall call D the support of the G-brane D and the rank of E the rank of D.

By transgression, a gerbe G on M defines a line bundle LG with unitary con-
nection on the loop space LM [4, 6]. Similarly, a gerbe G on M and a pair of

G-branes Di = (Di, Ei) of ranks Ni, i = 0, 1, defines a vector bundle ED1

D0
with

unitary connection of rank N0N1 on the space of paths ϕ : [0, π] → M such that
ϕ(0) ∈ D0 and ϕ(π) ∈ D1.
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Geometric quatization of the WZW sigma models. Let G be a connected
compact simple Lie group. Such groups are target manifolds of the WZW sigma
models. Let for k > 0,

HG =
k

12π
tr (g−1dg)3 ,(0.1)

where trXY stands for the properly normalized Killing form on the Lie algebra
g of G, be an invariant closed 3-form on G. The bulk WZW model of level k,
with group G as the target, is specified by giving a gerbe G on G with curvature
HG. The space of quantum states of such model is the space of sections of the line
bundle LG on the loop group LG:

H = Γ(LG) .(0.2)

This space carries a geometric action of the double current algebra ĝ×ĝ associated
to the Lie algebra g. The representation content of H may be found by identifying
the highest weight sections of LG . By the Sugawara construction, also the double
Virasoro algebra V ir × V ir acts in H.

The boundary WZW theory requires, in addition to the choice of a gerbe G
with curvature HG, a choice of CG-branes specifying the boundary conditions.
We shall only consider the so called symmetric G-branes D = (D, E) such that D
is a conjugacy class in G and the curvature form of E is equal to the scalar 2-form

FD =
k

8π
tr(g−1dg)

1+Adg

1−Adg
(g−1dg) .(0.3)

The space of quantum states of the WZW theory with the boundary conditions
specified by a pair of symmetric G-branes Di, i = 0, 1, is

HD1

D0
= Γ(ED1

D0
)(0.4)

and it carries a geometric action of a single copy of the current algebra ĝ (due to
the restriction to the symmetric G-branes) and an action of the Virasoro algebra

V ir. The representation content of HD1

D0
may again be found by identifying the

highest weight sections of ED1

D0
.

Case of simply connected groups G. For a proper normalization of the Killing
form, a gerbe G on G with curvature HG exists if and only if the level k is an
integer. For each such k, G, explicitly constructed in [9], is unique (up to a stable
isomorphism). The space of states of the bulk group G WZW theory decomposes
according to

H = ⊕
λ∈P+

k

V̂λ ⊗ V̂λ(0.5)

where P+
k is the set of the highest weights of the unitary highest weight modules

V̂λ of the current algebra ĝ of level k. These are the weights that lie in the dilated
positive Weyl alcove kAW .

Symmetric G-branes D in G are (up to an isomorphism) of the form

D = (Cλ, E1 ⊗ C
N ) ,(0.6)
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where Cλ is the conjugacy class of e2πi λ/k for λ ∈ P+
k and E1 is the unique GCλ

-
module of rank 1 with the curvature given by Eq. (0.3). Given a pair of symmetric
G-branes Di of rank Ni, supported by the conjugacy classes Cλi

, i = 0, 1, the space
of states of the boundary WZW model decomposes according to

HD1

D0
= ⊕

λ∈P+
k

C
N0 ⊗ CN1 ⊗M λ1

λ0λ ⊗ V̂λ ,(0.7)

where the spaces of rank 1 multiplicities may be identified [5] with linear subspaces
of the highest weight modules Vλ of the Lie algebra g:

M λ1

λ0λ =
{
v ∈ Vλ | h v = tr h(λ1 − λ0) v for h ∈ t ⊂ g ,

e
1+tr α∨

i λ1
αi v = 0 , e k+1−tr φ∨λ1

−φ v = 0
}
,(0.8)

where t denotes the Cartan subalgebra of g, αi and α∨
i its simple roots and coroots

and φ = φ∨ its highest root and the corresponding coroot. The dimensions of the
multiplicity spaces M λ1

λ0λ are equal to the (Verlinde) fusion coefficients N λ1

λ0λ.

Case of the non simply connected groups G′ = G/Z. There is an obstruction
[u] ∈ H3(Z,U(1)) to the existence of a gerbe G′ on G′ with curvature HG′ (that
has to pull back to the gerbe G on G with curvature HG). It may be described
explicitly. For N(T ) ⊂ G denoting the normalizer of the Cartan subgroup T ⊂ G,
let a map Z ∋ z 7→ wz ∈ N(T ) be such that

z e2πiτ/k = w−1
z e2πi(zτ)/kwz(0.9)

for τ and zτ belonging to the dilated positive Weyl alcove kAW ⊂ t. Let bz,z′ ∈ t

satisfy wzw
′
zw

−1
zz′ = eibz,z′ . One may take [7, 5]

uz,z′,z′′ = ei k tr λz bz′,z′′ ,(0.10)

where λz is the simple weight for which z = e2πiλz . Triviality of the cohomology
class [u] selects the values of the level k, first found in [2], for which the gerbes G′

on the non simply connected group G′ and, consequently, the WZW model with
group G′ as the target, exist. Different (more precisely, non stably isomorphic)
gerbes G′ differ by a twist in H2(Z,U(1)). The latter group is trivial for cyclic
Z. For simple compact groups only Spin(4n) has the non cyclic center Z2 × Z2

for which H2(Z,U(1)) = Z2. There are then two (stably) non isomorphic gerbes
G′
± on Spin(4n)/(Z2 × Z2) = SO(4n)/Z2 and two WZW theories, as already

noted in [2]. The ambiguity provides an example of Vafa’s discrete torsion. The
representation content of the space of states

H′ = Γ(LG′)(0.11)

of the bulk WZW theory for all groups G′ was described in ref. [2].

The conjugacy classes in G′ are images of the conjugacy classes in G. Only
images of the conjugacy classes Cλ may support symmetric G′-branes. The image
of Cλ in G′ coincides with that of zCλ = Czλ. We shall denote it C′

[λ] where

[λ] stands for the Z-orbit of λ in P+
k . C′

[λ] may be identified with any of the
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quotients Cλ/Z[λ], where the stabilizer subgroup Z[λ] is composed of z ∈ Z such

that Cλ = zCλ. There is an obstruction [c] ∈ H2(Z,U(1)[λ]) ∼= H2(Z[λ], U(1)) to
the existence of a rank 1 G′

C′

[λ]
-module E ′

1 on C′
[λ] that pulls back to rank 1 GCλ

-

modules E1 on Cλ. Above, U(1)[λ] stands for the Z-module of the U(1)-valued
functions on the orbit [λ]. One may take [5]

cλ;z,z′ = ei tr λ bz,z′ vz,z′(0.12)

where δv = u. If [c] is trivial then the symmetric G′ branes of rank N supported
by C′

[λ] have the form

D′ = (C′
[λ], E

′
1(1) ⊕ · · · ⊕ E ′

1(N)) ,(0.13)

where E ′
1(n) are chosen from |Z| non isomorphic rank 1 G′

C′

[λ]
-modules that differ

by twists in H1(Z,U(1)[λ]) ∼= H1(Z[λ], U(1)), i.e. by characters of Z[λ].

The obstruction class [c] may be non trivial only if the stabilizer subgroup Z[λ]

is not cyclic. It is indeed non trivial for G = Spin(4n) when Z = Z[λ] = Z2 × Z2

but only for the choice G′
− of the gerbe on SO(4n)/Z2. In this case, there is

no U(1)-valued solution to the equation c = δd, i.e. no numbers dλ;z in U(1) for
λ ∈ [λ] and z ∈ Z such that

cλ;z,z′ = dz−1λ;z′ d−1
λ;zz′ dλ;z .(0.14)

There are however solutions dλ;z with values in unitary matrices of higher rank.
Up to a conjugation, they are direct sums of a rank 2 solution expressed by the
Pauli matrices [5]. They give rise to the symmetric G′

−-branes

D′ = (C′
[λ], E2 ⊗ C

N/2)(0.15)

of even rank N . That exhaust the classification of the (isomorphism classes of)
symmetric G′-branes in non simply connected simple groups G′.

In order to describe the Hilbert space of states of the boundary G′ WZW theory
for any choice of the gerbe G′ and of a pair of symmetric G′-branes D′

i = (C′
[λi]
, E ′

i)

of ranks Ni, one notes that D′
i are determined (up to isomorphisms) by solutions

di
λi,z

of Eq. (0.14) with values in rank Ni matrices (of diagonal or (2 × 2)-block

diagonal form). D′
i pull back to the G-theory G-branes Di = (Cλi

, E1 ⊗ C
Ni) for

λi ∈ [λi] that we shall call compatible (with the G′-branes D′
i). Consider the

corresponding space of all compatible boundary G-theory states

H̃
D′

1

D′

0
= ⊕

(D0,D1)
compatible

HD1

D0
.(0.16)

Recall the decomposition (0.7). There is a natural action of group Z in H̃
D′

1

D′

0

(genuine, not projective) composed of the linear maps

C
N0 ⊗ CN1 ⊗M z−1λ1

z−1λ0 λ ⊗ V̂λ
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y d0
λ0;z ⊗ d1

λ1;z ⊗ wz ⊗ Id

C
N0 ⊗ CN1 ⊗ M λ1

λ0 λ ⊗ V̂λ(0.17)

The space of states H
D′

1

D′

0
of the boundary G′-theory may be canonically identified

with the subspace of the Z-invariant states in H̃
D′

1

D′

0
. The situation in the boundary

theory is then simpler than in the bulk one where taking Z-invariant states of the
G-theory reproduces only the untwisted sector of the G′-theory.

The boundary operator product expansion of the G′-theory may be obtained
by projecting the one of the G-theory to the Z-invariant sector [5].
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Twisted equivariant K-theory and D-brane charges in coset models

Sakura Schafer-Nameki

I shall discuss an extension of the result by Freed, Hopkins and Teleman, that
twisted G-equivariant K-theory of a simple, compact, simply-connected Lie group
G is the Verlinde algebra, to the case ofH-equivariant K-theory, forH a connected,
maximal rank subgroup of G. In particular, these K-theory groups are shown to
agree with the charge lattices of D-branes in N = 2 superconformal coset conformal
field theories.

Let G be a simple, compact, simply-connected Lie group and τ ∈ H3(G,Z) = Z.
Consider the action of G on itself via conjugation and let g∨ be the dual Coxeter
number of G. Then Freed, Hopkins and Teleman have proven that the τ -twisted
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G-equivariant K-theory of G, τKG(G), is isomorphic as a ring to the Verlinde ring
Vk(G) = RG/Ik(G), where RG the representation ring of G and Ik(G) the Verlinde
ideal, of the level τ = k+ g∨ Wess-Zumino-Witten (WZW) conformal field theory,
that is

(0.1) τKG(G) ≡ Vk(G) .

On the other hand it has been conjectured that D-brane charges in string theory
backgrounds with non-trivial NSNS three-form flux τ ∈ H3(M,Z), M being the
target space of the string theory, are classified by a suitable variant of twisted
K-theory. In particular, the K-theories in (0.1) would classify brane charges in the
G/G coset model, which in fact is topological. From a string theoretical point of
view more interesting are the (non-topological) Kazama-Suzuki (KS) coset models,
which preserve N = 2 supersymmetry and are constructed from pairs (G,H) with
G satisfying the above-specified conditions and H a connected, maximal rank
subgroup.

We have shown in [1, 2] that the associated twisted H-equivariant K-theories
are given by

(0.2) τKH(G) ≡
RH

Ik(G)
.

For the comparison to D-brane charges in the KS models, it is vital to taken into
account a further equivariance, which in the conformal field theory corresponds
to selection rules, which form a group isomorphic to the common centre Z of G

and H . The rank of τKH/Z(G) is then dk(G)
lk(G)

|WG|
|WH | , where dk(G) is the rank of the

Verlinde ring of G, W denotes the Weyl groups and l(Z) the length of the orbits
of the Z-action on H//H . This is in agreement with the known D-brane charge
computations in boundary conformal field theory. In particular, this implies also
that the rank of the K-theory charge lattice is equal to the rank of the ring of
chiral primaries of the G/H Kazama-Suzuki model. However, the ring structure
in (0.2) differs. The proof of (0.2) is based on (0.1) and a generalization of the
Künneth theorem and can be generalized to equivariant K-theories with respect
to not necessarily maximal rank subgroups H .
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Computation of Some K-groups

Volker Braun

1. Introduction

By now a well-established result is that the D-brane charges in string theory are
precisely the K-theory group of the space-time, see [1]. Hence, computing certain
K-groups has immediate physical interest. For example, cancellation of the total
D-brane charge for compact directions places additional restrictions on allowed
compactifications, which eliminates some torus orientifold constructions.

In this talk, I will review the computation of the twisted K-theory that is
relevant for N = 1 supersymmetric Wess-Zumino-Witten models. I solved the
case for compact, simple, simply connected Lie groups in [2]. As a non-simply
connected example, I will present SO(3) in Section 3. The latter is joint work
with Sakura Schäfer-Nameki [3]

2. Twisted K-theory for Lie Groups

In the following, let G always be a compact, simple, simply connected Lie group,
together with a gerbe on G with characteristic class

(2.1) t ∈ H3
(
G; Z

)
.

The corresponding Grothendieck group of twisted vector bundles on G is the
twisted K-theory tK(G). It is a generalized (twisted) cohomology theory. To
compute the K-groups, we relate it to equivariant twisted K-theory by rewriting

(2.2) tK∗(G) = tK∗
G(GTr ×GL) = tK∗

G(GAd ×GL) ,

where the superscripts refer to the Trivial, Left, and Adjoint action of G on
itself. The first equality is obvious, the second follows from the G-isomorphism
GTr × GL = GAd × GL through conjugation. To compute the K-theory of the
product, we use a certain equivariant Künneth theorem which follows from [4]:

Theorem 1 (Equivariant Künneth Theorem). Let G be a compact, simple, simply
connected Lie group. Let X be a G-space with twist class, let Y be a G-space. Then
there is a spectral sequence

(2.3) E−p,∗
2 = Torp

RG

(
tK∗

G(X), K∗
G(Y )

)
⇒ tKp+∗

G (X) .

The point of doing so is that we can now apply the theorem of Freed-Hopkins-
Teleman [5], which identifies the twisted equivariant K-theory with the Verlinde
algebra at level k = t− ȟ,

(2.4) tK∗
G(GAd) = RG/Ik .

Hence, it remains to compute

(2.5) Torp
RG

(
tK∗

G(GAd), K∗
G(GL)

)
= Torp

RG

(
RG/Ik, Z

)
.
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A widely believed fact is that the Verlinde algebra is a complete intersection, and
hence there exists a Koszul resolution. Although not strictly proven, this was
checked for a large number of cases in [6]. Henceforth, I assume that there exists
a regular sequence y1, . . . , yn, n = rk(G). A bit of homological algebra yields

(2.6) Torp
RG

(
RG/Ik, Z

)
= Torp

RG

(
RG/ 〈y1, . . . , yn〉 , Z

)
=

⊕

2n−1

Zgcd(y1,...,yn) .

Finally, what about higher differentials and extension ambiguities? The dual K-
homology spectral sequence is a spectral sequence of algebras under the Pontryagin
product. One can use this to show that there are no further differentials, and that
all extension ambiguities are trivial. Hence,

(2.7) tK∗(G) =
⊕

2n−1

Zgcd(y1,...,yn) .

3. SO(3) Wess-Zumino-Witten Model

As an example of a non-simply connected Lie group, let us consider SO(3). This
Wess-Zumino-Witten (WZW) model was treated from the boundary conformal
field theory side in [7], where it was found that the D-brane charge groups is either

Z2 ⊕ Z2 or Z4 depending on whether κ
def
= k + 1 is odd or even. Interestingly, the

charge groups do not grow with the level in this example. This is in contradiction
to the usual Atiyah-Hirzebruch spectral sequence, which predicts kK∗

(
SO(3)

)
=

Z2⊕Zk. Our resolution to this paradox is that D-brane charges in the SO(3) WZW
model, that is the bosonic SO(3) supersymmetrized with free fermions, correspond
to another twisted K-theory. Recall that the possible twists of K-theory actually
contain

(3.8) H1
(
SO(3); Z2

)
⊕H3

(
SO(3); Z

)
≃ Z2 ⊕ Z .

The WZW model of [7] corresponds to the (−, κ) twisted K-theory! We can
easily estimate the resulting K-groups from a twisted Atiyah-Hirzebruch spectral
sequence

(3.9) E2 = −Hp
(
SO(3); Kq(pt.)

)
⇒ (−,κ)Kp+q

(
SO(3)

)
.

to be either Z2 ⊕ Z2 or Z4, depending on an extension ambiguity.
To resolve this ambiguity, we again rewrite the K-groups as certain equivariant

K-groups. But since the Künneth theorem fails for non-simply connected groups,
we chose to work SU(2) equivariant, and obtain

(3.10) tK∗
(
SO(3)

)
= tK∗

SU(2)

(
SO(3)Ad × SU(2)L

)

We found the twisted equivariant K-groups tK∗
SU(2)

(
SO(3)Ad

)
by a Mayer-Vietoris

sequence for a certain cell decomposition, whose details I am going to skip. The
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result is that

(3.11)

(−,κ)K0
SU(2)

(
SO(3)

)
= 0

(−,κ odd)K1
SU(2)

(
SO(3)

)
= Z[Λ, σ]

/〈
Λ(σ−1), σ2−1, pκ(Λ)

〉

(−,κ even)K1
SU(2)

(
SO(3)

)
= Z[Λ, σ]

/〈
Λ(σ−1), σ2−1, pκ(Λ)+(−1)

κ
2 (1+σ)

〉

as RSU(2) = Z[Λ] modules, where pκ are certain degree κ polynomials. A bit of
homological algebra then shows that only the Tor0 in the equivariant Künneth
theorem is nonvanishing, and moreover that

(3.12) (−,κ)K∗
(
SO(3)

)
= E0,∗

2 =

{
Z2 ⊕ Z2 κ odd

Z4 κ even,

as predicted by the boundary conformal field theory.
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Twisted K-theory and Bundle gerbes

Alan L. Carey

(joint work with Bai-Ling Wang)

This talk was a sequel to that of Michael Murray. The research described was
partly motivated by the theorem of Freed-Hopkins-Teleman [7, 8] relating the Ver-
linde ring to twisted K-theory. In Murray’s talk the relationship between Chern-
Simons gauge theories and WZW models with target a compact semisimple Lie
group is explained based on [3]. This result uncovers the relevance of multiplicative
gerbes. A consequence of the multiplicative structure is used in the non-simply
connected version of the Freed-Hopkins-Teleman theorem. In the talk I explained
an interesting application of multiplicative bundle gerbes.

The results use the notion of a ‘generalized rank n bundle gerbe D-brane’ for
a bundle gerbe G over simple Lie group G. It is a smooth manifold Q with a
smooth map µ : Q→ G such that the pull-back bundle gerbe µ∗(G) admits a rank
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n bundle gerbe module [4]. There is also a corresponding notion for G-equivariant
bundle gerbes G over a G-manifold M .

When the compact simple Lie group G is simply-connected then we can con-
struct a G-equivariant bundle gerbe Gk over G whose Dixmier-Douady class is
represented by a multiple by a positive integer k of the canonical bi-invariant
3-form on G.

A particularly interesting example of a generalized G-equivariant bundle gerbe
D-brane is provided by a quasi-Hamiltonian manifold (M,ω, µ) where M is a G-
manifold, ω is an invariant 2-form and µ : M → G is a group-valued moment
map. Quasi-hamiltonian manifolds are extensively studied by Alekseev-Malkin-
Meinrenken in [1]. The correspondence between quasi-Hamiltonian manifolds and
Hamiltonian LG-manifolds at level k is illustrated by the following diagram:

M̂

π

��

µ̂
// Lg∗

Hol

��

M
µ

// G,

(0.1)

where µ̂ : M̂ → Lg∗ is the moment map for the Hamiltonian LG-action at level
k and the vertical arrows define ΩG-principal bundles. The quasi-Hamiltonian
manifold, when “pre-quantizable”, is naturally a generalized rank 1 bundle gerbe
D-brane of the bundle gerbe over G.

When G is semisimple and simply connected, any bundle gerbe Gk is multiplica-
tive and hence related to the Chern-Simons bundle 2-gerbe of [3] over the classify-
ing space BG . We can then introduce the moduli spaces of flat G-connections on
Riemann surfaces and the generalized bundle gerbe D-branes they define. Using
[11] we define the fusion category (QG,k,⊠) of generalized bundle gerbe D-branes
of Gk to be the category of pre-quantizable quasi-Hamiltonian manifolds with fu-
sion product

(M1, ω1, µ1) ⊠ (M2, ω2, µ2) = (M1 ×M2, ω1 + ω2 +
k

2
< µ∗

1θ, µ
∗
2θ̄ >, µ1 · µ2),

where the G-action on M1×M2 is via the diagonal embedding G→ G×G, θ, θ̄ are
the left and right Maurer-Cartan forms on G, and µ1 ·µ2(x1, x2) = µ1(x1) ·µ2(x2).
This fusion product and the corresponding fusion product on Hamiltonian LG-
manifolds were studied in [11].

Let Rk(LG) be the free group over Z generated by the isomorphism classes of
positive energy, irreducible, projective representations of LG at level k. The central

extension of LG at level k we write as L̂G. The positive energy representation
labelled by λ ∈ Λ∗

k acts on Hλ and the Kac-Peterson character of Hλ is

χk,λ(τ) = TrHλ
e2πiτ(L0−

c
24 ),(0.2)

where τ ∈ C with Im(τ) > 0, L0 is the energy operator on Hλ (Cf.[12]), and

c =
kdimG

k + h∨
is the Virasoro central charge. We mention that e2πiτ(L0−

c
24 ) is a
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trace class operator (cf Theorem 6 in [9] and Lemma 2.3 in [6]) for τ ∈ C with
Im(τ) > 0. Equipped with the fusion ring structure:

χλ,k ∗ χµ,k =
∑

ν∈Λ∗

k

Nν
λ,µχν,k,

where Nν
λ,µ is the Verlinde fusion coefficient, we obtain (Rk(LG), ∗), the Verlinde

ring.
Motivated by Guillemin-Sternberg’s “quantization commutes with reduction”

philosophy, we define a quantization functor on the fusion category of generalized
bundle gerbe D-branes of Gk using Spinc quantization of the reduced spaces:

χk,G : QG,k −→ Rk(LG).

Note that for a quasi-Hamiltonian manifold M obtained from a pre-quantizable
Hamiltonian G-manifold, χk,G(M) is the equivariant index of the Spinc Dirac
operator twisted by the pre-quantization line bundle.
Theorem: The quantization functor χk,G : (QG,k,⊠) −→ (Rk(LG), ∗) satisfies

χk,G(M1 ⊠M2) = χk,G(M1) ∗ χk,G(M2),

where the product ∗ on the right hand side denotes the fusion ring structure on

the Verlinde ring (Rk(G), ∗).
The fusion product on Hamiltonian LG-manifolds at level k involves the moduli

space of flat connections on a canonical pre-quantization line bundle over the
‘trousers’ Σ0,3 as in [1]. The multiplicative property of the bundle gerbe Gk over
G is essential for this part of the construction.

The difficulty with the above constructions lies in their extension to the case
when G is not simply connected. I discussed various subtle issues concerning the
non-simply connected case.

Given a compact, connected, non-simply connected simple Lie group G = G̃/Z

for a subgroup Z in the center Z(G̃) of the universal cover G̃, we construct a
G-equivariant bundle gerbe G(k,χ),G associated to a multiplicative level k and a
character χ ∈ Hom(Z,U(1)). (The level k is defined as the positive integral
multiple of the generator of H3(G,Z) giving the Dixmier-Douady class G(k,χ),G.)

It is multiplicative if it is transgressed from H4(BG,Z) to H3(G,Z).
The G-equivariant bundle gerbe G(k,χ),G is obtained from the central extension

of LG in [13], 1 → U(1) −→ L̂Gχ −→ LG → 1, associated to (k, χ). One may

classify irreducible positive energy representations of L̂Gχ following the work of
Toledano Laredo in [13].

Let Rk,χ(LG) be the Abelian group generated by the positive energy, irreducible

representations of L̂Gχ. We define the category Q(k,χ),G of G-equivariant bundle
gerbe modules of G(k,χ).G and the quantization functor

χ(k,χ),G : Q(k,χ),G −→ Rk,χ(LG).

When χ is the trivial homomorphism 1 and we are at a multiplicative level,
then Q(k,1),G admits a natural fusion product structure whose resulting category
is denoted by (Q(k,1),G,⊠). Then χ(k,1),G induces a ring structure on Rk,1(LG)
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although it is not clear how to use our geometric approach in the non-simply
connected case to generate an algorithm for constructing the Verlinde coefficients.
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Generalized Geometry, Mirror Symmetry and T-duality

Peter Bouwknegt

In this talk I will review the concept of a generalized geometry in the sense of
Hitchin, and its application to mirror symmetry and T-duality. The talk is based
on the material contained in [1, 2, 3]. My motivation to study generalized geometry
mainly derives from the papers [4, 5, 6], but this is by no means a complete set of
references for the subject.

Generalized geometry. The basic idea of generalized geometry is to replace
structures associated with the tangent bundle TM , of a d-dimensional (real)
manifold M , by analogous structures on TM ⊕ TM∗. First of all we observe
that we have a symmetric, bilinear form on sections of TM ⊕ TM∗, i.e. for
X + ξ, Y + η ∈ Γ(TM ⊕ TM∗)

(0.1) 〈X + ξ, Y + η〉 = 1
2 (ıXη + ıY ξ) .
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The orthogonal group O(TM ⊕ TM∗) ∼= O(d, d) associated to 〈 , 〉 includes, in
particular, an element eB, defined by a 2-form B ∈ Ω2(M), acting on Γ(TM ⊕
TM∗) as

(0.2) eB(X + ξ) = X + ξ + ıXB .

The role of the Lie bracket on Γ(TM) is now played by the Courant bracket on
Γ(TM ⊕ TM∗)

(0.3) [X + ξ, Y + η] = [X,Y ] + LXη − LY ξ −
1
2d(ıXη − ıY ξ) .

The transformation (0.2), for B ∈ Ω2(M), acts on the Courant bracket as

(0.4) [eB(X + ξ), eB(Y + η)] = eB[X + ξ, Y + η] + ıY ıXdB ,

and thus provides an automorphism of the Courant bracket iff dB = 0 (in fact, to-
gether with diffeomorphisms these are all automorphisms). Thus suggests defining
a twisted Courant bracket by

(0.5) [X + ξ, Y + η]H = [X + ξ, Y + η] + ıY ıXH ,

where H ∈ Ω3(M), such that dH = 0. This definition is related to the following
construction. Given a (bundle) gerbe with connection (H,Bα, Aαβ), we can con-
struct a vector bundle W , such that locally W

∣∣
Uα

∼= TM ⊕TM∗
∣∣
Uα

and such that

we have a split short exact sequence

0 −−−−→ TM∗ −−−−→ W −−−−→ TM −−−−→ 0 .

The Courant bracket on W , transported to TM ⊕ TM∗ precisely gives rise to the
twisted bracket of (0.5). The (twisted) Courant bracket is skew symmetric, but
neither associative nor does it satisfy the Leibnitz rule. Instead we have

[[A,B], C]H + cycl = 1
3d (〈[A,B]H , C〉 + cycl) ,

[A, fB]H = f [A,B]H + (ρ(A)f)B − 〈A,B〉dHf ,(0.6)

where A,B,C ∈ Γ(TM ⊕ TM∗), f ∈ C∞(M), ρ : TM ⊕ TM∗ → TM is the
projection, and dH = d+H∧ the twisted differential.

Generalized complex and Kähler structures. A Generalized almost complex
structure is a J ∈ O(TM ⊕ TM∗), such that J 2 = 1. The eigenspaces

(0.7) Ker(1 ∓ iJ ) = {A ∈ Γ(TMC ⊕ TM∗
C) | JA = ±iA} ⊂ Γ(TMC ⊕ TM∗

C) ,

define maximally isotropic subbundles E± of the complexification of TM ⊕ TM∗.
Examples are the generalized almost complex structures JJ , associated to an al-
most complex structure J , and Jω , associated to a nondegenerate 2-form ω. Ex-
plicitly,

(0.8) JJ =

(
−J 0
0 JT

)
, Jω =

(
0 −ω−1

ω 0

)
.

A (twisted) generalized complex structure is a generalized almost complex structure
J , such that sections of E± are closed under the (twisted) Courant bracket, i.e.
E± is involutive with respect to the (twisted) Counrant bracket. The generalized
almost complex structures JJ , and Jω , define generalized complex structures if J
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defines a complex structure and ω is closed (i.e. defines a symplectic structure),
respectively. In general, generalized complex structures can be viewed as somehow
interpolating between complex and symplectic structures.

A (twisted) generalized Kähler structure (G,J1,J2) is a pair of commuting
(twisted) generalized complex structures, such that G = −J1J2 defines a posi-
tive definite metric on TM ⊕ TM∗. Obviously, a Kähler manifold gives rise to a
generalized Kähler structure by taking J1 = JJ , J2 = Jω .

Lie algebroids. A Lie algebroid is a vector bundle E → M , equipped with a Lie
bracket [ , ] on Γ(E), and a smooth map ρ : E → TM (“anchor”), which is a Lie
algebra homomorphism, and satisfies the Leibnitz rule, i.e.

ρ([X,Y ]) = [ρ(X), ρ(Y )] , [X, fY ] = f [X,Y ] + (ρ(X)f)Y ,(0.9)

for X,Y ∈ Γ(E), and f ∈ C∞(M). We see from Eqns. (0.6) that isotropic, involu-
tive, subbundles E ⊂ TMC ⊕TM∗

C
give rise to (complex) Lie algebroids where the

anchor is the projection ρ : TMC ⊕ TM∗
C
→ TMC, restricted to E. In particular,

every (twisted) generalized complex structure J gives rise to a (complex) Lie al-
gebroid E+. To any Lie algebroid E we can associate ‘k-forms’ Ωk(E) = Γ(∧kE∗),
on which we can define

• a differential: dE : Ωk → Ωk+1

dEω(x0, . . . , xk) =
k∑

i=0

(−1)iρ(xi)(ω(x0, . . . , x̂i, . . . , xk))

+
∑

i<j

(−1)i+jω([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xk) .

• a contraction: ıx : Ωk → Ωk−1, (ıxω)(x1, . . . , xk−1) = ω(x, x1, . . . , xk−1).
• a Lie derivative: Lx : Ωk → Ωk, Lx = dEıx + ıxdE .

The Lie algebroid cohomology HdE
, is the cohomology associated to the complex

(Ω(E), dE). For example, for J = JJ , we have E = E+ = T (0,1) ⊕ T ∗(1,0), such
that Γ(∧kE∗) =

⊕
p+q=k

(
(∧qT (0,1)) ⊕ (∧pT ∗(1,0))

)
, while dE = ∂̄, hence

(0.10) Hk
dE

=
⊕

p+q=k

Hp

∂̄
(∧qT (0,1)) .

Applications. A 2D nonlinear sigma models on a target manifold M , coupled to
fields (g,B), possesses N = (2, 2) supersymmetry iff the manifold M is equipped
with a so-called bi-hermitean geometry [4]. It turns out that the notion of a bi-
hermitean geometry is equivalent to the existence of a twisted generalized Kähler
structure [2]. The sigma model can, as usual, be twisted in two possible ways and
leads to the topological A- and B-models, which are related by mirror symmetry. In
the absence of the flux H = dB, the A-model encaptures the symplectic structure
of the manifold M , while the B-model excaptures the complex structure. It has
been shown recently that the physical states of the A- and B-model are precisely
given by the Lie algebroid cohomology associated to the two complex structures J1,
and J2, defining the twisted generalized Kähler structure (cf. Eqn. (0.10), which
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gives the physical states of the B-model in the absence of H = dB flux). It has
also been shown [2, 3] that T-duality (for principle circle bundles) fits nicely in the
framework of generalized geometry, namely it induces isomorphisms of Clifford
algebras and modules, and preserves the Courant bracket structure. Moreover,
(non-topological) mirror symmetry fits in nicely as well [6]. Questions that remain
are: What are D-branes in the context of a generalized geometry and are they
classified by some kind of derived category?
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Chern-Simons and Wess-Zumino-Witten Theories

Michael Murray

(joint work with Alan Carey, Stuart Johnson, Danny Stevenson, Bai-Ling Wang)

In this talk, based on [3], I use bundle gerbes to explain the correspondence
between Chern-Simons gauge theories with gauge group a compact, connected,
semi-simple group G and Wess-Zumino-Witten models with target the same G.
This correspondence takes the form of a map

(0.1) Ψ: CS(G) −→WZW (G)

The image of this map are the so-called multiplicative Wess-Zumino-Witten models
which correspond to multiplicative bundle gerbes. An interesting application of
multiplicative bundle gerbes is given in Carey’s talk for which this present talk
forms a useful background.
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In [4] it is shown that three dimensional Chern-Simons gauge theories with
gauge group G can be classified by the integer cohomology group H4(BG,Z), and
conformally invariant sigma models in two dimension with target space a com-
pact Lie group (Wess-Zumino-Witten models) can be classified by H3(G,Z). It is
also established that the correspondence between three dimensional Chern-Simons
gauge theories and Wess-Zumino-Witten models is related to the transgression map

τ : H4(BG,Z) −→ H3(G,Z),

which explains the subtleties in this correspondence for non-simply connected Lie
groups [6].

In this talk I will define all the elements in the correspondence (0.1) and maps
making the diagram

(0.2)
CS(G)

Ψ
−→ WZW (G)

↓ ↓

H4(BG,Z)
τ

−→ H3(G,Z)

Recall from, for instance [1], the notion of Deligne cohomology. If M is a
manifold we denote by Hp(M,Dp) the pth Deligne cohomology group of M . Our
indexing is such thatH1(M,D1) corresponds to isomorphism classes of line bundles
with connection. We then define:

Definition 1. A Deligne characteristic class d (of degree p) for principalG-bundles
with connection is an assignment to any principal G-bundle P with connection A
over M of a class d(P,A) ∈ Hp(M,Dp) which is functorial in the sense that if
f : N →M then

d(f∗(P ), f∗(A)) = f∗(d(P,A)),

where f∗(P ) is the pull-back principal G-bundle with the pull-back connection
f∗(A).

Denote by Dp(G) the group of all Deligne characteristic classes of degree p
for principal G-bundles. We show in [3] that a Deligne characteristic class d of
degree p gives rise to a characteristic class of degree p + 1 and hence there is a
homomorphism

Dp(G) → Hp+1(BG,Z).

We know have two definitions:

Definition 2. A three dimensional Chern-Simons gauge theory with gauge group
G is defined to be a Deligne characteristic class of degree 3.

We denote the group of all three dimensional Chern-Simons gauge theories with
gauge group G by CS(G), that is CS(G) = D3(G).

Definition 3. A Wess-Zumino-Witten model on G is defined to be a Deligne class
on G of degree 2.

We denote the group of all Wess-Zumino-Witten model models on G by
WZW (G), that is WZW (G) = H2(G,D2).
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Note that we already have parts of the diagram (0.2) namely:

(0.3)

CS(G) WZW (G)
↓ ↓

H4(BG,Z)
τ

−→ H3(G,Z)

To define the map Ψ in (0.1) we need to define a certain G bundle over S1 ×G.
To this end consider first the trivial G bundle R×G×G where the right G action
of k ∈ G is given by (t, g, h)k = (t, g, hk). This is a Z-equivariant bundle for the
left Z action

n(t, g, h) = (t+ n, g, gnh)

Denote the quotient principal G bundle over S1×G by P . In [3] we give a slightly
more involved construction of P taken from [2] and [9] which is useful to show
that it has a canonical connection A. The map Ψ is defined as follows. Given
d ∈ CS(G) we can apply it to (P ,A) to get d(P ,A) ∈ H3(S1 ×G,D3). Using the
fact that we can integrate over the fibre with Deligne cohomology [1] we define

Ψ(d) =

∫

S1

d(P ,A) ∈ H2(G,D2) = WZW (G).

This completes the construction of the diagram (0.2) and we show in [3] that it
commutes.

Finally we want to discuss the image of Ψ. Recall from [7] and [8] the basic facts
about bundle gerbes. Let G1 and G2 be two bundle gerbes over a manifold M . We
can form the product G1 ⊗G2 and the dual G∗. If f : N →M is smooth there is a
pull-back bundle gerbe f∗(G) over N . There is a notion of stable isomorphism of
bundle gerbes and the group of all stable isomorphism classes of bundle gerbes over
M is H3(M,Z). Bundle gerbes can be endowed with connections and curvings and
the group of all stable isomorphism classes of bundle gerbes with connection and
curving is H2(M,D2). Finally given a bundle gerbe with connection and curving
we can calculate its holonomy over any surface in the underlying manifold.

In [10] Stevenson defines the notion of simplicial bundle gerbe over a simplicial
manifold X• = {Xn}n≥0 with face operators di : Xn+1 → Xn (i = 0, 1, · · · , n+1).
In such a situation if G is a bundle gerbe over Xn we can define a bundle gerbe
δ(G) over Xn+1 by

δ(G) = d−1
0 (G)∗ ⊗ d−1

1 (G) ⊗ d−1
2 (G)∗ · · ·

As the definition of a simplicial line bundle is a little complicated we refer to [10]
for details and present a summary here. We start with a bundle gerbe G over
X1 and a trivialisation of the bundle gerbe δ(G) over X2. The latter induces a
trivialisation of δ(δ(G)) over X4 but δ(δ(G)) has a canonical trivialisation so these
two trivialisations differ by the so-called associator line bundle L → X3. The
associator line bundle is required to have a section a and, because δ(L) → X4 has
a canonical trivialisation, we can, and do, require lastly that δ(a) = 1.

We need two applications of this notion. Firstly consider the simplicial space
X•

G that arises in the construction of BG, see [5]. This has Xn
G = Gn and face
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maps

di(g1, . . . , gp+1) =





(g2, . . . , gp+1), i = 0,

(g1, . . . , gi−1gi, gi+1, . . . , gp+1), 1 ≤ i ≤ p− 1,

(g1, . . . , gp), i = p.

A bundle gerbe over X1 = G which is a simplicial bundle gerbe for this simplicial
space is called a multiplicative bundle gerbe over G.

Secondly let Y → M be a submersion and consider the simplicial space X•
Y .

This has Xn+1
Y = Y [p] its pth fold fibre product. We define face maps di : Y

[p+1] →

Y [p] by omitting the i-th element. A pair consisting of a submersion Y →M and
a simplicial bundle gerbe for X•

Y is called a bundle 2 gerbe over M .
In [3] we show that the image of Ψ: CS(G) →WZW (G) is precisely the Deligne

classes in H2(G,D2) which correspond to multiplicative bundle gerbes on G. The
Wess-Zumino-Witten action regarded as a function on the space of smooth maps
from a closed surface Σ to G exponentiates to the bundle gerbe holonomy of G
and satisfies the following multiplicative property:

exp
(
Swzw(σ1 · σ2)

)
= exp

(
Swzw(σ1)

)
· exp

(
Swzw(σ2)

)
,

for a pair of smooth maps σ1 and σ2 from Σ to G.
Finally we make a remark on why multiplicative bundle gerbes arise in the image

of Ψ. This relates to the important fact that for any Chern-Simons gauge theory
the exponential of the Chern-Simons action over a three surface can be shown to
arise as the holonomy of a certain universal Chern-Simons bundle 2 gerbe defined
in [3]. This arise, in part, as follows. If Y → M is a principal G bundle then we
there is a map ρ1 : Y [2] → G defined by ρ(y1, y2) = g where y1g = y2. This extends
in a natural way to ρp : Y [p+1] → Gp and defines a simplicial map ρ• : X•

Y → X•
G.

It follows immediately that a multiplicative bundle gerbe over G gives rise to a
bundle 2 gerbe over M and with some more effort that the latter bundle 2 gerbe
has a connection, curving and 2 curving.

References

[1] J-L. Brylinski, Loop spaces, Characteristic Classes and Geometric Quantization, Birkhauser
Boston, Inc., Boston, MA, 1993

[2] A.L. Carey and J. Mickelsson The universal gerbe, Dixmier-Douady class, and gauge theory.

Letters in Mathematical Physics 59 (2002), no. 1, 47–60.
[3] Alan L. Carey, Stuart Johnson, Michael K. Murray, Danny Stevenson and Bai-Ling Wang,

Bundle Gerbes for Chern-Simons and Wess-Zumino-Witten Theories. Communications in
Mathematical Physics, 259 Number 3, 577–613.

[4] R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology. Commu-
nications in Mathematical Physics 129, 393–429, (1990).

[5] J. L. Dupont, Curvature and characteristic classes, Lecture Notes in Mathematics, 640.
Springer, Berlin, 1978.

[6] G. Moore and N. Seiberg, Taming the conformal Zoo, Physics Letters B 220 (1989), no. 3,
422–430.

[7] M. K. Murray, Bundle gerbes, Journal of the London Mathematical Society (2) 54 (1996),
no. 2, 403–416.



2180 Oberwolfach Report 38/2005

[8] M. K. Murray, D. Stevenson Bundle gerbes: Stable isomorphism and local theory, Journal
of the London Mathematical Society (2). 62 (2002), no. 3, 925-937.

[9] M. K. Murray, D. Stevenson Higgs fields, bundle gerbes and string structures, Communica-
tions in Mathematical Physics 243 (2003), no. 3, 541–555.

[10] D. Stevenson Bundle 2-gerbes. Proceedings of the London Mathematical Society (3) 88
(2004) 405–435.

The String Gerbe

Daniel Stevenson

Let G be a compact, simple and simply connected Lie group and let π : P → M
be a principal G bundle over a smooth manifold M . Let ν denote the universally
transgressive generator ofH3(G;Z) = Z and let c ∈ H4(M ;Z) be the transgression
of ν. Recall that M is said to be string, or admit a string structure, if a certain
characteristic class in H3(LM ;Z) vanishes (here LM denotes the free loop space
of M). This characteristic class is the obstruction to lifting the structure group

of the principal LG-bundle LP → LM to L̂G — the Kac-Moody group. As has
been observed by several authors [1, 5, 4] the obstruction in H3(LM ;Z) is closely
related to the characteristic class c ∈ H4(M ;Z) if M is 2-connected: a lift of

the structure group to L̂G exists precisely when c is zero. As is well known, if
G = Spin(n) then 2c = p1. This obstruction problem on LM can be phrased in
the language of homotopy theory down on M . Recall that G fits into a short exact
sequence of topological groups

1 → K(Z, 2) → Ĝ→ G→ 1

where Ĝ is the 3-connected cover of G. Ĝ is a topological group which can be
defined in a homotopy theoretic manner as the homotopy fibre of the canonical map
G → K(Z, 3) classifying ν. Ĝ has vanishing third homotopy group and therefore
cannot have the homotopy type of any Lie group. When G = Spin(n) the group

Ĝ is called String(n). In their study of elliptic objects Stolz and Teichner [6] give
a description of String(n) in terms of von Neumann algebras. Their description
however is awkward from the point of view of classical differential geometry as
their model of String(n) is not a smooth manifold.

In this talk we want to promote the view that there is a useful description
of String(n) as a group stack (gr-stack) and that it is possible to do differential
geometry in this setting. In recent joint work with Alissa Crans, John Baez and
Urs Schreiber we gave a construction of a 2-group PG, that is, a category PG with
objects PG0 and morphisms PG1 such that PG0 and PG1 are (Lie) groups and all
structural maps such as source, target and composition are group homomorphisms.
One can think of PG as a groupoid presentation for a gr-stack. As is well known,
2-groups are equivalent to crossed modules; one can describe the corresponding

crossed module for PG via the homomorphism Ω̂G → P0G where P0G denotes

the group of based paths in G and an action of P0G on Ω̂G lifting the conjugation
action of P0G on ΩG. The main result of the talk will be a construction of a
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non-abelian gerbe on M — the ‘string gerbe’ — which plays the role of a lift of the
structure group of P from G to Ĝ. This construction is interesting for two reasons:
firstly, it raises the possibility of studying the elliptic objects of Stolz and Teichner
within the framework of classical differential geometry, secondly, there are very
few examples of non-abelian gerbes — I know of no other examples besides those
associated to bundle lifting problems coming from short exact sequences of groups
1 → K → E → G → 1. In order to describe this gerbe on M , we need to recast
the description of non-abelian gerbes in terms of groupoids due to Breen [3] and
more recently [2] in a more convenient language. We will show how gerbes for a
crossed module t : H → G can be described as certain groupoids internal to the
category of principal bundles. With this description in place we explain how to
construct the string gerbe. This can, in a sense, be viewed as an extension of the
earlier work of Carey and Murray [1].
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2-Groups, Trialgebras and Their Hopf Categories of Representations

Hendryk Pfeiffer

A strict 2-group is an internal category in the category of groups. Strict 2-groups
can also be characterized as 2-categories with one object in which all 1-morphisms
and all 2-morphisms have inverses. The notion of a strict 2-group can therefore
be viewed as a higher-dimensional generalization of the notion of a group because
the set of 2-morphisms of a 2-group has got two multiplication operations. Strict
2-groups can be constructed from crossed modules, and so there exist plenty of
examples.

Starting from the theory of groups, one can develop the notion of cocommutative
Hopf algebras which arise as group algebras, the notion of commutative Hopf alge-
bras which appear as algebras of functions on groups, and the notion of symmetric
monoidal categories which arise as the representation categories of groups. Com-
pact topological groups are characterized by their commutative Hopf C∗-algebras
of continuous complex-valued functions (Gel’fand representation). Commutative
Hopf algebras are characterized by their rigid symmetric monoidal categories of
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finite-dimensional comodules (Tannaka–Krěın reconstruction). This ‘commuta-
tive’ theory forms the basic framework that is required before one can develop the
theory of quantum groups.

What is the analogy of all these structures if one systematically replaces the
concept of a group by that of a strict 2-group? In particular, what is a good
definition of ‘group algebra’, ‘function algebra’ and ‘representation category’ for a
strict 2-group? I outline how to define the relevant structures and how to establish
generalizations from groups to strict 2-groups of the theorems mentioned above,
namely on Gel’fand representation and on Tannaka–Krěın reconstruction. The
‘group algebra’ of a 2-group is a trialgebra, and its ‘representation category’ a
Hopf category [14].

With the step from groups to strict 2-groups, we enter the realm of higher-
dimensional algebra. Higher-dimensional algebraic structures have appeared in
various areas of mathematics and mathematical physics. A prime example is the
higher-dimensional group theory programme of Brown [1], generalizing groups and
groupoids to double groupoids and further on, in order to obtain a hierarchy of
algebraic structures. The construction of these algebraic structures is motivated
by problems in homotopy theory where algebraic structures at a some level of
the hierarchy are related to topological features that appear in the corresponding
dimension.

Motivated by the construction of topological quantum field theories (TQFTs),
Crane has introduced the concept of categorification, see, for example [2, 3]. Cate-
gorification can be viewed as a systematic replacement of familiar algebraic struc-
tures that are modelled on sets by analogues that are rather modelled on categories,
2-categories, and so on. Categorification often serves as a guiding principle in or-
der to find suitable definitions of algebraic structures at some higher level starting
from the known definitions at a lower level.

Some examples of higher-dimensional algebraic structures that are relevant in
this context, are the following.

• Some three-dimensional TQFTs can be constructed from Hopf algebras [4,
5]. In order to generalize this to four dimensions, Crane and Frenkel [2]
have introduced the notion of a Hopf category. Roughly speaking, this is
a monoidal category with an additional functorial comultiplication.

• Crane and Frenkel [2] also speculate about trialgebras, vector spaces with
three mutually compatible linear operations: two multiplications and one
comultiplication or vice versa.

• Kapranov and Voevodsky [6, 7] have introduced braided monoidal 2-cate-
gories and 2-vector spaces, a categorified notion of vector spaces.

• Grosse and Schlesinger have constructed examples of trialgebras [8, 9] in
the spirit of Crane–Frenkel.

• Several authors [10, 11, 12, 13, 15] have used 2-groups in order to find
generalizations of fibre bundles and of gauge theory. Yetter [16] has used
2-groups in order to construct novel TQFTs, generalizing the TQFTs that
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are constructed from the gauge theories of flat connections on a principal
G-bundle where G is an (ordinary) group.

All these constructions have a common underlying theme: the procedure of cat-
egorification on the algebraic side and an increase in dimension on the topological
side. The connection between 2-groups, trialgebras, and Hopf categories shows
how these constructions are related.
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