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Introduction by the Organisers

The aim of the workshop C∗-algebras was to bring together researchers from basi-
cally all areas related to operator algebra theory. This gives a unique opportunity
to obtain a broader view of the subject and to create new interactions between
researchers with different background. The organizers, Claire Anantharaman-
Delaroche, Siegfried Echterhoff, Uffe Haagerup, and Dan Voiculescu took special
care to invite a good number of young researchers, some of them already being
leading experts in their fields. As a result, several contributions in this report are
from researchers who, at the time of the workshop, were less then 30 years old.

There were 29 lectures presented at this workshop with topics from Ergodic
Theory, L2-(co-)homology, classification of C∗-algebras, Operator Theory, von
Neumann algebras, KK-theory and the Baum-Connes conjecture, quantum spaces
and quantum groups, mathematical physics, non-commutative probability theory,
and the theory of operator spaces. To name some special highlights we can men-
tion the reports on recent developements in the study of “boundary actions” of
quantum groups due to S. Vaes and R. Vergnioux, the new results on classifi-
cation theory of amenable C∗-algebras in terms of studying algebras which are
stable under tensoring with the Jiang-Su algebra Z (see the lectures of A. Toms
and M. Rørdam), or the report by S. Popa on recent progress in the study of
strong rigidity for II1 factors associated to equivalence relations. But this is only
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a very small selection of the interesting lectures on new results presented at this
workshop.

It is a pleasure for the organizers of the conference to use this opportunity to
thank all participants of the workshop for their contributions—either in lectures
held at the workshop or in stimulating discussions following the lectures. We also
thank the Mathematisches Forschungsinstitut Oberwolfach for providing a great
environment and strong support for organizing this conference. Special thanks go
to the very competent and helpful staff of the institute and to the chef de cuisine.
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Abstracts

Boundaries and exactness for discrete quantum groups

Stefaan Vaes

(joint work with Roland Vergnioux)

Since Murray and von Neumann introduced von Neumann algebras, the ones asso-
ciated with discrete groups played a prominent role. The main aim of this talk is
to show how concrete examples of discrete quantum groups give rise to interesting
C∗- and von Neumann algebras. We show that the universal discrete quantum
groups [1, 5] admit a boundary, with an amenable boundary action. This allows
to prove that the reduced C∗-algebras are exact and that the Akemann-Ostrand
property holds. We conclude that the associated von Neumann algebras are full
prime factors. In this way, we obtain new examples of solid type II1 factors in the
sense of Ozawa. We obtain as well the simplicity of the reduced C∗-algebra. Fi-
nally, the boundary that we construct, can be identified with a Martin or Poisson
boundary of a quantum random walk. We mainly report on [4].

Discrete quantum groups have essentially been introduced by Woronowicz as
the dual of a compact quantum group.

Definition 1 (Woronowicz [6]). A compact quantum group G is a pair (C(G),∆),
where

• C(G) is a unital C∗-algebra;
• ∆ : C(G) → C(G) ⊗ C(G) is a unital ∗-homomorphism satisfying the

co-associativity relation

(∆ ⊗ id)∆ = (id⊗∆)∆ ;

• G satisfies the left and right cancellation property expressed by

∆(C(G))(1 ⊗ G) and ∆(C(G))(C(G) ⊗ 1) are total in C(G) ⊗ C(G) .

The two major aspects of the general theory of compact quantum groups are
the existence of a unique invariant state h on C(G) and the theory of unitary
representations parallelling Peter-Weyl theory for compact groups. The GNS con-
struction for h allows to define a reduced C∗-algebra C(G)red and a von Neumann
algebra C(G)′′red.

For the purposes of this note, the following definition is sufficiently general.

Definition 2. A unitary representation of the compact quantum group G on
the Hilbert space Cn is a unitary matrix (Uij) with entries in C(G) satisfying
∆(Uij) =

∑
k Uik ⊗ Ukj .

It is straightforward to define the tensor product of unitary representations and
to introduce notions as irreducible representations, direct sums, etc.

The previous definition allows to define the universal orthogonal quantum group
Ao(F ) [1, 5]. Take F ∈ GL(n,C) satisfying FF = ±1. The compact quantum
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group G = Ao(F ) is defined by taking as C(G) the universal C∗-algebra generated
by the entries of an n by n unitary matrix (Uij) with (Uij) = F (U∗

ij)F
−1. The

comultiplication ∆ is (uniquely) defined such that U is a unitary representation
of G. For the rest of this note, we fix G = Ao(F ).

In [1], Banica determined the representation theory of G = Ao(F ) and showed
that G has the same fusion rules as the compact group SU(2). So, for every n ∈ N,
we can take an irreducible unitary representation Un on the Hilbert space Hn such
that

Un ⊗ Um ∼= U |n−m| ⊕ U |n−m|+2 ⊕ · · · ⊕ Un+m .

The (discrete) dual of G is defined as follows:

ℓ∞(Ĝ) :=
∏

n∈N

B(Hn) .

The quantum group structure is expressed by a comultiplication ∆̂ : ℓ∞(Ĝ) →
ℓ∞(Ĝ)⊗ℓ∞(Ĝ). We write moreover c0(Ĝ) =

⊕
n∈N

B(Hn).

A suitable compactification for Ĝ should be a unital C∗-algebra B satisfying

c0(Ĝ) ⊂ B ⊂ ℓ∞(Ĝ), the boundary B∞ being B/c0(Ĝ). The fusion rules of G yield
isometries V (x⊗ y, x+ y) : Hx+y → Hx ⊗Hy that intertwine Ux+y and Ux ⊗Uy.
Such an isometry is determined up to a number of modulus one, which makes the
following maps canonically defined

ψx+y,x : B(Hx) → B(Hx+y) : ψx+y,x(A) = V (x⊗ y, x+ y)∗(A⊗ 1)V (x⊗ y, x+ y) ,

for all A ∈ B(Hx).

Definition 3. We define the linear subspace B0 ⊂ ℓ∞(Ĝ) consisting of elements
(An) such that there exists n with Am = ψm,n(An) for all m ≥ n. We define B as
the norm closure of B0.

Intuitively, B∞ is a direct limit along the inductive system of maps ψm,n. But,
since these completely positive maps are by no means multiplicative, the following
theorem needs a careful analysis.

Proposition 4. The closed subspace B actually is a unital C∗-subalgebra of ℓ∞(Ĝ).

In a next step, we study the action of Ĝ on the boundary B∞ by left translations.
We show that this is an amenable action. This allows to prove the following result.

Theorem 5. The reduced C∗-algebra C(G)red is exact. Moreover, G satisfies the
Akemann-Ostrand property, which means that the map

C(G)red ⊗alg C(G)red → B(L2(G))

K(L2(G))
: a⊗ b 7→ π(λ(a)ρ(b))

is continuous with respect to the minimal tensor product norm.

Note that L2(G) denotes the GNS Hilbert space of the Haar state h and that
λ and ρ are the left and the right regular representations of C(G)red on L2(G).

We also study factoriality of the von Neumann algebra C(G)′′red and simplicity
of the C∗-algebra C(G)red. The tool is a study of an analogue of the operator
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1
#S

∑
g∈S λgρg on ℓ2(Γ) associated with a finite set of generators S of a discrete

group Γ. Under the right assumptions, such an operator has a spectral gap at 1
and one derives factoriality and fullness. Combining such a spectral gap with the
Property of Rapid Decay, established by Vergnioux, one obtains simplicity of the
reduced C∗-algebra.

Theorem 6. Let n ≥ 3 and F ∈ GL(n,C) with FF = ±1.

• C(G)′′red is a full prime factor when
‖F‖2

Tr(F ∗F )
≤ 1√

5
.

• C(G)red is a simple C∗-algebra when
‖F‖8

Tr(F ∗F )
≤ 3

8
.

The previous theorem applies in particular to F = In, the n by n identity
matrix with n ≥ 3. In that case, C(G)′′red is a solid II1 factor and C(G)red is a
simple C∗-algebra with unique tracial state.

Remark 7. Of course, the conditions on ‖F‖ in the theorem above are ad hoc. It
is our belief that the result is true without these conditions, although a different
technique of proof would be needed.

Finally, we observe that the boundary B∞ for the dual of Ao(F ) can be identi-
fied with a Martin or a Poisson boundary. The notion of a Poisson boundary for
discrete quantum groups is due to Izumi [2], who identified the Poisson boundary of
the dual of SUq(2) with (von Neumann algebraic) Podles’ sphere. Martin bound-
aries for discrete quantum groups were introduced in [3]: the Martin boundary of
the dual of SUq(2) is isomorphic with the C∗-version of Podles’ sphere.

Without going into details, our result roughly goes as follows. The boundary B∞
admits a natural harmonic state ω∞. Taking the GNS construction, the generated

von Neumann algebra (B∞, ω∞)′′ is isomorphic with the Poisson boundary of Ĝ

with respect to a generating state. The boundary B∞ itself is on the nose the

Martin boundary of Ĝ with respect to a generating state with finite first moment.
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The Property of Rapid Decay for Free Quantum Groups

Roland Vergnioux

The Property of Rapid Decay (RD) was first considered by Haagerup in a famous
article about the convolution algebras of the free groups [2]. A general theory
was then developped and studied by Jolissaint, with applications to K-theory. We
report here on the extension of this theory to discrete quantum groups : definition,
examples, applications. Proofs and details can be found in [5].

Let us denote by (S, δ) the Hopf C∗-algebra of c0-functions on a discrete quan-
tum group [4], and by hL, hR its Haar weights. As a C∗-algebra, S is a direct sum⊕

α∈I B(Hα) of matrix algebras, and we denote by pα ∈ S the minimal central
projection associated to α. We moreover identify the index set I with the set of
classes of irreducible representations of S. It is equipped with a tensor product, a
conjugation and a unit object, which are respectively induced by the coproduct δ,
the antipode κ and the co-unit ε.

On the other hand we denote by (Ŝred, δ̂) the reduced dual Hopf C∗-algebra of

(S, δ), and by ĥ its Haar state. The unital C∗-algebra Ŝred is the object of interest,
and Property RD is a tool to study it. We will make use of a densely defined Fourier
transform F : S ⊃ S → Ŝred which induces an identification between the GNS
spaces relative to hR and ĥ.

1. Extension of the Definition

A length on (S, δ) is an unbounded multiplier L ∈ Sη such that

L ≥ 0, ε(L) = 0, κ(L) = L and δ(L) ≤ L⊗ 1 + 1 ⊗ L.

We denote by pn the spectral projection of L associated with [n, n+1[. Interesting
examples of lengths are the word lengths: assume that (S, δ) is finitely generated
— ie I is generated by a finite subset D = D̄ —, we put then L =

∑
l(α)pα with

l(α) = min{k | ∃ β1, . . . , βk ∈ D α ⊂ β1 ⊗ · · · ⊗ βk}.
We define the Sobolev norms of an element a ∈ S by the standard formulas

||a||2 := ĥR(a∗a) and ||a||2,s = ||(1 + L)sa||2. We denote by H ⊃ Hs the re-
spectively associated completions, and we put H∞ =

⋂
s≥0Hs. Since H identifies

via the Fourier transform with the GNS space of ĥ, the space Ŝred can also be
considered a subspace of H .

We are now ready to give the following Definition which, like in the classical
case, is about controlling the norm of Ŝred by the Sobolev norms.

Definition 1. Let L be a central length on (S, δ). We say that (S, δ, L) has
Property RD if the following equivalent conditions are satisfied:

(1) ∃C, s ∈ R+ ∀a ∈ S ||F(a)|| ≤ C||a||2,s,

(2) H∞ ⊂ Ŝred inside H ,
(3) ∃P ∈ R[X ] ∀k, l, n ∀a ∈ pnS ||plF(a)pk|| ≤ P (n)||a||2.
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The centrality assumption about the length may seem too restrictive in the
quantum case, and one could actually give a definition for arbitrary lengths, using
for instance the first condition. However in the finitely generated case all lengths
are dominated by word lengths, which are central, so that it is enough to consider
central lengths in the study of Property RD.

In the case of a discrete group Γ, one recovers the classical notion of Property
RD. In the (quantum) ammenable case, one can show that Property RD is still
equivalent to polynomial growth, and in particular duals of connected compact Lie
groups G always have Property RD. In this case we have Ŝred = C(G) by definition

and the embedding H∞ ⊂ Ŝred corresponds to the inclusion C∞(G) ⊂ C(G).

2. The Free Quantum Groups

Apart from discrete groups and duals of compact groups, the first test examples
for a quantum Property RD should be the free quantum groups introduced by
Wang [6], which are quantum analogues of the free groups.

We start by presenting a necessary condition which proves to be usefull in that
context. Replacing the “projections onto the spheres” in condition (3) by “pro-
jections onto the points of the spheres” and restricting to multiplicity-free cases
we obtain the following “local version” of Property RD: there exists a polynomial
P ∈ R[X ] such that, for any multiplicity-free inclusion γ ⊂ β ⊗α of elements of I

∀a ∈ pαS ||pγF(a)pβ || ≤ P (|α|)||a||2,
where |α| is the positive number such that Lpα = |α|pα.

The interesting point about this condition is that it can be reformulated in a
way that makes no reference anymore to the norm of Ŝred:

∀a ∈ pαS, b ∈ pβS ||δ(pγ)(b ⊗ a)δ(pγ)||2 ≤
√

mγ

mβmα
P (|α|)||b ⊗ a||2.

This inequality of Hilbert-Schmidt norms of matrices over Hβ ⊗Hα is in fact an
assertion about the relative positions in Hβ ⊗Hα of the subspace equivalent to Hγ

and of the cone of decomposable tensor products. Note that it is trivially verified
in the case of discrete groups, since all spaces Hα are then 1-dimensional.

Using this necessary condition with the inclusions ε ⊂ ᾱ ⊗ α, we see that our
theory is a unimodular one, although this is not apparent in the definition:

Proposition 2. Non-unimodular discr. quantum groups can’t have Property RD.

On the other hand, our necessary condition happens to be sufficient in the case
of free quantum groups. In the orthogonal case this is trivial since the spheres in
I are singletons, whereas in the unitary case this is an adaptation of the proof of
Haagerup for free groups, using the freeness properties of (I,⊗). By a finer study
of the geometry of the fusion rules of free quantum groups, one can investigate
this condition and we have finally the following quantum analogue of Haagerup’s
founding result:
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Theorem 3. The orthogonal and unitary free quantum groups have Property RD
iff they are unimodular.

3. Applications

The applications to K-theory are the first ones that come to mind to check
wether the quantum theory is usable. They go back to Jolissaint [3] and rely, in
the quantum case too, on a technical description of H∞. More precisely, let L be
a word length on a finitely generated discrete quantum group and denote by D
the closed inner derivation by L on B(H).

Proposition 4. We have Ŝred ∩ DomDk ⊂ Hk and, if (S, δ, L) has Property RD

with exponent s, Hk+s ⊂ Ŝred ∩ DomDk hence H∞ =
⋂

k DomDk ∩ Ŝred.

Standard general results about domains of closed derivations imply then that
H∞ is a full subalgebra of Ŝred, and in particular they have the same K-theory.
Using the same techniques one can also generalize the result of V. Lafforgue stating
that Hs is already a full subalgebra of Ŝred for s big enough.

Finally, let us mention another application, which is part of a joint work with
S. Vaes. Let U ∈MN(C)⊗ Ŝred be the fundamental corepresentation of a unimod-
ular orthogonal free quantum group and consider the operator of “conjugation by
the generators” Ψ : Ŝred → Ŝred, x 7→ (Tr⊗ id)(U∗(1 ⊗ x)U)/N .

Proposition 5. If N ≥ 3, there exists λ < 1 such that

∀x ∈ Ŝred ĥ(x) = 0 ⇒ ||Ψ(x)||2 ≤ λ||x||2.

This technical result clearly implies that Ŝ′′
red is a full factor. In fact, combining

the Proposition with Property RD one can transfer this “hilbertian simplicity”
to the C∗-algebraic level and prove that Ŝred is simple with a unique trace. The
corresponding result in the unitary case was proved by Banica [1] using the freeness
in I, a method that cannot apply in the orthogonal case.
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Spectral measures of free quantum groups

Teodor Banica

This is a report on joint work with Julien Bichon, Dietmar Bisch, Benoit Collins
and Sergiu Moroianu, part of which is in preparation [1, 2, 3, 4].

A compact quantum group is an abstract object, dual to a Hopf C∗-algebra.
Such a Hopf algebra is by definition a pair (A,∆), where A is a C∗-algebra with
unit, and ∆ is a morphism of C∗-algebras

∆ : A→ A⊗A

subject to certain axioms, discovered by Woronowicz in the late 80’s.
The very first example is A = C(G), where G is a compact group. Here the

comultiplication map ∆ comes from the multiplication map m : G×G→ G.
The other basic example is A = C∗(Γ), where Γ is a discrete group. Here the

comultiplication is defined on generators by ∆(g) = g ⊗ g.
In general, a Hopf C∗-algebra A can be thought of as being of the form

A = C(G) = C∗(Γ)

where G is a compact quantum group, and Γ is a discrete quantum group.
The free analogues of C(U(n)), C(O(n)), C(Sn) are the universal Hopf C∗-

algebras Au(n), Ao(n), As(n), constructed by Wang in the 90’s:

Au(n) = C∗ (uij | u = unitary, ū = unitary)
Ao(n) = C∗ (uij | u = ū = unitary)
As(n) = C∗ (uij | u = magic biunitary)

Here u = uij is a n × n matrix, and ū = u∗ij . The magic biunitarity condition
says that all entries uij are projections, and on each row and each column of u
these projections are orthogonal, and sum up to 1. See [1] for details.

The fundamental question is: who are these algebras?
In other words, we would like to have models for Au(n), Ao(n), As(n), where

generators uij correspond to explicit operators, say in some known C∗-algebra.

Theorem 1. We have the following models for Wang’s algebras:
– an embedding Au(n) ⊂ C∗(Z) ∗Ao(n).
– an isomorphism Ao(2) = C(SU(2))−1.
– an isomorphism As(n) = C(Sn) for n = 1, 2, 3.
– an inner faithful representation As(4) → C(SU(2),M4(C)).

Here the middle assertions are easy, and provide models for Ao(2), As(2), As(3).
The first assertion is proved in my thesis, and reduces study of Au(n) to that of
Ao(n) (in particular, we get a model for Au(2)). As for the last assertion, this is
based on a realisation of the universal 4×4 magic biunitary matrix, obtained with
S. Moroianu by using the magics of Pauli matrices [4].

All proofs are based on the following key lemma.

Lemma 2. A morphism (A, u) → (B, v) is faithful if and only if the spectral
measures of χ(u) and of χ(v) are the same.
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Here χ(w) = w11 + w22 + . . . + wnn is the character of w = wij . In the self-
adjoint case the spectral measure of χ(w) is the real probability measure coming
from Haar integration; in the general case, it is the ∗-distribution.

The key lemma tells us that in order to find models for Au(n), Ao(n), As(n),
the very first thing to be done is to compute the spectral measure of χ(u). This
was done by myself in the 90’s, with the following conclusion.

Theorem 3. We have the following spectral measures:
– for Au(n) the variable χ(u) is circular.
– for Ao(n) the variable χ(u) is semicircular.
– for As(n) the variable χ(u) is free Poisson.

This gives some indication about where to look for models (and that is how
theorem 1 was found!), but in general, the fundamental problem is still there.

The recent work [1, 2, 3] focuses on three related problems.
A first natural question is to find analogues of theorem 2, for other classes of

universal Hopf algebras. One would like of course to investigate “simplest” such
Hopf algebras, and according to general theory of Jones and Bisch-Jones (the
“2-box” philosophy), these are algebras A(X), with X finite graph.

If X is a finite graph having n vertices, the algebra A(X) is by definition the
quotient of As(n) by the commutation relation [u, d] = 0, where d is the Laplacian
of X . This algebra A(X) corresponds to a so-called quantum permutation group.

In joint work with J. Bichon [1] we investigate several formulae of type µ(X ×
Y ) = µ(X) × µ(Y ), where µ(Z) is the spectral measure of the character of A(Z).
In particular we obtain evidence for the following conjecture.

Conjecture 4. We have an equality of spectral measures

µ(X ∗ Y ) = µ(X) ⊠ µ(Y )

where X,Y are colored graphs, X ∗ Y is obtained by “putting a copy of X at each
vertex of Y ”, and ⊠ is Voiculescu’s free multiplicative convolution.

We prove this statement in two simple situations: one using work of Bisch-Jones
and Landau, the other one using work of Nica-Speicher and Voiculescu. In the
general case we have no proof, but we suspect that our free product operation
* is a a graph-theoretic version of the free product operation for planar algebras
discovered by Bisch and Jones. See the report of Bisch in these Proceedings.

A second natural question is to find finer versions of theorem 2, with χ(u)
replaced by arbitrary coefficients of u. This would no doubt give more indication
about what models for Au(n), Ao(n), As(n) should look like.

We are currently investigating this problem, in joint work with B. Collins [3].
The idea is to use an old idea of Weingarten, recently studied in much detail by
Collins and Sniady, for classical groups. So far, we have several results for Ao(n),
including a general integration formula, and a formula for moments of diagonal
coefficients of the form osn = u11 + . . .+ uss.
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Theorem 5. The odd moments of osn are all 0, and the even ones are given by
∫
o2k

sn = Tr(A−1
knAks)

where Akn is the Gram matrix of Temperley-Lieb diagrams in TL(k, n).

As a corollary, the normalised variable (n/s)1/2osn with n → ∞ is asymptot-
ically semicircular. We are trying now to get more information about osn, along
with some similar results for variables usn, ssn, corresponding to Au(n), As(n).

A third natural question is whether similar problems can be asked about sub-
factors. A much studied invariant of subfactors (Jones, Bisch-Jones) is a series
with integer coefficients, called Poincaré series. In case the subfactor comes from
a Hopf C∗-algebra (A, v), the Poincaré series is nothing but the Stieltjes transform
of the spectral measure of χ(v). In other words, the question is to compute the
measure-theoretic version of the Poincaré series, for various subfactors.

We investigate this problem for subfactors of index ≤ 4, in joint work with D.
Bisch [2]. These are known to be classified by ADE graphs. We use Jones’ change
of variables z = q/(1 + q)2: at level of measures, this leads to consideration of a
certain probability measure ε supported by the unit circle, that we call spectral
measure of the graph. Our key remark is that ε is given by a nice formula.

Theorem 6. The spectral measures of AD graphs are given by

An−1 → αdn

Dn+1 → αd′n
A∞ → αd

A
(1)
2n → dn

A−∞,∞ → d

D
(1)
n+2 → d′1/2 + dn/2

D∞ → d′1/2 + d/2

where d, dn, d
′
n are the uniform measures on the unit circle, on 2n-th roots of unity,

and on 4n-th roots of unity of odd order, and α(u) = 2Im(u)2.

This is closely related to work of Reznikoff; she computes moments of the spec-
tral measures of ADE graphs by counting planar modules, via a theorem of Jones.

We are trying now to find a nice formula forE graphs, plus of course to formulate
some kind of relevant question regarding graphs of small index > 4.
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Deformation of infinite projections

Etienne Blanchard

A classification programme of nuclear C∗-algebras through K-theoretic invari-
ants has been launched by G. Elliott. If O∞ is the unital C∗-algebra generated
by an infinite sequence of isometries sj , j ∈ N, then K∗(A) ∼= K∗(A ⊗ O∞) for
all C∗-algebra A. Hence any classification programme can only be performed for
C∗-algebras A which absorb O∞, id est (i.e.) such that A ∼= A⊗O∞.

In order to study these C∗-algebras, recall that two projections p, q in a C∗-
algebra A are said to be Murray-von Neumann equivalent (resp. p dominates q) if
there exists a partial isometry v ∈ A with v∗v = p and vv∗ = q (resp. v∗v ≤ p and
vv∗ = q). For short we write p ∼ q (resp. q - p). The non-zero projection p is said
to be infinite (resp. properly infinite) if p is equivalent to a proper subprojection
q < p (resp. p is equivalent to two mutually orthogonal projections p1, p2 with
p1 + p2 ≤ p) and p is finite otherwise.

Definition 1 (Cuntz [5]). A simple A 6= C is said to be purely infinite (p.i.) if
and only if (iff) every nonzero hereditary C∗-subalgebra in A contains an infinite
projection.

Then one has the following characterization of the pure infiniteness in the simple
nuclear case.

Proposition 2 (Kirchberg, Phillips). If A is a simple nuclear C∗-algebra, then
the following are equivalent:

i) A is p.i.,
ii) For all a, b ∈ A+ \ {0} there exists an element d ∈ A with ‖b− d∗ad‖ < 1,
iii) A ∼= A⊗O∞.

Possible generalisations to the non-simple case are the following:

Definition 3. ([7]) A C∗-algebra A is said to be purely infinite (p.i.) iff

i) ∀ a, b ∈ A+ with b ∈ AaA, there exists d ∈ A such that ‖b− d∗a‖ < 1 and
ii) There is no character on the C∗-algebra A.

Definition 4. ([4]) A C∗-algebra A is said to be locally purely infinite (l.p.i.) iff
for all element b ∈ A and all two sided closed ideal J ⊳ A such that b 6∈ J , there
exists a stable C∗-subalgebra DJ of the hereditary C∗-subalgebra b∗Ab which is
not totally contained in J .

M. Rørdam has proved in [8] that any p.i. C∗-algebra A is always l.p.i. The
converse implication holds if the primitive ideal space Prim(A) of the C∗-algebra
A is Hausdorff and of finite topological dimension ([3]). In order to study the
infinite dimensional case, we fix a compact Hausdorff space X and we look more
generally at a unital C(X)-algebrasA which admits a faithful C(X)-representation
π on a Hilbert C(X)-module E = (Ex)x∈X ([2]) such that the projection πx(1A)
is properly infinite in πx(A) (resp. in L(Ex)) for all x ∈ X .
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Then the unit p⊗1n of Mn(A) is properly infinite in Mn(A) for large enough n
as soon as π is a continuous field of faithful ∗-representations ([1], [3]). This is also
the case in LC(X)(E) if the topological dimension of X is finite and each Hilbert
space Ex is infinite dimensional ([6]). But the C∗-algebra L(E) can have a finite
(and even stably finite) unit in general.
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Continuous Fields of C*-algebras

Marius Dadarlat

We report on results from two recent papers [2] and [3], the first of which is
joint work with George Elliott.

In [2] it is proved that all unital separable continuous fields of C*-algebras over
[0, 1] with fibers isomorphic to the Cuntz algebra O(n) (2 ≤ n ≤ ∞) are trivial.
More generally, we show that if A is a separable unital continuous field over [0, 1] of
Kirchberg C*-algebras satisfying the UCT and having finitely generated K-theory
groups, then A is isomorphic to a trivial field if and only if the associated K-
theory presheaf is isomorphic to the presheaf of a trivial field. We also show that,
under the additional assumption that the fibers have torsion free K0-group and
trivial K1-group, the K0-(pre)sheaf is a complete invariant for separable unital
continuous fields of Kirchberg algebras.

In [3] the approach of [1] and [2] is extended to higher dimensional spaces. Let
X be a finite dimensional compact metrizable space. We prove that all separable
unital continuous fields of C*-algebras over X with fibers isomorphic to the Cuntz
algebra O∞ are trivial. In a more general context, assuming that X is locally
contractible, we show that if A is a separable unital continuous field over X with
fibers Kirchberg C*-algebras satisfying the universal coefficient theorem in KK-
theory (UCT) and having finitely generated K-theory groups, then A is isomorphic
to a locally trivial field if and only if A satisfies a natural Fell-type condition in K-
theory (which is automatically satisfied if the K-theory presheaf associated to A is
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locally trivial). As a corollary we obtain that any separable unital continuous field
of C*-algebras over a finite dimensional locally contractible compact metrizable
space with fibers isomorphic to On is locally trivial. Using certain approximation
and deformation techniques, we show that the C*-algebra of sections associated
to a separable continuous field of C*-algebras over X satisfies UCT, provided that
each fiber is nuclear and satisfies the UCT.
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Pseudo-multiplicative unitaries on C∗-modules, Hopf C∗-families and

duality

Thomas Timmermann

The aim of this talk is to generalise Pontrjagin duality and Takesaki-Takai
duality to locally compact quantum groupoids. We do not have a definition of this
category, yet we obtain partial results on a duality of objects and a satisfactory
duality theory of C∗-dynamical systems. The results presented in this talk were
obtained in my PhD thesis which was supervised by Joachim Cuntz.

1. Duality of objects

1.1. Background on generalised Pontrjagin duality. Given a locally com-

pact abelian group G, the set Ĝ of characters forms a locally compact abelian

group, and the natural map G→ ˆ̂
G is an isomorphism. A satisfactory generalisa-

tion to non-abelian groups was achieved by Stefaan Vaes and Johan Kustermans
[5] within the theory of locally compact quantum groups. Here, the construction
of the dual object proceeds in two steps: the quantum group, which is a Hopf
C∗-algebra with a Haar weight, gives rise to a multiplicative unitary. From this
unitary, one constructs a pair of Hopf C∗-algebras [1, 10, 5] which underly the ini-
tial quantum group and its dual, respectively. The theory simultaneously covers
measurable quantum groups – they correspond bijectively with locally compact
ones.

For groupoids, the correspondence between the locally compact and the measur-
able category is lost. Whereas Pontrjagin duality has been generalised to measur-
able quantum groupoids [6] by Franck Lesieur, a parallel theory of locally compact
quantum groupoids is missing. In Lesieur’s theory, pseudo-multiplicative unitaries
on Hilbert spaces take the rôle multiplicative unitaries have for quantum groups.
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1.2. Pseudo-multiplicative unitaries on C∗-modules. Although the von
Neumann algebraic theory of measurable quantum groupoids can not easily be
translated into a C∗-algebraic theory of locally compact quantum groupoids, one
can do so with the notion of a pseudo-multiplicative unitary: Given a C∗-module E
over a C∗-algebraA and two commuting representations πs, πr of A on E, a unitary
V : E πs

⊗ E → E ⊗πr
E is called pseudo-multiplicative if it satisfies the pentagon

equation V12V13V23 = V23V12 and some intertwining conditions with respect to πs

and πr. Here, the domain and range of V are internal tensor products formed with
respect to πs acting on the first and πr acting on the second factor, respectively. If
E is a Hilbert space and πs, πr are given by scalar multiplication, one obtains an
ordinary multiplicative unitary. For a more interesting example, let G be a locally
compact groupoid with a left Haar system λ. Put E = L2(G, λ), A = C0(G

0)
and denote by πs and πr the representations induced by the source and range
map of G, respectively. Then the formula (V f)(x, y) := f(x, x−1y) defines a
pseudo-multiplicative unitary [7, 9]. Further examples arise e.g. from inclusions of
C∗-algebras [8] and deformations of multiplicative unitaries [2].

1.3. Twisted C∗-bimodule theory and Hopf C∗-families. How does a multi-
plicative unitary give rise to a pair of Hopf C∗-algebras? For a finite group G, the
associated unitary V simultaneously encodes C0(G) and C∗

r (G) in the sense that
V =

∑
x∈G δx⊗λx, where δx and λx denote the multiplication and left convolution

operators associated to an element x ∈ G. The general case behaves similarly: the
operators obtained by slicing V with maps of the form 1 ⊗ ω or ω ⊗ 1, where ω
varies over a certain space of functionals, generate two Hopf C∗-algebras [1, 10].

To general pseudo-multiplicative unitaries on C∗-modules, these constructions
do not carry over since they do not respect the module structures and are not
compatible with the internal tensor product. We solve these problems by means
of twisted C∗-bimodule theory if the underlying C∗-bimodules satisfy a decompos-
ability condition which is inspired by r-discrete groupoids. The general idea is
to allow module structures to be preserved only up to twists by partial automor-
phisms which are kept track of by additional book-keeping. As an example, a
C∗-bimodule E over a C∗-algebra A is decomposable if it is the closed linear span
of its homogeneous elements, and an element ξ ∈ E is homogeneous of degree α,
where α is a partial automorphism of A, if ξ ∈ EDom(α) and ξa = α(a)ξ for all
a ∈ Dom(α). Likewise, we introduce homogeneous operators on C∗-bimodules and
C∗-families which roughly are graded C∗-algebras of such operators. The cate-
gory of C∗-families has an internal tensor product which we use to define Hopf
C∗-families. Now, the construction outlined above carries over – to each decom-
posable pseudo-multiplicative unitary we asscoiate a dual pair of Hopf C∗-families.

2. Duality of C∗-dynamical systems

2.1. Background on generalised Takesaki-Takai duality. Given an action
α of a locally compact group G on a C∗-algebra, one can form the (reduced)
crossed product A⋊(r) G which encodes the C∗-dynamical system (A,G, α). If G
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is abelian, the crossed product carries a dual action of Ĝ, and the iterated crossed
product A⋊r G⋊r Ĝ is equivariantly Morita equivalent to A. Baaj and Skandalis
generalised this result to a large class of quantum groups [1], replacing the dual
pair of groups by a dual pair of Hopf C∗-algebras arising from a Kac system, and
actions of the groups by suitable coactions of the Hopf C∗-algebras. Here, a Kac
system consists of a multiplicative unitary and a unitary antipode.

2.2. Pseudo-Kac systems. To further generalise the duality to (quantum) group-
oids, we need to define coactions of Hopf C∗-families on C∗-algebras and to recon-
sider the notion of a Kac system. Clearly, the multiplicative unitary should be
replaced by a pseudo-multiplicative unitary on C∗-modules, but already for locally
compact groupoids, the unitary antipode can not be defined. In this example, one
can prove a duality if one simultaneously considers the C∗-modules associated to
a left and to a right Haar system, the isometry between both induced by the invo-
lution of the groupoid, and various unitary maps between internal tensor products
of these C∗-modules all given by the same formula as the pseudo-multiplicative
unitary in subsection 1.2. The definition of a pseudo-Kac system puts this into an
axiomatic framework. If the system is decomposable, it gives rise to a dual pair
of Hopf C∗-families. For coactions of these Hopf C∗-families on C∗-algebras, we
carry over the definition of reduced crossed products and the duality theorem.

In particular, we obtain a satisfying duality theorem for r-discrete groupoids,
and more general for groupoids which are extensions of r-discrete groupoids by
group bundles.

3. Non-Hausdorff groupoids

The theory developed so far applies primarily to Hausdorff groupoids. For a
locally compact, non-Hausdorff groupoid G with a left Haar system λ, already
the definition of the natural C∗-module L2(G, λ) poses a problem. A replacement
L2(G, λ)KS was proposed by Mahmoud Khoshkam and Georges Skandalis [4].
Building on a Hausdorff compactification introduced by James Fell [3], we give
a nice geometric description of this C∗-module. In fact, the construction of Fell,
applied to a locally compact non-Hausdorff groupoid G, yields a locally compact
groupoid HG, and if G is r-discrete, then L2(G, λ)KS = L2(HG, λ′). Here, λ and λ′

denote the families counting measures. This result suggests that for the approach
to locally compact quantum groupoids taken above, G can be replaced by HG.
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The structure of crossed products by minimal homeomorphisms

N. Christopher Phillips

This is joint work with Huaxin Lin, except for Example 4, which is joint work
with Benjamı́n Itzá-Ort́ız.

We consider the classification of crossed products by minimal homeomorphisms,
in the real rank zero case. For any unital C*-algebra B, following the usual no-
tation, let ρ = ρB : K0(B) → Aff(T (B)) be the standard map from K0(B) to the
affine functions on the tracial state space of B. If B is simple and has real rank
zero, then ρ has dense range.

Theorem 1 ([10]). Let X be an infinite compact metric space with finite cov-
ering dimension, and let h : X → X be a minimal homeomorphism. Set A =
C∗(Z, X, h). Suppose that ρ(K0(A)) is dense in Aff(T (A)). Then A has tracial
rank zero in the sense of [8] (is tracially AF in the sense of [7]).

Since C∗(Z, X, h) is automatically simple and unital, and satisfies the Universal
Coefficient Theorem, H. Lin’s classification theorem [9] applies, and the isomor-
phism class of this algebra is determined, within a large class, by its Elliott invari-
ant. It is often not difficult to verify the hypotheses of the theorem and compute
the Elliott invariant directly from X and h, without knowing C∗(Z, X, h). For ex-
ample, T (C∗(Z, X, h)) is just the space of h-invariant Borel probability measures
on X, the groups K∗(C∗(Z, X, h)) can be calculated using the Pimsner-Voiculescu
exact sequence [13], and, when X is connected, ρC∗(Z,X,h) can be calculated using
ideas systematized in [2].

Theorem 1, together with classification [9], implies known structure results,
for example that the irrational rotation algebras are AT algebras (first proved
by Elliott and Evans in [1]) and that the transformation group C*-algebras of
minimal homeomorphisms of the Cantor set are AT algebras (essentially due to
Putnam [16]). It also gives new isomorphism results for transformation group
C*-algebras. Here is a selection.

Example 2. For each minimal homeomorphism h0 : X0 → X0 of the Cantor set,
Gjerde and Johansen [4] construct a minimal homeomorphism h : X → X of a



2324 Oberwolfach Report 41/2005

highly disconnected one dimensional space, such that C∗(Z, X, h) has the same
Elliott invariant as C∗(Z, X0, h0). We show that C∗(Z, X, h) ∼= C∗(Z, X0, h0).

Example 3. Consider two Furstenberg transformations on the torus S1×S1, say

hj(ζ1, ζ2) =
(
exp(2πiθ)ζ1, (exp(2πifj(ζ1))ζ

d
1 ζ2

)

for j = 1, 2, with θ ∈ R \ Q and d ∈ Z \ {0} fixed (the same for both), and
with f1, f2 : S1 → S1 continuous. Suppose h1 and h2 are uniquely ergodic.
(In particular, this happens whenever f1 and f2 are Lipschitz. See [3].) Then
C∗(Z, S1×S1, h1) ∼= C∗(Z, S1×S1, h2). (The case in which f1 and f2 are smooth
is covered by [12].) An analogous statement is true on (S1)d for d ≥ 3.

Example 4. For most choices of a nondegenerate real skew symmetric d × d
matrix θ with d ≥ 3, the simple higher dimensional noncommutative torus Aθ is
isomorphic to the transformation group C*-algebra of a minimal homeomorphism
h : X → X of a one dimensional space X, obtained in the following way. Choose a
suitable minimal homeomorphism h0 : X0 → X0 of the Cantor set, obtained as the
restriction to its unique minimal set of a suitable Denjoy homeomorphism of the
circle. Consider the suspension flow t 7→ Ht of h0 on the spaceX = (X0×[0, 1])/∼,
where (x, 1) ∼ (h(x), 0). The flow is given by moving points up at unit speed, and
following the equivalence relation when one hits the top. Then, for a suitable
(irrational) choice of t, the homeomorphism h = Ht is the one desired. See [5].

The proof of Theorem 1 has two main ingredients. First, we give a convenient
condition for a simple unital C*-algebra to have tracial rank zero.

Lemma 5. Let A be a simple unital C*-algebra. Suppose that for every finite
subset S ⊂ A, every ε > 0, and every nonzero positive element c ∈ A, there exists
a projection p ∈ A and a simple unital subalgebra B ⊂ pAp with tracial rank zero
such that:

(1) ‖[a, p]‖ < ε for all a ∈ S.
(2) dist(pap,B) < ε for all a ∈ S.
(3) 1 − p is Murray-von Neumann equivalent to a projection in cAc.

Then A has tracial rank zero.

Now fix h : X → X satisfying the hypotheses. Set A = C∗(Z, X, h). Let u ∈ A
be the standard unitary, satisfying ufu∗ = f ◦ h−1 for f ∈ C(X). For Y ⊂ X
closed, let AY be the C*-subalgebra of C∗(Z, X, h) generated by C(X) and all uf
for f ∈ C(X) such that f = 0 on Y. This algebra is the C*-algebra of a subgroupoid
of the transformation group groupoid. If int(Y ) 6= ∅, then AY is a recursive
subhomogeneous C*-algebra in the sense of [14]. The important subalgebra isA{y},
the one obtained from a one point set. It is a simple direct limit, with no dimension
growth, of subalgebras AYn

with int(Y ) 6= ∅. Moreover, T (A) → T (A{y}) is an
isomorphism [11], and K0(A{y}) → K0(A) is an isomorphism [17]. If T (A) has
only countably many extreme points, it follows from general theory [15] that A{y}
has tracial rank zero. In the general case, using [6], this can be proved directly, at
least for y in a dense Gδ-set in X. This is the first main ingredient.
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The second main ingredient is an adaptation of Putnam’s version of Berg’s
technique, from [16]. We want to verify the hypotheses of Lemma 5. In this
outline, we omit discussion of Condition (2) there. The finite subset S can be
taken to have the form S = S0 ∪ {u} for some finite subset S0 ⊂ C(X). Moreover,
we may assume that the functions in S0 are constant on any predetermined finite
collection of disjoint compact subsets of X whose diameters are all sufficiently
small.

Choose and fix y ∈ X such that A{y} has tracial rank zero. Choose a large

number n, and use minimality to choose N ≥ n such that hN−k(y) is very close
to h−k(y) for 0 ≤ k ≤ n. Choose a neighborhood U of y such that, with Z = U,
the sets

h−n(Z), h−n+1(Z), . . . , hN (Z)

are all disjoint, and furthermore the sets

h−n(Z) ∪ hN−n(Z), h−n+1(Z) ∪ hN−n+1(Z), . . . , Z ∪ hN (Z)

and

h(Z), h2(Z), . . . , hN−n−1(Z)

all have very small diameter. We will take the functions in S0 to be constant on
each of the sets in the second and third lists above.

Since A{y} has real rank zero, it is possible to find functions g0, g1 ∈ C(X) and
a projection e ∈ A{y} such that g0 = 1 on a neighborhood of y, eg0 = g0, g1e = e,

and supp(g1) ⊂ U. One can show that the projections ej = ujeu−j are all in A{y},
and they are all unitarily equivalent in A{y} because K0(A{y}) → K0(A) is an
isomorphism and A{y} has tracial rank zero. Since each f ∈ S0 is constant on

hj(Z), it follows that f commutes with ej.

The projection
∑N−1

j=0 ej thus commutes with every f ∈ S0. However, it does

not even approximately commute with u because eN = une0u
−n is not close to

e0. This can be fixed as follows. There is a subalgebra D ⊂ A{y} isomorphic
to M2, with eN−n and e−n corresponding to the diagonal rank one projections.
There is a discrete path of projections in D from eN−n to e−n, say eN−n =
r0, r1, . . . , rn−1, rn = e−n, with ‖rj − rj−1‖ ≤ π/n. Note that ujrju

−j commutes
with every f ∈ S0, because f is constant on h−n+j(Z) ∪ hN−n+j(Z). Instead of
using e0, e1, . . . , eN−1, we add up the projections

e0, e1, . . . , eN−n = r0, ur1u
∗, . . . , un−1rn−1u

−(n−1),

noting that unrnu
−n = une−nu

−n = e0. Call the result q. Then ‖uq− qu‖ ≤ π/n.
If moreover U is small enough, then q will be small in the tracial sense. The
required projection p is then p = 1− q. As noted above, we do not describe how to
show that pap ∈ A{y} for a ∈ S, but it is not particularly hard; the key property
is that eg0 = g0 with g0 = 1 on a neighborhood of y.
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C∗–algebras of real rank zero

Mikael Rørdam, University of Southern Denmark

Dedicated to the memory of Gert Kjærgaard Pedersen

Larry Brown and Gert Kjærgaard Pedersen introduced in the paper, [1], the notion
of real rank for C∗–algebras. The lowest possible real rank is zero; and a commu-
tative C∗–algebra is of real rank zero if and only if its spectrum is zero-dimensional
(i.e., is totally disconnected). In general a (possibly non-commutative) C∗–algebra
A is of real rank zero if the set of self-adjoint elements in A with finite spectrum
is a norm-dense subset of the set of all self-adjoint elements in A. (This is one of
several equivalent conditions for real rank zero listed in the paper by Brown and
Pedersen.)

The present talk focuses on recent developments and open problems concern-
ing C∗–algebras of real rank zero, in particular in regards to two set of problems.
Describe the structure of C∗–algebras of real rank zero (having in mind the intu-
ive assumption that these are “zero-dimensional” non-commutative spaces); and
characterize which C∗–algebras are of real rank zero. In particular we report on
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the results of our recent paper, [4]. We also mention the papers [3] and [2] on
embedding properties for unital C∗–algebras of real rank zero. Our study of C∗–
algebras of real rank zero is motivated by the following open problems for simple
C∗–algebras.

Question 1. Is any simple C∗–algebra of real rank zero either stably finite or
purely infinite?

Question 2. Is the ordered group K0(A) of a simple real rank zero C∗–algebra
A necessarily weakly unperforated?

Question 3 (Elliott’s Conjecture). Is (K0,K
+
0 ,K1) a complete invariant for the

class of simple, separable, nuclear, stable C∗–algebras of real rank zero?

One characterization of when a C∗–algebra is of real rank zero applies to C∗–al-
gebras A where the so-called Cuntz semigroup W (A) is weakly unperforated (i.e.,
if nx ≤ my and n > m for some x, y ∈ W (A) and some n,m ∈ N, then x ≤ y).
The semigroup W (A) is defined to be M∞(A) modulo the equivalence arising from
Cuntz comparison. Addition is given by direct sum, and the ordering by the Cuntz
ordering (see [4] for details).

Theorem 4. Let A be a simple unital exact C∗–algebra with sr(A) = 1 and with
weakly unperforated Cuntz semigroup W (A). Then RR(A) = 0 if and only if
K0(A) is uniformly dense in Aff(T (A)).

We show in [4] that if A is a finite simple Z-absoring C∗–algebra, then sr(A) = 1
and W (A) is weakly unperforated. We therefore obtain the following:

Corollary 5. Let A be a unital simple exact Z-absorbing C∗–algebra. Then
RR(A) = 0 if and only if K0(A) is uniformly dense in Aff(T (A)).

The literature contains several results along the line of the corollary above for
other classes of C∗–algebras.

We now turn to the non-simple case, where the situation is less settled. Let us
first mention the following result from [1].

Theorem 6 (Brown–Pedersen). Given a short exact sequence of C∗–algebras 0 →
A → E → B → 0. Then RR(E) = 0 if and only if RR(A) = RR(B) = 0 and the
index map δ : K0(B) → K1(A) is zero.

The latter condition gives rise to the following defintion:

Definition 7. A (non-simple) C∗–algebra A is said to be K0-liftable if for every
pair of closed two-sided ideals I, J in A such that I ⊆ J the index map K0(J/I) →
K1(I), arising from the short exact sequence 0 → I → J → J/I → 0, is zero.

Every C∗–algebra of real rank zero is K0-liftable. It follows from Brown and
Pedersen’s extension theorem that a purely infinite C∗–algebra with finite ideal
lattice is of real rank zero if and only if it is K0-liftable.

If we look at more general non-simple C∗–algebras (possibly with infinitely
many ideals), then we must also look at its spectrum, which necessarily is totally
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disconnected when the C∗–algebra is of real rank zero. In the converse direction
we have the following:

Theorem 8 (Kirchberg). Let A be a separable, nuclear C∗–algebra such that A ∼=
A ⊗ O2. It follows that RR(A) = 0 if and only if the spectrum of A is totally
disconnected.

It would be interesting to know when non-simple purely infinite (and non-simple
Z-absorbing) C∗–algebras are of real rank zero. It seems plausible that the two
necessary conditions mentioned above are also sufficient in the purely infinite case.
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Dimension growth for C∗-algebras

Andrew Toms

A recurring theme in theorems confirming the Elliott conjecture is that of min-
imal rank. There are various notions of rank for C∗-algebras — the real rank, the
stable rank, the tracial topological rank, and the decomposition rank — see [1],
[7], [6] and [4], respectively, for definitions and basic properties — which attempt
to capture a non-commutative version of dimension. A natural and successful ap-
proach to proving classification theorems for separable and nuclear C∗-algebras
has been to assume that one or more of these ranks is minimal (see [2] and [5], for
instance). But there are examples which show these minimal rank conditions to
be variously too strong or too weak to characterise those algebras for which the
Elliott conjecture will be confirmed. There are many reasons to assume Z-stability
— the condition that a C∗-algebra absorbs the Jiang-Su algebra Z tensorially —
instead (see [8] for a discussion), but a fair objection has been that this assump-
tion seems unnatural. We overcome this objection by situating Z-stability as the
minimal instance of a well-behaved rank for C∗-algebras.

Definition 1. Let A be a C∗-algebra. The growth rank gr(A) is the least natural
number n such that

A⊗n def
= A⊗ · · · ⊗A︸ ︷︷ ︸

n times

is Z-stable, assuming the minimal tensor product. If no such integer exists, then
say gr(A) = ∞.
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The growth rank inherits excellent behaviour with respect to common operations
from the robustness of Z-stability. Its name is motivated by the fact that it may
be viewed as giving a theory of dimension growth for AH algebras, and, more
generally, locally type-I C∗-algebras. Of course, it is of little consequence if its
range is not exhausted.

Theorem 2. For every n ∈ N ∪ {∞} there exists a simple, separable and nuclear
C∗-algebra of growth rank n.

The algebras constructed in the proof of this theorem are new and rather exotic:
for all but two of them, the other ranks for C∗-algebras above are simultaneously
infinite. We use these algebras to obtain an unexpected creature.

Corollary 3. There is a simple, nuclear, and non-Z-stable C∗-algebra which is
not tensorially prime.

Formally, the growth rank suggests that infinite tensor products of unital and
nuclear C∗-algebras should be Z-stable (although one must exclude algebras with
one-dimensional representations). If A⊗gr(A) ∼= A⊗gr(A) ⊗ Z when gr(A) is finite,
then why not A⊗∞ ∼= A⊗∞ ⊗ Z whenever this makes sense? This leads us to
consider:

Universal Property 4. Let C be a class of unital and nuclear C∗-algebras. If A
in C is such that

(i) A⊗∞ ∼= A, and
(ii) B⊗∞ ⊗ A ∼= B⊗∞ for every B in C,

then A is unique up to ∗-isomorphism.

Proof. Suppose that A,B in C satisfy (i) and (ii) above. Then,

A
(i)∼= A⊗∞ (ii)∼= A⊗∞ ⊗B

(i)∼= A⊗B⊗∞ (ii)∼= B⊗∞ (i)∼= B.

�

Condition (i) is known to hold for Z. With A = Z, condition (ii) asks for infinite
tensor products to be Z-stable, as suggested formally by the growth rank. This
suggestion turns out to be prophetic. With A = Z, we can verify condition (ii)
inside a large — read “beyond the scope of classification results” — class of separa-
ble, unital, nuclear, and locally subhomogeneous C∗-algebras which, significantly,
contains projectionless algebras. This represents the first uniqueness theorem for
Z among projectionless algebras which does not require the said algebras to be
classified via the Elliott invariant. The greatest possible generalisation of this
theorem would come from a positive answer to:

Question 5. Let A be a separable, unital, and nuclear C∗-algebra having no
one-dimensional representations. Is A⊗∞ Z-stable?
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Axiomatics as a technique of proof—the classification theorem of Niu

George A. Elliott

The following result was obtained recently by Zhuang Niu (in his University of
Toronto Ph.D. thesis):

Theorem 1. Let A and B be simple TAS-algebras (see below) with the same
naive K-theory invariant (i.e., the ordered group K0, with the class of the unit,
the pairing of K0 with the simplex of tracial states, and the group K1; see [3],
[4]). Suppose that A and B are separable, amenable, and satisfy the Universal
Coefficient Theorem (see [10]). It follows that A and B are isomorphic.

The class of TAS-algebras is a considerable extension of the class of TAI-
algebras, introduced by Lin in [14]. The analogue of Theorem 1 for TAI-algebras
(a special case of Theorem 1) was proved by Lin in [14]—and also by Niu in
[16]—both authors using the substantial earlier papers [11] and [15] of Lin. Very
briefly, the difference between TAI-algebras and TAS-algebras is that the ordered
group K0 is constrained to have the Riesz decomposition property in the case of a
TAI-algebra but not in the case of a TAS-algebra.

Let there be given a class C of separable unital C*-algebras. Let us say that
a given separable unital C*-algebra A belongs to the inductive limit closure of
C—and write A ∈ AC—if A is the inductive limit of a sequence of C*-algebras in
the class C .

If F denotes the class of finite-dimensional C*-algebras, then the class AF is
the class of AF-algebras (approximately finite-dimensional C*-algebras) considered
(and classified) by Bratteli in [1] and by the present author in [2].

If H denotes the class of finite direct sums of matrix algebras over separable
unital commutative C*-algebras (together, more precisely, with the unital hered-
itary sub-C*-algebras of these), then AH is the class of AH-algebras (approxi-
mately homogeneous C*-algebras) considered by numerous authors and classified
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by Gong, Li, and the present author in [6] in the simple case, under the important
restriction that the spectra of the commutative C*-algebras appearing in the de-
composition are of bounded dimension. (This restriction was shown by Villadsen
in [18] not to be redundant.)

If S denotes the class of what were called splitting interval C*-algebras by Jiang
and Su in [9]—containing the C*-algebra C[0, 1], matrix algebras over this, and
also the subalgebras of these consisting of matrix-valued functions with specified
block-diagonal form at either end of the interval—then the class of simple C*-
algebras in AS was classified in [9].

Let us say that a given separable unital C*-algebra A belongs approximately
to the class C (of separable unital C*-algebras) in the sense of approximation
in trace, or tracial approximation—briefly, that A is tracially approximately in
C—and write A ∈ TAC —if for every finite subset of A there exists a non-zero
projection p in A commuting approximately with the elements of this subset, such
that the elements pap with a in this subset can be approximated by a unital sub-
C*-algebra of pAp belonging to the class C —both of these approximations being
arbitrarily close—, and such that the projection 1 − p is Murray-von Neumann
equivalent to a projection belonging to an arbitrarily given non-zero hereditary
sub-C*-algebra of A. (Note that even if the projection p may always be taken to
be the unit for a particular A, it is not clear that A belongs to AC , although this
is known for instance in the case C = F . One might say if this is possible that
A belongs approximately to C in the sense of approximation in norm, or norm
approximation.)

The class TAF , with F as above the class of finite-dimensional C*-algebras, is
the class of TAF-algebras (tracially approximately finite-dimensional C*-algebras)
introduced by Lin in [12] (following a proposal of Popa in [17] in which an ap-
proximation as above was required but with the projection p assumed only to be
non-zero, not necessarily close to 1 in the sense described above). (Lin also re-
ferred to TAF-algebras as C*-algebras of tracial rank zero.) In [12], [13], and [15],
Lin established Theorem 1 as stated above in the special case of TAF-algebras.
In fact, Lin proved this by showing that the class of TAF-algebras referred to is
contained in the class of AH-algebras classified by the present author and Gong in
[5] (namely, simple, of real rank zero—and with the pertinent spectra of bounded
dimension). In fact, it was shown in [5] that the algebras considered had the TAF
property, and so the classes considered in [15] and [5] are coextensive; one has an
axiomatization of the class considered in [5].

Similarly, it was shown in [8] (see also [6]) that the C*-algebras classified in [6]
were TAI. Therefore, the result of [14] and [16] mentioned above—Theorem 1 in the
case of TAI-algebras—is an axiomatization of the class of AH-algebras considered
in [6] (namely, simple, with the pertinent spectra of bounded dimension).

Theorem 1 is proved in the general case using very much the same techniques
as in the special cases of TAF-algebras and TAI-algebras mentioned above. The
difference is that a peculiarity of the logical structure of the proof in the earlier
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two cases, irrelevant in those cases of the theorem as the associated class of AH-
algebras had already been classified, now leaps to the fore: the proof of Theorem 1
consists first in showing that there exists an algebra in the class A(S ∪H ) which
is TAS and simple and, moreover, has the same invariant as a given TAS-algebra
as in the statement of Theorem 1—this is joint work with the author of the present
abstract—see [7]—and then in showing that any such algebra is isomorphic to A.
(The second step is of course just Theorem 1 in the case B ∈ A(S ∪ H ).)

In applying these two steps also to a second algebra B with the same invariant
as A, one need only take the precaution of choosing the same inductive limit com-
parison algebras—B and A are then isomorphic to the same comparison algebras
and therefore to each other! (In the TAF or TAI case, the comparison algebras
are automatically the same, by the inductive limit isomorphism theorem already
known in that case.)

The following result is a consequence of Theorem 1:

Corollary 2. Let A and B be separable simple unital C*-algebras which are in-
ductive limits of sequences of C*-algebras each of which is a finite direct sum
of algebras in either the class H or the class S (briefly, A and B belong to
A(H ∪ S )). Suppose that the center of the C*-algebras appearing in the induc-
tive limit decompositions of A and B have spectra of bounded dimension. If A
and B have isomorphic naive K-theory invariants (see e.g. [3]), then A and B are
isomorphic.

Proof. It follows immediately from the fact (proved in [8]) that the algebras of [6]
are TAI that A and B are TAS. �
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Uniform embeddings via group actions

Erik Guentner

(joint work with Marius Dadarlat)

Gromov introduced the notion of uniform embedding and suggested it may be
relevant for the Novikov conjecture [6]. Subsequently Yu proved that a uniformly
embeddable discrete group satisfies the Novikov conjecture [13, 14]. Motivated
in part by these results, the class of uniformly embeddable groups has attracted
much attention [2, 3, 4, 7, 8].

We recall that a function f : X → Y between metric spaces is a uniform
embedding if there exist proper and nondecreasing functions ρ± : [0,∞) → [0,∞)
such that for all x, y ∈ X

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)).

A metric space X is uniformly embeddable (in Hilbert space H) if there exists a
uniform embedding f : X → H. An easy consequence of the definitions is that if
Y is uniformly embeddable and there exists a uniform embedding X → Y then X
is uniformly embeddable.

Let Γ be a countable discrete group. In order to apply the concept of uniform
embeddability we view Γ as a metric space. We equip Γ with a (left invariant)
metric associated to a proper length function. Any two such metrics are coarsely
equivalent ; indeed, the identity Γ → Γ is a uniform embedding. As a consequence,
the property of Γ being uniformly embeddable is independent of the choice of
metric.

Theorem (Fibering Theorem). Let the discrete group Γ act on the metric spaces
X and Y by isometries, and let p : X → Y be a Lipschitz, Γ-equivariant map.
Assume that Y is an exact space (see below) and that the action of Γ on Y is
cobounded. If there exists y0 ∈ Y such that for all n ∈ N the set p−1(B(y0, n)) is
uniformly embeddable then X is uniformly embeddable.

A metric space Y is exact if it satisfies a certain partition of unity condition.
Rather than giving a precise definition we place exactness in context with the
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remark that a countable discrete group Γ is exact as a metric space if and only if
it is C∗-exact. (See [4] for the definition and additional details.)

An important special case of the theorem occurs when X = Γ and the map
p : Γ → Y is the orbit map p(g) = g · y0. In this case the theorem states that if Y
is an exact space and if, for every n ∈ N, the coarse stabilizer

(1) { g ∈ Γ : d(g · y0, y0) ≤ n }
is uniformly embeddable then Γ itself is uniformly embeddable.1 A necessary
condition for Γ to be uniformly embeddable is that the stabilizers of the action on Y
are uniformly embeddable; the hypothesis concerns how copies of these stabilizers
fit together to form coarse stabilizers.

The Fibering Theorem, and its variants, have several applications:

(i) extensions
(ii) free products (with amalgam)
(iii) relatively hyperbolic groups

The applications to extensions and relativly hyperbolic groups were described in
the talk.

Theorem (Extensions). Let 1 → H → Γ → G → 1 be an extension of discrete
groups. If H is uniformly embeddable and G is C∗-exact then Γ is uniformly
embeddable. �

For several equivalent formulations of relative hyperbolicity we refer to [1, 5, 11].
In its outline, the proof of the following theorem follows the proof of the analogous
result of Osin concerning finite asymptotic dimension [10].

Theorem (Relatively hyperbolic groups). Let Γ be a finitely generated discrete
group which is relatively hyperbolic with respect to a subgroup H . Then Γ is
uniformly embeddable if and only if H is uniformly embeddable. �

The Fibering Theorem has a parallel version for exact spaces; simply replace
‘uniformly embeddable’ by ‘exact’ in the statement. The version for exact spaces
yields parallel applications to C∗-exact groups. We recover the result of Kirchberg
and Wassermann on extensions of C∗-exact groups [9]. An alternate approach to
C∗-exactness of relatively hyperbolic groups is given by Ozawa [12].

The results described here are based on [4], to which we refer for details.
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Chern character for twisted K-theory of orbifolds

Jean-Louis Tu

(joint work with Ping Xu)

Let M be a manifold (compact for simplicity). The Chern character establishes
an isomorphism ch: Ki(M) ⊗ C → Hi+2Z(M,C). Moreover, the map ch fac-
tors through the Connes-Karoubi non-commutative Chern character Ki(M) ⊗
C → HP∗(C∞(M)) and the Hochschild-Kostant-Rosenberg map a0 ⊗ · · · ⊗ ak 7→
1
k!a0da1 · · ·dak. This result has been generalized in many directions by different
authors, including Burghelea, Feigin, Tsygan, Nistor, Brylinsky, Baum, Connes,
Block, Getzler and Crainic.

In this talk, we will focus on orbifolds. The definition of orbifold we will use is
Moerdijk’s one, namely, an orbifold is a Morita equivalence class of étale proper
groupoids. Thus, a crossed-product of a manifold M by a discrete group G acting
properly by diffeomorphisms is an orbifold groupoid; conversely, any orbifold is
locally of the form M ×G.

A result, essentially due to Baum and Connes [1], says that for any orbifold
groupoid Γ, the K-theory group K∗(C∗(Γ)) ⊗ C is isomorphic to the de Rham
cohomology with compact supports of the inertia groupoid H∗

dR,c(ΛΓ,C). More

precisely, let SΓ = {γ ∈ Γ| s(γ) = t(γ)} be the space of closed loops of Γ. Then SΓ
is a manifold endowed with the action of Γ by conjugation, and the inertia groupoid
ΛΓ, which is again an orbifold, is by definition the crossed-product SΓ × Γ. The
de Rham cohomology H∗

dR,c(ΛΓ,C) is the cohomology of the complex Ωc(SΓ,C)Γ

of invariant differential forms endowed with the de Rham differential.



2336 Oberwolfach Report 41/2005

Let us now come to twisted K-theory. Given a compact manifold M and a co-
homology class α ∈ H3(M,Z), one can associate a continuous field of C∗-algebras
with fiber K and satisfying Fell’s condition; α is called the Dixmier-Douady in-
variant. Then, the twisted K-theory group Ki

α(M) is by definition the K-theory
group of Aα. A recent theorem by Mathai and Stevenson [2] says that Ki

α(M)⊗C

is isomorphic to the twisted cohomology group Hi+2Z
α (M,C), defined as the coho-

mology of the complex (Ω∗(M)((u)), d + uΩ ∧ ·), where Ω ∈ Ω3(M) is a 3-form
whose cohomology class [Ω] ∈ H3(M,R) is the image of α by the canonical map
H3(M,Z) → H3(M,R).

Suppose now that G is an orbifold groupoid and α ∈ H3(G,Z). Then α can be
represented by a central extension

S1 → Γ̃ → Γ.

Denote again by Aα the C∗-algebra of the central extension Aα = C∗(Γ̃)S1

. Let

L = Γ̃×S1 C be the associated line bundle, and denote by π : L→ Γ the projection
and by Lg = π−1(g) the fibers. Then the groupoid law on Γ̃ induces an associative
product

(1) Lg ⊗ Lh → Lgh.

Moreover, there exists a connection ∇ for the line bundle π : L → Γ which
satisfies Leibniz’ rule with respect to the product (1). The connection ∇ is not
unique, but its restriction ∇′ to SΓ ⊂ Γ is unique and is flat.

We are now ready to define twisted cohomology: consider Ω∗(SΓ, L)Γ((u)),
the complex of formal Laurent series (u being a formal variable of degree -2), with
coefficients in the invariant differential forms on SΓ with values in L. This complex
is endowed with the differential ∇′ + uΩ∧ ·, where Ω ∈ Ω3(Γ(0))Γ is the “curving”
of ∇. Our main result is that K∗(Aα)⊗C is isomorphic to the cohomology of the
above complex.

As a final remark, let us note that our methods do not directly apply to crossed-
products of manifolds by Lie groups, because the de Rham complex for a groupoid
is not endowed with a super-commutative cup-product, and we used the fact that
Ω∧Ω = 0 in a crucial way. However, it should be possible to use the Cartan model
instead. Since we work on groupoids up to Morita equivalence, it seems necessary
to generalize Cartan’s model to a wider class of groupoids than those of the form
M ×G, namely to pseudo-étale groupoids in the sense of X. Tang [3]
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Almost connected groups, asymptotic dimension and an exactness

question

Agata Hanna Przybyszewska

(joint work with Uffe Haagerup)

In my talk I have demonstrated that every almost connected locally compact,
second countable group has finite asymptotic dimension.

Definition 1. Following [1, p. 10], a metric space is called proper if all closed
bounded sets are compact. When G is a group, this reduces by the left invariance
of the group metric to the requirement, that for every M > 0 all the closed balls
D(e,M) = {h ∈ G : d(e, h) ≤M} are compact.

A metric d on a group which is proper, left invariant, and generates the topology
of the group is called a plig.

First, we show that a proper left invariant metric that generates the group
topology is a coarse invariant for locally compact, second countable groups:

Theorem 2. Let G be a locally compact, second countable group. Assume that
the metrics d1, d2 on G are both pligs. Then the map

Id : (G, d1) → (G, d2)

is a coarse equivalence.

Then we exhibit how to construct a metric on a compactly generated locally
compact second countable group

Theorem 3. Let G be a compactly generated, locally compact, second countable
group. There exists a plig d on G, such that Bd(e, n) ⊂ Bd(e, 1)2n+1.

Such a metric can be used to construct a proper isometric action on the reflexive,
strictly convex Banach space ⊕∞

n=1L
2n(G,µ).

We use theorem 3, to construct a plig on a given locally compact second count-
able group:

Theorem 4. Let G be a locally compact, second countable group, then there exists
a plig d on G, such that

µ(Bd(e, n)) ≤ C · µ(Bd(e, 1))2n+1,

where µ is denoting the Haar measure.

Having constructed a plig, we go on to prove a key lemma:

Lemma 5. Let G be a group, and let d be a plig on G, and let H be a closed,
normal subgroup.

Define the quotient metric dq on the left coset space G/H by

(1) dq(aH, bH) = inf{d(x, y) : x ∈ aH, y ∈ bH}
Then the quotient metric dq is a plig on G/H, and

(2) ∀x∈G,yH∈G/H ∃h1∈H d(x, yh1) = dq(xH, yH).
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Lemma 2, combined with a theorem of Laffourge and Higson, [2], gives us the
following important observation:

Lemma 6. Let G be a locally compact, second countable group, and let H be a
normal subgroup of G. Assume that as. dim(H) = d and as. dim(G/H) = d. Then

as. dim(G) ≤ dk + d+ k.

Every connected Lie group has a Levi decomposition:

Theorem 7. Let G be a connected Lie group. Then G is decomposed as follows

G = (Rad(G))L,

where the subgroup L is a connected, semisimple Lie group, and the radical is the
maximal solvable Lie subgroup of G.

We use the Levi decomposition together with lemma 6 to show, that both the
radical, and a connected semisimple Liegroup has finite asymptotic dimension, and
we use the Levy Decomposition to prove, that every connect Lie group has finite
asymptotic dimension. Finally, we can conlcude with the use of group structure
theory, that:

Theorem 8. Every almost connected, locally compact, second countable group has
finite asymptotic dimension.

We introduce the notion of O-exactness:

Definition 9. A locally compact group G is called O-exact, or we say that it has
an O-kernel if:

∀ǫ>0∀R>0∃u : G×G→ C

such that:

• u is a continuous, positive definite kernel
• ∃S>0 u(x, y) 6= 0 ⇒ d(x, y) ≤ S
• |1 − u(x, y)| < ǫ when d(x, y) ≤ R.

We conclude by showing that

Theorem 10. Let G be a locally compact, second countable group. If G has finite
asymptotic dimension, then G is O-exact.

Having an O-kernel is in the case of a discrete, finitely generated group equiva-
lent to exactness of the group, [3], and thus we have a new proof of the fact that a
closed, discrete subgroups of an almost connected locally compact group is exact,
which was originally shown using different methods in [4].

It is a question for future research what the relation between O-exactness and
C∗-exactness is.
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Strong rigidity for II1 factors and equivalence relations

Sorin Popa

I first presented1 a history of rigidity results in the theory of von Neumann algebras
(II1 factors) and orbit equivalence relations, explaining how these two subjects
evolved in parallel, since the group-measure space construction of Murray-von
Neumann in 1936.
Then I presented some recent rigidity results I have obtained by myself or with
collaborators (2001-2005). A sample such result shows that any isomorphism from
a factor coming from an action of an icc property (T) group onto a factor coming
from a Bernoulli action of an icc group essentially comes from a conjugacy of the
actions. In particular, the groups are necessarily isomorphic. Many other appli-
cations were given including a superrigidity result for orbit equivalence relations.

L2-cohomology and derivations

Andreas Berthold Thom

This is a report about work in progress. In [1], Alain Connes and Dimitri
Shlyakhtenko have defined a notion of L2-Betti numbers for ∗-sub-algebras of
finite von Neumann algebras. Let A be a ∗-sub-algebra of a finite von Neumann
algebra, equipped with a fixed faithful trace τ . They define

β
(2)
k (A, τ) = dimM⊗Mo TorA⊗Ao

k (A,M⊗Mo).

Here, dim denote the dimension function for arbitrary modules over a finite von
Neumann algebra, which was introduced by Wolfgang Lück, see [2].

Let Γ be a discrete group. An easy computation, relying on work of Wolfgang

Lück (see [2]), shows that β
(2)
k (CΓ, τ) equals β

(2)
k (Γ), the k-th L2-Betti number of

the group Γ.

Definition 1. The L2-Betti number of a finite von Neumann algebraM , equipped

with a fixed trace τ , is β
(2)
k (M, τ).

1This abstract, typed by the reporter, is based on the handwritten abstract by S. Popa in the
“Book of Talks” of the MFO.
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Our work aims at a computation of these L2-Betti numbers in certain cases. In
particular we are interested in the computation of the first L2-Betti number. In
[1], there was given some evidence for the possibility of the following conjecture,
which we better formulate as a question. (The underlying conjecture being, that
the answer is affirmative in a lot of cases.)

Question 2. Let Γ be a discrete group and let LΓ be the associated finite von

Neumann algebra with its canonical trace. Is it true that β
(2)
k (LΓ, τ) = β

(2)
k (Γ) ?

In [1], it is shown that the answer is affirmative if Γ is abelian. However, even
for k = 1 in the case of amenable i.c.c. groups, it remained open. It is clear,
that an affirmative answer for a wide range of finite von Neumann algebras would
have important consequences. In particular, it would resolve the Non-isomorphism
Conjecture for free group factors.

In our talk, we present the following structural results about the L2-Betti num-
bers of von Neumann algebras.

Theorem 3. Let M and N be finite von Neumann algebras, each equipped with a
fixed trace. Let MLN be a M⊗No-module, which is finitely generated projective as
M and as No-module. Then the following coupling formula holds for all natural
numbers k:

β
(2)
k (M)

dimM ML
=

β
(2)
k (N)

dimNo LN
.

The proof is an application of homological algebra. It has to be seen in anology
of Roman Sauers proof of Gabouriaus coupling formula for L2-Betti numbers for
groups, see [3]. Note, that the assuptions of the theorem are met in the case of a
sub-factor of finite index. The computations in this case are compatible with the
classical Nielsen-Schreier formula and its extensions to the world of interpolated
free group factors by Radulescu.

Theorem 4. Let M be a finite von Neumann algebra. If M has diffuse centre,
then, for all natural numbers k,

β
(2)
k (M) = 0.

Again, the proof is in anology to the diffuse abelian case, extracting the neces-
sary homological conditions.

Our second group of results is related to a new approach to L2-cohomology.
First of all, several ring theoretic properties of the ring of operators affiliated with
a finite von Neumann algebra are observed. These results are well-known to the
experts.

Theorem 5. Let M be a finite von Neumann algebra. Denote by U(M) its ring
of affiliated operators.

• U(M) is von Neumann regular, i.e. all modules are flat,
• U(M) is self-injective,
• U(M) is flat as a M module, and
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• U(M) is a complete separable metrizable complex algebra in the topology
of convergence in measure.

The results above imply that certain Tor and Ext-terms are dual to each other,
so that the ring-theoretic dual of L2-homology with coefficients on the ring of
affiliated operators of M⊗Mo is identified with L2-cohomology with coefficients
in the ring of affiliated operators of M⊗Mo. Furthermore, it is shown that duality
preserves the dimension of a module. (Note that this is far from being true in the
case of modules over M itself.)

These results together, using a standard description of the first Hochschild
cohomology using derivations, imply the following theorem concerning the first
L2-Betti number.

Theorem 6. Let A be a ∗-sub-algebra of a finite von Neumann algebra (M, τ).

dimU(M⊗Mo)Der(A,U(M⊗Mo)) = β
(2)
1 (A, τ) − β

(2)
0 (A, τ) + 1.

Here, Der(A,K) denotes the space of derivations of A with values in the bi-
module K. Note that U(M⊗Mo) is a M ⊗Mo-module via left multiplication.
The dimension is taken with respect to the second commuting U(M⊗Mo)-module
structure, given by right multiplication.

The theorem above has several implications. In particular, the following con-
clusions can be drawn. Let A be a ∗-sub-algebra of (M, τ). Denote by MA the
smallest subalgebra of M , which is closed under taking weak closures of abelian
∗-sub-algebras.

Theorem 7. Let A be a ∗-sub-algebra of M . Then,

β
(2)
1 (MA, τ) ≤ β

(2)
1 (A, τ).

The proof relies on an interpretation of the vanishing of the first L2-Betti num-
ber in the case of abelian von Neumann algebras, proved in [1]. Using the duality
above, it leads to the observation that all derivation as above restricted to abelian
von Neumann algebras are inner. In particular, they are continuous in the various
topologies; i.e. extensions are unique.

We end this short summary by some obvious questions related to the results
above.

Question 8. Let A be a weakly dense ∗-sub-algebra of (M, τ). Under what
circumstances is it true that MA = M?

Question 9. Let ∆ : M → U(M⊗Mo) be a derivation. Is it automatically
continuous from the topology of bounded convergence in measure to the topology
of convergence in measure? (Same question for other reasonable topology on both
sides.)
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On Hilbert 17th Problem and aspects of Connes Embedding

Conjecture

Florin Rădulescu

The Hilbert 17th Problem has been solved by Artin. It asserts that every posi-
tive polynomial is a sum of squares (of fractions). Moreover there exist positive
polynomials that are not a sum of squares of polynomials (Motzkin, Schmudgen).
Recently Helton proved a non-commutative version of Artin’s theorem in which
he shows that a non-commutative polynomial which is positive definite when eval-
uated on matrices is a sum of squares of polynomials.

We prove a non-commutative version of the Hilbert’s 17th problem, giving a
characterization of the class of non-commutative polynomials in n-undeterminates
that have positive trace when evaluated in n-selfadjoint elements in an arbitrary
II1 von Neumann algebra. These polynomials are limits of a sum of squares modulo
terms of zero trace.

As a corollary it follows that the Connes’s embedding conjecture is equivalent
to a statement that can be formulated entirely in the context of finite matrices.

More precisely the Connes’s embedding conjecture is equivalent to proving that
every order 4, non-commutative polynomial that has positive trace when evaluated
in selfadjoint matrices of arbitrary size is a sum of squares. One can further reduce
this to polynomials of a very specific shape

p(x1, ...xn) =
∑

x4
i +

∑
aijxixj +

∑
bixi + c.
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Classification of non-simple purely infinte C∗-algebras

Eberhard Kirchberg

(partially joint work with E. Blanchard, H. Harnisch and M. Rørdam)

We reported1 on four results related to the classification of non-simple purely
infinite C∗-algebras:

(1) Permanence properties of spi-algebras, in particular on the new result that
A⊗minB is spi if A or B is exact and the other is spi (and related results).

(2) The relations between
• operator-convex (sub-)cones C ⊂ CP(A,B) (= cone of completely

positive maps from A into B),
• lower semi-continuous lattice maps

ψ : I(B ⊗max C∗(F2)) → I(A ⊗max C∗(F2)),

and
• some (special type of) Hilbert A-B-modules.

This can be used to construct e.g. a Hilbert C0(P,K)-C0(P,K)-module H
that is defined by a sup-inf closed sublattice O(X) of O(P ) ∼= I(C0(P ))
(here: I(C0(P )) is the lattice of open ideals of C0(P ), P is a locally compact
metric space that is second countable, i.e. P is a locally compact Polish
space; O(P ) means the lattice of open subsets of P . A “point complete” (=
“sober” = “spectral”) T0-space X appears here naturally as a completion
of the quotient T0-space of P defined by the topology on P given by the
sublattice of O(P ).)

(3) In recent work (with H. Harnisch) it is shown that for this bimodule H
the Toeplitz-algebra T (H) and the Cuntz-Pimsner-algebra O(H) are the
same, and O(H) is a strongly purely infinite crossed product E ⋊ Z with
E= an inductive limit of type I C∗-algebras, that has O(X) as lattice of
open subsets of Prim(O(H)), i.e. X ∼= Prim(O(H)).

In conjunction with joint work with M. Rørdam this result gives a
characterization of the primitive ideal spaces X of separable nuclear C∗-
algebrasA: X ∼= Prim(A) for some separable nuclear A if and only if O(X)
is a sup-inf-closed sublattice of O(P ) for some locally compact Polish space
P .

(4) A closer look on the results of Pimsner on the KK-theory of Toeplitz-
algebras T (H) shows that the inclusion map C0(P ) →֒ T (H) = O(H)
defines an element of KK(X ; ·, ·)-equivalence. Interestingly there are many
possible choices for P in general, that have even different KK-theory (in
the ordinary sense). Thus the (C0(P ),O(X) ⊂ O(P )) are candidates for a
generalization of the UCT-class for the KK(X ; ·, ·)-theory.

1This abstract, typed by the reporter, is based on the handwritten abstract by E. Kirchberg
in the “Book of Talks” of the MFO.
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The Kasparov groups KK(X ;A,B) can be defined more generally as
KK(C;A,B) where C is a suitable operator convex cone (given by the dual-
ity to obtain maps from I(A) to I(B) as outlined in part (2)). One simply
takes the Grothendieck group of the semigroup of those Kasparov modules
(HB, d : A→ L(HB), F ) such that the c.p.-maps a ∈ A 7→ 〈d(a)x, x〉 ∈ B
are in C for all x ∈ HB.

Estimates on free entropy dimension

Dimitri Shlyakhtenko

Based in part on joint work with A. Connes and on joint work with I. Mineyev.

General setting: X1, . . . , Xn ∈M self-adjoint generators, τ : M → C trace.

δ∗(X1, . . . , Xn) = n− lim sup
t→0

χ∗(Xt
1, . . . , X

t
n)

log t1/2
∈ [0, n],

where Xt
j = Xj +

√
tSj , (S1, . . . , Sn) free semicircular family, free from M . This

quantity is called Voiculescu’s non-microstates free entropy dimension [Voi94,
Voi98].
The big question: is δ∗ an invariant of M?

This is true if n = 1. If µ is the spectral measure of X = X1,

δ∗(X) = 1 −
∑

t∈R

µ({t})2.

Notation 1. HS = HS(L2(M)) = L2(M)⊗̄L2(Mo), Xt
j = Xj +

√
tSj .

Fix T = (T1, . . . , Tn) ∈ HSn and define a derivation ∂t
T : Alg(Xt

1, . . . , X
t
n) →

L2(X1, . . . , Xn, S1, . . . , Sn)⊗2 by

∂t
T (Xt

j) = Tj#Sj .

(a⊗ b)#S = aSb.

Then ∂t
T is closable and

Jk
T (t) = (∂t

T )∗(Sk) exists ∈ L2(Xt
1, . . . , X

t
n).

The main estimate. Consider the spaces:

H0 = cl{(T1, . . . , Tn) ∈ HS : ∃D ∈ B(L2(M)), [D,Xj ] = Tj}
= cl{(T1, . . . , Tn) ∈ HS : ∃D ess. s.a. 1 ∈ domD, [D,Xj ] = Tj}

H1 = cl{T = (T1, . . . , Tn) ∈ HS : L2- lim
t→0

(Jk
T (t)) exists}

= cl{(T1, . . . , Tn) ∈ HS : ∃D closable 1 ∈ domD, [D,Xj ] = Tj}
H2 = cl{T = (T1, . . . , Tn) ∈ HS : lim

t→0
t
∑

k

‖Jk
T (t)‖2

2 = 0}

H3 = {(Q1, . . . , Qn) ∈ FR :
∑

[Qj , Xj] = 0}⊥
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Theorem 2. [Shl04, CS, Shl05, MS05] (a) H0, H1, H2, H3 are modules over M2 =
M⊗̄Mo acting on HS by (m⊗ n) · T = Jm∗J T Jn∗J .
(b) The following inclusions hold:

H0 ⊂ H1 ⊂ H2 ⊂ H3

(c) One has

dimM2
H0 ≤ dimM2

H1 ≤ dimM2
H2

≤ δ∗(X1, . . . , X)n) ≤ dimM2
H3.

Idea of proof.
H0 vs H1 and H2: there is a formula for Jk

T (t) if such D exists.
H2 vs H3: somewhat technical, but elaboration of H0 vs H3:

(Q1, . . . , Qn) ∈ FR :
∑

[Qj , Xj ] = 0, Tj = [D,Xj ] ∈ HS
∑

Tr(QjTj) =
∑

Tr(Qj [D,Xj ])

=
∑

Tr([Xj , Qj ]D) = 0.

Application: lower estimates for δ∗. (1) Take D ∈ HS. Then the range of

HS ∋ D
φ7→ ([D,X1], . . . , [D,Xn])

is contained in H0. =⇒ dimM2
(H0) ≥ 1 − dimM2

kerφ
(a) n = 1, in which case kerφ measures atoms of the law of X (compare δ∗ =

1 − ∑
µ({t})2)

(b) M is diffuse, kerφ = 0 ( =⇒ δ∗ ≥ 1).
(2) Semicirular systems Sj = ℓj + ℓ∗j . Can take Dk = rk, [Dk, Sj ] = −δkjP1

( =⇒ δ∗ = n)
(3) q-Semicircular systems Sj = ℓqj + ℓq∗j . Can take Dk = rk; [Dk, Sj ] ∈ HS for

small q. ( =⇒ δ∗ > 1)
(3) Free groups: F = projection onto words that end with a fixed letter. Then

[F, λ(γ)] ∈ FR. ( =⇒ δ∗ = n).

Aside on solid von Neumann algebras. Sometimes the same D is useful in
verifying Ozawa’s condition AO ( =⇒ M is solid: N ′ ∩ M hyperfinite for all
N ⊂M diffuse).

Example. Free group factors; q-semicircular systems for q small.

Let

A = C∗(S1, . . . , Sn), B = C∗(rj + r∗j ) ⊂ C = C∗(rj).

Then A = JBJ , M = W ∗(A), [A,C] ⊂ K and C is nuclear. Hence the map

a⊗ b 7→ ab mod K

extends to A⊗ (C/K) and hence to A⊗min B.
This has type III consequences as well, e.g.:
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Theorem 3. The following hold:
* free Araki-Woods factors M with almost-periodic weights are prime
* and “solid”:

N ⊂ M, E : M → N cond. expectation

=⇒ N ′ ∩M hyperfinite.)

* There is an example of a non-hyperfinite type III1 factor M , so that Mφ is
hyperfinite for all φ.

Upper and lower estimates for groups. X1, . . . , Xn ∈ CΓ generators of group
ring.

Theorem 4. [MS05] (a) dimM2
(H0) ≥ β1

(2)(Γ) − β0
(2)(Γ) + 1 (ℓ2 cohomology)

(b) dimM2
H3 ≤ β

(2)
1 (Γ) − β

(2)
0 (Γ) + 1 (ℓ2 homology).

(c) dimM2
H0 = dimM2

H1 = · · · = dimM2
H3 = δ∗ = β1 − β0 + 1.

Thus the estimates for δ∗ are in this case optimal.

The estimate dimM2
(H0) ≥ β1

(2)(Γ)− β0
(2)(Γ) + 1. Given an ℓ2-cocycle c : Γ → ℓ2,

write c = df , for f an unbounded function on Γ. Then c(γ) = f − λγf ∈ ℓ2, for
all γ ∈ Γ .

Let D = mf . Then

[λ(γ),mf ] = λ(γ)c(γ) ∈ HS

and hence

(c(γ1), . . . , c(γn)) 7→ (λ(γ1)c(γ1), . . . , λ(γn)c(γn)) ∈ H1

=⇒ get a lower estimate on H1.

The estimate dimM2
H3 ≤ β

(2)
1 (Γ) − β

(2)
0 (Γ) + 1. If c is an exact ℓ2-cycle, it can

be approximated by df with f of compact support; hence one can get f1, . . . , fn ∈
Cc(Γ) so that

∑
λγj

fj − fj = 0.

From this one can manufacture (Q1, . . . , Qn) ∈ FRn so that
∑

[Qj , Xj] = 0 =⇒
(Q1, . . . , Qn) ∈ H3⊥ =⇒ upper estimate.

Some more applications. M finite dimensional =⇒ δ∗ is independent of

generators and equals β
(2)
1 (M) − β

(2)
0 (M) + 1.

Semicontinuity question (Voiculescu). Xj
p → Xp strongly with bounded norm.

Is it true that

lim inf δ(Xj
1 , . . . , X

j
n) ≥ δ(X1, . . . , Xn)?

The answer is NO: Counterexample comes from considering semicontinuity of
Hj (see [Shl05]).
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Spectral Subspaces of Operators in a II1-factor

Hanne Schultz

(joint work with Uffe Haagerup)

It is shown that to every operator T in a general von Neumann factor M of type
II1 and to every Borel set B in the complex plane C, one can associate a maximal,
closed, T -invariant subspace, K = KT (B), affiliated with M, such that the Brown
measure of T |K is concentrated on B. Moreover, K is T -hyperinvariant, and the
Brown measure of PK⊥T |K⊥ is concentrated on C \ B. In particular, if T ∈ M
has a Brown measure which is not concentrated on a singleton, then there exists
a non-trivial, closed, T -hyperinvariant subspace.
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Bounded generation and amenability of C∗-algebras

Gilles Pisier

We prove that a discrete group G is amenable iff it is strongly unitarizable in
the following sense: every unitarizable representation π on G can be unitarized
by an invertible chosen in the von Neumann algebra generated by the range of
π. Analogously a C∗-algebra A is nuclear iff any bounded homomorphism u :
A→ B(H) is strongly similar to a ∗-homomorphism in the sense that there is an
invertible operator ξ in the von Neumann algebra generated by the range of u such
that a→ ξu(a)ξ−1 is a ∗-homomorphism. An analogous characterization holds in
terms of derivations. We apply this to answer several questions left open in our
previous work concerning the length ℓ(A,B) of the maximal tensor product A⊗max

B of two unital C∗-algebras, when we consider its generation by the subalgebras
A⊗ 1 and 1⊗B. We show that if ℓ(A,B) <∞ either for B = B(ℓ2) or when B is
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the C∗-algebra (either full or reduced) of a non Abelian free group, then A must
be nuclear. We also show that ℓ(A,B) ≤ d iff the canonical quotient map from the
unital free product A ∗ B onto A⊗max B remains a complete quotient map when
restricted to the closed span of the words of length ≤ d.

In 1950, J. Dixmier and M. Day proved that any amenable group G is unita-
rizable, i.e. any uniformly bounded representation π : G → B(H) is similar to a
unitary representation. More precisely there is an invertible operator ξ : H → H
such that ξπ(·)ξ−1 is a unitary representation of G. The proof uses a simple aver-
aging argument from which it can be seen that ξ can be chosen with the additional
property that ξ commutes with any unitary U commuting with the range of π.
Equivalently, ξ can be chosen in the von Neumann algebra generated by π(G).
(See [5] for more on this). For convenience, let us say that π (resp. G) is strongly
unitarizable if it has this additional property (resp. if every uniformly bounded π
on G is strongly unitarizable).

It is still an open problem whether “unitarizable” implies “amenable” (see [8]).
However, we will show that G is amenable iff it is strongly unitarizable. Moreover,
we will show an analogous result for C∗-algebras, as follows.

Theorem 1. The following properties of a C∗-algebra A are equivalent.

(i) A is nuclear.
(ii) For any c.b. homomorphism u : A→ B(H) there is an invertible operator

ξ on H belonging to the von Neumann algebra generated by u(A) such that
a→ ξu(a)ξ−1 is a ∗-homomorphism.

(iii) For any C∗-algebra B, the pair (A,B) has the following simultaneous sim-
ilarity property: for any pair u : A → B(H), v : B → B(H) of c.b. ho-
momorphisms with commuting ranges there is an invertible ξ on H such
that both ξu(·)ξ−1 and ξv(·)ξ−1 are ∗-homomorphisms.

(iv) Same as (iii) but with v assumed to be itself a ∗-homomorphism.
(v) For any embedding A ⊂ B(H), there is a constant C such that any in-

ner derivation δ : A → B(H) can be written as δ(a) = aT − Ta for an
operator T in the von Neumann algebra generated by A and δ(A) with
‖T ‖ ≤ C‖δ‖cb.

Remark 2. It is possible that (iii) or (iv) for a fixed givenB implies that A⊗minB =
A⊗max B but this is not clear (at the time of this writing).

Corollary 3. If a discrete group G is strongly unitarizable then G is amenable.

Proof. Let A = C∗(G). Any bounded homomorphism u : A → B(H) restricts to
a uniformly bounded representation π on G. Note that π(G) and u(A) generate
the same von Neumann algebra M . Thus if G is strongly amenable, A satisfies
(ii) in Theorem 1, hence is nuclear and, as is well known, this implies G amenable
in the discrete case (see [3]). �

Actually, we obtain a stronger statement:

Corollary 4. If every unitarizable representation π on a discrete group G is
strongly unitarizable then G is amenable.
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Proof. Indeed, in Theorem 1, u is assumed c.b. on A = C∗(G), so the correspond-
ing π is unitarizable. �

Remark 5. Assume G amenable with invariant mean φ. Consider a uniformly
bounded representation π on G. Then, in the proof of the Day-Dixmier theorem,
the invertible ξ that unitarizes π can be described (non rigorously) by the weakly
convergent integral

ξ = (

∫
π(g)∗π(g)φ(dg))1/2.

This formula makes it clear that ξ is in the von Neumann algebra generated by
the range of π.

Remark 6. Note that, by [1], C∗(G) is nuclear for any separable, connected locally
compact group G, hence every continuous unitarizable representation on G is
strongly unitarizable; therefore we definitely must restrict the preceding Corollary
4 to the discrete case.
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Some examples of masas in II1–factors

Ken Dykema

We study maximal abelian ∗–subalgebras of II1–factors, which are known as masas.
In particular, we consider masas in the hyperfinite II1–factor R and in the free
group factor L(F2). Following Dixmier [1], a masa A ⊂M is said to be Cartan if
its normalizer

N(A) = {u ∈ U(M) | u∗Au = A}
generates M and is singular if N(A) ⊂ A. Our interest in masas is partially
inspired by Sorin Popa’s conjecture that of A ⊂ L(F2) is a masa that is maximal
hyperfinite, then A is freely complemented in L(F2).

The Pukánszky invariant Puk(A) or PukM (A) of a masa A ⊂M was introduced
in [9]. If J denotes the canonical involution on L2(M), then the abelian von
Neumann algebra A generated by A and JAJ has a type I commutant A′. The
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projection eA onto L2(A) lies in A and A′(1 − eA) decomposes into a direct sum
of type Ini

algebras, where 1 ≤ ni ≤ ∞. Those ni’s appearing in this direct sum
form Puk(A), a subset of N ∪ {∞}. This quantity is invariant under the action of
any automorphism of M , and so serves as an aid to distinguishing pairs of masas.
In [9, 7, 11], various values of the invariant were found for masas, primarily in the
hyperfinite type II1 factor R. In particular, Neshveyev and Størmer [7] showed
that for every subet S of N ∪ {∞} with 1 ∈ S, there is a masa in the hyperfinite
II1–factor having Pukánsky invariant S; in [11], Sinclair and Smith showed that for
certain abelian subgroupsH of discrete i.c.c. groups G, the inclusion L(H) ⊂ L(G)
is a masa whose Pukánsky invariant can be computed in terms of the double
coset structure of H in G. They give examples of such subgroups yielding for
any a, b, c ∈ N a masa in the hyperfinite II1–factor having Pukánsky invariant
{a, b, abc}.

We now consider some particular examples.

Example 1. ([11]). In the mutliplicative group Q∗ of nonzero rational numbers,
consider the infinite index subgroup

P∞ = {p
q
| p, q ∈ Z∗, p, q odd}

and, for n ∈ N, let

Pn = {p
q
2kn | p, q ∈ Z∗, p, q odd, k ∈ Z},

which has index n in Q∗. For n ∈ N ∪ {∞}, consider the matrix group

Gn =
{(

f x
0 1

) ∣∣f ∈ Pn, x ∈ Q
}

and let Hn ⊂ Gn be the set of diagonal matrices in Gn. Then L(Hn) ⊂ L(Gn) is
a singular masa in the hyperfinite II1–factor R whose Pukánsky invariant is {n}.

Using Example 1 and the Theorem 2.1 of [11], we immediatly see the following.

Example 2. Let n ∈ N and let An = L(Hn ×H∞) ⊂ L(Gn ×G∞). Then An is a
singular masa in the hyperfinite II1–factor R whose Pukánsky invariant is {n,∞}.

In [5] we observe the following examples of masas, using techniques from [11].

Example 3. Let S ⊆ N∪{∞} be such that ∞ ∈ S. Then there is a discrete, i.c.c.
amenable group GS and abelian subgroup HS such that AS = L(HS) ⊂ L(GS) =
R is a singular masa in the hyperfinite II1–factor R whose Pukánsky invariant is
S. To illustrate, if S = {n1, n2,∞} with n1 and n2 distinct, then we take

GS =

{


1 x1 x2

0 f12
n1k 0

0 0 f22
n2k




∣∣∣∣f1, f2 ∈ P∞, x1, x2 ∈ Q, k ∈ Z

}

and HS to be the set of diagonal matrices belonging to GS . The general case is
done analogously.
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We now turn to some examples of masas in the free group factor L(F2) and
their Pukánsky invariants. To begin with, we have the classical cases of a freely
complemented masa which has Pukánsky invariant {∞} and the radial masa,
which was shown by Rădulescu [10] also to have Pukánsky invariant {∞}.

By [4], (generalizing work of Ge [6]), L(F2) has no masas of finite multiplic-
ity. From this, Sinclair and Smith [11] deduced the corollary that the Pukánsky
invariant of any masa in L(F2) must either contain ∞ or be an infinite set. It
is an open question whether all masas in L(F2) must have ∞ in their Pukánsky
invariants.

The next two results, which are from [5], show that all sets containing ∞ do
arise as the Pukánsky invariants of masas in L(F2).

Example 4. With AS ⊂ R the masa from Example 3, take AS ⊂ R∗L(Z), where
the free product is taken with respect to the canonical traces. Then R ∗ L(Z) ∼=
L(F2), (by [2]). Moreover, AS is a singular masa of L(FS) having Pukansky
invariant equal to S.

Example 5. Let S0 be a nonempty subset of N and let

A =
⊕

n∈S0

An ⊂
⊕

n∈S0

R ⊂
( ⊕

n∈S0

R
)
∗ L(Z) ∼= L(F2),

where we take the free product with respect to a normal faithful tracial state on⊕
R and the canonical trace on L(Z), and where the isomorphism ∼= L(F2) follows

from [3]. Then A is a singular masa of L(F2), whose Pukánsky invariant is equal
to S0 ∪ {∞}.

The masas in Examples 4 and 5 have the same Pukánsky invariant, but they
can be distinguished using a well known invariant which we now describe.

Notation 6. Let B = C(X) be a separable, unital, abelian C∗–algebra and let
π : B → B(H) be a unital ∗–representation. Then we can write H as a direct
integral

H =

∫ ⊕

X

Hx dµ(x)

for a Borel measure µ on X such that ∀f ∈ C(X), π(f) is decomposable and

π(f)x = f(x)idHx
.

The measure µ is not unique, but its class [µ] is unique. We call [µ] the measure
class of π, and we call m(x) = dimHx the multiplicity function of π, which is
unique up to redifinition on sets of µ–measure zero.

Let M be a II1 factor with separable predual and with tracial state τ . Let
A ⊂ M be a masa. The invariant for A ⊂ M that we use is defined as follows.
Let 1 ∈ C(Y ) ⊂ A be a separable unital C∗–subalgebra that is weakly dense in A.
Let ν be the Borel probability measure on Y such that

τ(f) =

∫

Y

f dν (f ∈ C(Y )).
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Let π : C(Y ) ⊗ C(Y ) → B(L2(M)) be the “left–right representation” of the C∗–
algebra tensor product given by π(a⊗ b) = aJbJ . We identity C(Y )⊗C(Y ) with
C(Y × Y ) and we let [η] be the measure class and m the multiplicity function of
π; thus η is a measure on Y × Y . Taking η to be a finite measure without loss of
generality, the two coordinate projections of η send the class [η] to the class [ν].
The invariant for A ⊂ M that we consider is the equivalence class of (Y, [η],m),
where we define equivalence by

(Y, [η],m) ∼ (Y ′, [η′],m′)

if and only if there is an a.e.–defined, a.e.–bijective, measure–preserving tranfor-
mation F : Y → Y ′ such that [(F × F )∗η] = [η′] and m′ ◦ (F × F ) = m a.e.

This invariant has been considered by several authors. Neshveyev and Størmer
[7] observed that it is a complete invariant for the pair (A, J) acting on L2(M).

We use this invariant to distinguish the masas in Examples 4 and 5. In order
to compute this invariant, we apply the following proposition.

As above, let A ⊂ M be a masa in a II1–factor with separable predual, let
1 ∈ C(Y ) ⊂ A be a weakly dense, separable C∗–subalgebra, and let ν denote the
measure on Y given by the trace on M . Let Q be any von Neumann algebra not
equal to C with a specified normal faithful tracial state and let N = M ∗ Q be
the free product taken with respect to the trace on M and this specified trace on
Q. We regard A as a embedded in N . By [8], A is known to be a masa in N . Let
π1 and, respectively, π, denote the left–right representation of C(Y ) ⊗ C(Y ) on
L2(M) and, respectively, L2(N).

Proposition 7. ([5]). The representation π is unitarily conjugate to the repre-
sentation

π1 ⊕ (λ⊗ idℓ2(N) ⊗ ρ)

on L2(M) ⊕ (L2(M) ⊗ ℓ2(N) ⊗ L2(M)), where here λ denotes the restriction to
C(Y ) of the usual left action of M on L2(M) and ρ denotes the restriction to C(Y )
of the right representation a 7→ Jλ(a)J of A on L2(M). Moreover, the measure
class of λ⊗ idℓ2(N) ⊗ ρ is [ν ⊗ ν] and the multiplicity function is constant ∞.
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A notion of free product for planar algebras

Dietmar Bisch

(joint work with Vaughan Jones)

Let N ⊂M be an inclusion of II1 factor with finite Jones index ([9]). The standard
invariant of N ⊂ M , given by the system of higher relative commutants (see for
instance [8])

C = N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ N ′ ∩M2 ⊂ · · ·
∪ ∪ ∪

C = M ′ ∩M ⊂ M ′ ∩M1 ⊂ M ′ ∩M2 ⊂ · · ·
can be axiomatized as a (subfactor) planar algebra ([10], [12]). It is a complete

invariant for amenable subfactors ([11]). Popa’s abstract characterization of stan-
dard invariants in [12] allows one to study subfactors by working purely on the
level of the standard invariants. The planar algebra formalism of Jones is a tool
which facilitates computations with standard invariants. It gives a new approach
to the analsyis of subfactors which leads in a natural way to a generators and
relations approach to investigating the structure of subfactors. From this point of
view the “simplest” subfactors are those whose standard invariants are generated
(as planar algebras) by the fewest elements satisfying the simplest relations (see
[5], [6]). Furthermore, it becomes natural to try to use planar algebra techniques
to construct new standard invariants, and hence new subfactors by [12], from given
ones.

It turns out the the Fuss-Catalan algebras (FCk(a, b))k of [3] are examples of
this type. They can be constructed as certain “free products” of two Temperley-
Lieb planar algebras (TLn(a))n and (TLn(b))n, where a and b correspond to the
indices of the intermediate subfactors in [3], which we assume to be generic for sim-
plicity. A basis diagram of a Fuss-Catalan algebra FCk(a, b) ([3]) can be thought
of as being obtained through a planar concatenation of two Temperley-Lieb basis
diagrams, one from the algebra TLk(a) and the other from TLk(b), in an obvious
way. This procedure realizes the algebra FCk(a, b) as a natural (proper) subal-
gebra of the tensor product algebra TLk(a) ⊗ TLk(b). It is this idea of “planar
concatenation” which leads to the notion of free product of planar algebras ([7]):
Suppose P = (Pk)k and Q = (Qk)k are two subfactor planar algebras with pa-
rameters δ1 resp. δ2. We define a new planar algebra P ∗ Q = ((P ∗ Q)k)k with
parameter δ1 ·δ2 by letting (P ∗Q)k be the natural subalgebra of Pk ⊗Qk spanned
by those diagrams from Pk resp. Qk which stay planar when submitted to the
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same planar concatenation as above. More precisely, we label the diagrams repre-
senting operators from Pk by “a” and those from Qk by “b” and concatenate these
a-diagrams and b-diagrams using the FC pattern “abbabbabba...” to obtain new
diagrams. If this process yields a planar diagram it is by definition in (P ∗ Q)k.

The first step is to show that we obtain indeed a planar algebra in the sense of
[10]. The next step is then to determine the structure of this new planar algebra,
in particular its dimension. Recall that if P = (Pk)k is a planar algebra, then
we call the formal power series

∑∞
k=0(dimPk)zk the dimension (or the dimension

generating function) of P . For instance, the dimension of the Temperley-Lieb

planar algebra is given byGTL(z) =
∑∞

n=0
1

n+1

(
2n
n

)
zn = 1−

√
1−4z

2z . If one computes

the free multiplicative convolution GTL ⊠ GTL in the sense of Voiculescu [14]

then one finds the dimension generating function GFC(z) =
∑∞

n=0
1

2n+1

(
3n
n

)
zn

of the Fuss-Catalan planar algebra (to be more precise one computes the free
multiplicative convolution of the associated distributions). In [7] we prove

Theorem 1. Let P and Q be planar algebras arising as the standard invariants
of (extremal) subfactors and let GP resp. GQ be their dimension generating func-
tions. Then the dimension generating function GP∗Q of the free product planar
algebra P ∗ Q can be computed from GP and GQ using Voiculescu’s free multi-
plicative convolution, namely GP∗Q = GP ⊠GQ.

The proof of this theorem uses the following idea. If N ⊂ P and P ⊂ M are
subfactors then the N -P bimodule NL

2(P )P and the P -M bimodule PL
2(M)M

generate fusion algebras of P -P -bimodules, denoted by A resp. B. As usual a
basis of A resp. B is given by the irreducible P -P bimodules appearing in the
decomposition of bimodule tensor powers of these bimodules (see for instance
[1] for details on fusion algebras associated to subfactors). If the fusion algebra
generated by A and B is the free product A ∗ B of the two fusion algebras, then
every “word” in letters alternating from A and B is again an irreducible P -P
bimodule. We obtain in this way a noncommutative probability space A ∗ B in
which (nontrivial) P -P bimodules from A resp. B are free (the state is given by the
multiplicity of the trivial P -P bimodule). Hence the techniques of [13] apply. The
difficulty consists then in identifying the planar algebra picture with the bimodule
picture appropriately. Note that the fusion algebras of the Fuss-Catalan subfactors
of [3] are worked out in [4].

It is perhaps worth mentioning that for the group-like subfactors N = PH ⊂
P ⊂ M = P ⋊K ([2]), where H and K are finite groups with an outer action on
the II1 factor P , the irreducible P -P bimodules are simply labelled by the group
G generated by H and K in the outer automorphism group of P . If P is the
hyperfinite II1 factor then any group G which is the free product of two finite
groups H and K has an outer action on P and hence we get a class of explicit
examples of hyperfinite subfactors for which the above theorem applies. In general,
since we work on the level of the planar algebras, the associated subfactors obtained
via Popa’s reconstruction theorem [12] will no longer be hyperfinite.
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Subfactors from Braided C* Tensor Categories

Hans Wenzl

(joint work with Juliana Erlijman)

It was noted by Vaughan Jones that his examples of subfactors gave rise to
unitary braid representations. By this we mean representations of the infinite
braid group B∞ defined by infinitely many generators σ1, σ2, ... which satisfy the
familiar braid representations σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i−j| > 1.
Subsequently, unitary braid representations were used by Ocneanu and by Wenzl
to construct new examples of subfactors; here the subfactor is generated by the
subgroup B2,∞ generated by σ2, σ3, ... . This construction was denoted as the one-
sided subfactor construction by Erlijman, as opposed to her multi-sided subfactors,
constructed as follows: For given integer s > 1, the s-sided subfactor is obtained as
a suitable inductive limit of the embeddings of the braid groups Bs

n = Bn× ... ×Bn

(s times) into Bns for n → ∞. She also computed the indices of these subfactors
and their relative commutants.
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The main motivation for this paper was to calculate the higher relative com-
mutants of Erlijman’s subfactors. To do this it is convenient to generalize the
above mentioned constructions to the setting of a braided C* tensor category C
with only finitely many simple objects up to isomorphism. By definition of such
a category, we obtain a unitary representation of Bn in End(X⊗n) for any object
X in C. The constructions in our paper in the category setting follow closely the
above-mentioned braid constructions, and reduce to them in case that End(X⊗n)
is generated by Bn for all n ∈ N.

The main results of our paper are as follows. We show that the first principal
graph is given by the fusion graph of (C′)s, where C′ is a subcategory of C gener-
ated by the objects which appear in the same tensor powers of X as the trivial
representation appears. The fusion graph describes the decomposition of the ten-
sor product of s simple objects of C′ into irreducibles. Hence the even vertices
are labeled by s-tuples of the labeling set Λ′ of simple objects of C′, and the odd
ones by the elements of Λ′; the number of edges connecting ν with and s-tuple
(λ1, ..., λs) is equal to the multiplicity of Xν in Xλ1

⊗ ... ⊗Xλs
.

The situation is more complicated for the dual (or second) principal graph. If
a certain matrix depending on the braiding structure, and called the S-matrix for
the category C′, is invertible, the dual principal graph coincides with the principal
graph. We do not have a general complete result in the case of a noninvertible
S-matrix. It is known that in this case there is a canonical subcategory T of C′

which is equivalent to the representation category of a finite group G. If G is
abelian, we obtain an action of G on the set of irreducible objects of C, which is
given by a labeling set Λ. The dual principal graph can now be fairly precisely
characterized in terms of the orbits of the action of the group Gs

1 = {(g1, ... gs) ∈
Gs, g1g2 ... gs = 1} on Λs. This is often referred to as an orbifold.

The basic idea of our paper is that we explicitly construct a number of A−B bi-
modules, with {A,B} ⊂ {N ,M} and with N ⊂ M our s-sided inclusion. We show
that these examples of bimodules are closed under induction and restriction. One
deduces from this that the induction-restriction graph for these bimodules must
coincide with the principal or dual principal graph under some mild additional
assumptions.

Our findings are related to a number of results by different authors. If s = 2,
our subfactors correspond to the subfactors obtained from the asymptotic inclu-
sion of certain one-sided subfactors. In this case, the orbifold phenomenon for the
dual principal graph has first been observed by Ocneanu for the example of the as-
ymptotic inclusion of certain Jones subfactors. Further results have been obtained
in papers by Evans and Kawahigashi and by Izumi for Hecke type subfactors. In
particular, some of our proofs have been inspired by these results.
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Generalised Hecke algebras

Nadia S. Larsen

(joint work with Magnus B. Landstad)

A Hecke pair (G,H) consists of a group G together with a subgroup H such that
every double coset with respect to H contains finitely many left cosets. Equiv-
alently, the index L(x) = [H : H ∩ xHx−1] must be finite for all x ∈ G (and,
equivalently, left cosets can be replaced by right cosets).

As a vector space, the Hecke algebra H(G,H) consists of functions f : G → C

which are H-biinvariant, i.e. f(hxk) = f(x) for all x ∈ G, h, k ∈ H , and which
have finite support when regarded on the double coset space H \ G/H . We let
∆(x) = L(x)/L(x−1) for x ∈ G. The convolution and involution on H(G,H) are
defined by

(1) f ∗ g(x) =
∑

y∈G/H

f(y)g(y−1x)

and

(2) f∗(x) = ∆(x−1)f(x−1),

where x ∈ G and the notation “y ∈ G/H” means that the sum taken is over a set
of representatives for the left coset space.

A powerful method to study H(G,H) is by constructing a Schlichting comple-
tion (G,H) of (G,H). This is an essentially unique pair consisting of a locally com-
pact group G together with a compact, open subgroup H , see [5, 3, 4]. Since then
the Hecke algebra H(G,H) is isomorphic to the corner of the ∗-algebra Cc(G) (en-
dowed with its usual operations) determined by the projection χH , one can study
the representation theory and the possible enveloping C∗-algebra of H(G,H) by
means of familiar techniques.

The interest in Hecke algebras and their C∗-completions is rooted in the work
of Bost and Connes [1] on phase transitions with symmetry breaking arising in
number-theoretic context.

In [2], Curtis considers a Hecke algebra associated to a pair (G,H) and a unitary
representation ofH . By generalising to triples (G,H, σ) the Schlichting completion
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as defined by Tzanev in [5], she studies a von Neumann algebra arising from a reg-
ular representation of the Hecke algebra in the space of the induced representation
of σ from H to G.

Our interest lies in studying the Hecke algebra associated to a Hecke pair (G,H)
and a finite character σ of H . One reason for restricting our attention to one-
dimensional representations of H is that the construction and the properties of
the Schlichting completion become clearer, and therefore easier to employ when
studying examples.

We make the following definition. The generalised Hecke algebra associated
to a Hecke pair (G,H) and a character σ of H is the vector space Hσ(G,H) of
functions f : G→ C such that

(3) f(hxk) = σ(h)f(x)σ(k), ∀x ∈ G, ∀h, k ∈ H,

and the support of f , when regarded inH\G/H , is finite. Then Hσ(G,H) becomes
a ∗-algebra with the operations defined in (1) and (2).

In [4], a Hecke pair (G,H) is endowed with the Hecke topology defined by
declaring a subbase for the neighbourhoods at e to consist of all the conjugates
xHx−1 for x ∈ G. For this topology to be Hausdorff it is necessary and sufficient
that the pair (G,H) be reduced, i.e.

⋂
x∈G xHx

−1 = {e}. Assuming this to be the
case, the Schlichting completion of (G,H) is simply the locally compact closure
G together with the compact, open subgroup H, where both closures are taken in
the Hecke topology from (G,H).

Given a reduced Hecke pair (G,H) and a finite character σ on H , we define the
Schlichting completion to be the pair (Gσ, Hσ) consisting of the closures of G and
H with respect to the Hecke topology from the reduced Hecke pair (G, kerσ). The
character σ has an extension σ to Hσ, and the triple (Gσ, Hσ, σ) is unique up to
isomorphism.

One crucial observation is that Hσ(G,H) and Hσ(Gσ, Hσ) are isomorphic ∗-
algebras. Another important fact is that the formula

pσ(x) := σ(x)χHσ
(x), x ∈ Gσ,

defines a projection in Cc(Gσ), and then Hσ(G,H) will be equal to pσCc(Gσ)pσ.
Two immediate interesting questions arise, and we give some answers to them.

One is whether pσC
∗(Gσ)pσ is the largest C∗-completion of Hσ(G,H), the other

is to what extend the ideal C∗(Gσ)pσC∗(Gσ), to which pσC
∗(Gσ)pσ is Morita-

Rieffel equivalent, can be characterised. The first question has an affirmative
answer when, as in the case of Hecke pairs [4], there is a normal subgroup N of G
such that H is normal in N , if moreover the identity

σ(nhn−1) = σ(h)

is satisfied for all n ∈ N and h ∈ H . Under the condition of normality we
can also answer the second question, and describe the ideal as a crossed product
involving an action of G/N . We can illustrate applications of these results to
several examples. In the case of the rational Heisenberg group, slightly modified
so as to produce a reduced Hecke pair with its subgroup consisting of integer
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entries, the universal C∗-completion of the generalised Hecke algebra is the same
as for H(G,H), for all finite characters. However, this does not happen for the
rational “ax + b”-group or variants of it. As known from [5] or [4], the Hecke
algebra of the infinite dihedral group does not possess a largest C∗-norm, and we
find that a similar behaviour is valid for its generalised counterpart. The examples
suggest possible new methods for further investigation.
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Exact C*-bundles

Simon Wassermann

(joint work with Etienne Blanchard)

Given continuous C*-bundles A = {A,X, πA
x : A→ Ax} and B = {B,X, πB

x : B →
Bx} on a compact Hausdorff space X , the amalgamated minimal tensor product
A⊗C(X) B is the C*-bundle {A⊗min

C(X)B,X, π
A
x ⊗πB

x : A⊗C(X)B → Ax ⊗minBx}
on X , where the bundle C*-algebra A ⊗min

C(X) B is the image of A ⊗min B under

the *-homomorphism ⊕x∈X(πA
x ⊗ πB

x ). When A is the trivial bundle on X with
constant fibre A, A⊗C(X)B is denoted by A⊗minB. This C*-bundle is always lower
semicontinuous, but not necessarily continuous. Kirchberg and Wassermann [2]
considered the continuity of such C*-bundles and obtained the following continuity
criteria.

1. A C*-algebra A is exact if and only if the tensor product bundle A ⊗min B is
continuous for any continuous C*-bundle B on N̂.

2. If A is an exact continuous C*-bundle, that is, A has exact bundle algebra, then
A⊗C0(X) B is continuous for all continuous B, and, if A is an arbitrary continuous
C*-bundle with exact fibres, then the converse holds.

We have extended these results by showing that if X has no isolated points, then
for arbitrary A, the continuity of A⊗C(X)B for all continuous C*-bundles B implies
the exactness of all the fibre algebras of A, yielding the following characterisation
of exact C*-bundles on X .
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Theorem 1 If X is a compact Hausdorff space with no isolated points, then a
continuous C*-bundle A on X is exact if and only if for any continuous C*-bundle

B on X , A⊗C(X) B is continuous.

This result is proved in stages. The first step is to prove

Proposition 2 If a continuous C*-bundle A satisfies the conditions of Theorem

1 with X = N̂, the one-point compactification of N, then A∞, the fibre of A at

infinity, is exact.

This is proved by repeated application of criteria 1 and 2 above. The next stage
is to prove

Proposition 3 The assertion of Theorem 1 holds if X is a compact metric space
with no isolated points.

This is proved using the following extension result for continuous C*-bundles.

Theorem 4 Let X be a compact metric space and let Y be a closed subset of

X . If A is a continuous C*-bundle on Y then there exists a continuous C*-bundle
Ā on X such that

Ā|Y = cone(A) (= C((0, 1]) ⊗A).

This result together with Proposition 2 implies that if A satisfies the hypotheses
of Proposition 3, then the fibre algebra Ax of A at any point x ∈ X is exact.
Proposition 3 is then a consequence of criterion 2 above. The proof of Theorem 1
for general X follows by representing the C*-bundles concerned as inductive limits
of separable C*-subbundles and the space X as a projective limit of associated
compact metric spaces. Proposition 3 can then be applied to show that if A
satisfies the hypotheses of Theorem 1, then for x ∈ X any separable C*-subalgebra
of the fibre algebra Ax is exact, which implies the exactness of Ax itself. Theorem
1 is then a consequence of criterion 2.

The extension result (Theorem 4) has a number of other consequences. For exam-

ple it can be used to show that in criterion 2, the space N̂ can be replaced by any
given infinite compact Hausdorff space, a result first obtained in [1, Corollary 4].
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Types of von Neumann algebras arising from boundary actions of

hyperbolic groups

Sergey Neshveyev

(joint work with Masaki Izumi and Rui Okayasu)

Let Γ be a non-elementary hyperbolic group, µ a non-degenerate finitely sup-
ported probability measure on Γ. It is known that both the Martin and the
Poisson boundaries of the random walk on Γ defined by µ can be identified with
the Gromov boundary ∂Γ, see [1, 4]. Let ν be the corresponding harmonic measure
on ∂Γ, and K the Martin kernel. The measure ν is quasi-invariant with respect
to Γ. We thus get an amenable ergodic type III (by [3]) orbit equivalence relation
R on (∂Γ, ν). We want to compute the ratio set of R. To formulate the main
result, let g be an infinite order element. Then the sequence {gn}∞n=1 converges to
an element g+ on the boundary. Set

r(g) = K(g−1, g+).

Theorem 1. The number r(g) lies in the interval (0, 1) and belongs to the ratio
set of R. In particular, R has type IIIλ with 0 < λ ≤ 1.

The proof is inspired by Bowen’s computation of the ratio set of the Gibbs
measure in [2]. On the way we prove that the Martin kernel is Hölder continuous,
which extends the result of Ledrappier for free groups [5].
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Semi-groups of partial homeomorphisms

Jean Renault

Since the introduction of crossed products in the theory of C∗-algebras nearly fifty
years ago, many variations and extensions have been designed. The subject of this
talk is a particular crossed product construction, first introduced by the author in
[13] to describe Cuntz algebras as groupoid algebras and generalized to arbitrary
surjective local homeomorphisms by V. Deaconu in [5]. One associates to a local
homeomorphism T of a compact space X an étale groupoid OT (a kind of semi-
direct product), hence a C∗-algebra OT . When T is a homeomorphism, OT is the
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usual crossed product C(X)×TZ. When T is not invertible, the new feature is
an equivalence relation FT ⊂ OT and its associated C∗-algebra FT ⊂ OT . This
construction is related to the theory of Smale spaces, initiated by D. Ruelle in [17]
and developed by I. Putnam in [12]: FT is essentially the stable algebra and OT the
Ruelle algebra of this theory. More generally, the same construction applies when
N is a subsemi-group of a discrete abelian group Z and T is a homomorphism of
N into the semi-group End(X) of local homeomorphisms of X . We first review
the groupoid construction of this crossed product, give some properties of the C∗-
algebras so obtained and finally give some algebraic construction of OT . This last
part is based on discussions with R. Exel. These constructions also appear in [6].

A groupoid construction. Let N be a subset of a discrete countable abelian
group Z (noted additively) containing 0 and stable under addition. We define
an action of N on a compact metric space X as a semi-group homomorphism
T : N → End(X). When N = N, we do not distinguish the action T and its
generator T1. The semi-direct groupoid of the action T of N on X is

OT = {(x,m− n, y) : x, y ∈ X m,n ∈ N Tm(x) = Tn(y)}.
It is a subgroupoid of X × Z × X endowed with its natural groupoid structure.
Its topology is defined by the basic open subsets obtained by fixing m,n ∈ N and
taking x, y in open subsets U, V of X such that the restrictions Tm|U and Tn|V are
homeomorphisms. This turns OT into an étale second countable locally compact
groupoid. The C∗-algebra OT = C∗(OT ) is our crossed product. Just as for group
actions, the homomorphism c : (x, k, y) ∈ OT 7→ k ∈ Z is an essential feature of
this construction. The novelty is that the subgroupoid

FT = c−1(0) = {(x, y) ∈ X ×X : ∃n ∈ N : Tn(x) = Tn(y)}
may not be reduced to the diagonal. It is an approximately proper equivalence
relation in the sense of [16]: it is an increasing union of open proper subgroupoids.
Its C∗-algebra FT = C∗(FT ) is the fixed point subalgebra of OT under the gauge
automorphism group defined by c. One obtains immediately (cf.[2, 15]) that the
groupoid OT is amenable, its full and reduced C∗-algebras coincide and OT is a
nuclear C∗-algebra. One says that the action T is essentially free if for all n 6= m
in N , there exists no non-empty open subset U on which Tn and Tm agree, exact
if for all non-empty open subset U and all m ∈ N , there exists n ∈ N such that
Tm+n(U) = X and expansive if there exists ǫ > 0 such that for all x 6= y in X ,
there exists n ∈ N such that d(Tn(x), Tn(y)) > ǫ.

Theorem 1. Assume that N is finitely generated and that the action T of N on
X is essentially free, exact and expansive. Then

(1) OT is a Kirchberg algebra;
(2) FT is simple, stably finite and has a unique tracial state.

The simplicity of OT and FT results from [14, Corollary 4.6]. The pure infinite-
ness of OT results from [1, Section 2.4]. The unique ergodicity of FT is obtained
in [16, Theorem 6.1] in the case of a single endomorphism. The main tool is a
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dimension group, analogous to Elliott’s dimension group of [9] for AF algebras and
Krieger’s dimension group of [11]. In the case of a single endomorphism, this is

the inductive limit of the stationary system C(X,Z)
L−→ C(X,Z)

L−→ . . ., where
Lf(x) =

∑
T (y)=x f(y). There is a similar definition in the semi-group case.

The classical example of this construction is the one-sided shift T on the infinite
product space X =

∏∞
1 {1, . . . , d}. Then OT is the Cuntz algebra Od and FT = Fd

is the UHF algebra of type d∞. More generally, the one-sided subshift of finite type
TA, where A ∈ Md{0, 1} yields the Cuntz-Krieger algebra OA. The assumptions
of the theorem are satisfied when the matrix A is primitive. Graph algebras also
fit within this construction. More recently, in [18, 19] (see also [8]), F. Shultz
has applied this construction and used the dimension group to study piecewise
monotonic interval maps. Since these maps are not local homeomorphisms, he
first constructs a space X over the interval [0, 1] and a local homeomorphism
T ∈ End(X) above the given interval map which retains most dynamical properties
of that map. A good example of an action of N2 is provided by the maps S(z) = zp

and T (z) = zq on the circle, where p, q are relatively prime integers. Let ∆Z be
the diagonal subgroup of N2. Then, c−1(∆Z) and its C∗-algebra describe the
polymorphism (S, T ) (see [20] and [3, Section 5]). The following example appears
in the work [4] of J.-B. Bost and A. Connes (see also [3, Section 6]): the semi-
group is the multiplicative semi-group N∗ of positive integers (as a subset of the
multiplicative group Q∗

+); it acts on the infinite product X =
∏

Zp} over the set
of prime numbers, where Zp is the ring of p-adic integers by the diagonal action. In
this example, the local homeomorphisms Tn are injective and FT is simply C(X).

An algebraic construction. From an algebraic viewpoint, the initial data
consist of a C∗-algebra with unit, namely A = C(X), an abelian semi-group N
and a semi-group homomorphism α : N → End(A), where αn(f) = f ◦ Tn. In the
case of N, it is shown in [10] that OT is the Exel crossed product A×α,LN, where
Lf(x) =

∑
T (y)=x ρ(y)f(y) and ρ is an arbitrary positive continuous function on

X such that
∑

T (y)=x ρ(y) = 1 for all x. Equivalently, OT can be obtained as an

augmented Pimsner-Cuntz algebra (see [7]). A simple-minded extension of this
result to an arbitrary abelian semi-group N requires finding positive continuous
functions ρn on X such that ρm+n(x) = ρm(x)ρn(Tnx) for all m,n ∈ N, x ∈ X
and

∑
Tn(y)=x ρn(y) = 1 for all n ∈ N, x ∈ X , which we can only do in a few cases.
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Spectral triples and the Cantor set

Erik Christensen

(joint work with Cristina Antonescu)

Alain Connes has extended the notion of a compact metric space to the non
commutative setting of C*-algebras and unbounded operators on Hilbert spaces,
[Co1, Co2]. For a compact, spin, Riemannian manifold M, Connes has shown
that the geodesic distance can be expressed in terms of an unbounded Fredholm
module over the C*-algebra C(M), such that the distance between two points p, q
in M is obtained via the Dirac operator D by the formula

d(p, q) = sup{|a(p) − a(q) | : a ∈ C(M), ‖[D, a]‖ ≤ 1}.
If one replaces C(A) by a C*-algebra and thinks of the points p and q as states, one
can see how the concept of a compact metric space can be transformed into a non
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commutative setting. Connes has formalized this in the notion called a spectral
triple

Definition 1. Let A be a unital C*-algebra. A spectral triple (A, H,D) is a C*-
algebra A, a Hilbert space H and an unbounded self-adjoint operator D on H
such that:

(i) The Hilbert space H is a left A-module, i. e. there is a *-representation
π of A on H .

(ii) The set given as

{a ∈ A : [D,π(a)] is densely defined and extends to a bounded operator on H}
is norm dense in A.

(iii) The operator (I +D2)−1 is compact.

Condition (iii) is quite often strengthened in the way that the module is said to
be finitely summable or p-summable, [Co1, Co2], if for some p > 0

trace
((
I +D2

)−p/2
)
<∞

Given a spectral triple (A, H,D), one can then introduce a pseudo-metric on the
state space A(A) of A by the formula

∀φ, ψ ∈ A(A) : d(φ, ψ) := sup{|φ(a) − ψ(a)| : a ∈ A, ‖[D, a]‖ ≤ 1}.
We use the term pseudo-metric because it is not clear that d(ϕ, ψ) < ∞ for all
pairs, but the other axioms of a metric are fulfilled. Marc A. Rieffel has studied
several aspects of this extension of the concept of a compact metric space to the
framework of C*-algebras, and he has obtained a lot of results [Ri1, Ri2, Ri3, Ri4].
Among the questions he has dealt with, we have been most attracted by the one
which asks whether a spectral triple will induce a metric for the weak*-topology
on the state space. In the article [OR] by Ozawa and Rieffel the situation for
the discrete, word hyperbolic groups of Gromov were studied and a complete
result telling that the metric has the right properties were obtained. One of the
ingredients in Rieffel’s and Ozawa’s proof is their use of the filtration which the
length function induce on the group C*-algebra. The construction of spectral
triples based on filtrations were also studied by Connes [Co1, Co2] and Voiculsecu
[Vo] and we were inspired to investigate the possibilities of constructing spectral
triples for AF C*-algebras. An AF C*-algebra A has a natural filtration since ,
by definition, A is the norm closure of an increasing sequence of finite dimensional
C*-algebras (An)n∈N0

.
Based on the GNS-representation coming from a faithful state and the given in-
creasing sequence of subalgebras, we get immediately an increasing sequence of
finite dimensional subspaces of the Hilbert space of this cyclic representation.
Following the canonical ideas of Connes’ in [Co1] the eigen spaces of the Dirac
operator shall be chosen as the sequence of difference spaces induced by this in-
creasing sequence. Based on the previous examples by Connes and Rieffel we first
thought that the eigen values for the Dirac operator ought to be the non negative
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integers, but it turns out, to our big surprise, that in the case of AF C*-algebras
one can choose the eigen values rather arbitrarily and still get a spectral triple.

Theorem 2. Let A be an infinite dimensional unital AF C*-algebra acting on a
Hilbert space H and let ξ be a separating and cyclic, unit, vector for A and let
(An) be an increasing sequence of finite dimensional C*-algebras whose union is
dense in A. Then there exists a sequence of pair wise orthogonal finite dimensional
projections (Qn) and a sequence of real numbers (αn) such that α0 = 0 and |αn| →
∞ and such that for any other sequence (βn) of real numbers satisfying |βn| ≥ |αn|
the selfa-djoint operator given by Dβ =

∞∑
n=1

βnQn on H has the properties:

(i) For any a ∈ ∪NAn ‖| [Dβ, a] ‖ <∞.
(ii) The set (A, H,Dβ) is a spectral triple.
(iii) The metric induced by Dβ on the state space generates the w*-topology.
(iv) For any p > 0 the sequence (βn) may be chosen such that the unbounded

Fredholm module is p-summable.

This result should be seen in connection with Connes’ fundamental result from
[Co1] that for a non amenable discrete group the reduced group C*-algebra can
never have a finitely summable spectral triple !
In the article [Vo] Voiculescu also investigates the possibilities of constructing
spectral triples based on filtrations and it turns out that it is difficult to determine
if a general filtration will induce a spectral triple. This indicates that AF C*-
algebras are special in the way that they allow an abundance of in equivalent
spectral triples. This point of view is stressed in the following theorem, where we
have obtained a partial inverse to the theorem above.

Theorem 3. Let A be a C*-algebra acting on a Hilbert space H, ξ be a cyclic
and separating unit vector for A and (Qn)n∈N0

a sequence of pair wise orthogonal
finite-dimensional projections with sum I such that Q0ξ = ξ. For any sequence of
real numbers (λn) such that |λn| → ∞ the symbol Dλ shall denote the closed self
adjoint operator which formally can be written as

∑
λnQn. The common domain

of definition, given as span (∪QnH), for all the operators Dλ is denoted A0.
If A contains a dense subset A such that for any s in A and any Dλ the commutator
[Dλ, s] is defined and bounded on A0 then A is an AF C*-algebra.

The continuous functions on the Cantor set is a unital AF C*-algebra and we have
tried to see what our results mean for this C*-algebra. If one looks at the Cantor
set as a countable infinite product of the two point set Z2 then one may think of
the Cantor set as the compact group

∏
N

Z2, and the continuous functions on this
group is nothing but the reduced C*-algebra for the dual group, which is ⊕NZ2. In
[Co1] Connes constructs a spectral triple for a the group C*-algebra of a discrete
group with a proper length function, and it turns out that an application of his
construction to the group ⊕NZ2 gives the same spectral triple as we get in the AF
C*-algebra setting. Except, of course, for the actual choice of the eigen values. We
studied then a special case where the eigen values are inverse powers of a real α,
such that 0 < α < 1, and such that the sequence of eigen values, say λn, becomes
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α−n. Let us call the Dirac operator induced by this sequence of eigen values Dα,
then that Dirac operator induces a metric for the topology on the Cantor set.
Any two such metrics are in equivalent and the Hausdorff dimension of the metric
space for a given α agrees with the Minkowski dimension and can be computed as

log 2
− log α . Further it turns out, still for a given α, that the metric induced by Dα is

bi-Lipschitz equivalent to the one called δα defined on
∏

N
Z2 by

∀x, y ∈
∏

N

Z2 : δα(x , y) :=

∞∑

n=1

|xn − yn|α(n−1)(1 − α).

References

[AC] C. Antonescu, E. Christensen, Metrics on group C*-algebras and a non-commutative
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Von Neumann algebras in elliptic cohomology?

Antony Wassermann

I briefly reported1 on the possible applications of von Neumann algebras to the
Teichner-Stolz programme for making precise Graeme Segal’s proposal for elliptic
cohomology.
One success has been the use of homomorphisms into the outer automorphism
group of a factor to describe the spin structure on a loop space, I described two
constructions: the type III1 construction using loop groups; and the type II1
construction based on the group-measure space construction and Singer’s 1-cocycle
perturbations.
After having described fermionic modular functor of Graeme Segal, I explained
how the open string version of this theory might be formulated in terms of fusion
of bimodules over type III1 factors. On the one hand, the combinatorial computa-
tions of Feng Xu suggest that such geometrical interpretation of fusion should be

1This abstract, typed by the reporter, is based on the handwritten abstract by A. Wassermann
in the “Book of Talks” of the MFO.
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possible; on the other hand, the theory would require glueing Riemann surfaces
with corners – even for domains in C, it is at present not clear how to handle
certain technical difficulties (well-known from the Toeplitz story).

Reporter: Walther Paravicini
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